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ABSTRACT

Phase transitions are among the most fascinating phenomena discovered in the

last century, with collective molecular dynamics leading to novel observations such as

superconductivity and superfluidity. Yet even in the highly-ordered state of such sys-

tems, defects could still form and persist. Investigating the behavior of such defects

is not just a matter of fundamental interest, but also valuable in applications where

macroscopic order is important. Our studies of order and defects make use of an

exciton-polariton (polaritons hereafter) system. These are quasi-particles with part-

matter and part-light components, with a bosonic nature that allows for observation of

macroscopic quantum phenomena typically seen in conventional atomic condensates.

Their low effective mass allows for such observations at relatively high temperatures

(10K - 300K), and the photonic component allows for experimental access using stan-

dard table-top optical techniques. These factors have generated much interest in the

field of polaritonics over the past two decades. In a two-dimensional system like

the polaritons, defects appear in phase transitions as spontaneously-formed vortices.

While such vortices have been observed, their reported behaviors were influenced by

sample properties or pump configurations. Formation and behaviors in which phase-

transition mechanisms and polariton hydrodynamics are primary contributing factors

have yet to be observed. Such observations would allow for comparisons with analo-

gous results in atomic condensates and allow for deeper studies in universality. In this

thesis, I present efforts taken towards the realization of such observations. I will pro-

pose the design of a Compact Mirroring Mach-Zehnder interferometer (CoMMZI) for

the detection of photonic orbital angular momentum (OAM) states. The observation

of such states would be an unequivocal indication of spontaneously-formed quantum

xvii



vortices. I will demonstrate that the proposed interferometer is capable of detecting

OAM states with a low number of photons, thereby making it suitable for the detec-

tion of moving vortices in a single-shot realization of a polariton condensate. I will

then discuss how the interferometer was tested with vortex states formed with a spa-

tial light modulator and continuous-wave lasers. I will show that the interferometer

is capable of detecting vortex phases and present techniques to increase the chances

of successful detection. I will also show preliminary experiments with a polariton

condensate formed with non-resonant pump configurations. OAM states within an

optically-induced ring trap have been detected. Finally, I will show spectrometric and

temporal first-order correlation functions for polaritons within an optically-induced

ring trap, a potential system for the observation of vortices. I will show the presence

of three population fractions with coherence times spanning three orders of magni-

tude and briefly discuss possible implications for vortex-detection experiments. The

efforts in this thesis demonstrate the possibilities and challenges associated with the

detection of spontaneously-formed vortices within a single instance of a polariton

condensate, providing insight for attempts at experimental realizations.
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CHAPTER I

Introduction

The last century has seen numerous exciting advances in the area of light-matter

science and engineering. Since the photoelectric effect, the development of new tech-

nologies have fundamentally changed the way we live. From lasers to LEDs, the field

of optical engineering has continued to churn out more marvels, and our knowledge of

light-matter interactions have led to state of the art research aimed at creating new

technologies that could usher in another renaissance. One such area of research is cav-

ity quantum electrodynamics (QED) [1, 2], which examines the interaction between

photons and matter within a reflective cavity. This led to the study of quasiparticles

used to describe the resulting hybrid light-matter behavior.

In this work, our focus will be on the quasiparticle known as the exciton-polariton

(known hereafter as polaritons), the hybrid light-matter state in which the matter

component is an exciton. The strong interaction between the exciton dipole moment

and the confined optical field within a microcavity gives rise to two new eigenstates,

known as the upper polaritons and lower polaritons [3, 4]. The part-light, part-

matter nature of the polaritons allows us to take advantage of either component. The

photon component gives a low effective mass, leading to observations of macroscopic

quantum phenomena at relatively high temperatures (10 K - 300 K) [5, 6, 7]. The

exciton component allows for interaction with surrounding matter, thus enabling
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the controlled manipulation of its properties, such as through dispersion engineering

[8, 9]. This has made polaritons a strong candidate for applications such as quantum

simulators [10, 11, 12] and quantum computers [13].

In addition to their potential for realizing long dreamed-of applications, the bosonic

properties of polaritons have also made them an alternative for studies done in cold-

atom systems. Polaritons have finite lifetimes limited by the quality factor (Q-factor)

of the microcavity. When a polariton decays, it emits a photon carrying the same

energy and momentum of the polariton at the time of decay. The emitted photons

can then be studied using standard optical methods, such as spectrometry and inter-

ferometry. This thus allows for the study of macroscopic quantum phenomenon in an

accessible semiconductor environment, rather than the extreme conditions typically

required for cold-atom experiments [14]. Some examples of such studies include the

observation of Bose-Einstein condensation (BEC) [15, 16], the Berizinskii-Kosterlitz-

Thouless (BKT) transition [17, 18], Bogoliubov dispersion [19, 20], Feshbach reso-

nance [21] and quantum vortices [22, 23]. In addition, the exciton and photon fraction

can be altered by cavity design, thereby allowing for controlled changes in properties

such as the effective mass and oscillator strength.

This work will focus on the spontaneous formation of quantum vortices within a

polariton system. These are topological defects that forms in a condensate typically as

a result of a phase transition. In a BEC-BKT transition, the evolution of the system

into a less ordered phase is associated with the appearance of free vortex-antivortex

pairs. The formation of vortices as a result of the merger of localized condensate

domains has also been a subject of study in cosmology, known as the Kibble-Zurek

mechanism [24]. Experimental studies of this mechanism has been demonstrated in

tabletop systems [25], and it is exciting to think that a theory associated with cos-

mology can also be tested in a microcavity environment. Aside from the accessibility,

these studies could also allow for comparisons with vortex behaviors for systems in
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thermal and dynamic equilibrium, potentially paving the way for more comprehen-

sive studies of universality. More towards the application side, the formation and

persistence of vortices during polariton phase transitions can be a detriment to the

coherence of the system, affecting the phase relationships of energy states and result-

ing in loss of information. It thus is important to understand how vortices are likely

to behave in polaritonic devices, and take any necessary steps to circumvent their

deleterious effects.

While quantum vortices have been seen in polariton condensates, the observation

of spontaneous formation and behavior of vortices in a single shot realization of a con-

densate has yet to be achieved. Vortices that have been observed thus far have been

created by controlled pumping conditions [26, 27, 28], and their behavior have been

influenced by such pump conditions or properties of the sample. The observation of

spontaneous vortices would be necessary for insight into their formation mechanism

and would be revealing of phenomenon predicted in polariton condensates but have

not yet been observed, such as the BEC-BKT transition. The experimental observa-

tion of how such vortices interact with each other in the absence of other influencing

factors would undoubtedly provide insight into polariton hydrodynamics.

In this first chapter, I will begin by giving the relevant mathematics and theory

of microcavity polaritons. I will then discuss an important aspect of a successful

detection method, optical vortices. By the end of this chapter, the reader would have

the knowledge needed to understand the fundamentals of polaritons and appreciate

the significance and relevance of this work. More detailed explanations of relevant

theories and methods will be given at the beginning of the corresponding chapters.

1.1 Fundamentals of Microcavity Exciton Polaritons

In this section, I will discuss the fundamental physics of microcavities and micro-

cavity polaritons. I will begin by detailing the structure of microcavities and how that
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enables effective confinement of light. I will then talk about the basic formulation

of exciton-polaritons, such as the Hamiltonian and the transformations necessary to

obtain the two polariton eigenstates, the Lower Polariton and Upper Polariton. I will

also talk about how various photon and exciton fractions can be obtained. Finally, I

will discuss phase transitions in polariton systems and the experimental advantages

of using polaritons to study them.

1.1.1 Structure of a microcavity

The basic structure of a microcavity is shown in Figure 1.1 (a). It comprises a cen-

tral cavity of refractive index nc, and the thickness of the cavity is an integer multiple

of half the cavity wavelength λc/2. Quantum wells are placed at the antinodes of the

cavity to maximize the overlap with the photon field, as shown in Figure 1.1(b). The

cavity is sandwiched by layers of Distributed Bragg Reflectors (DBR) to form 2 end

mirrors. The DBRs comprise alternating layers of materials with refractive indices n1

and n2 respectively, and each have a thickness of one quarter the wavelength, λ/4. At

the cavity resonant wavelength λc, the transmission of the cavity is greatly increased,

given by:

T =
(1−R1)(1−R2)

(1−
√
R1R2)2 + 4

√
R1R2 sin2(φ/2)

, (1.1)

where R1 and R2 are the reflectivity of the two end mirrors. The quality or Q factor

of the cavity is then given by:

Q =
λc

∆λc
' π(R1R2)

1/4

1− (R1R2)1/2
, (1.2)

where ∆λc is the linewidth of the resonant state. The Q factor represents the average

number of round trips the photon makes before leaving the cavity, and thus largely

determines the lifetime of the polaritons formed within it (as explained in section

(1.1.2) . An ideal cavity would have a Q factor of infinity, in which case the polaritons
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Figure 1.1:
The structure of a DBR-DBR microcavity (a), taken from [4]. A
schematic showing the enhancement of the photon field at the loca-
tion of the quantum well, to maximize the overlap with the excitons
(b), taken from https://web.stanford.edu/group/yamamotogroup/

research/EP/EP_main.html

would have infinite lifetime. The reflectivity of a DBR set increases with the number

of layers:

R =

(
no(n2)

2N − nc(n1)
2N

no(n2)2N + nc(n1)2N

)
, (1.3)

with N being the number of repeated pairs. Hence, the lifetime of the microcavity

polaritons can be increased by increasing the number of layers of the DBRs.

The field of the cavity is confined along its longitudinal axis, but not in the plane

of the cavity itself. Hence, the resonant wavelength of the cavity can be altered by

changing the angle of incidence of the incoming light. Given an angle of incidence

θ, the resonant wavelength would be given by λ′c = λc/ cos θ, for which λc is the

resonant wavelength at normal incidence. The cavity energy thus depends on the

in-plane wavenumber k‖ =
√

k · x̂2 + k · ŷ2. It is given as:

Ecav =
~c
nc

√
k2⊥ + k2‖, (1.4)

where k⊥ = nc(2π/λc) is the wavenumber along the cavity axis. Assuming a small

angle of incidence, k‖ can be given as:
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k‖ '
2π

λc
θ (1.5)

For such angles of incidence, the cavity energy can be approximated to a parabolic

dispersion in k‖:

Ecav '
~c
nc
k⊥

(
1 +

k2‖
2k2⊥

)

Ecav(k‖ = 0) +
~2k2‖

2mcav

(1.6)

where mcav =
Ecav(k‖=0)

c2/n2
c

is the cavity-photon effective mass.

1.1.2 Mathematical description of Microcavity Polaritons

Excitons are formed in a semiconductor when an electron is excited from the

valence band into the conduction band. The repulsion it experiences from surrounding

electrons form an effective attraction towards the hole created in the valence band.

The bound electron-hole pair form a dipole that interacts with an optical field. A

simple model of this effect is the oscillation of the electron bound to its hole by a

spring, with the oscillation caused by the incident electromagnetic wave. For a wave

with frequency ω, the oscillator strength is given as

f =
2m∗ω

~
| 〈uv|r.e|uc〉 |2

V

πa3B
, (1.7)

with m∗ the effective mass of the exciton, |uc〉 and |uv〉 are the Bloch functions of

the electron and hole respectively, V is the quantization volume, and a3B is the Bohr

radius of the exciton. The Hamiltonian of this interaction between the exciton and

the photon can be written as:
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Ĥ = Ĥcav + Ĥexc + ĤI

= ΣEcav(k‖, kc)â
†
k‖
âk‖ + ΣEexc(k‖)b̂

†
k‖
b̂k‖

+ Σf(â†k‖ b̂k + âk‖ b̂
†
k‖

),

(1.8)

where â†k‖ is the photon creation operator with the in-plane wave number k‖ and

the longitudinal wave number kc = k · ẑ which is determined by the cavity resonance.

b̂†k‖ is the exciton creation operator with the same in-plane wave number k‖. f is the

interaction strength between the exciton dipole and the photon and is described by

Equation (1.7). Intuitively, the interaction term can be visualized as the absorption

and re-emission of a photon by an exciton. Equation (1.8) can be diagonalized making

use of the following transformations:

P̂k‖ = Xk‖ b̂k‖ + Ck‖ âk‖ ,

Q̂k‖ = −Ck‖ b̂k‖ +Xk‖ âk‖ .

(1.9)

The Hamiltonian then becomes:

Ĥpol = ΣELP (k‖)P̂
†
k‖
P̂k‖ + ΣEUP (k‖)Q̂

†
k‖
Q̂k‖ , (1.10)

where P̂k‖ and Q̂k‖ represent the creation and annihilation operators of two new

eigenmodes, known as the Lower Polariton (LP) and Upper Polariton (UP). The terms

Xk‖ and Ck‖ are known as the Hopfield coefficients [29], and their squared amplitudes

are the exciton and photon fractions of the polaritons. They can be calculated as

follows:
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|Xk‖|
2 =

1

2

(
1 +

∆E(k‖)√
∆E(k‖)2 + 4f 2

)
,

|Ck‖|
2 =

1

2

(
1−

∆E(k‖)√
∆E(k‖)2 + 4f 2

)
.

(1.11)

They satisfy:

|Xk‖|
2 + |Ck‖|

2 = 1. (1.12)

Here ∆E(k‖) is known as the detuning, given as the difference between the cavity

energy and exciton energy, Ecav(k‖, kc) − Eexc(k‖). The dependence of Ecav on kc

thus indicates that the detuning would depend on the resonance energy and thus the

thickness of the cavity. For controlled variation of the detuning, wedged cavities with

thickness linearly varying along its length are used, and the properties of the polari-

tons thus depend on the position of the sample under investigation. At ∆E(k‖) = 0,

the exciton and photon fractions are equal at 1
2

each. Using the transfer-matrix

method, the energies of the LP and UP across wedged cavities (Figure 1.2) are given

as:

ELP,UP (k||) =
1

2

[
Eexc + Ecav ∓

√
4f 2 + ∆E(k‖)2

]
. (1.13)

An example of LP and UP dispersions are also given in Figure 1.3. Note that the

LP’s dispersion is closer to that of the cavity photon at lower momentums and closer

to the exciton’s at higher momentum. The opposite is true for the UP’s dispersion.

The polariton effective mass can be determined by the Hopfield coefficients, given

as:
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Figure 1.2:
Lower (ELP ) and Upper (EUP ) Polariton energy together with the corre-
sponding cavity (Ecav) and exciton (Eexc) energy as a function of detuning
(∆). Taken from [4].

1

mLP

=
|X|2

mexc

+
|C|2

mcav

, (1.14)

1

mUP

=
|C|2

mexc

+
|X|2

mcav

. (1.15)

The photon’s effective mass is on the order of 10−5me, with me being the electron

mass. Thus, the cavity mass is much smaller than the exciton mass mexc. Hence,

Equation 1.14 can be approximated as:

mLP (k‖ ∼ 0) ' mcav/|C2| ∼ 10−4mexc,mUP (k‖ ∼ 0) ' mcav/|X2|. (1.16)

The incredibly low effective mass of the LP at low momentums is what allows for

phase transitions at relatively high temperatures.
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In the next section, I will discuss the basic physics of phase transitions in polari-

tons.

1.1.3 Phase transitions in polaritons

The semiclassical Boltzmann equations have been used to describe exciton con-

densation kinetics [30, 31, 32] and cavity polariton relaxation [33, 34, 35, 36, 37, 38].

To understand the processes leading to phase transitions in polaritons, it would be

useful to look at them:

∂

∂t
nk = Pk(t)− nk

τk
+
∂

∂t
nk

∣∣
LP−LP +

∂

∂t
nk

∣∣
LP−ph,

∂

∂t
n0 = −n0

τ0
+
∂

∂t
n0

∣∣
LP−LP +

∂

∂t
n0

∣∣
LP−ph.

(1.17)

In the above equation, nk represents the population of the polariton excited states

with momentum k. no represents the population of the polariton ground state. Pk

represents the pumping rate at momentum k, τk is the characteristic decay time of the

excited state population and τ0 is the corresponding decay time for the ground state.

The two scattering processes represented in this equation are polariton-polariton scat-

tering (LP-LP) and polariton-phonon scattering (LP-ph).

