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Abstract

Ribonucleic acids (RNA) are critical components of living systems. Understanding RNA

structure and its interaction with other molecules is an essential step in understanding RNA-

driven processes within the cell. Experimental techniques like X-ray crystallography, nu-

clear magnetic resonance (NMR) spectroscopy, and chemical probingmethods have provided

insights into RNA structures on the atomic scale. To effectively exploit experimental data

and characterize features of an RNA structure, quantitative descriptors of local atomic en-

vironments are required. Here, I investigated different ways to describe RNA local atomic

environments. First, I investigated the solvent-accessible surface area (SASA) as a probe of

RNA local atomic environment. SASA contains information on the level of exposure of an

RNA atom to solvents and, in some cases, is highly correlated to reactivity profiles derived

from chemical probing experiments. Using Bayesian/maximum entropy (BME), I was able to

reweight RNA structure models based on the agreement between SASA and chemical reac-

tivities. Next, I developed a numerical descriptor (the atomic fingerprint), that is capable of

discriminating different atomic environments. Using atomic fingerprints as features enable

the prediction of RNA structure and structure-related properties. Two detailed examples are

discussed. Firstly, a classification model was developed to predict Mg2+ ion binding sites.

Results indicate that the model could predict Mg2+ binding sites with reasonable accuracy,

and it appears to outperform existing methods. Secondly, a set of models were developed to

identify cavities in RNA that are likely to accommodate small-molecule ligands. The models

xix



were also used to identify bound-like conformations from an ensemble of RNA structures.

The frameworks presented here provide paths to connect the local atomic environment to

RNA structure, and I envision they will provide opportunities to develop novel RNA model-

ing tools.
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Chapter 1.

Introduction

Ribonucleic acids (RNAs) represent one of the fundamental building blocks of all domains of

life. RNA molecules have crucial functions, most notably, as messengers in gene expression,

transcribing genetic information from deoxyribonucleic acid (DNA), and translating it into

proteins. Not all transcribed RNAs, however, are translated into proteins. Many classes of

non-coding RNAs (ncRNAs) are now known to act as independent catalytic or regulatory

molecules. With the increased awareness of the importance of RNA in critical biological

functions, a rapidly growing number of RNAs, especially ncRNAs, have been discovered

to be disease-relevant and were targeted to treat infectious diseases and cancer. To better

understand the functionality of RNAs and improve the in silico RNA targeting drug design

pipeline, there is a need for novel theoretical and experimental models that offer a more

guided and rational explanation of RNA structure as dynamics. This work is aimed at the

need, mainly from a theoretical perspective. In this chapter, I will introduce the fundamental

elements of the RNA structure, discuss the interaction of RNA with other molecules, and

survey the computational tools used in the rest of this thesis.
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1.1. RNA structure and the structural ensemble

Like other biomolecules, RNA is a large organic molecule composed of a set of organized

atoms, typically ranging from hundreds to hundreds of thousands of atoms. The arrange-

ment of atoms in three-dimensional space and the inter-atomic interactions collectively de-

fine an RNA structure, or the RNA conformation or conformational state. RNA structure is

key to understanding its stability and function. Below I review the basics of an RNA struc-

ture, structural ensemble, and how to determine RNA structures experimentally.

1.1.1. Three levels of RNA structure

RNA structure is typically described at three levels: primary, secondary, and tertiary (Fig-

ure 1.1a-c). On the first level, RNA is a biomolecule consisting of ribonucleotides. Each

ribonucleotide contains a nitrogenous base, a five-carbon sugar (ribose), and a phosphate

group. There are four natural ribonucleotides classified into two groups, purines (Adenine

and Guanine, denoted by A or ADE and G or GUA, respectively) and pyrimidines (Cyto-

sine and Uracil, denoted by C or CYT and U or URA, respectively), which differ only on

the nitrogenous base. Two ribonucleotides can be linked together by phosphodiester bonds

that connect the 5’-phosphate group of one ribonucleotide to the 3’-hydroxyl group of the

other. Sequentially linked ribonucleotides form the RNA strand. An RNA molecule consists

of one or more RNA strands, and the sequence of ribonucleotides in each strand collectively

form the RNA primary structure (Figure 1.1a). At the second level, RNA secondary struc-

ture describes the base-pairing status between each pair of ribonucleotides (Figure 1.1b). In

addition to the covalent phosphodiester bonds, ribonucleotides also interact with each other

through non-covalent hydrogen bonds (H-bonds) and form base-pairs. The base-paring be-

tween ribonucleotides is the essential first step for a stable RNA structure and is also the
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critical ingredient for gene replication and transcription. Base-paring between nucleotides

generally follows the Watson-Crick (WC) base-pairing rules. WC rules state that purines

are base-paired to their corresponding pyrimidines (C:G/G:C, A:U/U:A), with an additional

weaker non-WC base-pairing (G:U/U:G). The third level, RNA tertiary structure, or 3D struc-

ture, describes the spatial arrangements of nucleotides in 3D space (Figure 1.1c). Stacking

interactions between bases, electrostatic interactions, and other long-range interactions are

the primary driving force of the formation of tertiary structures [1]. Non-canonical base-

pairing interactions that do not follow theWC rule could also be induced by tertiary interac-

tions [2, 3]. Ion interactions also come in at this stage to neutralize negative charges on RNA

backbone and stabilize its tertiary structure. The presence of RNA tertiary structure and the

ability of RNA folding into compact 3D structures make RNAs well suited for shape-based

functionality. In this thesis, unless otherwise specified, the term “structure” will refer to the 3D

structure.

GGGGAUUGAAAAUCCCC

(a)

(b) (c)
(d)

Figure 1.1: (a-c) Illustration of the three levels of RNA structure: (a) primary, (b) secondary and
(c) tertiary structures of the anticodon stem-loop from E. coli tRNA (PDB ID: 1KKA)
[4]. The secondary structure was generated using Forna [5] web server and tertiary
structure was rendered in PyMOL [6]. (d) RNA “Dance”: the diverse structures of a
simple RNA hairpin. (d) was taken from [7].
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1.1.2. RNA structural ensembles

Instead of maintaining a single rigid structure, most RNAs dynamically sample a variety

of conformations and can have many excited or transient states (Figure 1.1d). The set of

structures that an RNA can occupy under a set of environmental conditions collectively

form a structural ensemble. Conformers within the ensemble can have various probabilities.

Correctly folded structures with the lowest free energy typically have the highest probability

and account for the largest proportion of the population, and are also known as “native”

structures. In contrast, higher free energy (or transient) structures are rarer under normal

physiological conditions.

The RNA ensemble changes in response to a diverse array of environmental factors, in-

cluding temperature, pH, binding to othermacromolecules, etc. These changes can be viewed

as a redistribution of the conformations within the ensemble rather than creating new con-

formations. For example, when a free RNA molecule is placed in contact with a small-

molecule ligand and ultimately form an RNA-ligand complex, the relative population of

the apo (ligand-free) state, which dominates the free-state RNA ensemble, is decreased and

correspondingly, the holo (ligand-bound) state population is increased. The transient state

kinetics and the transition to low-populated states are essential components to understand-

ing RNA function. For example, one study of excited states of HIV-1 TAR RNA shows that

changes in base-pairing status potentially activate the transcription of the HIV-1 genome,

which ultimately allowed for the discovery of new drug targets [8].

1.1.3. RNA structure descriptors

Describing RNA structures is one of the primary steps to analyze their interaction with other

molecules and to rationalize their cellular function. Among all basic RNA 3D structure de-
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scriptors, Root Mean Square Deviation (RMSD) and Solvent Accessible Surface Area (SASA)

stand out as the most common ones.

Root Mean Square Deviation (RMSD)

Comparing RNA 3D structures yields valuable information on their functional conserva-

tion and structure-function relationships. The most commonly used criteria to discriminate

RNA 3D structures is Root-Mean-Square Deviation (RMSD). RMSD is a measure of distances

between the atoms in a structure and another reference structure with superimposed con-

formations (Equation 1.1).

𝑅𝑀𝑆𝐷 =
√

1
𝑁

𝑁
∑
𝑖=1

𝛿2𝑖 (1.1)

Here 𝑁 is the number of atoms in the structure, and 𝛿𝑖 is the euclidean distance between

atom 𝑖 in the structure and the corresponding atom in the reference structure. In practice,

the two structures are aligned with each other to obtain optimal superposition before the

calculating RMSD to eliminate the contribution from pure translation and rotation move-

ments needed to align the two structures. For example, if two identical structures were only

offset by a distance, they are still considered identical and should result in 0 RMSD.

In practice, the RMSD has diverse applications in both RNA structure and energetics anal-

yses. Firstly, the RMSD is used to quantitatively measure the similarity between two struc-

tures. For example, in RNA structure predictions, the RMSD from the known experimental

structure is vital in assessing the quality of the predicted structure [9]. Secondly, the RMSD

is used to infer the energetics of an RNA ensemble. For example, when studying the folding

kinetics of an RNA structure [10, 11] or RNA-ligand binding pathways [12], the RMSD from

the native, starting structure could serve as a reaction coordinate to quantify whether the
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RNA is in folded form or as constraints to guide the ligand-binding process.

Solvent Accessible Surface Area (SASA)

In cells, RNAs exist in the aqueous environment and interact with other molecules through

their solvent accessible surface area (SASA). The concept of SASA was introduced for pro-

teins to estimate the relative changes in solvent accessible surface upon folding in 1971 by

Lee & Richards [13]. Like many other biomolecular methods and properties first introduced

for proteins, SASAwas introduced for nucleic acids not long after in 1979 by Charles & Sung-

Hou [14] as a way to describe molecular, residuewise and atomwise exposure of nucleic acids

to solvents and to study their conformational transitions.

By definition, SASA is the exposed surface of a molecule or an atom accessible to the sol-

vent. Since the surface of a biomolecule is formed by interlocking spheres of each atom, this

irregular shape hinders an accurate analytical formula for SASA calculation, while numer-

ical approximation is employed. SASA was traditionally computed by the “rolling probe”

method. A spherical ball with radius similar to a solvent molecule is used as a probe and

rolled over the whole van derWaals surface of a biomolecule, and SASA of the biomolecule is

thus obtained by numerical integration over all possible positions of the center of the probe.

The numeral integration is performed by slicing the biomolecule into small, uniformly sep-

arated planes with separation ℎ, and the surface in each plane is considered a 2D circle. The

problem of computing surface of a 3D object (the biomolecule) is therefore converted into

the sum of perimeters of 2D objects (circles) multiplied by separation ℎ.
SASA is an important structural feature of RNA. Firstly, Solvent Accessible Surface Area

(SASA) is related to chemical reactivity, RNA-protein interaction [15, 16] and RNA-ligand

interaction. For example, SASA is an important term to include in computer docking pro-

grams [17] when predicting ligand-binding sites. Secondly, SASA is often used to calculate
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solvation energy, the transfer free energy of moving the RNA from vacuum to aqueous envi-

ronment, and assist in computational modeling of RNA dynamics. In many current solvation

models for biomolecules, the nonpolar contribution to the solvation free energy is estimated

from the SASA scaled by an effective surface tension parameter [18, 19].

1.1.4. Experimental determination of RNA structures

Tertiary interactions in RNA result in significant diversity in RNA structures [2]. Various

stacking arrangements and sugar conformations, in addition to unusual base-pairing inter-

actions caused by tertiary interactions, lead to the heterogeneity in RNA tertiary structures.

Biophysical experimental techniques such as X-ray crystallography, nuclear magnetic res-

onance (NMR) spectroscopy, and other methods like cryo-electron microscopy (cryo-EM)

have revealed this diversity in RNA 3D structures, and they are still the most important and

accurate tools used to characterize RNA structures [20]. Chemical probing methods like

DMS [21], SHAPE (Selective 2’-hydroxyl acylation analyzed by primer extension) [22] and

LASER (Light-Activated Structural Examination of RNA) [23] can also be used to analyze

RNA local structures by letting the RNA interact with chemical probing reagents and then

infer structural information from the reactivity pattern. Chemical probingmethods typically

provide indirect information about the structure and requiremore subsequent computational

analysis to produce structure models.

X-ray crystallography and NMR spectroscopy are the two major classes of physics-based

experimental techniques used for RNA structure determination. X-ray crystallography solves

an RNA structure by examining the electron density map of heavy (non-hydrogen) atoms in

an RNA crystal. The type and position of an atom in an RNA molecule can be determined

based on the fact that different types of atoms diffract X-ray photons in different directions.
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X-ray crystallography is known for its capability to solve structures at a high resolution, and

the majority of experimental structures available for RNA are X-ray structures. X-ray crys-

tallography could solve RNA structures of various sizes, ranging from simple stem-loops of

10 nucleotides (nts) to the ribozymes and riboswitch functional groups of hundreds to thou-

sands of nts. NMR spectroscopy is also a powerful tool for studying RNA 3D structures,

especially in solution. NMR spectroscopy determines RNA structures by placing the RNA

molecule in a magnetic field and analyzing the resonance patterns found when varying the

frequency of the magnetic wave to. In contrast to X-ray crystallography, in NMR exper-

iments, RNA molecules are in solution and, therefore, can capture RNA dynamics. NMR

experiments also yield several structural-relevant measurements, including chemical shifts

and interatomic distances restraints that are valuable inputs for computational modeling.

However, experimental techniques also have some limitations. Firstly, high-resolution

experiments are time-consuming and require significant expertise. The preparation of RNA

crystals used for X-ray crystallography vary from structure to structure, and the crystals are

extremely delicate since RNA structures are highly flexible and are sensitive to stabilizing

compounds used in crystallography [24, 25]. On the other hand, althoughNMR spectroscopy

could directly determine RNA structures in solution and less preparation is required than X-

ray crystallography, the high-molecular weight of the RNA molecule limits the accuracy

and suitability of standard solution NMR techniques [26, 27]. Secondly, experimental tech-

niques, especially X-ray crystallography, lack the ability to characterize the dynamics or

ensembles of RNA. Crystallography can only show the most probable structure that domi-

nates the ensemble. Recently methods have been proposed to experimentally characterize

RNA transient states [28] using NMR spectroscopy, but the framework is not yet as well

established. Thirdly, since both X-ray and NMR determine structures in vitro, meaning that

RNA molecules have to be taken out of the living cell and pre-processed before experiments
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can be performed, the structures determined using these methods may not reflect the func-

tional states of the RNA in vivo (in the cell). Chemical probing methods can overcome this

limitation to some extent, but they lack the ability to determine the structural details and

achieve the high accuracy that X-ray and NMR methods could achieve. Despite the limita-

tions, experimental techniques provide insights into RNA function at atomic resolution and

continue to be invaluable in structural biology. They are the foundation of other computa-

tional methods for structural and energetics determination that will be discussed in Section

1.3.

1.2. RNA intermolecular interactions

Most RNAs do not act in isolation but interact with other molecules to execute their func-

tions, including solvents (water and ions), small-molecule ligands, other RNAs, and proteins.

RNA-solvent interactions are considered to be the primary stabilizing factors for RNA sec-

ondary and tertiary structures, depending upon the nature of the surrounding liquid. A large

number of RNAs co-exist with proteins and form RNA-Protein complexes (RNPs) [29]. Some

RNAs interact with other RNAs to regulate translation and transcription [30, 31]. Moreover,

RNA interacts with ligands (small molecules bound to RNAs), ranging from simple amino

acids (the building block of proteins) to metabolites like flavine mononucleotide [32], to per-

form their biological function. In this section, I will discuss the interaction between RNA

and other molecules, with more emphasis placed on solvents and small-molecule ligands.

1.2.1. RNA-solvent interaction

The presence of water molecules is crucial to the RNA tertiary structural stability and its

function. Water molecules come in at every stage of RNA structure formation and serve as
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lubricant when RNA interacts with other molecules [33]. Nucleic acids typically interact

with water molecules via polar or ionic groups, which form hydrogen-bonds when coming

into contact with hydrogen atoms in water molecules, and RNAs have an especially greater

extent of hydration due to the extra oxygen atoms (O2’) present on ribose (the five-carbon

sugar).

RNAs also interact with ions, both cations (positively charged ions) and anions (nega-

tively charged), through their highly negatively charged phosphodiester backbone. Both

long-range and short-range forces come into play in RNA-ion interactions [34]. Among

all ions, cations like potassium (K+), magnesium (Mg2+), and their compounds with water

molecules have been shown to play important roles in stabilizing RNA tertiary structures

and in modulating biological function in living organisms [35, 36]. Under-concentration of

ions will result in the “collapse” of folded RNA tertiary structures [34]. The importance of

positively-charged ions is mainly highlighted in two aspects. Firstly, since the RNA back-

bone carries negative charges, positively charged ions are essential in neutralizing the overall

charge and maintaining structural stability [37, 38]. Many RNA structures solved in exper-

iments include positively charged ions as stabilizers. For example, the first RNA structure

solved experimentally, the yeast tRNA structure, is stabilized by Mg2+ions [39]. Secondly, in

some cases, RNAs bind metal ions selectively to perform their functions, and the presence of

ions helps to facilitate the interaction between an RNA and other macromolecules. For ex-

ample, Mg2+participate in inducing conformational changes at the internal ribosome entry

site of the hepatitis C virus [37].
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1.2.2. RNA-ligand interaction

RNAs interact with ligands to induce a change in conformation as well as regulate biological

activities. When characterizing the RNA-ligand interaction, several factors must be taken

into account, including the type of ligands, the structure of the RNA, and the specific site

of the RNA structure that the ligand binds. Specificity and affinity are the two dimensions

used to assess the quality of interaction of RNA-ligand binding. Binding affinity is a direct

measure of how tight a ligand binds to an RNA. Specificity, on the other hand, is a measure

of how selective the binding site binds to a specific ligand. If a binding site on an RNA does

not bind to any ligands but one, it is said to have high specificity to the one ligand it binds.

Specificity, as well as affinity, is a useful measure in assessing RNA-ligand interaction, when

designing drugs, for example, one would expect the drug binding site should be unique to

the drug, but not a competitive site that the drug molecule has to compete with others. In

the case when a binding site has high specificity, it could potentially achieve a high success

rate even at a lower affinity.

Riboswitch

Riboswitches are a family of RNAs that bind to small-molecule ligands to regulate their own

activity, which best exemplify the interaction between RNA with small-molecule ligands.

Riboswitches are cis-regulatory RNA domains composed of the aptamer domain and gene

expression platform. The aptamer domain is the part of the riboswitch that possesses bind-

ing pockets to bind small-molecule ligands. The gene expression platform, also called the

actuator domain, is the functional part of the riboswitch responsible for transcription or

translation. Riboswitches are known to bind to a large variety of ligands, and, most im-

portantly, regulate gene expression without the need for protein factors [40]. The “switch”
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mechanism works as follows: when the aptamer domain binds to the small molecules, con-

formational changes in the actuator domain are induced, which in turn block or mediate

transcription or translation (see Figure 1.2). A riboswitch is just like a genetic switch, with

the ability to flip genes “on” and “off” in response to small-molecule ligands. Structures of the

riboswitch aptamer domain have been well studied in experiments, with over 100 structures

solved under various conditions and deposited to the PDB [20].

Figure 1.2: Illustration of riboswitch mechanism. Figure from [40].

1.3. Computational methods in RNA research

With the limitations of experimental methods and the increase in available computing power,

computational methods have now been adapted and have become more and more popular to

study RNA structure, dynamics, and energetics. Computational methods play an important

role in determining of RNA secondary [41–43] and tertiary structures [44–48]. In this sec-

tion, I will describe the two most commonly used computational tools in RNA research. One

is Molecular Dynamics (MD) simulation, which utilize physics-based or statistical potential

functions (force fields) to simulate dynamics of biomolecules [49]. The other one is Machine

Learning (ML), the data-based computational strategy that constructs powerful models by

directly learning the behavior and functional relationships from existing data.
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1.3.1. Molecular dynamics simulation

MD simulations are one of the most common computational techniques in biophysical sci-

ence and has been used in data preparation or verification inmost chapters in this thesis. MD

has been widely adopted as a tool to produce trajectories that describe the dynamical proper-

ties of each atom in a complex biological system. MD has assisted in determining structures,

revealing biomolecular internal motions, uncovering RNA tetra-loop folding pathway[50]

as well as assessing interactions between biomolecules [51].

MD simulations model the individual motions of each atom as a function of time using

numerical methods, where the time dimension is discretized into small, finite steps to fa-

cilitate the numerical integration of equation of motions between time steps [52]. In MD

simulations of biomolecules with 𝑁 atoms, atoms are modeled as point particles with mass

𝑚𝑖, position 𝑥𝑖 and velocity 𝑣𝑖. The system evolves following Newton’s Law of motion:

𝑚𝑖
𝑑𝑣𝑖
𝑑𝑡 = 𝐹𝑖 = −∇𝑖𝑉 (𝑥1, ..., 𝑥𝑁 ) (1.2)

𝑑𝑥𝑖
𝑑𝑡 = 𝑣𝑖 (1.3)

With an initial set of positions and velocities for each atom in the system, the force ex-

perienced by each atom can be determined by the force field function 𝑉 (though named as

“force field”, 𝑉 is actually a potential function). The velocity and position for the next time

step can be determined by integrating the corresponding differential equations. The force

field, the function linking atomic coordinates to the time derivative of velocity, is therefore

essential to produce the dynamics. In biological research, the force field typically consists of

bonded and non-bonded interactions between atoms. Bonded interactions include stretch-
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ing of bonds and angles between connected bonds. Non-bonded interactions are composed

of longer-range interactions, including van der Waals and electrostatic interactions. The

functional form and parameters involved in the force field function are either empirical or

approximations of theoretical calculations. The simplicity of the framework has made MD

the primary method for determining the conformational landscape and structural ensembles

for RNAs and other biomolecules.

The large size of biomolecules leads to a natural tradeoff between accuracy and compu-

tational complexity in the MD simulation of biological systems. On the one hand, since

simulations can be achieved in a way that atomic coordinates are updated by numerical in-

tegration at discrete timestep on the scale of femtoseconds, a reasonably small error in each

time step can accumulate to become significant after thousands of steps. Although proper

integrationmethods like back-Euler, Verlet integration have been used to reduce the numeri-

cal instability, the limitation of machine precision and inaccuracy resulting from the intrinsic

error of the force field remains a problem that can lead to incorrect dynamics. On the other

hand, biomolecules are usually hundreds of thousands of atoms in size. Biological reactions

of interest, like folding and binding-unbinding, occur on the time scale of milliseconds up

to minutes [53], which requires millions to trillions of steps of simulations. Thus, a highly

efficient force field is required to perform relatively-long simulations.

Additionally, some limitations remain within MD simulations. Firstly, the approximations

made in the force field and its empirical nature make it not accurate. For instance, polariz-

ability is sacrificed in most classical force fields and replaced by fixed point charges. Over

the course of long simulations, the error in the force field will accumulate and therefore

drive the structures to unrealistic direction or result in incorrect conformational landscapes.

Some solutions have been proposed for this problem. For example, one can incorporate ex-

perimental measurements to guide MD simulations [54], or derive high-accuracy force field
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from quantum field theories. The other limitation in MD simulation is the speed sometimes

not satisfactory. The simulation of a midsized 996-residue protein for 1 second can take

over 171 years on a computer with 16 cores [55, 56]. High-parallel GPU calculations have

been adopted, and specially designed hardware has been developed [57] to overcome this

limitation.

1.3.2. Machine learning

Machine learning is a data-driven method that utilizes computers to learn from experience.

