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Abstract 

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by impaired glucose-

stimulated insulin secretion in the setting of increased insulin resistance, a condition in which 

the body fails to respond to insulin properly. The endoplasmic reticulum (ER) serves as an 

essential quality control organelle and a Ca2+ reservoir. ER stress has been proposed to cause 

T2DM, but the specific effects of ER stress on beta-cell function are incompletely 

understood. To determine the interrelationship between ER stress and beta-cell function, the 

work in this dissertation primarily used the well-known ER stress inducer tunicamycin (TM) 

to trigger ER stress in insulin-secreting INS-1(832/13) cells or isolated mouse pancreatic 

islets. Beta-cell function, as exemplified by the tight regulation of ER or cytosolic [Ca2+], or 

membrane potential oscillations and insulin secretion, and beta-cell apoptosis were quantified 

at various time points, in parallel with well-established ER stress response markers. We 

observed that the induction of ER stress resulted in decreased ER [Ca2+], increased cytosolic 

free Ca2+ oscillations, membrane potential oscillations and increased insulin secretion, even 

under sub-threshold glucose conditions (e.g. 5 mM glucose) that are typically associated with 

only minimal insulin release. As ER Ca2+ depletion is generally known to activate store-

operated Ca2+ entry (SOCE) in many cell types, we then used YM58483, a selective SOCE 

blocker. We found that the cytosolic Ca2+ and membrane potential oscillations and increased 

insulin secretion we observed resulted from increased SOCE, as these were all acutely 

blocked by the application of YM58483.  



 

 
xvi 

Further dissection of TM-triggered ER [Ca2+] loss was carried out by studying the effect of 

TM on the ER Ca2+ channels, inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine 

receptors (RyRs), and how their activity was tied to subsequent alterations in beta-cell Ca2+ 

homeostasis. Mouse islets were treated with dantrolene (Dan, a RyR1 isoform inhibitor) or 

xestospongin C (XeC, an IP3Rs inhibitor) along with TM overnight. We found that TM-

induced ER Ca2+ depletion, cytosolic Ca2+ and mitochondrial Ca2+ oscillations were inhibited 

by co-treatment with Dan, whereas XeC was without effect on the oscillations. While RyR1 

transcript was increased after TM exposure, transcripts corresponding to IP3R1 and IP3R2 

were decreased by TM. Taken together, TM appeared to deplete ER [Ca2+] by increasing 

RyR1 level and triggering the subsequent activation of SOCE, resulting in increased 

cytosolic Ca2+ oscillations occurring despite the presence of sub-threshold glucose 

concentration.  

 

Finally, we characterized the role of an inward rectifier K+ channel, Kir2.1, in the beta-cell. 

Our lab previously published data supporting the hypothesis that Kir2.1 channels 

compensated for the loss of functional KATP channels in islets from KATP (SUR1) deficient 

mice in the production of cytosolic Ca2+ oscillations. We tested here whether Kir2.1 channels 

might also be involved in ER stress-induced beta-cell dysfunction, by using the selective 

Kir2.1 channels inhibitor ML133. We found that overnight exposure of beta cells to ML133 

suppressed TM-triggered cytosolic Ca2+ oscillations in 5 mM glucose solution, likely due to 

ML133’s inhibitory effect on the activation of the ER stress response marker spliced XBP1.  
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In summary, this dissertation maps the complex process of ER stress altering beta-cell 

function. In the process, we identified several novel mechanisms, including SOCE, RyR1 

and Kir2.1 channels, that may augment insulin secretion in T2DM patients, and their clinical 

potentials as drug targets. 
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Chapter 1 Introduction: The Endoplasmic Reticulum and Calcium 

Homeostasis in Pancreatic Beta Cells 

Irina X. Zhang, Malini Raghavan and Leslie S. Satin 

This article was originally published in 2020 in Endocrinology, 161(2):1-14 

 

Abstract 

The ER (endoplasmic reticulum) mediates the first steps of protein assembly within the 

secretory pathway and is the site where protein folding and quality control are initiated. The 

storage and release of Ca2+ are critical physiological functions of the ER. Disrupted ER 

homeostasis activates the UPR (for Unfolded Protein Response), a pathway which attempts 

to restore cellular equilibrium in the face of ER stress. Unremitting ER stress, and 

insufficient compensation for it results in beta-cell apoptosis, a process that has been linked 

to both T1DM (Type 1 diabetes mellitus) and T2DM (Type 2 diabetes mellitus). Both types 

are characterized by progressive beta-cell failure and a loss of beta-cell mass, although the 

underlying causes are different. The reduction of mass occurs secondary to apoptosis in the 

case of T2DM, while beta cells undergo autoimmune destruction in T1DM. In this review, 

we examine recent findings that link the UPR pathway and ER Ca2+ to beta-cell dysfunction. 

We also discuss how UPR activation in beta cells favors cell survival versus apoptosis and 

death, and how ER protein chaperones are involved in regulating ER Ca2+ levels.  
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Introduction 

Diabetes mellitus is currently a global epidemic, with T2DM accounting for over 90 percent 

of diabetes cases worldwide (1). T2DM is a chronic metabolic disorder characterized by 

impaired glucose-stimulated insulin secretion from islet beta cells in the setting of increased 

insulin resistance (2–4). It is now widely accepted that reduced secretion in T2DM reflects a 

loss of beta-cell function and possibly reduced beta-cell mass, collectively referred to 

sometimes as functional beta-cell mass (2,3,5,6). Understanding the loss of functional mass 

is critical to develop better treatments for the disease. Immunologic and stress-induced 

factors, in contrast, mediate the loss of beta cells in T1DM (or autoimmune diabetes) (7,8), 

and the further understanding of such factors is also critical. 

 

The ER is an intracellular organelle that plays important roles in protein folding and quality 

control, lipid synthesis and Ca2+ storage and release (9). Disrupted ER homeostasis and ER 

stress due to environmental factors have been proposed as potential causes of T2DM (10–12), 

and there is increasing evidence that the UPR becomes activated in pancreatic islets isolated 

from T2DM patients or animal models of diabetes (12–14). A loss of ER homeostasis has 

also been observed in beta cells during the induction of autoimmunity in T1DM, and the 

association between T1DM and UPR activation and consequent beta-cell death has been 

reviewed by several groups (12,15,16). Our understanding of the relationship between ER 

Ca2+, ER stress, and beta-cell death, while the subject of considerable attention in the 

literature is, however, incomplete and there are many competing hypotheses as to the exact 

mechanisms involved. In this review, we will discuss recent findings concerning ER Ca2+ 
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regulation and its possible role in beta dysfunction and compromised cell survival in the 

context of diabetes.  

 

The ER and UPR activation in beta cells  

A properly functioning ER is needed to maintain the health and survival of beta cells. Single 

beta cells synthesize ~1 million insulin molecules/minute (17), about half of the total amount 

of protein they synthesize (18). The beta-cell thus requires a very well developed and highly 

functional ER to support the production and secretion of insulin in response to a rise in 

glucose. A number of studies have suggested that a malfunctioning ER contributes to the 

development of both T2DM and T1DM (10–12,15,19–21). 

 

Proteins fail to fold correctly, resulting in UPR activation. In the UPR pathway, three 

canonical ER membrane transducer proteins are activated once they dissociate from BiP 

(Binding immunoglobulin Protein, also known as HSP70 or GRP78). BiP is a molecular 

chaperone that binds to unfolded/misfolded proteins in the ER lumen by attaching to their 

hydrophobic regions and then releasing the client proteins once they are folded properly 

(22,23). The three transducers that are activated by BiP dissociation are PERK (PRKR-like 

ER kinase), ATF6 (activating transcription factor 6) and IRE1a (inositol-requiring kinase-1) 

(23) (Figure 1.1). In healthy cells, these transducers are occupied by BiP on the lumenal side 

of the ER membrane. However, when ER stress develops in response to the accumulation of 

misfolded proteins in the ER lumen, these proteins act as a sink for BiP, resulting in its 

dissociation from the transducers and subsequently, UPR activation. To avoid excessive 

overlap with other excellent reviews (18–20,24–28), an schematic overview of the UPR 
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cascade is provided in Figures 1-1 and 1-2, and we will only briefly summarize the UPR, as 

well as highlight new findings.  

 

Upon dissociating from BiP, IRE1a is activated by dimerizing and then becoming 

autophosphorylated. Activated IRE1a splices Xbp1 (X-box binding protein 1) mRNA, 

removing a premature stop codon. Spliced Xbp1 (sXbp1) in turn induces the transcription of 

genes encoding chaperones, components of the ERAD pathway (ER-associated protein 

degradation), autophagy and lipid synthesis (29–31) (Figure 1.1). Additionally, sXbp1 

enhances proinsulin folding by directly binding to promoter regions of five PDI (protein 

disulfide isomerases) family genes encoding PDI, PDIR, P5, ERp44 and ERp46 and 

regulating their expression (32). IRE1a cleaves other mRNAs as well, including insulin 

mRNA, to alleviate the ER’s synthetic workload (33,34). Mice harboring a null mutation in 

one of the Xbp1 alleles become insulin resistant, demonstrating a key role of UPR responses 

in insulin action (35). 

 

The transducer of the Xbp1 arm of the pathway, IRE1a is also complex as it has both kinase 

and RNase activity (31). Transiently exposing beta cells to high glucose enhances insulin 

biosynthesis in a manner that is dependent on the kinase activity of IRE1a but independent 

of BiP dissociation or Xbp1 splicing (36). In contrast, chronic high glucose suppresses 

insulin biosynthesis and induces ER stress (36), as reduced insulin transcript has been 

observed in INS-1 cells treated chronically with high glucose. Obviously then, the various 

possible outcomes that can result from activation of the IRE1α arm of the UPR in beta cells 
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require that a higher order of regulation must also be involved, although this regulation is not 

well understood.   

 

In terms of the PERK arm of the UPR, after BiP dissociates from it, PERK also undergoes 

oligomerization and autophosphorylation, as for IRE1α, leading to the phosphorylation of 

eIF2α (eukaryotic initiation factor 2 α subunit) (37). Phosphorylated eIF2α represses the 

initiation of global protein translation and activates ATF4 (activating transcription factor 4), 

which in turn increases the expression of chaperones, oxidoreductases, and genes involved in 

ERAD and autophagy (27,38–40), as described for sXbp1. PERK-deficient mice suffer a loss 

of beta cells and develop diabetes in their early weeks of life (41).  

 

As mentioned, insulin resistance is an important characteristic of T2DM and normal beta 

cells compensate for it by increasing their insulin-secretory capacity and their cell number if 

they are genetically endowed to do so. Several mechanisms underlie the expansion of beta-

cell mass that is needed in order to cope with augmented insulin demand, including changes 

in the expression of cell cycle proteins and transcription factors (42). UPR activation is 

required to hasten beta-cell proliferation that occurs in response to glucose (43). Thus, an 

elevation of glucose in vivo or in vitro increases beta-cell proliferation, especially in rodent 

models, while chemical agents that reduce ER stress decrease it (43). In human islets 

exposed to high glucose or in islets from the db/db mouse, a model of T2DM, beta-cell 

proliferation occurs simultaneously with UPR activation (43). Within the UPR pathway, 

ATF6, rather than PERK or IRE1, has been shown to contribute to the beta-cell proliferation 

that occurs in response to increased insulin demand (43) (Figure 1.1). In addition to high 
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glucose exposure, or the addition of chemical stressors such as thapsigargin or tunicamycin 

(see below), other physiological challenges can lead to ER stress in beta cells. For example, 

hyperlipidemia, a common feature of patients with type 2 diabetes that is linked to insulin 

resistance, or exposure to saturated fatty acids such as palmitate have been shown to induce 

ER stress by activating the PERK and IRE1a pathways (44). Palmitate also increases the 

saturated lipid content of the ER, resulting in ER dilation (a marker of ER stress), trafficking 

of the ER chaperones GRP70 and PDI from the ER to the cytosol, and the depletion of ER 

Ca2+ (45). 

 

Mutations in proinsulin, the protein precursor of insulin that normally accounts for 30-50% 

of the total protein synthesis of the beta-cell (46) can also lead to ER stress. Akita and 

Munich mice carry a mutation in the Ins2 (insulin 2) gene (C96Y in Akita and C95S in 

Munich) that disrupts disulfide bond formation leading to misfolded proinsulin (47,48). 

These mouse models show that misfolded proteins in the ER can sometimes lead to ER 

stress-induced diabetes in the whole animal (48,49). IAPP (islet amyloid polypeptide), a 

protein that is normally co-secreted with insulin from beta cells can, under certain conditions, 

form toxic oligomers in the cell that can also trigger ER stress (50). It has been reported that 

transgenic mice expressing hIAPP (human islet amyloid polypeptide) fed a high-fat diet 

become glucose-intolerant and insulin-resistant (50,51). It has also been shown that hIAPP 

transgenics exhibit hIAPP aggregation and misfolding that in turn triggers ER stress, 

presumably by making ER membrane leaky to Ca2+ (50,52). 

 

Beta-cell survival and apoptosis  
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The UPR exists in two states—an adaptive state of low ER stress, maintained ER 

homeostasis and beta-cell pro-survival and an apoptotic state where apoptosis is initiated and 

cell death ensues in response to pathological conditions (53). To maintain or activate the pro-

survival state when the cell faces stressful conditions, IRE1, PERK and ATF6 become 

activated in order to generate a ‘stress’ signal that is transmitted from the ER lumen to the 

cytosol and nucleus. Transmission of this stress signal re-establishes normal protein 

homeostasis by inhibiting global gene transcription, increasing the degradation of misfolded 

proteins through ERAD, and increasing the degradation of dysfunctional cellular components 

through autophagy (Figure 1.1). Additionally, an increase in the protein-folding capacity of 

the cell occurs due to increased chaperone expression.  

 

Prolonged and unmitigated ER stress, in contrast, activates cellular pathways that favor 

apoptosis (12,13,19,20,25,54,55) (Figure 1.2). Apoptosis then decreases beta-cell mass, 

which increases the stress experienced by the remaining beta cells as they try to compensate 

for the reduced insulin levels and experience increased secretory demand, resulting in 

additional beta-cell death.  

 

IRE1a triggers cell death by inducing the degradation of many ER-localized mRNAs (33), as 

well as cleaving miRNAs that normally repress caspase 2 mRNA translation; this increases 

caspase 2-mediated apoptosis (56) (Figure 1.2). Additionally, IRE1a couples to TRAF2 

(tumor necrosis factor receptor-associated factor 2) localized to the ER membrane, which 

recruits ASK1 (apoptosis signal-regulating kinase 1). ASK1 phosphorylates and 

concomitantly activates JNK (c-Jun N-terminal kinase) to stimulate apoptosis (20). Moreover, 
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the IRE1a-TRAF2 interaction with procaspase 12 promotes its cleavage to active caspase 12, 

which in turn cleaves caspase 3 to induce apoptosis (20,57,58).  

 

Recent studies also implicate the ABL family of tyrosine kinases in the enhancement of ER 

stress-mediated apoptosis through the hyperactivation of IRE1a RNase activity (59). TXNIP 

(thioredoxin-interacting protein) is a newly discovered pro-apoptotic protein that is part of 

the ER stress pathway (60). The IRE1a and PERK pathways, via TXNIP, lead to an increase 

in the production of IL-1b, a highly pro-inflammatory and cell-death inducing cytokine 

(61,62). Cytokine treated INS-1 cells thus have upregulated TXNIP and increased cell death. 

Interestingly, suppressing TXNIP with the diabetes drug sitagliptin prevents TXNIP-

mediated cell death (63). 

 

PERK promotes beta-cell survival by attenuating global translation while upregulating 

AATF (apoptosis antagonizing transcription factor) through eIF2α phosphorylation. AATF 

activates AKT1 via STAT3, and AKT1 is reported to suppress apoptosis (64) (Figure 1.1). 

Activated eIF2α also upregulates ATF4, which promotes cell death through CHOP 

(CCAAT/enhancer-binding protein homologous protein) (20) (Figure 1.2). In contrast, ATF6 

promotes beta-cell survival by increasing the protein-folding capacity of the cell as well as 

the components of ERAD (Figure 1.1). For example, BiP is a major target of ATF6. On the 

other hand, ATF6 favors cell death through CHOP (20) (Figure 1.2). Again, it is clear that 

these signaling pathways are complex in the outcomes they promote require a balancing of 

competing factors.   
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CHOP induces apoptosis through several different mechanisms. CHOP activates ERO1-a 

(ER oxidoreductase 1a) leading to ER hyperoxidation, and disruption of the interaction 

between the chaperone ERp44 and IP3R1 (inositol 1,4,5-trisphosphate receptor type 1), 

causing IP3R1 hypersensitivity and concomitantly increased ER Ca2+ release (65–67). ER 

Ca2+ depletion can trigger in turn activate calpain 2, leading to beta-cell apoptosis (68) by 

activating caspase 12 and JNK (69,70). Moreover, CHOP downregulates anti-apoptotic Bcl-2 

and Trb3 levels and induces pro-apoptotic Bim to favor apoptosis (24,25,65–67). CHOP 

upregulates DNA damage-inducible 34 (GADD34), a protein involved in cell growth arrest 

and DNA damage, leading to apoptosis (24,25,65–67). Studies in model systems have shown 

that Bcl-2 can directly interact with both IP3Rs and RyRs (ryanodine receptors) to suppress 

ER Ca2+ release (71,72). Bcl-2 is known to preserve the integrity of mitochondrial 

membranes and has been shown to inhibit the release of proapoptotic cytochrome C from the 

mitochondrion (73) (Figure 1.2). 

 

The UPR and loss of ER homeostasis in T1DM and T2DM 

Recent studies provide additional evidence for UPR dysregulation in both T1DM and T2DM. 

Dysregulated UPR exhibiting decreased ATF6 and Xbp1 has been observed in two different 

mouse models of T1DM (NOD mice, a model of autoimmune diabetes, and mice expressing 

the LCMV gene (lymphocytic choriomeningitis virus)). ATF6 and Xbp1 are also decreased 

in islets taken from human T1DM patients (74). The chemical chaperone TUDCA 

(tauroursodeoxycholate) prevents the loss of ATF6 and Xbp1, reduces the incidence of 

diabetes and elevates plasma insulin levels and islet insulin content without altering the 

immune cell populations of the pancreases of T1DM mouse models (74).  
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Proinflammatory cytokines such as TNF-a, IL-1b and IFN-g have been implicated in T1DM 

and T2DM (75,76) and have been shown to alter Ca2+ handling, induce UPR dysregulation, 

and alter glucose-induced insulin release in beta cells (76,77). The proinflammatory 

cytokines, IL-1b, TNF-a and IFN-g in combination, IL-1b and IFN-g in combination, or IL-

1b or IFN-g presented alone increase PERK/eIF2a phosphorylation, JNK phosphorylation, 

and CHOP expression in beta cells (78). In one study, IL-1b increased Xbp1 splicing and 

ATF4 and CHOP expression (79). In contrast, in a separate report, IFN-g alone decreased 

Xbp1 splicing and BiP expression, while having no effect on CHOP and ATF4 expression 

(80). Therefore, cytokine may preferentially affect different arms of the UPR pathway when 

applied individually.  

 

The loss of ER homeostasis also affects autoantigen production in T1DM. Post-translational 

modifications of proteins such as deamidation and citrullination are known to be induced in 

diabetes, and the modified peptides that result can become targets of immune cell recognition 

and activation (81). Ca2+-dependent enzymes that mediate such post-translational 

modifications, such as tTG2 (tissue transglutaminade2) are activated after thapsigargin-

mediated ER Ca2+ depletion (82). Additionally, the cytokine IL-1b has been shown to 

convert specific arginine residues of BiP, a diabetes-related autoantigen, into citrulline 

(83,84). Such mechanisms can link ER Ca2+ dysregulation and elevated cytokine levels to the 

generation of autoimmune epitopes in T1DM.  
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In T2DM human pancreas, CHOP nuclear localization was found to be six times higher than 

in non-diabetic human pancreas, but nuclear CHOP was not detected in T1DM human 

pancreas (85). In addition, BiP, ATF4, ATF6, eIF2a phosphorylation and Xbp1 splicing are 

all upregulated in islets isolate from db/db diabetic mice (86). In contrast, other studies 

demonstrate reduced ATF6 and Xbp1 levels in T2DM (87,88).  

 

UPR regulation has also been observed in studies on WRS (Wolcott-Rallison Syndrome) and 

MODY (maturity-onset diabetes of young). WRS is a rare autosomal recessive syndrome 

(89). A deficiency of PERK in humans is the cause of WRS, and it associates permanent 

neonatal diabetes (89). PERK deficient mice exhibit increased expression of BiP, IRE1a, 

Xbp1 splicing and processed ATF6 (90,91). MODY is a rare inherited form of diabetes that 

runs strongly in families (92). There are at least 14 types of MODY caused by mutations in 

one of 14 genes which disrupt insulin production (92). For example, MODY4 is caused by 

heterozygous variants in the Pdx1 (pancreatic duodenal homeobox 1) gene (93). 

Heterozygous mutations in Pdx1 are associated with T2DM. Pdx1 heterozygous mice exhibit 

elevated BiP transcripts (93).   

 

ER Ca2+ regulation 

Glucose-dependent insulin secretion is a Ca2+ dependent process. In beta cells, exposure to 

elevated glucose triggers closure of the ATP-gated K+ channel (KATP) to inhibit K+ efflux 

and this results in plasma membrane depolarization. The voltage-gated Ca2+ channel then 

opens and allows Ca2+ influx (94,95). The ER plays an important role in intracellular Ca2+ 

signaling and it can help coordinates various intracellular signaling pathways that affect beta-
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cell function and insulin secretion (9,10,96). Ca2+ ions are sequestered within the ER due to 

activity of the SERCA pump (Sarco/Endoplasmic Reticulum Ca2+-ATPases, see below) and 

are released into the cytosol in response to various physiological triggers. For example, Ca2+ 

ions are released from the ER following the activation of RyRs or IP3Rs by increased 

cytosolic Ca2+, a process referred to as CICR (Ca2+-induced Ca2+ -release) mechanism 

(97,98). RyRs and IP3Rs are Ca2+ channels that are resident in the ER membrane to mediate 

Ca2+ efflux from the organelle. Of course, a rise in cytosolic Ca2+ resulting from either Ca2+ 

influx or ER release results in the triggered fusion and exocytosis of insulin-containing 

granules to release insulin into the extracellular space. It is crucial for the cell to maintain a 

concerted regulation of ER Ca2+ uptake and release in order to preserve normal Ca2+ 

signaling. As noted above, unresolved ER stress can result in the depletion of Ca2+ from the 

ER and subsequent apoptosis (Figure 1.2). Conversely, there are UPR-independent routes to 

decrease ER free Ca2+ under different pathological conditions, which in turn can result in a 

loss of ER homeostasis and cell death (99–101).   