The LP-phonon scattering rate is given by

∂

∂t

∣∣
LP−ph = −

∑
k′

(WLP−ph
k→k′ nk(1 + nk′)−WLP−ph

k′→k (1 + nk)nk′), (1.18)

where WLP−ph
k→k′ is the probability of the transition from the state k to state k’ and

WLP−ph
k′→k is the probability of the opposite transition. The LP-LP scattering rate is

given by
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∂

∂t

∣∣
LP−LP = −

∑
k′

(WLP−LP
k,k′,k1,k2

nknk′(1+nk1)(1+nk2)−nk1nk2(1+nk)(1+nk′)), (1.19)

where WLP−LP
k,k′,k1,k2

it the probability of the transition of two polaritons from initial

momentum k and k’ to final momentum k1 and k2. Between the two scattering

processes, LP-LP scattering is the faster process, being able to thermalize the LP gas

in a few picoseconds. However, the total energy of the LP gas is reduced by LP-phonon

scattering. Both processes thus play important roles in polariton condensation.

The factor (1 +n0) in the rate equations represent a process known as stimulated

scattering, which is also the process distinguishing polariton condensation from regu-

lar photon lasing. The final-state occupation number no enhances the scattering rate,

and at a critical density, this population would see a sharp increase. In many polari-

ton experimental reports, this threshold behavior would be shown in spectrometric

measurements, with the increase in population often by 3 orders of magnitude. Since

population inversion is not required for threshold to occur, polariton systems have

also been touted as a more efficient means of producing coherent light [39]. In large

2-dimensional systems, a true Bose-Einstein condensate is not attainable due to dis-

ruptions of the long range coherence by long wavelength phonons [40, 41]. As such,

the phase transition within such systems are described as a Berezinskii-Kosterlitz-

Thouless (BKT) transition [42]. The BKT transition is an infinite-order phase tran-

sition, meaning that there is no discontinuity observed in any of the derivatives of

heat capacity across this transition. Rather, it is characterized by a change of the

first-order spatial correlation function from a short-range exponentially decaying one

to a longer range one with algebraic decay. The BKT transition is also characterized

by a binding of free vortex-antivortex pairs, thereby reducing the topological disorder

within the system [43]. Nevertheless, it is possible to attain a BEC if the system
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is confined within the length scale of fluctuations (such as in microcavity polariton

systems), or if the amount of interactions is negligible [44]. This topic will be explored

more in Chapter III. Correlation functions will be further explored in Chapter IV. At

this point, it is worthwhile summarizing the advantages of a polariton system over

an atomic system for research pertaining to phase transitions. The first would be the

incredibly low effective mass of the lower polaritons at low momentum, which results

in a low density of states. This thus makes it easier to form a degenerate seed of

low-energy polaritons, thus enhancing stimulated scattering into the final state. In

addition, the dressing of excitons by the vacuum field helps in suppressing the effects

of disorders within the sample, and the phase space filling of the excitons can be

worked around by using a cavity with multiple quantum wells to dilute the exciton

density. These advantages allow for much simpler experimental set-ups that allow for

direct observations, as opposed to their atomic counterparts. In the next section, I

will discuss an important property of light which is instrumental for studies of vortices

forming in polariton condensates.

1.2 Orbital angular momentum of light

In this section, I will go over photon states carrying orbital angular momentum

(OAM), often referred to as optical vortices. I will talk about the mathematical

description of optical vortices, give a brief explanation on how these states are instru-

mental to the detection of quantum vortices in polariton condensates, and why such

studies are useful for phase transitions.

1.2.1 Mathematical description of optical vortices

Vortex carrying beams can be described with the Laguerre-Gaussian polynomials,

given as
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u(r, φ, z) = CLG
lp

wo
w(z)

(
r
√

2

w(z)

)|l|
exp

(
− r2

w2(z)

)
L|l|p

(
2r2

w2(z)

)
exp

(
−ik r2

2R(z)

)
exp(−ilφ) exp(iψ(z)). (1.20)

Llp are the generalized Laguerre polynomials, with the closed form

L(l)
p (x) =

p∑
i=0

(−1)i
(
p+ l

p− i

)
xi

i!
. (1.21)

CLG
lp is the normalization constant, given by

CLG
lp =

√
2p!

π(p+ |l|)!
. (1.22)

Lastly, ψ(z) is the Gouy phase given by

ψ(z) = (|l|+ 2p+ 1) arctan

(
z

zR

)
. (1.23)

Laguerre-Gaussian polynomials are solutions to the paraxial equation, and thus,

any paraxial beam can be described by a superposition of vortex states characterized

by the 2 integer quantum numbers l and p. p is the spatial quantum number, and

determines the number of nodes present in the transverse amplitude profile of the

beam. The orbital angular momentum is described by the number l. In the transverse

phase profile of the beam, l determines the phase change going 1 round around the

vortex core, given as 2πl. The longitudinal phase of the vortex-carrying beam shows

a helical structure, and the number l determines the number of ’twists’ within a single

wavelength (Figure 1.4). This is also the more important quantum number in vortex

detection, as they mostly make use of interferometric or optomechanical methods. In

Chapter II and III, I will be discussing one such interferometric method.
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The Laguerre-Gaussian polynomials are useful for describing vortex carrying beams

in cylindrical coordinates. These beams can also be described in different coordinate

systems using different solutions to the paraxial equation, such as Hermite-Laguerre-

Gaussian modes and Ince-Gaussian modes for elliptical coordinates [45]. Since we

are mostly interested in the phase profile of the beam, we will focus our attention on

Laguerre-Gaussian modes in this work.

1.2.2 Utility of optical vortices for the detection of polariton vortices

Optical vortices have found their way into many fascinating applications ever since

their discovery in 1992 [46]. Due to their ability to exert optomechanical torque,

they have been used in biomedicine and chemistry as optical tweezers for manipu-

lation on the molecular scale [47, 48, 49, 50]. The spiral phase has also been used

in phase-contrast microscopy, demonstrating high-resolution micro-imaging. Optical

vortices also exist naturally in the cosmic microwave background and have been taken

advantage of in astronomical studies [51, 52, 53, 54, 55] and the detection of extra-

solar planets. Orbital angular momentum of light can also be used as a degree of

freedom in multiplexing, thereby enlarging the capacity for optical communication

[56, 57, 58, 59, 60, 61].

In this work, I will discuss the utility of optical vortices for the detection of

polariton vortices. As discussed in the beginning of this chapter, polaritons emit a

photon with the same energy and momentum at the point of decay. Thus, vortices

within the condensate upon decay would transfer their phase information to the

emitted photons, after which standard optical vortex detection techniques can be

used. In fact, interferometric methods have already been utilized for the detection

of such vortices, in references [22] and [23]. However, such methods rely on a large

number of photons carrying the vortex phase, and would thus only work if the vortices

were stationary or move along a deterministic path over multiple realizations of the
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condensate. This thesis describes my work towards a method that would circumvent

this problem, and thus enable the detection of spontaneously created vortices in a

single realization of polariton condensation.

1.3 Preview of thesis

In Chapter II, I will show simulation results for a proposed method of vortex

detection using expected behaviors of a single vortex and vortex-antivortex pairs. I

will show that the photon number requirement for this proposed method is much

less than existing interferometric methods. In Chapter III, I will describe tests on

a compact interferometric method designed to be used for the detection of optical

vortices with a low number of photons. The tests will make use of a continuous wave

laser and a phase-only spatial light modulator. In Chapter IV, I will show experimen-

tal spectroscopic measurements and temporal first-order correlation measurements of

long-lifetime polaritons confined within an optically-induced trap. Optically-induced

traps would confine polaritons, and thus vortices, within a limited collection area.

Spectroscopic and correlation function measurements would be useful in predicting

the existence and behavior of polariton vortices. Finally, in Chapter V, I will summa-

rize this work and propose future work towards realizing the detection of spontaneous

vortices in a single realization of polariton condensation.
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Figure 1.3:
Dispersion relationships and corresponding Hopfield coefficients taken for
positive (top), zero (middle) and negative (bottom) detuning. Taken from
[4].
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Figure 1.4:
a shows the helical profile of a vortex-carrying beam , taken from [45]. b
shows the transverse profile of a l=-1 beam (left) and a l=1 beam (right)
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CHAPTER II

Simulating Vortex Detection in Polariton Systems

Using Orbital Angular Momentum Interferometry

This chapter will focus on simulations we had done to determine the efficacy of

an Orbital Angular Momentum (OAM) Interferometry set-up for the detection of

quantum vortices. I will first give some background on quantum vortices, including

some studies that have been done on it. I will then discuss the fundamental physics

of quantum vortices before talking about their formation in phase transitions in 2-

dimensional systems. I will then show a proposal for a compact OAM interferometry

set-up before discussing the simulation results. I will show that the proposed set-up

would be able to detect optical vortices using a low number of photons.

2.1 Quantum vortices

Quantum vortices are a type of topological defect, a field with a fascinating his-

tory. It has its roots in cosmology, being used to explain the formation of large-scale

structures in the Universe, and found its way into the laboratory when it was discov-

ered that condensed-matter systems display similar structures upon phase transitions

[62, 63, 64, 65, 66, 67, 68, 69]. Experiments involving the observation of such topolog-

ical defects include liquid crystals, liquid Helium [70, 71], and atomic Bose-Einstein
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Condensates [72, 73, 74, 75, 76, 77]. Quantum vortices were the defects observed in

the latter two systems. Aside from their formation in phase transitions, quantum

vortices can also be created under controlled conditions. They have been formed

in superfluids which were rotated by the resonant injection of angular momentum,

through changing the ellipticity of the confining potential [78], or by stirring the su-

perfluid with a focused laser beam [79]. Quantum vortices were also found to form

in Type II superconductors when an external magnetic field penetrates the material

in the form of quantized flux [80, 81]. While most of the focus has been on the fun-

damental physics, the quantized vorticity and their ability to form entangled states

have engendered discussion on using them in quantum computing [82].

Much of the interest in quantum vortices stems from its quantized vorticity, a

key distinguishing feature from classical vortices. In the next section, I discuss the

physics of quantum vortices from the perspective of superfluidity, and show how its

quantized nature leads to various unique properties.

2.1.1 Physics of quantum vortices

Quantized vortices were first predicted by Onsager and Feynman [83] and it ini-

tially presented a paradox. Superfluids were known not to rotate, since unlike rigid

systems, they have zero curl. Here, I show how this paradox is resolved.

In interacting condensates, the time evolution of the system is given by the non-

linear Schrodinger equation

i~
d

dt
ψ0(r, t) =

[
−~2∇2

2m
+ Vext(r, t) + g|ψ0(r, t)|2

]
ψ0(r, t), (2.1)

also known as the Gross-Pitaevskii Equation (GPE). ψ0 is the order parameter and

is given by

ψ0(r, t) =
√
n(r, t) exp(iS(r, t)), (2.2)
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where n (r,t) is the local density of particles. g is the effective potential experienced

by the particles and in an interacting condensate, is determined by the interaction

strength. S (r,t) is the phase of the order parameter.

The particle current density is defined as

j(r, t) = −−i~
2m

(ψ∗0∇ψ0 − ψ0∇ψ∗0). (2.3)

Substituting this with Equation (2.2), we can then rewrite the above as

j(r, t) = n(r, t)
~
m
∇S(r, t). (2.4)

The superfluid velocity of a condensate particle is thus given by

vs(r, t) =
~
m
∇S(r, t). (2.5)

Thus, the superfluid velocity is determined by the gradient of the phase of the order

parameter.

For a superfluid rotating around the z-axis, the solution to the GPE can be written

as

ψ0(r) = |ψ0(r)| exp(ilφ), (2.6)

where l needs to be an integer to ensure single-valuedness of the phase. Here we

only consider the time-independent portion of the order parameter, and the time-

dependent term is assumed to be a separate phase term. Using Equation 2.5 and

Equation 2.6, we obtain a new expression for the tangential velocity of the superfluid

vs =
~
m
|∇S| = ~

m

1

r

∂

∂φ
S =

~l
mr

(2.7)

The 1
r

dependence of this velocity thus tells us of the irrotational nature of quantum
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vortices. It is notably distinct from rigid rotators of which the velocity is proportional

to r. At large distances from the vortex core, the velocity goes to zero and the

irrotationality of the superfluid is satisfied. The circulation around the z-axis is given

by ∮
vsdl = 2πl

~
m
, (2.8)

independent of the radius of the contour. This is the Onsager-Feynman quantization

condition. It is also instructive to examine the modulus of the order parameter. If

the time-dependent order parameter is of the form

ψ0(r, t) = ψ0(r) exp(−iµt), (2.9)

with ~µ being the chemical potential, the GPE can be rewritten as

(
− ~2

2m
∇2 + Vext(r)− ~µ+ g|ψ0(r)|2

)
ψ0(r) = 0 (2.10)

We then substitute Equation 2.6 into Equation 2.10 to obtain

− ~2

2m

1

r

∂

∂r

(
r
d

dr
|ψ0|

)
+

~2l2

2mr2
|ψ0|+ g|ψ0|3 − ~µ|ψ0| = 0. (2.11)

We then assume a solution of the form

|ψ0| =
√
nf(η), (2.12)

for which η = r/ξ where ξ = ~/
√

2mgn is the healing length, defined as the distance

over which the condensate re-acquires its unperturbed value. The real function f(η)

satisfies the equation

1

η

d

dη

(
η
df

dη

)
+

(
1− l2

η2

)
f − f 3 = 0 (2.13)
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with the constraint of f(∞) = 1. The total energy of the system is given by

E =

(
~2

2m
∇ψ2

0 + Vext(r)|ψ0|2 +
g

2
|ψ0(r)|4

)
dr, (2.14)

and with the order parameter given by Equation 2.6, and in terms of f(η), it can be

written as

Ev = E(s 6= 0)− E(s = 0)

=
Lπ~2n
m

=
Lπ~2n
m

R/ξ∫
0

[(
df

dη

)2

+
l2

η2
f 2 +

1

2
(f 2 − 1)2

]
ηdη. (2.15)

Here, L is the length of a cylinder for which the system is contained, and R is the

radius of that cylinder. For a vortex with non-trivial vorticity, its energy is thus

Ev = Lπn
~2l2

m
ln

(
R

rc

)
, (2.16)

where rc is the size of the vortex core, typically close in value to the healing length.

Thus, we see that the energy of the vortex depends on the square of its vorticity.

In systems and processes where vortices spontaneously form, it is thus reasonable to

expect that all spontaneous vortices have a vorticity value of 1 or -1.

In the next section, I will discuss a such a mechanism for the formation of quantum

vortices: phase transitions in 2-dimensional systems.

2.1.2 Formation of vortices in 2-dimensional phase transitions

In this section, I discuss two mechanisms for vortex formation in phase transitions

within 2-dimensional systems, the Berezinskii-Kosterlitz-Thouless transition and the

Kibble-Zurek mechanism.

22



2.1.2.1 Berezinskii-Kosterlitz-Thouless transition

As mentioned in Chapter I, the Berezinskii-Kosterlitz-Thouless (BKT) transition

is an infinite order phase transition, and is sometimes referred to as a crossover rather

than a transition. It is characterized by the transition from a long range, power-law

dependence of the first-order spatial correlation function to a short range exponential

one when the temperature of the system rises above a critical value.

The transition to the exponentially decaying correlation function is associated

with the appearance of free vortices as bound vortex-antivortex pairs separate [84].

To understand this from a thermodynamic standpoint, we consider the change in free

energy during the appearance of a vortex

∆F = ∆U − TδS (2.17)

where ∆U is given by Equation 2.16. The change in entropy ∆S for the appearance

of a vortex is given by

S = kBlnW = kBln

(
R2

r2c

)
(2.18)

for which the number of microstates W is determined by the number of possible

sites that a vortex can be located in the system. This does assume that the vortex

core is much smaller than the system size and thus may differ in polariton systems

where the healing length is typically on the same order as the system size. It would

be interesting to see if vortex formation in a finite polariton system deviates from

expectations because of this, but for the purpose of this work, it will be assumed that

the above equation holds.

The change in free energy is thus given by

∆F = (Lπn
~2l2

m
− 2kBT )ln

(
R

rc

)
(2.19)
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Thus, above a certain critical temperature, the appearance of vortices would result

in the entropy term T∆S exceeding the increase in internal energy ∆U . The change

in free energy is negative and it becomes energetically favorable for vortices to form

in the system. This critical temperature is given by

TB = Lπn
~2l2

2mkB
(2.20)

2.1.2.2 Kibble-Zurek mechanism

In a system that is cooled adiabatically, the entire population undergoes phase

transition at the same time. There is thus only one defined global phase in such a

quench. If the system is cooled rapidly however, localized domains with their own

phase are ’frozen’ during the transition. Eventually, the various domains merge into

a global phase and if the relative phases of the merging domains allow, quantum

vortices form with the core at the intersection points.

Assuming a system in equilibrium characterized by a correlation length ξ, given

by

ξ ∝ |T − Tc|−ν , (2.21)

in which T is the temperature and Tc is the critical temperature for phase transition.