Machine learning has become more and more popular in recent years, with applications in

computer vision, natural language processing (NLP), robotics, e.t.c. It has seen great success

in commercial products like Siri and Alexa, self-driving cars, and the famous game AI Alpha-

GO[58] that, together with its successors [59], have beaten all human experts in the board

game Go.

The growth of data available in biological research also made it suitable for the devel-

opment of ML models. glsPDB [60], the website that holds all known tertiary structures

of biomolecules has observed an exponential growth in the number of data entries since its

announcement in 1971 [61] (Figure 1.3). Numerous ML models have been developed for pro-

teins, protein-containing complexes, and biomolecules in general. For example, ML-based

models utilized in protein research, such as for prediction of protein structures [62, 63], iden-

tification of protein targeting drugs [64–67] andmany others, [68] have achieved comparable

or even superior accuracies comparable to traditional rule-based models. Natural language

processing (NLP) models have been developed to classify documents and extract information

from biomedical literature [69–71]. ML models have

Though the slow progress of RNA structure determination in experiments (green line in
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Figure 1.3a) compared to proteins has long been a limiting factor for the development of data-

based methods of RNAs, there has been a significant improvement since the 1990s. There are

now over 6000 structures for RNA-protein complexes and over 1000 RNA-alone structures

in the Protein Data Bank (PDB) (Figure 1.3b), in combination resulting in millions of atomic

coordinates available. This enormous, rich databank is an excellent resource that provides

a lot of valuable information about local RNA structures and structural motifs. A number

of ML-based models have been trained to study RNA-protein interactions and structural

properties of RNAs [15, 72], to predict RNA secondary and tertiary structures from sequence

[73, 74], and reversely, to predict RNA sequences from a tertiary structure in inverse RNA

folding problems [75].

(a)

(b)

Figure 1.3: Growth of number of structure entries in the RCSB Protein Data Bank (RCSB PDB,
http://www.rcsb.org) [60] of (a) all structures (including proteins) and (b) RNA and
nucleic acid-protein complex. Data was taken from PDB website [76]
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(1.4)

In general, ML is used to deal with problems consisting of a large set of multi-dimensional

data samples, by building a “black-box” type ofmodel to predict an observablewithout know-

ing the underlying relations. There are typically two types of machine learning problems,

namely supervised learning and unsupervised learning. In supervised learning, a model is

trained to map a set of features, X, to known targets, y, (Equation 1.4), where y can be either

continuous or categorical values. When y is continuous, the problem is a “regression” prob-

lem, and the model is a regression model. For example, the prediction of the house pricing,

for example, is a regression problem. When y is categorical, on the other hand, the problem

(model) is named as “classification” problem (model). For example, predicting handwritten

digits is a classification problem. Sometimes classification models can output probabilities

for each category. In unsupervised learning, no targets 𝑦 are known, and the problem is

focused on clustering input data into groups or analyzing the underlying patterns within

the features 𝑋 .

The major aspects which affect the success rate of anMLmodel are data collection, feature

engineering, and model selection. The training data is a set of data used to develop machine

learning models, and it directly affects what the model is learning and how well it could

optimally learn. Feature engineering is the step that requires the most domain knowledge

as one has to handcraft features that are relevant to the problem, given the targets 𝑦 and the

available information. Feature engineering can either be done manually before the training

or using some statistical tools like Principle Component Analysis (PCA). In some neural net-
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work models, the feature engineering step can be bypassed, and the feature embeddings can

be automatically learned in the training step. Model selection and hyperparameter tuning

are all about choosing the right statistical model that fits the data. If a relationship to be

learned is simple, a simple linear model would be sufficient and would likely work better

than a complex model such as deep neural networks. In the instance that features are sparse

or when feature dimensionality exceeds the number of training samples, regularized models

and sparse learning can be used. The choice of models and hyperparameters largely depend

on the nature of models. It is common practice to test a variety of models and parameters,

and choose the one with the highest accuracy or lowest error on a separate validation dataset

that does not overlap with the training data based on trial-and-error.

1.4. Outline

The work presented in this thesis aims to provide frameworks for predicting RNA structural

ensembles as well as binding sites of ions and small-molecule ligands. First, a framework

of constructing RNA structural ensemble based on SASA and Bayesian/maximum entropy

(BME) is discussed in Chapter II and is applied to the SAM-I riboswitch. In Chapter III, a

fingerprinting method capable of characterizing RNA local atomic environment is proposed

and used to identify native-like RNA structures and bound-like RNA-ligand complexes. The

fingerprint was used as features to predict Mg2+ion binding sites and ligand binding poses.

Finally, in Chapter VI, I developed a classifier to identify ligand-binding cavities in RNA

structure and to extract bound-like conformations from an RNA conformational pool.

In Chapter II, I built a framework to construct RNA structural ensemble using atomic SASA

values. To understand the functionally relevant structural ensembles of RNA, methods are

needed that relate ensemble accessible measurements to the underlying conformational dis-

18



tributions comprising these ensembles. Several relatively rapid and ensemble-based experi-

mental approaches, such as chemical probing methods, provide information about the acces-

sibility of reactive groups to the solvent environment, mirroring the SASA of these groups.

Relationships between the solvent accessibility of members of a computationally generated

set of RNA conformations and the observed ensemble measurements of SASA may be useful

in establishing a representative distribution of conformations to infer functionally relevant

environmental responses, and to yield individual conformational members of such ensem-

bles for the targeted design of therapeutics or the rationalization of a functionally relevant

response. As such, I explored the development of an approach that yields an RNA ensemble

that is consistent with the SASA-tied experimental observations. I developed a framework

based on the Bayesian/maximum entropy (BME), which was then benchmarked on a set of

RNAs and simulated ensemble-averaged SASA values. The benchmarking results suggested

that using BME with ensemble-averaged SASA, it is possible to construct a structural en-

semble with desired accuracy. Then I applied the framework to the SAM-I riboswitch, in

which measured SASA derived from LASER experiments were applied, and I successfully

captured the ensemble properties of SAM riboswitch ensemble in its free and bound states.

In the free-state ensemble, I identified a possible ligand-binding pocket different from the

experimental pocket. I anticipate that performing binding experiments on the new pocket

in the future will further validate the results.

As mentioned above, feature engineering is an essential step in building machine learn-

ing models for RNA. In Chapter III, I developed a structure-based fingerprint using a simple

Gaussian function of atomic pairwise distances. Time complexity analysis of the fingerprint

shows that it is sufficient for small to medium-sized RNA molecules. I demonstrated the

capabilities of the fingerprint in combination with machine learning methods to discover

patterns in RNA structural information and develop predictive models to help predict the
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structure and structure-related properties of RNAs. In particular, using the fingerprints as

features, I trained ML models to predict Mg2+binding sites in RNA structures and ligand

binding poses (in Appendix) in RNA-ligand complexes. Improvements on these fronts, cou-

pled with advancements in computer software and hardware, will enable the structure and

dynamics of newly discovered RNAs to be rapidly characterized [77].

Inspired by the binding pocket identification form Chapter II, I realized there is a need

for the identification of binding cavities in a structured RNA and developed a structural-

based framework for the identification of binding sites in Chapter IV. In an RNA structure,

especially larger ones, there are often a number of cavities that potentially bind to small-

molecule ligands. To facilitate the virtual screening on those RNAs, the detailed mechanism

and an efficient tool to identify themost probable binding pockets are needed. In Chapter IV, I

focused on predicting drug-like cavities in an RNA structure, that is, without pre-knowledge

of the ligand itself, I want to identify which binding pocket in an RNA structure is most

probably bound to a small ligand. The model I built was able to recover druggable cavities

among all cavities identified by cavity mapping methods within the top 3 positions in most

cases. Furthermore, I also built a pipeline that could predict druggable conformations and

identify the druggable cavities using the sequence information of an RNA. Combined with

ligand and pose selection and cavity mapping methods, such a framework will drive faster

and more accurate virtual screening.
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Chapter 2.

Structural Ensembles of Ribonucleic Acids

From Solvent Accessibility Data

This chapterwas based on the unpublishedmanuscripthttps://www.biorxiv.org/

content/10.1101/2020.05.21.108498v1.

In this chapter, I used simulated data to quantify the extent to which the RNA structural

ensembles can be inferred from local solvent accessibility. To this end, I first constructed

pairs of decoy and target ensembles (i.e., simulated ensembles) for a set of benchmark, single-

stranded RNAs. Second, I reweighted the decoy ensembles using the ensemble-averaged

solvent accessible surface area (SASA) data calculated from the target ensembles. Third,

I quantified the extent to which the conformational distributions in the target ensembles

resembled the target ensembles. In general, I found that for a specific set of ensemble-

averaged SASA data, I could reweight the decoy ensembles such that they came “closer”

to the target ensembles. However, I found that the ability to infer atomic ensembles from

SASA data was sensitive to their errors, limiting the overall “restraining” power of SASA

data. Based on this assessment of the scope, I constructed a pair of atomistic ensembles
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of the S-adenosylmethionine (SAM)-responsive riboswitch using experimental SASA data

derived from light-activated structural examination of RNA (LASER) reactivities measured

in the absence and presence of SAM. The differences between the ensembles are consistent

with a reshaping of the free-energy landscape of the riboswitch in the presence of SAM,

and the results agree with the atomistic picture that emerged from ensembles previously

generated using orthogonal approaches. Interestingly, within the ligand-free ensemble, I

identified a conformer that potentially harbors a hidden binding pocket. Broadly, the results

should pave the way for the direct utilization of experimentally-derived solvent accessibility

data to construct atomistic ensembles of RNA.

2.1. Introduction

Changes in conformational equilibria – in response to changes in physiochemical condi-

tions within the cell – underlie the biological function of many ribonucleic acids (RNAs).

Such changes may include changes in temperature, pH, or the absence/presence of binding

partner(s). This ability of RNA to respond to changes in local cellular conditions is best

exemplified by riboswitches, which are cis-acting regulatory RNA elements located in the

5’-untranslated (UTR) region of mRNAs that change their conformations upon binding to

specific ligands [78–80]. This conformational change either sequesters or releases sequence-

motifs that, in turn, activate or deactivate transcription or translation. The aptamer domains

of riboswitches bind to their cognate ligands with high specificity and confer the RNA with

its sensing capabilities. As such, understanding the structure of the aptamer domain is crit-

ical to understanding relationships between the conformational equilibria of aptamers and

the sensing capabilities of riboswitches. Mounting evidence suggests that the aptamer do-

main of riboswitches exhibits varying degrees of structural plasticity. Therefore, character-
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izing the structural ensemble, comprised of the set of conformers that are accessible to a

riboswitch under a specific set of conditions, is a critical step in describing and then ratio-

nalizing its response to cognate and non-cognate ligands. Analysis of such ensembles can

reveal the existence of alternate binding pockets that may facilitate binding of non-cognate

ligands, as well as novel allosteric sites that may facilitate ligand binding away from the site

bound by cognate ligands.

Solution techniques can be used to probe the equilibrium conformations of RNAs by pro-

viding access to structure-dependent, ensemble-averaged measurements that can, in princi-

ple, be used to infer structural ensembles that capture the conformational distribution of an

RNA under a specific set of conditions. For instance, chemical probing experiments can be

used to identify reactive sites in RNA, both in vitro and in vivo [81]. Because the sites that are

most “reactive” tend to be solvent-exposed, the reactivities obtained from these experiments

provide an indirect “read-out” of the local solvent accessibility across the ensemble of struc-

tures populated by the RNA. The ensemble-averaged reactivities derived from light-activated

structural examination of RNA (LASER) experiments, in particular, have been shown to cor-

relate strongly with solvent accessible surface area (SASA) of the C8 atom in purine residues

[23], suggesting that they might be useful for constructing such ensembles. Using SASA

data derived from highly accessible measurements is advantageous as it provides a fast and

efficient route to access structural ensembles that can be used to infer functionally relevant

environmental responses in RNA, and to yield individual conformers for the structure-guided

design of therapeutics.

To infer structural ensembles from ensemble-averaged experimental data like SASA, one

of two strategies can be employed: restraining or reweighting [82]. Restraining involves

carrying out molecular dynamics simulations with a force field augmented with restraint

terms that ensure that the simulated ensemble-averaged observables match the experimen-
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tal measurements [83–85]. Reweighting, on the other hand, is a post-processing approach

that involves assigning weights to conformers within an ensemble, so that the ensemble-

averaged observables computed using these weights match the measured observables [86–

88]. As a post-processing approach, reweighting has the advantage of being computationally

efficient and could be used to generate multiple ensembles from multiple sets of experiment

data (possibly measured under differing conditions) from the same set of structures without

requiring additional simulations.

In this chapter, I proposed a computational approach based on conformational sampling

and Bayesian Maximum-Entropy (BME) inference to generate structural ensembles of RNA

consistent with observed ensemble-averaged SASA. Clues to the potential of experimental

data based on SASA to construct structural ensembles were recently provided by Madl and

coworkers, who carried out solution NMR experiments in which they used solvent param-

agnetic relaxation enhancements (sPRE) induced by the soluble, paramagnetic compound

Gd(DTPA-BMA) to probe the structure of two benchmark RNAs [89]. They found that the

inclusion of sPRE data during structural refinement significantly enhanced the quality of

the resulting NMR ensemble [89]. Building off of this observation, I carried out a large-scale

and systematic study to explore the robustness and error tolerance of SASA to construct

structural ensembles. I then applied the approach to SAM riboswitches and successfully

constructed the structural ensemble of the riboswitches both in the absence and presence

of SAM. Furthermore, by a closer investigation into the highest weighted conformational

members in the ensembles, I identified conformers of the SAM riboswitch that possess al-

ternate binding pockets that are predicted to accommodate small-molecule ligands besides

the cognate SAM ligand. The ability to construct such ensembles using SASA derived from

highly accessible experimental data is advantageous, as it provides a fast and efficient route

to access structural ensembles that can be used to infer functionally relevant environmen-
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tal responses in RNA and to yield individual conformers for the structure-guided design of

therapeutics or the rationalization of a functionally relevant response.

2.2. Methods

2.2.1. Generating decoy and target ensembles

I compiled a dataset of 45 RNA molecules, with length ranging from 14 to 53 residues (Table

B.1). For each of the RNA, its sequence and native structure (crystal or NMR structure) were

downloaded from Protein Data Bank [60], which were then used to generate a set of diverse

conformations with FARFAR [44, 45] and KGSrna [46]. FARFAR (Fragment Assembly of

RNA with Full Atom Refinement) is a Rosetta framework that predicts RNA tertiary struc-

ture from its sequence and, optionally, a secondary structure model. During this process,

small RNA fragments are drawn from the crystallographic structure database, followed by

Fragment Assembly of RNA (FARNA) to generate a set of low-resolution structures, then the

low-resolution structures are refined by energy minimization with Rosetta full-atom energy

function. KGSrna (Kino-geometric sampling for RNA), on the other hand, is a conforma-

tional sampling tool that utilizes experimental structure to model the dynamical ensemble

of an RNA. KGSrna generates a set of structures by geometric perturbations to the experi-

mental structure. The perturbations are carefully designed to preserve hydrogen bonding,

and structures with clashes are excluded. I carried out KGSrna sampling using an RMSD

radius of = 10 Å. Here I used FARFAR and KGSrna to generate 1000 structures respectively,

resulting in a total of 2000 structures as the initial decoy. By combining structures generated

by FARFAR and KGSrna, a large simulated decoy ensemble is formed that contains diverse

yet realistic conformations.
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To avoid bias over native and near-native structures inherent to conformational sampling

tools, a subset of 200 structures were sampled from the initial decoy with a uniform dis-

tribution of RMSD with respect to the native structure. This subset was then used in all

subsequent steps such as choosing target ensemble and reweighting. After subsampling I

was left with an approximately equal number of native and non-native structures, such that

I was not taking the majority of the dataset when the target ensemble was chosen at a cer-

tain RMSD radius to the native structure. After subsampling, target ensembles were sampled

near the native structure at various RMSD radius, ranging from 2.0 to 11.0 Å.

2.2.2. Reweighting ensembles using SASA data

Once the decoy and target ensembles are generated, I seek to find a set of weights {𝑤𝑖} for
each structure 𝑖 in the decoy ensemble, that the reweighted ensemble best matches the target

ensemble (Figure 2.1). To achieve this, I use C8-SASA to characterize the structure and apply

Bayesian/Maximum-entropy Reweighting (BME) to obtain the most probable weights which

make the reweighted C8-SASA consistent with target C8-SASA. I first computed atomwise

SASA for each structure in both decoy and target ensemble. The calculation was done in the

open-source tool FreeSASA [90] using Lee & Richards’ algorithm [13] at 1000 slices per atom.

Then the computed SASA was filtered by matching atom name with 𝐶8 to obtain C8-SASA.

The target C8-SASA was assumed to follow a Gaussian distribution, with its mean and stan-

dard deviation computed from the target ensemble. Finally, BME [91, 92] was performed

to obtain the most probable weights such that the reweighted average C8-SASA match tar-

get C8-SASA within error tolerance. I formulate this problem as a constrained optimization

problem with the entropy of weights being the objective function, which is then solvable us-

ing the Lagrangian method. Here I use 𝑤𝑖 to denote weights of each state in decoy ensemble,

26



𝑆𝐴𝑆𝐴𝑖,𝑘 the SASA of atom 𝑘 in the state 𝑖 and 𝑆𝐴𝑆𝐴𝑘 being the ensemble-averaged SASA of

atom 𝑘 in target ensemble. The problem can be formulated as follows:

maximize ( −∑
𝑖
𝑤𝑖 log𝑤𝑖) (2.1)

subject to

|∑
𝑖
𝑤𝑖𝑆𝐴𝑆𝐴𝑖,𝑘 − 𝑆𝐴𝑆𝐴𝑘 | ≤ 𝜖𝑘 (2.2)

where 𝑆𝐴𝑆𝐴𝑖,𝑘 is the SASA of atom 𝑘 in conformer 𝑖, 𝑆𝐴𝑆𝐴𝑘 is the ensemble-averaged SASA

of atom 𝑘 in the target ensemble, and 𝜖𝑘 is the error tolerance sampled from a Gaussian

distribution 𝑝(𝜖𝑘):
𝑝(𝜖𝑘) = exp ( − 𝜖2𝑘

2𝜃𝜎𝑘
). (2.3)

where 𝜎𝑘 is the standard deviation calculated from the target SASA, and 𝜃 is a factor that

scales 𝜎𝑘 . For each RNA in the benchmark data set, I utilized the BME approach to reweight

the decoy ensemble using C8-SASA data from each of the 10 distinct target ensembles, which

differ in terms of the RMSD cutoff to the native structure. Furthermore, for each decoy and

target ensemble pair, I ran 500 trials with random initialization of 𝜖𝑘 . The reweightedweights

were averaged over all trials to get stable and reliable results, which minimizes the effect

of randomness introduced by the sampling of 𝜖𝑘 . Therefore, in total, I carried out 225000

(45 × 10 × 500) reweighting experiments; in each case, I used 𝜃 = 1.0 when carrying out the

reweighting. (Eq. 2.3).

2.2.3. Comparing ensembles

To compare the target, reweighted, and decoy ensembles, I calculated their atomic density

maps using GROma𝜌s [94], a GROMACS-based density map analysis tool. Then, to quantify
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Figure 2.1: (a) Illustration of the workflow used to examine the ability of SASA data to recover
representative structures. From a decoy ensemble, a target ensemble is constructed
by filtering structures based on RMSD from the reference structure. SASA data calcu-
lated from the target ensemble is used to reweight the decoy ensemble, and then the
reweighted ensemble is compared to the target ensemble. (b) Density plots compar-
ing the RMSD distribution of decoy, target, and the BME-reweighted ensemble. These
distributions correspond to those for the triple helix RNA (PDB ID: 2M8K [93]) with
target ensemble comprised of structures within 3 Å of the native structure.

the extent to which decoy ensembles could be reweighted towards the target, I calculated 𝜅
(Equation 2.4), which I defined as the ratio between two cross-correlation values, 𝐶𝐶𝑅𝑇 and

𝐶𝐶𝐷𝑇 . The cross-correlation 𝐶𝐶 is the global correlation between density maps, as also im-

plemented in GROma𝜌s [94]. 𝐶𝐶𝑅𝑇 is defined as the cross-correlation between density maps

of Reweighted(𝑅) and Target (𝑇 ) ensembles, while 𝐶𝐶𝐷𝑇 is the cross-correlation between

density maps of Decoy (𝐷) and Target (𝑇 ) ensembles.

𝜅 = 𝐶𝐶𝑅𝑇
𝐶𝐶𝐷𝑇

= reweighted to target ensemble correlation
decoy to target ensemble correlation

(2.4)

Values of 𝜅 > 1 correspond to instances inwhich the atomic densitymaps of the reweighted

ensemble more closely resembled the target ensemble than the decoy ensemble (i.e., 𝐶𝐶𝑅𝑇 >
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𝐶𝐶𝐷𝑇 ). To visually compare the difference, I also computed the difference density maps

between target and reweighted ensembles and between target and decoy ensembles. The

difference maps were then rendered as volume maps using Pymol [6].

2.2.4. Constructing conformations of ligand-free state of the SAM

riboswitch

To construct a conformational ensemble of the ligand-free (-SAM) state of the SAM riboswitch,

I first generated a conformational pool including both free and bound states SAM riboswitch.

A total of 32000 conformerswere generated using KGSrna (as discussed in Section 2.2.1), with

experimental structure for ligand-free (PDB ID: 3IQN, 3IQP [95]) and the ligand-bound (PDB

ID: 2GIS [96], 3IQR [95]) states as reference. Next, from each conformer in the conforma-

tional pool, C8-SASA of all purine residues were computed using FreeSASA.[90] Then I used

LASER-derived C8-SASA as targets to reweight the conformational pool. To estimate C8-

SASA from LASER reactivity data, I fitted LASER reactivity data [23] to freeSASA-computed

C8-SASAs for +SAM crystal structure (PDB ID: 2GIS) to obtain a linear function that maps

LASER reactivity to C8-SASA [96]. The fit was then used to estimate C8-SASA in the

ligand-free (-SAM) state from available -SAM LASER reactivity data.[23] LASER-estimated

C8-SASA was then used as the mean of target distribution to reweight the conformational

ensemble using the same BME reweighting technique that I employed for the previous com-

putational experiments (see Section 2.2.2). BMEwas carried out with an error tolerance scale

𝜃 = 1, and the standard deviation of target distribution was set to 2 Å2.
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2.2.5. Cavity mapping and docking experiments

For each of the four highest weighted conformers in the -SAM ensemble, I carried out cav-

ity mapping to identify sites on the surface of the conformer that might facilitate interac-

tions with small-molecule ligands. To achieve this, I utilized the two-sphere cavity mapping

method implemented in the rbcavity program within the rDock modeling suite [17]. For

cavity mapping, I set the maximum number of cavities to 10 and the minimum cavity vol-

ume to 50 Å2. The resulting cavities were visualized in PyMOL (version 2.3.4) [6]. Next, I

carried out a small-scale in silico screening by docking 500 small, drug-like molecules into

the cavities identified using rbcavity. These 500 small molecules corresponded to a small

library of drug-like compounds obtained from the ZINC library [97]. To identify the most

conformationally selective compounds in the library, I first computed the selectivity index,

𝛾𝑖,𝑗 , defined as

𝛾𝑖,𝑗 =
Δ𝐺𝑖,𝑗
⟨Δ𝐺𝑖,𝑗⟩

(2.5)

𝛾𝑖 = max𝑗 𝛾𝑖,𝑗 (2.6)

Here 𝑖 runs over the compounds in the library, 𝑗 runs over the conformers (docking recep-

tors), Δ𝐺𝑖,𝑗 is the docking score for compound 𝑖 docked onto conformer 𝑗, and ⟨Δ𝐺𝑖,𝑗⟩ is the

average docking score for compound 𝑖 across all 𝑗 conformers. For each compound, I assign

a selectivity (𝛾𝑖) as the maximum of the set of selectivity indices {𝛾𝑖,𝑗}. As defined, compounds

with high 𝛾𝑖 correspond to those that have a docking score (Δ𝐺𝑖,𝑗 ) on a given conformer that

is significantly more favorable (negative) than the average docking score (⟨Δ𝐺𝑖,𝑗⟩); such a

compound was identified as being a “conformationally selective” compound.
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2.3. Results

2.3.1. Reconstructing ensembles using SASA data.

I carried out a set of computational tests to quantify the degree to which SASAs could infer

atomic ensembles of RNA (Figure 2.1). Specifically, SASA of C8 atoms in purine residues

were used, as those atoms correspond to the sites probed in LASER experiments. LASER ex-

periments were known to produce the reactivities profiles that have been shown to exhibit a

strong, positive correlation with solvent accessibility [23]. To gauge the utility of C8-SASA

in reconstructing atomistic ensembles of RNA, I generated pairs of decoy and target ensem-

bles for a set of 45 RNAs, computed ensemble-averaged C8-SASAs over the target ensemble,

and used the set of ensemble-averaged SASA data to reweight the decoy ensemble. To as-

sess the performance of this SASA reweighting scheme, I calculated atomic density maps for

target, decoy, and reweighted ensembles and calculated the cross-correlations between each

pair. For each RNA in the benchmark set, I carried out simulations in which the width of

the RMSD distribution within the target ensemble ranged between 2 and 11 Å.