 

ER Ca2+ is regulated by three classes of handling proteins: (i) SERCAs, which are pumps 

that transport free Ca2+ from the cytosol to the ER lumen in an ATP-requiring manner; (ii) 

ER Ca2+-binding proteins, which can bind significant amounts of Ca2+ in the ER lumen, and 

(iii) ER Ca2+ channels, the RyRs, the IP3Rs and the translocon, which all can potentially 

release Ca2+ into the cytosol (Figure 1.3A). Dysfunction manifested in any of the three 

classes of ER proteins can disrupt ER homeostasis.  
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The genes encoding the SERCAs (e.g. SERCA1, 2 and 3) generate more than 14 different 

isoforms by alternative splicing (102). SERCA 2b (110 kDa) is the predominant isoform 

expressed in beta cells (103), and is downregulated in islets from the db/db mouse, cytokine 

treated beta cells and islets from T2DM donors (79,104) (Figure 1.3B). Interestingly, this 

loss was alleviated by the application of pioglitazone, an agonist of PPAR-g (peroxisome 

proliferator-activated receptor) that regulates SERCA2b transcription (104). Increasing 

SERCA2b expression improves insulin secretion and reduces apoptosis in response to 

inflammatory cytokines or high glucose in INS-1 cells (104). Other studies also support the 

hypothesis altered SERCA expression can contribute to diabetes (105). In addition, islets 

isolated from whole-body SERCA2 haploinsufficient mice exhibited lower ER Ca2+ levels, 

reduced insulin secretion and increased ER stress and beta-cell death in mice that were fed a 

high fat diet (103).  

 

PERK and calcineurin have been shown to be important to insulin secretion and glucose 

homeostasis through regulating SERCA activity and ER Ca2+ uptake. In addition to 

regulating the UPR, PERK is also essential for normal beta-cell function. Similar to human 

WRS, PERK deficient mice rapidly become hyperglycemic and exhibit reduced insulin 

content and beta cells apoptosis beginning fourth postnatal weeks (41). Calcineurin (protein 

phosphatase 3), a Ca2+ and calmodulin dependent protein phosphatase, regulates human beta-

cell survival, as its inhibition induces apoptosis (106). Cavener and his group members have 

shown that acute inhibition of PERK or calcineurin impairs glucose-stimulated insulin 

secretion and Ca2+ influx through SOCE (store-operated Ca2+ entry, see below) in beta cells 

(107). PERK inhibition decreases ER Ca2+ reuptake via SERCA by reducing the interaction 
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of SERCA and calnexin, which binds to SERCA and suppresses the SERCA activity. 

Calcineurin interacts with PERK and dephosphorylates calnexin. Therefore, PERK and 

calcineurin act together to regulate SERCA activity (107).   

 

Ca2+ uptake and sequestration into the ER can filter Ca2+ signaling in beta cells 

ER Ca2+, uptake in beta cells during glucose-induced Ca2+ oscillations, filters and shapes the 

waveforms of the cytosolic Ca2+ oscillations by introducing a slow time constant (3). Thus, as 

Ca2+ initially rises in the cytosol, its slower uptake into the ER via SERCA alters the 

dynamics of the Ca2+ rise (reduced SERCA activity increases the rate of rise of cytosolic 

Ca2+ in response to Ca2+ influx into the cell) and seen in the cytosol. In addition, once the ER 

is filled with Ca2+ by the end of the oscillation active phase, the ER will begin to passively 

release Ca2+, giving rise to a secondary (and slower) phase of decay at the end of the 

oscillation. This filtering of cytosolic Ca2+ transients has been modeled by Sherman and 

colleagues who showed that it can have a profound effect on the time courses of Ca2+-

dependent processes in the beta-cell (108). Of interest is that experimental studies of the ER 

Ca2+ uptake and release processes failed to establish the identity of the ion channel(s) or 

pathway(s) mediating slow ER Ca2+ leak (109). However, it was clearly not mediated by 

either IP3Rs or RyRs, as it was insensitive to drugs known to block these channels. As 

unconventional ER Ca2+ channels such as Sec61 (see below) may fulfill this role, more 

investigations seem warranted. 

 

The ER contains approximately 2 mM total Ca2+, and only a fraction of this is free. The 

majority of ER Ca2+ is thought to be bound to various Ca2+-binding proteins including, 
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calreticulin, BiP, PDI and GP94 (110). Calreticulin has a highly acidic C-terminal domain 

that contains multiple low affinity Ca2+-binding sites (111,112). These sites bind Ca2+ with a 

KD in the ER Ca2+ range (113,114), and a number of studies indicate that the overexpression 

of calreticulin increases the Ca2+ storage capacity of the ER (115,116). UPR activation 

induced by high glucose or HFD treatment in mice shows increased expression of 

calreticulin (43,117,118). In addition to increasing ER Ca2+ storage, calreticulin is a 

chaperone for nascent ER glycoproteins, that contains monoglucosylated glycans, the key 

structural elements of glycoproteins that are recognized by calreticulin. Via this function, 

calreticulin could contribute to the enhanced maintenance of ER homeostasis in a stressed 

ER (119). 

 

BiP is suggested to play a role in ER Ca2+ storage in some studies (120), whereas other 

studies support the hypothesis that Ca2+ binding by BiP primarily regulates its interactions 

with nucleotides and other factors (121). Structural studies of truncated BiP constructs 

indicate the presence of two Ca2+ binding sites in the vicinity of the nucleotide 

binding/catalytic site of BiP (122). Further studies are required to understand whether BiP 

contains low affinity Ca2+ binding sites that contribute to ER Ca2+ storage, and if so, where 

such sites are located.  

 

While a number of reviews indicate that reduced ER Ca2+ levels impair the conformation and 

function of ER Ca2+-binding chaperones, there have been relatively few studies of this. In 

fact, in one study, decreasing the Ca2+ concentration in the 1-0.1 mM range increased the 

ATPase activity of recombinant BiP (123). Additionally, the binding of calreticulin to 
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monoglucosylated glycans was shown to be independent of Ca2+ concentration (124). On the 

other hand, low affinity Ca2+ binding influences the structure of calreticulin (114,125) and 

mediates its phospholipid binding (126). Moreover, the ER retention of several Ca2+-binding 

chaperones at least partly depends on the maintenance of normal ER Ca2+ levels (127–131) 

and/or the presence of their Ca2+-binding domains (132). Thus, by interfering with their 

proper localization, ER Ca2+ depletion is predicted to interfere with the proper function of 

Ca2+-binding chaperones. 

 

ER Ca2+ efflux channels: RyRs, IP3Rs, and the Translocon 

Ca2+ exits the ER down its concentration gradient via RyRs or IP3Rs, or the translocon as 

mentioned previously. Ca2+ release through RyRs is primarily triggered by increased 

cytosolic Ca2+ through the process of CICR. The advantage of CICR is that it can occur 

rapidly and regeneratively, as Ca2+ released into the cytosol then facilitates the further release 

of more Ca2+, a positive feedback process (97,133). RyRs are the largest known ion channel 

proteins. There are three RyR isoforms, each having a molecular mass of 565 kDa (134,135). 

RyR1 and RyR2 are primarily expressed in skeletal and cardiac muscle, respectively, and 

RyR3 is expressed at rather low levels in various other tissues (134). In beta cells, RyR2 is 

the predominant isoform, but RyR1 is also expressed, albeit at a comparatively low level 

(136). RyR3 appears to be minimally expressed in beta cells (136). However, the existence 

of RyRs and their significance for beta-cell function has been the subject of considerable 

controversy given their relatively low level of expression (137) and whether or not there is an 

important role for cyclic ADP-ribose as a stimulator of Ca2+ release via RyRs (138,139).  
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RyR activity can be increased by ATP, CaMKII (Ca2+/CaM-dependent protein kinase II) 

(135,140)) or PKA (135,140,141). The drug ryanodine, a classic blocker of RyRs has a 

complicated pharmacology as it has both agonist and antagonist actions on RyRs depending 

on the dose used (142). Thus, RyRs are activated by ryanodine at nanomolar concentrations, 

where ryanodine binding to the RyR keeps it in an open state that allows ER Ca2+ release into 

the cytosol. In contrast, at >100 µM, ryanodine inhibits RyRs (140). Another well-known 

RyR blocker is the muscle relaxant dantrolene (143). Dantrolene selectively blocks RyR1 

and RyR3 but not RyR2 (143). Evans-Molina and colleges have proposed that tunicamycin-

induced ER stress increases RyR activity and ER Ca2+ release without altering RyR2 

expression and results in increased spontaneous cytosolic Ca2+ transients in response to 

elevated extracellular Ca2+ levels in INS 1 cells and dispersed cadaveric human islets. Islets 

isolated from Akita mice exhibit cytosolic Ca2+ oscillations stimulated by 5 mM glucose, 

whereas wildtype littermate mice do not have the same sensitivity (136). Ryanodine 

suppresses the glucose-stimulated Ca2+ oscillations in Akita mice and decreases tunicamycin-

induced spontaneous Ca2+ transients in INS 1 cells and human islets. They also suggest RyR2 

as the isoform gains function in response to ER stress. In addition to the fact that RyR2 is the 

predominant isoform of RyR, knock-in mice with a mutation of chronic activation of RyR2 

mimicking constitutive CaMKII- phosphorylation develops glucose intolerance and exhibits 

diminished Ca2+ responses and impaired glucose-induced insulin secretion (136,144). 

However, in this study dantrolene (at 1 µM) failed to restore ER Ca2+ when applied to 

tunicamycin-treated INS-1 cells. In a separate study, on the other hand, 30 µM dantrolene 

decreased thapsigargin-triggered apoptosis in MIN6 cells, an insulin secreting mouse cell 
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line (145). These findings indicate that ER stress can cause complex and cell-type dependent 

modulation of ER Ca2+ efflux channels.  

 

Calstabin (a Ca2+ channel stabilizing binding protein) binds to RyRs and prevents ER Ca2+ 

leak by stabilizing the closed states of the RyRs (134). Calstabin 2 is a subunit of the RyR2 

macromolecular complex and its dissociation from RyR2 causes increased ER Ca2+ leak 

(134). Human patients and mice harboring mutations that alter the binding of calstabin2 to 

RyR2 (for example, CPVT (catecholaminergic polymorphic ventricular tachycardia)) are 

glucose intolerant and have decreased glucose-stimulated insulin secretion due to increased 

ER Ca2+ leakage. Islets from T2DM donors or diabetic mouse islets have 

oxidation/nitrosylation of RyR2 and a depletion of calstabin2. Inhibiting the dissociation of 

calstabin2 from RyR2 using the drug Rycal S107 reverses glucose intolerance and improves 

insulin secretion in both human and murine islets, indicating that the proper functioning of 

RyR2 channels is critically important for beta cells (134). 

 

IP3Rs contain an IP3 binding-core domain near their N-termini. Upon binding IP3, the 

binding-core rearranges and then dissociates from its associated suppressor domain, resulting 

in IP3R activation. IP3Rs become less sensitive to IP3 when the ER Ca2+ level is low in 

order to protect the ER from becoming too Ca2+ depleted. RyRs and IP3Rs share 40% 

homology (135), and as for RyRs, IP3Rs are also regulated by cytosolic Ca2+, ATP, and 

protein phosphorylation, and they also interact with other proteins (135,146–148). Three 

IP3R isoforms (IP3R1, IP3R2 and IP3R3) exist and each has a molecular weight about 300 

kDa (135,149). IP3R2 is most highly expressed in cardiac and skeletal muscle, as well as 
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liver and kidney (150), while IP3R3 is expressed in both endocrine and exocrine pancreas, as 

well as other tissues (150). While genetic variation within IP3R3 has been linked to T1DM 

(151), IP3R1 is the most abundant isoform in beta cells (152).  

 

Many proteins interact with IP3R1. As noted above (Figure 1.2), the chaperone ERp44 

inhibits IP3R1 when ER Ca2+ levels are low (67), and BiP helps assemble IP3R1 into 

tetramers and is required for Ca2+ release by the receptor (67) (Figure 1.3A). ERp44 

competes with BiP for the same site on IP3R1 (67). In the face of ER stress, ERp44 

upregulation causes BiP to dissociate from IP3R1, leading to decreased IP3-induced 

Ca2+ release (Figure 1.3B).  

 

In contrast to RyRs and IP3Rs, the translocon is a Ca2+ ‘leak channel’ (153,154), but it is not 

regulated by cytosolic Ca2+ or by GPCR (G protein-coupled receptor) activation. Sec61, a 

core component of the translocon, is located on the ER membrane (153), along with other 

protein components. The Sec61 complex forms a protein-conducting channel to translocate 

nascent polypeptide chains from the cytosol to the ER during translation. The translocon 

complex has also been proposed to mediate ER Ca2+ leak (154). Mice with Sec61 gene point 

mutation fed on HFD are hyperglycemic and hypoinsulinemic compared to their wildtype 

littermates. After feeding these mice HFD for a week, the islets isolated from these mice 

show upregulation of BiP and CHOP as well as an increase in apoptosis (155). 

 

ER membrane localized K+ channels  
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The ER Ca2+ concentration is greater (e.g. 300-700 µM) than that of the cytosol (e.g. 50 – 

100 nM) and the activity of ATP-fueled SERCA pumps is largely responsible for 

maintaining this ER Ca2+ gradient in the absence of an ER potential difference or a K+ 

concentration gradient (156). SERCA pumping of Ca2+ from the cytosol to the ER is 

associated with a proton ejection and a proton-K+ exchanger (KHE) operates to reclaim 

these ejected protons (156–159). Various K+ channels in the ER can in turn mediate K+ 

reuptake by the ER. 

 

TALK-1 and TASK-1 are two ER-located K+ channels (Figure 1.3) that likely help mediate 

these ER K+ fluxes (160). Mouse beta cells lacking TALK-1 have been reported to have 

elevated ER Ca2+ and reduced ER Ca2+ release (160,161). Therefore, TALK-1 modulates ER 

Ca2+ homeostasis. TALK-1 deficient mice have decreased expression of BiP after a 

prolonged high-fat diet (HFD), which implicates that maintaining ER Ca2+ may prevent UPR 

activation in islets (161). TALK-1 deficient mice also have decreased mRNA encoding 

SERCA 2b and 3 after a prolonged HFD, which perhaps suggests they may prevent ER Ca2+ 

overload (161). Much remains to be understood about changes to TALK-1 and TASK-1 

expression and their functional roles under ER stress conditions in beta cells. 

 

Store-operated Ca2+ entry [SOCE] 

A reduction in ER Ca2+ is sensed by an ER Ca2+ sensor called STIM1 (STromal Interaction 

Molecule 1) which multimerizes and then redistributes to the ER-plasma membrane junction. 

Here, STIM1 binds to and subsequently opens ORAI1 ion channels which are Ca2+ 

permeable, triggering Ca2+ entry into the cytoplasm as part of a process called SOCE (162). 
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This mechanism was originally proposed by Putney and colleagues based on data from 

inexcitable cells, and they called the mechanism ‘capacitative Ca2+ entry’. This is in 

reference to the fact that the release of Ca2+ from the ER and subsequent ER Ca2+ depletion 

concomitantly increased the uptake of extracellular Ca2+ and ER Ca2+ repletion (163), much 

like a capacitor that can store charge but then discharge it. Recent studies show that treating 

human and mouse islets with a cocktail of TNF-a, IL-1b and IFN-g or glucolipotoxicity-

inducing agents reduce levels of STIM1 protein (77). STIM1 expression is also reduced in 

STZ (streptozotocin)-treated mice and islets from T2DM donors. Restoration of STIM1 

expression in islets from T2DM donors was found to improve insulin secretion (77). 

 

Mutations in the components comprising SOCE have been linked to several major diseases, 

including severe combined immunodeficiency (164). Precise regulation of SOCE is critical 

for maintaining normal glucose-stimulated insulin secretion in beta cells (165). In these cells, 

SOCE also helps maintain ER Ca2+ and provides an extra Ca2+ influx mechanism to help 

depolarize beta cells in response to GPCR agonists such as GLP-1 and acetylcholine (166). 

In pancreatic alpha cells, Gylfe and colleagues have proposed that SOCE plays an essential 

role in the stimulus secretion coupling mechanism that links low glucose to increased 

glucagon secretion (167), although this remains controversial (168). 

 

Conclusions and future perspectives 

Overall, there has been remarkable progress in our understanding of how the UPR and Ca2+ 

handling become dysregulated in diabetes. Genetic mutations, membrane lipid and glucose 

induced alterations as well as inflammatory mediators influence the induction of the UPR, as 
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well as the expression or activity of key regulators of ER Ca2+. In turn, a loss of ER 

homeostasis has important consequences for insulin secretion and glucose intolerance in 

T2DM and for the generation of autoimmune epitopes in T1DM. However, many gaps 

remain in our understanding of the detailed molecular mechanisms involved in the loss of ER 

homeostasis and also Ca2+ dysregulation in diabetes, which may be important for identifying 

new drug targets. Further studies thus are needed to apply our current level of knowledge to 

design of new therapeutics. 

 

Dissertation Project Preview 

In this thesis, we aim to investigate the interrelationship between ER stress and pancreatic 

beta-cell function and beta-cell apoptosis. The function of a beta-cell includes cytosolic Ca2+ 

oscillations, membrane potential oscillations, mitochondrial Ca2+ oscillations and insulin 

secretion (Figure 1.4, beta-cell cartoon). We begin by demonstrating how beta-cell function 

and viability are affected as a consequence of ER stress (Chapter 2). Chapter 3 focuses on the 

mechanism of ER stress-inducing ER Ca2+ loss. Next, chapter 4 characterizes the inward 

rectifier K+ channel Kir2.1 in beta cells under ER stress conditions. Finally, section 5 

concludes significant findings, discusses limitations and proposes future directions.   
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Figures and legends 
 

 

 

Figure 1.1 UPR activation mediates beta-cell survival 

BiP is sequestered by binding to ER stress-inducing unfolded/misfolded protein in the ER lumen, 
leading to its dissociation from PERK, IRE1a and ATF6, which are ER membrane-localized 
stress transducers. Activated PERK phosphorylates eIF2a, which inhibits global protein 
translation and activates ATF4. ATF4 mediates the transcription of genes that encode chaperones, 
oxidoreductases, ERAD and autophagy. IRE1a cleaves Xbp1 mRNA, and spliced Xbp1 (sXbp1) 
mRNA in turn mediates gene transcription of chaperones, lipid synthesis, and ERAD and 
autophagy. In addition, sXbp1 promotes proinsulin folding through various PDI family genes. 
When ATF6 is released from BiP, it translocates to the Golgi complex, where ATF6 is cleaved to 
generate ATF6f. ATF6f activates the transcription of genes encoding protein chaperones and 
ERAD. ATF6f also triggers beta-cell proliferation. When mild or tolerable levels of UPR are 
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activated in beta cells, the UPR transducers PERK, IRE1a and ATF6 mediate the transcription 
of genes for chaperones, ERAD components and autophagy in an attempt to restore ER 
homeostasis. UPR activation also triggers mRNA decay and attenuates global gene translation to 
reduce the workload on the ER. Finally, the induction of AKT1 and reduction of TXNIP serve to 
inhibit cell death. Elements of the UPR pathway are essential to maintaining beta-cell 
homeostasis under normal conditions, due to the high secretory workload placed on the beta-cell. 

 

 

 

Figure 1.2 UPR activation can also mediate beta-cell apoptosis 

Prolonged and unresolvable ER stress and concomitant UPR activation can trigger the activation 
of apoptotic pathways like the ASK1-JNK and CHOP mediated apoptosis pathways. ER stress 
also upregulates caspases and TXNIP, proteins that are involved in apoptosis. IRE1a cleaves 
microRNA that suppresses caspase 2 translation. IRE1a also couples to TRAF2 and triggers 
apoptosis. PERK and ATF6 activation upregulate CHOP and leads to apoptosis by upregulating 
GADD34, Bim and ERO1-a and by downregulating Trb-3 and Bcl-2. ERO1-a causes ER 
hyperoxidation that disrupts ERp44-IP3R1 interaction, causing IP3R1 hypersensitivity and 
increases ER Ca2+ release. Bcl-2 suppresses IP3Rs and RyRs-mediated ER Ca2+ release. ER Ca2+ 
depletion leads to beta-cell apoptosis through the activation of calpain 2, which activates caspase 
12 and JNK.  
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Figure 1.3 ER Ca2+ regulation in beta cells in the presence and absence of ER stress 

ER Ca2+ is regulated by SERCAs, RyRs, IP3Rs and possibly the translocon. SERCA pumping of 
Ca2+ to the ER is concomitant with a proton ejection and a KHE operates to reclaim these ejected 
protons. BiP is required for IP3R1 tetrameric assembly and Ca2+ release from the ER. ERp44 
competes with BiP binding to IP3R1 at the same site and inhibits IP3R1-mediated ER Ca2+ 
release. To maintain ER Ca2+ homeostasis, two members of the twin-pore K+ channel family, 
TALK-1 and TASK-1 come together to form a K+ channel mediating K+ influx that can help 
promote ER Ca2+ release. In response to ER stress conditions, BiP is sequestered by misfolded 
proteins, ERp44 becomes upregulated and competes with BiP binding to IP3R1 which results in 
decreased IP3-induced Ca2+ release.  
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Figure 1.4 Beta-cell schematic 

In response to rising glucose concentration, glucose enters the beta-cell via type 2 glucose 
transporters (GLUT2) and is then metabolized to generate ATP. Increased ATP/ADP causes the 
ATP-sensitive potassium channel (KATP) to close, depolarizing the beta-cell. Voltage-gated-Ca2+ 
channels (VGCC) are activated by depolarization, and Ca2+ then flows into the beta-cell and 
drives insulin secretion. The ER serves as a Ca2+ reservoir. Ca2+ is pumped into the ER lumen via 
sarco/endoplasmic reticulum Ca2+-ATPases (SERCA pumps) and released to the cytosol through 
the triggered activation of inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine receptors 
(RyRs). ER Ca2+ depletion results in the opening of the store-operated Ca2+ entry (SOCE) of the 
plasma membrane.  
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Abstract 

Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin 

secretion and increased peripheral insulin resistance. Unremitting ER stress can lead to beta-cell 

apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link 

ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely 

understood. To determine the interrelationship between ER stress and b-cell function, here we 

treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress inducer 

tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the 

unfolded protein response (UPR). Beta cells treated with TM also exhibited concomitant 

alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known 

to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations 

occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry (or 

SOCE). TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited 

by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells 
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secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 

mM glucose, YM58483 blocked this secretion. Taken together, these results support a critical 

role for ER Ca2+ depletion-activated Ca2+ current in mediating Ca2+-induced insulin secretion in 

response to ER stress.  

 

Introduction 

Type 2 diabetes mellitus (T2D) is characterized by impaired glucose-stimulated insulin secretion 

in the setting of insulin resistance (1–3). Insulin secretion from pancreatic beta cells is triggered 

by glucose-induced Ca2+ entry triggered by the closure of K(ATP) channels (4–6). In many 

preparations, Ca2+ entry is manifested by regular oscillations in cytosolic Ca2+, where each 

oscillation in turn provokes the release of insulin granules (4, 7–10). Maintaining intracellular 

Ca2+ homeostasis is critical for proper insulin secretion and for retaining beta-cell fitness. In 

mammalian cells, such as the pancreatic beta-cell, the ER is the intracellular organelle where 

proteins of the secretory pathway are synthesized and initially packaged for export (11). In 

addition, the ER maintains protein quality control (12), and serves as a Ca2+ reservoir that 

sequesters but also can release free Ca2+ into the cytosol to generate a physiological signal (13–

15). Ca2+ is pumped into the ER lumen via sarco/endoplasmic reticulum Ca2+-ATPases (SERCA 

pumps) and released to the cytosol through the triggered activation of inositol trisphosphate (IP3) 

and/or ryanodine receptors in the ER membrane (16–21). 