ν is the critical exponent that characterizes the divergence of ξ. The relaxation time

τ needed to acquire diverging conditions is given by

τ ∝ ξz, (2.22)

where z is another critical exponent. For Bose-Einstein condensation, ν has a value

of 1/2 and z has a value of 3/2. From the above two equations, it can be seen

that establishing equilibrium becomes more difficult as the critical temperature is

approached. This is known as critical slowing down. When the relaxation time
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becomes larger than the time before reaching the phase transition, the system becomes

’frozen’ and the correlation length takes on a value different from the equilibrium one,

ξ′. This then results in the formation of multiple domains with independent values

of the order parameter and phase.

We assume a linear decrease in temperature with time,

T (t)

Tc
= 1 +

(tc − t)
τQ

(2.23)

with τQ being the characteristic quench time, Tc the critical temperature and tc being

the time in which the phase transition is reached. From this assumption, the domain

size [69] is given as

ξ′ ∝
(τQ
τ

) ν
1+νz

. (2.24)

The average number of phase defects, appearing as vortices, is given thus given as

Nd ∝
(
τ

τQ

) αν
1+νz

, (2.25)

where α is a constant depending on the dimensions of the system and the vortices

[64]. Thus, the number of vortices formed in a system undergoing rapid quenching

can be counted and compared with predictions by the Kibble-Zurek model.

In this context, a polariton system differs from an atomic system largely due to the

fact that temperature remains a constant during the experiment, and that the critical

parameter is density. As such, defect density and correlation lengths of the system

would be determined by the relaxation time which in turn is determined by factors

such as the interaction strength. Polaritons with larger excitonic fraction can thus

be expected to have a faster relaxation time and thus a smaller number of vortices

formed by the Kibble-Zurek mechanism. A Kibble-Zurek-like mechanism has been

numerically studied for a polariton condensate [85] and has shown that this takes
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place.

2.2 The Compact Mirroring Mach-Zehnder Interferometer

Our proposed method involves phase identification through interferometry. The

big challenge in detecting spontaneous vortices in a single realization of a polariton

condensate stems from the relatively low number of photons in the photoluminescence

signal (PL). Since orbital angular momentum states of light are primarily defined by

its unique phase, many methods for its detection involve interferometry. However,

forming a well-defined interference pattern (interferogram) requires a large number of

photons. In this section, I discuss the design of the compact OAM interferometer. I

will present the original inspiration of the design and show how it works. I will then

present my own design and discuss how it solves the issues the original design has.

Figure 2.1 shows the original design conceived by Leach et al [86]. The design

is Mach-Zehnder interferometer set-up with two dove prisms in each arm, placed at

90 degree angles relative to each other. The figure illustrates the action of the inter-

ferometer on a beam with a centered optical vortex with topological charge l = 1,

though the same action will be performed on any beam with an odd value of l (l =

1,3,5...). In the arm with the upright Dove prism, the beam undergoes a top-bottom

inversion. In the arm with the Dove prism on its side, the beam undergoes a left-

right inversion. When the two beams recombine at the second beam splitter, they

are at a π phase difference relative to each other. As such, they undergo destructive

interference at one port of the beam splitter, hereafter known as the ’even’ port. In

the other port, the reflected beam undergoes another π phase shift and constructive

interference occurs instead. This port will hereafter be known as the ’odd’ port. If a

non vortex-carrying beam or a beam with an even value of l (l = 0,2,4...) were to enter

the interferometer, constructive interference will occur at the even port and destruc-

tive interference takes place at the odd port instead. The success of Leach’s design
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Figure 2.1:
The design of an OAM sorting interferometer by Leach et al. The phase
profile of a vortex beam with l=1 is shown to demonstrate the action of
the interferometer on the beam in each arm. The odd/even labels of the
output of the second beamsplitter refer to the port in which constructive
interference takes place if the beam has an odd/even value of l.

depends very much on the meticulous alignment of the various optical components.

For optimal contrast between the two ports, the two beams should be collinear at the

second beamsplitter and have equal path lengths. With 24 degrees of freedom across

all optical components, this set-up is highly susceptible to thermal and mechanical

drift within the laboratory environment, even if the original alignment was done well.

To solve such issues, a compact version of this interferometer was conceived by

Lavery et al [86]. The design, shown in Figure 2.2, eliminates any free space path

after the splitting of the beam at the first beam splitter. The mirrors are replaced

with right-angled prisms and the Dove prisms were replaced with custom M-shaped

prisms. These prisms are positioned with the same relative angle as in Leach’s design,

and the beam is inverted in a similar manner as in the Dove prisms. With Lavery’s

design, the number of degrees of freedom has been reduced to 5, making the overall
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Figure 2.2:
The design of a compact version of the OAM sorting interferometer shown
in Figure 2.1 and introduced by Lavery et al. [87]. Two custom M-shaped
prisms take the place of the free-space arms and dove prisms.

set-up much more stable. This design has also been tested to be effective in sorting

odd and even orbital angular momentum states.

Despite the compactness and simplicity, Lavery’s design has its share of issues;

the main issue being that the M-shaped prisms are difficult to manufacture. In

attempting to recreate the design, we had wanted to avoid using prisms that were

made of two separate parts glued together with epoxy, out of concern for its effect on

the beam quality. However, the resulting single-piece prism was expensive to make,

with few manufacturers capable of doing so. In addition, we were also concerned that

the narrow middle portion may be susceptible to breakage.

As such, I developed a new but conceptually similar design. This is shown in

Figure 2.3. The PL signal is first split into two paths, with one path entering a large

dove-like prism to undergo left-right inversion, while the other path is directed into

a smaller Dove-like prism by right-angled prisms to undergo top-bottom inversion.
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Figure 2.3:
The design of the Compact Mirroring Mach-Zehnder Interferometer. The
beam undergoes inversion in the custom dove-like prisms. The beam is
directed into the smaller, upright prism using 2 retroreflectors.

Unlike normal Dove prisms, these Dove-like prisms do not have 45 degree apex angles

(α in Figure 2.3). Just as with the M-shaped prisms, these are designed to force the

beam to undergo 3 reflections to achieve inversion. These Dove-like prisms turned

out to be far easier and far less expensive to make. Hereafter, this design will be

known as the Compact Mirroring Mach-Zehnder Interferometer (CoMMZI).

Just as with Lavery’s design, the CoMMZI has a total of 5 degrees of freedom in

its alignment. The first 4 come from the two mirrors used to align the beam prior to

entering the first beam splitter, while the 5th is the position of the large Dove-like

prism. In Lavery’s design, the 5th degree of freedom is the position of one of the

right-angled prisms. This also highlights another advantage of the CoMMZI’s design.

Since the large prism is more easily removed from the overall structure, it is therefore

easier to plan the translation stage platforms which holds all the components. The

large prism is placed on its own piezo-controllled stage while the other components

are placed on their own immobile platforms. One precautionary measure we needed

to take was the placement of the small Dove-like prism on top of the right-angled

prisms. Abrasive placement would cause damage to the anti-reflection coating on the

bottom of the prism, and the experimenter should not try to shift the prism once it

has been put in place. The measurements for the large and small prism are shown
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in Appendix A.2. In the next section, we discuss simulations of vortex behaviors and

the ability of the CoMMZI to detect such situations.

2.3 Simulating CoMMZI detection for expected vortex be-

havior

With vortices one of the most important features in 2D condensates, numerous

studies on vortices in polariton condensates have been carried out. These studies

include vortices produced by sample defects [23, 22] and artificial barriers [88, 89, 90],

vortices created by direct injection of orbital angular momentum [91, 28, 92, 93],

and vortex formation in the Optical Parametric Oscillator regime [94, 95, 96, 97].

Vortices have also been generated through the breaking of radial symmetry [27, 98]

and perturbations to a condensate minimum [26]. Vortex lattices have also been found

to form in traps [99]. Despite these accomplishments, experimental observations

of vortices formed from the BKT transition and KZ mechanism, along with their

subsequent behavior unaffected by localizing mechanisms, have yet to be achieved.

The primary reason why such observations have not been made lies in the existing

detection method for polariton vortices. To our knowledge, the only way polariton

vortices have been observed is through the use of Michelson interferometry, which

depends on a relatively large number of photons and the vortices having a well-

defined average position, which would result in a clear fork interference pattern at

the location of the vortex core. In the absence of deterministic flow, vortices do not

generally meet these criteria. The resulting reduced interferometric contrast along

with the relatively low number of photons expected from a single realization of a

condensate, make observing fork interference patterns of randomly appearing and/or

moving vortices challenging. In this section, we propose a method to detect the

existence of random polariton vortices that require only very few photons collected
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by presently available detectors. We first illustrate the ineffectiveness of Michelson

interferometry with low photon numbers, with the examples of a single vortex and a

vortex-antivortex pair. We will then show how our method can enable the detection

of the existence of vortices with as low as ≈ 10 photons. Finally, we will evaluate the

effects of vortex core radii on our results.

2.4 Modelling and analysis

A polariton vortex is generally described as:

Ψ = f(r) exp(ilφ). (2.26)

Since the energy of the vortex increases quadratically with charge, we will restrict

our analysis to only l = 1. For the amplitude profile f(r), we will use a hyperbolic

tangent profile, or f(r) = tanh( r
rc

), a known dark soliton solution in Bose-Einstein

condensates [100]. rc is the radius of the vortex core, which we will assume to be 1 µm

[23]. We discuss three specific scenarios of vortex behavior. Figure 2.4 to Figure 2.6

shows the intensity (left) and phase (right) profiles for each scenario, along with the

vortices’ location at an earlier and later time. In all 3 scenarios, the vortices are mov-

ing from the top to bottom of the collection area. The first scenario, S1, is a single

vortex moving across the collection area. S2 is a vortex-antivortex pair with a fixed

separation moving across the collection area. S3 is a vortex-antivortex pair moving

while separating or recombining at the same time. We define the angle of separation,

θ, as the angle between vertical – the direction the center of the pair moves along –

and the direction the vortex moves along, as illustrated in Figure 2.6. Positive θ cor-

responds to separating vortices while negative θ, recombining ones. Separation occurs

when there are repulsive forces, such as the interaction of the condensate with a large

central polariton population arising from a focused pump spot, and recombination
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could happen if forces arising from interactions with a reservoir causes the pair to

lose energy [101]. We also examine the dependence on the velocity of the vortex and

consider velocities between 0.1 µm/ps and 1 µm/ps [101, 22]. We will use a 50 by 50

µm collection area on a 200 by 200 grid, a 0.2 ps time step and a fixed integration

time of 100 ps.

Figure 2.4:
One scenario considered is a single vortex moving from the top to bottom
edge of the collection area (S1). The left column depicts the intensity
profile at 0ps (top) and after 100ps (bottom). The right column depicts
the corresponding phase.

32



Figure 2.5:
One scenario considered is a vortex-antivortex pair moving from the top
to bottom edge of the collection area (S2). The left column depicts the
intensity profile at 0ps (top) and after 100ps (bottom). The right column
depicts the corresponding phase.

2.4.1 Analysis of Michelson intererometry’s capability for vortex detec-

tion

We first evaluate a Michelson interferometer for detection of the moving vortices.

The intensity output of a Michelson interferometer can be described by:

IMichelson(x, y) =

T∫
0

|Ψ(x, y, t) exp(ik · x) + Ψ(−x, y, t) exp(−ik · x)|2 dt, (2.27)

Ψ(x, y, t) = f(x−Rx,v(t), y −Ry,v(t))f(x−Rx,av(t), y −Ry,av(t)) exp(iΦ(x, y, t)),

(2.28)

where Rx,yv,av(t) and Φ(x, y, t) represent the position of the vortex/anti-vortex and

the transverse phase at time t respectively. T is the total integration time of 100 ps.

In addition to finding the expected intensity distribution, we also calculated the
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Figure 2.6:
One scenario considered is a vortex-antivortex pair moving from the top
to bottom edge of the collection area at an angle (S3). The left column
depicts the intensity profile at 0ps (top) and after 100ps (bottom). The
right column depicts the corresponding phase. The separation angle θ is
defined as the angle between the vertical and the line of movement of the
vortices. Positive values of θ indicate separating vortices while negative
values indicate recombining vortices.

intensity profile for a limited number of photons. 1000 photons were distributed

across a grid using a probability distribution that is normalized from the expected

intensity distribution. We used a 100 by 100 grid instead of the original 200 by 200

one, which simulates the focusing of the output beams of the interferometer into a

smaller area. This would increase the signal to noise ratio in an image acquisition

device , which is an important consideration in a single-shot experiment. We chose

to use 1000 photons to reflect an upper limit to the number of photons produced in a

single realization of the condensate, a 3 order of magnitude increase from threshold.

[15].

Figure (2.7) shows IMichelson for S1 and S2. For each scenario, both the expected

intensity distribution (left) and the corresponding single shot (right) interferograms
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are shown. In S1, fork patterns with reduced contrast can be seen near the center if

there are enough number of photons to form the interferogram (left image), since the

vortex moves across only a fifth of the length of the collection area over the integra-

tion time. However, no discernable features can be seen when only 1000 photons are

collected. For S2, no fork patterns are seen even in the expected intensity distribu-

tion. This is due to the overlap of vortex phases that are exactly π out of phase with

each other.

2.4.2 Analysis of CoMMZI’s capabilities for vortex detection

In this section, we discuss how we calculate, for each scenario, the minimum

number of photons required by the CoMMZI to conclusively detect the vortex/anti-

vortex above incoherent background or shot noise. At time t, the average intensity

expected from the odd and even ports of the OAM interferometer is:

Ie,o(x, y, t) =

∣∣∣∣12Ψ(x, y, t)± 1

2
Ψ(−x,−y, t)

∣∣∣∣2 , (2.29)

where Ψ(x, y, t) is defined in Section (2.4.1), Ie and Io are the even and odd intensities

respectively. The time integrated intensity is:

Ĩe,o(x, y) =

T∫
0

Ie,o(x, y, t)dt. (2.30)

Using these intensities, we define our vortex visibility V as the expected normalized

intensity differences between the odd and even ports:

|V | = |fe − fo| =

∫ ∫ ∣∣∣Ĩe(x, y)− Ĩo(x, y)
∣∣∣ dxdy∫ ∫ ∣∣∣Ĩe(x, y) + Ĩo(x, y)
∣∣∣ dxdy , (2.31)
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Figure 2.7:
Michelson interference images depicting S1 (a) and S2 (b) beside the
corresponding images with 1000 photons. The interference images were
calculated on a 200 by 200 grid, while the 1000 photon images were pro-
duced on a 100 by 100 grid interpolated from the original one. For S1, the
vortex starts at y = −4.7µ m and moves at a speed of 0.1µm/ps. For S2,
the vortex-antivortex pair starts at y = −4.7µm and moves at a speed of
0.1µm/ps while maintaining a separation of 0.9 times the collection area’s
length.

where the integration is over the detection area, and fo and fe are the fractions of

photons exiting the odd port and the even port, respectively. A negative value, V < 0

beyond the shot noise, corresponds to successful detection of the existence of vortices.

We set a criterion for successful detection when the photon number from the odd

port exceeds the photon number from the even port by a confidence level of 99.7%.

Assuming both photon numbers follow a Poisson distribution and are independent of

each other, we can then calculate the minimum average photon number for successful
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detection using

|V | ∗ n̄ = 3 ∗
√
n̄, (2.32)

where n̄ is the minimum average photon number.

2.4.3 Results

In this section, we present our results for our calculations of the visibility from

Equation (2.31) and the minimum average photon number, n̄ using Equation (2.32)

for the three scenarios S1, S2 and S3.

For S1, the vortex visibility V is shown in Fig.2.8a as a function of the speed of

the vortex from 0.1µm/ps to 1µm/ps, and the starting position along the y-axis from

y = −25µm to y = 0µm.