Shown in Figure 2.2c are distributions of 𝜅 (Equation 2.4), the ratio of the cross-correlation

between the atomic density maps of the reweighted ensemble (𝐶𝐶𝑅𝑇 ) and the decoy ensem-

ble (𝐶𝐶𝐷𝑇 ) relative to the target ensemble, which I defined earlier in Section 2.2.3. 𝜅 > 1
corresponds to the case where density maps of the reweighted ensembles exhibited a higher

correlation with the target than did the decoys ensembles. The median value of 𝜅 was > 1
for all the widths of target ensemble (Figure 2.2a). However, at target widths ≳5 Å, for a

small fraction of the benchmark set, 𝜅 was < 1. Note that for the examples in the benchmark

set which exhibited 𝜅 ≤ 1, the decoy ensemble is already very similar to the target ensemble,

with relatively high cross-correlations (𝐶𝐶 > 0.90). It explains why 𝜅 for these reweighted

ensembles, especially in the noisy case, found it difficult to get over 1. Overall, these results
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suggest that reweighting the decoy ensembles with SASA-derived conformational weights

yielded atomic density maps that generally exhibit higher correlations to the target than did

the corresponding decoy ensembles.

Next, I explored the sensitivity of the SASA reweighting scheme to both errors in the

SASA data and the width of the target ensemble. To carry out this benchmarking, I first

generated pairs of decoy and simulated target ensembles. Then, using ensemble-averaged

C8-SASA from the target ensemble, I reweighted the decoy ensemble. Visual inspection

of the difference atomic density maps of the reweighted ensembles relative to their target

ensembles revealed that, in general, the C8-SASA reweighted ensembles exhibited smaller

residual densities than the initial decoy ensembles (Figure 2.2c). This observation suggests

that the reweighted ensembles tend to more closely resemble the target than did the decoy

ensembles. Shown in Figure 2.2b are plots of 𝜅 (Equation 2.4) with respect to noise level in

the target SASA and the width of the target ensembles. As defined, when the correlation

between the reweighted and target ensemble is higher than that of the decoy and target

ensembles, 𝜅 > 1. As might be expected, the lower the level of noise added to the target data

and the narrower the width of the target ensemble, the higher the values of 𝜅. Accordingly,

𝜅 is > 1 when the width of the target ensemble is <= 4.2 Å and the noise-level is <= 1.3
Å2, which suggests that under such conditions, the C8-SASA data can be used to bring the

decoy ensembles into better correspondence to the target ensembles.

2.3.2. SASA-based ensembles of the SAM riboswitch are consistent with

reshaping the conformational pool in the presence of SAM

Next, using SASA data derived from LASER experiments, I constructed ensembles for the

-SAM and +SAM states of the aptamer domain of the SAM riboswitch. To achieve this, I
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first generated a diverse pool of conformers and computed the C8-SASA for purine residues,

which correspond to the site in RNA probed by LASER experiments. Then I reweighted the

pool of structures using the Bayesian maximum entropy (BME) reweighting method [92],

using the C8-SASA predicted from LASER reactivity measured in -SAM and +SAM states

as the target data, respectively [23]. Briefly, to generate the target data, I converted LASER

reactivities to C8-SASA by fitting LASER reactivities of the +SAM to C8-SASA computed for

the crystal structure of the +SAM. The mean error in the fit was 1.27 Å2 (Figure B.1 in the

Supporting Information). Based on the benchmarking results presented above (Figure 2.2c),

I expect that ensembles reweighted using C8-SASA data with an inherent error ∼1.27 Å2

should be closer to the “true” ensembles than the initial conformational pool. Shown in Fig-

ure 2.3 is the comparison between the average structure in LASER/SASA-derived ensembles

for the -SAM (Figure 2.3a) and +SAM (Figure 2.3b) states. The RMSD of the average ensem-

ble structures were only 1.30 Å , consistent with X-ray crystallography result that the -SAM

and +SAM structures were almost identical (RMSD = 0.52 Å). Despite the similarity of the

average -SAM and +SAM structures, I did observe some subtle differences in the -SAM and

+SAM ensembles along the distributions of the distance between residue 47 and residue 90,

which I used as the reaction coordinate to describe the openness of P1 relative to P3 (Figure

2.3c). Comparison of the -SAM and +SAM distributions revealed that the mode of distribu-

tion shifts from 16.8 to 13.0 Å when going from the -SAM to the +SAM state, consistent with

the -SAM state having a preference, relative to the +SAM state, for the open P1-P3 state.

Despite the global structure of the -SAM and +SAM being almost identical, an inspec-

tion of the crystal structures reveal that in the -SAM, A46 and U57 are base-paired (closed),

whereas in the +SAM state, they are not base-paired (open); U57 instead forms a hydro-

gen bond with SAM in the +SAM state. To test whether the ensembles captured this subtle

difference, I computed the distribution of the distance between A46-U57, which I used as a
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reaction coordinate to describe the extent to which A46-U57 were base-paired (Figure 2.3d).

In contrast to the distribution of the P1-P3 distance (Figure 2.3c), I observed a more dramatic

difference between the -SAM and +SAM (Figure 2.3d). The distribution of the A46-U57 dis-

tance in the LASER/SASA ensembles are consistent with -SAM sampling both the closed and

open A46/U57 states, whereas +SAM predominantly existing in the open A46/U57 state (Fig-

ure 2.3d). The LASER/SASA-derived ensembles, therefore, support a mechanism in which

SAM shifts the population of states toward the closed A46/U57 state (Figure 2.3d).

2.3.3. The -SAM ensemble contains a conformer that is predicted to bind

to small-molecules via a hidden pocket.

Since their discovery, riboswitches have garnered interest as under-explored drug targets

[99]. Indeed, the recent discovery of the antibacterial small molecule, ribocil-B, which tar-

gets the flavin mononucleotide (FMN) riboswitch, supports the notion that riboswitches are

druggable RNA targets [100]. As a result of this and related discoveries [101], the identifi-

cation and design of small molecules that target riboswitches has become an active area of

research. Because individual riboswitches have evolved to bind to a specific ligand, attempts

to design compounds that target riboswitches have focused on identifying compounds that

are analogs of the cognate ligand or compounds that can recapitulate its interaction pattern.

Alternatively, one could envision identifying small molecules that bind to a riboswitch at a

site other than that occupied by the cognate ligand. Once identified, these alternative sites

can be targeted using structure-based methods like molecular docking [102].

To illustrate how one might attempt to detect such site computationally, I applied ensem-

ble docking to the highest weighted conformers in the -SAM ensemble. First, I applied the

two-sphere cavity mapping method to the four highest weighted conformers in the -SAM
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ensemble; these four conformers have a cumulative weight of >0.70 (Figure 2.3e-h). Across

the four conformers, I observed vast variations in both the location and size of the cavities.

Next, I docked a set of 500 small, drug-like molecules (chosen from the ZINC library [97])

onto each of the four conformers. Because we were particularly interested in identifying

dockable binding pockets, into which small molecules can fit, the focus of the analysis was

on the short-range van der Waals (VDW) contribution to the binding free energy. Shown

in Figure 2.4a are the distributions of the non-polar contribution to the binding free energy

(Δ𝐺) estimated using the rDock function. The mean Δ𝐺 across all four conformers was -

24.0 kcal/mol, indicating that in general, the small molecules in the library were capable of

forming favorable interaction with -SAM conformers 1-4. Overall, however, conformer 2

exhibited lower Δ𝐺 values than the other conformers (Figure 2.4a). Finally, of the screened

molecules, I computed 𝛾𝑖, the selective index (Equation 2.6), to identify those that exhibit

conformational selectivity across the four conformers. Interestingly, the six most selective

compounds in the library all exhibited a preference for conformer 2 (Table 2.1). Moreover,

in this conformation, all six compounds are predicted to bind to the SAM riboswitch at the

same binding site, which is located away from the binding pocket occupied by SAM in the

+SAM crystal structure. Intriguingly, the pocket occupied by these molecules is near a set

of conserved residues that participate in a base-triple that, though far away from the SAM

binding site, have been shown to exhibit the strongest SAM-dependent stabilization [95]. In

conformer 2, however, the base-triple is absent (Figure 2.4b), which results in the formation

of the binding cavity that these compounds occupy. The pocket that these molecules occupy,

therefore, represents a “hidden” pocket that is absent from the -SAM and +SAM crystal struc-

tures, and which only emerged after conformational sampling. Within the pocket, the six

selective compounds are predicted to form stacking interactions with a pair of conserved

residues, A62, and C65 (Figure 2.4b). Collectively, these results suggest that the simulated
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-SAM ensemble contains conformers that harbor dockable pockets other than the pocket

occupied by the cognate ligand, SAM.

Compound Δ𝐺1 (kcal/mol) Δ𝐺2 (kcal/mol) Δ𝐺3 (kcal/mol) Δ𝐺4 (kcal/mol) 𝛾𝑖 ×min({Δ𝐺}) (kcal/mol)
1 -18.5 -26.6 -16.1 -14.9 -37.2
2 -10.2 -24.0 -15.3 -13.5 -36.4
3 -17.0 -26.3 -15.7 -17.3 -36.3
4 -17.3 -26.1 -16.6 -15.6 -35.9
5 -22.8 -26.6 -18.6 -10.7 -35.9
6 -15.7 -27.5 -20.2 -21.7 -35.4

Table 2.1: Docking scores of conformationally selective binders. For each, listed are the predictd
binding free energy with conformer 1 (Δ𝐺1), 2 (Δ𝐺2), 3 (Δ𝐺3), and 4 (Δ𝐺4). Also listed for
each compound is 𝛾𝑖×min({Δ𝐺}), the product of selectivity index, and the lowest docking
score across the four conformers. Here the the binding free energy correspond to the
non-polar (Van der Waals) contribution estimated using the rDock scoring function.
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(a) (b)

(c)

Figure 2.2: (a) Plots of 𝜅 versus the width of the target ensemble. (b) The heatmap of 𝜅 as a func-
tion of thewidth of the target ensembles and the noise-level in the corresponding target
C8-SASA data. Ensemble width is defined as the maximum RMSD between a structure
in the target ensemble and the native structure. The noise-level in target C8-SASA
is simulated by adding random noise to the target ensemble-averaged C8-SASA. The
absolute value of the noise was sampled from an exponential distribution with noise
level as the scale parameter (or average noise). The map shown here is the average
of 𝜅 values over all the benchmark data set. Note that for some RNA ensembles, the
BME algorithm failed to converge. Accordingly, the averaging is performed on suc-
cessful reweighting only. (c) Example of difference-atomic maps for the CR4/5 domain
of medaka telomerase RNA (PDBID: 2MHI) [98].
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Figure 2.3: The LASER/SASA-derived SAM ensemble. Shown are the average structures in the
LASER/SASA-derived ensemble of the -SAM (a) and +SAM (b) states of the SAM ri-
boswitch. Shown in (c) is the distribution of the distance between P1 and P3 he-
lices for both the -SAM and +SAM states. Similarly, shown in (d) are the distribution
of the distances between residues A46 and U57, which are paired in the -SAM state
(A46/U57 closed) and unpaired (A46/U57 open) in the +SAM state. (e-h) The four high-
est weighted conformers in the -SAM ensemble. For reference, the SAM is overlaid
onto the images. The red mesh highlights the cavities identified in each conformer.
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Figure 2.4: Ensemble docking. Distribution of docking scores across the conformer 1-4 in the -
SAM ensemble. (b) A comparison between the binding site of the six most selective
compounds in conformer 2 (top) and the corresponding site in +SAM crystal structure
(bottom). The binding site is a hidden pocket, present in conformer 2 but absent in the
+SAM crystal structure (bottom). Notably, the pocket features increased nucleobases
A62-C65 distance and the absence of the nearby U24-A64-A85 base-triple. (c) Poses of
the six most selective small molecules docked onto conformer 2. All six compounds
form stacking interactions with C65 and A62.
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2.4. Discussion

In this study, I examined the utility of conformational sampling and SASA Bayesian max-

imum entropy (BME) reweighting in constructing RNA structural ensembles and applied

the framework to infer atomistic ensembles for the -SAM and +SAM states of the SAM ri-

boswitch. I carried out tests using simulated ensembles to precisely quantify the inherent

potential of SASA data for inferring ensembles of RNA. I concluded that the typical experi-

mental error presented in chemical probing experimental methods like LASER is within the

error tolerance of the reweighting framework. Results on SAM riboswitch suggests that

the ensembles generated using SASA-BME framework were consistent with that -SAM state

sampling a wider range of conformations relative to the +SAM state (Figure 2.3c-d), which

was suggested by the existing biochemical and biophysical data [95]. Interestingly, by dock-

ing a small library of compounds against the four highest weighted conformers in the -SAM

ensemble and identifying selective binders in the library, I was able to locate what appears

to be a “hidden” binding pocket in the -SAM riboswitch. Because the residues that line this

pocket are highly conserved, it represents an ideal pocket for small molecule targeting. Fu-

ture work will center around executing a more exhaustive search for compounds that target

this hidden site.

The use of the SASA to infer the atomistic ensemble of the SAM-responsive riboswitch

was predicated on the assumption that SASA inherently contains conformational restraining

power. Recently, Madl and coworkers carried out solution NMR experiments in which they

used solvent paramagnetic relaxation enhancements (sPRE) induced by the soluble, param-

agnetic compoundGd(DTPA-BMA) to probe the structure of two benchmark RNAs [89]. Like

the reactivities derived from chemical probing, the sPRE data provided an indirect “read-out”

of local solvent accessibility across the equilibrium ensemble. They found that the inclusion

40



of sPRE data during structural refinement significantly enhanced the quality of the result-

ing NMR ensemble [89]. Their findings, along with the results of this benchmarking study,

strongly suggest that experimentally-derived SASA contains sufficient restraining power to

infer structural ensembles of RNAs. Therefore, I envision that the SASA-based reweighting

approach I utilize in this study will emerge as a robust yet straightforward strategy for using

experimentally-derived SASA data to infer atomistic ensembles. Such ensembles can then

be used to generate or test structure-function hypotheses and provide useful structural data

to guide the discovery and design of RNA-targeting therapeutics.
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Chapter 3.

Local Atomic Environment

Characterization and Prediction of

Magnesium Binding Sites in RNAs

In chapter II, I demonstrated how the chemical reactivity can be used as local atomic envi-

ronment “fingerprint” to determine RNA structure ensembles. In this chapter, I will describe

a set of numerical “fingerprints” that are capable of characterizing RNA global and local 3D

structures using known atomic coordinates, and as descriptors for prediction of magnesium

ion binding sites in RNA. The latter part in this chapter was done in close collaboration

with Lichirui Zhang, a former visiting undergraduate student and now a Ph.D. candidate in

Chemistry at Columbia University.
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3.1. Introduction

3.1.1. The importance of Mg2+ions in RNA

Metal ions are critical in stabilizing RNA structures and mediate its dynamics. Not only

are the positive charges of metal ions necessary to compensate for the negative charges of

the highly acidic phosphate backbone of RNA, but the presence of metal ions is critical to

ensure proper folding of RNAs [37, 38]. Furthermore, metal ions could also mediate catalytic

processes in some ribozymes [36, 103]. Magnesium ions (Mg2+), in particular, are divalent

with a small radius (0.72 Å) and bind tightly to RNA structures, and are found to stabilize

the tertiary structures in many experimentally determined RNA structures. However, the

determination of Mg2+-binding sites in RNA structures remains a challenge.

3.1.2. Locating Mg2+-binding sites

The preferred binding sites of metal ions in RNA can be determined experimentally by high-

resolution X-ray crystallography. However, since Mg2+, Na+ and H2O all have 10 electrons

each, many bound Mg2+can be easily mistaken for Na+ or water molecules in the electron

density profile, which X-ray crystallography relies on to determine structures. Also, the high

ligand exchange rate of the metal ions commonly associated with nucleic acids [104] makes

it difficult to investigate these ions in solution, resulting in the absence of Mg2+in solution-

state NMR structures. The difficulty of experimentally determining the location of Mg2+ions

motivates the development of methods to predict their positions based on the structure of

an RNA.

Several computational models have been developed to gain insights into the RNA-ion

interactions, which in turn provide information for binding site prediction [105]. For exam-
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ple, the classical counterion condensation theory has been established to describe the short-

range RNA-ion interactions, and Poisson Boltzmann’s theory has been adapted to compute

the long-range interactions. Based on these theories, models integrating MD, Monte Carlo

sampling, energy minimization docking [106–115] and other statistical models [116, 117]

have been developed as faster alternatives to treat RNA-ion interactions as well as to pre-

dict the binding sites of ions [118]. However, the source code for most of the methods is

not publicly available, while methods that provide access are often have limited functional-

ity. For example, the webserver for MCTBI simply cannot take any structures larger than

1MB (approximately 140-nts). To fill this gap, I implemented a machine learning-based that

predicts Mg2+-binding sites and made it freely available to the academic community via

https://smaltr.org.

3.1.3. RNA 3D structure characterization

The local RNA structure determines where Mg2+ions will bind. Mg2+ions, or ions in general,

bind to RNAmolecules by interactingwith RNA atoms through electrostatic interaction. The

strength of these interactions depends on the RNA local structure at the binding site, e.g.,

the configuration of atoms in the surrounding and the atomic distances between an RNA

atom and the binding site. A recent study also showed that the local chemical environment

at each site in an RNA molecule could be used to identify and classify Mg2+-binding sites

[119].

Measurements based on atomic distances have been a common way to characterize RNA

3D structures. In this chapter, I present a fingerprinting tool that uniformly characterizes the

local environment of selected atoms based on pairwise atomic distances. Then I carried out a

set of clustering analyses to assess the structural sensitivity of the atomic fingerprint. I then
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used the fingerprint as features to train machine learning models to predict Mg2+-binding

sites in RNA structures. An additional study that utilizes the molecular version of this fin-

gerprint to obtain the prioritize ligand poses in RNA-ligand complexes was also carried out

in a collaborative work with my former labmate, Dr. Sahil Chhabra, and is included in the

Appendix.

3.2. Methods

3.2.1. Mathematical formulation of the fingerprinting methods

The structural environment of a reference atom is defined by the positions and properties

of all neighboring atoms inside some sphere of radius 𝑅𝑐 . Several factors need to be taken

into account to describe this environment, including the type of atoms, the number of atoms,

and distance to the reference atom. To construct a numerical descriptor of these properties, I

developed a fingerprint (Figure 3.1) inspired by the directionally resolved atomic fingerprint

by Botu and Ramprasad [120–122]. For each atom 𝑖 in the system of interest, its atomic

fingerprint is represented by the vector [𝑉𝑖(𝜂, 𝑣), 𝑣 ∈ 𝒱 ], where𝒱 represents the set of atom

types in the system of interest. The atomic fingerprint captures the atomic environment of

atom 𝑖, described by the equation below:

𝑉𝑖(𝜂, 𝑣) = ∑
𝑗≠𝑖,
𝑗∈𝑣

𝑒−(𝑟𝑖𝑗/𝜂)2 ⋅ 𝑓𝑑(𝑟𝑖𝑗) (3.1)

Here, 𝑟𝑖𝑗 is the distance between atom 𝑖 and 𝑗. 𝜂 is a Gaussian parameter and has the unit of

length, which can be tuned to put emphasis on nearby (smaller 𝜂) or distant (larger 𝜂) envi-
ronment. 𝑣 indexes “atom types” (known as atom name in the nomenclature of chemistry) of
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Figure 3.1: Illustration of the atomic fingerprint for a reference atom (colored in green) and one
type of its neighbors (colored in gray). To generate the atomic fingerprint, a summation
over all atoms of the same type based on atomic distances (indicated by dashed arrows)
within cutoff distance 𝑅𝐶 (indicated by the solid circle) is considered. The figure is
rendered using the sphere representation of an RNADodecamer (PDB ID: 1DNO) [123].
Inspired by reference [124].
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the neighboring atom 𝑗 , for example, C1, N4, O6’. The atomic fingerprint is therefore a vec-

tor of length n, in which n is the number of atom names in the system of interest. One could

also construct a longer fingerprint as a concatenation of multiple fingerprints correspond-

ing to various 𝜂 values, to include both nearby and distant environment. The summation

in Equation 3.3 goes over all atom 𝑗 in the neighborhood of atom 𝑖 if the atom name of 𝑗 is
𝑣 . 𝑓𝑑 is a damping function that gradually approaches zero when 𝑟𝑖𝑗 increased to 𝑅𝑐 and is

expressed as:

𝑓𝑑(𝑟𝑖𝑗) =
⎧⎪
⎨⎪⎩

0.5 [cos (𝜋𝑟𝑖𝑗𝑅𝑐 ) + 1] , if 𝑟𝑖𝑗 < 𝑅𝑐
0, otherwise

(3.2)

The atomic fingerprint described in Equation 3.1 can be viewed as a sum of Gaussians

multiplied by cutoff functions. The Gaussian term describes a spherical shell around the

reference atom, with 𝜂 defining the extent of the shell. As the atomic distance, 𝑟𝑖𝑗 , is always

a positive number, this term is inversely proportional to the atomic distance 𝑟𝑖𝑗 . When 𝑟𝑖𝑗 is
equal to zero, though not physically possible due to the inherent radius of atoms, this Gaus-

sian term has its maximum of 1. The cutoff function, as described in Equation 3.2, decays

smoothly with increased atomic distances. By including this term, the atomic fingerprint

diminishes to zero at cutoff 𝑅𝑐 . Finally, the sum over 𝑗 includes the contribution of each

neighbor with the same atom name. The atomic fingerprint resembles the radial symmetry

function [125] proposed earlier, and was shown to be invariant to basic atomic transforma-

tion operations of translation, rotation, and permutation [124].