 

Beta cells undergo apoptosis after sustained exposure to the ER stress inducers tunicamycin 

(TM), thapsigargin, dithiothreitol (DTT), high-glucose or saturated fatty acid (22–27). These 

conditions activate the unfolded protein response (UPR) through various mechanisms to restore 
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normal proteostasis and preserve beta-cell function and viability (22, 23). For instance, TM 

inhibits N-acetylglucosamine phosphotransferase, the key enzyme involved in the N-

glycosylation of proteins, which in turn leads to the misfolding of glycoproteins in the ER (28). 

The resulting ER stress causes UPR activation which in turn may restore proper protein folding 

and trafficking, increase the protein-folding capacity of the cell, and causes the degradation of 

misfolded proteins. In addition, further activation of the UPR inhibits new protein synthesis to 

reduce the protein load of the ER during times of increased stress.  

 

Disrupted ER homeostasis has been proposed to be a potential cause of T2DM (14) and 

increasing evidence has emerged suggesting that the ER stress cascade is activated in islets from 

T2DM patients and from animal models of diabetes (23, 29, 30). We have recently discussed the 

potential links between disrupted ER homeostasis and altered beta-cell function in a review 

article (31). Other groups have also proposed the relevance of UPR signaling to beta-cell loss 

and the pathology of diabetes (32). We wished to advance the study of ER stress in disrupting 

specific beta-cell function, such as ER Ca2+ handling, cytosolic Ca2+ oscillations and insulin 

secretion, and we also wanted to determine how these changes in turn affected long term beta-

cell survival.  

 

In our study, we used TM to experimentally induce ER stress in insulin-secreting INS-1(832/13) 

cells or isolated mouse islets. ER stress responses in the form of UPR endpoints, ER and 

cytosolic Ca2+ levels, insulin secretion and beta-cell death were measured at various time points 

after exposing islets or cells to TM to determine the timeline of these events. TM treatment 

increased cytosolic Ca2+ and insulin secretion, even in 5 mM glucose, a level that is below the 
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normal glucose threshold of insulin secretion and the triggering of cytosolic Ca2+ oscillations. 

We further found that this abnormal Ca2+ signaling resulted from the activation of store-operated 

Ca2+ entry (SOCE), most likely due to a stress-induced reduction of ER Ca2+ concentration. The 

possible significance of this novel mechanism for augmenting insulin secretion for patients with 

T2DM is discussed.  

 

Experimental procedures  

Materials  

Tunicamycin (TM), YM58483, thapsigargin (TG), 2-Aminoethoxydiphenyl borate (2APB) and 

SKF96365 (SKF) were all obtained from Cayman Chemical. Small interfering RNAs (siRNAs) 

were purchased from ThermoFisher scientific. Supplementary Tables 1A and 1B contain a 

complete list of PCR primers and antibodies, respectively. ECL reagents was obtained from Bio-

Rad Laboratories. 

 

Isolation of pancreatic islets and islet pretreatments  

Pancreatic islets were isolated from male Swiss-Webster mice (3 months of age; 25-35 g) 

according to the regulations of the University of Michigan Committee on the Use and Care of 

Animals (UCUCA), using previously described methods (78) and with an approved protocol. 

Isolated islets from a given mouse were divided into control and experimental groups, and both 

were cultured in standard RPMI 1640 medium containing 11 mM glucose, 10% fetal bovine 

serum (FBS), 10 mM HEPES, 1% penicillin/streptomycin and 1% sodium pyruvate. Control 

islets were incubated with DMSO, while test islets were pretreated with 10 µg/mL tunicamycin. 
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Cell culture and transfection  

INS-1(832/13) cells were grown in RPMI 1640 containing 11 mM glucose, 10% fetal bovine 

serum (FBS), 1% penicillin/streptomycin, 10 mM HEPES and 1% sodium pyruvate. INS-

1(832/13) cells were grown in 10 cm culture dishes, 6-well plates or T25 flasks at 37°C in a 5% 

CO2 humidified atmosphere. Cells obtained ∼70% confluence prior to the initiation of 

experimentation. INS-1(832/13) cells were transfected with STIM1-specific siRNA or negative 

control siRNA using lipofectamine RNAiMAX reagent as described in the manufacturer’s 

protocol (Invitrogen). The treated cells were assessed by real-time PCR and western blot.  

 

Real-Time PCR  

Total RNA was extracted from INS-1(832/13) cells or islets using the RNeasy Mini Kit (Qiagen) 

according to the manufacturer’s instructions. One µg of total RNA from INS-1(832/13) cells or 

0.4 µg of total islet RNA was reverse-transcribed using Superscript RT II (Invitrogen) according 

to the manufacturer’s instructions. Real-time experiments were carried out using an SYBR Green 

PCR master mix (Applied Biosystems) with the primers shown in Table 1A. Raw threshold-

cycle (CT) values were obtained using the Step One software, and mean CT values were 

calculated from triplicate PCR reactions for each sample. Data were presented as RQ values (2-DD 

CT) with expression presented relative to an endogenous control, HPRT1.  

 

Western blotting 

Total protein was obtained by treating INS-1(832/13) cells or mouse islets with KHEN lysis 

buffer (50 mM KCL, 50 mM HEPES, 10 mM EGTA, 1.92 mM MgCl2; pH 7.2) and then 

separating proteins using 4-12% SDS-PAGE and transferring them to nitrocellulose membranes. 
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Membranes were blocked in 5% w/v nonfat dry milk or 5% BSA in 1X TBST containing 50 mM 

Tris-HCl (pH 7.4), 150 mM NaCl and 0.1% Tween 20. Blots were incubated overnight with 

primary antibodies diluted in 5% nonfat dry milk in 1X TBST at 4 °C as described in Table 1B. 

Blots were incubated with horseradish peroxidase (HRP)-conjugated mouse anti-rabbit 

antibodies or goal anti-mouse antibodies and these were visualized using ECL reagents. 

 

Fura-2/AM imaging  

Islets were loaded with Fura-2/AM (2.5 µM) for 45 min. in medium containing 5 mM glucose 

prior to imaging. Islets were then transferred to a 1 mL perfusion chamber containing 5 mM 

glucose imaging buffer for 6 min, followed by 10 to 30 min perfusion with this solution at 

approximately 1 mL/min. Imaging buffer contained (in mM): 140 NaCl, 3CaCl2, 5 KCl, 2 MgCl2, 

10 HEPES and 5 glucose. Ratiometric Fura-2 imaging was carried out using 340/380 nm 

excitation and collecting 502 nm emission, as previously described (78). The fluorescence data 

were acquired using Metafluor. 

 

FRET measurements  

To measure ER Ca2+, we utilized a previously described ER-localized FRET biosensor, D4ER 

(79). The sensor was selectively expressed in the beta cells of intact mouse islets using an 

adenovirus and under the control of the rat insulin promoter, as previously described (79). The 

same system described above for Fura-2/AM imaging was employed here. D4ER imaging was 

carried out using 430 nm excitation, and 470/535 nm ratiometric emission. The imaging solution 

used contained (in mM): 140 NaCl, 3 CaCl2, 5 KCl, 2 MgCl2, 10 HEPES, 5 glucose and 0.2 

diazoxide (Dz). Dz was included to keep the KATP channel in its open state to prevent oscillatory 
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Ca2+ activity and improve the signal/noise ratio and stability of the ER Ca2+ recordings. FRET 

ratios were acquired using Metafluor, and mean values were calculated using Prism.  

 

Analysis of cytosolic Ca2+ recordings  

Traces containing cytosolic Ca2+ oscillations were analyzed using MATLAB (Mathworks) to 

obtain the plateau fraction (PF), periods, baseline ratios and relative amplitudes of Ca2+ 

oscillations, as described (50). PF was calculated as the active phase duration divided by the 

period of each oscillation (50). Only islets displaying oscillations were assigned a PF, and those 

exhibiting a persistent plateau phase were assigned a PF value of 1.0.  

 

Electrophysiology  

Islet membrane potential was measured using perforated patch whole cell current clamp as 

described (53). Electrophysiological recordings were made from single beta cells in intact islets 

treated with TM for 6, 12 and 16 hours, respectively. Islets treated with vehicle medium were 

used to make control recordings. Only one beta-cell in each intact islet was patched. Membrane 

potential of each beta-cell in an intact islet was recorded in current-clamp mode after perforated 

patch configuration was established. The external recording solution contained (in mM): 140 

NaCl, 3 CaCl2, 5 KCl, 2 MgCl2, 10 HEPES and 5 glucose. 

 

Assays of cell death  

INS-1(832/13) cells were dislodged from T25 flasks with 0.05% trypsin and after gentle shaking, 

and propidium iodide (PI) was applied to label dead cells, as described in the manufacturer’s 
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protocol (Sigma). The percentage of PI-positive cells was determined using a flow cytometer 

provided by the Flow Cytometry Core of the University of Michigan.  

 

Assays of apoptosis  

INS-1(832/13) cells were harvested as described in above cell death assay and fixed in cold 70% 

ethanol and stored in 4°C. Before measurement, PI was added as described in the manufacturer’s 

protocol (Sigma), and the percentage apoptotic cells was determined by calculating the 

percentage of sub-G1 cells in the DNA content histogram using a flow cytometer provided by 

the Flow Cytometry Core of the University of Michigan.  

 

Glucose-stimulated insulin secretion assay (GSIS) 

Islets were washed with glucose free KRB buffer (115 mM NaCl, 4.7 mM KCl, 1.2 mM 

MgSO4•7H2O, 1.2 mM KH2PO4, 20 mM NaHCO3, 16mM HEPES, 2.56 mM CaCl2-2H2O, 0.2% 

BSA) for 30 min at 37° C, and then incubated with KRB buffer containing 5 mM or more 

glucose for an additional 30 min. The supernatant and islets were then collected separately to 

determine insulin content using a mouse insulin ELISA kit according to the manufacturer’s 

instructions (Crystal Chem). 

 

Statistical analysis  

Data were expressed as means +/- SEM, unless specified, and were analyzed using an unpaired 

Student’s t-test (Prism, GraphPad Software Solutions) when comparing two groups. Differences 

between two or more groups were analyzed using two-way ANOVA (Prism) with post hoc 
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multiple comparison by Tukey’s procedure. Values of p< 0.05 were considered statistically 

significant.  

 

Results 

Tunicamycin, a commonly used pharmacological inducer of ER stress in beta cells, inhibits 

protein glycosylation (22, 33–35). To investigate the relationship between ER stress, ER Ca2+ 

and cytosolic Ca2+, we systematically measured the concentration of Ca2+ in the cytosol and ER 

in parallel with UPR markers to establish their respective time courses following TM treatment. 

Changes in the three canonical ER stress response markers, spliced XBP1, CHOP and BiP were 

determined at the mRNA or protein level. Mouse islets or insulin secreting INS-1(832/13) cells 

were treated with vehicle (DMSO) as a control or TM for 6, 12 or 16 hours in 11 mM glucose-

containing medium prior to extracting total cell mRNA and making whole cell protein lysates.  

 

As shown in Figures 2.1A and 2.1B, XBP1 splicing increased after 6 hours of TM treatment in 

both INS-1(832/13) cells and mouse islets, while total XBP1 levels were unchanged. Similarly, 

as shown in Figure 2.1C, CHOP increased after 6 hours of TM treatment in INS-1(832/13) cells. 

In contrast, as shown in Figures 2.1D through 2.1G, levels of BiP protein only increased after 12 

hours of exposure to TM. XBP1 splicing is known to be an early event in the UPR, while the 

upregulation of BiP expression has been reported to be more delayed (22, 23, 36, 37).  

 

Apoptosis occurs in a variety of cell types as a consequence of prolonged ER stress (23) and 

previous studies have shown that TM induces cell death in INS-1(832/13) cells and other cell 

lines (35, 38–42). To determine the presence of apoptosis, we assayed the level of cleaved PARP 
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protein, an established marker of apoptosis (43, 44) by western blotting. As shown in Figure 

2.2A and 2.2B, a band corresponding to cleaved PARP was visible at 89 kDa in lysates obtained 

from INS-1(832/13) cells exposed to TM for 12 hours or more. Cleaved PARP was barely 

detected in any of our cell samples under control conditions or if TM exposure was for 6 hours or 

less. It thus appeared that TM only triggered significant apoptosis after 12 hours. The percentage 

of cleaved versus total PARP was monitored and is shown in Figure 2.2B to rule out the effect of 

uneven protein loading. In addition, the percentage of INS-1(832/13) cells that take up 

propidium iodide (PI), a dye that is indicative of cell death, only increased after 16 hours of TM 

treatment, compared to DMSO-treated controls (Figure 2.2C). Cell death as assessed using this 

marker was not observed at any of the earlier time points studied. Figure 2.2D shows there was a 

four-fold increase in the number of cells in the sub-G1 phase following 24 hours exposure to TM, 

indicating they were late stage apoptotic cells compared to DMSO treated controls. 

 

Taken together, TM triggered a classic ER stress response in INS-1(832/13) cells after 6 hours, 

while apoptosis was only seen after 12 hours. Frank, quantitative beta-cell death, in turn, was 

evident much later, after about 16 hours of TM treatment, as evidenced by increased propidium 

iodide uptake.  

 

As mentioned, TM has been used to induce ER stress in several studies of beta cells (22, 23, 33, 

35). The ER plays an important role in beta-cell function since it is the site where proteins of the 

secretory pathway are folded and processed in preparation for transport to the Golgi apparatus 

(15, 45), and it is the location where proteostasis occurs (45, 46). In terms of cellular Ca2+ 

homeostasis, the ER also has a central role in this process due to its ability to sequester and 
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buffer cytosolic Ca2+, serve as a releasable Ca2+ source in response to surface membrane GPCR 

signaling, and it supplies Ca2+ to Ca2+-binding ER-resident protein chaperones that act to ensure 

proper protein folding (47, 48).  

 

To test whether TM altered ER Ca2+ level in our system, the ER Ca2+ probe D4ER was 

transiently expressed in islet beta cells using an adenovirus delivering the D4ER gene placed 

behind the rat insulin promoter 2. Islets were then treated with vehicle control (DMSO) or TM 

(10 µg/ml) for 6, 12 or 16 hours and then ER Ca2+ was measured. Figure 2.3A shows ER Ca2+ 

normalized to the initial FRET ratio (F0), expressed in relative units, as a function of time, and 

the effect of thapsigargin (TG, 1 µM) is shown for both control and TM-treated islets. TG is a 

SERCA blocker that is well known to deplete ER Ca2+ by blocking Ca2+ uptake into the ER (49). 

Only beta cells that responded to TG are shown in Fig. 3A; these constituted approximately 50% 

of the beta cells tested. As shown in Figure 2.3B, TM caused a decline of steady state ER Ca2+ in 

islets compared to DMSO after 6, 12 and 16h of treatment.  

 

Mouse islets do not typically show oscillations in cytosolic Ca2+ or electrical activity when 

acutely exposed to glucose concentrations < 7 mM (2, 50–52). To determine the relationship 

between ER stress and cytosolic free Ca2+ in our experimental system, mouse islets were 

exposed to TM or vehicle control (DMSO) in standard RPMI 1640 medium for 6,12 or 16 hours. 

Following this treatment, cytosolic free Ca2+ and islet electrical activity were recorded in parallel 

studies using an extracellular recording solution containing 5 mM glucose.  
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As shown in Figure 2.4A, cytosolic free Ca2+ in control islets did not display oscillatory activity 

in 5 mM glucose solution, as expected (2, 50–52). In contrast, islets treated with TM exhibited 

islet Ca2+ oscillations or Ca2+ transients when exposed to the TM for 6 hours or more. 40% of 

islets treated with TM for 6 hours displayed free Ca2+ oscillations compared to those treated with 

DMSO (Figure 2.4B). Treatment with TM for 12 or 16 hours resulted in a greater % of 

oscillating islets.  

 

The plateau fraction, frequency and amplitude of oscillating islets as well as their baseline Ca2+ 

levels were analyzed and plotted in Figure 2.5. Plateau fraction, oscillation frequency and 

amplitude were not plotted for control islets as they did not exhibit oscillations. Statistically 

significant increases in baseline Ca2+ levels were observed after 6 and 12 hours of TM exposure 

(Figures 2.5B).  

 

Our observation that islets treated with TM exhibited cytosolic Ca2+ oscillations (Figure 2.6) was 

next confirmed by separate measurements of islet electrical activity, obtained using perforated 

patch clamp recording. TM-treated beta cells thus exhibited oscillations in islet membrane 

potential in 5 mM glucose, which was rarely observed in control islets exposed to the same 

glucose concentration, as was found for Ca2+. However, the occurrence of oscillations was 

related to the duration of TM treatment. As shown in Figure 2.6, islets subjected to TM for 6 

hours showed occasional oscillations in 5 mM glucose, while islets treated for 12 or 16 hours 

showed regular oscillations having an average period of 5 – 8 minutes. Importantly, the 

oscillations we observed in TM-treated islets in 5 mM glucose strongly resembled those of 

normal islets exposed to glucose concentrations >7-8 mM (53).  
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When beta cells are depolarized, Ca2+ influx through voltage-gated Ca2+ channels leads to a rise 

in cytosolic Ca2+ concentration that triggers the release of insulin granules from the cell (4, 10, 

51, 54). To test whether the changes we observed in islet electrical and cytosolic Ca2+ activity in 

response to TM treatment were sufficient to elicit insulin secretion even under normally sub-

threshold conditions, islets were pretreated with DMSO or TM in standard RPMI 1640 medium 

(including 11 mM glucose) for 6, 12 or 16 hours. After treatment, islets were thoroughly washed, 

and a static incubation protocol was used to measure insulin secretion in 5 mM glucose. As 

shown in Figure 2.7A, insulin secreted into the medium was significantly increased after 12 

hours or more of TM exposure, while islet insulin content was unchanged. Expressed another 

way, TM exposure for 12 hours or more resulted in greater insulin secretion as a percent of 

insulin content, compared to controls (Figure 2.7B). The time course of increased secretion 

closely paralleled the increase in cytosolic Ca2+ or electrical activity depicted in Figures 2.4 

through 2.6. They support the hypothesis that the activation of cytosolic Ca2+ activity by ER 

stress in 5 mM glucose was triggered by increased islet electrical activity and was sufficient to 

release more insulin from the beta-cell. Secreted insulin and percent insulin content were both 

higher after 6 hours of TM compared to DMSO exposure, but the differences were not 

statistically significant. The unique aspect of the 6-hour time point will be addressed in the 

Discussion. We also point out that the magnitude of the secretion response of TM-treated islets 

in 5 mM glucose is still much lower than that seen in response to 11 mM or more glucose. 

 

Store-operated Ca2+ entry (SOCE) links reduced ER Ca2+ concentration to the activation of 

voltage-independent, plasma membrane Ca2+ channels that can replenish the depleted ER, with 
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Ca2+ entering the cell from the extracellular space (55–57). To determine whether SOCE played 

a role in mediating the oscillations we observed following chronic ER stress and ER Ca2+ 

lowering, we tested whether YM58483, a selective blocker of membrane SOCE channels, 

interfered with our physiological endpoints (58–60). As shown in Figures 2.8A and 2.8B, both 

cytosolic Ca2+ oscillations and the electrical activity observed in TM-treated islets in 5 mM 

glucose were abruptly abolished by YM58483 treatment. These results show that SOCE, which 

normally plays little or no role in the genesis of glucose-induced islet electrical oscillations (61), 

was here facilitated by TM-induced ER stress in beta cells, presumably because TM reduced ER 

Ca2+. Importantly, YM58483 also blocked TM-induced insulin secretion in islets bathed in 5 mM 

glucose (Figures 2.8C and 2.8D). In contrast, the addition of YM58483 had no effect on insulin 

secretion, islet electrical activity, or intracellular Ca2+ in control islets (Figures 2.8A-D). 

  

At the molecular level, main components of SOCE are stromal interaction molecule-1 (STIM1) 

and Ca2+ release-activated Ca2+ channel protein 1 (ORAI1). STIM1 is an ER Ca2+ sensor while 

ORAI1, which is found on the plasma membrane, is the pore-forming subunit of functional 

SOCE. When STIM1 senses ER Ca2+ depletion, STIM1 molecules aggregate and interact with 

ORAI1 at ER-PM junctions, and this complex mediates Ca2+ influx through SOCE (62, 63). To 

confirm the results, we obtained at the molecular level, siRNA was used to knockdown STIM1 

in INS-1(832/13) cells. Transfecting INS-1(832/13) cells with siRNA-STIM1 (siSTIM1) reduced 

STIM1 mRNA by ~ 80-90% (Figure 2.9A) and STIM1 protein by ~70-75% (Figure 2.9B and 

2.9C) compared to treatment with control siRNA (siCon). STIM1 reduction did not result in 

significant upregulation of ORAI1, suggesting the cells did not compensate for the loss of 

STIM1 (Figure 2.9B and 2.9C). The percentage of cells showing cytosolic Ca2+ transients in 5 
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mM glucose was decreased in siSTIM-transfected cells (~40%) compared to siCon-transfected 

control cells (~10%) following 16 hour TM exposure (Figure 2.9D and 2.9E). Even after 16 

hours of DMSO exposure, controls showed no change in their Ca2+ activities.   

 

As an alternative to blocking SOCE channels with YM58483, we tested whether removing 

extracellular Ca2+ was similarly able to abolish the cytosolic Ca2+ oscillations we observed in 

TM-treated islets in 5 mM glucose. Removing extracellular Ca2+ confirmed the results we 

obtained with YM58483, supporting the hypothesis that the oscillations seen after TM treatment 

indeed require increased influx of extracellular Ca2+ (Figure 2.10A). However, applying other 

SOCE channel blockers, 2-Aminoethoxydiphenyl borate (2APB) or SKF96365 (SKF) acutely at 

the end of a Ca2+ imaging experiment surprisingly increased cytosolic Ca2+ levels in both control 

and experimental groups (Figure 2.10B and 2.10C) (64, 65). 2APB and SKF are nonselective 

SOCE inhibitors as they also inhibit other channels over a similar concentration range (66).  

 

While ER Ca2+ decreased in TM-treated islets compared to controls, blocking SOCE with 

YM58483 had little or no measurable effect on the ER Ca2+ levels of either control or TM-

treated beta cells (Figure 2.11A). This finding was unexpected but will be addressed further in 

the Discussion. Blocking SOCE with YM58483 also did not affect any of the TM-induced UPR 

endpoints we measured (Figure 2.11B). 

 

Previous reports have shown that elevated cytosolic Ca2+ is detrimental to beta cells (67). Thus, 

preventing excessive cytosolic Ca2+ elevation due to overactive SOCE might have at least partly 

protected beta cells from cell death induced by prolonged exposure to TM. However, as shown 
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in Figure 2.11C, 24 hour treatment with TM increased cell death in INS-1(832/13) cells, but we 

found no protection afforded by the inclusion of YM58483.  