In the limit of a very slowly moving vortex that starts near the center of the

collection area, it can be approximated as a single stationary vortex. In this case,

total constructive (destructive) interference takes place in the odd (even) port, giving

a maximum positive visibility V = 1, corresponding to the lower right corner in the

plot. As an example, for a vortex starting at y = −4.7µm with a speed of 0.1µm/ps,

V = −0.94± 0.01, corresponding to n̄ = 11± 1. Its intensity output at the odd and

even ports are shown in Figure 2.8c. In the opposite limit of a fast moving vortex,

starting at the same position, it quickly leaves the collection area, and for most of

integration time, we measure a beam without vortex. This results in a visibility closer

to the maximum negative value of V = −1, corresponding to the upper right corner

in the plot. An an example, for a vortex starting at y = −4.7µm with a speed of

0.96µm/ps, V = 0.42 ± 0.01. As the vortex moves farther from the center of the

beam, less constructive (destructive) interference takes place in the odd (even) port

due to a smaller overlap of the vortex phase. For this reason, vortices starting farther

from the center would result in a more negative visibility, regardless of the speed of

the vortex.
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Figure 2.8:
(a) depicts the calculated visibility for different positions of vortex start-
ing position and speed for S1 from Eq.(2.31). (b) shows the corresponding
calculation for photon number from Eq. (2.32), where we have ignored
parameters which return positive values of visibilities. We have also lim-
ited the scale to show only photon numbers up to 1000. (c) shows the odd
(left) and even (right) intensity outputs from the OAM interferometer for
starting position y = −4.7µ m and speed 0.1µm/ps. (d) shows the same
for y = −4.7µm and speed 0.96µm/ps. Their corresponding positions on
(a) and (b) are marked. We find that for the quantities indicated in (c),
the visibility calculated is −0.94± 0.01 and the corresponding value of n̄
is 11 ± 1. For the quantities indicated in (d), the visibility calculated is
0.42± 0.01).

2.4.3.1 Vortex-antivortex pair, S2 and S3

For S2, the results are shown in Figure 2.9 for a vortex-antivortex pair with a

separation 0.9 times the length of the collection area. Similar to S1, slow moving

vortex-antivortex pairs starting near the center are more likely to produce negative

values of visibility. However, due to the presence of two opposite topological charges,

the visibility is lower for S2 than S1. As examples, for pairs starting at y = −4.7µm,
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Figure 2.9:
(a) depicts the calculated visibility for different values of the vortex-
antivortex pair starting position and speed for S2 from Eq. (2.31). (b)
shows the corresponding calculation for photon number from Eq. (2.32).
(c) shows the odd (left) and even (right) intensity outputs from the OAM
interferometer for starting position y = −4.7µ m and speed 0.1µm/ps.
(d) shows the same for y = −4.7µm and speed 0.96µm/ps. In both
cases, the vortex-antivortex separation was set at 0.9 times the collection
area’s length. Their corresponding positions on (a) and (b) are marked.
We find that for the quantities indicated in (c), the visibility calculated is
−0.40±0.01 and the corresponding value of n̄ is 55±3. For the quantities
indicated in (d), the visibility calculated is 0.60± 0.01.

and moving at a slow or fast speed of 0.1µm/ps or 0.96µm/ps, the visibility is V =

−0.40± 0.01 or 0.60± 0.01. For the slow moving pair, the corresponding n̄ = 55± 3.

The separation of 0.9 times the collection area was chosen because that was the

separation which gave the most negative value of visibility. Experimentally, this can

be achieved by using lenses and spatial filters. For S3, Figure 2.10 shows the visibility

and the corresponding photon number for a pair recombining at an angle θ = −20

degrees with a mid-point separation of 45µm. The result is qualitatively similar to

that of θ = 0 degrees, or S2 (Figure 2.9(a)). Slow moving vortices do not traverse
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Figure 2.10:
(a) depicts the calculated visibility for different values of the vortex-
antivortex pair’s starting position and speed for S2 from Eq. (2.31) when
the pair is recombining at an angle θ = −20 degrees to the vertical. (b)
shows the corresponding photon number calculation from Eq. (2.32). (c)
shows the odd (left) and even (right) intensity outputs from the OAM
interferometer for starting position y = −4.7µ m and speed 0.1µm/ps
for the recombining pair. (d) shows the same for a starting position
of y = −4.7µm and a speed of 0.96µm/ps. In both cases, the pair’s
separation at y=0 was set at 0.9 times the collection area’s length. Their
corresponding positions on (a) and (b) are marked. We find that for the
quantities indicated in (c), the visibility calculated is −0.40 ± 0.01 and
the corresponding value of n̄ is 56 ± 3. For the quantities indicated in
(d), the visibility calculated is 0.67± 0.01.

much in the horizontal direction, making them very similar to S2. Stronger effects

of the recombination angle on the intensity outputs can be seen for faster moving

vortices. In general the visibility V increases compared to S2, and change is much

larger for fast moving vortices than slow ones.

2.4.4 Effect of different vortex core radii

The intensity profile of the beam incident on the interferometer may also influence

visibility calculations. A factor that would affect this intensity profile would be the
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Figure 2.11:
For each of the 3 scenarios, the speed and starting positions giving the
most negative value of visibilities were chosen and the vortex core radii
was varied from 1µm to 10µm to check its effect on the calculated value
of visibility. For S3, we considered the pair recombining for θ = −20
degrees. Visibility results shown here are normalized to the maximum
negative value at 10µm.

core radii of the vortices. In our calculations, we have assumed a vortex core radii of

1µm, which represents the order of magnitude of the healing length in polariton con-

densates [23]. The healing length depends on the polariton interaction strength and

polariton density, which would depend on sample and experimental parameters. It

would thus be instructive to examine the effects of the core radius on our calculations.

For each of the three scenarios S1, S2, S3, we chose the speed and starting position

that result in the most negative value of visibility and varied the radius of the vortex

core. Figure 2.11 shows the result. For all 3 scenarios, the visibility is more negative

as the core radius is increased. For S1, a single vortex, the change is small, only ∼ 2%.

For the vortex-antivortex pairs, S2 and S3, the change is larger, approximately 12%.

An increase in core radius would mean a decrease in total intensity, but the decrease
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is unequal for the odd and even intensities, with the even intensity decreasing faster

than the odd one. This would result in an increase in visibility with larger core radius

for the values we are scanning.

We also confirmed that the effect of using different time step sizes and grid reso-

lutions is insignificant. As the grid size is varied from 50 by 50 up to 500 by 500, the

change in visibility is less than 0.7%. As the time step is varied from 0.05 ps to 0.5 ps,

the change in visibility is less than 0.035%. As such, the effects of changing either

the grid resolution or time step on calculated values of visibilities are insignificant

compared to the effect of changing the vortex core radii.

2.5 Conclusion

In conclusion, we have proposed a method for the detection of spontaneously

generated and randomly moving vortices in an exciton polariton condensate. We

have shown that by using the OAM-sorting CoMMZI and comparing the intensities

at the two outputs, it is possible detect the existence of a vortices even with as few

as 10s of photons collected and when moving vortex-antivortex pairs would not have

produced fork patterns in a conventional Michelson interferometer. Single shot images

of exciton polariton condensates have been successfully obtained [102]. We thus

believe that with our proposed set-up, the detection of spontaneous and randomly

moving vortices using single shot imaging is within the realm of possibility.
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CHAPTER III

Testing of the Compact Mirroring Mach-Zehnder

Interferometer

The detection of orbital angular momentum (OAM) in light has been studied

outside the field of polaritons for the last two decades. Many of the applications

of optical vortices discussed in Chapter I, such as multiplexing requires unequivocal

measurements of the OAM states in use. Such measurements make use of the unique

phase property of the optical vortices, making use of tools such as interferometry

[86, 87], forked diffraction gratings [103], via transformation to a transverse phase

gradient [104], and mapping to cartesian coordinates [105]. Time-mapping involving

a vortex phase plate and a single-mode fiber falls among the more creative yet simple

methods [106].

In this chapter, I discuss the design and testing of the CoMMZI, an interferometer

that can detect vortices with a low number of photons. Calculations for photon num-

bers were done in Chapter II. I will show how optical vortices are produced in our lab

using a spatial light modulator, and how the interferometer distinguishies between a

vortex-carrying beam and a non vortex-carrying beam. I will then show some experi-

ments that were done with polariton PL and show that the interferometer can detect

vortex carrying states in polaritons. I will then conclude with some considerations

for single-shot experiments moving forward.

43



3.1 Creating optical vortices with the Spatial Light Modula-

tor

The testing of tools for OAM detection would require the generation of pure

states of OAM. Methods of producing such states use tools such as the spatial light

modulator (SLM) [103], off-axis pumping [107], Q-plates [108, 109], and the Vortex

phase plate (VPP) [110]. Due to its ability to produce a variety of transverse phase

profiles, the SLM was our equipment of choice. A SLM comprises of a liquid crystal

screen with individual pixels controlled via an electric input. Upon the application of

voltage, the liquid crystals in each pixel are rotated and the index of refraction of that

pixel is changed. Since each pixel has an independent voltage control, the index of

refraction across the liquid crystal screen could vary based on the desired transverse

phase output. This is illustrated in Figure 3.1

Figure 3.1:
The operation of a spatial light modulator, taken from the manual by
Hamamatsu.The liquid crystal molecules in each pixel are subjected to
applied voltages which depend on user-input. This produces a transverse
refractive index variation which modulates the transverse phase in the
output light.

Our SLM is a Holoeye PLUTO Phase-only modulator with pixel dimensions 1920
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by 1080. Each pixel is 8 µm square and has a fill factor of 93 %. This means 93 % of

the pixel area is active. Thus, not all light incident on the SLM will be modulated,

and this issue will be discussed in Section 3.1.4.

3.1.1 Computer Generated Holograms

The variation in refractive index across the SLM’s screen is determined by Com-

puter Generated Holograms (CGHs). A CGH is a grayscale image of a phase profile

that for which the gray value of each pixel determines the voltage applied to the

corresponding pixel in the SLM. Users can use built-in CGHs or they can create one

using Matlab. It is possible to generate any image in the far-field using a Fourier

Transform of the original image as the CGH. For this work, we will focus on the

creation of various vortex configurations.

Figure 3.2:
Computer Generated Holograms (CGHs) for producing a vortex beam of
charge l=1 (left) and l=3 (right). The top row shows the CGHs when the
SLM is used in Vortex Phase Plate mode, in which both the incident and
the zeroth order reflected beams are normally incident on the SLM screen.
The bottom row shows a blazed phase grating superimposed on the CGHs
shown in the top row. The blazed phase grating directs intensity into the
first diffraction order.

Figure 3.2 shows the CGHs used to create vortices with l=1 (left) and l=3 (right).
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The CGH uses grayscale values from 0 to 255, with darker areas indicating less voltage

applied. The top 2 CGHs are for configurations used in Vortex Phase Plate (VPP)

mode, in which the incident and reflected beams are collinear with respect to each

other. The bottom 2 CGHs show the same phase but superimposed with a blazed

grating phase. This allows for a large portion of the intensity to be directed into the

first diffraction order, thereby reducing the amount of unmodulated beam intensity

in the beam to be investigated. This issue will be further explored in Section 3.1.4

We have also performed testing with off-centered vortex beams and vortex and

anti-vortex pairs. The CGHs used to generate such configurations can be found in

Appendix A.2.

3.1.2 Vortices generated with the Spatial Light Modulator

To create the vortex profiles shown in this section, we used a Gaussian beam of

wavelength 633nm and waist 2mm, produced by a HeNe laser and coupled to the

testing set-up via single-mode fiber. A Glan-Thompson polarizer was used to linearly

polarize the beam in a direction parallel to the long axis of the SLM screen after its

exit from the single-mode fiber.

The CGHs shown in Figure 3.2 only allow for phase modulation of the incident

beam. As such, the resulting vortices will be superpositions of multiple p states. This

can be seen in Figure 3.3, where the central vortex core is shown together with nodes

in the radial direction. Since the CoMMZI only sorts odd and even values of l, this

is not expected to have a large impact on its efficacy.

Figure 3.4 shows an example of a vortex-antivortex pair generated with a CGH.

Such configurations represent the expected type of vortices seen in a system with a

net zero orbital angular momentum, with the vortex having a value of l=1 and the

antivortex having a value of l=-1. Each vortex center was displaced 0.8 mm along

the horizontal profile of the SLM’s screen. In the figure, the vortex-antivortex cores
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Figure 3.3:
An image of a beam with topological charge l=1. The beam is a superpo-
sition of p states, which explains the pattern of concentric rings around
the central vortex core.

shows an elongated profile and a displacement towards the bottom of the beam. This

is a result of the mutual interaction of the phase gradients of the two vortices [111],

and it becomes more pronounced the farther the beam propagates. It is evident that

the up-down inversion in the CoMMZI will not result in the most effective overlap of

the beam’s profile.

Figure 3.4 was taken at approximately 1/10 the Rayleigh range of the original

Gaussian beam. To maintain as consistent a transverse profile as possible, the beam

could be magnified since the Rayleigh range scales with the square of the beam width.

For most SLM applications, magnifying the beam to fill the entirety of the screen is

recommended to allow for a more uniform beam intensity. This is especially important
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Figure 3.4:
An image of a beam with a vortex-antivortex pair, with each vortex core
displaced 0.8mm along the horizontal profile of the SLM screen. The
elongation and downward displacement of the vortex-antivortex pair is a
result of the mutual phase gradient of the vortices.

if intensity modulation is desired. This topic will be covered in the Section 3.1.5.

3.1.3 Phase extraction with the Fringe Demodulation Method

Accurately determining the efficacy of the CoMMZI depends on the controlled

production of vortex beams. The appearance of a vortex core alone is not sufficient

to determine vorticity. The phase of the beam needs to be examined to ensure that a

helical phase is present, and that what is being sorted is indeed a vortex beam with

a well-defined orbital angular momentum.

To do this, we use a fringe demodulation method to extract phase information from
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interference patterns formed with the phase-modulated beam and an unmodulated

component. This can be achieved through the use of Mach-Zehnder interferometer

set-up, with the SLM acting as one of the mirrors. This set-up is shown in Figure

3.5. The beam is first split into two components at the first beam splitter. One

component is sent directly to the second beam splitter while the other is sent to the

SLM. The modulated first-diffraction order is then sent through an iris to filter out

the unwanted diffraction orders. Interference between the modulated beam and the

unmodulated beam is then observed in a camera. The inset of Figure 3.5 shows an

example of an interference pattern for a l=1 beam. The characteristic fork fringe

pattern of optical vortices is highlighted for clarity.

Figure 3.5:
Set-up used to create and interferometrically test vortices generated by
the SLM. The set-up is not drawn to exact scale and the beamsplitter
closest to the camera is at a slight angle to the beam path, to allow for
both beams to be collinear. The inset shows the interference pattern
formed by a p=1, l=1 beam and an expanded flat-phase beam. The
characteristic fork-shaped fringe is highlighted in yellow.

A fork fringe pattern is usually a sufficient indication of optical vortices, but one

may be interested in extracting the phase profile of the modulated beam for further

confirmation. To extract amplitude and phase information from the fringe patterns,
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we can use a fringe demodulation method, shown in Figure 3.6 for a p=0, l=1 beam

interfering with a Gaussian beam. For two monochromatic fields interfering with each

other in the y-direction, the interference pattern (Figure 3.6a) can be written as

|E1(x, y) + E2(x, y)|2 = E1(x, y)∗E1(x, y) + E2(x, y)∗E2(x, y)+

E1(x, y)∗E2(x, y) exp(iφ2(x, y)− iφ1(x, y)) exp(i2kyy)+

E2(x, y)∗E1(x, y) exp(iφ1(x, y)− iφ2(x, y)) exp(−i2kyy), (3.1)

where φ1(x, y) and φ2(x, y) are the phase of the two beams and E1(x, y) and

E2(x, y) are the electric fields. ky is the wavenumber in the y-direction. The spatial

Fourier transform of Equation 3.1 can be divided into 3 components (Figure 3.6b),

given as

F(|E1(x, y) + E2(x, y)|2) = F(E1(x, y)∗E1(x, y) + E2(x, y)∗E2(x, y))+

F(E1(x, y)∗E2(x, y) exp(iφ2(x, y)− iφ1(x, y)) exp(i2kyy))+

F(E2(x, y)∗E1(x, y) exp(iφ1(x, y)− iφ2(x, y)) exp(−i2kyy)), (3.2)

One can then eliminate the zeroth order term and one of the first order terms

by superimposing an appropriate filter (Figure 3.6c) . An inverse Fourier transform

can then be performed on the remaining first order term to obtain both intensity

information E1(x, y)∗E2(x, y) and phase information exp(iφ2−iφ1) exp(i2kyy) (Figure

3.6d and e respectively) A phase shift can then be introduced to the phase term to

eliminate the tilt term and obtain information on the phase difference between the

two interfering beams. This can be given by the equation
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ψ(x, y) = F−1[F(E1(x, y)∗E2(x, y) exp(iφ2(x, y)−iφ1(x, y)) exp(i2kyy))] exp(−i2kyy).

(3.3)

Figure 3.6:
The process by which the phase profile of a beam modulated by the SLM
is extracted. a shows the simulated interference pattern of a Gaussian
beam and a l=1 beam. b shows the Fourier transform of the interference
pattern. In c. a Gaussian window is applied on one of the first-order
terms. d shows the intensity profile of the Inverse Fourier Transform of
c, while e shows its phase profile. A phase tilt term is applied to e to
obtain the result shown in f.