Vectorial Fingerprint

The atomic fingerprint in its vectorial form can be used to model atomic properties that have

directional dependence (e.g., atomic forces). The vectorial fingerprint for the reference atom
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is described as a 2D array of 3 rows and 𝑛 columns. Each row in the fingerprint captures

information of atomic environments of atom 𝑖 in one of the three dimensions (𝑢 ∈ {𝑥, 𝑦 , 𝑧}).
A row vector in direction 𝑢 is given by the equation below:

𝑉 𝑢𝑖 (𝜂, 𝑣) = ∑
𝑗≠𝑖,
𝑗∈𝑣

𝑟𝑢𝑖𝑗
𝑟𝑖𝑗

⋅ 𝑒−(𝑟𝑖𝑗/𝜂)2 ⋅ 𝑓𝑑(𝑟𝑖𝑗) (3.3)

𝑟𝑢𝑖𝑗 is the projection of 𝑟𝑖𝑗 in 𝑢 direction. The first term in the product
𝑟𝑢𝑖𝑗
𝑟𝑖𝑗 shows directional

dependence of the fingerprint and is the only term that differs in different directions. The

second and third terms are the same Gaussian functions and cutoff functions as in Equation

3.1.

This vectorial fingerprint is an extension of the basic atomic fingerprint (Equation 3.1)

by including an additional directional dependence term. Each term of the basic atomic fin-

gerprint could also be viewed as the root squared sum of the vectorial fingerprint in all

directions:

𝑉𝑖𝑗(𝜂, 𝑣) = √𝑉 𝑥𝑖𝑗 (𝜂, 𝑣)2 + 𝑉 𝑦
𝑖𝑗 (𝜂, 𝑣)2 + 𝑉 𝑧𝑖𝑗 (𝜂, 𝑣)2. (3.4)

With the additional directional dependency, the vectorial fingerprint, compared to the

atomic fingerprint, is no longer invariant to rotational transformation. However, the vec-

torial fingerprint is advantageous as structural descriptors of atoms in prediction tasks that

involve directional dependence. For example, the vectorial fingerprints have been used as

features in a machine learning model, which predicts the atomic forces of simple substances

to quantum accuracy [122].
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Molecular Fingerprint

To characterize the global interaction between a reference molecule and other atom groups

or molecules in the surrounding (e.g., solvents, ions, small-molecule ligands), a molecule-

level descriptor is more desirable as “molecular fingerprint”. Note that the term “molecular

fingerprint” is used here to describe the surrounding environment of the reference molecule,

particularly its interactions with other molecules, which is different from the cheminformat-

ics definition as the “structure encoder” of a molecule.

One way to construct the molecular fingerprints is to simply aggregate the atomic finger-

prints of all atoms in the reference molecule. However, the set of neighboring atoms has to

be defined differently from the atomic fingerprints. When computing atomic fingerprints for

a single reference atom, any atoms (within the cutoff distance 𝑅𝑐) are considered neighboring

atoms and are included in the calculation of the fingerprint. While when computing atomic

fingerprints to form molecular fingerprints, neighboring atoms should only be considered if

they belong to atom groups or molecules different from the reference atom.

Below a type of molecular fingerprint, called “pose fingerprint”, is described. The purpose

of the pose fingerprint is to describe the orientation (“pose”) of a small-molecule ligand to

the RNA receptor when they bind to each other. The pose fingerprint was used as features

to predict the preferred location and orientation of the small-molecule ligand to the RNA

receptor to form stable RNA-ligand complex and is described in greater detail in Appendix

A: RNAPosers [126].

In the pose fingerprint, the reference molecule is the small-molecule ligand. It is worth

noting that the RNA molecule could also be used as reference, which results in the same

fingerprint, but since the RNA molecule is typically two orders of magnitude larger than the

ligand, it is more efficient to use ligand as reference. For a given ligand pose 𝑝, its fingerprint
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vector 𝐹𝑝 is the sum of atomic fingerprints with the same atom-pair type 𝑠. An atom-pair

must contain one RNA atom and one ligand atom, and the atom-pair type is given by the

atom types of both atoms. Unlike the atom names that describe the type of atoms in RNA,

the atom types in small-molecule ligands are typically described by SYBYL atom type, which

specifies the element and atomic hybridization (e.g., sp3 carbon). The SYBYL atom type of

the ligand atom and the atom name of the RNA atom collectively define the atom-pair type

𝑠, and the set of all possible permutations of ligand atom types and RNA atom names are

denoted as 𝑆. The pose fingerprint for a given pose 𝑝 is a vector, and each element in the

vector corresponds to an atom-pair type 𝑠 given by

𝐹𝑝(𝜂, 𝑠) = ∑
(𝑖,𝑗)∈𝑠

𝑒−(𝑟𝑖𝑗/𝜂)2 ⋅ 𝑓𝑑(𝑟𝑖𝑗) ∀ 𝑠 ∈ 𝑆 (3.5)

For example, for a set of 20 ligand SYBYL atom types and 85 RNA atom names, the pose

fingerprint of each pose 𝐹𝑝 = {𝐹𝑝,𝑠 , 𝑠 ∈ 𝑆} contains 1700 elements (20 SYBYL types × 85

RNA atom types). The 𝜂 parameter and 𝑓𝑑 function are the same Gaussian width parameter

and cutoff function as in Equation 3.1 and 3.2. The pose fingerprint, together with a set of

classifiers trained to predict the preferred orientation of ligand in a complex with an RNA

molecule, is publicly available to the academic community via https://github.com/

atfrank/RNAPosers.

3.2.2. Assessing the distinction power of fingerprints

One key factor in evaluating the quality of fingerprint is its ability to distinguish between

different structures and groups of structures. To determine this distinction power of atomic

fingerprint, I carried out three clustering analyses, aiming to cluster a set of RNA struc-

tures into different groups using their atomic fingerprints, such that the structures in the
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same group share more similarity than to those in other groups. Below I describe the two

algorithms used to form and visualize the clusters, the K-means clustering, and the t-SNE.

K-means clustering

The clustering analysis can be performed using unsupervised learning algorithms. K-means

clustering is awidely used unsupervised learningmethodwith a low cost and scaleswell with

the number of samples. K-means cluster a set of data samples into 𝑘 groups by minimizing

the sum of squared distances between data points within each cluster and their correspond-

ing cluster centroid. Given the data samples to be clustered {x}, the clusters {𝑆 ∶ 𝑆𝑖} and their

cluster centroids 𝜇𝑖, the objective function is as follows:

minimize
𝑘
∑
𝑖=1

∑
𝑥∈𝑆𝑖

‖𝑥 − 𝜇𝑖‖2 (3.6)

Some of the major factors that affect the performance of K-means clustering include the

number of clusters 𝑘, the initialization of cluster centroids, and the maximum iterations. As

has been discussed in literature [127], the initialization of cluster centroids has an especially

important influence on the performance. Here I chose the conformations that are furthest

away from each other in terms of structural RMSD as initial cluster centroids. This method of

cluster centroids initialization resembles the furthest point heuristic, or Maxmin heuristic,

which generally leads to better clustering accuracy than random initialization. Once the

initial cluster centroids were determined, the number of clusters and maximum iteration

were determined by visual inspection of the formed clusters.
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Visualizing clusters

To effectively visualize the clusters formed by high-dimensional data in 2D or 3D space,

dimensionality reduction has to be applied. t-SNE [128] is a computational tool suitable for

this purpose. t-SNE is an embedding method that generates a low-dimensional embedding

of the high-dimensional data based on the pairwise similarity between data samples. The

similarity is obtained by Gaussian function from pairwise Euclidean distances, as shown

in Equation 3.7. t-SNE then maps high-dimensional data to 2D (or 3D) by minimizing the

divergence between the distribution of pairwise similarity in high-dimensional space and its

low-dimensional counterpart.

𝑝𝑗|𝑖 =
𝑒𝑥𝑝(−‖𝑥𝑖 − 𝑥𝑗‖/2𝜎2)
∑𝑘≠𝑖(−‖𝑥𝑖 − 𝑥𝑘‖/2𝜎2)

(3.7)

3.2.3. Mg2+-binding site predictor

I converted the prediction of Mg2+-binding sites into a binary classification problem, which

can be solved with machine learning techniques. I started by identifying a portion of the 3D

space near the RNA surface, which are likely Mg2+-binding sites, and discretizing the space

into cartesian grids. Then, pseudo-atomswere placed in each grid, and the atomic fingerprint

of each pseudo-atom was computed. Finally, a classification model was trained to predict

whether a grid is a Mg2+-binding site based on the pseudo-atom fingerprint. Next, I will

describe the details in this workflow, including the dataset used for training, the featurization

method, and the training and validation process.
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Dataset

There are over 400 X-ray structures of RNA so far in the PDB databank, which contain ex-

perimentally solved Mg2+ions. However, not all of the Mg2+positions in those X-ray struc-

tures were reliable. Several databases have been established to summarize the reliable Mg2+-

binding sites in experimental structures of RNA or nucleic acids, including MeRNA [129],

MINAS [130], MetalionRNA [117] and MgRNA [131]. Here, I chose MgRNA [131] as our

benchmarking dataset, as MgRNA is the most up-to-date and complete database which pro-

vides organized data with convenient access. I compiled a benchmarking dataset (Table B.2)

containing a set of 156 RNAs with Mg2+ions included in MgRNA [131]. This non-redundant

list contains RNAs with various types of well-resolved Mg2+-binding sites. Some of the PDB

IDs were obsolete and were replaced with their successors. The entire dataset was used to

train and validate the predictive model using a leave-one-out cross-validation approach.

Featurization

I placed pseudo-atoms in a grid-based manner around an RNA (Figure 3.2a). The lower and

upper bound of the distances between a pseudo-atom and its nearest heavy atom in the RNA

is set to 1.5 Å and 8 Å, which contains all the Mg2+ions in the benchmark dataset. I do not

consider binding pockets within 1.5 Å as it is too close to the RNA surface, given that the

van derWaals radii of most heavy atoms were already larger than 1.5Å[132]. I also excluded

any sites that were further than 8 Å way from any RNA atoms because the interactions are

minimal at that distance. The radial distribution of the distance between Mg2+-binding sites

and its nearest heavy atoms in the RNA is shown in Figure 3.2b. The heavy atoms that have

the highest density in the nearby region of Mg2+are oxygen atoms. This is expected because

the highly positive electrostatic field of Mg2+has a strong interaction with oxygen atoms in
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water molecule and phosphate groups [37].

(a)
(b)

Figure 3.2: (a) Illustration of pseudo-atom placements in RNA. The grey spheres indicates a pseudo
site for Mg2+ion, and the actual Mg2+were shown in red. The pseudo sites were placed
in 3D-grids with separation 1.5 Å. (b) Distribution of atoms as a function of distances
of Mg2+to its nearest heavy atoms in RNA, normalized by 4𝜋𝑟2𝑑𝑟 [133].

To further eliminate unlikely binding sites form the process of placing grids, a few more

distance restrictions were placed. It has been shown that the preferred distances of the

Mg2+-binding site to its nearest heavy atoms are dependent on heavy-atom types, and the

interaction frequencies between RNA and Mg2+is almost exclusively determined by oxygen

and nitrogens [131]. Therefore, I set a separate set of limitations on the cutoffs used for the

distances of a pseudo-atom to the heavy atoms, as summarized in Table 3.1. A pseudo-atom

will only be placed in grids where all the conditions were satisfied.
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Table 3.1: Distance cutoffs used for Mg2+-binding sites

Mg2+-N1 Mg2+-OP1 Mg2+-OP2 Mg2+-others2
lower bound (Å) 1.70 1.60 1.50 1.65
upper bound (Å) 7.00 6.20 5.25 4.40
1N include all types of nitrogen atoms commonly seen in RNA: N1 N2 N3 N4 N6 N7 N9.
2Others include O O2 O4 O6 O2’ O3’ O4’ O5’.

Training Algorithm

A random forest classifier was used to model whether a pseudo-atom could be a Mg2+-

binding site. Because the true binding sites only occupy a small number of the pseudo-atom

grids, as shown in Figure 3.2a, the data set is highly imbalanced with the number of nega-

tive samples significantly exceeded the positive samples (the class ratio is around 30 ∶ 1).
Therefore, when training the random forest classifier, class weight was set to “balanced” to

assign a higher weight to each true sample. I found out that the model trained is less prone to

hyper-parameters, and I chose to build a random forest model with 100 trees, and maximum

depth for each tree is set to 5.

Leave-one-out cross-validation

I carried out a leave-one-out cross-validation on the benchmarking dataset. The leave-one-

out approach works as follows:

1. First, I chose one Mg2+-containing RNA structure as the validation structure and re-

moved it from the benchmarking dataset.

2. Then I computed the sequence similarity of the picked structure to each of the rest

RNAs and removed any RNA structures that have sequence similarity > 80%.
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3. Finally, a classification model was trained on the rest of the structures, and the model

was assessed on the validation structure.

Due to the imbalance in the training data, I used the AUC to assess the model’s perfor-

mance. AUC is the area under the ROC curve, which is a plot of the true-positive rate versus

the false-positive rate by varying the classification threshold (the prediction score threshold

above which is considered a true binding site). A perfect model that completely separates

the true and false samples by a classification threshold will have an AUC of 1. A model that

makes random predictions will produce an AUC of approximately 0.5. The higher the AUC,

the better the model can distinguish true from false samples.

3.3. Results

3.3.1. Time complexity of the atomic fingerprint scales squarely with

number of atoms (𝑂(𝑁 2))
Due to pairwise atomic distance calculations, the time complexity for computing atomic

fingerprints of all atoms in a molecule is scaled as 𝑂(𝑛2) (see Figure 3.3 for a plot of runtime

in seconds versus the number of atoms in the molecule). For an RNA molecule with 29
nucleotides (about 940 atoms), it takes 0.41 seconds to compute its vectorial fingerprint and

0.17 seconds to compute the scalar fingerprint. This process could be accelerated, of course,

by parallelizing the distance matrix calculation to multiple processors. However, as the main

purpose of this tool is to analyze a single structure or short trajectories of small RNAs, the

current speed is satisfactory.
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Figure 3.3: Atomic fingerprint and scalar fingerprint runtime illustration. The runtimewas bench-
marked on a dataset of 45 small RNAs, with length ranging from 14 to 53 nts. A tra-
jectory of at least 1000 frames were generated by CHARMM for each RNA and used
for this analysis. Runtime was based on average runtime per frame over the entire
trajectory, using one core on an Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz.
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3.3.2. RNA structures can be differentiated using atomic fingerprints

Free and bound states of miR-20b

To illustrate that the atomic fingerprints were sensitive to structural variations in RNA, I first

used it to cluster structures of the 23-nt RNA, microRNA-20b (miR-20b) [134]. I created a 40-

membered structural ensemble of miR-20b composed of structures from the 20-membered

NMR bundle of the free state of miR-20b (PDB ID: 2N7X) and the structures from the 20-

membered NMR bundle of the bound state of miR-20b (PDB ID: 2N82). In the presence of

protein Rbfox RRM, miR-20b undergoes a structural change of 4.33 Å in RMSD that involves

the disruption of several base-pairs in the apical loop region of miR-20b pre-element. Thus

the structures of the free and bound forms of miR-20b are structurally distinct.

Shown in Figure 3.4 are the clustering results I obtained using atomic fingerprints of atoms

in the RNA molecule. For each structure in the pool, atomic fingerprints were calculated for

each atom and summed over all neighboring atom types 𝑣 , resulting in a single number for

each atom. 𝜂was set to 2 Å. Fingerprints of all atoms in a structure were then aggregated into

one vector, which was used as features for the clustering analysis. From t-SNE visualization

(Figure 3.4a), there is a well defined linear boundary in the center of the graph between the

two clusters, indicating that free and bound states are quite distinct in the atomic fingerprint

space. Figure 3.4b is a visualization of all structures in the ensemble in PyMOL. By clustering

the structures into two groups, I was able to group all bound-state structures into one cluster

(blue), and the free-state structures into another cluster (red). Instead of using all-atom

fingerprints, the correct clustering could also be achieved using a minimum number of two

atomic fingerprints with the highest variance (O2P andH5” on residue 32 (the yellow-colored

residue on the upper left corner of each structure in Figure 3.4b)). This simple analysis

done for the 40-structure ensemble of miR-20b shows that using the atomic fingerprints as
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clustering features and K-means clustering algorithm, I was able to identify the structural

differences between the free and bound states RNA.

(a)

(b)

Figure 3.4: Results obtained by clustering the free-state and bound-state structures of miR-20b
using their atomic fingerprints as features in (a) feature t-SNE space and (b) 3D space.
The data points (structures) are colored differently based on their cluster IDs. (b) The
first 20 structures correspond to bound-state structures and the latter 20 correspond
to free-state structures.
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Native and non-native structures of RNA pseudoknot

Next, I move on to study a more complicated system, a 927-membered pool of a 48-nt pseu-

doknot RNA (PDB ID: 2M8K). Compared with the miR-20b system, this pool exhibits higher

complexity in conformational space and is a more stringent test of the atomic fingerprints

in its distinction power. Some of the representative structures in the ensemble are shown

in Figure 3.5a. The structures colored in black correspond to native structures, while struc-

tures colored in red and yellow correspond to non-native structures. This analysis aims to

assess the ability of the atomic fingerprint to group them into a single native cluster. A

clustering analysis similar to that applied to the miR-20b was carried out; the results are

shown in Figure 3.5b. Three clusters were identified, and the native structure is assigned

to the cluster colored in black. The distribution of structural RMSD of all structures in the

ensemble relative to the reference native structure is shown in the dashed line. As can be

seen, the structures exhibit high diversity in the pool with RMSD up to 40.0 Åİn comparison,

the distribution of structural RMSD in the native cluster after clustering is shown as a solid

line. All the clustered structures are within 5.0 Å in RMSD from the cluster center structure.

This cluster also corresponds to the native cluster, which includes the native structure as a

member structure. Visualizing the atomic fingerprints (Figure 3.5b Inset) in 2D space also

reveals that structures in the native cluster are closer to each other in the fingerprint space.

The results suggest that using atomic fingerprints as features, native and near-native struc-

tures in this complex ensemble of pseudoknot RNA could be separated from the non-native

structures.
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(a)

(b)

Figure 3.5: (a) Representative structures of the RNA pseudoknot (PDB ID: 2M8K) ensemble colored
based on the RMSD to the native structures. (b) RMSD distribution relative to the
reference native structure for all structures in the ensemble (dashed line) and within
the native cluster (solid line).
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Native and non-native ligand poses in RNA-ligand systems

Finally, clustering analysis is carried out to extract native-like ligand poses from a set of 550

poses of an RNA-ligand complex using pose fingerprint. The data corresponded to a yeast

phenylalanine tRNA in complex with spermine (PDB ID: 1EVV) and was taken from the

dataset https://doi.org/10.5281/zenodo.3711071 as part of the training

set for RNAPosers [126]. Among all the 550 poses, only the ligand poses are varied (e.g., the

ligand conformations or relative position to the RNA molecule), while the RNA structure is

fixed.

The results for 4-cluster clustering analysis of the 550 poses are shown in Figure 3.6. The

native cluster (cluster containing native poses) is colored red in Figure 3.6 a). Since the RNA

structure is identical across all structures, the fingerprint only depends on (1) the ligand pose

and (2) the RNA pocket, which ligand binds. As a result of the two factors, the native cluster

captures the set of ligand poses that are either located in the native pocket (the RNA pocket

the native ligand binds to) or have a high structural similarity to the native ligand pose.

It suggests that the pose fingerprint could identify native-like poses or poses in the native

pocket in RNA-ligand systems.

3.3.3. Classifiers based on atomic fingerprints accurately predict

Mg2+ions

Magnesium ions (Mg2+) are critical for proper folding and functioning of Ribonucleic acid

(RNA)s. However, there is a dearth of tools for identifying Mg2+-binding sites in RNA. As

such, I developed a classification tool that predicts Mg2+-binding sites from an RNA’s atomic

coordinates. On average, the tool has a classification AUC of 0.86, and it out-performs a

previous prediction tool in identifyingMg2+-binding sites near kink turns in RNA structures.
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Figure 3.6: Clusters of ligand poses of Spermine in complex with yeast phenylalanine tRNA (PDB
ID: 1EVV [135]) (a) in 3D space and (b) in feature t-SNE space. The native pose is shown
in white spheres, and poses were rendered with colors corresponding to their cluster
ID, with red being the native cluster (the cluster containing the native pose).

The classifier predicts Mg2+ion with high accuracy

To evaluate the prediction performance of the Mg2+-binding site classifier, I computed the

area under the receiver operating characteristic curve (ROC), abbreviated as AUC, of each

validation structure in the leave-one-out analysis. The AUC value describes the cumulative

ability of this binding site prediction to recognize true positives and negatives while avoiding

false positives and false negatives.

As can be seen from the AUC value for the 156 benchmarking RNAs (Figure 3.7 and Ta-

ble B.2), the majority of individual structures demonstrate high AUC values, while a small

minority show poor performance. The mean AUC is 0.86(±0.17), indicating that most of the

Mg2+-binding sites were ranked top among all potential sites in each structure. In particular,

2% of the dataset had AUC values below random (0.5), 75% > 0.83, 50% > 0.92, and 25% > 0.96.

If AUC values above 0.85 are considered as a good indicator of recognition, 99 structures

(61%) are above such a threshold.
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Figure 3.7: The summary results of the AUC on validation set in leave-one-out analysis.

The comparison to existing tools reveal the classifier better identifies site-binding

Mg2+ions in kink turns

Kink turns, often abbreviated as K-turns or kinks, are common structural motifs in RNA.

K-turn is a type of junction of helical regions, where the RNA backbone has a “kink” that

causes a sharp turn in the RNA helix (see Figure 3.8a for example of K-turns) [136]. K-

turns are functionally important structural motifs because they are generally compact, tight

regions of RNA structures that could serve as binding sites for other molecules [137], which

interact with RNAs and alter RNA functions. The folding and stabilization of K-turns highly

depend on the presence and binding of metal ions (Figure 3.8b), for example, one study on the

prototypical K-turn Kt-7 found that the K-turn structure is only preserved in the presence

of Mg2+ions [138]. As such, the identification of Mg2+binding sites in K-turns containing

structures is essential for RNA structure prediction.

MetalionRNA [117] is another method for predicting metal ions binding sites in RNA
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structures. It utilized a grid-based function in the polar coordinate system to create a sta-

tistical potential to describe the interaction between metal ions and RNA atom pairs. The

statistical potential was parameterized using 113 RNA-metal ion systems with experimental

structures of resolution < 2.0 Å and was tested with a 5-fold cross-validation approach. To

compare the performance of the predictor trained in this work with that of MetalionRNA,

I made a comparison of the predicted Mg2+-binding sites in a fluoride riboswitch (PDB ID:

4ENC) and a group-I intron (PDB ID: 1HR2) using our leave-one-out results and the output

given by MetalionRNA webserver.

Figure 3.8c summarizes the predictions for the Mg2+ions present in the 4ENC and 1HR2

crystal structures. MetalionRNA results were obtained using all default parameter settings,

with 5 and 26 Mg2+-binding sites identified in 4ENC and 1HR2 based on their molecular

size. When using our predictor, the same number of top-scored predicted binding sites were

chosen to make a fair comparison. While MetalionRNAmissed almost all Mg2+-binding sites

near the K-turns in the two RNAs, our predictor was able to identify most of them.
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(a)

(b)

(c)

Figure 3.8: (a) K-turns in (left) fluoride riboswitch (PDB ID: 4ENC [139]) and (middle) chain B
and (right) chain A of group-I intron (PDB ID: 1HR2 [140]). (b) Experimentally deter-
mined positions of Mg2+cations in the K-turns indicated by green balls. (c) Top-scoring
Mg2+cations predicted by the classifier trained in this work (red) and MetalionRNA
(blue).