 

To maintain glucose homeostasis, beta cells secrete insulin when blood glucose concentration 

rises. Islets exhibit oscillations in cytosolic free Ca2+ when exposed to 7 mM or more glucose 

(52). After isolated mouse islets were exposed to TM or vehicle control (DMSO), free Ca2+ and 

insulin secretion were measured in parallel in 11 mM glucose. As shown in Figure 2.12A, both 

control and experimental groups showed Ca2+ oscillations in 11 mM glucose. The percentages of 

oscillating islets we observed were very similar between the two groups (70~80%), while the 

remaining islets tended to go to a plateau (Figure 2.12B). The frequency of the oscillations 

observed in TM-treated islets was higher than for controls, while no significant change was 

observed in plateau fraction, baseline Ca2+ or oscillation amplitude (Figure 2.12C-F). In addition, 

we found no significant change in insulin secretion between experimental and control groups 

after they were stimulated with 11 mM glucose for 30 minutes (Figure 2.12G and 2.12H).    

 

Besides tunicamycin, ER stress can be induced by treating islets with thapsigargin or high 

glucose (22, 23). As shown in Figure 2.13A, mouse islets exposed to thapsigargin (200 nM) for 

16 hours exhibited oscillatory cytosolic Ca2+ levels despite being in 5 mM glucose. Similarly, 

mouse islets cultured in medium containing 25 mM glucose to induce stress also exhibited 

cytosolic Ca2+ oscillations (Figure 2.13B). These oscillations were also abruptly abolished by 

YM58483 treatment. DMSO treated or 11 mM glucose cultured islets did not exhibit Ca2+ 

oscillations in 5 mM glucose solution, however, as expected.  
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As SOCE activated in response to TM treatment in our study, we also assayed the level of 

STIM1 and ORAI1 expression under these same experimental conditions. As shown in Figure 

2.14A, we observed a protein band corresponding to STIM1 as expected, and an additional, 

smaller molecular weight band in lysates from TM-treated INS-1(832/13) cells after 16 hours of 

treatment. The intensity of the upper band for STIM1 was not significantly altered in response to 

TM compared to controls (Figure 2.14B). ORAI1 protein was also unchanged by TM treatment 

(Figure 2.14A and 2.14B), as reported in another recent study (68). GLUT2 protein was also 

measured in INS-1(832/13) cells after 6 hours of TM treatment compared to control, and no 

change in protein expression was found (Figure 2.15A and 2.15B).  

 

Discussion 

In this study, we sought to delineate the temporal relationship between the induction of ER stress, 

altered beta-cell function, and altered beta-cell viability, focusing on the role of ER and cytosolic 

Ca2+ in these processes. Studies were carried out by exposing mouse islets or INS-1(832/13) 

cells to the glycosylation inhibitor tunicamycin for up to 24 hours. We found that UPR activation 

appeared to be linked to a reduction in ER Ca2+ and a phase of increased extracellular Ca2+ influx 

linked to ER Ca2+ unloading. The Ca2+ oscillations that were triggered by store-operated Ca2+ 

influx were sufficient to trigger the release of insulin, even in normally sub-threshold glucose. 

Cell death was found to occur much later, e.g. after 16 hours post-treatment and appeared to be 

independent of the early phase of SOCE-mediated Ca2+ influx and concomitant insulin secretion.  

 

Previous research carried out using many types of cells has shown that thapsigargin, a SERCA 

blocker, which prevents ATP-dependent Ca2+ sequestration by the ER, unloads the ER Ca2+ store, 
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triggering SOCE (16, 60). Activated SOCE results in increased cytosolic Ca2+ , which serves to 

replenish the ER Ca2+ pool (69). The recent findings reported by Yamamoto et al. indicate that 

tunicamycin decreases ER Ca2+ by increasing ryanodine receptor 2 activity which in turn elicits 

spontaneous cytosolic Ca2+ transients that are seen after raising extracellular Ca2+ concentration 

(70). We agree with Yamamoto et al that ryanodine receptors (RyRs) are likely involved in ER 

stress induced ER Ca2+ lowering, as we observed inhibitory effects of the RyR blocker ryanodine 

(data not shown). However, we propose a very different interpretation in this paper. Our data that 

ER stress conditions activate a Ca2+ current mediated by SOCE channels under low glucose 

conditions, which likely occurs secondary to ER Ca2+ depletion by tunicamycin.    

 

The normal glucose threshold for islet oscillations in our hands is near 7 mM (2, 50), which 

means that TM-induced ER stress in a sense increased the sensitivity of islets to glucose 

concentration. In our view, glucose-induced islet Ca2+ oscillations are induced despite the low 

level of glucose by the activation of SOCE-mediated Ca2+ current, which depolarizes the beta-

cell membrane to threshold despite incomplete closure of beta-cell KATP channels. The evidence 

for this interpretation is that (1) the Ca2+ oscillations we observed strongly resemble those of 

control islets exposed to glucose >7 mM, suggesting a common origin; (2) the Ca2+ oscillations 

of stressed islets were completely blocked by the selective SOCE blocker YM58483 (58, 59); 

and notably this drug had no effect on untreated control islets; (3) patch clamp electrophysiology 

confirmed the electrical nature of the ER stress-induced oscillations and, as for the Ca2+ 

oscillations, the electrical bursting we observed in 5 mM glucose was similarly abolished by 

YM58483; and (4) the percentage of Ca2+ oscillations were decreased in TM-treated siSTIM1-

knockdown INS-1(832/13) cells compared to controls. Taken together these data are in strong 
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support of a plasma-membrane delimited mechanism, and they rule out intracellular store Ca2+ 

release as the proximal cause of the Ca2+ oscillations we observed in TM-treated islets, although 

we believe ER Ca2+ depletion by ER stress indirectly caused the oscillations by triggering SOCE.   

 

Physiologically, when blood glucose rises, KATP channel closure mediates plasma membrane 

depolarization, which in turn increases cytosolic Ca2+, which then drives insulin secretion (2, 5, 

8). Membrane potential changes in mouse beta cells have been shown to precede changes in 

cytosolic Ca2+ under physiological conditions (5). The cytosolic Ca2+ oscillations shown in 

Figures 2.4A occurred in parallel with membrane potential oscillations in 5 mM glucose saline in 

response to TM treatment, shown in Figure 2.6. In simultaneous measurements of cytosolic Ca2+ 

and insulin secretion, each oscillation in islet Ca2+ has been shown to be well synchronized with 

a pulse of insulin secretion (4, 5, 10).  

 

Although cytosolic Ca2+ was increased after 6 hours of TM treatment, the change in insulin 

secretion and percent insulin (Figure 2.7) we measured at this time point were not statistically 

significant compared to controls, although the means we obtained were greater than controls. 

This may be explained by our observation that less than 40% of islets displayed elevated 

cytosolic Ca2+ within 6 hours of TM treatment (Figure 2.4B). Our results at the 6-hour time point 

may thus underestimate the amount of insulin secretion seen in response to TM because it 

included both responding and non-responding islets.  

 

YM58483 did not affect the extent of ER Ca2+ depletion that followed TM treatment (Figure 

2.11A), which was surprising. This could be due to several possible factors: (1) the influx of 
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Ca2+ due to SOCE may have been too small to cause a detectable change in ER Ca2+ due to limits 

in the Ca2+ sensitivity of the D4ER Ca2+ probe; (2) SERCA expression and/or function might 

also be reduced by TM treatment, such that under these pathophysiological conditions, SOCE is 

capable of mediating an electrical current and Ca2+ oscillations but not significant ER store 

refilling. ER stress has in fact been reported to cause reduced SERCA2b expression in beta cells, 

which supports this idea (18, 71, 72); (3) the ER may become so leaky to Ca2+ after TM 

treatment that a modest activation of SOCE is unable to do enough to measurably refill the ER, 

like turning on a small hose to refill a very leaky barrel.  

 

Our results support the hypothesis that TM-triggered beta-cell death occurs as a consequence of 

ER Ca2+ depletion, and that SOCE activation is a separate action that is unrelated to the ultimate 

fate of the cell, as shown in Figure 2.16. Similar observations and conclusions were made in 

studies of thapsigargin-treated LNCaP, PC3 and MCF7 cells (49). Thapsigargin caused the 

unloading of ER Ca2+ and resulted in cell death despite genetic knockdown of the SOCE 

components STIM1 and/or ORAI1 in this case. Therefore, ER Ca2+ depletion due to ER stress 

appeared to be an important contributor to thapsigargin-induced cell death, instead of SOCE 

activation and increased cytosolic Ca2+ (49).  

 

As shown in Figures 2.14A-B, we found two bands corresponding to STIM1 protein. The upper 

band of STIM1 expression at 77 kDa and ORAI1 expression remained unchanged. Both STIM1 

and ORAI1 are known to be N-linked glycosylated proteins (62, 63, 73, 74). Other investigators 

also observed no change in ORAI1 in response to induced ER stress, while STIM1 responded to 

TM treatment. The slightly smaller molecular weight STIM1 species, representing non-
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glycosylated STIM1, were reported. Blocking STIM1 glycosylation led to diminished SOCE (73, 

74). Evans-Molina and colleagues have recently reported that STIM1 was downregulated in a 

diabetes model, while overexpressing STIM1 restored SOCE under high glucose conditions (68). 

However, Evans-Molina and colleagues propose that SOCE is an essential driver of glucose-

induced Ca2+ oscillations (15 mM glucose) under normal conditions and that SOCE is impaired 

in response to proinflammatory cytokines or palmitate mediated stress conditions. In contrast, we 

propose that SOCE is not involved in the triggering or modulation of glucose-induced Ca2+ 

oscillations in untreated control islets, but is activated by ER stress, resulting in the appearance 

of Ca2+ oscillations under sub-threshold glucose conditions (5 mM glucose) by virtue of this 

abnormal triggering mechanism, which in essence shifts the glucose sensitivity of the islet to the 

left where islet Ca2+ activity could then contribute to the production of high basal insulin release. 

Different glucose conditions may account for the different interpretations. 

 

The justification for our use of insulin secreting INS cells in addition to mouse islets in the 

present paper relates to the small amount of tissue available for biochemical and molecular 

studies if just islets were used. For example, analyzing propidium iodide levels with flow 

cytometry in order to quantify cell death is extremely challenging if primary beta cells are used. 

INS-1(832/13) cells are one of the most commonly used insulin-secreting cell lines that display 

many important characteristics of primary beta cells. Importantly, INS-1(832/13) cells are very 

responsive to glucose (75). According to Figures 2.1A and 2.1B, INS-1(832/13) cells had 

identical UPR responses as isolated islets. Thus, we believe that the molecular studies done in 

INS-1(832/13) cells while not perfectly reflecting what we might expect if islets or primary beta 

cells were used in their place, are reasonable surrogates for the primary cells with regards to 
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UPR activation and cell death. This is not likely to be true regarding physiology where our 

methods are well attuned to studying primary islets and their oscillatory and secretory 

characteristics.  

 

In summary, as shown in Figure 2.16, we propose that TM induced beta-cell death occurs 

through ER Ca2+ depletion, whereas SOCE and concomitant increased cytosolic Ca2+ were 

required for our finding increased insulin secretion under stress conditions. During prediabetes, 

which is associated with insulin resistance, the pancreatic beta-cell is thought to compensate for 

rising levels of glucose by increasing insulin secretion and, if that fails, increasing beta-cell mass, 

provided the cells are capable of doing so (76). However, long-term hyperinsulinemia, and the 

increased metabolic workload it represents, can potentially exhaust the beta-cell and promote 

beta-cell death (77). In our results, TM-induced ER stress resulted in increased beta-cell 

electrical activity, cytosolic Ca2+ oscillations and insulin secretion by activating SOCE. Blocking 

SOCE by applying YM58483 to stressed but not control islets abolished ER stress-triggered 

increases in electrical activity, cytosolic Ca2+ oscillations and insulin secretion (Figures 2.8A-D). 

Therefore, the increased insulin secretion data not only confirmed that TM increased cytosolic 

Ca2+ oscillations, but it also established SOCE as the key mechanism.  

 

This report shows that SOCE is a key player in ER stress-induced cytosolic Ca2+ oscillations and 

insulin secretion, and we suggest that this pathway must work in parallel with the UPR and cell 

death pathways. The cytosolic Ca2+ oscillations we observed clearly resulted from electrical 

oscillations and not Ca2+ -induced Ca2+ release from the ER. Thus, these results suggest the 

possibility that in T2DM or under pre-diabetic conditions increased secretion due to SOCE 
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activation may contribute to the increased basal insulin secretion that is a hallmark of type 2 

diabetes. Combining our findings with more detailed mechanistic and pharmacological studies 

on SOCE activity in prediabetes may disclose additional valuable information and perhaps novel 

treatment strategies.   



64 

 

 

Figures and Legends 
 

 

Figure 2.1 Tunicamycin induced the ER stress response 

INS-1(832/13) cells and isolated mouse pancreatic islets were treated with vehicle control 
(DMSO) or tunicamycin (TM, 10 µg/ml) for the indicated length of time shown. 1A: Expression 
levels of spliced XBP1 and total XBP1 mRNA in INS-1(832/13) cells and 1B: Same but in islets. 
1C: Expression level of CHOP in INS-1(832/13) cells. 1D: Representative western blot showing 
the level of BiP in INS-1(832/13) cells and 1F: Same but in islets. GAPDH and tubulin are 
loading controls. Quantitative protein levels are shown graphically in 1E and 1 G respectively. 
1E: Protein levels are all normalized to DMSO 16h. All values shown are means ± SEM. #, p< 
0.05, ##, p< 0.01, ###, p< 0.0005, ####, p< 0.0001 compared with control conditions; n= at least 
3 times repeated per condition. 
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Figure 2.2 Tunicamycin triggered apoptosis 

INS-1(832/13) cells were treated with vehicle control (DMSO) or tunicamycin (TM, 10 µg/ml) 
for the indicated length of time shown. 2A: Representative western blot showing the level of 
total PARP at 116 kDa and cleaved PARP at 89 kDa in INS-1(832/13) cells. Tubulin is shown as 
loading control. 2B: Quantitative percentage of cleaved PARP out of total PARP are shown 
graphically. Protein levels are normalized to DMSO 16h. 2C: After various hours of DMSO or 
TM treatment, cell death in INS-1(832/13) cells is shown by propidium iodide (PI) staining and 
was quantified using flow cytometry. Fold change was derived by comparing to untreated group. 
2D: After 24 hours of DMSO or TM treatment, late stage apoptotic INS-1(832/13) cells is shown 
using the sub-G1 assay measured by flow cytometry. Fold change was derived by comparing to 
DMSO group. All values shown are means ± SEM. #, p< 0.05, ##, p< 0.01, compared with 
control conditions; n= at least 3 times repeated per condition. 
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Figure 2.3 Tunicamycin treatment decreased basal ER Ca2+ level 

Mouse pancreatic islets were infected with an adenovirus expressing a beta-cell directed D4ER 
probe for three hours followed by a 48-hour recovery period. Islets were then treated with 
vehicle control (DMSO) or tunicamycin (TM, 10 µg/ml) for 6, 12 and 16 hours in 11 mM 
glucose islet culture medium (RPMI 1640 medium, see Methods). 3A: Basal ER Ca2+ 
(normalized to the initial intensity) traces for each condition obtained in 5 mM glucose solution 
before and after thapsigargin (TG, 1 µM). 3B: The raw data showing resting ER Ca2+ level from 
mouse islets in 5 mM glucose solution with 200 uM diazoxide present. Each data point shown 
was a D4ER ratio obtained for one selected region of interest, a single cell or small group of cells. 
All values shown are means ± SD. ####, p< 0.0001; n= at least 5 mice. 
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Figure 2.4 Tunicamycin increased cytosolic free Ca2+ under sub-threshold glucose conditions 

Isolated pancreatic mouse islets were treated with a vehicle control (DMSO) or tunicamycin (TM, 
10 µg/ml) for 6, 12 and 16 hours in 11 mM glucose. 3A: The responses of cytosolic free Ca2+ to 
solution containing 5 mM glucose under the indicated conditions. 3B: Percentage of oscillating 
islets; n= at least 3 mice. 
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Figure 2.5 Cytosolic free Ca2+ imaging analysis 

Summary findings for the cytosolic free Ca2+ traces shown in 4A. 5A: Plateau fraction. 5B: 
Baseline values. 5C: oscillation frequency. 5D: oscillation amplitude. All values shown are 
means ± SEM. ##, p< 0.01, ####, p< 0.0001; n= at least 3 mice. 
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Figure 2.6 Tunicamycin treatment resulted in the appearance of electrical activity under sub-
threshold glucose conditions 

Isolated mouse islets were treated with vehicle control (DMSO) or tunicamycin (TM, 10 µg/ml) 
for 6, 12 and 16 hours in 11 mM glucose. The acute responses of islet membrane potential to 5 
mM glucose solution under the conditions indicated are shown. Details are provided in the text. 
Consistent results were observed in at least 3 mice.  
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Figure 2.7 Tunicamycin increased the amount of insulin secreted under sub-threshold glucose 
conditions 

Isolated mouse islets were treated with vehicle control (DMSO) or tunicamycin (TM, 10 µg/ml) 
for 6, 12 and 16 hours in 11 mM glucose. Insulin secretion was measured by acutely exposing 10 
islets to 5 mM glucose for 30 minutes for each experimental condition. 7A: Both secreted insulin 
and insulin remaining in the extracted islets were quantified in triplicate by ELISA and 
normalized to total protein concentration (BCA protein assay). 7B: The percent insulin that was 
secreted was obtained by dividing the secreted insulin by total insulin (the sum of secreted 
insulin and insulin in the lysate). Values shown are means ± SEM. #, p< 0.05 compared with 
control conditions; n= 3 mice. 
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Figure 2.8 Increased cytosolic Ca2+, membrane potential oscillations and insulin secretion 
observed after tunicamycin treatment were mediated by store-operated Ca2+ entry (SOCE) 

Islets were treated with vehicle control (DMSO) or tunicamycin (TM, 10 µg/ml) for 16 hours, 
and were then acutely exposed to 5 mM glucose containing solution with or without YM58483 
(YM, 10 µM). 8A: Cytosolic free Ca2+ changes. 8B: Membrane potential changes. 8C: Insulin 
secretion. Row Factor F(1, 12)= 24.25, p= 0.0004, Column Factor F(1, 12)= 8.923, p=0.0113, 
Interaction F(1, 12)= 3.170, p= 0.1003, by two-way ANOVA. 8D: Percentage insulin secreted. 
Row Factor F(1, 12)= 24.75, p= 0.0003, Column Factor F(1, 12)= 9.572, p=0.0093, Interaction 
F(1, 12)= 3.446, p= 0.0881, by two-way ANOVA. All values shown are means ± SEM. #, p< 
0.05, ##, p< 0.01, ns= not significant; n= at least 3 mice, by two-way ANOVA with post hoc 
multiple comparison by Tukey’s procedure. 
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Figure 2.9 STIM1 knockdown inhibited TM-triggered cytosolic Ca2+ transients 

9A: STIM1 siRNA knockdown in INS-1(832/13) cells was assessed by qPCR 48 hours after 
siRNA transfection. 9B: Representative western blots showing the expression of STIM1 and 
ORAI1 48 hours after transfection with STIM1 siRNA compared to the negative control siRNA. 
9C: Quantitative protein levels of STIM1 and ORAI1 are shown graphically. INS-1(832/13) cells 
were treated with vehicle control (DMSO) or tunicamycin (TM, 10 µg/ml) for 16 hours after 
transfecting with STIM1 siRNA or negative control siRNA for 48 hours. 9D: The responses of 
cytosolic free Ca2+ to solution containing 5 mM glucose. 9E: Percentage of active INS-1(832/13) 
cells showing Ca2+ transients. All values shown are means ± SEM. #, p< 0.05, ##, p< 0.01, ###, 
p< 0.0005, ####, p< 0.0001; n= 3 times repeated per condition. 
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Figure 2.10 Effect of alternative SOCE inhibitors on cytosolic Ca2+ oscillations  

Islets were treated with vehicle control (DMSO) or tunicamycin (TM, 10 µg/ml) for 16 hours. 
Cytosolic free Ca2+ changes were imaged before and after acutely exposed to 5 mM glucose 
containing solution.10A: without Ca2+, 10B: with 2-Aminoethoxydiphenyl borate (2APB, 200 
µM), and 10C: with SKF96365 (10 µM). n= at least 3 mice. 
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Figure 2.11 Increased beta-cell death seen after tunicamycin treatment was not mediated by 
store-operated Ca2+ entry (SOCE)  

INS-1(832/13) cells or mouse islets were treated with vehicle control (DMSO), tunicamycin (TM, 
10 µg/ml), DMSO+YM58483 (YM, 10 µM) or TM+YM58483 for 11A: 16 hours, 11B: 6 hours 
and 11C: 24 hours in 11 mM glucose containing culture medium. 11A: Summary of raw data 
showing basal ER Ca2+ ratios obtained from islets of 3 mice. Row Factor F(1, 82)= 69.54, p< 
0.0001, Column Factor F(1, 82)= 0.1515, p=0.6981, Interaction F(1, 82)= 0.01884, p= 0.8912, 
by two-way ANOVA. 11B: Expression level of spliced XBP1 mRNA. Row Factor F(1, 8)= 
23.75, p= 0.0012, Column Factor F(1, 8)= 0.3909, p=0.5493, Interaction F(1, 8)= 0.003133, p= 
0.9567, by two-way ANOVA. 11C: Cell death observed in INS-1(832/13) cells stained with 
propidium iodide (PI) and quantified using flow cytometry. Row Factor F(1, 12)= 20.29, p= 
0.0007, Column Factor F(1, 12)= 0.008395, p=0.9285, Interaction F(1, 12)= 0.1708, p= 0.6867, 
by two-way ANOVA. The results were obtained from 3 different batches of INS-1(832/13) cells. 
All values shown are means ± SEM. #, p< 0.05, ####, p< 0.0001, ns= not significant; n= 3 times 
repeated per condition, by two-way ANOVA with post hoc multiple comparison by Tukey’s 
procedure. 
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Figure 2.12 Tunicamycin did not affect cytosolic free Ca2+ under above-threshold glucose 
conditions 

Isolated pancreatic mouse islets were treated with a vehicle control (DMSO) or tunicamycin (TM, 
10 µg/ml) for 16 hours in 11 mM glucose. 12A: The responses of cytosolic free Ca2+ to solution 
containing 11 mM glucose under the indicated conditions. 12B: Percentage of oscillating islets. 
Summary findings for the data are shown in 12C-F. 12C: Plateau fraction. 12D: Baseline values. 
12E: oscillation frequency. 12F: oscillation amplitude. 12G and 12H: Insulin secretion was 
measured by acutely exposing 10 islets to 11 mM glucose for 30 minutes for each experimental 
condition. 12G: Both secreted insulin and insulin content and 12H: the percent insulin were 
quantified as described in Figure 2.7. All values shown are means ± SEM. ##, p< 0.01; n= at 
least 3 mice. 
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Figure 2.13 Alternative ER stress inducers also increased cytosolic free Ca2+ under sub-
threshold glucose conditions  

13A: Isolated pancreatic mouse islets were treated with a vehicle control (DMSO) or 
thapsigargin (TG, 200 nM) in 11 mM glucose. 13B: Mouse islets were cultured in 11 mM 
glucose (untreated control) or 25 mM glucose for 16 hours. The responses of cytosolic free Ca2+ 
to solution containing 5 mM glucose under the indicated conditions. n= at least 3 mice.  
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Figure 2.14 The effect of tunicamycin on gene expression  

INS-1(832/13) cells were treated with a vehicle control (DMSO) or tunicamycin (TM, 10 µg/ml) 
for 16 hours in 11 mM glucose. 14A: Representative western blots show the level of STIM1 and 
ORAI1. GAPDH is shown as a loading control. 14B: Quantitative protein levels are shown 
graphically. All values shown are means ± SEM; n= 3 times repeated per condition.  
 