In the example shown in Figure 3.6, the phase difference between the two beams

is just the phase of the vortex beam itself. The phase dislocation lines seen on the

edges of the phase profile in f is due to higher spatial momentum states introduced

through the use of the filter needed to isolate the first order term. These have already

been reduced by the use of a smoother window. Since phase is our main focus in this

method, a Gaussian window has been used as a filter instead of a circular one.

We have tested this method for different values of l using fringe patterns from

the set-up shown in Figure 3.5. Figure 3.7 shows the extracted amplitude and phase
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information of a l=1 beam. The original profile is shown on the bottom left. The

phase dislocation line in the phase profile is curved, indicative of the helical phase

at nonzero values of propagation distance z. The amplitude profile also shows the

accurate location of the vortex core.

Figure 3.7:
The extracted intensity profile for a l=1 beam using the Fringe Demodula-
tion method (top left) and the resulting phase profile (right). The original
beam is shown in the bottom left. The intensity profile is a product of
the interfering Gaussian beam and the l=1 beam, hence the discrepancy
between the extracted and original intensity profiles.

I have thus shown that extraction of the phase profile of the beam is possible.

Examples for l=2 and l=0 beams is shown in Appendix A.2.

3.1.4 Corrections in phase modulation

In this section, I will present efforts to correct for errors in the phase modulation

process. These errors arise from inaccurate SLM voltages for the wavelength in use,

and residual unmodulated components of the original beam.

The index of refraction for each pixel on the SLM screen depends on the wave-

length of light incident on it. The SLM software comes with lookup tables for certain
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wavelengths, so it may be necessary to fine-tune the voltage applied to each pixel if

one were to use a non-listed wavelength. The process by which this is achieved is

known as Gamma correction. Similar to the analagous process used in photography,

gamma correction alters the shape of the graph of voltage output with gray levels of

each pixel. The SLM software comes with controlled gamma correction capabilities,

and one just has to move a slider to adjust gamma values. The fringe pattern formed

from a Gaussian beam and vortex-carrying beam serves as good feedback for gamma

correction. In Figure 3.8, examples of fringe patterns at different values of gamma

are shown. The wavelength used for this test was 785nm while the lookup table had

values for 750nm. As the value of gamma changes, the fork pattern’s symmetry is also

altered. The experimenter should change the value of gamma until the fork pattern

is as symmetric as possible.

In Figure 3.5, the first diffraction order from the SLM was used. As mentioned

in Section 3.1, each pixel of the SLM screen only has a 93% fill factor. As such,

the zeroth order component would have unmodulated intensity. An example of this

is shown in Figure 3.9. The bright spot near the center of the logo is a result of

this unmodulated component. To avoid this component, a blazed grating phase can

be superimposed on the original CGH to direct the beam’s intensity into the first

diffraction order.

The effect of this unmodulated component on vortices is especially significant.

Figure 3.10 shows a comparison of a l=2 beam produced in the first diffraction order

(left) and the zeroth order (right). The fringe pattern of the beam produced in the

first diffraction order shows a three-pronged fork pattern joined at its center. The

presence of the unmodulated component in the zeroth order results in the l=2 vortex

splitting into two l=1 vortices, thus showing 2 individual fork patterns in the fringes.

The intensity profile of the zeroth order beam also shows 2 vortex cores, as opposed

to one larger one for the first diffraction order. This phenomenon is explained by the
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Figure 3.8:
Fringes formed by an interference between a Gaussian beam and a l=1
beam at different values of gamma correction, using a wavelength of
785nm and a Lookup table value of 750nm. The top left image shows
the fringe pattern without a vortex phase. At the ideal gamma value, the
fork pattern should be symmetrical.

change in the shape of zero contours of the real component of the beam’s transverse

profile due to an additional real component [112]. The intersection of the zero contours

from both the real and imaginary parts is no longer at the center, where the core of

the pure vortex beam would have been positioned. For the l=2 beam, two new

intersection points would form the cores of the individual l=1 vortices.

3.1.5 Intensity modulation with a Phase-only Spatial Light Modulator

While the primary quantity of interest in CoMMZI efficacy is the phase, other

factors such as amplitude may play an important role as well, as seen with the case of

a propagating vortex-antivortex pair. In addition, the size of the beam’s transverse

profile also depends on the value of l and the distance of propagation, with larger l
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Figure 3.9:
The Holoeye logo produced using the zeroth-order reflected beam from
a SLM programmed with a CGH coded with the Fourier transform of
the image. The bright spot at the center is the unmodulated component
of the reflected beam and demonstrates the disadvantages of using the
zeroth-order signal.

values corresponding to faster divergence [113]. This would be an issue for the limited

cross section of the CoMMZI, and can be mitigated by forcing the beam to adopt a

single p value. It thus may be useful to test the CoMMZI using vortices accompanied

by different intensity profiles.

Despite being a phase-only SLM, the PLUTO is capable of performing intensity

modulation on the transverse profile of the beam. This is done through the use of an

amplitude mask designed to recreate the desired intensity profile in the first diffraction

order. This mask is superimposed on top of the phase portion of the CGH. The phase

portion of the CGH would already have a blazed grating phase superimposed on it,

and the intensity profile of the mask would determine the gradient of the blazed

grating. As seen in Figure 3.11, a steeper gradient would direct more intensity into

the first diffraction order, while the remaining unmodulated intensity is sent to the

zeroth order instead. During our tests, we have found that using a mask which

simply follows the amplitude profile of a p state was sufficient to create an intensity

profile that resembles what we would expect from a pure p state. However, it is still
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Figure 3.10:
The interference fringes (top) of a vortex beam with l=2 when generated
using a blazed grating to direct the intensity into the first diffraction
order (left), and when generated in Vortex Phase Plate mode and using
the zeroth order reflected beam.

important to discuss the formal method for creating a mask that would allow one to

recreate any desired intensity profile in the far-field.

We let the desired complex field be expressed as

s(x, y) = a(x, y) exp(iφ(x, y)), (3.4)

where a(x,y) is the desired amplitude and φ(x, y) is the phase. The transmittance of

the CGH used to create this field is given as

h(x, y) = exp(iψ(a(x, y), φ(x, y))), (3.5)
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Figure 3.11:
How a phase-only SLM can be used for amplitude modulation. The
height and gradient of the blazed grating on each pixel is varied depend-
ing on the desired intensity profile of the first diffraction order. Taken
from Davis et al [114].

where the phase-only CGH is represented as ψ. To understand how the encoded

phase and amplitude information would look in the far-field, it would be useful to

break down the transmittance into its Fourier components, such that

h(x, y) =
∞∑

q=−∞

hq(x, y), (3.6)

where q is the diffraction order, and

hq(x, y) = cqq exp(iqφ), (3.7)

where

caq = (2π)−1
π∫

−π

exp(iψ(φ, a)) exp(−iqφ)dφ, (3.8)

where the explicit dependence of a and φ is not shown.
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Several methods of writing the CGH ψ(φ, a) exist. For our tests, we chose to use

the method found in [114] and [115], which takes ψ(φ, a) to be

ψ(φ, a) = f(a)φ, (3.9)

where f(a) represents the form of the amplitude mask which encodes information

about the amplitude a(x,y). From Equation 3.8, the 1st order coefficient is given as

ca1 = sinc(1− f(a)), (3.10)

and equating the first-order coefficient with the desired amplitude, we will get the

relation

a = sinc(1− f(a)). (3.11)

f(a) can then be solved via numerical methods and be used as the amplitude profile

of the CGH mask.

In attempting to solve for f(a), we have found that it to be very resource intensive.

As such, we decided to use unaltered amplitude masks and compare the resulting

profile with the expected ones.

The set-up we use for testing is shown in Figure 3.12. The beam from the fiber is

first expanded with a telescope set-up such that its transverse profile fills the entirety

of the SLM’s screen. After incidence, the first-diffraction order from the SLM is sent

into a second identical telescope set-up with an iris at the focal point of the two lenses.

This iris serves as a filter for eliminating higher values of transverse momentum k.

The filtered and shrunk beam is then sent into a camera. The bottom of Figure 3.12

shows the camera image when the expanded zeroth order and the first order were

captured together. The high-k filtering thus also serves to block out the unwanted

zeroth order.
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Figure 3.12:
The set-up used to perform amplitude modulation testing. The beam
was expanded using a telescope set-up such that its transverse profile
fills the SLM screen. The first diffraction order was passed through an
identical telescope set-up to shrink the beam. An iris was placed at
the focal point of the two lenses in the latter telescope for filtering out
high-k values and smoothen the signal. The image shown at the bottom
shows both the unmodulated zeroth order and the modulated first order
captured by the camera. The iris was opened to capture this image.

We have performed amplitude modulation tests with an expanded beam on a

Gaussian mask on the SLM. In those tests, we found that the resulting intensity

profile resembled the expected ones. Any difference in quality is likely attributed to

the use of high-k filtering. Using unaltered amplitude masks (Figure 3.13), we were

able to create far-field intensity profiles of l=3 states with 3 different values of p, as

shown in Figure 3.14. This is not a surprising result since analysis by [114] has shown

that using a simple product of a(x,y) and φ(x, y) as the CGH creates an approximate

reproduction of the desired intensity and phase profile. Any distortion caused by the

sinc function was not obvious in our result.

Asymmetry in the profiles is likely due to errors in high-k filtering or irregularities

in the profile of the output from the fiber. Since the exact profile of the PL from

a single realization of a polariton condensate could be rather irregular, we decided
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Figure 3.13:
Amplitude masks superimposed on top of blazed phase gratings for the
purposes of amplitude modulation.

to turn our attention to the more important aspect of the CoMMZI’s function, the

phase of the SLM output. Re-creation of the PL’s output can be attempted once its

shape has been determined.

3.2 Testing the CoMMZI with lasers

Initial testing with the CoMMZI made use of 2 lasers, a HeNe laser with 633nm

output wavelength and a diode laser with 785nm output wavelength. The 785nm

laser was used because that wavelength is closer to the expected wavelength of the

polariton PL. The set-up we used was similar to the one shown in Figure 3.12, with

the camera replaced with two mirrors guiding the beam into the CoMMZI.

The large prism of the CoMMZI was placed on a piezo-controlled stage. During

testing, a sinusoidal signal was sent to the piezo to vary its length. The output

from each port of the CoMMZI was directed into a photodetector, from which the

voltage output was read on an oscilloscope. An example of an output from one of

the photodetectors is shown in Figure 3.15. The output voltage depends on the

path difference between both beams in the CoMMZI, with a larger output indicating

constructive interference occuring at the port. The two mirrors were then fine-tuned

such that the visibility, given as
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Figure 3.14:
The transverse intensity profile of beams produced by different amplitude
masks and phase gratings.

V =
Vmax − Vmin
Vmax + Vmin

, (3.12)

was maximized.

We have found that using beams with larger values of l showed greater sensitivity

to changes in alignment, due to the greater phase variation on the transverse profile

of the beam. For best results, a beam of l=1 was used for the alignment.

Figure 3.16 shows the output of the CoMMZI for a Gaussian beam (top) and a l=1

beam (bottom). The output of the even port is shown on the left while the output of

the odd port is shown on the right. The position of the large prism was adjusted such

that constructive interference occurred at the even port for the Gaussian beam. As

can be seen from the figure, the profiles of the even/odd output are what one would

expect for a Gaussian/l=1 beam.

In a real polariton experiment, we do not expect spontaneous vortices to form near

the center of the beam. We thus also performed testing for vortex and antivortex pair

configurations, as well as off-centered vortices. Figure 3.17 shows the output for two

61



Figure 3.15:
Voltage signal used to perform measurements of the CoMMZI’s visibil-
ity. The voltage is read in a photodetector placed at one port of the
CoMMZI’s output. The variation in the signal was a result of using a
piezoelectric device of which the length is sinusoidally varied in time.

configurations of vortex-antivortex pairs. The top two images show the even (left) and

odd (right) outputs for a beam with a vortex and anti-vortex spaced 0.32 mm apart,

while the bottom two images show the outputs for a vortex-antivortex pair spaced 0.8

mm apart. The intensity in both outputs are approximately equal, thus making this

scenario close to what one would expect from a beam profile with a random phase.

Table 3.2 shows measured and expected visibility values for beams holding off-

centered vortices of l=1. The vortices were displaced upward and downward for each

value of displacement from center, and the measured value of visibility is the average

of both measurements. The expected value of visibility was calculated using numerical

simulations, in which the inversion of the beam within the CoMMZI was mimicked

and a value of z=0 was assumed.
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Figure 3.16:
The even (left) and odd (right) output of the CoMMZI when a Gaussian
(top) and l=1 beam (bottom) was sent in. The visibilities for both beams
shown here is approximately 0.6.

The difference between the measured and expected visibilities could be explained

by changes in the transverse profile of the beam during propagation. Nevertheless,

the decreasing trend in visibility reflects the increasing flat phase component as the

vortex is displaced farther from the center.

3.2.1 Limiting sampling area and signed visibility

As the previous section has shown, off-centered vortices and vortex-antivortex

pairs reduce the visibility of the CoMMZI. In addition, an irregular intensity profile

and the presence of other phase-disordering mechanics such as phonons would reduce

the visibility even further. This would make it difficult for unequivocal vortex detec-

tion with a small number of photons, since it becomes indistinguishable from other

sources of reduced visibility.
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Figure 3.17:
The even (left) and odd (right) output of the CoMMZI when a vortex-
antivortex pair for which the cores were initially spaced 0.32mm apart
(top) and 0.8mm apart (bottom). Visibilities for both results are ap-
proximately zero.

As discussed in Chapter II, it is thus necessary to impose stringent requirements

for successful vortex detection. Such a requirement can be chosen by considering the

fact that a field with a random spatial phase would show a visibility of 0, with the

output from both ports being equal. When a l=1 vortex is present in the beam,

we see a larger intensity output in the odd port compared to the even. Since the

output of the odd port depends on a specific phase symmetry, the larger intensity is

also a sufficient condition to determine the presence of vortices. For this, we define a
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Displacement/Beam Waist Measured Visibility Expected Visibility
0.1 0.86 ± 0.02 0.90
0.2 0.68 ± 0.01 0.71
0.3 0.46 ± 0.05 0.49
0.4 0.32 ± 0.08 0.27

Table 3.1:
Table depicting the measured and expected CoMMZI visibility for varying
displacements of the vortex core from the center of the beam.

quantity known as signed visibility, given as

Vs =
Ieven − Iodd
Ieven + Iodd

, (3.13)

where Ieven and Iodd are the intensities from the even and odd port respectively. When

the signed visibility is negative, it indicates vortices are present.

With this in mind, we look for methods to increase the chances of detection in

scenarios for which low visibility is expected, such as in vortex-antivortex pairs. Figure

3.18 a shows the phase profile of a vortex-antivortex pair. The largest phase variation

in the figure occurs close to the cores of the vortices, while the phase profile in the rest

of the figure is fairly constant. Such a configuration would result in positive visibility.

If a circular filter were applied to the phase such that only the portion with the largest

variations in phase were sent into the CoMMZI, as in b, the resulting visibility would

be negative. c shows a graph of signed visibility with the radius of this filter, and it

is found that when the filter’s radius is 1.3 times the displacement of an individual

vortex (diameter 1.3 times the vortex-antivortex separation), the visibility is at its

most negative.

This idea was tested using a circular filter superimposed on a CGH with a vortex

anti-vortex pair. The oscilloscope screen on the top left of Figure 3.19 shows the

voltage output in a photodetector when a vortex-antivortex pair was sent into the

CoMMZI and the position of the large prism was varied sinusoidally by the piezo.

The output shows 3 peaks and 2 valleys. When a circular filter with radius 1.3 times
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Figure 3.18:
a depicts the phase profile of a vortex-antivortex pair, while b shows
the same phase profile when a circular filter with a diameter 1.3 times
the pair’s separation is superimposed on it. c shows the change in the
signed visibility with the size of the filter.

the vortex displacement was applied to the CGH, the output then became 3 valleys

and 2 peaks, indicating a change in sign of the visiblity. The low intensity made

it difficult to get an accurate read of the visibility, but the inversion of the voltage

output is a sufficient indication. We were also able to recreate this change in the sign

of the visibility using an iris with an uncut CGH.

The use of such filters is further explored when the CoMMZI was tested using

polariton PL.

3.3 Experiments with Polariton Photoluminescence

Figure 3.20 shows the set-up we used for testing the CoMMZI with polariton PL.