3.4. Discussion

In this chapter, I described a computational structural fingerprint to represent the atomic

environment around a reference atom. The fingerprinting method can be aggregated over all

atoms in a molecule to describe the molecular environment. Clustering analyses to identify

bound-like RNA conformations, native-like RNA structures as well as native-like poses of

RNA-ligand systems were carried out. The clustering results suggest that the fingerprints
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can resolve structural differences in conformations in RNA-only and RNA-ligand systems,

especially in identifying native and native-like structures and poses. The atomic fingerprint

runs in squared time, which may be a limiting factor in its utility. The next step in enhancing

the atomic fingerprint will be to optimize its performance by accelerating the most time-

consuming calculation of pairwise distances.

I next trained a machine learning classifier that takes atomic fingerprints as features to

predict Mg2+-binding sites in an RNA 3D structure. The leave-one-out analysis proved that

Mg2+positions predicted by the classifier successfully reproduce the crystallographically de-

termined Mg2+-binding sites. Comparison to another statistical-based prediction tool Met-

alionRNA demonstrated that our classifier could better identify Mg2+-binding sites in the

functionally critical K-turn regions. I anticipate this classifier could serve as a computa-

tional tool to predict Mg2+-binding sites in computationally modeled structures. Since NMR

spectra typically could not provide structural information of ion locations, this predictor

could also be used to predict missing Mg2+ions in NMR experimental structures.

There are other computational tools available for predicting Mg2+-binding sites in RNA

structures with high accuracy. However, most other models predict binding sites by simu-

lating the dynamics or solving the non-linear Poisson-Boltzmann equations [107, 112, 115],

which required much higher computational costs and specialized expertise to set up the sys-

tem. Thus, they cannot be used to predict Mg2+-binding sites in a large set of RNAs, as I did

in this work. As such, I do not report a direct, full comparison between our classifier and

these previously developed predictors.

The Mg2+-binding sites predictor described in this chapter requires RNA 3D structures

as an input. Here, I only analyzed its performance on high-accuracy, experimentally deter-

mined RNA structures. A possible next step would be to assess its ability to predict Mg2+-

binding sites in relatively low-resolution structures and explore the possibility of integrating
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the ion prediction with RNA 3D structure prediction techniques, to facilitate RNA structure

prediction in the absence of experimentally determined Mg2+ions.
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Chapter 4.

Mining For Bound-Like Conformations of

RNA Using a Binding Cavity Screening

Approach

There is now a keen interest in targeting functional, non-coding ribonucleic acids (RNA)with

small-molecules ligands to modulate cellular processes. In principle, virtual screening could

help identify small molecules that interact with the RNA by fitting virtual small molecules

into binding cavities on its surface. However, for an RNA, especially large RNAs that bear

pharmacological significance, there are usually multiple such cavities. Several cavity de-

tection techniques have been developed, lacking, however, are methods for discriminating

“druggable” cavities (cavities that bind to small molecules) from the so-called “decoy” cavities

(geometrically feasible cavities that do not bind to small molecules). To identify the “drug-

gable” cavities, I developed a binding cavity classifier, known as CavityPoser, using machine

learning methods and the distance-based fingerprinting technique described in the previous

chapter. In most instances, the CavityPoser was able to recover native-like “druggable” bind-
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ing cavities, suggesting that it would be useful as a tool for “druggable” mining cavities in

RNA targets. Moreover, I tested whether bound-like RNA conformations could be extracted

from a conformational pool by recognizing those that harbored “druggable” cavities. Over a

set of 6 RNAs, I found that by searching for conformations containing “druggable” pockets,

we could recover conformations with structures similar to known bound-like conformations

of the RNAs.

4.1. Introduction

Functional RNAs play essential roles in the cell, and abnormal RNA function is now known

to cause many diseases. Moreover, RNA structures regulate many fundamental processes in

pathogens. Therefore, targeting functional RNAs with small molecules offers opportunities

to modulate RNA-mediated cellular processes, and in pathological cases, reverse the effects

of RNA associated diseases [100, 141]. There are now many examples of small molecules

that bind non-coding RNAs (ncRNAs) and modulate their function [100, 141]. De novo iden-

tification of such small molecules remains an unsolved challenge.

In theory, structure-based virtual screening holds great promise in identifying RNA-targeting

small molecules [102, 142]. By definition, virtual screening is the process of searching small-

molecule ligands that are likely to bind to a known target (here, an RNA), in so doing, narrow

down the putative small molecule candidates from a large library to a few most promising

ones before carrying out the experimental high throughput screening (HTS). Several funda-

mental components were required when considering RNA as drug targets in virtual screen-

ing, including the selection of RNA structure and the identification of “druggable” cavities

(binding sites that could accommodate small molecules).

Selecting the RNA structure to use for virtual screening is non-trivial. First, like proteins,
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RNAs fold into complex 3D structures, and a single RNA structure can possess multiple

binding cavities. These cavities can be detected using various computational tools (cav-

ity mapping methods) [143–146], such as reference ligand method and two probe sphere

method [147]. However, since an RNA can possess multiple geometrically feasible cavi-

ties, docking against all possible cavities is time-consuming and may increase false-positive

rates. Therefore, the foreknowledge of which of the detected cavities is “druggable” can

enhance structure-based virtual screening [148]. Second, RNA structures are flexible and

undergo rapid conformational changes, resulting in a highly flexible ensemble, which has

been a challenge for choosing the right receptor structures in virtual screening. When the

RNA comes into contact with a small molecule ligand, the conformational state that domi-

nates the bound-state ensemble, also known as the holo state, is generally different from the

conformational state that dominates free-state ensemble (apo state). As such, the traditional

rigid “lock-key” model, which assumes that the RNA receptor adopts one fixed conforma-

tion, is unlikely to achieve good performance. One way to account for target-flexibility is

ensemble docking. Ensemble docking involves applying rigid docking to each member of an

ensemble of the receptor, instead of a single conformation. Several strategies can be used to

construct RNA ensembles that are suitable for ensemble-docking. For instance, the ensem-

ble can be constructed as a collection of experimentally determined [149] or computationally

predicted structures of the target. Ensemble docking exhibited superior performance over

most single receptor conformation [149] but was often limited by the computational costs,

which scale linearly with the size of the ensemble [150]. One solution to this limitation

is to identify a smaller subset of bound-like conformations from the ensemble containing

“druggable” cavities to perform ensemble docking. By restricting the conformations used in

ensemble docking to a fewmost important ones, a good compromise between computational

speed and prediction accuracy could be achieved. Experimental data, such as residual dipo-
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lar couplings (RDC) from NMR experiments [151] or ensemble-averaged reactivities from

chemical probing experiments as discussed in Chapter II, could be used as constraints to se-

lect the bound-like conformations. In the absence of experimental data, methods to select

ensembles enriched with bound-like conformations are currently lacking.

Here, I explored a data-driven framework to identify bound-like conformations by search-

ing for cavities with similar structural properties to known “druggable” cavities. An increas-

ing number of RNA-ligand complexes have been solved experimentally and could facilitate

the development of data-driven predictivemethods to discriminate between “druggable” cav-

ities from non-druggable ones (decoys). In this work, I developed CavityPoser, a set of ma-

chine learning models that can classify “druggable” cavities from decoys. CavityPoser was

able to rank the known “druggable” cavities within the first 1.65 positions on the test sets,

and over 70% of the “druggable” cavities care ranked 1st among all cavities. An importance

analysis using one of the models suggests that the “druggable” cavities of an RNA have

a preference for pyrimidine nucleotides and oxygen atoms in RNA major grooves. Then, I

applied CavityPoser to identify bound-like conformations from a pool of lowest energymod-

eled structures. Results suggest that the conformers with the highest scored cavities have a

similar structure to the experimental holo structures and possess cavities close to the known

“druggable” cavities.

72



(a)

Figure 4.1: (a) Illustration of the cavity fingerprinting employed in this work.

4.2. Methods

4.2.1. Dataset

I compiled an extensive set of 131 RNA structures containing ligand-binding cavities for

which crystal or NMR structures are available. For each RNA structure, I first used the

cavity mapping program rbcavity from the rDock modeling suite [17] to identify all cavities

in the RNA structure. A cavity is labeled as decoy if the center of geometry of the cavity’s

bounding box is more than 6.0 Å from the center of geometry of the known ligand, and

labeled as native if within 6.0 Å. Next, I placed a pseudo-atom at the center of geometry

of each cavity and computed the atomic fingerprint based on atomic distances between the

pseudo-atom and nearby RNA atoms (as described in Chapter III, Equation 3.1), which was

then used as features to train the CavityPoser. The training and test set were split among
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structures, where two test sets, a set of 25 high-resolution X-ray structures, and a set of 24

NMR structures, were excluded from the training.

4.2.2. Training algorithm

To be able to discriminate “druggable” cavities from decoys, I trained a set of machine learn-

ing classification models (classifiers), including Extreme Gradient Boosting (XGB), Random

Forest (RF), and a simple neural network classifier Multi-Layer Perceptron (MLP). All the

classifiers take the cavity fingerprint as input and output the binding score. The binding

score is a float number ranging from 0 to 1, and is an estimate of the probability of whether

the associated cavity was “druggable”. If the score is closer to 1, it indicates the associated

cavity has a high probability of being “druggable”. On the other hand, if the score is close to

0, it indicates the associated cavity is likely a decoy.

4.2.3. De Novo modeling of bound-like RNA conformations

De novo modeling is an approach for structure prediction, which produce a set of candidate

structures and choose amongst them based on their properties. Here, I carried out a de novo

modeling of bound-like RNA structures based on the “druggability” of possessed cavities.

As model systems for examining the utility of binding cavity analysis in de novo model-

ing of RNA structures, I assembled an additional set of 5 RNAs containing binding cavities

for small-molecule ligands (Table 4.1). Each of the RNAs has one experimentally identified

cavity except for the synthetic neomycin-sensing riboswitch, which binds to two different

ligands, composing a total of 6 RNA-ligand systems. The modeling protocol is described

below.

1. Generate a set of RNA structures using the modeling program SimRNA [47] with se-
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quence information and the corresponding secondary structures. The details of the

SimRNA modeling was in Appendix B.1.

2. Identify cavities on each structure in the ensemble using rbcavity [17]. A pseudo-atom

was placed at the center of the cavity’s bounding box.

3. The cavity fingerprint and the corresponding binding score was obtained using the

atomic fingerprint and the trained binding cavity classifier, CavityPoser.

4. Cavities among all structures in the ensemble were ranked based on their binding

scores, and the structures with the top-scored cavities were identified and compared

to the known holo structure.

Table 4.1: RNA-ligand Systems Used in de novo modeling

holo PDB Description ligand apo PDB reference
2L1V preQ1 riboswitch (Class I) aptamer PRQ 3Q51 [152]
2L94 HIV-1 frameshift site L94 1Z2J [153]
2LWK influenza A virus RNA promoter 0EC 1JO7 [154]
2M4Q E. coli ribosomela decoding site AM2 3Q51 [155]
2MXS synthetic neomycin-sensing riboswitch PAR -𝑢 [156]
2N0J synthetic neomycin-sensing riboswitch RIO - [156]

𝑢 Unpublished data

4.3. Results

In this study, I developed CavityPoser, a binding cavity classifier for the prediction of ligand-

binding cavities in RNA 3D structures, using experimental structures and machine learning

methods. I sought to assess the extent to which CavityPoser could distinguish“druggable”
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RNA binding cavities from “decoy” binding cavities, and analyze the chemical implication. I

also explored whether bound-like RNA conformations could be identified from a conforma-

tional pool by screening for structures containing “druggable” binding cavities.

4.3.1. CavityPoser can distinguish “druggable” cavities from decoys.

To generate and test the CavityPoser, I began the study by developing a framework for esti-

mating the “druggability” of RNA binding cavities. Cavities were modeled using rDock, and

a cavity was defined as “druggable” if it is near an experimentally-identified ligand-binding

site in holo RNA structures. The binding cavity fingerprint was computed as the atomic

fingerprint for the pseudo-atom probe placed at the center of a cubic box bounding the cav-

ity as described in Methods. With both known ligand-binding cavities and modeled decoy

cavities, machine learning classifiers were trained that took the binding cavity fingerprint as

input and returned a binding score ranging from 0 to 1, an estimation of the probability that

the corresponding cavity is “druggable”. The CavityPoser is the collection of three differ-

ent classifiers, XGB, RF and MLP, and the output of the CavityPoser represents the average

binding scores predicted with different classifiers.

Figure 4.2 and Table 4.2 summarize the performance of the CavityPoser on the 2 test sets.

The first test set corresponds to a set of 25 RNA-ligand systems for which X-ray crystal

structures were available (X-ray test set), and the second one corresponds to a set of 21 RNA-

ligand systems for which NMR structures were available (NMR test set). Shown in Figure

4.2 are the ROC curves I obtained when the CavityPoser was applied on to the two test sets.

The overall resulting AUC are 0.9 and 0.88, respectively, for the X-ray and NMR test sets.

The cavities were ordered by decreasing binding score, and the ranking of the native cavity

with respect to the total number of cavities identified for each RNA is shown in Table 4.2.
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Only RNA structures with more than one cavities (at least one decoy cavities) were included

in the table, excluding 11 X-ray structures and 2 NMR structures in which no cavities were

identified as decoys by cavity mapping methods. The classifiers were able to identify most

of the native cavities for X-ray and NMR structures within the first three ranking positions,

with an average ranking of 1.36 and 1.65. The only exceptions are 2XNW (X-ray) and 1EHT

(NMR). Furthermore, for 12 out of 14 X-ray structures and 12 out of 19 NMR structures, the

native cavities were ranked first among all cavities of the same structure.

(a) (b)

Figure 4.2: ROC curve of the cavity prediction for the systems in (a) test set 1 (X-ray structures)
and (b) test set 2 (NMR structures).

4.3.2. Small-molecule ligands have a preference for RNA major groove.

Next, I explored the chemical implication of CavityPoser by examining which residues and

atoms in the fingerprint are most important in the classification of “druggable” cavities.

To accomplish this, I carried out feature importance analysis using the feature importance

scores of one of the member classifiers in the trained CavityPoser, the random forest classi-

fier. In theory, feature importance analysis could be carried out for any predictive models,

but the random forest model provides the most straightforward method to obtain feature
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importance scores. Shown in Figure 4.3a is the plot of importance scores associated with the

few most important RNA atoms, defined by RNA residue types (ADE, GUA, CYT, and URA)

and atom names. The majority of the most important atoms are in GUA and CYT residues,

which is likely a result of the enrichment of GC base pairs in the training data.

A comparison of the average fingerprint of native and decoy cavities is shown as an inset

in Figure 4.3a. As can be seen from the definition of the atomic fingerprint (Equation 3.1),

the fingerprint for an RNA atom type is larger if more RNA atoms of the specified type are

found within the cutoff distance from the pseudo-atom placed at the center of the cavity, or if

the distance is smaller between the pseudo-atom and the center of the cavity. As such, based

on the training data I used here, GUA:O6 atoms are favored by “druggable” cavities, while

CYT:C3’, GUA:O4’, CYT:C6, CYT:C2’ and GUA:C4’ atoms are disfavored by the “druggable”

cavities. In other words, if a cavity is found to be in the vicinity in the GUA:O6 atom, then it is

more likely to be a “druggable” cavity. Interestingly, the GUA:O6 atoms, preferred by the na-

tive cavities, is the only one out of the six most important atoms located in the major groove,

while all the other five atoms are located in the minor groove. Shown in Figure 4.3b is an

illustration of major groove, minor groove and the ligand-binding site in an RNA molecule.

The major groove is deep, and presents a richer ensemble of hydrogen bond acceptors and

donors. The minor groove is shallow but is more accessible to the surrounding. Therefore, it

is possible that the small-molecule ligands in the RNA-ligand complex have a preference for

major grooves. Recent studies on RNA-ligand interactions also revealed that the deep major

groove was the most preferred location for some small-molecule ligands [157]. However, I

can not rule out that this preference is due to artifacts of the training data or classifier.
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(a)
(b)

Figure 4.3: The average fingerprint value of decoy and native cavities for the atoms contribut-
ing most to the cavity binding classification. (a) The x-axis label is in the format of
“RES.Atom”. The atoms were shown from left to right in importance descending order
and the 6 atoms with highest importance scores were shown in this figure. The im-
portances are identified using features importance scores yielded by the random forest
classifier. (b) The major groove (red) and minor groove (blue) of an RNA molecule in
complex with a small-molecule ligand (green).

4.3.3. Classifiers extract bound-like structures from ensembles.

Finally, I explored whether bound-like conformations could be distinguished from a con-

formational pool using only binding scores of possessed binding cavities. To test this, I

generated ensembles of diverse structures using the modeling program SimRNA for 5 RNA

structures, whose holo structures in complex with various small-molecule ligands are avail-

able. Each of the structures in the ensemble was fed into rbcavity to identify cavities and

binding scores were predicted using CavityPoser. Three structures with the highest scored

cavities in each RNA ensemble were identified and compared to the known experimental

holo structures.

The results are summarized in Table 4.3 and Figure 4.4. In Table 4.3, structural RMSD

between SimRNA structures and the corresponding holo structures and distances between

the predicted cavity center and holo ligand center were shown. On average, the structures

with top-3 scored cavities have a smaller RMSD and distance compared to the ensemble
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average. Shown in Figure 4.4 are comparisons between the known holo conformations and

the top 3 structures for the RNA structures, which exhibited the highest binding scores.

Visual inspection of the modeled structures reveals that the top-scored cavities identified by

the classifier fall within the opening of pockets surrounded by RNA residues. Overall, the

comparison between the holo structure and modeled structures revealed that CavityPoser

trained in this work was able to extract several bound-like structures based on binding scores

of their cavities.

(a) 2L1V (b) 2L94
holo 8.13Å 7.30Å 8.00Å holo 3.56Å 3.38Å 2.60Å

(c) 2LWK (d) 2M4Q
holo 2.41Å 1.71Å 2.61Å holo 3.27Å 5.83Å 5.03Å

(e) 2MXS (f) 2N0J
holo 1.95Å 2.30Å 2.07Å holo 1.81Å 1.80Å 2.13Å

Figure 4.4: The holo structure and 3 modeled bound-like structures with highest-scored cavities
for the additional test systems in complex with the holo ligand. Labeled are the heavy-
atom RMSDs to the holo structure.
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PDB ID Rank

X-ray

2B57 1/6
2O3W 1/5
2XNW 4/6
2YDH 1/8
3LA5 1/6
3MUM 1/9
3SD3 1/10
3SLM 3/5
4AOB 1/7
4FE5 1/8
4KQY 1/8
4LX5 1/8
4XWF 1/5
5C7W 1/8
average 1.36

NMR

1AJU 1/10
1AKX 1/11
1AM0 1/9
1BYJ 1/10
1EHT 6/6
1EI2 1/8
1FMN 2/10
1KOC 2/3
1KOD 1/4
1LVJ 2/4
1NEM 2/8
1O9M 1/11
1Q8N 2/11
1QD3 1/11
1TOB 1/11
1UTS 1/8
1UUD 1/9
1UUI 1/11
2TOB 2/6
average 1.65

Table 4.2: Results of the cavity prediction for each of the systems in the X-ray and NMR test sets.
Values in the Rank column represent the rank position of the native cavity over the
total number of cavities identified by rbcavity.
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RNA RMSD(Å) distance(Å)
Top-3 Scored Structures

score RMSD(Å) distance(Å)

2L1V 6.24 ± 1.46 3.05 ± 0.97
0.942 8.13 1.80
0.917 7.30 2.72
0.876 8.00 2.50

2L94 4.14 ± 1.12 5.88 ± 1.68
0.877 3.56 4.62
0.875 3.38 4.89
0.851 2.60 4.91

2LWK 2.43 ± 0.52 6.17 ± 1.06
0.997 2.41 4.95
0.995 1.71 5.76
0.991 2.61 5.85

2M4Q 5.76 ± 1.23 8.24 ± 1.25
0.965 3.27 5.82
0.878 5.83 8.24
0.842 5.03 7.34

2MXS 2.82 ± 1.00 5.86 ± 0.94
0.997 1.95 4.88
0.996 2.30 5.50
0.996 2.07 5.20

2N0J 2.72 ± 1.22 4.03 ± 1.04
0.996 1.81 3.74
0.996 1.80 3.88
0.993 2.13 3.04

Table 4.3: “RMSD”: mean and standard deviation (shown in parenthesis) of the RMSD between
aligned holo and modeled ensemble of structures. “distance”: mean and standard de-
viation of the distances between holo cavity center and cavity centers in the modeled
ensemble of structures. “Top-3 Scored Structures”: and binding score, RMSD and dis-
tance of the 3 structures with highest scored cavities.
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4.4. Discussion

In this study, I developed a method for predicting “druggable” cavities in an RNA 3D struc-

ture. The prediction task was first converted to a classification problem, allowing us to apply

machine learning methods. I then used a distance-based fingerprinting method, as described

in Chapter III, and a combination of machine learningmethods to unveil “druggable” cavities.

The resulting binding cavity classifier, named CavityPoser, successfully ranked “druggable”

binding cavities. For the X-ray and NMR RNA-ligand test sets, respectively, I was able to

rank the “druggable” cavities within the first 1.35 and 1.65 positions among all cavities iden-

tified by cavity mapping methods. In addition, the native drug cavity was ranked first place

in 85% and 63% of the X-ray and NMR test cases.

I then used CavityPoser to predict the binding probability of an ensemble of structures,

aiming to extract bound-like structures with “druggable” cavities. Starting from sequence

information, based on the ensemble of lowest-energy structures generated with modeling

program simRNA, I was able to identify several bound-like structures that possess “drug-

gable” cavities and appear similar in shape to the known holo structures. These bound-like

structures, in combination with the cavities, could serve as a starting point for the modeling

of RNA receptors in ensemble-based virtual screening.

There are a few alternative approaches for predicting small-molecule binding sites in RNA

3D structures. Zheng et al. [158] calculate the Euclidean distances between each nucleotide

and all the other nucleotides in an RNA molecule and determines the functional sites of

ncRNAs as nucleotides that are the extreme points in the distance curve. Wang et al. [159]

developed a network-based model, in which the RNA tertiary structure is transformed into a

network with nucleotides as nodes and non-covalent interactions as edges; it then measures

degree values and closeness values to identify the binding sites. Previous works to identify
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small molecule binding sites of RNA, however, were typically based on the locations of in-

dividual nucleotides and their connections. In comparison, the framework developed here

is centered around cavities, which were characterized using atomic fingerprint. The two

different points of view are complementary to each other. Nucleotide-based methods pro-

vide evidence for ligand-binding cavities on nucleotide-level, whereas CavityPoser provides

quantification of the interactions between the RNA molecule and the cavity region on the

atomic-level. Together, these methods can provide complementary evidence for predicting

ligand-binding RNA cavities.

Currently, CaviyPoser is only designed to predict the probability of a cavity that binds

small-molecule ligands. However, to identify a cavity with pharmaceutical significance, it is

also necessary to quantitatively assess the binding affinity, the strength of the binding inter-

action between the cavity and small-molecule ligands. Despite the limitation, CavityPoser

is still helpful as it presents candidate cavities for further virtual screening and experiments.