 

Figure 2.15 Tunicamycin did not affect GLUT2 expression after 6 hours of TM exposure  

INS-1(832/13) cells were treated with a vehicle control (DMSO) or tunicamycin (TM, 10 µg/ml) 
for 6 hours in 11 mM glucose. 15A: Representative western blots showing the level of GLUT2. 
15B: Quantitative protein levels are shown graphically. GAPDH is shown as a loading control. 
All values shown are means ± SEM; n= 3 times repeated per condition. 
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Figure 2.16 Scheme of beta-cell death and increasing insulin secretion mediated by tunicamycin   
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Table 1. Material table 

T1A: Oligonucleotide primers. T1B: Antibodies.   

Table 1 
A)

Gene forward Reverse
Xbp1s (rat) CTGAGTCCGAATCAGGTGCAG ATCCATGGGAAGATGTTCTGG
Xbp1 total (rat) GAGCAGCAAGTGGTGGAT TCTCAATCACAAGCCCATG
Chop (rat) AGAGTGGTCAGTGCGCAGC CTCATTCTCCTGCTCCTTCTCC 
Hprt1 CTCATGGACTGATTATGGACAGGAC GCAGGTCAGCAAAGAACTTATAGCC
Xbp1s (mouse) CTGAGTCCGAATCAGGTGCAG  GTCCATGGGAAGATGTTCTGG 
Stim1 (rat) GGCCAGAGTCTCAGCCATAG CATAGGTCCTCCACGCTGAT

B)

Antibodies animal Source and dilution

BiP Rabbit Arvan Lab at the University of Michigan,
Ann Arbor, 1:5000

PARP Rabbit Cell Signaling Technology, 1:1000
STIM 1 Rabbit Cell Signaling Technology, 1:1000
ORAI 1 Mouse SIGMA, 1:1000

, 1:1000GLUT2 Rabbit EMD Millipore, 1:1000
GAPDH Rabbit Cell Signaling Technology, 1:1000
Tubulin Mouse Cell Signaling Technology, 1:1000
HRP-conjugated 
mouse anti-rabbit Mouse Cell Signaling Technology, 1:5000

HRP-conjugated 
goat anti-mouse Goat Cell Signaling Technology, 1:5000
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Chapter 3 Differential Roles of Beta-cell IP3R and RyR ER Ca2+ Channels 

in Tunicamycin-Induced Disruption of Beta-cell Ca2+ Homeostasis 

Irina X. Zhang, Vishal Parekh, Juan Leon and Leslie S. Satin 

 

Abstract 

Pancreatic beta cells maintain glucose homeostasis by secreting insulin following a rise in 

plasma glucose. Insulin secretion is pulsatile, which is brought about because of oscillations in 

the concentrations of beta-cell cytosolic Ca2+. The endoplasmic reticulum (ER) helps to regulate 

the cytosolic Ca2+ level, thereby playing a role in Ca2+-induced insulin release. ER stress, 

triggered by the accumulation of unfolded proteins in the ER, can lead to the ER Ca2+ depletion, 

which in turn can contribute to beta-cell deterioration and an increased risk of type-2 diabetes. 

We sought to determine the effects of tunicamycin (TM)-induced ER stress on ER Ca2+ channels, 

inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs) and ryanodine receptors (RyRs), and 

subsequent alterations in beta-cell Ca2+ homeostasis that result from these alterations. Treating 

INS-1 (832/13) cells with TM increased RyR1 and decreased IP3R1 and IP3R2 RNA transcripts. 

To determine the roles of these receptors in TM-induced beta-cell dysfunction, we treated mouse 

pancreatic islets with the RyR1 inhibitor dantrolene (Dan) or the IP3R inhibitor xestospongin C 

(XeC) along with TM. Beta cells treated with TM exhibited altered cytosolic and mitochondrial 

Ca2+ when in sub-threshold glucose compared to vehicle controls. As TM treatment also depleted 

ER Ca2+, this raised the possibility that the mitochondrial and cytosolic Ca2+ oscillations of 
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stressed cells resulted from increased ER Ca2+ efflux mediated by RyRs and IP3Rs. We found 

that TM-induced ER Ca2+ depletion, as well as cytosolic and mitochondrial Ca2+ oscillations 

were inhibited by co-treatment with Dan; whereas the inclusion of XeC was without effect. 

These results suggest that RyRs, and more specifically RyR1 may play a critical role in 

mediating the disturbed cellular Ca2+ homeostasis seen in response to the induction of ER stress. 

 

Introduction 

Calcium (Ca2+) is an essential second messenger in cellular signal transduction, and it plays a 

crucial role in many physiological processes (1, 2). In pancreatic beta cells, Ca2+ mediates the 

exocytosis of insulin granules to maintain normal blood glucose after a meal (1). Once in the cell, 

Ca2+ is primarily sequestered within the endoplasmic reticulum (ER), which is the organelle 

where the synthesis, correct folding and the sorting of proteins occurs, along with lipid synthesis 

and the maintenance of intracellular Ca2+ homeostasis (3, 4). In beta cells, a properly functioning 

ER is extremely critical for the proper functioning and survival of the cell. (5–8) Malfunction in 

the ER potentially can lead to type 2 diabetes mellitus (T2D), and increasing evidence has 

emerged suggesting that the ER stress cascade (or UPR) is activated in islets obtained from T2D 

patients or animal models of diabetes (7, 9).  

 

Decreased ER Ca2+ has been associated with ER stress and apoptosis, which accompany many 

pathological conditions (7, 10, 11). We have previously shown that tunicamycin-induced ER 

stress partially depleted ER Ca2+ in mouse beta cells (12). ER Ca2+ is maintained through the 

concerted regulation of ER Ca2+ uptake and release. The ER takes up Ca2+ through the action of 

sarco/endoplasmic reticulum Ca2+-ATPases (SERCA pumps) (2). Both inositol 1,4,5-
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trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) are two main families of 

intracellular Ca2+ channels that can release ER Ca2+ into the cytosol (2). More recently, Ca2+-

permeable ER translocons have been identified as ER Ca2+ leak channels in beta cells (13, 14). 

Both IP3Rs and RyRs are gated by Ca2+, and cytosolic Ca2+ can activate both receptor types to 

trigger Ca2+-induced Ca2+ release (CICR) under certain conditions (15, 16). IP3Rs have been 

studied extensively in beta cells, and their role, for example in GPCR-coupled Ca2+ release is 

well established (17). In contrast, the role of RyRs has been somewhat more controversial.  

 

We wished here to test whether RyRs and IP3Rs are differentially regulated by ER stress 

conditions in beta cells. In addition, we sought to better define their respective roles in beta-cell 

function, such as in ER Ca2+ handling, and in the production of cytosolic and mitochondrial Ca2+ 

oscillations. 

 

In the present study, we used TM treatment to experimentally induce ER stress in insulin-

secreting INS-1(832/13) cells as well as isolated mouse islets. TM activates the unfolded protein 

response (UPR) by inhibiting N-acetylglucosamine phosphotransferase, the initial step in the N-

linked protein glycosylation pathway following protein synthesis, which in turn leads to protein 

misfolding in the ER (18). We previously showed that this treatment increased cytosolic Ca2+ 

signaling and insulin secretion even under sub-threshold glucose conditions by activating store-

operated Ca2+ entry (SOCE) (12). SOCE activation likely resulted from reduced ER Ca2+, 

potentially occurring due to decreased SERCA activity (19), and/or increased RyR- or IP3R-

mediated Ca2+ release from the ER.  In this report, we show that TM differentially regulated 

IP3Rs and RyRs such that RyR1 was selectively upregulated, which mediated ER Ca2+ depletion, 
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and consequently increased cytosolic free Ca2+ oscillations and mitochondrial Ca2+ oscillations; 

IP3R1 and IP3R2 were downregulated, but blocking them showed no effect, suggesting they did 

not contribute to these processes.  

 

Materials and Methods  

Materials  

Tunicamycin (TM), cyclopiazonic acid (CPA) and YM58483 were obtained from Cayman 

Chemical, Ann Arbor, MI. Dantrolene (Dan) and xestospongin C (XeC) were purchased from 

Sigma-Aldrich Products. Rabbit antibody against phosphorylated IP3R1 (pIP3R1) and HRP-

conjugated mouse anti-rabbit antibody were purchased from Cell Signaling Technology (1:1000 

dilution). ECL reagents were obtained from Bio-Rad Laboratories. 

  

The standard culture RPMI 1640 medium contained 11 mM glucose, 10% fetal bovine serum 

(FBS), 10 mM HEPES, 1% penicillin/streptomycin and 1% sodium pyruvate. The culture 

medium contained RPMI 1640 medium, 5 mM glucose, 10% fetal bovine serum (FBS), 10 mM 

HEPES, 1% penicillin/streptomycin and 1% sodium pyruvate. The imaging solution contained 

(in mM): 140 NaCl, 3 CaCl2, 5 KCl, 2 MgCl2, 10 HEPES and 5 glucose.  

 

The RNeasy Mini Kit for qRT-PCR was from Qiagen. Superscript RT II was from Invitrogen. 

SYBR Green PCR master mix was from Applied Biosystems. Primers for qRT-PCR were from 

Integrated DNA Technologies. Primer sequences employed in this report were listed in Table 2.  

 

Isolation of pancreatic islets and islet pretreatments 
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Pancreatic islets were isolated from male Swiss-Webster mice (3 months of age; 25-35 g) 

according to the regulations of the University of Michigan Committee on the Use and Care of 

Animals (UCUCA), using previously described methods (20) and with an approved protocol. 

Isolated mouse islets were pretreated with DMSO (control group), 10 µg/mL tunicamycin (TM), 

10 µM dantrolene (Dan), 1 µM xestospongin C (XeC) or co-treated with TM and Dan/XeC. The 

islets were cultured in standard RPMI 1640 medium containing 11 mM glucose, 10% fetal 

bovine serum (FBS), 10 mM HEPES, 1% penicillin/streptomycin and 1% sodium pyruvate. 

 

Cell culture 

INS-1(832/13) cells were grown in RPMI 1640 containing 11 mM glucose, 10% fetal bovine 

serum (FBS), 1% penicillin/streptomycin, 10 mM HEPES and 1% sodium pyruvate. INS-

1(832/13) cells were grown in 10 cm culture dishes or 6-well plates at 37°C in a 5% CO2 

humidified atmosphere. Cells obtained ∼70% confluence before the initiation of experimentation.  

 

Real-Time PCR 

Total RNA was extracted from INS-1(832/13) cells and reverse transcribed to cDNA as 

described (12). Then qPCR was carried out using primers listed in Table 2, and data were 

analyzed as described (12) with expression presented relative to endogenous controls, HPRT1.  

 

Western blotting 

Total protein was obtained by treating INS-1(832/13) cells with KHEN lysis buffer (50 mM 

KCL, 50 mM HEPES, 10 mM EGTA, 1.92 mM MgCl2; pH 7.2) and then separating proteins 

using 4-12% SDS-PAGE and transferring them to nitrocellulose membranes. Membranes were 
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blocked in 5% w/v nonfat dry milk in 1X TBST containing 50 mM Tris-HCl (pH 7.4), 150 mM 

NaCl and 0.1% Tween 20. Blots were incubated overnight with rabbit antibody against pIP3R1 

diluted in 5% nonfat dry milk in 1X TBST at 4 °C. Blots were incubated with horseradish 

peroxidase (HRP)-conjugated mouse anti-rabbit antibody and then were visualized using ECL 

reagents. 

 

Fura-2/AM imaging 

Islets were loaded with Fura-2/AM (2.5 µM) for 45 min. in medium containing 5 mM glucose 

before imaging. Islets were then transferred to a 1 mL perfusion chamber containing 5 mM 

glucose imaging buffer for 6 min, followed by 10 to 30 min perfusion with this solution at 

approximately 1 mL/min. Imaging buffer contained (in mM): 140 NaCl, 3CaCl2, 5 KCl, 2 MgCl2, 

10 HEPES and 5 glucose. Ratiometric Fura-2/AM imaging was carried out using 340/380 nm 

excitation and collecting 502 nm emission, as previously described (20). The fluorescence data 

were acquired using Metafluor software (Molecular Devices, Sunnyvale, CA, USA) and plotted 

using Prism (GraphPad Software Solutions). 

 

FRET imaging 

To measure ER [Ca2+], we utilized a previously described ER-localized FRET biosensor, D4ER 

(21). D4ER was selectively expressed in beta cells by directing its expression by RIP2 (21). The 

same system described above for Fura-2/AM imaging was employed here. D4ER imaging was 

carried out using 430 nm excitation, and 470/535 nm ratiometric emission. The imaging solution 

used contained (in mM): 140 NaCl, 3 CaCl2, 5 KCl, 2 MgCl2, 10 HEPES, 5 glucose and 0.2 

diazoxide (Dz). Dz was included to keep the KATP channel in its open state to prevent oscillatory 
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Ca2+ activity and improve the signal/noise ratio and stability of the ER Ca2+ recordings. FRET 

ratios were acquired using Metafluor software, plotted using Prism, and mean values were 

calculated using Excel.  

 

Mito-pericam imaging 

To measure mitochondrial [Ca2+], we utilized a previously described ratiometric mitochondrial 

pericam (mito-pericam; (22, 23)). The same system described above for Fura-2/AM and D4ER 

imaging was again employed here, except that the mito-pericam imaging was carried out using 

485/400 nm excitation and with emission collected at 535 nm. The imaging solution used 

contained (in mM): 140 NaCl, 3 CaCl2, 5 KCl, 2 MgCl2, 10 HEPES and 5 glucose. The 

fluorescence data were acquired using Metafluor software and plotted using Prism.  

 

Assays of apoptosis 

INS-1(832/13) cells were harvested and prepared for sub-G1 apoptosis assay as described (12). 

The percentage of apoptotic cells was determined by calculating the percentage cells present in 

the sub-G1 phase in the DNA content histogram using a flow cytometer provided by the Flow 

Cytometry Core of the University of Michigan.  

 

Statistical analysis 

Data were expressed as means +/- SEM and were analyzed using an unpaired Student’s t-test 

(Prism) when comparing two groups. Differences between two or more groups were analyzed 

using one-way ANOVA or two-way ANOVA (Prism) with post hoc multiple comparisons by 
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Tukey’s procedure as specified in figure legends. Values of p< 0.05 were considered statistically 

significant.  

 

Results  

We recently reported that chemically inducing ER stress in beta cells with TM activated store-

operated Ca2+ entry (SOCE) and led to the appearance of cytosolic free Ca2+ oscillations in 

parallel with oscillating membrane potential. The increasing cytosolic Ca2+ oscillations 

concomitantly augmented insulin secretion under what would normally be sub-threshold glucose 

conditions, e.g., in medium containing 5 mM glucose (12). TM induced a reduction in ER [Ca2+], 

which we suggested was the proximal trigger for inducing extracellular Ca2+ influx via SOCE. 

Ca2+ leaves the ER down its concentration gradient through IP3Rs, RyRs or possibly the 

translocon (not addressed in this paper (7)). In the case of ER stress, IP3Rs and RyRs may 

become dysregulated, and ER Ca2+ efflux enhanced as a result. As this possibility was not 

addressed in our previous paper, we decided here to investigate the respective roles of IP3Rs and 

RyRs in altered beta-cell function after ER stress. To do so, we took advantage of the selective 

ER Ca2+ channel antagonists, xestospongin C (XeC; (24)) and dantrolene (Dan; (25)), to block 

IP3Rs and RyRs, respectively.  

 

There are three known isoforms of IP3R : IP3R1, IP3R2 and IP3R3 (17, 26, 27), and several 

groups have reported that all three isoforms are expressed in beta cells, with IP3R1 being most 

abundant (27). The three isoforms exhibit 70% sequence homology (28), and in our hands they 

responded similarly to TM treatment. As shown in Figure 3.1A and 3.1B, the mRNA levels of 

both IP3R1 and IP3R2 decreased after 16 hours of TM treatment. Although the mRNA level of 
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IP3R3 was not significantly reduced, we did observe a trend towards lower levels of IP3R3 

transcripts after TM treatment (Figure 3.1C). Phosphorylated IP3R1 protein was similarly found 

to decrease in TM-treated INS-1(832/13) cells (Figure 3.1F, preliminary data). RyRs are encoded 

by three genes, RyR1, RyR2 and RyR3 (17, 29), where RyR2 is the most abundant isoform 

expressed in beta cells (30). As shown in Figure 3.1D and 3.1E, RyR1 mRNA level was 

increased by TM treatment, while RyR2 transcript level was unchanged.  

 

Activation of the unfolded protein response (UPR) occurs in response to TM-treatment in cells 

(12, 30, 31). We previously showed increased spliced XBP1, CHOP and BiP, canonical markers 

of the ER stress response occurred in both TM-treated INS-1(832/13) cells as well as isolated 

mouse pancreatic islets (12). To define better the respective roles of IP3Rs and RyRs in TM-

induced ER stress in beta cells, INS-1(832/13) cells were treated with a vehicle control (DMSO) 

or TM (10 µg/ml) for 6 hours with or without XeC (1µM ) or Dan (10 µM) in 11 mM glucose-

containing media and then total mRNA was extracted. The 6 hour time point was chosen for 

mRNA quantification because we previously observed that spliced XBP1 peaked after 6 hours of 

TM treatment (12). As shown in Figure 3.2A and 3.2B, XBP1 splicing increased after 6 hours of 

TM treatment in these cells, but neither XeC nor Dan produced any significant inhibition. Thus, 

blocking IP3Rs or RyR1 did not prevent UPR activation in TM-treated beta cells. 

 

To test whether blocking IP3Rs or RyRs prevented TM-induced ER Ca2+ loss, as was previously 

found in islets (12), the ER Ca2+ probe D4ER was transiently expressed in islets using 

adenovirus. Islets were then treated with vehicle control (DMSO), TM, TM+XeC or TM+Dan 

for 16 hours, and then ER [Ca2+] was measured in 5 mM glucose-containing recording solution. 
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Representative traces shown in Figures 3.3A and 3.4A are plots of ER [Ca2+] expressed in 

arbitrary units as a function of time. The effect of cyclopiazonic acid (CPA, 50 µM) is shown 

near the end of each recording trace. CPA is a widely used SERCA blocker that, like 

thapsigargin, depletes ER Ca2+ (32). As shown in Figures 3.3B and 3.4B, exposing islets to TM 

for 16 hours significantly reduced steady state ER [Ca2+] compared to controls, and XeC as well 

as Dan both appeared to prevent this loss.  

 

Mouse islets cultured overnight in media containing 11 mM glucose do not typically show 

oscillations in cytosolic free Ca2+ when acutely exposed to sub-threshold glucose levels (i.e., 

glucose concentrations < 7 mM) (12, 33, 34). However, our previous study showed that TM-

treated islets undergoing ER stress exhibit cytosolic free Ca2+ oscillations in 5 mM glucose due 

to the activation of store-operated Ca2+ entry (SOCE); note that SOCE channels are not a part of 

the mechanism mediating the normal oscillatory responses of islets to glucose (12, 35).  

 

To determine the roles of IP3Rs and RyRs in the production of oscillations seen in sub-threshold 

glucose, mouse islets were exposed to a vehicle control (DMSO), TM, XeC, Dan, TM+ XeC or 

TM+ Dan in standard RPMI 1640 medium for 16 hours. Following these treatments, cytosolic 

islet Ca2+ was recorded using an extracellular recording solution containing 5 mM glucose. As 

shown in Figures 3.5 and 3.6, the cytosolic free Ca2+ of vehicle only control islets displayed little 

oscillatory activity (less than 5% on average) in 5 mM glucose solution, whereas approximately 

80% of TM-treated islets exhibited Ca2+ oscillations. These oscillations were abolished (Figure 

3.6A), with the percentage of islets exhibiting oscillations reduced to < 5% (Figure 3.6B) in 

islets treated with TM containing Dan. In contrast, the inclusion of XeC with TM did not affect 
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the cytosolic [Ca2+] oscillations seen in stressed islets (Figures 3.5A and 3.5B). In Dan or XeC-

treated islets, as for DMSO-treated control islets, little or no oscillatory Ca2+ activity was 

observed if TM was omitted (Figures 3.5 and 3.6).  

 

Mitochondria generate ATP to fuel cellular biochemical reactions (36) and these organelles are 

also capable of storing Ca2+ with a large capacity (37, 38). RyRs and IP3Rs have been proposed 

to gate Ca2+ transport from the ER to mitochondria (37–39). Mouse islets cultured overnight in 

standard media do not typically exhibit oscillatory mitochondrial Ca2+ activity when acutely 

exposed to sub-threshold glucose levels (22). As shown in Figure 3.7A, the mitochondrial Ca2+ 

of control beta cells lacked oscillations in 5 mM glucose solution, as expected. In contrast, about 

47% of TM-treated beta cells expressing the mito-pericam probe within intact islets exhibited 

mitochondrial Ca2+ oscillations after 22-24 hours of TM exposure (Figure 3.7B). We also 

investigated the effect of blocking RyRs or IP3Rs on mitochondrial Ca2+ oscillations in TM-

treated islets. As shown in Figure 3.7B, the percentages of mitochondrial oscillations observed in 

beta cells in intact islets treated with TM+Dan or TM+XeC were 17% and 39%, respectively. 

Thus, Dan inclusion reduced the percentage of TM-treated beta cells exhibiting mitochondrial 

Ca2+ oscillations more than did XeC. 

 

Apoptosis has been shown to occur in beta-cells in response to prolonged ER stress (7, 12, 40, 

41). Since we observed that inhibiting RyRs could affect beta-cell Ca2+ signaling subjected to ER 

stress, we then analyzed the percentage of cells found to be in the sub-G1 phase of the cell cycle, 

indicating cell entry into a late stage of apoptosis, following 24 hours exposure to TM, with and 

without Dan present. As shown in Figure 3.8B, TM-treatment significantly increased in the 
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percentage of apoptotic cells in the sub-G1 phase compared to DMSO or Dan-treated controls. 

The application of Dan, together with TM thus considerably reduced beta-cell apoptosis to near 

control levels. In contrast, the co-application of TM with XeC was without effect (Figure 3.8A). 

Thus, beta-cell death in our hands appeared to be linked to RyR1 activation. 

 

We previously demonstrated using islets that TM-triggered cytosolic free Ca2+ oscillations were 

mediated by SOCE in 5 mM glucose, as the oscillations were acutely blocked by the SOCE 

blocker YM58483. Many studies emphasize the importance of ER-mitochondria contact and 

Ca2+ flux from the ER into the mitochondria, but mitochondrial Ca2+ may also increase due to 

influx from the cytosol due to the mitochondrial Ca2+ uniporter (MCU),  and mitochondrial ion 

exchangers (37, 42–44) to prevent cytosolic Ca2+ overload. Therefore, to further investigate 

mitochondrial Ca2+ regulation in the face of ER stress, we tested if the increased mitochondrial 

Ca2+ oscillations we observed was due to increased SOCE. The representative trace shown in 

Figure 3.9 demonstrates that acute application of YM58483 in 5 mM glucose abolished 

mitochondrial Ca2+ oscillations that were observed in a TM-treated beta-cell in an intact islet. 