On the path to the CoMMZI, two f=300mm lenses were used to prevent the beam

from getting larger than the CoMMZI’s cross-section. A polarizing beam splitter

(PBS) was used to linearly polarize the beam before it enters the CoMMZI, and a

right-angled prism was placed after the even port to direct the port’s output into a
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Figure 3.19:
The left images show the change in the sign of the visibility when a
circular filter is superimposed on a CGH designed to create a vortex-
antivortex pair. The inset shows the transverse intensity profile of the
uncut (top) and cut beam (bottom). The colored inset shows the simu-
lated intensity profile for a propagated cut beam.

CCD camera. Both the odd and even port’s output were focused into the CCD using

a f=100mm lens. The polarization of the beam prior to entering the CoMMZI was to

ensure maximum visibility. We have found the PL to be elliptically polarized and do

not expect loss of vital information.

We first tested the CoMMZI with PL produced from a nonresonant Gaussian

pump 2 µm in diameter. We do not expect vortex formation since the size of the

beam is on the order of the healing length. This implies that if the beam were

coherent, there should only be output from the even port. Prior to the experiment,

we had adjusted the position of the large prism to ensure equal path length in both

arms of the CoMMZI. This was done using a pulsed beam ∼ 100 fs in width. The

path length was adjusted until we saw maximum visibility using this pulsed beam.

Figure 3.21 show the even (left) and odd (right) outputs for a position of -8meV

detuning (top) and -6meV detuning (bottom). The even port’s output is indeed
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Figure 3.20: Set-up for testing the CoMMZI with polariton PL.

larger than the odd port’s output, but the overall visibility found was very low. This

is due to the presence of an incoherent population coexisting with the superfluid

fraction. The larger diameter seen for the -6meV PL is due to the larger repulsive

force experienced by the polaritons with the pump spot, which forces them to travel

a longer distance from the pump spot before decaying.

As will be covered in Chapter IV, a possible method for detecting quantum vor-

tices in polaritons is through the use of optically-induced ring pumps. This enables

confinement of the population within a defined collection area to increase the chances

of vortex detection. The separation from the exciton reservoir also reduces its influ-

ence. It is thus necessary to study the CW pump condition to identify sources of

potential false positives.

Figure 3.22 shows the odd and even port outputs when an optically-induced ring

pump of 30 µm diameter was used. This ring shape was created with an axicon. A

notable difference when using this type of pumping is the appearance of higher order

states when threshold is first achieved. The top row of Figure 3.22 shows an example

of this higher order state, in which a standing-wave pattern is formed . As the pump
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Figure 3.21:
The even (left) and odd (right) output of the CoMMZI when polariton
PL was sent in. The pump used was a Gaussian pump 2 µ m in diameter
and 100meV higher in energy than the PL. The detunings used were -
8meV (top) and -6meV (bottom). The visibility found was ∼ 0.1 for
both detunings.

power is increased, the standing-wave pattern disappears and the pump spot becomes

more homogeneous. The visibility also increases with pump power, with the highest

power used showing a visibility close to 1. The higher order states formed within a

ring trap will be the topic of discussion in Chapter IV.

Of particular attention to note is the presence of bright and dark spots at the

center of the even and odd outputs respectively. The extent of the bright/dark spot

is indicative of the range of the spatial coherence of the PL. At lower powers (top

row of Figure 3.22), the spot covers a diameter of about 2µm. At the highest power

(bottom row of Figure 3.22), nearly the entire span of the PL emerges from the even

port. This is consistent with what one would expect from reports on spatial coherence

for polariton PL.

This variation in spatial extent across pump powers can be further explored by
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Figure 3.22:
The even (left) and odd (center) output from the CoMMZI for polari-
tons pumped with an optically-induced ring pump. The images on the
right show the original intensity profile before captured in the spectrom-
eter. The PL shown here are for pump powers 30mW (top) and 186mW
(bottom).

using a circular filter as described in Section 3.2.1. The circular filter is applied

digitally to images from both ports of the CoMMZI, and the intensity within the

filter is integrated across space to obtain the total intensity from each port. These

quantities are then used to calculate the signed visibility as described with Equation

3.13. Figure 3.23, shows the plot of signed visibility (colorbar) with pump power

and the radius of the circular filter. The evolution of the visibility is mostly what

one would expect from a nonresonant pump, with visibility increasing with pump

power as a larger fraction of the population is scattered into the ground state, and

decreasing with increasing filter radius as the coherence drops farther from the center.
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At 30mW, which was the threshold pump power, negative visibility was observed for

filter radii from 3 µm to 20 µm. This result can be explained as a superposition of

orbital angular momentum states near the center of the ring with an average orbital

angular momentum of 0. More specifically, the Hermite-Gaussian mode seen at 30mW

is a superposition of the Laguerre-Gaussian p=1, l=±1 and p=0, l=±3 state. The

deviation from a signed visibility of -1 is due to imperfect alignment.

Figure 3.23:
Signed visibility of the CoMMZI against pump power and filter radius
when using an optically-induced ring pump.

3.4 Summary and Conclusion

In this Chapter, I have shown how vortex-carrying beams were created with a spa-

tial light modulator and how we had tested the CoMMZI’s efficacy in distinguishing

orbital angular momentum states in both laser light and polariton photoluminescence

(PL). I have shown that the CoMMZI can distinguish vortex-carrying beams of topo-

logical charge l=1 from a Gaussian beam, and that it can work with polariton PL. I

have also shown how superimposing a filter on the signal can increase the chances of
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detecting vortices.

The eventual goal is the detection of spontaneous vortices in a single realization

of the condensate. This implies that the CoMMZI has to be able to successfully sort

orbital angular momentum states with only a few thousand photons. To complicate

matters, the vortices are not likely to be stationary, since they mostly follow the flow

of polaritons which is influenced by pumping and decay. In Chapter II, I have shown

simulations to demonstrate the efficacy of the CoMMZI for different expected scenar-

ios of vortex behavior in a single-shot realization of a condensate. It is still necessary

to further explore factors that would likely influence the formation and behavior of

vortices, such as the degree of coherence and the interaction strength in the conden-

sate itself. In the next chapter, I discuss these factors within a condensate formed

in an optically-induced ring trap by looking at dispersion and temporal first-order

correlation measurements. In the final chapter, I will describe a possible experiment

that can be done with the CoMMZI for a single-shot realization.
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CHAPTER IV

Multi-fluid Behavior for Polaritons in an

Optically-induced Ring Pump

Early experiments with microcavity polaritons have used samples with short pho-

ton lifetimes (∼ 10ps). To maintain a steady population, a pump source would be

required to continually supply photons, thus making polariton condensation an in-

herently non-equilibrium phenomenon. The short lifetime of the polaritons prevents

it from achieving thermal equilibrium as well. This along with its driven-dissipative

nature [116] not only adds to complications in experimental interpretation but also

serves as a roadblock to practical applications. Early last decade, a new era of polari-

ton studies began with the advent of samples possessing cavity lifetimes on the order

of hundreds of picoseconds. This led to polariton lifetimes exceeding thermalization

times, and evidence of equilibrium in the energy distribution and dispersion rela-

tionship has been observed [117, 118]. The low effective mass has also enabled long

range motion on the order of 1 mm [119, 120], raising possibilities for applications

in integrated circuits [121], waveguides [122] and logic devices [123]. The long range

motion of long-lifetime polaritons has also enabled its study in traps with sizes on

the order of tens of microns. In optically-induced traps, this is useful for separating

the polaritons from the exciton reservoirs, which are confined to the perimeter of the

trap at high powers [124, 125].
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Recent studies done with this pump geometry have investigated quantum deple-

tion [127], and polariton-polariton interaction strength in the absence of the exciton

reservoir [128, 129]. These studies work primarily with the ground state of the ring

trap, and while higher order states have been investigated [126], a study on the system

dynamics as pump density is increased has yet to be conducted. In particular, the

evolution of the system’s coherence would lend insight into dephasing and broaden-

ing mechanisms that would be important for applications involving multiple modes.

Furthermore, contradictory results on the polariton interaction strength [128, 131]

highlight the need for deeper investigations even of the ground state. In this work,

we investigate the evolution of the dispersion and temporal first-order correlation of

the states of the ring trap as the system evolves with an increase in pump power.

We observe the sudden onset of coherence as the system first crosses threshold into

a narrow-band energy state, followed by its loss as more higher-order states are pop-

ulated. At the highest pump powers, the system evolves into a composite of three

states with coherence times spanning nearly three orders of magnitude. Our results

are the first, to our knowledge, to document the evolution of temporal coherence

of the states within an optically-induced ring trap for long-lifetime polaritons with

increasing pump power. It lays groundwork for future studies on pre-thermalization

dynamics within this system which would be valuable for applications seeking to use

a coherent ground state.

In this chapter, I discuss spectrometric and temporal first-order correlation mea-

surements for long-lifetime polaritons in an optically-induced ring trap. I first discuss

how dispersion information can be obtained using a spectrometer set-up, followed by

how temporal first-order correlation measurements can be obtained using a Michel-

son interferometer. I will then present our findings for long-lifetime polaritons in

an optically-induced ring trap, then show some spatial and energy reconstructions

at various pump powers which could lend us further insight into our findings. Fi-
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nally, I will discuss how these results could give us information on what to expect for

spontaneously formed vortices in such a system.

4.1 Obtaining energy-momentum information

A vital component of nearly every polariton experiment is the energy and mo-

mentum information of the position being studied. Signals from measurements at

low pump power gives the single-particle dispersion, which contains information on

the detuning of the position and thus its various properties such as light/matter frac-

tions. At higher powers, measuring the momentum and energy would tell us when

phase transition has taken place. This is seen as a sudden increase in the intensity of

the photoluminescence signal (PL) and the accumulation of the signal into a narrow

band of energy. In ground state condensation, this signal will be seen as a bright spot

concentrated at the ground state and low momentum (k-space) values.

For obtaining dispersion information, the spectrometer is a valuable tool. The

incoming PL is distributed along the energy axis though the use of a grating and 2

parabolic mirrors. With the spectrometer being factory-made, the main challenge lies

in ensuring the k-space information is what is shown in the final result.

For that purpose, a series of lenses is used as part of the collection optics for the

PL signal. A schematic of the set-up is shown in Figure 4.1. The photoluminescence

signal is first collected from the sample using a powerful objective lens. This objective

lens is able to collect up to 30 degrees of momentum information, making it the key

factor in the success of this method. The signal is then sent through a series of 4

lenses, each spaced apart by the sum of its own and the adjacent lens’ focal length.

At each focal point, the Fourier transform of the signal is obtained, thus allowing for

alternating real space and k-space signals. After the 4th lens, the k-space signal is

then sent into the interferometer. If real-space information is desired, either one of

the 300 mm lens can be removed.
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Figure 4.1: The lens arrangement for k-space imaging.

4.2 Temporal first-order correlation measurements

The coherence of the PL signal from polaritons is useful information for several

reasons. The most obvious one being to determine if the population has undergone

a phase transition. The coherence of a signal is measured by quantities such as its

linewidth. In addition, the shape of the linewidth would give us insight into the var-

ious mechanisms leading to loss of coherence. For instance, a Lorentzian linewidth

would be indicative of homogeneous broadening, in which the same broadening prop-

erties are experienced by all particles withini the same state. A Gaussian linewidth

would be indicative of inhomogeneous broadening, for which different particles ex-

perience variations in broadening parameters. At a phase transition, the PL signal

would show a large decrease in the linewidth. In a weakly interacting condensate, the

main broadening mechanism would be lifetime broadening, and the linewidth would

be a Lorentzian one. On the other extreme, a strongly interacting condensate would

show a Gaussian linewidth.

While spectrometer readings could in principle tell us information on the coherence

of the signal, they can often be limited by the spectral resolution. This would result in

measurements of linewidths larger than the actual value. In addition, the convolution

of the signal with the instrument response function would distort the shape of the

signal, and thus likely give us erroneous insight into the physics of the system.

To obtain an accurate measurement of the coherence of the signal, the temporal

first-order correlation function can be measured, which gives information on the co-
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herence time of the signal. The linewidth of the signal can then be approximated

by σ ∼ h/τcoh, with τcoh being the coherence time and σ being the linewidth. The

temporal first-order correlation function, g1(τ), is given as

|g1(τ)| = 〈E
∗(t)E(t+ τ)〉
|E(t)|2

, (4.1)

where 〈E(t)〉 is the field of the signal as a function of time and τ is the relative time

delay between two copies of the same signal. The Fourier transform of g1(τ) gives the

spectral density, S(ω), which is proportional to the energy distribution of the signal.

Thus, measuring g1(τ) is one way to bypass the spectral resolution limitations of the

spectrometer.

|g1(τ)| can be measured using a Michelson interferometer. Such a set-up is shown

in Figure 4.2. The signal from the sample is split evenly at the beam-splitter, with

each signal being sent into separate retroreflectors. The retroreflectors used are corner

retroreflectors, hence the beam is inverted along both the x and y-axis. The two

beams are then collected by a lens and sent into a CCD camera to obtain real-

space interference patterns (interferograms). Since both beams are inverted by the

retroreflectors in the same manner, the fringe visibility, defined as

V =
max−min
max+min

, (4.2)

where max and min refer to the maximum and minimum intensity along the fringe

pattern respectively, should be uniform for a spatially-homogenous signal. One of the

retroreflectors is placed on a moving delay stage, and as such it is possible to change

the path length difference between the two arms. The delay between the signals is the

controlled variable in this experiment, and the visibility can then be measured as a

function of this delay time, τ . If the intensities in both arms are equal, the measured

visibility at time delay τ would be equivalent to g1(τ). A more general method of
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Figure 4.2:
Michelson interferometer set-up with 2 retroreflectors, used for performing
g1(τ) measurements

extracting the value of g1(τ) is discussed in Section 4.3.

Measurements of visibility often show decaying readings, a consequence of multiple

frequencies within the same signal. Figure 4.3 illustrates this.

In an ideal monochromatic signal, the interference between equal signals in both

arms would be totally constructive or destructive (left of 4.3), thus leading to a

constant visibility of 1 for all delay times. If two signals of different frequencies were

present (right of Figure 4.3), at a particular non-zero delay time, the maximum of

one fringe pattern could be overlapping with the minimum of the other. This thus

reduces the overall visibility of the interferogram. If only a few frequencies are present,
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Figure 4.3:
Total constructive interference takes place for all delay times if the signals
in the two arms of the Michelson interferometer are monochromatic and of
the same frequency (left). The visibility will thus always be 1. If multiple
frequencies are present and at certain delay times, certain frequencies
may show a bright fringe while other frequencies show a dark fringe. The
averaging of different fringe intensities result in a ’washing out’ of the
overall fringe patterns and a decrease in the visibility.

the visibility would oscillate with delay time, showing maximums when all the fringe

patterns show total constructive/destructive interference. This phenomenon is known

as coherence revivals. As the number of frequencies increase, it becomes harder to

find a delay time where coherence revivals can occur. This ’washing out’ of multiple

fringe patterns would lead to a drop in visibility to 0. Thus, the broader the range of

frequencies present, the faster the drop in visibility to 0 and the shorter the coherence

time.

4.3 Measurements for long-lifetime polaritons in an optically-

induced ring trap

In a typical microcavity design, quantum well layers are placed within anti-nodes

of a cavity enclosed within two Distributed Bragg Reflectors (DBRs). Each DBR

is a set of alternating AlxGa1−xAs/AlAs layers of λ/4 thickness each. This design
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maximizes the overlap of the exciton’ dipole moment with the photon field, thus

allowing for strong coupling in which the interactions between the two species give

rise to polariton eigenstates. For our sample, the DBR sets have 32 and 40 layers

respectively (Figure 4.4 (a)). The number of DBR layers is about twice that of early

samples, which results in a high Q factor. Measurements of the linewidth give a Q

factor of 104, as shown in Figure 4.4 (c), although the actual value is likely to be

higher as our measurements were limited by the resolution. The thickness of the

sample is 3λ/2 and thus holds 3 sets of quantum wells. We made measurements on

a position with a detuning of -8.4 meV, implying a photon fraction of ∼ 0.8 . The

low effective mass and interaction strength at this position allows collection of a large

number of photons before thermalization, thus shedding light on the processes leading

up to it.

To pump the sample, we used a continuous-wave laser with an energy ∼ 100 meV

above the lower polariton ground state energy. The off-resonance pumping ensures

that coherence from the pump is not transferred to the polaritons, and that coherence

observed in the photoluminescence (PL) signal can be interpreted as spontaneous

symmetry breaking taking place within the polariton system itself. To reduce the

heat load on the sample, an Electro-Optical Modulator was used to modulate the

pump’s intensity in time. The modulation was done at 1 MHz frequency with a duty

cycle of 10%, such that the pump was incident on the sample for 100 nanoseconds

during each cycle. The ring shape of the pump was created with a 0.5 degree axicon

placed upbeam of the sample. A telescope set-up was used to change the ring’s

diameter to 50µm.