When combining with molecular docking, it is feasible to further investigate the binding

affinity of the “druggable” cavities identified by the CavityPoser. It is also possible, with

available binding affinity data, to train machine learning regression models that are capable

of predicting the binding affinity of a cavity. The Multi-task learning (MLT) framework, in

which one machine learning model can be used to make predictions on multiple correlated

properties, can be used to model the “druggability” and binding affinity at the same time.
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Chapter 5.

Conclusion

5.1. Summary

The structure and energetics of RNA are important topics in biophysical and medical sci-

ences. RNA is a common macromolecule observed across various living organisms, and

perform a diverse array of functions in the cell, including catalyzing in-cell reactions, guid-

ing gene expression, and facilitating the assembling of cellular complexes. For these reasons,

there is a vested interest in understanding the RNA structures better and characterizing their

functions. The existing effort has been devoted to accurate determination of the low energy

conformation states of RNA structures. However, there is a lack of tools that characterize

these structures and utilize the structural information to examine the structural flexibility

and quantitatively predict fundamental biophysical properties.

In this work, structural fingerprints based on solvent accessible surface area (SASA), as

well as computationally crafted numerical descriptors, were used to characterize local atomic

environments and build predictive models for RNA structures and structure-related proper-

ties. For the first case, a framework to systematically predict RNA structural ensembles from
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known sequence and ensemble-averaged chemical reactivity was developed. This frame-

work allowed us to assign weights to individual conformations in an RNA ensemble using

Bayesian/maximum entropy (BME), and the weighted ensemble agrees with experimental

measurements. The framework was applied onto the SAM-I riboswitch ensemble and iden-

tified a cryptic binding pocket. In the second example, an atomic fingerprinting method

based on pairwise atomic distances were proposed. Using the fingerprinting methods and

its extension to molecular level descriptors, machine learning models to predict magnesium

ion binding sites and ligand binding poses were developed. The fingerprinting method was

also applied to study the RNA-targeting drug design problem. Hereby once again, machine

learning models were used to identify druggable RNA cavities, regions on the RNA surface

that bind to small molecules to modulate potentially disease-related cellular functions.

This work has focused on the computational predictions of RNA structural ensembles and

structure-related properties using various fingerprinting methods. It fits in the ultimate goal

to elucidate structure-function relationships that govern RNA-based cellular functions. We

witnessed a brief expose of the promise of structural fingerprints in the prediction of RNA,

and the works presented here provide optimistic expectations on the fidelity of atomic envi-

ronment fingerprints and provide guidance for future experimental work in RNA structure

modeling and RNA drug design pipeline.

5.2. Future Directions

In Chapter II, one binding pocket different from the known experimental binding pocket

emerged in the analysis of the free-state SAM-I riboswitch ensemble as the most probable

site to bind small-molecule ligands. The possible next step would be to perform experiments

to validate that small molecules could bind to the pocket. Experiments could further validate
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the binding potential of this pocket and promote the understanding of the binding properties.

In Chapters III and IV, the prediction of Mg2+binding sites and the ligand-binding cavities

were modeled as machine learning classification problems. Nonetheless, both problems aim

to resolve the ranking position of a sample (the Mg2+or “druggable” binding site) in a set of

samples (all possible binding sites in the same RNA molecule). A possible future direction

would be to reformulate these problems as ranking problems and solve using Learning To

Rank (L2R) algorithms. L2R is a class of supervised learning techniques aiming to produce a

permutation of samples in a list of samples. Compared to traditional classification and regres-

sion problems that make predictions on a single instance at a time, L2R solves the problem

involving a list of samples with emphases on their partial orders, for example, the rank po-

sition of each query in a list of search results. In Chapter III, the prediction of Mg2+binding

sites in each RNA structure could be formulated as a ranking problem, which generates the

partial ordering of the binding sites in each RNA rather than the absolute binding scores.

In Chapter IV, several cavities were identified from cavity mapping methods, and the rank

position of the “druggable” cavity among all cavities was the main focus of the problem

rather than the exact classification scores of each cavity. Although the classification models

trained in this work have achieved good accuracies, formulating those prediction tasks into

L2R problems and solving them using the well-developed ranking algorithms, like RankNet

and LambdaRank [160], provide a new, more direct solution that could potentially achieve

even better performance.
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Appendix A.

RNAPosers - Machine Learning Classifiers

For RNA-Ligand Poses

This appendix included the details for RNAPosers (a set of machine learning classifiers to

identify the best RNA-ligand poses), as an additional example of the application of the atomic

fingerprints described in Chapter II. This work was done in collaboration with my lab mate,

Dr. Sahil Chhabra. The contents were published in the following article:

Chhabra, Sahil, Jingru Xie, and Aaron T. Frank. ”RNAPosers: Machine Learning Classifiers

for Ribonucleic Acid–Ligand Poses.” The Journal of Physical Chemistry B (2020).

A.1. Introduction

Beyond acting as an intermediary between deoxyribonucleic acid (DNA) and proteins, ri-

bonucleic acids (RNAs) play key regulatory roles within the cell [161–163]. For instance:

ribosomal RNAs (rRNAs) catalyze protein synthesis[164]; riboswitches turn on and off RNA

transcription or translation[165]; and short interfering RNAs (siRNAs)[166] and microR-
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NAs (miRNAs)[167] silence the expression of targeted mRNAs. Indeed, many classes of

“functional” RNAs are implicated in diseases[168] and are now considered viable drug tar-

gets[169–172]. Moreover, targeting RNAs with small molecules has garnered keen interest

over the last decade[141, 173–175]. Rational structure-based methods promise to be a vi-

able approach for identifying small molecules that can bind to and modulate the activity of

structured RNAs.[102] Crucial to the success of rational structure-based approaches in RNA

drug discovery is the ability to accurately predict the 3-dimensional (3D) structure of the

complex formed between an RNA and a small molecule ligand. In principle, computer dock-

ing algorithms can be used to predict the 3D orientation and conformation (referred to as

the pose) of a ligand bound to an RNA receptor. Unfortunately, “redocking” tests reveal that

state-of-the-art scoring functions typically fail to recover the correct poses [176–180]. More-

over, several of the state-of-the-art RNA-specific scoring functions that have been recently

developed are, for a variety of reasons, inaccessible to the scientific community. In these

respects, there is an urgent need for methods that can distinguish “native-like” RNA-ligand

poses from non-native decoy poses and are accessible to the wider RNA community. In this

study, we sought to fill this critical void.

Recently, machine learning has been used to address several challenges associated with

computer docking and virtual screening. For protein-ligand complexes in particular, ma-

chine learning has been used to develop more robust scoring functions for both pose and

binding affinity prediction.[66, 181–185] Here, we used machine learning to train a set of

pose classifiers that quantify the “nativeness” of RNA-ligand complexes. In what follows,

we summarize our comparison between the ability of docking scores and machine learning

classifiers to rank and identify atomically correct RNA-ligand poses. Compared with dock-

ing scores, we found that machine learning pose-classifiers were better able to discriminate

native-like RNA-ligand poses from decoy poses. Accordingly, we make our pose classifiers
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freely available to the scientific community via https://github.com/atfrank/

RNAPosers.

Figure A.1: Illustration of the fingerprinting approach we used to describe RNA-ligand interac-
tions. From the structure of an RNA-ligand complex, atomic fingerprints were ob-
tained through distances calculated between each ligand atom and its neighboring
RNA atoms within 20 Å, and then all atomic fingerprints in the ligand are combined to
construct the pose fingerprint. Each element in the final pose fingerprint is associated
with a unique atom-pair type, as defined by the atom types of the ligand and the RNA.

A.2. Materials and Methods

A.2.1. Pose classifiers

Given the 3D coordinates of an RNA-ligand pose, we attempted to develop a method to esti-

mate or classify whether the pose was native-like based solely from the atomic coordinates

of the pose. In other words, we attempted to develop “pose classifiers”. Here, machine learn-
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ing was used to train a set of pose classifiers that estimate the “nativeness” of a RNA-ligand

pose from a set of “pose features”, which we define as any structural or structure-derived

information that can be extracted or calculated from the atomic coordinates of the pose (Ta-

ble A.1). First, we generated a set of classifiers for which the “pose features” correspond to

individual scoring terms in the rDock scoring function.[17] Second, we generated a set of

classifiers for which the “pose features” correspond to a novel pose fingerprints (FPs) that

depends on the pairwise distance between heavy atoms in an RNA receptor and heavy atoms

in a small molecule ligand (see below). For completeness, we also included pose predictions

directly using rDock scoring terms, and classifiers trained on a combined feature using both

rDock scoring terms and pose fingerprints.

Pose prediction method Description
rDock rDock scoring terms
Score Classifier Classifiers trained on rDock score terms only
Pose FPs Classifier Classifiers trained on pose fingerprints only
Score+Pose FPs Classifier Classifiers trained on rDock score terms and pose fingerprints

Table A.1: Summary of the pose-prediction analyses carried out in this study. First, we carried out
pose prediction using various score terms in the rDock RNA-ligand scoring function.
Then, we explored using pose classifiers, which predict the nativeness of poses from
rDock score terms, pose fingerprints (FPs), and a combination of rDock score terms
and pose FPs, respectively.

A.2.2. Pose fingerprint

We utilized a pose fingerprint that is a composite of a set of atomic fingerprints (Figure A.1).

For a given ligand atom 𝑖, its atomic fingerprint corresponds to the vector, 𝑉𝑖 = {𝑉𝑖,𝑗}, whose

elements 𝑉𝑖,𝑗(𝜂) are given by

𝑉𝑖,𝑗(𝜂) = 𝑒−(𝑟𝑖𝑗/𝜂)2 ⋅ 𝑓𝑑(𝑟𝑖𝑗) ∀ 𝑖 ∈ 𝑙𝑖𝑔𝑎𝑛𝑑, 𝑗 ∈ 𝑅𝑁𝐴 (A.1)
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where 𝑟𝑖𝑗 is the distance between a heavy atom 𝑖 in the ligand and heavy atom 𝑗 in the RNA

receptor. We only consider atom pairs within a cutoff distance 𝑅𝑐 = 20 Å. 𝜂 is the width of

the Gaussian function (here we set 𝜂 = 2). And 𝑓𝑑(𝑟𝑖𝑗) is the damping function given by

𝑓𝑑(𝑟𝑖𝑗) = 0.5 [cos (𝜋𝑟𝑖𝑗𝑅𝑐
) + 1] . (A.2)

We note that the atomic fingerprint based on Eq. A.1, which is a multi-element extension of

the atomic fingerprint developed by Botu et.al. [122], is invariant to basic atomic transfor-

mation operations of translation, rotation and permutation.

For a given ligand pose 𝑝, its fingerprint vector 𝐹𝑝 was composed of ligand atomic fin-

gerprint by summing over all instances of a given atom-pair type 𝑠. Each atom-pair type

is defined by two parts, namely SYBYL atom type of the ligand atom and residue and atom

name of the RNA atom. The set of all possible permutations of ligand atom type and RNA

atom types are denoted as 𝑆. As such, an element in the fingerprint for pose 𝑝 and atom-pair

type 𝑠 is given by

𝐹𝑝,𝑠 = ∑
(𝑖,𝑗)∈𝑠

𝑉𝑖,𝑗(𝜂) ∀ 𝑠 ∈ 𝑆 (A.3)

We used a set of 20 SYBYL atom types for ligand, and 85 atom types for RNA (Table B.3).

Thus, the pose fingerprint of each pose 𝐹𝑝 = {𝐹𝑝,𝑠 , 𝑠 ∈ 𝑆} contained 1700 elements (20 SYBYL

types × 85 RNA atom types). Finally for each RNA-ligand system, each pose fingerprint was

normalized by its ensemble median to ensure unity among various RNA-ligand systems.

Coincidentally, our pose fingerprint closely resembles a recently described fingerprint that

was successfully used to train machine learning pose and binding affinity predictors.[185]
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(Reference ligand: 8 A Radii)
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(Two-Sphere: 20 Å Radii)
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Figure A.2: Illustrated are the steps involved in generating the decoy sets used in this study. (A)
Step 1 and 2, the actual binding pocket is mapped using the reference ligand method,
and alternative pockets are mapped using two-sphere methods with increasingly large
radii. (B) Step 3, poses were generated by docking the ligands into each of the mapped
binding pockets and combined into a single decoy set. (C) The focus of this study is to
develop and assess methods for selecting atomically-correct poses from these decoy
poses (i.e., pose prediction).

A.2.3. Datasets

Leave-one-out training set

We compiled an initial dataset comprised of 80 RNA-ligand systems. For this dataset, the

crystal structures of the RNA-ligand complexes were downloaded from the Protein Data

Bank [60](see Table B.4 for a list of PDBIDs). To generate diverse decoy sets for each RNA-

ligand system, computer docking was performed using the docking program rDock[17]. The

following protocol was used to generate the poses with rDock (Figure A.2A and B). First, a

set of poses were generated in the actual binding pocket, using the reference ligand method,

with the sphere radii from the center of the known binding pocket set to 2, 3, 4, 5, 6, 7,

and 8 Å, respectively. At each sphere radius, 50 poses were generated, for a total of 350

poses. Next, 250 additional poses were generated by docking into the binding pockets that

were identified using the two-sphere method, with outer sphere radii set to 20, 40, 60, 80

and 100 Å, respectively. Docking was carried out with the default rDock scoring function
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plus a solvation term from a desolvation potential defined as a weighted sum of solvent

accessible surface area.[17, 186] Hence, in total, 600 poses were generated for each RNA-

ligand complex. For some RNA-ligand complexes, the number of poses were less than 600

because the two-sphere method failed to identify binding pockets at one or more of the outer

sphere radii we utilized for binding pocket detection. All pocket detection was carried out

using the rDock utility program, rbcavity. The entire set of decoy poses can be accessed

online at https://doi.org/10.5281/zenodo.3711071.

Validation set

We also compiled two additional, independent validation sets (Table A.2). The first was

comprised of 17 RNA-ligand systems whose structures have been solved using X-ray crys-

tallography. The second validation set was comprised of 21 RNA-ligand systems containing

both X-ray and NMR structures. Excluded were systems in which the RNA shared high se-

quence similarity (> 80%) to RNAs in the leave-one-out training set.[187] For each RNA in

these validation sets, a decoy set of ∼600 poses was generated using the protocol identical

to the one used to generate decoy poses in leave-one-out dataset. These dataset were then

used to test the pose-recovery performance of the machine learning classifiers we trained

on leave-one-out datset. The second dataset, the majority (20 out of 21) of which were NMR

structures, was viewed as a particularly strong validation set because no NMR structures

were included in the leave-one-out dataset that was used to train the classifiers. Moreover,

all of the systems included in this validation set were also used to test the performance of

the scoring function, DrugScoreRNA, thus facilitating a fair comparison between the per-

formance of our predictors and a current state-of-the-art scoring function.
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Dataset Size 𝑁 𝑓<2.5
Training set 1 80 43750 0.27
Validation set 1 17 8850 0.29
Validation set 2 21 12590 0.22

Table A.2: Summary of the primary datasets used in this study. Listed for each dataset are the size
(i.e., the number of RNA-ligand complexes), 𝑁 , the total number of poses, 𝑓<2.5, and the
fraction of poses with RMSD < 2.5 Å, respectively. See the Supporting Information for
the exact composition of the datasets.

A.2.4. Training the pose classifiers

To train the pose classifiers, we employed the random forest method implemented in the

sklearn Python module.[188] The classifiers comprised of an ensemble of 1000 decision trees

with class weight set to balanced subsample. All other parameters were set to their default

values. The classifiers were trained using a leave-one-out approach using the set of poses

generated using rDock (see above). We trained separate classifiers with nativeness RMSD

thresholds set to 1.0, 1.5, 2.0, and 2.5Å. Machine learning models can be susceptible to the

so-called “twinning effect,” which occurs when samples in the training set closely resemble

samples in testing set. Here we have employed leave-one-out cross-validation in an attempt

to mitigate the potential impact of “twinning” when assessing the performance of classifiers.

In this leave-one-out approach, a single RNA-ligand system was removed from the training

set and the classifiers were trained on the remaining 79 RNA-ligand complexes. The resulting

classifier was then assessed on the excluded RNA-ligand system. If the ligand in any of

the other 79 RNA-ligand systems was identical to the ligand in the left-out system, they were

removed prior to training the classifier used to assess the left-out system.
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A.2.5. Assessing classifiers

In order to quantify our ability to recover atomically correct poses using either docking

scores from rDock scoring function or classification scores from our pose classifiers, we

first sorted the poses to obtain the top-scored pose. When using docking scores, the pose

with lowest (most negative) score was identified and RMSD relative to crystal pose was de-

termined. When using classification scores, the pose with highest classification score was

identified and RMSD relative to crystal pose was determined. We also calculated the suc-

cess rates 𝑆(𝑋) (with 𝑋=1.0, 1.5, 2.0, and 2.5) as the percentage of RNA-ligand complexes for

which the RMSD of the best pose (top-scored pose) was within 𝑋 Å of the corresponding

crystal pose.

A.3. Results and Discussion

For protein-ligand complexes, modern scoring functions have a reported success rate that

exceeds ∼75 %.[189] In contrast, for RNA-ligand complexes, state-of-the-art scoring func-

tions have a success rate near 50 %.[17, 180] This discrepancy between the success rate of

protein and RNA scoring functions motivated us to explore methods capable of enhancing

our ability to discriminate native-like poses from non-native decoys.

A.3.1. Docking scores exhibit low success rates.

We began our study by assessing the ability of docking scores to recover the correct pose

from decoy poses located in the experimental binding pocket as well as decoy poses located

in alternate pockets on the surface of the RNA. To accomplish this, we initially generated

decoys sets comprised of ∼600 diverse poses for 80 RNA-ligand complexes (see Methods;
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Figure A.3: RMSD distributions of predicted best poses over systems in the leave-one-out training
set, when the best poses were predicted using (A) docking score terms, classification
scores from classifiers trained using (B) docking score terms, (C) our pose fingerprint,
(D) raw docking scores plus our pose fingerprint as features, respectively. Here, TO-
TAL, INTER, INTER.VDW, and INTER.POLAR refer to various terms in the rDock scor-
ing function: TOTAL corresponds to total docking score, containing both RNA-ligand
and intra-ligand contributions; INTER corresponds to the contribution of RNA-ligand
interaction to the docking score; INTER.VDW corresponds to the non-polar, van der
Waals contribution to the interaction docking score; and INTER.POLAR corresponds
to the polar contribution to the interaction docking score. For the pose classifiers,
results are shown for independent sets of classifiers that were trained with the na-
tiveness threshold set to 1.0, 1.5, 2.0, and 2.5 Å. Here best poses correspond to the
top-scoring pose. When using raw docking scores, the top-scoring pose is the pose
with the lowest docking scores. When using the classifiers, the top-scoring pose is the
one with the highest classification score. In each violin plot, the black bar in the center
corresponds to quantile range, and the white squares are located at the corresponding
median RMSD. For reference, the red dotted lines are placed at RMSD values of 2.50
Å.

Figure A.2A-C). In these decoys sets, the RNA receptors corresponded to the holo structures

where only the ligand orientation and conformation varied.

Shown in Figure A.3A are distributions of RMSD (relative to the crystal pose) of the best

poses selected from these decoy sets using individual score terms in the rDock scoring func-

tion.[17] When using the total docking score, the median RMSD of the predicted pose was

3.41 Å (Figure A.3A; Table B.6). We obtained similar results when using the total interac-

tion, the van der Waals interaction, and the polar interaction score terms. In these cases,
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the median RMSD were 5.72, 4.75, and 6.88 Å, respectively. To better quantify the ability

of the score terms to select atomically correct poses, we also computed the success rate,

𝑆(𝑋), defined as the percentage of cases in which the predicted pose was within 𝑋 Å of

the native pose. Using total docking score, 𝑆(1.0), 𝑆(1.5), 𝑆(2.0), and 𝑆(2.5) were 22.7, 29.5,

37.5 and 42.0%, respectively. Similarly, 𝑆(1.0), 𝑆(1.5), 𝑆(2.0), and 𝑆(2.5) were 17.0, 21.6, 27.3,

and 33.0%, respectively, when using total interaction, 18.2, 22.7, 28.4 and 36.4%, respectively,

when using van der Waals interaction, and 8.0, 9.1, 12.5, and 21.6%, respectively, when using

the polar interaction score terms. The docking score terms in the rDock scoring function,

therefore, exhibited marginal ability to recover correct poses from diverse decoys poses.

A.3.2. Pose classifiers improve success rates on the leave-one-out dataset.

Next, we asked whether nonlinear machine learning classifiers could enhance our ability

to recover correct poses from decoy poses. To test this, we cast the problem of recovering

correct ligand poses as a classification problem and then trained machine learning models

to discriminate correct poses from decoy poses. Briefly, we built random forest classification

models that take a set of features as input and output “classification scores” that estimate

the probability of a pose being native-like. To accomplish this, we first trained a series of

random forest pose classifiers using a leave-one-out cross-validation approach in which we

selected a single RNA-ligand from the dataset of 80 RNA-ligand systems (the leave-one-out

dataset), and trained a classifier using decoy sets for the remaining 79 RNA-ligand systems.

If the ligand in the left-out system was identical to any of the remaining 79 system, the data

associated with these systems were removed prior to training the classifier (see Methods).

After training, the performance of the resulting classifier was assessed on the left-out system.

For the left-out system, classification scores for all poses were determined and then the pose
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with the highest classification score was selected as the best (or predicted) pose for the left-

out system. This procedure was repeated 80 times, i.e., one for each system in the leave-one-

out dataset.

Shown in Figure A.3B are distributions of the RMSD of the best poses identified using clas-

sifiers trained with individual terms in rDock scoring function as learning features. Reported

are results for the classifiers trained with nativeness RMSD threshold set to 1.0, 1.5, 2.0, and

2.5 Å, respectively. The corresponding success rates are also listed in Table B.6. In general,

RMSD of the best poses identified using the score-based pose classifiers were lower than

those selected using the terms in the rDock scoring function. For instance, for score-based

pose classifiers trained with nativeness threshold set to 1.0, 1.5, 2.0, and 2.5 Å, median RMSD

of the best poses were 2.50, 3.14, 2.08, and 2.14, respectively (Figure A.3B; Table B.6). The

success rates, 𝑆(1.0), 𝑆(1.5), 𝑆(2.0), and 𝑆(2.5)were also higher for the score-based classifiers,

with the best results obtained with nativeness threshold set to 2.0 and 2.5 Å. 𝑆(1.0), 𝑆(1.5),
𝑆(2.0), and 𝑆(2.5) were 21.6, 36.4, 50.0, and 54.5% respectively for classifiers trained with

threshold set to 2.0 Å, and 25.0, 37.5, 48.9, and 54.5% for classifiers trained with threshold set

to 2.5 Å. In comparison, the values obtained using total docking score were 22.7, 29.5 37.5 and

42.0%. These results suggest that pose classifiers trained using the scores terms as learning

features could boost our ability to recover correct poses. The success rates, however, still

pales in comparison to the success rates of protein-ligand pose prediction methods.

As such, we next asked whether we could further enhance the success rate of RNA-ligand

pose prediction by training pose classifiers on features that more directly depend on RNA-

ligand interactions. Specifically, we were interested in examining the utility of a distance-

based atomic fingerprint that describes the local atomic environment near a given site which

has shown promise in predicting properties like atomic forces[120] and resembles a pose

fingerprint recently used for protein-ligand pose predictions.[185] To create a composite
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fingerprint from atomic fingerprints, we summed and normalized all atomic fingerprints

associated with specific ligand-RNA pair types (see Methods and Figure A.1). Using this

composite RNA-ligand interaction fingerprint, we then trained another set of pose classifiers,

again using the leave-one-out cross-validation approach. For comparison, we also trained

classifiers that used the rDock score terms plus our pose fingerprint as features. Here again,

separate classifiers were trained with nativeness threshold set to 1.0, 1.5, 2.0, and 2.5 Å. The

results are summarize in Figure A.3C.