Hence, SOCE activation in response to TM treatment also appeared to trigger mitochondrial as 

well as cytosolic Ca2+ oscillations under sub-threshold glucose conditions.  

 

Discussion 

In this study, we attempted to differentiate the roles of RyRs and IP3Rs in ER stress-mediated 

alterations in beta-cell function, specifically the maintenance of beta-cell Ca2+ homeostasis. The 

studies were carried out by exposing INS-1(832/13) cells or mouse islets to the glycosylation 

inhibitor tunicamycin (TM) for up to 24 hours. We found that blocking RyRs using dantrolene 
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(Dan) in the presence of TM prevented ER Ca2+ depletion and cytosolic as well as mitochondrial 

Ca2+ oscillations. Dan also suppressed TM-induced cell apoptosis. In contrast, although 

inhibiting IP3Rs with xestospongin C (XeC) also reduced ER Ca2+ loss, XeC failed to restore 

normal Ca2+ homeostasis in the face of ER stress. 

 

Yamamoto et al. also tested the involvement of RyRs and IP3Rs in TM-mediated ER stress 

conditions in beta cells (30). They proposed that TM decreased ER Ca2+ by increasing RyR2 

activity, which in turn elicited spontaneous cytosolic Ca2+ transients that were seen after raising 

the extracellular Ca2+ concentration (30). Our results agree with those of Yamamoto et al. that 

ryanodine receptors (RyRs) are indeed involved in TM-induced ER Ca2+ loss, while IP3Rs are 

not (IP3Rs, in contrast, were proposed by those authors to be involved in cytokine-induced stress, 

something we did not test). As XeC did not suppress TM-induced cytosolic free Ca2+ oscillations 

observed in 5 mM glucose (Figure 3.5), we also concluded that IP3Rs were not involved in TM-

triggered cytosolic free Ca2+ oscillations seen under sub-threshold conditions. 

 

We previously suggested that the augmented cytosolic free Ca2+ oscillations and insulin secretion 

we observed in stressed beta cells were mediated through SOCE channels under sub-threshold 

glucose conditions (12). In the present study, our data collectively support the hypothesis that the 

increased free Ca2+ occurred secondary to RyR1-mediated ER Ca2+ depletion in response to TM 

treatment. Yamamoto et al. inhibited RyRs using ryanodine, a commonly used antagonist 

targeting all three isoforms if present at sufficiently high concentrations (at least 100 µM). 

Because RyR2 is the dominant isoform of beta cells, they concluded the spontaneous free Ca2+ 
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transients they observed in TM-treated cells were directly due to the increased activity of RyR2 

to release Ca2+ into the cytosol.  

 

Although we did not explicitly rule out RyR2 in our study, we proposed that the cytosolic Ca2+ 

oscillations induced by TM that we observed in sub-threshold glucose occurred because of 

increased RyR1 expression, which in turn depleted ER Ca2+ to the level that SOCE was activated, 

as Dan inclusion reduced the percentage of TM-treated islets exhibiting cytosolic Ca2+ 

oscillations in sub-threshold glucose (Figure 3.6B).  

 

Dan is selective for RyR1 over RyR2 (25). Although there was one piece of evidence 

demonstrating a putative dantrolene-binding site on RyR2, the site was found to not be 

approachable by Dan without a structural/post-translational modification (45). Unfortunately, we 

were unable to successfully blot RyR1 protein due to technical limitations. However, we did 

observe a significant increase in RyR1 mRNA (Figure 3.1D) using qPCR. Yamamoto et al. also 

tested Dan (1 µM) in their study, but they found no effect of the drug on TM-triggered cytosolic 

Ca2+ activity, perhaps due to the concentration of Dan. We used 10 µM of Dan in our study and 

observed it had a substantial impact on cytosolic Ca2+ activity and was able to restore ER Ca2+. 

Other research groups have also found Dan to be effective (up to 30 µM) (46).  

 

In parallel with observing cytosolic free Ca2+ oscillations in stressed cells, we saw that 

mitochondrial Ca2+ concentration also oscillated in TM-treated islets under sub-threshold glucose 

conditions, and further that these oscillations appeared to depend on SOCE activation (Figure 

3.9). However, the most profound mitochondrial Ca2+ oscillations we observed occurred after 
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somewhat longer TM treatment (e.g., 22 hours rather than 16 hours) (Figure 3.7A). Moreover, as 

we found for cytosolic Ca2+ oscillations, Dan inclusion prevented these mitochondrial 

oscillations while XeC inclusion did not (Figure 3.7A and 3.7B). After 16 hours of TM exposure, 

a very small percentage of islets (~5%) exhibited mitochondrial oscillations. We at present have 

no explanation for why this extra time of exposure was necessary. However, unlike 

measurements made using Fura-2/AM, the fluorescent dye we used to image cytosolic Ca2+, 

ratiometric changes monitored using mito-pericam probe are much smaller in amplitude. Hence, 

we might have underestimated the percentages displayed in Figure 3.7B by missing islets with 

weak oscillations that were buried in signal noise.  

 

Both disrupted ER homeostasis and mitochondrial homeostasis can result in beta-cell apoptosis 

(7, 37, 39, 41, 47, 48). As shown in Figure 3.8A, TM treatment led to increased apoptosis, as 

indicated by the percentage of cells found in the sub-G1 phase in INS-1(832-13) cells. XeC-

treatment, in the presence of TM, did not affect the percentage of the cells undergoing apoptosis. 

In contrast, restoring ER Ca2+ levels in TM-treated islets using Dan was found to protect INS-

1(832/13) cells from death, as the percentage of cells experiencing apoptosis was reduced after 

Dan+TM compared to TM treatment alone (Figure 3.8B). However, the percentage of 

oscillations we recorded was still greater than those of control (DMSO) islets. Mitochondrial 

Ca2+ overload and consequent mitochondrial swelling and permeabilization can cause 

mitochondria to release pro-apoptotic factors into the cytosol, resulting in apoptosis (39). 

Therefore, the oscillations in mitochondrial Ca2+ may account for the cells that progressed to 

apoptosis after Dan+TM treatment, as shown in Figure 3.8B.  
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If any of the changes reported here indeed reflect the importance of ER Ca2+ in the downstream 

effects of ER stress, then it is peculiar that IP3Rs, while capable of blunting ER Ca2+ loss, 

seemed to be unable to reproduce the efficacy of RyR blockade, which also prevented ER Ca2+ 

release. Why might this be the case? While we have no definitive answer, the data are consistent 

with two possibilities. First, regionalization of the ER might occur so that the depletion of Ca2+ 

within different domains of the ER result in different consequences for the cell. Resolving this 

question will require higher resolution imaging approaches to assay distinct ER subdomains and 

their potentially differentially localized Ca2+ pools. We do not know whether the different types 

of ER Ca2+ channels indeed may also be differentially localized within these different 

subdomains of the ER (49, 50).  

 

Secondly, there could be direct roles of the RyRs themselves in the signaling that is linked to the 

downstream events associated with ER stress. What other molecules do these proteins interact 

with, and do they also perhaps generate additional signals through these interactions? In this case, 

lowering ER Ca2+ could be but one component of the response to ER stress involving RyRs and 

IP3Rs. Further research will need to be carried out to answer these questions.  

 

In summary, this report demonstrates that the RyR1 is a critical player in TM-induced ER Ca2+ 

loss, cytosolic and mitochondrial Ca2+ oscillations and beta-cell apoptosis, as described in Figure 

3.10. Inhibiting RyR1 using Dan blocked both the cytosolic Ca2+ oscillations seen under sub-

threshold glucose conditions and cell apoptosis seen in response to TM. Hence, merging our 

findings with existing knowledge on RyRs and IP3Rs, we suggest that RyR1 could be a 

potentially useful therapeutic target in T2DM and prediabetes.   
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Figures and legends 

 
Figure 3.1 Tunicamycin altered IP3Rs and RyRs expression 

INS-1(832/13) cells were treated with vehicle control (DMSO) or tunicamycin (TM, 10 µg/ml) 
for 16 hours in 11 mM glucose. 1A-1C: IP3R isoforms mRNA levels were measured. 1A: IP3R1. 
1B: IP3R2. 1C: IP3R3. 1D-1E: RyR isoforms mRNA levels were measured. 1D: RyR1. 1E: 
RyR2. All values shown are means ± SEM, #, p< 0.05, ##, p< 0.01, ###, p< 0.005; n= 3 times 
repeated per condition, by student’s t-test. 1F: Representative western blots showing the 
expression of phosphorylated IP3R1 (n=1).  
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Figure 3.2 Inhibiting IP3Rs or RyRs did not prevent UPR activation 

2A: INS-1(832/13) cells were treated with vehicle control (DMSO), tunicamycin (TM, 10 µg/ml), 
xestospongin C (XeC, 1 µM) or TM+XeC for 6 hours in 11 mM glucose containing culture 
medium. Expression level of spliced XBP1 mRNA. Row Factor F(1, 8)= 64.85, p< 0.0001, 
Column Factor F(1, 8)= 0.4599, p=0.5168, Interaction F(1, 8)= 0.5129, p= 0.4943, by two-way 
ANOVA. 2B: INS-1(832/13) cells were treated with vehicle control (DMSO), tunicamycin (TM, 
10 µg/ml), dantrolene (Dan, 10 µM) or TM+Dan for 6 hours in 11 mM glucose containing 
culture medium. Expression level of spliced XBP1 mRNA. Row Factor F(1, 8)= 112.3, p< 
0.0001, Column Factor F(1, 8)= 1.937, p=0.2015, Interaction F(1, 8)= 2.568, p= 0.1477, by two-
way ANOVA. All values shown are means ± SEM. ##, p< 0.01; ###, p< 0.005; ns= not 
significant; n= 3 times repeated per condition, by two-way ANOVA with post hoc multiple 
comparison by Tukey’s procedure. 
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Figure 3.3 Xestospongin C treatment restored basal ER Ca2+ level 

Mouse pancreatic islets were infected with an adenovirus expressing a beta-cell directed D4ER 
probe for three hours, followed by a 48-hour recovery period. Islets were then treated with 
vehicle control (DMSO), tunicamycin (TM, 10 µg/ml) or TM+ xestospongin C (XeC, 1 µM) for 
16 hours in 11 mM glucose islet culture medium. 3A: Basal ER Ca2+ traces for each condition 
obtained in 5 mM glucose solution before and after cyclopiazonic acid (CPA, 50 µM). 3B: The 
raw data showing resting ER Ca2+ level from mouse islets in 5 mM glucose solution. Each data 
point shown was a D4ER ratio obtained for one selected region of interest, a single cell or small 
group of cells. All values shown are means ± SEM. ##, p< 0.01; ####, p< 0.0001; ns= not 
significant; n= at least 3 mice, by one-way ANOVA with post hoc multiple comparison by 
Tukey’s procedure.  
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Figure 3.4 Dantrolene treatment increased basal ER Ca2+ level 

Mouse pancreatic islets were infected with an adenovirus expressing a beta-cell directed D4ER 
probe for three hours, followed by a 48-hour recovery period. Islets were then treated with 
vehicle control (DMSO), tunicamycin (TM, 10 µg/ml) or TM+ dantrolene (Dan, 10 µM) for 16 
hours in 11 mM glucose islet culture medium. 3A: Basal ER Ca2+ traces for each condition 
obtained in 5 mM glucose solution before and after cyclopiazonic acid (CPA, 50 µM). 3B: The 
raw data showing resting ER Ca2+ level from mouse islets in 5 mM glucose solution. Each data 
point shown was a D4ER ratio obtained for one selected region of interest, a single cell or small 
group of cells. All values shown are means ± SEM. #, p< 0.05; ####, p< 0.0001; n= at least 3 
mice, by one-way ANOVA with post hoc multiple comparison by Tukey’s procedure.  
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Figure 3.5 Xestospongin C did not affect cytosolic free Ca2+ oscillations under sub-threshold 
glucose conditions 

Isolated pancreatic mouse islets were treated with a vehicle control (DMSO), tunicamycin (TM, 
10 µg/ml), xestospongin C (XeC, 1 µM) or TM+XeC for 16 hours in 11 mM glucose. 3A: The 
responses of cytosolic free Ca2+ to the solution containing 5 mM glucose under the indicated 
conditions. 3B: Percentage of oscillating islets; n= at least 3 mice. 
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Figure 3.6 Dantrolene suppressed cytosolic free Ca2+ oscillations under sub-threshold glucose 
conditions 

Isolated pancreatic mouse islets were treated with a vehicle control (DMSO), tunicamycin (TM, 
10 µg/ml), dantrolene (Dan, 10 µM) or TM+Dan for 16 hours in 11 mM glucose. 3A: The 
responses of cytosolic free Ca2+ to the solution containing 5 mM glucose under the indicated 
conditions. 3B: Percentage of oscillating islets; n= at least 3 mice. 
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Figure 3.7 Differential effects of xestospongin C and dantrolene on mitochondrial Ca2+ 
oscillations under sub-threshold glucose conditions 

Mouse pancreatic islets were infected with an adenovirus expressing the mito-pericam probe for 
6 hours, followed by a 72-hour recovery period prior to imaging. Within the last 16 hours period, 
islets were treated with vehicle control (DMSO), tunicamycin (TM, 10 µg/ml), TM+ 
xestospongin C (XeC, 1 µM) or TM+dantrolene (Dan, 10 µM) in 11 mM glucose islet culture 
medium. 7A: Representative traces of basal mitochondrial Ca2+ in the solution containing 5 mM 
glucose under the indicated conditions. 7B: Percentage of oscillating beta cells within intact 
islets; n= at least 3 mice. 
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Figure 3.8 Differential effects of xestospongin C and dantrolene on beta-cell apoptosis under 
sub-threshold glucose conditions 

INS-1(832/13) cells were treated with vehicle control (DMSO), tunicamycin (TM, 10 µg/ml), 8A: 
xestospongin C (XeC, 1 µM), or TM+XeC; 8B: dantrolene (Dan, 10 µM) or TM+Dan for 24 
hours in 11 mM glucose containing cell culture medium. Late stage apoptotic INS-1(832/13) 
cells is shown using the sub-G1 assay measured by flow cytometry. Fold change was derived by 
comparing to DMSO group. 8A: Row Factor F(1, 8)= 50.25, p= 0.0001, Column Factor F(1, 8)= 
0.4793, p=0.5083, Interaction F(1, 8)= 0.4267, p= 0.5319, by two-way ANOVA. 8B: Row Factor 
F(1, 8)= 26.26, p= 0.0009, Column Factor F(1, 8)= 5.753, p=0.0433, Interaction F(1, 8)= 6.879, 
p= 0.0305, by two-way ANOVA. All values shown are means ± SEM. #, p< 0.05, ##, p< 0.01, 
ns= not significant; n= 3 times repeated per condition, by two-way ANOVA with post hoc 
multiple comparison by Tukey’s procedure. 
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Figure 3.9 Increased mitochondrial Ca2 was mediated by store-operated Ca2+ entry (SOCE) 

Mouse pancreatic islets were infected with an adenovirus expressing the mito-pericam probe, as 
described in Figure 3.7. Islets were treated with vehicle control (DMSO), tunicamycin (TM, 10 
µg/ml) for 16 hours in 11 mM glucose islet culture medium. Islets were then acutely exposed to 
5 mM glucose containing solution with or without YM58483 (YM, 10 µM).  

 

Figure 3.10 Scheme of beta-cell death and increasing insulin secretion mediated by tunicamycin 
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Table 2 Oligonucleotide primers  

Table 1 
A)

Gene Forward Reward

Xbp1s (rat)

Ryr1 (rat) 

Ryr2 (rat) 

IP3R1 (rat) 

IP3R2 (rat) 

IP3R3 (rat) 

Hprt1 (rat) GCAGGTCAGCAAAGAACTTATAGCCCTCATGGACTGATTATGGACAGGAC

CTGAGTCCGAATCAGGTGCAG ATCCATGGGAAGATGTTCTGG

CGTAGACAACAACAGGGCAC AGATTTCTCCCACCATCCTGA

AAAGTCTGTTGCCAAATCCTTCTACGGCGACCATCCACAAAG

CAACCGTTACTATGGAAACATC TCAGCCAGGCTCATCTCAC

CGATGCCAGGATACGATGT CACCCTTGAAGTACCGATT

AGGAGCTGGTGGACGTGAT TGCTTGTTGTGCCTGGAAA



113 

 

 

References  

1.  Howell, S. L., Jones, P. M., and Persaud, S. J. (1994) Regulation of insulin secretion: the 
role of second messengers. Diabetologia. 37, S30–S35 

2.  Clapham, D. E. (2007) Calcium Signaling. Cell. 131, 1047–1058 

3.  Berridge, M. J. (2002) The endoplasmic reticulum: a multifunctional signaling organelle. 
Cell Calcium. 32, 235–249 

4.  Anelli, T., and Sitia, R. (2008) Protein quality control in the early secretory pathway. 
EMBO J. 27, 315–327 

5.  Fonseca, S. G., Gromada, J., and Urano, F. (2011) Endoplasmic reticulum stress and 
pancreatic β-cell death. Trends Endocrinol. Metab. 22, 266–274 

6.  Hasnain, S. Z., Prins, J. B., and McGuckin, M. A. (2016) Oxidative and endoplasmic 
reticulum stress in β-cell dysfunction in diabetes. J. Mol. Endocrinol. 56, R33–R54 

7.  Zhang, I. X., Raghavan, M., and Satin, L. S. (2020) The Endoplasmic Reticulum and 
Calcium Homeostasis in Pancreatic Beta Cells. Endocrinology. 161, bqz028 

8.  Arunagiri, A., Haataja, L., Pottekat, A., Pamenan, F., Kim, S., Zeltser, L. M., Paton, A. W., 
Paton, J. C., Tsai, B., Itkin-Ansari, P., Kaufman, R. J., Liu, M., and Arvan, P. (2019) 
Proinsulin misfolding is an early event in the progression to type 2 diabetes. eLife. 8, 
e44532 

9.  Back, S. H., and Kaufman, R. J. (2012) Endoplasmic Reticulum Stress and Type 2 
Diabetes. Annu. Rev. Biochem. 81, 767–793 

10.  Sammels, E., Parys, J. B., Missiaen, L., De Smedt, H., and Bultynck, G. (2010) 
Intracellular Ca2+ storage in health and disease: A dynamic equilibrium. Cell Calcium. 47, 
297–314 

11.  Mekahli, D., Bultynck, G., Parys, J. B., De Smedt, H., and Missiaen, L. (2011) 
Endoplasmic-Reticulum Calcium Depletion and Disease. Cold Spring Harb. Perspect. 
Biol. 3, a004317–a004317 

12.  Zhang, I. X., Ren, J., Vadrevu, S., Raghavan, M., and Satin, L. S. (2020) ER stress 
increases store-operated Ca 2+ entry (SOCE) and augments basal insulin secretion in 
pancreatic β cells. J. Biol. Chem. 10.1074/jbc.RA120.012721 

13.  Flourakis, M., Van Coppenolle, F., Lehen’kyi, V., Beck, B., Skryma, R., and Prevarskaya, 
N. (2006) Passive calcium leak via translocon is a first step for iPLA 2 -pathway regulated 
store operated channels activation. FASEB J. 20, 1215–1217 

14.  Van Coppenolle, F. (2004) Ribosome-translocon complex mediates calcium leakage from 
endoplasmic reticulum stores. J. Cell Sci. 117, 4135–4142 



114 

 

 

15.  Graves, T. K., and Hinkle, P. M. (2003) Ca 2+ -Induced Ca 2+ Release in the Pancreatic β-
Cell: Direct Evidence of Endoplasmic Reticulum Ca 2+ Release. Endocrinology. 144, 
3565–3574 

16.  Dyachok, O., Tufveson, G., and Gylfe, E. (2004) Ca2+-induced Ca2+ release by activation 
of inositol 1,4,5-trisphosphate receptors in primary pancreatic β-cells. Cell Calcium. 36, 
1–9 

17.  Santulli, G., Nakashima, R., Yuan, Q., and Marks, A. R. (2017) Intracellular calcium 
release channels: an update: RyRs vs . IP 3 Rs. J. Physiol. 595, 3041–3051 

18.  Yoo, J., Mashalidis, E. H., Kuk, A. C. Y., Yamamoto, K., Kaeser, B., Ichikawa, S., and 
Lee, S.-Y. (2018) GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis 
for inhibition of N-glycosylation. Nat. Struct. Mol. Biol. 25, 217–224 

19.  Tong, X., Kono, T., Anderson-Baucum, E. K., Yamamoto, W., Gilon, P., Lebeche, D., 
Day, R. N., Shull, G. E., and Evans-Molina, C. (2016) SERCA2 Deficiency Impairs 
Pancreatic β-Cell Function in Response to Diet-Induced Obesity. Diabetes. 65, 3039–3052 

20.  Zhang, M., Goforth, P., Bertram, R., Sherman, A., and Satin, L. (2003) The Ca2+ 
Dynamics of Isolated Mouse β-Cells and Islets: Implications for Mathematical Models. 
Biophys. J. 84, 2852–2870 

21.  Ravier, M. A., Daro, D., Roma, L. P., Jonas, J.-C., Cheng-Xue, R., Schuit, F. C., and 
Gilon, P. (2011) Mechanisms of Control of the Free Ca2+ Concentration in the 
Endoplasmic Reticulum of Mouse Pancreatic -Cells: Interplay With Cell Metabolism and 
[Ca2+]c and Role of SERCA2b and SERCA3. Diabetes. 60, 2533–2545 

22.  Montemurro, C., Nomoto, H., Pei, L., Parekh, V. S., Vongbunyong, K. E., Vadrevu, S., 
Gurlo, T., Butler, A. E., Subramaniam, R., Ritou, E., Shirihai, O. S., Satin, L. S., Butler, P. 
C., and Tudzarova, S. (2019) IAPP toxicity activates HIF1α/PFKFB3 signaling delaying 
β-cell loss at the expense of β-cell function. Nat. Commun. 10, 2679 

23.  Nagai, T., Sawano, A., Park, E. S., and Miyawaki, A. (2001) Circularly permuted green 
fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. 98, 3197–3202 

24.  Gafni, J., Munsch, J. A., Lam, T. H., Catlin, M. C., Costa, L. G., Molinski, T. F., and 
Pessah, I. N. (1997) Xestospongins: Potent Membrane Permeable Blockers of the Inositol 
1,4,5-Trisphosphate Receptor. Neuron. 19, 723–733 

25.  Zhao, F., Li, P., Chen, S. R. W., Louis, C. F., and Fruen, B. R. (2001) Dantrolene 
Inhibition of Ryanodine Receptor Ca 2+ Release Channels: MOLECULAR MECHANISM 
AND ISOFORM SELECTIVITY. J. Biol. Chem. 276, 13810–13816 

26.  Mataragka, S., and Taylor, C. W. (2018) All three IP 3 receptor subtypes generate Ca 2+ 
puffs, the universal building blocks of IP 3 -evoked Ca 2+ signals. J. Cell Sci. 131, 
jcs220848 