4.3.1 Dispersion measurements

The condensation of polaritons can be observed as a sharp rise in the intensity

of the photoluminescence (PL) signal captured with a spectrometer. Our results
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Figure 4.4:
(a): Schematic of sample. (b): Profile of pump created by axicon, yellow
circle indicates location of focused spot without axicon. (c): Dispersion
of lower polaritons at a detuning -0.5meV more negative than shown in
this work, together with the corresponding photon dispersion and exciton
energy. Spectra was obtained from a 5µm radius about the center of the
ring pump. Inset shows intensity profile taken across k = 0 line (white
line) and its fit to a Gaussian profile. The linewidth found from fitting is
0.1 meV which gives a cavity Q factor of 104, although this measurement
is resolution limited and the actual Q factor is thus likely to be higher.

reveal the existence of two threshold behaviors, as seen in Fig. 4.5 (a) and (b).

Below 60 mW, the single particle dispersion can be seen, along with a blurring in the

negative k direction indicating ballistic flow in that direction (Fig. 4.5 (c.1) ). At

50mW, the single particle dispersion can still be seen, but the population has begun

to accumulate towards lower energy states between 1.5955 eV and 1.596 eV. The first

threshold occurs between 50 mW and 60 mW pump power, and is seen as a sharp

rise in the excited state population and fraction. This corresponds to a condensation

into a narrow band of higher energy states centered around 1.596 eV, as can be seen
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Figure 4.5:
(a) and (b): Population intensity and fraction evolution respectively. Po-
sitions numbered on the graph correspond to the respective spectrometeric
images shown in (c.1-4). The white line indicates the ground state energy
at that particular pump power. This range is set to 1 spectral resolution
(0.1 meV) for all powers. The method of determining the range of ground
state and excited state energies is described in the text. (c): Spectrom-
eter images taken for k space at 1mW (1), 60mW (2), 100mW (3), and
270mW (4). No spatial or spectral filtering was used.

in Fig. 4.5 (c.2). The second threshold is seen as a sharp rise in the ground state

population and fraction between 120 mW and 130 mW pump power, corresponding

to a large accumulation into a low momentum ground state as seen in Fig. 4.5 (c.4).

We do not see an immediate drop in bandwidth, unlike for the first threshold. This

is due to the persistence of populations in higher energy states even up to the highest

power. At 180 mW, even though the polaritons are concentrated in the k ∼ 0 state,

a faint quadratic dispersion is still visible. At the highest pump power used (270

mW), the population has almost completely scattered into the k ∼ 0 state with the

quadratic dispersion only visible with intensity on a log scale.

The polariton population was approximated from the far-field PL signal by as-
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Figure 4.6:
Top: Evolution of bandwidth with power. Bandwidths were determined
by finding the energy range for which the population exceeds 0.05 times
the maximum value, using population distributions integrated along the
k-axis. Bottom: Evolution of the energy value with the largest population.
Reference is taken from the corresponding value at 1mW pump power.

suming the signal to be rotationally symmetric. The average of the intensities at

positive and negative k values was multiplied by a factor of 2π|k|dk, for which dk was

taken to be the length of a pixel in k space. The intensity at k ∼ 0 was multiplied by

π|k|2. The PL signal at each pump power were then divided into two energy sets; a

ground state energy set and an excited state energy set. The range of the ground state

energy set was taken to be the spectrometer resolution. Below the second threshold,

the center of this range was taken as the lowest energy with an observable PL signal,

found by visual inspection of the spectrometer image at log scale intensity. At the

lowest pump powers, ballistic flow is observed through a spread in population at lower

momentum and energy. We thus chose a large error range which covers the span of

populated states, which came to 0.5 meV. For powers above initial condensation, the

error range was taken to be the spectrometer resolution. Above second threshold, the

ground state range was defined to be within 1 spectrometer resolution of the energy

with the largest population at k ∼ 0. The polariton population at each power is then

found by integrating across momentum values within the ground state energy range,
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while the error is found by integrating across momentum values within the ground

state energy range. The excited state energy range was assumed to be the energies

above the ground state energy range, while the excited state error range was assumed

to be half that of the ground state error range. The excited state population was

found using the same calculations as for the ground state population.

The bandwidth of the polariton population is a useful quantity for monitoring

the onset of phase transitions. A sudden drop in bandwidth would indicate a large

accumulation of population within a narrow band of energies, indicative of threshold

behavior. A sharp rise in the population is also expected to be seen when this happens,

due to stimulated scattering by polaritons in the condensed state. We calculated the

population bandwidth by taking the energy range for which the population exceeds

0.05 times the maximum value, after integration along the momentum axis, the results

of which are shown in Fig. 4.6 (a). The bandwidth calculated at first threshold was

found to be ∼ 0.1meV , and is thus resolution-limited. Above the first threshold but

prior to the second, the population was observed to scatter into a wider range of

energy states, with the highest energy state 0.4 meV above the state at 60 mW (Fig.

4.5 (c.3)), a result of greater repulsive interactions between the polaritons formed

along the ring. The bandwidth calculated was found to be ∼ 1meV . We see a drop

in bandwidth to 0.6 meV above 200 mW, as the system condenses into the ground

state. This is larger than the bandwidth calculated at first threshold due to a small

population occupying higher momentum states.

To examine the occupation of the higher-order modes, a quantity that could be

measured is the energy with the largest population value, defined here as the peak

energy. Fig. 4.6 (b) shows the evolution of the peak energy with pump power,

calculated relative to the minimum value found between 150mW to 200mW. From

1 mW to 20 mW, the polariton population is accumulated in bottleneck states, and

thus the peak energy is 5 meV above the ground state. We see a sharp drop of the
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energy with peak population at 30 mW of 4 meV. This is followed by a rise of 0.2 meV

after the first threshold. At second threshold, the population begins to accumulate

in the ground state, resulting in a drop of 0.5 meV. From 150 mW up to 270 mW,

we see a total blueshift of ∼ 0.1meV , a result of inter-polariton interactions.

4.3.2 Temporal first-order correlation results

We performed g1(τ) measurements using a Michelson interferometer with a retrore-

flector in each arm. To find the evolution of g1(τ) at different pump powers, we chose

the fringe profile corresponding to the position of the brightest spot in the interfer-

ogram taken at 272mW (dashed line in Fig 4.7 (a)). The 1-dimensional profile was

then fitted to the equation:

I(x) = I1 + I2 + 2
√
I1I2|g1(τ)| cos(kxx+ φ). (4.3)

I1 and I2 are the intensities in each arm of the Michelson interferometer and were

measured to be equal. kx is the projection of the wavenumber in the x-direction and

φ is the phase delay between the two arms. To account for instabilties in the set-up,

we took the largest of 3 g1(τ) measurements at a single delay time. The error bars in

Fig. 4.7 were calculated from fitting errors at the chosen measurement. The resulting

trends were then fitted to various functions, depending on the apparent shape of the

graph.

Our results were fitted to three different functions for analysis. The simplest is:

|g1(τ)| = exp

(
−(t− to)2

τ 2c

)
, (4.4)

where to is the bias in time zero and τc is the coherence time. We have also used a
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Figure 4.7:
(a): Interferogram taken at a pump power of 270mW. The dashed line
indicates the position from which |g1(τ)| measurements were taken. The
following data and fits were taken with pump power (b) 1mW, (c) 50mW,
(d) 60mW, (e) 100mW, (f) 270mW. The equations used for fitting were
Equation (4.4) for (b), (d) and (e), Equation (4.5) for (c), and Equation
(4.6) for (f). For (e), a constant was added to the fit to account for vertical
displacement caused by coherence revivals.

sum of a Gaussian and Exponential function, given by

|g1(τ)| = f1 ∗ exp

(
−(t− to)2

τ 2c1

)
+ f2 ∗ exp

(
−|t| − to

τc2

)
, (4.5)
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where a and b is the fraction of the Gaussian and Exponential population respectively.

Finally, we have used a sum of three Gaussians:

|g1(τ)| = f3∗exp

(
−(t− to)2

τ 2c3

)
+f4∗exp

(
−(t− to)2

τ 2c4

)
+(1−f3−f4)∗exp

(
−(t− to)2

τ 2c5

)
.

(4.6)

The value of to was found from fitting at the lowest power of 1 mW, and fixed at this

value for every other fit.

Below second threshold, temporal first-order correlation measurements show at

most two distinct behaviors (Fig. 4.7). Fig. 4.7 (b). shows |g1(τ)| as a function

of delay time at 1mW. The maximum visibility is ∼ 0.4 due to the low signal-to-

noise ratio in the interferogram. The red curve shows the fit to a Eqn. (4.4) with

a coherence time τc of 0.7(0.2) ps. Fig. 4.7 (c) shows the evolution of |g1(τ)| with

time delay for 50 mW. The fit is to Eqn. (4.5), with τc1 and τc2 at 6.0(0.6) ps and

0.6(0.2) ps respectively. The Exponential function can be attributed to the population

in higher k-states and the Gaussian function the cumulation of population at lower

momentum. We note that there is a revival that can be seen after 10ps delay. This is

indicative of the coherent states that begin to form at this power, as can also be seen

in Fig 4.5 (c.2). Fig. 4.7 (d) shows the |g1(τ)| evolution at 60 mW. The fit is to Eqn.

(4.5) with τc = 320(20) ps. The sudden increase in coherence time is consistent with

the sharp drop in bandwidth as shown in Fig 2d. Small coherence revivals can also

be seen at periods of 70ps, indicating that there are two coherent states spaced closer

than the spectral resolution at this power. Fig. 4.7 (e) shows the |g1(τ)| evolution

at 100mW. Only the value between -20 ps and 20 ps delay was fit to Eqn. (4.4),

with a constant added. to account for coherence revivals appearing after 20ps. The

revivals show varying periods and no decay envelope could be observed, indicating

the presence of multiple coherent states. The coherence time for the fitted Gaussian

function is 5.0 (0.4) ps. We will refer to the sub-picosecond coherence time fraction
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as the non-thermal fraction, the ps coherence time fraction as the thermal fraction,

and the ∼ 100 ps coherence time fraction as the quasi-condensate fraction.

Above second threshold, measurements found three distinct behaviors with coher-

ence times varying by three orders of magnitude. Fitting for the three highest powers

were done with Eqn. (4.6). We attribute each of these functions to a non-coherent

fraction at higher momentum states, a fraction with coherence time on the order of

a hundred picoseconds, and a fraction with coherence time close to 1 nanosecond

respectively. At 180 mW, the thermal and quasi-condensate fractions (f3 and f4) are

similar at 0.42(0.01) and 0.4(0.1) each, and have a coherence time (τc3 and τc4) of

4.6(0.4) ps and 200 (40) ps respectively. There were too few data points to acquire

an adequate fit for the near-nanosecond coherence time fraction, and the resulting

error in the fit was thus large (τc5 = 1000 (2000) ps). At 240 mW, the 3 component

behavior becomes more obvious. The fractions f3 and f4 are 0.18 (0.01) and 0.52

(0.07) respectively. The three coherence times τc3, τc4 and τc5 are 2.8 (0.6) ps, 160

(20) ps and 700 (200) ps respectively. At 270 mW, shown in Fig. 4.7 (f), f3 and f4

are 0.15 (0.01) and 0.46 (0.03) respectively while τc3, τc4 and τc5 are 2.9 (0.6) ps, 125

(8) ps and 1000 (200) ps respectively. We will refer to the near-nanosecond coherence

time fraction as the condensate fraction.

4.4 Discussion

From Fig. 4.8 (a), there is a decreasing trend seen for the coherence times of ther-

mal and quasi-condensate populations, although the order of magnitude is unchanged.

This thermal populations persists across both thresholds, and the quasi-condensate

population appears above the first threshold and persists across the second. The

gradual decrease in coherence times is likely a result of increasing interactions and in-

creasing density with pump power. Based on comparisons with spectrometer images,

the thermal fraction likely arises from the spread of populations across energy states
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Figure 4.8:
(a): Coherence times as found from fitting visibility data, separated into
four categories according to their order of magnitude. (b): Linewidths as
calculated from the coherence times in (a) and the corresponding band-
widths in Figure 4.6. (c): Population fractions as found from fitting
visibility data. (d): Population fractions from spectrometer data at the
corresponding pump powers, as calculated in Figure 4.5 (b).

within the finite square well created by the confinement of the polaritons within the

optical trap. The quasi-condensate population at 60mW is clearly attributed to the

narrow energy spread at first threshold. At 180 mW and above, two separate popu-

lations can be seen in the spectrometer image, although three can be measured from

g1(τ) measurements. This indicates that either the quasi-condensate and condensate

population are so close in energy that they are not distinguishable in the spectrom-

eter, or that the two populations exist at different times during the pump’s duty

cycle. Fig. 4.8 (b) shows the linewidth calculated from coherence times in (a). The
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bandwidth calculated from spectrometer is shown on the same axis. The bandwidth

is seen to be larger than or similar to the largest linewidth measured in our g1(τ)

results, which is expected due to the limited spectral resolution of the spectrometer.

Fig. 4.8 (c) shows the fraction of populations as measured in |g1(τ)|measurements.

Among the three highest pump powers, there is a clear trend of increasing conden-

sate fraction. The quasi-condensate fraction increases from 180 mW to 240 mW and

remains nearly constant up to 270mW, while the thermal fraction shows a clear de-

crease. This suggests that the condensate fraction is the final thermalized state of

the system while the quasi-condensate may be an intermediate phase. To check the

effects of weaker interaction strength, we have also performed similar measurements

on a sample position 2 meV more negative in detuning. |g1(τ)| measurements over

that position do not show a clear sign of a near-nanosecond coherence time popula-

tion at highest pump powers, and the resulting fit for the ∼ 100 ps coherence time

fraction was closer to an Exponential decay rather than a Gaussian one (Figure 4.9).

Spectrometer images show a wider spread of population in energy at highest powers

(3 meV as opposed to 1.5 meV), and the thermal fraction is larger (0.43 as opposed to

0.15), suggesting that the absence of strong interactions at this detuning prevents the

polaritons from achieving the condensate state before decaying. This presents more

evidence that the quasi-condensate population is indeed an intermediate scattering

step, although time resolved experiments are required to confirm this.

4.5 Summary and Conclusion

We have studied the evolution of long-lifetime polaritons through spectrometric

and temporal first-order correlation measurements. Consistent with previous reports,

we have found the initial condensation of the system into higher-order energy states,

followed by scattering into lower energy ones and an eventual condensation into a

low momentum ground state. Our |g1(τ)| measurements reveal the presence of three
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Figure 4.9:
Comparison of log10 scale spectrometer images (a and c) and temporal
first-order correlation function (b and d) at ∼ 270 mW pump power for
-8.4 meV detuning (a and b), and -10.5 meV detuning (c and d). The
photoluminescence signal for -10.5 meV detuning show a spread of 3 meV
in energy, while the signal for -8.4 meV shows a spread of 1.5 meV. The
near-nanosecond coherence time fraction is absent in the |g1(τ)| evolution
shown in (d), and the thermal fraction is more prominent (0.430± 0.008)
than in (b) (0.15± 0.01).

different populations at highest powers, with coherence times and thus interaction

strengths differing by three orders of magnitude. The quasi-condensate population

is likely an intermediate scattering step before the final condensation into a con-

densate state. If so, time-resolved measurements would be useful in determining if

the quasi-condensate state is a pre-thermalized state of the system [136, 137]. Our

work lends insight into decoherence and condensation mechanics in long-lifetime po-

laritons confined within an optical ring trap, and paves the way for further studies

91



likely involving combined temporal and spatial first-order correlation measurements,

alongside time-resolved measurements.

The low interaction strength fraction could have rather interesting consequences

for the detection of vortices by the CoMMZI. If there is little interaction between

vortex cores and its environment, it would mean that the vortex motion would be

largely determined by the flow of the polaritons. Considering that the ground state

condensate occupies low momentum states, this would mean that the vortices would

be slow moving. As described in Chapter II, such situations would be ideal for

detection with the CoMMZI. In addition, if the hundred-picosecond coherence time

fraction is indeed a prethermalized state, it would be interesting to see if the transition

to the near-nanosecond fraction is a result of vortex-antivortex recombination.
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CHAPTER V

Future Work

As demonstrated in the previous few chapters, the detection of spontaneously

created vortices in a single-shot realization of a polariton condensate is within th realm

of possibility, but challenging. In this final chapter, I propose future work which could

contribute to further understanding of state evolution within the optically-induced

ring trap and push towards the unequivocal detection of such vortices while providing

understanding and context to the nature of the vortices detected.