For the pose fingerprint classifiers trained with nativeness threshold set to 1.0, 1.5, 2.0, and

2.5 Å, median RMSD of the best poses were 1.36, 1.27, 1.31, and 1.42 Å, respectively. These

fingerprint-based classifiers all exhibit similar success rates. For instance, 𝑆(1.0), 𝑆(1.5),
𝑆(2.0), and 𝑆(2.5) were 37.5, 63.6, 77.3, and 86.4%, respectively, for classifiers trained with

nativeness threshold set to 1.5 Å which exhibited the lowest median RMSD of 1.27 Å. In

comparison, 𝑆(1.0), 𝑆(1.5), 𝑆(2.0), and 𝑆(2.5) were 33.0, 58.0, 77.3, and 86.4%, respectively, for

classifiers trained with nativeness threshold set to 2.5 Å which exhibited the highest median

RMSD of 1.42 Å. We obtained comparable results for pose classifiers trained using the dock-

ing scores plus the fingerprint as features. Notable among these was the classifier trained

with nativeness threshold 1.0 Å; for this set of classifiers, median RMSD of the best poses

was 1.05 Å and 𝑆(1.0), 𝑆(1.5), 𝑆(2.0), and 𝑆(2.5) were 43.2, 70.5, 79.5, and 85.2%, respectively.

Based on this leave-one-out analysis, the pose classifiers trained using pose fingerprint as

well as classifiers trained using docking score terms plus pose fingerprint as features, both

exhibited remarkable ability to recover atomically correct poses from the leave-one-out de-

coy sets.
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A.3.3. Pose classifiers exhibit high success rates on two independent

validation sets.

To further test our pose classifiers, we applied them to two additional validation sets, the

first, consisting of a set of 17 RNA-ligand complexes for which X-ray structures were avail-

able and the second, consisting of 21 RNA-ligand complexes containing both X-ray and NMR

structures. Figure A.4 summarizes the results. Globally, the results mirror those from our

leave-one-out analysis: RMSD and success rates decreased and increased, respectively, when

using raw docking scores (Figure A.4A, E), score classifier (Figure A.4B, F), fingerprint clas-

sifier (Figure A.4C, H) and score+fingerprint classifier (Figure A.4D, G) to classify poses in

validation set 1 and 2. In general, however, RMSDs for validation set 1 and 2 were higher

than the corresponding leave-one-out values, and the success rates were generally lower.

For validation set 1, for instance, the lowest median RMSD was 1.25 Å (Table B.7), and the

associated 𝑆(1.0), 𝑆(1.5), 𝑆(2.0), and 𝑆(2.5)were 38.9, 55.6, 55.6, and 61.1%, respectively (Table

B.7). For validation set 2, the lowest median RMSD was 1.71 Å and 𝑆(1.0), 𝑆(1.5), 𝑆(2.0), and
𝑆(2.5) were 14.3, 23.8, 57.1, and 61.9% (Table B.8). Though median RMSD and success rates

especially 𝑆(2.0) and 𝑆(2.5), for validation set 1 and 2 were similar, the distribution of RMSDs

were narrower for validation set 1 (Figure A.4B-D) than set 2 (Figure A.4F-G), indicating that

overall the classifiers performed better on validation set 1 than 2. The reason for this is that

validation set 1 is composed of high resolution X-ray solved RNA-ligand complexes, whereas

validation set 2 is mostly composed of low-resolution NMR solved RNA-ligand complex. The

discrepancy between the results on validation set 1 and 2 could be a result of validation set 1

consisting of high-resolution structures. Furthermore, since the classifiers were trained on

the leave-one-out training set which only consists of X-ray structures, it is not surprising

that they performs better on X-ray structures.
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In Figure A.5 and A.6 we show comparisons between actual and predicted poses for RNA-

ligand complexes in validation set 1 and 2. This visual comparison revealed that even in cases

where RMSD was high (in particular, for validation set 2), the predicted poses were typically

within the known binding pocket. This is significant because when we constructed the

decoys sets, we made a deliberate effort to ensure that included within the decoys sets were

poses docking in pockets other than the known binding pocket. Collectively, these results

suggest that the classifiers we trained using our pose fingerprint were capable of identifying

native-like poses from diverse decoy poses.

One of the challenges in assessing machine learning models such as the classifiers we

trained in this work is that, overlap between training and validation set can lead to overes-

timation of performance of the model. In our case, significant bias might be introduced into

our assessment when ligand in a validation system is identical to a ligand in the training

set. However, in both validation set 1 and 2, we observed several cases in which the ligand

exhibit low similarity to ligand in the training set, yet the pose identified as best pose had

a small RMSD relative to the corresponding crystal structure. Conversely, we also had ex-

amples of systems in which the ligand was identical to a ligand in the training set, yet the

RMSD was high. These results suggest that chemical similarity to the ligand in the training

set did not substantially bias our assessment our classifiers.

A.3.4. Comparisons to other knowledge-based scoring function.

DrugScoreRNA[177] and SPA-LN[180] are two RNA specific knowledge-based scoring func-

tions that can be used for pose prediction. For these score functions, pair-potentials from

pairwise atomic distances are fit to a pre-determined functional form (using the inverse

Boltzmann relation), and their final score (the binding affinity), which is the sum over all
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pair-potentials, can be used to rank poses. In contrast to knowledge-based potential, we

do not assume functional relationships between pairwise distances and our target (the pose

classification). For our classifiers, interactions between RNA atom and ligand atom pairs are

analyzed and grouped based on different atom type combinations to form a set of pose fin-

gerprints, and the final classification score is themajority vote from an ensemble of nonlinear

machine learning models trained on a set of RNA-ligand complexes. For DrugScoreRNA and

SPA-LN, all RNA-ligand interactions are described using the SYBYL atom types of the RNA

and ligand atoms, respectively. Like DrugScoreRNA and SPA-LN, we use SYBYL atom types

to describe the heavy atoms in the ligand. For RNA, however, we defined atom types based

on their RNA residue name and atom names, not their SYBYL types. We note that in pre-

liminary work, we found that the classifiers trained using SYBYL atom types to describe the

RNA performed poorly relative to the classifiers trained using the residue and atom names

to define atom types.

In Table A.3 is the comparison between our classifiers and DrugScoreRNA (see also Ta-

ble B.30 for the RMSDs of individual RNAs). For DrugScoreRNA, the data is taken from

Table B.5 in Supporting Information in DrugScoreRNA paper.[177] In general, the results

obtained using our classifiers were superior to those obtained using DrugScoreRNA, despite

DrugScoreRNA being parameterized using a much larger dataset (670 nucleic acid-ligand

and -protein complexes versus our 80 RNA-ligand complexes). The median RMSD for our

classifiers were 1.71 Å compared to 1.95 Å for DrugScoreRNA. The success rate at 2.5 Å

(S(2.5)) of our classifier was higher than DrugScoreRNA (61.9% compared to 57.1%) and the

S(1.0), S(1.5) and S(2.0) were identical to DrugScoreRNA (Table A.3).

Shown in Table A.4 are the results we obtained on the SPA-LN validation set, which was

composed of 56 RNA-ligand complexes and were the same RNA-ligand complexes used to

test the pose prediction accuracy of SPA-LN (testing dataset 3 in the SPA-LN article[180]).
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Method RMSD(Å) 𝑆(1.0)(%) 𝑆(1.5)(%) 𝑆(2.0)(%) 𝑆(2.5)(%)
RNAPosers 1.71 14.3 23.8 57.1 61.9

DrugScoreRNA 1.95 14.3 23.8 57.1 57.1

Table A.3: Comparing the recovery performance of RNAPosers to the recovery performance of
DrugScoreRNA scoring function on a common dataset (validation set 2). The scores for
DrugScoreRNA is taken fromTable B.5 in Supporting Information of the literature.[177]

For this validation set, we trained a new set of classifiers on 130 RNA-ligand complexes, a

subset of the 437 nucleic-acid complexes used to train the SPA-LN scoring function. Due to

the lack of access to SPA-LN performances on individual RNAs, we were not able to carry

out a structure-wise comparison but only the success rate at 2.5 Å; the success rate 𝑆(2.5)
was ∼54% for SPA-LN, while for our classifiers it is ∼62%. We note that although we made

our comparison to other scoring functions based on the same set of RNA-ligand complexes,

the coordinates for the poses differ from those original work of DrugScoreRNA and SPA-LN.

Therefore, the comparisons presented above should not be regarded as direct comparisons.

In order to facilitate future comparisons between various pose prediction methods, we have

made all the coordinate data used in our study publicly available.

Method RMSD(Å) 𝑆(1.0)(%) 𝑆(1.5)(%) 𝑆(2.0)(%) 𝑆(2.5)(%)
RNAPosers 1.92 26.8 37.5 50.0 62.5
SPA-LN – – – – 54.0

Table A.4: Median RMSD and success rates for systems in an additional validation set, which
was comprised of 56 RNA-ligand complexes. These 56 RNA-ligand complexes corre-
spond to a subset of RNA-ligand complexes that overlapped with testing dataset 3 in
the SPA-LN publication[180]). The classifier used in this analysis was trained on a set
of RNA-ligand complexes corresponding to a subset of SPA-LN training set. Listed are
the results obtained when the best poses were selected using docking scores plus our
pose fingerprint as learning features, with nativeness threshold set to 2.0Å.
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A.3.5. Contacts with ribose atoms in adenine residues emerge as

important pose prediction features.

Next, we explored the chemical implication of our machine learning model by examining

which elements in our pose fingerprint were most important for pose prediction. To ac-

complish this, we carried out feature importance analysis on our pose fingerprints. Shown

in Figure A.7 are the importance maps associated with specific RNA-ligand contact, which

were defined by RNA atom names and residues types (ADE, GUA, CYT and URA) and SYBYL

atom types in the ligand.

As might be expected, contacts with purine residues (Figure A.7A, B) exhibited larger rela-

tive importance scores than pyrimidines (Figure A.7C, D). We speculate that the importance

scores are relatively higher for purine contacts because they provide more opportunities for

stabilizing contacts via 𝜋 − 𝜋 stacking and hydrogen bonding interactions. Consistent with

our speculation, nucleobase atoms in the purines (N7 and C8 in ADE (Figure A.7A) and N1,

N2, C2, N3 and C6 in GUA (Figure A.7B)) exhibit high importance scores. This is also shown

in the atomwise importance scores for each residue (Figure A.8). Surprisingly, though, lig-

and contacts with the highest importance scores reside on the ribose of ADE, namely, O2’

and C2’ atoms (Figure A.8A). Intriguingly, previous analysis of RNA-ligand complexes in

both ribosomal and non-ribosomal RNA identified several signature features of RNA-ligand

interactions, among these was the presence of unusual pucker conformations in residues

with the binding pockets.[157] It is possible that the apparent ribose hotspot on ADE (O2’

and C2’) is due to the presence of stabilizing ligand interactions with O2’ on ADE that adopt

unusual pucker conformations. We cannot, however, rule out that these apparent hotspots

are artifacts of our classifiers or our training data.
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Figure A.4: Violin plots of the RMSD distributions of predicted best poses over systems in the val-
idation set 1 (A-D) and 2 (E-H). Here best poses correspond to the top-scoring pose.
When using raw docking scores, the top-scoring pose is the pose with the lowest dock-
ing scores. When using the classifiers, the top-scoring pose is the one with the highest
classification score. Results shown here are RMSD distributions of best poses predicted
using (A and E) docking score terms, classification scores from classifiers trained using
(B and F) docking score terms, (C and G) our pose fingerprint, (D and H) raw dock-
ing scores plus our pose fingerprint as features, respectively. Here, TOTAL, INTER,
INTER.VDW, and INTER.POLAR refer to various terms in the rDock scoring function:
TOTAL, corresponds to total docking score, containing both RNA-ligand and intra-
ligand contributions); INTER, corresponds to the contribution of RNA-ligand interac-
tion to the docking score; INTER.VDW correspond to the non-polar, van der Waals
contribution to the interaction docking score; and INTER.POLAR correspond to the
polar contribution to the interaction docking score. For the pose classifiers (B-D and
F-H), 4 independent sets of classifiers were trained with nativeness threshold set to
1.0, 1.5, 2.0, and 2.5 Å and results are shown in the plots for side-by-side comparison.
In each violin plot, the black bar in the center corresponds to quantile range, and the
white squares are located at the corresponding median RMSD. For reference, the red
dotted lines are placed at RMSD values of 2.50 Å.
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Figure A.5: Comparison between actual and predicted poses for validation set 1. Here, the poses
were selected using the classifier trained using raw docking scores plus our pose fin-
gerprint as features and the nativeness threshold was set to 2.0 Å. Shown for each
case is the RMSD distribution over the decoy set, from which poses were selected. In
each distribution plot, the black dotted line is placed at the mean RMSD value and, for
reference, the red dotted line is placed at RMSD value 2.0 Å.
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Figure A.6: Comparison between actual and predicted poses for validation set 2. Here, the poses
were selected using the classifier trained using raw docking scores plus our pose fin-
gerprint as features and the nativeness threshold was set to 2.0 Å. Shown for each
case is the RMSD distribution over the decoy set, from which poses were selected. In
each distribution plot, the black dotted line is placed at the mean RMSD value and, for
reference, the red dotted line is placed at RMSD value 2.0 Å.
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Figure A.7: Relative importance matrix for our pose fingerprint. Note that every element in the
matrix correspond to unique RNA-ligand pairs, which are defined by the atoms names
in ADE, GUA, CYT, and URA, respectively, and the SYBYL atom types for ligands.
Results are shown for a random forest classifier trained on data for all 80 RNA-ligand
in the original leave-one-out dataset and with nativeness threshold set to 2.5 Å. High
values correspond to more important features.
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Figure A.8: Atomwise Importance Scores. Shown are cartoons of the importance scores projected
onto the atoms in (A) ADE, (B) GUA, (C) CYT, and (D) URA residues. These scores
correspond to the sum over the individual SYBYL atom types in the importance matrix
(Figure A.7). The striped bars are placed at non-existent atoms in the residues.
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A.4. Conclusion

In this study, we showed that machine learning classifiers, trained using a novel pose-

fingerprint, was able to enhance RNA-ligand pose prediction over baseline docking scores.

Due to the promising results we obtained using our pose classifiers, we have incorporated

them into the software tool, RNAPosers (https://github.com/atfrank/RNAPosers),

which consist of a commandline tool and an accompanying a PyMOL plugin. To facilitate

the development and testing of other RNA-ligand pose prediction methods, we also made

accessible coordinates of all the decoy sets used in this study (https://doi.org/10.

5281/zenodo.3711071). In the context of RNA-ligand pose prediction, RNAPosers

should find utility as a tool to assess the relative quality of a set of poses derived either from

purely computational methods or from hybrid modeling methods that incorporate exper-

imental data such as chemical shift perturbation data. Also, within the context of virtual

screening, we envision that RNAPosers may find utility as a tool to identify high-confidence

poses that can be brought forward for binding affinity prediction using physics-based free

energy calculation methods like, MM-PBSA and FEP calculations as well as to facilitate

structure-activity-relationship studies in the absence of experimental structural information.
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Appendix B.

Supporting Information

B.1. SimRNA parameter setting and simulation details in

Chapter IV.

SimRNA is an RNA 3D structure prediction tool, which simulates the RNA folding with a

coarse-grained representation and generates a set of conformations using Monte Carlo sam-

pling tools. The folding simulation was run for 64,000,000 steps, and structures were written

out every 10,000 steps. Then for the simulated annealing, the initial temperature was set to

1.35 and the final temperature was set to 0.90. The weights for the bond, angles, 𝜂𝜃 terms in

the coarse-grained force field employed in SimRNA was set to 1.00, 1.00, and 0.40, respec-

tively. For our calculations, we ran SimRNA in replica exchange Monte Carlo mode, with

the number of replicas set to 10. The resulting trajectories for each replica combined into a

single trajectory, and the resulting collection of structures clustered with maximum RMSD

threshold set to 5.0 Å. For each resulting cluster, the structure with the lowest energy was

selected. After applying the protocol described above, a total of 300 low energy structures
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were obtained and used as the final set of modeled structures.

B.2. Supporting tables

Table B.1: List of structures used for benchmarking the SASA-BME framework in ensemble
reweighing.

PDB ID Chain Length Purine Length Coverage
1KKA 17 10 0.58824
1L1W 29 17 0.58621
1LDZ 30 19 0.63333
1NC0 24 13 0.54167
1OW9 23 16 0.69565
1PJY 22 12 0.54545
1R7W 34 16 0.47059
1SCL 29 17 0.58621
1UUU 19 8 0.42105
1XHP 32 16 0.5
1YSV 27 14 0.51852
1ZC5 41 23 0.56098
2FDT 36 18 0.5
2JWV 29 16 0.55172
2K66 22 13 0.59091
2KOC 14 6 0.42857
2L3E 35 15 0.42857
2LBJ 17 8 0.47059
2LBL 17 7 0.41176
2LDT 31 18 0.58065
2LHP 37 19 0.51351
2LK3 24 14 0.58333
2LP9 16 9 0.5625
2LPA 15 8 0.53333
2LQZ 27 12 0.44444
2LU0 49 28 0.57143
2LUB 37 19 0.51351
2LUN 28 14 0.5
2LV0 24 14 0.58333
2M12 23 14 0.6087
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PDB ID Chain Length Purine Length Coverage
2M21 21 9 0.42857
2M22 23 13 0.56522
2M24 29 15 0.51724
2M4W 17 11 0.64706
2M5U 22 11 0.5
2M8K 48 18 0.375
2MEQ 19 10 0.52632
2MFD 19 9 0.47368
2MHI 53 24 0.45283
2MNC 29 14 0.48276
2N2O 23 11 0.47826
2N2P 23 11 0.47826
2QH2 24 12 0.5
2QH4 18 10 0.55556
2Y95 14 7 0.5

Table B.3 - B.16 listed the supporting tables for RNAPosers.
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PDB ID AUC PDB ID AUC PDB ID AUC PDB ID AUC
2GCS 0.886 3DIL 0.966 4DR6 0.789 4NXM 0.792
2GCV 0.964 3EGZ 0.834 4DR7 0.772 4NXN 0.737
2GDI 0.93 3G71 0.968 4DUY 0.785 4OJI 0.958
2H0S 1.0 3GX5 0.606 4DUZ 0.765 4PQV 1.0
2H0W 0.839 3HHN 0.86 4DV0 0.758 4Q9Q 0.701
2H0X 0.901 1K9M 0.841 4DV1 0.77 1QU2 0.715
2HO6 0.909 3IVK 0.921 4DV2 0.769 1QVF 0.886
1FFY 0.715 3L0U 0.842 4DV4 0.819 4QLM 0.945
2NZ4 0.967 3LA5 0.877 1NTB 0.306 1QVG 0.879
2OTJ 0.849 3MUM 0.297 4DV7 0.854 1S72 0.841
2OTL 0.835 1KD1 0.809 4E8M 0.769 4TRA 0.832
1FUF 0.989 3MUT 0.826 4E8N 1.0 4TZX 0.953
2QBZ 0.961 3MXH 0.983 4ENA 0.984 6TNA 0.912
2QEX 0.913 3NKB 0.972 4ENB 0.831 1TRA 0.959
1HR2 0.967 1KQS 0.868 4ENC 0.996 1VQ4 0.857
2R8S 0.978 1L2X 0.899 1NUJ 0.961 1VQ5 0.87
2YIE 0.783 3OWI 0.741 4FAW 0.557 1VQ6 0.866
2YIF 0.993 3OWW 0.826 1NUV 0.915 1VQ7 0.856
2Z75 0.979 3OWZ 0.851 4IFD 0.61 1VQ8 0.904
2ZXU 0.972 3OX0 0.825 4JF2 0.945 1VQ9 0.905
354D 0.973 3OXB 0.939 4JI0 0.781 1VQK 0.922
3B4A 0.998 3OXD 0.739 4JI1 0.834 1VQL 0.882
3B4B 0.896 3OXM 0.763 4JI2 0.789 1VQO 0.931
3B4C 1.0 3P49 0.874 4JI3 0.812 1VQP 0.888
3BO3 0.406 3RER 0.984 4JI4 0.803 1EHZ 0.981
3CC2 0.873 1LNG 0.983 4JI5 0.732 1X8W 0.984
1JJ2 0.897 3U2E 0.698 4JI6 0.788 1XJR 0.991
3CC7 0.862 3UCZ 0.965 4JI7 0.807 1YHQ 0.858
3CCJ 0.846 1M1K 0.821 4JI8 0.802 1EVV 0.981
3CCL 0.888 1M90 0.881 1PJO 1.0 1YI2 0.863
3CCM 0.919 3V7E 0.852 1Q7Y 0.865 1YIJ 0.857
3CCR 0.925 3ZGZ 0.958 4KZD 0.98 1YJ9 0.857
3CCU 0.869 462D 0.971 4LF7 0.646 1YJN 0.857
3CCV 0.919 1MMS 0.99 4LF8 0.646 1YLS 0.949
3CXC 0.902 1N78 0.919 4LF9 0.607 2A43 0.927
3D2G 0.913 4DR2 0.818 4LFB 0.793 1FEU 0.943
3D2V 0.961 4DR3 0.763 1Q81 0.885 1K73 0.915
3D2X 0.373 4DR4 0.788 4M30 0.933 4DR5 0.858
3DD2 0.87 1NJI 0.868 4M4O 0.995 1Q82 0.914

Table B.2: Training dataset and leave-one-out validation results for the 𝑀𝑔2+ binding site classi-
fiers. Listed are the structure PDB IDs and the corresponding AUC when the structure
is used as validation in the leave-one-out analysis.
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Atom Types

Ligand (SYBYL)
C.1 C.2 C.3 C.ar C.cat N.1 N.2 N.3 N.4
N.ar N.am N.pl3 O.2 O.3 O.co2 S.2 S.3 S.o
S.o2 P.3

RNA

ADE
C1′ C2 C2′ C3′ C4 C4′ C5 C5′ C6
C8 N1 N3 N6 N7 N9 O2′ O3′ O4′
O5′ OP1 OP2 P

CYT
C1′ C2 C2′ C3′ C4 C4′ C5 C5′ C6
N1 N3 N4 O2 O2′ O3′ O4′ O5′ OP1
OP2 P

GUA
C1′ C2 C2′ C3′ C4 C4′ C5 C5′ C6
C8 N1 N2 N3 N7 N9 O2′ O3′ O4′
O5′ O6 OP1 OP2 P

URA
C1′ C2 C2′ C3′ C4 C4′ C5 C5′ C6
N1 N3 O2 O2′ O3′ O4 O4′ O5′ OP1
OP2 P

Table B.3: Atom types considered in pose fingerprints (FPs). We used 20 SYBYL atom types for
the ligand, and 85 RNA atom types (we consider unique combinations of residues and
atom types) for the RNA, resulting in a total of 1700 pair of interactions.