115 

 

 

27.  Ye, R., Ni, M., Wang, M., Luo, S., Zhu, G., Chow, R. H., and Lee, A. S. (2011) Inositol 
1,4,5-trisphosphate receptor 1 mutation perturbs glucose homeostasis and enhances 
susceptibility to diet-induced diabetes. J. Endocrinol. 210, 209–217 

28.  Baker, M. R., Fan, G., and Serysheva, I. I. (2017) Structure of IP3R channel: high-
resolution insights from cryo-EM. Curr. Opin. Struct. Biol. 46, 38–47 

29.  Santulli, G., Pagano, G., Sardu, C., Xie, W., Reiken, S., D’Ascia, S. L., Cannone, M., 
Marziliano, N., Trimarco, B., Guise, T. A., Lacampagne, A., and Marks, A. R. (2015) 
Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J. Clin. 
Invest. 125, 1968–1978 

30.  Yamamoto, W. R., Bone, R. N., Sohn, P., Syed, F., Reissaus, C. A., Mosley, A. L., 
Wijeratne, A. B., True, J. D., Tong, X., Kono, T., and Evans-Molina, C. (2019) 
Endoplasmic reticulum stress alters ryanodine receptor function in the murine pancreatic β 
cell. J. Biol. Chem. 294, 168–181 

31.  Collett, G. P., Redman, C. W., Sargent, I. L., and Vatish, M. (2018) Endoplasmic 
reticulum stress stimulates the release of extracellular vesicles carrying danger-associated 
molecular pattern (DAMP) molecules. Oncotarget. 10.18632/oncotarget.24158 

32.  Laursen, M., Bublitz, M., Moncoq, K., Olesen, C., Møller, J. V., Young, H. S., Nissen, P., 
and Morth, J. P. (2009) Cyclopiazonic acid is complexed to a divalent metal ion when 
bound to the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 284, 13513–13518 

33.  Satin, L. S., Butler, P. C., Ha, J., and Sherman, A. S. (2015) Pulsatile insulin secretion, 
impaired glucose tolerance and type 2 diabetes. Mol. Aspects Med. 42, 61–77 

34.  Glynn, E., Thompson, B., Vadrevu, S., Lu, S., Kennedy, R. T., Ha, J., Sherman, A., and 
Satin, L. S. (2016) Chronic Glucose Exposure Systematically Shifts the Oscillatory 
Threshold of Mouse Islets: Experimental Evidence for an Early Intrinsic Mechanism of 
Compensation for Hyperglycemia. Endocrinology. 157, 611–623 

35.  Bertram, R., Satin, L. S., and Sherman, A. S. (2018) Closing in on the Mechanisms of 
Pulsatile Insulin Secretion. Diabetes. 67, 351–359 

36.  Tait, S. W. G., and Green, D. R. (2010) Mitochondria and cell death: outer membrane 
permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 

37.  Wacquier, B., Combettes, L., Van Nhieu, G. T., and Dupont, G. (2016) Interplay Between 
Intracellular Ca2+ Oscillations and Ca2+-stimulated Mitochondrial Metabolism. Sci. Rep. 
6, 19316 

38.  Idevall-Hagren, O., and Tengholm, A. (2020) Metabolic regulation of calcium signaling in 
beta cells. Semin. Cell Dev. Biol. 10.1016/j.semcdb.2020.01.008 



116 

 

 

39.  Hajnóczky, G., Csordás, G., Das, S., Garcia-Perez, C., Saotome, M., Sinha Roy, S., and Yi, 
M. (2006) Mitochondrial calcium signalling and cell death: Approaches for assessing the 
role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 40, 553–560 

40.  Oslowski, C. M., and Urano, F. (2011) Measuring ER Stress and the Unfolded Protein 
Response Using Mammalian Tissue Culture System. in Methods in Enzymology, pp. 71–
92, 490, 71–92 

41.  Sano, R., and Reed, J. C. (2013) ER stress-induced cell death mechanisms. Biochim. 
Biophys. Acta BBA - Mol. Cell Res. 1833, 3460–3470 

42.  Wacquier, B., Combettes, L., and Dupont, G. (2019) Cytoplasmic and Mitochondrial 
Calcium Signaling: A Two-Way Relationship. Cold Spring Harb. Perspect. Biol. 11, 
a035139 

43.  Lee, K.-S., Huh, S., Lee, S., Wu, Z., Kim, A.-K., Kang, H.-Y., and Lu, B. (2018) Altered 
ER–mitochondria contact impacts mitochondria calcium homeostasis and contributes to 
neurodegeneration in vivo in disease models. Proc. Natl. Acad. Sci. 115, E8844–E8853 

44.  Calvo-Rodriguez, M., Hou, S. S., Snyder, A. C., Kharitonova, E. K., Russ, A. N., Das, S., 
Fan, Z., Muzikansky, A., Garcia-Alloza, M., Serrano-Pozo, A., Hudry, E., and Bacskai, B. 
J. (2020) Increased mitochondrial calcium levels associated with neuronal death in a 
mouse model of Alzheimer’s disease. Nat. Commun. 11, 2146 

45.  Paul-Pletzer, K., Yamamoto, T., Ikemoto, N., Jimenez, L. S., Morimoto, H., Williams, P. 
G., Ma, J., and Parness, J. (2005) Probing a putative dantrolene-binding site on the cardiac 
ryanodine receptor. Biochem. J. 387, 905–909 

46.  Luciani, D. S., Gwiazda, K. S., Yang, T.-L. B., Kalynyak, T. B., Bychkivska, Y., Frey, M. 
H. Z., Jeffrey, K. D., Sampaio, A. V., Underhill, T. M., and Johnson, J. D. (2009) Roles of 
IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and -Cell Death. 
Diabetes. 58, 422–432 

47.  Rojas, J., Bermudez, V., Palmar, J., Martínez, M. S., Olivar, L. C., Nava, M., Tomey, D., 
Rojas, M., Salazar, J., Garicano, C., and Velasco, M. (2018) Pancreatic Beta Cell Death: 
Novel Potential Mechanisms in Diabetes Therapy. J. Diabetes Res. 2018, 1–19 

48.  Chan, J. Y., Luzuriaga, J., Maxwell, E. L., West, P. K., Bensellam, M., and Laybutt, D. R. 
(2015) The balance between adaptive and apoptotic unfolded protein responses regulates 
β-cell death under ER stress conditions through XBP1, CHOP and JNK. Mol. Cell. 
Endocrinol. 413, 189–201 

49.  Sitia, R., and Meldolesi, J. (1992) Endoplasmic reticulum: a dynamic patchwork of 
specialized subregions. Mol. Biol. Cell. 3, 1067–1072 

50.  Hobman, T. C., Zhao, B., Chan, H., and Farquhar, M. G. (1998) Immunoisolation and 
Characterization of a Subdomain of the Endoplasmic Reticulum That Concentrates 
Proteins Involved in COPII Vesicle Biogenesis. Mol. Biol. Cell. 9, 1265–1278 



117 

 

 

Chapter 4 ER Stress Activates Kir2.1 and Enhances Free Ca2+ Oscillations in 

Pancreatic Beta Cells 

Irina X. Zhang, Suryakiran Vadrevu, and Leslie S. Satin 

 

Abstract 

Accumulating evidence demonstrates an essential role for ER stress in T2DM pathogenesis. In a 

previous study from our laboratory, store-operated Ca2+ entry (SOCE) was shown to be activated 

by the stress-inducing agent tunicamycin (TM; 10 µg/ml) in insulin-secreting INS-1 (832/13) 

cells or isolated mouse islets. As a result, oscillations in cytosolic Ca2+, membrane potential and 

insulin secretion were observed even in normally sub-threshold glucose (e.g., 5 mM glucose). 

Our laboratory has proposed that islets from KATP (SUR1) deficient mice, which are well known 

to display relatively normal cytosolic Ca2+ oscillations because compensatory activation of the 

inward rectifier K+ channel Kir2.1. To investigate whether Kir2.1 is also involved in ER stress-

induced beta-cell dysfunction, as in other cell types (1, 2) we tested the Kir2.1-selective inhibitor 

ML133 (10 µM). We found that the TM-induced cytosolic Ca2+ oscillations of mouse islets were 

blocked following overnight exposure to ML133, as was TM-induced beta-cell apoptosis. 

ML133 also alleviated ER stress, as evidenced by decreased XBP1 splicing in TM-treated cells, 

while it enhanced BiP expression. The induction of ER stress, in addition, resulted in reduced 

trafficking of KATP (SUR1) to the plasma membrane in INS-1 (832/13) cells. These results 

suggest that Kir2.1 channels may represent a novel target for increasing insulin secretion under 
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conditions of ER stress.  

 

Introduction  

Diabetes affects approximately 1 in 10 Americans, and type 2 diabetes mellitus (T2DM) 

accounts for 90% to 95% of the population with diabetes overall (3). T2DM is a chronic disorder 

which is characterized by hyperglycemia due to deficient beta cell insulin secretion and insulin 

resistance of target tissues, causing a failure of the body to maintain normal blood glucose levels 

(4, 5). Insulin secretion is a Ca2+- dependent process. In mouse beta cells, elevated blood glucose 

is taken up by type 2 glucose transporters (GLUT-2) and then metabolized to generate ATP. The 

ratio of ATP/ADP being thus enhanced, ATP-gated K+ channels (KATP) close, leading to plasma 

membrane depolarization. The voltage-gated Ca2+ channel (VGCC), which is gated by plasma 

membrane depolarization thus allows Ca2+ influx into the cytosol (6–10). Ca2+ is sequestered 

within the endoplasmic reticulum (ER) and released into the cytosol in response to various 

physiological stimuli, such as occur when beta cell plasma membrane GPCRs activate (11).  

 

The ER plays a vital role in intracellular Ca2+ signaling, protein folding and trafficking and cell 

apoptosis.  Disrupted ER homeostasis triggers the activation of the unfolded protein response 

(UPR), an adaptive signaling pathway in which cells strive to survive, or they undergo apoptosis 

after unresolved ER stress (12). Disturbed ER homeostasis and ER stress are believed to be an 

essential part of the pathogenesis of T2DM (9, 13), and increasing evidence suggests the 

activation of UPR occurs in beta cells from T2DM patients and T2DM animal models (13–17). 

 



119 

 

 

The KATP channel consists of four pairs of Kir6.2 and SUR1 subunits that together form an 

octameric arrangement (18, 19). The inward-rectifier Kir6.2 is the pore-forming subunit that is 

bound by ATP. SUR1 is a high-affinity sulfonylurea receptor belonging to the ATP-binding 

cassette superfamily (ABC transporters;17). The KATP channel requires both subunits in order to 

function (19, 21). However, paradoxically the SUR1-/- mouse which lacks SUR1 subunit and 

functional KATP has been shown by several labs to maintain relatively normal oscillations in both 

membrane potential and cytosolic free Ca2+ in 11 mM glucose. Yildirim et al (19) from our 

group, using mainly mathematical modeling and some key experimental data  and a companion 

experimental study (Vadrevu et al., in preparation) demonstrated a compensatory mechanism 

that can account for the puzzling results seen in SUR1-/- islets based on the hypothesis that 

upregulation of another inward rectifier channel, Kir2.1 occurs in SUR1-/- mice (19).  

 

Kir2.1 is encoded by the KCNJ2 gene (22) and Kir2.1 currents have been observed in human beta 

cells (23). However, few studies have addressed their possible role in beta cells. To better 

understand the role of Kir2.1 channels in beta cells, we aimed to characterize it in INS-1(832/13) 

cells and isolated mouse islets under normal as well as stressed conditions. In this study, we used 

TM, which inhibited N-glycosylation to trigger ER stress in INS-1(832/13) cells or isolated 

mouse islets. ER stress response markers, cytosolic Ca2+ activity and beta-cell apoptosis were 

measured after exposing islets or cells to TM with and without ML133, a selective and potent 

inhibitor of Kir2.1 channels that was found in an unbiased screen of a large library of compounds 

(24). TM treatment increased cytosolic free Ca2+ oscillations even in sub-threshold glucose (e.g., 

5 mM glucose), as we reported previously (25). We found that the aberrant Ca2+ signaling seen 

upon ER stress was suppressed by an overnight exposure to ML133. ML133 also inhibited UPR 
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activation and prevented the apoptosis induced in TM-treated INS-1(832/13) cells. ML133 

acutely triggered a weak increase in cytosolic Ca2+ in wildtype islets. Together, our results 

suggest that Kir2.1 channels may represent a novel target of increasing insulin secretion under 

ER stress conditions. 

 

Materials and Methods  

Materials  

Tunicamycin (TM) and thapsigargin (TG) were obtained from Cayman Chemical. ML133 and 

BaCl2 were purchased from Sigma-Aldrich Products. RIPA lysis buffer was obtained from 

ThermoFisher Scientific. Signal Fire ECL reagents were purchased from Bio-Rad Laboratories. 

Rabbit anti-Kir2.1 antibody (1:1000), Rabbit anti-GAPDH (1:1000), Mouse anti-KDEL (1:1000), 

horseradish peroxidase (HRP)-conjugated mouse anti-rabbit antibody (1:5000) and HPR-

conjugated horse anti-mouse antibody (1:5000) were purchased from Cell Signaling Technology.  

 

The standard culture RPMI 1640 medium contained 11 mM glucose, 10% fetal bovine serum 

(FBS), 10 mM HEPES, 1% penicillin/streptomycin and 1% sodium pyruvate. The culture 

medium contained RPMI 1640 medium, 5 mM glucose, 10% fetal bovine serum (FBS), 10 mM 

HEPES, 1% penicillin/streptomycin and 1% sodium pyruvate. The imaging solution contained 5 

mM glucose, 140 mM NaCl, 3 mM CaCl2, 5 mM KCl, 2mM MgCl2 and 10 mM HEPES.  

 

The RNeasy Mini Kit for qRT-PCR was from Qiagen. Superscript RT II was from Invitrogen. 

SYBR Green PCR master mix was from Applied Biosystems. Primers for qRT-PCR were from 

Integrated DNA Technologies with the sequences listed in Table 3.  
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Preparation of pancreatic islets  

Pancreatic islets were prepared as described (25). Islets were isolated from wildtype male Swiss-

Webster mice followed by culturing in standard RPMI 1640 medium. The islets were treated 

with 0.1% DMSO, 10 µM ML133, 10 µg/mL tunicamycin (TM) or 20 µM BaCl2.  

 

Cell culture 

INS-1(832/13) cells were grown in the standard culture RPMI 1640 medium containing 11 mM 

glucose in 10 cm culture dishes at 37 °C in a 5% CO2 humidified atmosphere. Cells were treated 

for experiments after reaching 70% confluency.  

 

Real-Time PCR 

Total RNA was extracted from INS-1(832/13) cells using the RNeasy Mini Kit and one µg of 

total RNA was reverse-transcribed using Superscript RT II according to the manufacturer’s 

instructions. Genes of interest were amplified using the SYBR Green PCR master mix with 

primer sequences listed above. Data were presented as RQ values (2-DD CT) with expression 

showed relative to an endogenous control HPRT1. The threshold-cycle (CT) values were 

obtained using the Step One software.  

 

Surface labeling assay 

Cell surface biotinylation assay was performed using a Pierce cell surface protein isolation kit 

following manufacturer’s instructions (Pierce, ThermoFisher Scientific). Surface protein was 



122 

 

 

eluted in sample buffer containing DTT before resolving on an SDS-PAGE gel and analyzed by 

immunoblotting.  

 

Western blotting 

INS-1(832/13) cells were lysed with RIPA buffer, and total protein was extracted before 

separating using 4-12% SDS-PAGE and transferring to nitrocellulose membranes. Membranes 

were blocked in 5% w/v nonfat dry milk in 1X TBST buffer before overnight incubating with 

primary antibodies diluted in 5% nonfat dry milk in 1X TBST at 4 °C.  Blots were incubated 

with HRP-conjugated secondary antibodies and then visualized using ECL reagents.  

 

Fura-2/AM imaging 

Islets were loaded with Fura-2/AM (2.5 µM) in the culture RPMI medium containing 5 mM 

glucose for 45 minutes at 37 °C before imaging. During imaging, the islets were fused with 

warm imaging solution containing 5 mM glucose at 1 mL/min, and ratiometric 340/380 nm 

excitation and 502 emission were carried out as previously described (26). The fluorescence data 

were acquired using Metafluor, and the traces were derived from Excel and presented in Prism.  

 

Statistical analysis 

Data were expressed as means +/- SEM. They were analyzed using an unpaired Student’s t-test 

(Prism, GraphPad Software Solutions) when comparing two groups, and two-way ANOVA 

(Prism) with post hoc multiple comparisons by Tukey’s procedure when comparing more two 

groups. Values of p<0.05 were considered statistically significant. 
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Results  

Kir2.1 channels play an essential role in cardiac cells, and Kir2.1 is also expressed in beta cells, as 

evidenced by western blotting (23). To investigate the role of the channel in beta cells, we 

measured cytosolic free Ca2+ in parallel with UPR markers to characterize the role of the channel 

in normal as well as stressed conditions. TM was used to trigger ER stress, and ML133 or BaCl2 

were used to inhibit the Kir2.1 channels (27).  

 

We first confirmed that Kir2.1 channel protein was expressed in INS-1(832/13) cells and mouse 

islets (Figure 4.1A and 4.1B), and then whether protein levels were modulated under ER stress 

conditions. Measured levels of Kir2.1 mRNA or protein in control (DMSO vehicle) or TM-

treated INS-1(832/13) cells or mouse islets after 16 hours of exposure are shown in Figure 4.1A 

and 4.1B. As can be seen, Kir2.1 mRNA levels were decreased by 45% and 75% compared to 

controls in INS-1(832/13) cells and mouse islets, respectively, in preparations treated with TM. 

In Figure 4.1C and 4.1D, it can be further seen that TM significantly reduced Kir2.1 protein by 

~50% in INS-1(832/13) cells.  

 

The cytosolic Ca2+ concentration of mouse islets does not typically exhibit oscillations when 

acutely exposed to glucose concentrations <7 mM (4). We previously reported that TM-treated 

mouse islets exhibited cytosolic Ca2+ oscillations in 5 mM glucose, however, and that this leads 

to increased insulin secretion (25). As shown in Figure 4.2A, about 50% of islets exhibited Ca2+ 

oscillations after overnight TM treatment (Figure 4.2B). As shown in Figure 4.2A, treating islets 

with ML133 overnight along with TM, prevented the oscillations seen in 5 mM glucose. 

Baseline Ca2+ levels (Figure 4.3A) of all islets tested were analyzed, and they did not differ 
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between control and TM-treated islets, with or without ML133 being present during TM 

treatment (Figure 4.3A). The plateau fraction (Figure 4.3B), frequency (Figure 4.3C) and 

amplitude (Figure 4.3D) of the oscillations in TM-treated islets were analyzed. Ba2+ (or BaCl2) is 

a well-known ion blocker of Kir2.1 channels (28). As with ML133, overnight treatment of BaCl2 

also inhibited the Ca2+ oscillations that were triggered by TM exposure and observed acutely in 5 

mM glucose (Figure 4.4).  

 

To test if the increased cytosolic Ca2+ activity required the activity of Kir2.1 channels, ML133 

was applied acutely to islets during recordings made in 5 mM glucose. As shown in Figure 4.5, 

ML133 slightly increased cytosolic Ca2+ without causing oscillations in control islets. In TM-

treated islets, ML133 acutely increased baseline Ca2+ in 5 mM glucose, but oscillations persisted 

(Figure 4.5). Like KATP channels, Kir2.1 channels conduct small outward K+ currents at 

membrane potentials that are depolarized from -70 mV, but unlike KATP they are not ATP-

sensitive (29). Blocking the Kir2.1 channels prevents the outward flow of K+, and in theory can 

depolarize the cell membrane potential and lead to increased Ca2+ influx if the blockade is 

sufficiently large. This may explain the increased baseline Ca2+ in islets that were acutely 

exposed to ML133.  

 

When glucose concentration is raised to 11 mM, the voltage-gated Ca2+ channel is activated, and 

islets exhibit cytosolic Ca2+ oscillations (30). We previously showed that these oscillations were 

not affected by TM treatment, except that TM tended to increase oscillation frequency (31). As 

shown in Figure 4.6A, control, ML133, TM and TM+ML133 treated islets all exhibited cytosolic 

Ca2+ oscillations. The percentage of oscillations seen among all conditions were similar (Figure 
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4.6B). The frequency of the oscillations was higher in TM-treated islets than control, and the 

addition of ML133 decreased the frequency of TM-treated islets. The differences observed in the 

baseline, plateau fraction or amplitude among the groups, however, were not significant (Figure 

4.7).   

 

The change in XBP1 splicing, a canonical ER stress response marker, was determined at the 

mRNA level after treating INS-1(832/13) cells with DMSO, TM, ML133 or TM+ML133 in 11 

mM glucose. As shown in Figure 4.8A, XBP1 splicing increased 7-fold after 6 hours of TM 

treatment in INS-1(832/13) cells. ML133 applied alone did not increase XBP1 splicing. 

Interestingly, when cells were treated with TM and ML133 together for 6 hours, the spliced 

XBP1 transcripts were reduced. Similarly, blocking Kir2.1 channels using BaCl2 also repressed 

the increasing spliced XBP1 level in TM-treated cells (Figure 4.8B, preliminary data). BiP is 

another ER stress response marker. As shown in Figure 4.8C and 4.8D, TM and ML133 both 

upregulated BiP protein expression after 16 hours of treatment. When cells were treated with TM 

and ML133 together overnight, the BiP protein level was higher compared to other groups (n=2).  

 

Apoptosis has been shown to occur as a consequence of TM-induced ER stress (14, 25). Cleaved 

PARP protein was used here as a marker of apoptosis (32, 33). As shown in Figure 4.9 

(preliminary data), cleaved PARP at 89 kDa was found in TM-treated INS-1(832/13) cells 

overnight, but not under conditions of control, ML133 or TM+ML133.  

 

We further investigated the mechanism of TM stimulating Kir2.1 channels activity in beta-cell. 

SUR1-deficient mice exhibited increased activity of Kir2.1 channels (19). Therefore, we 
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examined whether SUR1 was regulated as an intermediary in this study. As shown in Figure 4.10, 

INS-1(832/13) cells treated with tunicamycin (TM) demonstrated a diminished level of SUR1 

protein (seen at 170 kDa) on the plasma membrane, while total SUR1 expression remained 

unchanged. TM halted SUR1 proteins from trafficking to the plasma membrane and retained 

them within the ER lumen. Therefore, ER stress may activate Kir2.1 channels as compensation 

for the reduced SUR1 protein on the plasma membrane. 

 

Discussion 

A previous modeling paper (19) and an unpublished experimental work (Vadrevu et al.) 

indicated compensation of SUR1 by Kir2.1 channels to give normal free Ca2+ oscillations in 

SUR1-deficient mice. In this study, we aimed to characterize Kir2.1 channels in stressed 

conditions by exposing INS-1(832/13) cells or mouse islets to ER stress inducer TM overnight 

with and without Kir2.1 channel inhibitors ML133 or BaCl2. We found that overnight blockade 

of Kir2.1 channels by ML133 or BaCl2 suppressed TM-induced cytosolic Ca2+ oscillations in 5 

mM glucose (Figure 4.2 and Figure 4.4).  