5.1 Future work for analysis of states in an optically-induced

ring trap

In this section, I will first discuss spatial tomography scans which could be used

to complement temporal first-order correlation measurements, as well as spatial first-

order correlation measurements that would lend us insight into the likelihood of vortex

formation. I will then discuss time-resolved experiments that could be performed to

gain insight into the thermalization of the sample.
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Figure 5.1:
How spatial tomographical scans are carried out. The lens before the
spectrometer is moved laterally across the spectrometer slit. Slices of the
real space image is captured at each position.

5.1.1 Spatial Tomography scans to complement temporal first-order cor-

relation measurements

As discussed in Chapter IV, our comparisons for the population fraction shown

in the spectrometer and calculated from g1(τ) measurements were limited due to the

fact that spectrometer measurements were taken in momentum space (k-space). It

would be useful to have access to the energetic distribution and the spatial profile of

the various states within the optical ring trap. A direct comparison of the fraction

calculated in g1(τ) measurements could then be made with the corresponding energy

distribution for the same spatial location. To achieve this, a spatial tomography scan

could be done to create a 3-dimensional map of energy and space.

Figure 5.1 show how the spatial tomography scan is carried out. The lens prior

to the spectrometer is placed on a motor-controlled stage and moved laterally across

the spectrometer slit. This would shift the real space image of the polariton photolu-

minescence (PL) past the slit in which energy information could then be captured for

each slice. The 3-dimensional map of energy and space is then constructed by piecing

each slice together to reconstruct the real space image.
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Figure 5.2:
Scan results for -8.4meV detuning for 60mW (top) at 1.5959 eV (left) and
1.5957 eV (right). Results for 275mW (bottom) are at 1.5958 eV (left)
and 1.59576 eV (right).

An example of such a scan is shown in Figure 5.2. The scan was performed for

a spot on the sample with the same detuning for Chapter IV. Slices along the x-

direction (long axis of sample) were taken. The top row shows the reconstruction

of the energy states for 60mW of pump power, the threshold power for this position

on the sample and ring diameter. The bottom row shows the reconstruction of the

spatial profile at 275mW, when the ground state was achieved.

It should be noted that these results were not used to make comparisons with

measurements shown in Chapter IV, as these scans were done with a different ex-

perimental set-up and as such, variations in the pumping conditions may have led

to different observations. It should be noted that the higher order state shown in

Figure 5.2 is not the standing wave ripple pattern shown in Chapter IV, despite at-

tempts to recreate the same pump conditions. Instead, the pattern shown is closer

to whispering-gallery modes as described in [126]. The energy states at intermediate

pump powers also resemble more of a continuum distribution, instead of the clearly
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discrete distribution seen in Chapter IV.

Even in a successful comparison, the spatial tomographical scan would still be

limited by the spectral resolution of the spectrometer. It would thus be helpful to

consider the measurement of spatial first-order correlation.

5.1.2 Spatial first-order correlation measurements

As previously discussed in Chapter III, the Berezinskii-Kosterlitz-Thouless tran-

sition (BKT) is characterized by a transition of the first order spatial correlation

function from an exponentially decaying trend to a power law decay. The regime in

which an exponentially decaying trend is observed is associated with the appearance

of free vortices. As such, measurements at different pump powers would inform the

experimenter of conditions in which vortices are more likely to be present.

Obtaining information on the spatial first-order correlation function requires a

Michelson interferometer set-up similar to that shown in Chapter IV. One retrore-

flector is replaced by a mirror such that the two reflected beams are mirror images

of each other. The interference of both beams would thus see a dependence of the

fringe visibility perpendicular to the axis of symmetry. If the intensity in both arms

are equal, the fringe visibility is equivalent to g1(r,−r, τ), assuming a delay time of τ

between the two beams. If the retroreflector used only inverts along one spatial axis,

r is instead replaced by x or y.

Spatial first-order correlation measurements can be performed with time delay de-

pendence as well. The resulting measurement would thus be dependent on both r and

τ . The Fourier transform of this measurement would be the dispersion relationship,

not restricted by the spectral resolution of the spectrometer. This would be useful

for obtaining momentum information for the 3 fractions found in g1(τ) measurements

for Chapter IV.

96



5.1.3 Time-resolved measurements

As discussed in Chapter IV, time-resolved measurements would be needed to con-

firm if the two fractions with the highest coherence times exist at different times during

the pump’s duty cycle. Such an experiment could be performed with a streak camera.

The streak camera resolves the signal in time by first converting the incident photons

to electrons and passing the electrons through a time-dependent voltage sweep. The

electrons are thus distributed across a temporal dimension defined along one spatial

axis of a CCD camera. Streak cameras are often preceded by a monochromator, and

it is thus possible to perform spectral measurements as well.

In an ideal experiment, the goal would be to observe the evolution of the band-

width of the energy states confined within the optically-induced ring trap. A reduction

in the order of magnitude of the linewidth could indicate the binding of free vortices

as the condensate evolves into its equilibrium state. However, streak cameras also

face limitations on spectral resolution and temporal resolution. It is thus unclear if

such measurements would yield any useful information. It may be more useful to

forego the spectral measurements and instead examine the time evolution of the spa-

tial distribution of the energy states. The higher order states cover the entire span

of the ring trap, while the lower energy states occupy a position near the bottom of

the potential well. The evolution of the spatial distribution could thus give clues as

to how the energy states may evolve in time. This could also be complemented with

tomographical scans of spectrometer measurements as described in Section 5.1.1.

5.2 Future work for vortex-detection experiments

Despite the efficacy of the CoMMZI, vortex detection still remains a very challeng-

ing endeavour. In this section, I will discuss the obstacles in the way of a successful

detection of spontaneous vortices in a single-shot condensate. I will then propose
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strategies and equipment that could address such issues.

Even though the CoMMZI could in principle detect vortices with a low num-

ber of photons, the equipment required needs to be able to detect this low number.

Electron Multiplying Charged Coupled Devices (EMCCDs) have proven to be viable

candidates for observing polariton PL with a low number of photons, as shown by

[102, 127]. However, the filamentation of the condensate shown in [102] for more

negative detuning may compromise the overall visibility and thus impede the CoM-

MZI’s efficacy. The more homogeneous profiles at more positive detuning would have

less of an issue, but vortices at such detunings are more likely to combine early in

the condensate’s lifetime, which would lead to an overall homogeneous phase. It thus

becomes a matter of optimization when finding the right detuning. If a more negative

detuning position is desired, the spatial filtering technique discussed in Chapter III

could be used to sample a more homogeneous position of the condensate.

The presence of optically-induced Orbital Angular Momentum (OAM) states that

may lead to false positives in detection. Such states could be induced unintentionally

if the pump has imperfect radial symmetry [138], or they may already exist in a

superposition with a net OAM of zero such as in the case of the optically-induced

ring trap shown in Chapter III. To avoid such complications, it may be helpful to

use a standard Gaussian pump condition but capture the polariton PL at a different

location. The goal in this scenario would be to capture the vortices as they move with

the polariton flow through the sampling area. To increase the chances of detection,

the sampling area could be located at a higher potential than the pump spot, such

that the polaritons are moving at a slower speed due to the loss of kinetic energy [119].

A comparison between single-shot and continuous-wave (CW) pump conditions could

also be done to identify OAM states that form under both conditions.

Time-resolved experiments for vortex detection could be complemented with time-

resolved experiments described in the previous section. Such experiments could pro-
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vide insights into the role of vortices in phase transitions, such as through critical

slowing in the presence of topological defects [139]. However, the low number of

photons would once again be a detriment, and the problem would be made worse by

the extremely low quantum efficiency (QE) of the streak camera’s photocathode. For

the wavelength of PL observed, the photocathode of the Hamamatsu streak camera

would only have a QE of 2%. Not only would that increase the photon number re-

quirement discussed in Chapter III, it would also lead to more false positive or false

negative detections. Until more efficient photocathodes become available, a possible

workaround would be to examine samples with a range of detunings. More negative

detuning samples would allow observations earlier in the thermalization process. If

this approach is taken, caution must be exercised in drawing conclusions as quantities

that could affect vortex behavior, such as the healing length and interaction strength,

are different for different detunings.

A test of single-shot capabilities that could be done prior to testing with sam-

ples like GaAs would be to use more disordered samples like CdTe. Due to lattice

mismatch, CdTe samples have more surface defects and are it is thus more likely for

spontaneously formed vortices to exhibit deterministic behavior, as shown in [23, 22].

Standard pump conditions, such as with a Gaussian profile, could be used to ensure

angular momentum states would not be induced by the pump. While the vortices may

exhibit deterministic behavior, this behavior is not controlled by the experimenter. It

would thus be a test of the CoMMZI in detecting vortices travelling through uncon-

trolled paths. Another alternative woud be to consider using shorter lifetime samples

for a larger polariton decay rate and hence the number of photons carrying an average

vortex phase. The downside of using shorter lifetime samples would be that we may

not catch behavior expected for samples in equilibrium, such as the BKT transition

in which vortices would become bounded. The short lifetime would also make it dif-

ficult for polaritons to propagate far from the pump spot if such configurations were
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desired.

5.3 Summary and Conclusion

In this thesis, I have discussed the development and testing of the Compact Mir-

roring Mach-Zehnder Interferometer, an interferometer which could detect vortices

in polariton PL with a low number of photons. I have then discussed simulation re-

sults on the minimum photon number requirement for detecting vortices given various

scenarios of vortex behavior, then discussed spectrometric and temporal first-order

correlation measurements for a polariton system within an optically-induced ring

trap. I have shown that the CoMMZI can detect orbital angular momentum states

with polariton systems, and shown that it is possible to detect vortices with photon

numbers as low as ∼ 10. The g1(τ) results show the existance of three fractions at

highest pump power, with coherence times spanning nearly three orders of magni-

tude. Time-resolved experiments could be use to determine if these fractions coexist

during the duty cycle of the pump and if this is evidence for prethermalization.

The detection of spontaneous quantum vortices in a single realization of a polari-

ton condensate is challenging, but would be a significant milestone for phase transition

studies in polariton systems. With the powerful potential applications of polaritons,

such studies would undoubtedly be useful for further understanding how such sys-

tems acquire coherence. As of now, EMCCD cameras used to capture signals time-

integrated over a single realization appear to be the most viable candidate, due to

their ability to detect very low photon numbers. Time-resolved experiments could be

performed with streak cameras of improved quantum efficiency.
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APPENDIX A

Appendix for ”Testing of the Compact Mirroring

Mach-Zehnder Interferometer”

A.1 The small and large prism of the CoMMZI

In this section, I show the parameters used for the large and small prism of the

CoMMZI and explain how these parameters were calculated.

Figure A.1 shows the parameters of the large prism and Figure A.2 shows the

parameters of the small prism.

The schematic used to calculate these dimensions are given in Figure A.3. The

angle β was first fixed to 50 degrees, making it larger than the critical angle for BK7,

with a refractive index of 1.5 (41.8 degrees). Using symmetry constraints, α can be

calculated using

180− α = α + βα = 90− β

2
. (A.1)

With β = 50 degrees, α would be 65 degrees. If we assume that the beam enters
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Figure A.1: Parameters of the large prism used in the CoMMZI

Figure A.2: Parameters of the small prism used in the CoMMZI

1cm from the left edge of the large prism, and that the length Llarge of the large prism

is 8cm long, the path length of the beam and the height of the prism can then be

calculated. The path length inside the large prism is calculated to be 12.12cm.

The small prism is more complicated to calculate, due to the constraints of both

path length and symmetry. α is first related to x through its relationship with β via

Equation A.1. This gives:
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Figure A.3: Schematic used to calculate parameters for CoMMZI

sin β =
Lsmall

2
− k

x
,

sin(180− 2α) =
Lsmall

2
− k

x
,

sin(2α) =
Lsmall

2
− k

x
,

(A.2)

where Lsmall is the length of the base of the small prism. The total path length

inside the small prism is then constrained to match the path length of the large prism.

This results in the constraint on x to make it x = p − k tanα, where p is the path

length inside the small prism. Substituting this value of x into Equation A.2, the

following equation is obtained:

p sin 2α− k tanα sin 2α =
Lsmall

2
− k (A.3)

Letting Lsmall be 4cm and thus k = 1cm, a value of 68.8 degrees for α was obtained.

β is thus 42.4 degrees, larger than the critical angle.
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A.2 Computer Generated Holograms and phase profiles ex-

tracted with the Fringe Demodulation method

Figure A.4:
Computer Generated Holograms for an on-centered l=1 vortex (top) and
an off-centered l=1 vortex (bottom)
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Figure A.5:
Computer Generated Holograms for a vortex-antivortex pair with a core
separation of 0.4mm

Figure A.6:
Intensity profile (top left) and phase profile (right) extracted for a Gaus-
sian beam interfering with another Gaussian beam. The original intensity
profile is shown on the bottom left. The extracted intensity profile is the
product of two Gaussian profiles, and thus does not resemble the original.
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Figure A.7:
Intensity profile (top left) and phase profile (right) extracted for a l=2
beam interfering with a Gaussian beam. The original intensity profile is
shown on the bottom left. The extracted intensity profile is the product
of the two beam profiles, and thus does not resemble the original.
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APPENDIX B

Appendix for ”Multi-fluid behavior for polaritons

in an optically-induced ring pump”

In this Appendix, we show data for polariton photoluminescence (PL) experiments

done with an optically-induced ring pump at a position with -10.5meV detuning. The

diameter of the ring pump was 50µm, just as with the -8.4meV data set presented in

Chapter 4.

B.1 Spectrometer data for -10.5meV detuning using an optically-

induced ring pump

Figure B.1 shows the evolution of the polariton population and fraction with pump

power for -10.5meV detuning, 2meV more negative than the -8.4meV data presented

in Chapter 4. The main difference between these two data sets is the second threshold

occuring at 170mW instead of 120mW, and the drop in ground state fraction above

250mW is not observed. The first threshold occurs at 50mW, just as with the -8.4meV

detuning data.

Figure B.2 shows the spectrometer images at various pump powers for -10.5meV

detuning. We were able to reach a higher power than for the -8.4meV detuning data,
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Figure B.1:
Evolution of polariton population and fraction with pump power for -
10.5meV detuning

at 313mW. However, a faint parabolic dispersion could still be observed, a result of

less effective scattering due to decreased interactions.

Figure B.3 shows the evolution of the bandwidth with pump power. The method of

calculating the bandwidth is the same as for -8.4meV, with the limits of the bandwidth

set at when the population drops to 0.05 times the maximum value. Unlike for -

8.4meV, there is no second dip at intermediate powers. The bandwidth also remains

consistently above the spectral resolution of 0.1meV.

Figure B.4 shows the energy with the highest population value at different pump

powers relative to the value at 1mW. The drop from 1mw to 30mW is 1.5meV greater,

and is a result of the more parabolic dispersion at a more negative detuning.

B.2 |g1(τ)| data for -10.5meV detuning using an optically-

induced ring pump

Figure B.5 shows the g1(τ) results for 6 different pump powers taken at -10.5meV

detuning. The fit to a sum of a Gaussian and Exponential, given as

a ∗ exp(−τ − t0
τc1

) + (1− a) exp(−|τ | − t0
τc2

), (B.1)

was used for 32mW (a), 204mW (d), 277mW (e) and 300mW (f). A Gaussian
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Figure B.2: Spectrometer images for various pump powers for -10.5meV detuning

fit was used for 157mW (c), and no fit was done for 57mW (b). The fit to 32mW

was poor with an error 7 orders of magnitude higher than the fit result, and thus

would not be presented here. The regular coherence revivals at 57mW indicates the

presence of 2 narrow band energy states. The period of 50ps indicates that these

energy states are 0.08meV apart in energy.

Table B.2 shows the results of Gaussian and Exponential fitting at the relevant

pump powers.
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Figure B.3: Evolution of bandwidth with pump power for -10.5meV detuning

Power (mW) Fraction a τc1 (ps) τc2 (ps)
204 0.74 ± 0.02 2.7 ± 0.2 180 ± 40
277 0.430 ± 0.008 1.7 ± 0.2 220 ± 10
300 0.417 ± 0.008 1.6 ± 0.2 230 ± 10

Table B.1: Table of fitting results for Gaussian and Exponential fits to |g1(τ)|
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Figure B.4:
Evolution of energy with peak population with pump power for -10.5meV
detuning

Figure B.5:
g1(τ) results for 32mW (a), 57mW (b), 157mW (c), 204mW (d), 277mW
(e) and 300mW (f)
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[7] S. Kéna-Cohen and S. R. Forrest. Room-temperature polariton lasing in an
organic single-crystal microcavity. Nature Photonics, 4(6):371–375, June 2010.

[8] C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Os-
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