Dataset PDB IDs
Training (80) 1FUF 1LC4 1ZZ5 1F27 1J7T 1MWL 1NTA 1NTB 1O9M 1U8D 1YRJ 2EEU

2EEV 2EEW 2ET5 2HOJ 2HOM 2HOO 2O3V 2O3Y 2QWY 2BE0 2BEE 2ET3
2ET4 2ET8 2F4S 2F4T 2F4U 2FCX 2FCZ 2G5Q 2O3W 2O3X 2OE5 2OE8 3D2G
3D2V 3D2X 3E5E 3F2Q 3F2T 3F4H 3GX2 3GX3 3GX5 3GX6 3GX7 3IQN 3IQR
3NPQ 3SUH 3TZR 3WRU 3C44 4F8U 4F8V 4FAW 4GPX 4GPY 4LVX 4LVY
4LW0 4P20 4PDQ 4QLM 4QLN 4TS2 4TZX 4TZY 4B5R 4K32 4WCR 4ZNP
5BTP 5BWS 5BXK 5C45 5KX9 6BFB

Validation 1 (17) 2XNW3FU2 3Q50 3SD3 3SLM4FE5 4JF2 4LX5 4NYA 4XWF 4YB0 2B57 2YDH
3NPN 4AOB 4KQY 5KPY

Validation 2 (21) 1AJU 1AKX 1AM0 1BYJ 1EHT 1EI2 1EVV 1FMN 1KOC 1KOD 1LVJ 1NEM
1O9M 1PBR 1Q8N 1QD3 1TOB 1UTS 1UUD 1UUI 2TOB

Table B.4: PDB IDs for the leave-one-out training dataset and validation datasets 1 and 2.
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Dataset PDB IDs
SPA-LN Training (130) 1DDY 1ET4 1EVV 1FUF 1TN1 1TN2 1YLS 1ZZ5 2B57 2CKY 2EES

2EET 2EEU 2EEV 2EEW 2ET5 2GDI 2GIS 2HO6 2HO7 2HOJ 2HOL
2HOM2HOO 2L1V 2L94 2LWK 2M4Q 2MIY 2MXS 2N0J 2NPY 2O3Y
2QWY 3B4A 3B4B 3B4C 3D0U 3D2G 3D2V 3D2X 3DIG 3DIL 3DIM
3DIX 3DIY 3DIZ 3DJ0 3DJ2 3DVV 3E5E 3E5F 3F2Q 3F2T 3F4H 3FAW
3GCA 3GS8 3GX2 3GX3 3GX5 3GX6 3GX7 3IQN 3IQR 3NPQ 3RKF
3SKI 3SKL 3SLQ 3SUH 3SUX 3TD1 3TZR 3WRU 4B5R 4E8N 4E8Q
4F8U 4F8V 4FAW 4FEJ 4FEL 4FEN 4FEO 4FEP 4GPW 4GPX 4GPY
4JIY 4K32 4L81 4LVV 4LVW 4LVX 4LVY 4LVZ 4LW0 4LX5 4LX6
4NYA 4NYD 4NYG 4P20 4P3S 4P5J 4P95 4PDQ 4QLM 4QLN 4RZD
4TS2 4TZX 4TZY 4WCR 4XNR 4XW7 4XWF 4Y1I 4YAZ 4YB0 4ZNP
5BTP 5BWS 5BXK 5C45 5KX9 5LWJ 5UZA 6BFB

SPA-LN Validation (56) 1AJU 1AKX 1AM0 1BYJ 1EHT 1EI2 1F1T 1F27 1FMN 1FYP 1J7T
1KOC 1KOD 1LC4 1LVJ 1MWL 1NEM 1NTA 1NTB 1NYI 1O15
1O9M 1PBR 1Q8N 1QD3 1TOB 1U8D 1UTS 1UUD 1UUI 1XPF 1Y26
1YRJ 2AU4 2BE0 2BEE 2ESJ 2ET3 2ET4 2ET8 2F4S 2F4T 2F4U 2FCX
2FCY 2FCZ 2FD0 2G5Q 2JUK 2O3V 2O3W 2O3X 2OE5 2OE8 2TOB
3C44

Table B.5: PDB IDs for SPA-LN training and validation set used for comparison to the SPA-LN
scoring function.
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In Tables B.6-B.9, median RMSD and success rates for systems in the training set and

validation sets are listed. In each table we reported the results obtained when the best poses

were selected using docking score terms and classifiers that trained using docking score

terms, our pose fingerprint, and docking scores plus our pose fingerprint as learning features.

For the pose classifiers, we include results for classifiers that we trained with the nativeness

threshold set to 1.0, 1.5, 2.0, and 2.5 Å.

Selection Metric 𝑅𝑀𝑆𝐷(Å) 𝑆(1.00)(%) 𝑆(1.50)(%) 𝑆(2.00)(%) 𝑆(2.50)(%)
TOTAL 3.41 22.7 29.5 37.5 42.0
INTER 5.72 17.0 21.6 27.3 33.0

INTER.VDW 4.75 18.2 22.7 28.4 36.4
INTER.POLAR 6.88 8.0 9.1 12.5 21.6
Score CL (1.0 Å) 2.50 21.6 31.8 44.3 50.0
Score CL (1.5 Å) 3.14 18.2 28.4 40.9 47.7
Score CL (2.0 Å) 2.08 21.6 36.4 50.0 54.5
Score CL (2.5 Å) 2.14 25.0 37.5 48.9 54.5

Fingerpint CL (1.0 Å) 1.36 27.3 56.8 70.5 79.5
Fingerpint CL (1.5 Å) 1.27 37.5 63.6 77.3 86.4
Fingerpint CL (2.0 Å) 1.31 34.1 59.1 78.4 85.2
Fingerpint CL (2.5 Å) 1.42 33.0 58.0 77.3 86.4

Score+Fingerpint CL (1.0 Å) 1.05 43.2 70.5 79.5 85.2
Score+Fingerpint CL (1.5 Å) 1.17 40.9 67.0 80.7 88.6
Score+Fingerpint CL (2.0 Å) 1.15 42.0 65.9 78.4 88.6
Score+Fingerpint CL (2.5 Å) 1.20 36.4 64.8 80.7 86.4

Table B.6: Median RMSD and success rates for leave-one-out training set
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Selection Metric 𝑅𝑀𝑆𝐷(Å) 𝑆(1.00)(%) 𝑆(1.50)(%) 𝑆(2.00)(%) 𝑆(2.50)(%)
TOTAL 3.07 17.6 17.6 29.4 35.3
INTER 3.07 17.6 23.5 23.5 29.4

INTER.VDW 2.42 29.4 41.2 47.1 52.9
INTER.POLAR 3.85 11.8 11.8 17.6 23.5
Score CL (1.0 Å) 3.09 23.5 29.4 29.4 29.4
Score CL (1.5 Å) 3.95 17.6 29.4 29.4 29.4
Score CL (2.0 Å) 3.95 11.8 29.4 29.4 29.4
Score CL (2.5 Å) 3.58 11.8 23.5 23.5 29.4

Fingerpint CL (1.0 Å) 1.11 47.1 58.8 64.7 70.6
Fingerpint CL (1.5 Å) 1.05 47.1 52.9 64.7 76.5
Fingerpint CL (2.0 Å) 1.44 35.3 52.9 52.9 58.8
Fingerpint CL (2.5 Å) 1.80 29.4 47.1 58.8 76.5

Score+Fingerpint CL (1.0 Å) 1.11 47.1 52.9 58.8 64.7
Score+Fingerpint CL (1.5 Å) 1.27 35.3 52.9 58.8 64.7
Score+Fingerpint CL (2.0 Å) 1.44 41.2 52.9 58.8 64.7
Score+Fingerpint CL (2.5 Å) 1.54 35.3 47.1 58.8 70.6

Table B.7: Median RMSD and success rates for systems in validation set 1.

Selection Metric 𝑅𝑀𝑆𝐷(Å) 𝑆(1.00)(%) 𝑆(1.50)(%) 𝑆(2.00)(%) 𝑆(2.50)(%)
TOTAL 2.63 19.0 23.8 33.3 38.1
INTER 2.63 14.3 23.8 28.6 42.9

INTER.VDW 6.70 4.8 4.8 4.8 19.0
INTER.POLAR 7.93 4.8 4.8 9.5 9.5
Score CL (1.0 Å) 6.66 9.5 28.6 33.3 33.3
Score CL (1.5 Å) 7.71 14.3 19.0 28.6 28.6
Score CL (2.0 Å) 5.13 4.8 14.3 23.8 28.6
Score CL (2.5 Å) 5.06 14.3 14.3 23.8 33.3

Fingerpint CL (1.0 Å) 1.83 9.5 28.6 52.4 57.1
Fingerpint CL (1.5 Å) 2.24 14.3 19.0 47.6 57.1
Fingerpint CL (2.0 Å) 2.49 9.5 28.6 47.6 52.4
Fingerpint CL (2.5 Å) 1.96 14.3 28.6 52.4 52.4

Score+Fingerpint CL (1.0 Å) 1.82 14.3 19.0 52.4 57.1
Score+Fingerpint CL (1.5 Å) 1.71 14.3 23.8 57.1 61.9
Score+Fingerpint CL (2.0 Å) 2.60 9.5 19.0 42.9 47.6
Score+Fingerpint CL (2.5 Å) 1.96 14.3 33.3 52.4 52.4

Table B.8: Median RMSD and success rates for systems in validation set 2.
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Selection Metric 𝑅𝑀𝑆𝐷(Å) 𝑆(1.00)(%) 𝑆(1.50)(%) 𝑆(2.00)(%) 𝑆(2.50)(%)
TOTAL 3.29 19.6 26.8 32.1 33.9
INTER 5.64 14.3 19.6 23.2 30.4

INTER.VDW 6.77 7.1 8.9 8.9 19.6
INTER.POLAR 7.89 3.6 3.6 5.4 7.1
Score CL (1.0 Å) 4.21 10.7 21.4 25.0 30.4
Score CL (1.5 Å) 4.15 14.3 21.4 30.4 42.9
Score CL (2.0 Å) 4.86 16.1 21.4 28.6 37.5
Score CL (2.5 Å) 3.62 7.1 14.3 23.2 37.5

Fingerpint CL (1.0 Å) 1.84 30.4 37.5 55.4 55.4
Fingerpint CL (1.5 Å) 1.80 30.4 42.9 53.6 62.5
Fingerpint CL (2.0 Å) 1.92 23.2 39.3 50.0 66.1
Fingerpint CL (2.5 Å) 1.85 26.8 41.1 53.6 57.1

Score+Fingerpint CL (1.0 Å) 1.56 37.5 48.2 55.4 62.5
Score+Fingerpint CL (1.5 Å) 1.62 33.9 46.4 55.4 62.5
Score+Fingerpint CL (2.0 Å) 1.92 26.8 37.5 50.0 62.5
Score+Fingerpint CL (2.5 Å) 1.74 30.4 42.9 57.1 58.9

SPA-LN – – – – ∼54.0
Table B.9: Median RMSD and success rates for systems in SPA-LN validation set, which was com-

prised of data for set 56 RNA-ligand complexes. These 56 RNA-ligand complexes cor-
respond to RNA-ligand complexes in testing dataset 3 in the SLA-LN publication[180]).
The classifiers used in this analysis were trained on a seperate training set, consistent
with the training set of SPA-LN (Table B.5).
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PDB IDs RMSD (Å) PDB IDs RMSD (Å) PDB IDs RMSD (Å)
1F27 1.19 2HOM 1.10 3WRU 1.57
1FUF 1.44 2HOO 1.44 4B5R 0.67
1J7T 1.44 2O3V 2.66 4F8U 0.82
1LC4 0.75 2O3W 2.61 4F8V 0.63
1MWL 0.95 2O3X 1.62 4FAW 4.20
1NTA 4.28 2O3Y 3.88 4GPW 0.63
1NTB 0.79 2OE5 1.21 4GPX 0.66
1O9M 0.64 2OE8 0.91 4GPY 0.40
1U8D 0.22 2QWY 1.08 4K32 0.77
1YRJ 9.99 3B4B 1.41 4L81 0.73
1ZZ5 2.17 3B4C 0.64 4LVX 5.93
2BE0 10.47 3C44 0.96 4LVY 0.94
2BEE 2.72 3D2G 1.92 4LW0 1.01
2CKY 1.69 3D2V 2.12 4P20 0.97
2EEU 0.87 3D2X 1.03 4P3S 0.89
2EEV 0.42 3E5E 7.24 4PDQ 0.96
2EEW 1.00 3F2Q 1.07 4QLM 1.10
2ET3 1.01 3F2T 0.98 4QLN 2.10
2ET4 2.68 3F4H 0.99 4TS2 1.04
2ET5 0.68 3GX2 0.92 4TZX 0.38
2ET8 1.19 3GX3 0.74 4TZY 0.46
2F4S 0.63 3GX5 1.31 4WCR 2.23
2F4T 1.05 3GX6 1.41 4YAZ 1.70
2F4U 0.88 3GX7 0.76 4ZNP 6.16
2FCX 1.29 3IQN 0.84 5BTP 2.42
2FCY 1.69 3IQR 1.92 5BWS 1.18
2FCZ 1.62 3NPQ 1.17 5BXK 0.92
2G5Q 1.01 3SUH 1.26 5C45 0.52
2HOJ 2.52 3TZR 1.04 5KX9 0.49
6BFB 0.80

Table B.10: Top-scored poses RMSD for each system in leave-one-out training set.
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In Tables B.11-B.13, the maximum chemical similarity between the ligands in the vali-

dation sets and training set are listed, in addition to their top-scored poses RMSD using

RNAPosers and/or DrugScoreRNA when available. For validation set 1 and 2, the relevant

training set is that listed in Table B.4. For SPA-LN validation set, the relevant training set is

that listed in Table B.5. For the ligand in each system in the validation set, we calculated the

chemical similarity to all the ligands in the relevant training set as the maximum Tanimoto

score between their chemical fingerprints. The Tanimoto scores were computed using FP2

fingerprint with OpenBabel.[190]

PDB IDs Chem. Similarity RMSD (Å)
2XNW 0.097 2.94
3FU2 0.434 2.69
3Q50 0.434 4.21
3SD3 0.744 0.61
3SLM 0.613 0.96
4FE5 1.000 0.49
4JF2 0.434 0.90
4LX5 0.723 3.05
4NYA 0.409 2.81
4XWF 1.000 5.94
4YB0 0.631 0.27
2B57 0.857 0.58
2YDH 1.000 0.95
3NPN 1.000 1.06
4AOB 1.000 1.44
4KQY 1.000 1.04
5KPY 0.464 2.20

Table B.11: Chemical, sequence similarity in training set for systems in validation set 1.
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PDB IDs Chem. Similarity RNAPosers RMSD (Å) DrugScoreRNA RMSD (Å)
1AJU 0.194 15.86 7.32
1AKX 0.371 13.14 7.04
1AM0 0.932 1.56 2.86
1BYJ 1.000 1.53 1.99
1EHT 0.691 0.79 1.95
1EI2 1.000 7.61 0.84
1EVV 1.000 1.71 10.29
1FMN 0.474 1.56 1.55
1KOC 0.352 7.15 1.61
1KOD 0.435 1.23 1.87
1LVJ 0.228 3.91 3.09
1NEM 1.000 9.19 0.66
1O9M 1.000 0.62 8.69
1PBR 1.000 1.02 1.05
1Q8N 0.205 1.80 3.65
1QD3 1.000 0.58 0.88
1TOB 1.000 2.29 1.52
1UTS 0.299 1.62 11.04
1UUD 0.246 7.87 1.59
1UUI 0.246 6.72 5.56
2TOB 1.000 1.67 1.45

Table B.12: Chemical, sequence similarity to training set, RMSDs of top-scored poses obtained
using RNAPosers and DrugScoreRNA for systems in validation set 2.
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IDs Chem. Similarity RMSD (Å) IDs Chem. Similarity RMSD (Å)
1AJU 0.220 16.59 1UUD 0.333 2.5
1AKX 0.455 13.59 1UUI 0.323 4.6
1AM0 0.932 1.26 1XPF 1.000 1.59
1BYJ 1.000 1.52 1Y26 1.000 0.56
1EHT 0.691 0.74 1YRJ 1.000 10.34
1EI2 1.000 7.61 2AU4 0.286 5.1
1F1T 0.494 0.62 2BE0 0.623 8.44
1F27 0.361 3.18 2BEE 0.872 2.03
1FMN 0.534 1.42 2ESJ 1.000 3.24
1FYP 1.000 3.41 2ET3 1.000 0.87
1J7T 1.000 1.37 2ET4 1.000 0.61
1KOC 0.319 18.08 2ET8 0.889 0.56
1KOD 0.350 4.62 2F4S 0.889 0.54
1LC4 0.944 0.81 2F4T 0.800 0.9
1LVJ 0.249 3.48 2F4U 0.943 0.88
1MWL 1.000 0.53 2FCX 0.889 0.96
1NEM 1.000 0.88 2FCY 1.000 1.69
1NTA 0.821 8.44 2FCZ 1.000 1.08
1NTB 0.821 1.46 2FD0 1.000 11.6
1NYI 0.942 6.09 2G5Q 1.000 0.87
1O15 0.691 1.18 2JUK 0.874 18.69
1O9M 0.943 0.64 2O3V 0.889 5.72
1PBR 1.000 8.45 2O3W 1.000 8.58
1Q8N 0.375 0.7 2O3X 1.000 2.44
1QD3 1.000 8.86 2OE5 1.000 0.97
1TOB 0.944 2.19 2OE8 1.000 0.71
1U8D 1.000 0.2 2TOB 0.944 0.95
1UTS 0.305 1.68 3C44 1.000 0.96

Table B.13: Chemical, sequence similarity to SPA-LN training set and RMSD of top-scored poses
obtained using RNAPosers for systems in SPA-LN validation set.
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Results using less stringent criterion for success

The results presented in the main manuscript were obtained by selecting the best (top 1)

poses. It is customary to present the results obtained when selecting the best pose among

that top 𝑁 , where 𝑁 is typical ranged between 2-5. Below are the results we obtained for

𝑁 = 3.
Selection Metric 𝑅𝑀𝑆𝐷(Å) 𝑆(1.00)(%) 𝑆(1.50)(%) 𝑆(2.00)(%) 𝑆(2.50)(%)

TOTAL 2.38 28.4 34.1 46.6 52.3
INTER 2.57 23.9 34.1 42.0 47.7

INTER.VDW 2.54 23.9 30.7 40.9 48.9
INTER.POLAR 3.54 18.2 26.1 35.2 39.8
Score CL (1.0 Å) 1.64 30.7 47.7 60.2 64.8
Score CL (1.5 Å) 1.76 26.1 45.5 61.4 64.8
Score CL (2.0 Å) 1.51 28.4 47.7 59.1 63.6
Score CL (2.5 Å) 1.63 29.5 47.7 62.5 67.0

Fingerpint CL (1.0 Å) 1.15 40.9 64.8 79.5 86.4
Fingerpint CL (1.5 Å) 1.00 52.3 73.9 87.5 94.3
Fingerpint CL (2.0 Å) 1.00 51.1 73.9 85.2 90.9
Fingerpint CL (2.5 Å) 0.98 54.5 72.7 86.4 92.0

Score+Fingerpint CL (1.0 Å) 0.96 61.4 77.3 84.1 90.9
Score+Fingerpint CL (1.5 Å) 0.98 54.5 77.3 86.4 90.9
Score+Fingerpint CL (2.0 Å) 0.98 54.5 72.7 84.1 90.9
Score+Fingerpint CL (2.5 Å) 0.99 52.3 73.9 86.4 92.0

Table B.14: Median RMSD and success rates for systems in the leave-one-out set when selecting
the best among the top 3 poses. For the pose classifiers, we include results for classifiers
that we trained with the nativeness threshold set to 1.0, 1.5, 2.0, and 2.5 Å.
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Selection Metric 𝑅𝑀𝑆𝐷(Å) 𝑆(1.00)(%) 𝑆(1.50)(%) 𝑆(2.00)(%) 𝑆(2.50)(%)
TOTAL 2.80 17.6 23.5 35.3 41.2
INTER 2.81 17.6 23.5 23.5 29.4

INTER.VDW 1.42 35.3 52.9 52.9 58.8
INTER.POLAR 1.92 29.4 41.2 52.9 58.8
Score CL (1.0 Å) 1.39 23.5 52.9 52.9 52.9
Score CL (1.5 Å) 2.82 17.6 35.3 35.3 35.3
Score CL (2.0 Å) 2.81 17.6 41.2 41.2 41.2
Score CL (2.5 Å) 3.05 17.6 29.4 35.3 41.2

Fingerpint CL (1.0 Å) 1.00 52.9 64.7 64.7 70.6
Fingerpint CL (1.5 Å) 1.05 47.1 64.7 64.7 76.5
Fingerpint CL (2.0 Å) 1.03 47.1 64.7 64.7 70.6
Fingerpint CL (2.5 Å) 1.49 35.3 52.9 64.7 76.5

Score+Fingerpint CL (1.0 Å) 1.06 47.1 58.8 58.8 64.7
Score+Fingerpint CL (1.5 Å) 1.05 47.1 58.8 58.8 64.7
Score+Fingerpint CL (2.0 Å) 1.00 52.9 64.7 64.7 70.6
Score+Fingerpint CL (2.5 Å) 1.39 35.3 58.8 64.7 76.5

Table B.15: Median RMSD and success rates for systems in validation set 1 when selecting the
best among the top 3 poses. For the pose classifiers, we include results for classifiers
that we trained with the nativeness threshold set to 1.0, 1.5, 2.0, and 2.5 Å.

Selection Metric 𝑅𝑀𝑆𝐷(Å) 𝑆(1.00)(%) 𝑆(1.50)(%) 𝑆(2.00)(%) 𝑆(2.50)(%)
TOTAL 2.45 19.0 33.3 42.9 52.4
INTER 2.50 19.0 33.3 42.9 52.4

INTER.VDW 4.69 14.3 14.3 33.3 38.1
INTER.POLAR 5.03 4.8 19.0 33.3 42.9
Score CL (1.0 Å) 2.23 19.0 38.1 42.9 52.4
Score CL (1.5 Å) 3.73 23.8 28.6 33.3 42.9
Score CL (2.0 Å) 3.53 9.5 23.8 33.3 42.9
Score CL (2.5 Å) 5.06 19.0 23.8 33.3 38.1

Fingerpint CL (1.0 Å) 1.72 9.5 42.9 57.1 61.9
Fingerpint CL (1.5 Å) 1.92 19.0 42.9 52.4 57.1
Fingerpint CL (2.0 Å) 2.49 14.3 38.1 47.6 52.4
Fingerpint CL (2.5 Å) 1.76 14.3 42.9 52.4 52.4

Score+Fingerpint CL (1.0 Å) 1.80 23.8 38.1 52.4 61.9
Score+Fingerpint CL (1.5 Å) 1.56 28.6 42.9 61.9 66.7
Score+Fingerpint CL (2.0 Å) 1.59 14.3 42.9 52.4 57.1
Score+Fingerpint CL (2.5 Å) 1.75 14.3 42.9 52.4 52.4

Table B.16: Median RMSD and success rates for systems in validation set 2 when selecting the
best among the top 3 poses. For the pose classifiers, we include results for classifiers
that we trained with the nativeness threshold set to 1.0, 1.5, 2.0, and 2.5 Å.
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B.3. Supporting figures
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Figure B.1: Linear Fit of C8-SASA to LASER reactivity. (a) the linear fit of C8-SASA to LASER
reactivity. (b) exponential distribution of absolute error of the linear fit
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Figure B.2: Conservation map for SAM-I riboswitch. Credit to Dr. Indrajit Deb.
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