 

Acute inhibition of Kir2.1 channels by ML133 or BaCl2 did not abolish the cytosolic Ca2+ 

oscillations in TM-treated islets (Figure 4.2 and Figure 4.4), so the influx of Ca2+ might not be 

directly through Kir2.1 channels. Our previous studies have reported increased cytosolic Ca2+ and 

insulin secretion in TM-treated islets or beta cells resulted from the activation of store-operated 

Ca2+ entry (SOCE). Therefore, Kir2.1 channels may facilitate SOCE activation, which has been 

observed in other cell types. In microglia, blocking Kir2.1 channels with ML133 has been shown 

to decrease Ca2+ influx via SOCE (34). In brain capillary endothelial cells, inhibiting Kir2.1 
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channels with Ba2+ has been demonstrated to suppress cytosolic Ca2+ increase through SOCE 

under hypoxic conditions (1). However, the mechanism underlying Kir2.1 channels assisting 

SOCE activation remains uncovered.  

 

Blocking Kir2.1 channels by ML133 or BaCl2 suppressed UPR activation that was evidenced by 

reduced sXBP1 mRNA levels in TM-treated INS-1(832/13) cells (Figure 4.8A and 4.8B). In 

addition, inhibiting Kir2.1 channels by ML133 reversed cell apoptosis, as shown in Figure 4.9. 

(Please note that I intend to repeat the experiments when I return to the lab.) BiP is also a marker 

of the ER stress response. However, ML133 tends to increase BiP expression with and without 

TM treatment. Therefore, BiP, as a chaperone, may be increased to bind to Kir2.1 and assist its 

folding and suppress UPR activation in response to TM-mediated reduced Kir2.1 expression 

(This will be discussed in Chapter 5). Overexpression of BiP has been shown to alleviate ER 

stress in hIAPP-expressing beta cells (35) and high-fat-diet-induced diabetic mice (36).  

 

The total protein expression and mRNA level of Kir2.1 were both downregulated by TM in INS-

1(832/13) cells (Figure 4.1). Therefore, Kir2.1 channels activity may be enhanced to compensate 

for the partial loss of the channel expression. Whereas, there is another potential mechanism 

explaining TM-mediated enhanced Kir2.1 channels activity. As shown in Figure 4.10, TM, as 

well as other well-known ER stress inducers, palmitate and thapsigargin, all halted SUR1 

trafficking to the plasma membrane in INS 832/12 cells. Thus, we herein suggest a possibility 

that Kir2.1 channels activity was increased to compensate for the loss of SUR1 under ER stress 

conditions.  
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This report appears to be the first demonstrating the involvement of Kir2.1 channels in Ca2+ 

oscillations in beta cells under ER stress conditions. We showed that inhibiting Kir2.1 channels 

while inducing ER stress using TM in beta cells suppressed TM-induced cytosolic Ca2+ 

oscillations in 5 mM glucose. We view this study as the first step in characterizing Kir2.1 

channels in beta cells. Future studies, such as Kir2.1 trafficking, Kir2.1 interaction with SOCE 

components and Kir2.1 localization in beta cells under ER stress conditions and diabetic models 

are warranted. 
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Figures and legends 

 
 
Figure 4.1 Tunicamycin decreased Kir2.1 expression 

INS-1(832/13) cells or isolated mouse islets were treated with vehicle control (DMSO) or 
tunicamycin (TM, 10 µg/ml) for 1A: 6 hours and 1B-C: 16 hours. 1A: Expression level of Kir2.1 
mRNA in INS-1(832/13) cells. 1B: Expression level of Kir2.1 mRNA in mouse islets. 1C: 
Representative western blot showing the level of Kir2.1 in INS-1(832/13) cells. GAPDH is a 
loading control. Quantitative protein levels are shown graphically in 1D. All values shown are 
means ± SEM, *, p< 0.05, **, p< 0.01, ****, p<0.001; n= at least 3 times repeated per condition, 
by student’s t-test. 
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Figure 4.2 ML133 prevented tunicamycin-induced increased cytosolic free Ca2+ under sub-
threshold glucose conditions 

Isolated pancreatic mouse islets were treated with a vehicle control (DMSO), ML133 (10 µM), 
tunicamycin (TM, 10 µg/ml) or ML133+TM for 16 hours in 11 mM glucose. 2A: The responses 
of cytosolic free Ca2+ to the solution containing 5 mM glucose under the indicated conditions. 3B: 
Percentage of oscillating islets; n= at least 3 mice. 
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Figure 4.3 Cytosolic free Ca2+ imaging analysis 

Summary findings for the cytosolic free Ca2+ traces shown in 2. 2A: Baseline values. 2B: Plateau 
fraction. 2C: oscillation frequency. 2D: oscillation amplitude. n= at least 3 mice. 
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Figure 4.4 BaCl2 prevented tunicamycin-induced increased cytosolic free Ca2+ under sub-
threshold glucose conditions 

Isolated pancreatic mouse islets were treated with a vehicle control (DMSO), BaCl2 (20 µM), 
tunicamycin (TM, 10 µg/ml) or BaCl2+TM for 16 hours in 11 mM glucose. The responses of 
cytosolic free Ca2+ to solution containing 5 mM glucose under the indicated conditions.  
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Figure 4.5 Acute effect of ML133 on cytosolic free Ca2+ under sub-threshold glucose conditions 

Isolated pancreatic mouse islets were treated with vehicle control (DMSO) or tunicamycin (TM, 
10 µg/ml) for 16 hours in 11 mM glucose. The responses of cytosolic free Ca2+ to the solution 
containing 5 mM glucose containing solution with or without ML133 (10 µM) under the 
indicated conditions. 
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Figure 4.6 Tunicamycin or ML133 did not affect cytosolic free Ca2+ under suprathreshold 
glucose conditions 

Isolated pancreatic mouse islets were treated with a vehicle control (DMSO), ML133 (10 µM), 
tunicamycin (TM, 10 µg/ml) or ML133+TM for 16 hours in 11 mM glucose. 2A: The responses 
of cytosolic free Ca2+ to the solution containing 11 mM glucose under the indicated conditions. 
3B: Percentage of oscillating islets; n= at least 3 mice. 
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Figure 4.7 Cytosolic free Ca2+ imaging analysis under suprathreshold glucose conditions 

Summary findings for the cytosolic free Ca2+ traces shown in 6. 6A: Baseline values. 6B: Plateau 
fraction. 6C: oscillation frequency. 6D: oscillation amplitude. #, p< 0.05; n= at least 3 mice. 
 
 

Figure 7 
A)

DMSO
ML1

33 TM

TM+M
L1

33
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ba
se

lin
e

DMSO
ML1

33 TM

TM+M
L1

33
0.0

0.5

1.0

1.5

Pl
at

ea
u 

fra
ct

io
n

B)

C) D)

DMSO
ML1

33 TM

TM+M
L1

33
0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(p

ea
ks

/m
in

) *

DMSO
ML1

33 TM

TM+M
L1

33
0.00

0.05

0.10

0.15

0.20

Am
pl

itu
de



136 

 

 

 
Figure 4.8 Effects of Kir2.1 inhibitor on UPR activation 

8A and 8C-D: INS-1(832/13) cells were treated with vehicle control (DMSO), ML133 (10 µM), 
tunicamycin (TM, 10 µg/ml) or ML133+TM for 16 hours in 11 mM glucose. 8A: Expression 
level of spliced XBP1 mRNA. Row Factor F(1, 13)= 24.75, p= 0.0003, Column Factor F(1, 13)= 
6.147, p=0.0276, Interaction F(1, 13)= 4.478, p= 0.0542, by two-way ANOVA, n=3 times 
repeated per condition. 8B: INS-1(832/13) cells were treated with vehicle control (DMSO), 
BaCl2 (20 µM), tunicamycin (TM, 10 µg/ml) or BaCl2+TM for 16 hours in 11 mM glucose. 
Expression level of spliced XBP1 mRNA. n=1, preliminary data. 8C: Representative western 
blot showing the level of BiP in INS-1(832/13) cells. GAPDH is loading control. Quantitative 
protein levels are shown graphically in 8D. n=2 times repeated per condition.  
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Figure 4.9 ML133 prevented tunicamycin-induced beta-cell apoptosis 

INS-1(832/13) cells were treated with vehicle control (DMSO), ML133 (10 µM), tunicamycin 
(TM, 10 µg/ml) or ML133+TM for 16 hours in 11 mM glucose. Representative western blot 
showing the level of total PARP at 116 kDa and cleaved PARP at 89 kDa in INS-1(832/13) cells. 
GAPDH is shown as a loading control. n=1, preliminary data. 
 
 

 
Figure 4.10 ER stress inducers decreased SUR1 expression on the plasma membrane 

INS-1(832/13) cells were treated with vehicle control (DMSO), palmitate (Pal, 250 µM), 
thapsigargin (TG, 200 nM) or tunicamycin (TM, 10 µg/ml) for 16 hours in 11 mM glucose. 9A: 
Representative western blot showing the level of SUR1 in INS-1(832/13) cells. GAPDH is 
shown as loading control. n= 3 times repeated per condition.  
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Table 3 Primer sequences  

Table 1 
A)

Gene Forward Reward

Xbp1s (rat)

Kir2.1 (rat) 

 Kir2.1 (mouse) 

Hprt1 (rat 
and mouse) GCAGGTCAGCAAAGAACTTATAGCCCTCATGGACTGATTATGGACAGGAC

CTGAGTCCGAATCAGGTGCAG ATCCATGGGAAGATGTTCTGG

TGCCCGATTGCTGTTTC

CTATTTCGTGAACGATAGTGATGGCACAGCTTCTCAAATCTAGGATCA

GGCTGTCTTCGTCTATTT
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Chapter 5 Concluding Remarks, Limitations and Future Directions 

 
Conclusions 

Diabetes has been acknowledged as a medical problem for thousands of years. Scientists 

have been determinedly exploring treatment for T2DM, for instance, by gaining knowledge on the 

function and viability of the insulin-secreting pancreatic beta-cell. Recently, an increasing body of 

evidence has suggested the involvement of ER stress in causing T2DM (1–4) (and T1DM (3, 5, 6)), but 

the underlying mechanism remains largely unclear and requires additional studies. Therefore, this 

dissertation aims to define the interrelationship between ER stress and beta-cell function as well 

as beta-cell viability. 

 

We mainly used the ER stress inducer TM to trigger ER stress in insulin-secreting INS-

1(832/13) cells or isolated pancreatic mouse islets. As shown in chapter 2, we found that TM 

resulted in decreased ER [Ca2+], increased cytosolic free Ca2+ oscillations, membrane 

potential oscillations and insulin secretion even in sub-threshold glucose (e.g., 5 mM glucose) 

via SOCE activation. All these activities were abolished by the application of SOCE inhibitor 

YM58483 acutely.  

 

Since we saw lowered ER [Ca2+] as a result of TM treatment in islets, we then sought to 

determine through what mechanism TM depleted ER Ca2+. The IP3Rs and RyRs are known 

to gate Ca2+ release from the ER to the cytosol and mitochondria (7–11). Therefore, we 
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pursued to determine their roles in altering beta-cell Ca2+ homeostasis, particularly in 

mediating ER Ca2+ release and disrupting Ca2+ oscillations in the cytosol as well as 

mitochondria in the context of TM-induced ER stress. In chapter 3, we used XeC and Dan to 

block IP3Rs and RyR1, respectively, to treat INS-1(832/13) cells or mouse islets in the 

presence or absence of TM overnight. We saw that blocking RyR1 using Dan prevented TM-

induced ER Ca2+ depletion and increased Ca2+ oscillations in the cytosol and mitochondria in 

5 mM glucose. Nevertheless, inhibiting IP3Rs with XeC maintained ER [Ca2+] but failed to 

affect TM- triggered Ca2+ oscillations both in the cytosol as well as mitochondria. We also 

analyzed the effects of TM on IP3Rs and RyRs. RyR1 transcripts were upregulated, while 

RyR2 remained unchanged. In contrast, IP3R1 and IP3R2 transcripts were downregulated, 

and IP3R3 transcripts were unaffected.  

 

Although SOCE was the downstream mechanism of TM-triggered increasing cytosolic Ca2+ 

oscillations in 5 mM glucose, blocking these oscillations did not affect cell death. Therefore, 

we proposed that TM-triggered beta-cell death occurred via a separate pathway (Figure 2.16). 

As shown in Figure 1.2, reducing ER Ca2+ can activate calpain 2, which is known to trigger 

beta-cell apoptosis through activating caspase 12 and JNK. Thus, we proposed that TM-

induced beta-cell apoptosis was a result of ER Ca2+ depletion. Since we suggested RyR1 to 

be a mechanism of TM-induced ER Ca2+ loss, we further tested the role of RyR1 in TM-

induced beta-cell apoptosis and found a preventive effect of Dan. XeC showed no impact on 

TM-induced apoptosis. In summary, we propose that increasing RyR1 is likely the 

mechanism of TM depleting ER Ca2+ and, in turn, increasing cytosolic Ca2+ oscillations, 

membrane potential oscillations, mitochondrial Ca2+ oscillations, insulin secretion and beta-
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cell apoptosis in normal sub-threshold glucose (Figure 3.10). However, more studies are 

needed to fully support the statement, as discussed in the next section.  

 

Finally, we studied the inward rectifier K+ channel Kir2.1, a normally inactive surface K+ 

channel in beta cells, in the context of ER stress. We tested the Kir2.1-selective inhibitor 

ML133 and found that TM-induced cytosolic Ca2+ oscillations were blocked by overnight 

exposure to ML133. ML133 also alleviated ER stress, evidenced by decreased spliced XBP1 

and reduced apoptosis in TM-treated INS-1(832/13) cells. Besides, we observed a decrease 

in the trafficking of KATP (SUR1) to the plasma membrane by TM. Thus, these results imply 

a possibility of TM triggering cytosolic Ca2+ oscillations by switching from KATP to Kir2.1 

channels, although more works are needed to conclude.  

 

This dissertation mapped the mechanism of TM-induced ER stress disrupting beta-cell 

function and promoting beta-cell apoptosis. Three potential novel targets-- SOCE, RyR1 and 

Kir2.1 channels, were identified as potential therapeutic strategies for T2DM and prediabetes. 

However, there are caveats present in the study. 

 

Limitations and future directions 

There has been a concern of the D4ER Ca2+ probe. In Figure 2.3B, although TM-induced 

decrease in ER [Ca2+] was statistically significant, the data points between control and TM 

groups somewhat overlapped. The influx of Ca2+ due to SOCE may have been too small to 

cause a detectable change in ER Ca2+ due to limits in the Ca2+ sensitivity of the D4ER probe. 

So far, the probe has not been calibrated. A subtle change in the ratio of D4ER (535/470) 
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may reflect a significant difference in ER [Ca2+]. Recently, another genetically ER-targeted 

Ca2+ sensor, GCEPIA1-SNAPER, has been made (12). Also, a genetically sarcoplasmic 

reticulum-targeted Ca2+ sensor, R-CEPIA1er, has been used to measure ER [Ca2+] (13). 

Therefore, we will test different ER Ca2+ probes in the future.  

 

In chapter 3, we showed that TM increased RyR1 messenger levels, but we failed to measure 

protein expression due to the lack of a practical antibody showing the requisite sensitivity of 

RyR1. We will need to test other antibodies from different suppliers, or we will seek 

collaborators who are experts on blotting RyRs in respect to the specialty of their 

considerable molecular weight (550 kDa).  

 

The study relied on Dan to selectively block RyR1. Dan has been shown to inhibit RyR3, 

although the expression level of RyR3 in beta cells is very low compared to the other two 

isoforms (14, 15). Individually silencing RyR1 and RyR2 using siRNAs will determine 

which isoform mediates TM-induced ER Ca2+ loss and subsequent activation of SOCE and 

disruption in intracellular Ca2+ homeostasis. We hypothesize that RyR1 mediates ER Ca2+ 

release. Therefore, we expect to see that silencing RyR1 would prevent TM-induced 

increased in cytosolic/mitochondrial Ca2+ oscillations, membrane potential oscillations, 

insulin secretion in sub-threshold glucose (e.g., 5 mM glucose) and beta-cell apoptosis. 

Whereas, silencing RyR2 would not affect these alterations. Besides, it is important to use 

other ER stress inducers, such as palmitate, high glucose (25 mM glucose) or TG. Silencing 

IP3Rs is also a valuable approach, and we would expect these alterations to persist.  
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In chapter 4, we used BaCl2 to block Kir2.1 channels as an alternative to ML133. As with 

ML133, overnight exposure to BaCl2 abolished cytosolic free Ca2+ oscillations in TM-treated 

islets in 5 mM glucose. When studying the impact of inhibiting Kir2.1 channels on Xbp1 

splicing, we used both ML133 and BaCl2. The data from BaCl2 are preliminary so that 

additional repeats will be performed for publication. Besides Xbp1 splicing, we should test 

other ER stress response markers, such as PERK, CHOP, and ATF6. Silencing Kir2.1 and 

then record cytosolic Ca2+ oscillations and analyze insulin secretion are also fundamental 

approaches to confirm that Kir2.1 is required for TM-induced ER stress to trigger cytosolic 

free Ca2+ oscillations in 5 mM glucose. In addition to TM, Pal and TG both resulted in 

decreased surface SUR1 expression in INS-1(832/13) cells; however, they have not been 

used together with ML133 to measure cytosolic Ca2+ oscillations and insulin secretion.  

 

Figures 4.8C and 4.8D presented a trend of increasing BiP expression in ML133-treated INS-

1(832/13) cells. Nevertheless, ML133 did not increase XBP1 splicing (Figure 4.8A) or beta-

cell apoptosis (Figure 4.9). There are several possibilities: (1) ML133 has an off-target effect 

that enhances BiP expression; (2) Blocking Kir2.1 channels causing protein misfolding, and 

in turn, BiP upregulates and corrects the misfolding without activating IRE1a and pro-

apoptotic factors. (3) Kir2.1 interacts with BiP and regulates BiP expression. Replacing 

ML133 with BaCl2 or silencing Kir2.1 and then measure BiP expression in INS-1(832/13) 

cells will shed some light on these questions.  

 

In beta cells as well as other cells, cytosolic Ca2+ rises and passes through the outer 

mitochondrial membrane (OMM) into the inner membrane space (IMS) through the voltage-
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dependent anion-selective channel (VDAC) (10, 16, 17). Ca2+ is then transferred from the 

IMS into the mitochondrial matrix via transporters, for instance, the mitochondrial Ca2+ 

uniporter (MCU). MCU is found on the inner mitochondrial membrane (IMM) (10, 16, 17). 

Uptake of Ca2+ by MCU is regulated by the mitochondrial Ca2+ uptake 1 and 2 (MICU1 and 

MICU2) (17, 18). Mitochondrial Ca2+ is released into the cytosol via the electrogenic 

mitochondrial Na+/Ca2+ exchanger (NCLX) and an H+/Ca2+ exchanger (10). The ER and 

mitochondria are two functionally and morphologically connected organelles, and the 

contacting area (mitochondria-associated membranes, MAMs) is critical for coordinating 

Ca2+ signaling transmission. It has been proposed that the two organelles come even closer in 

the face of ER stress conditions in other cell types (19, 20). Therefore, it is important to study 

mitochondria function and particularly mitochondrial Ca2+ regulation under ER stress 

conditions to fully understand beta-cell function. In chapter 2, we demonstrated increasing 

cytosolic Ca2+ oscillations in 5 mM glucose occurred in 25 mM glucose or TG-treated islets. 

However, we haven’t yet tested mitochondrial Ca2+ oscillations in islets treated with 

alternative ER stress inducers.  

 

The purpose of SOCE activation in response to ER Ca2+ depletion is believed to refill Ca2+ so 

that ER homeostasis is eventually restored. However, blocking SOCE in TM-treated islets 

did not restore ER [Ca2+] (Figure 2.11A), which was unexpected. There are two possible 

explanations: 1. RyRs act as a leaky faucet and continuously gate Ca2+ release from the ER, 

which is possible as ER [Ca2+] was able to be restored (even increased) by Dan in TM-

treated islets (Figure 3.4B). 2. It has been shown that SERCA2b is downregulated (21) so 

that it cannot pump as much Ca2+ into the ER from the cytosol.  
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RyRs and IP3Rs both mediate ER Ca2+ release into the cytosol and mitochondria (9–11). In 

chapter 3, we showed that inhibiting RyRs with Dan blocked TM-induced Ca2+ oscillations 

in the cytosol as well as mitochondria in 5 mM glucose; whereas, inhibiting IP3Rs with XeC 

showed no effect on the oscillations. These results generally agreed with Yamamoto et al., 

where they showed RyRs were activated in response to TM, but IP3Rs were not activated 

(although we proposed an utterly different mechanism of ER stress-inducing cytosolic Ca2+ 

oscillations). They reported the activation of IP3Rs after beta cells being exposed to 

proinflammatory cytokines (15). It is puzzling why the two receptors have different 

preferences for chemicals. One possibility is that the two receptors manage different pools of 

ER Ca2+, and these pools have distinct downstream signaling effects. Studying the 

localization of IP3Rs and RyRs, and their distance SOCE components and mitochondria, 

under ER stress conditions, may clarify the question. Another possibility is that RyRs, but 

not IP3Rs, regulate ER stress independently of handling ER Ca2+. We only measured XBP1 

splicing, but there are three pathways within the UPR signaling cascade. Therefore, we need 

to look at multiple ER stress response markers and other components in the UPR pathway. In 

addition, it is essential to differentiate IP3Rs and RyRs in diabetic animal models, and even 

in diabetic human islets.  

 

In response to blood glucose elevation (>7 mM glucose), KATP channels close and result in 

depolarization of the plasma membrane, which triggers the opening of the voltage-gated-Ca2+ 

channels (VGCC) and mediates Ca2+ influx (22, 23). In fact, these are high voltage-activated 

L-type VGCC, and they are considered the most critical Ca2+ entry pathway regulating 
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insulin release in beta cells (24). There are other inward voltage-dependent Ca2+ channels in 

human pancreatic beta cells, such as P/Q-type Ca2+ channels, N-type Ca2+ channels and low-

voltage-activated T-type Ca2+ channels (24). For example, in rat INS-1 cells, T-type Ca2+ 

currents have been recorded using whole-cell patch-clamp techniques, and they’ve been 

shown to facilitate insulin secretion in 11 mM glucose (25). NiCl2 is a T-type Ca2+ channel 

inhibitor, and it blocked the channel current and decreased insulin secretion in INS-1 cells 

(25). T-type Ca2+ channels are activated and contribute to increases in cytosolic Ca2+ and cell 

death in beta cells after exposing the cells to cytokines (26). T-type Ca2+ currents have also 

been found to be enhanced in streptozocin-induced diabetic rats (27). Therefore, expanding 

our focus on other Ca2+ channels and incorporate our findings into a broader scope will be 

useful for a more comprehensive understanding of beta-cell function.    

 

In summary, this dissertation advances the understanding of the beta-cell function and beta-

cell apoptosis, particularly in the face of ER stress. It not only proposes three potential 

therapeutic targets, which are SOCE, RyR1 and Kir2.1 channels, for T2DM and prediabetics 

but also points out new directions for future beta-cell studies.  
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