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Abstract 
 

Ecological diversity in nature is tremendously complex. Evolutionary biologists and 

ecologists have sought to understand this complexity using foundational concepts like ecological 

niches, guilds, and adaptive zones. The merger of these concepts with stochastic models and 

phylogenies helped create the field of phylogenetic comparative methods, which has made 

fundamental contributions to our understanding of the evolutionary history of life’s rich 

ecological variety and the role ecology plays in the diversification of species and phenotypes and 

the assembly of species-rich communities. Despite this progress, however, phylogenetic 

comparative methods have been slow to expand their data repertoire. There is a general rarity of 

comparative datasets that include primary natural history observations of organisms in nature and 

of comparative methods to work with such data. The main contribution of this dissertation is to 

address this shortfall. I do so in three main ways. First, in earlier chapters I study some simple 

stochastic models of ecological character state change, revealing unappreciated subtleties that 

complicate our ability to interpret their results in terms of historical events. Second, building off 

lessons learned from these early chapters, I develop a new method that uses primary natural 



 x 

history observations to jointly infer the phylogenetic distribution of ecological niche states for 

individual species and their unsampled ancestors. Third, to demonstrate the flexibility of the new 

method, I conduct an empirical analysis on the diversification of snake feeding habits using a 

new comprehensive database of observations of prey acquisition by snakes that I compiled. 

Taken together, the research in this dissertation demonstrates how fundamental observations of 

organisms in nature can be used to make quantitative inferences about the macroevolution of 

complex ecological traits and suggests new ways of integrating natural history data into 

comparative biology.
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Chapter 1  
Hello, world 

 

Introduction 
 

Phylogenetic comparative methods are proximally concerned with three things: inferring 

(possibly correlated) sequences of phenotypic change, estimating rates of phenotypic evolution, 

and estimating speciation and extinction rates. With rare exceptions, none of these quantities can 

be directly observed and measured because the time spans over which the relevant processes 

occur are simply too vast. Instead, stochastic models are used to estimate evolutionary rates and 

sequences from two sources of information: 1) a phylogeny with temporally scaled branch 

lengths relating a set of (typically extant) species and 2) phenotypic measurements made on a 

subset of those species. In attempting to estimate evolutionary rates and sequences, the ultimate 

goal is to find answers to more interesting questions arising from observable patterns in nature, 

such as why more species coexist in the tropics than anywhere else on earth, or why most plants 

have flowers, or why snakes, which can neither walk nor chew food, are so ecologically diverse. 

My dissertation research investigates a particular class of stochastic models known as 

continuous-time Markov chains (CTMC) that are commonly used in the field of macroevolution 

to study phenotypic evolution. Beginning with the early work of Harvey & Pagel (1991), CTMC 

models began to replace maximum parsimony as the primary comparative method for studying 
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phenotypic evolution of discrete characters. Since then, CTMC models have been 

enthusiastically embraced by the field, and new methods are continually being introduced into 

the literature and put to use by empirical studies faster than the full range of their behavior can be 

studied and understood. In some cases, this trajectory has resulted in significant setbacks, such as 

the revelation that state-dependent speciation-extinction models exhibit type I error rates that can 

approach 100 percent (Rabosky & Goldberg 2015). 

Throughout this thesis I work with relatively simple CTMC models. A model may be 

simple because it economizes on the number of parameters, types of transitions, or both. I 

generally work with a model with only two states or with a fully symmetric model that has just a 

single transition rate (sometimes called the equal-rates model). This is in contrast to the much 

more elaborate models found in the literature but is motivated by what I consider to be our 

field’s poor understanding of how even the simplest models use available information to estimate 

evolutionary transition rates. As an example, consider a model with just two states (A and B). 

How do we interpret the finding of a higher transition rate estimate from A to B than from B to 

A? Does such a finding support the claim that more transitions from A to B occurred over a 

clade’s evolution? Or that state A is more evolutionary labile than state B and prone to change 

more quickly? These would be reasonable interpretations of such a finding and are prevalent in 

the empirical literature, but it must be remembered that the values are estimated from a dataset 

that contains no actual observations of character state change, unlike classical inference about 

Markov chains that depends on such observations (e.g. Anderson & Goodman 1957).  

In the absence of direct observations of character state change, all we can really say is 

that estimated transition rate values merely confer high probability on the observed character 

state data at the tips of a phylogeny, under the assumption that the process that generated those 
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data was a CTMC. Direct interpretation of transition rate estimates in terms of actual historical 

events will depend on the general acceptability of that assumption and on evaluation of the 

sources of information that actually inform rate estimates. Given the incommensurate time-scales 

of micro- and macro-evolutionary processes, I do not find the use of a phenomenological model 

like a CTMC problematic. And as the simplest random model for a “stuff happens” viewpoint, I 

think the equal-rates model is generally a good choice given some of its close connections to the 

method of maximum parsimony (e.g. Tuffley & Steel 1997) and the diverse random phenomena 

that have Poisson approximations (e.g. Aldous 1989). However, during the course of this 

dissertation I have come to appreciate some details of the likelihood calculations and the 

information sources that influence rate estimates that have undermined some of my confidence in 

the use of asymmetric models in macroevolution. 

In the appendix I present an argument that asymmetries in transition rate estimates, 

especially in large phylogenies, are most likely driven by asymmetries in character state stasis 

rather than asymmetries in character state change. The crux of the argument is best illustrated by 

example. Squamate reproductive modes (oviparity and viviparity) are parsimoniously explained 

by assigning the majority of ancestors and their descendants the oviparous state. This means that 

a substantial proportion of the overall phylogenetic lineage length displays a pattern of character 

state stasis (where ancestor and descendant share the same oviparous state). This, in turn, is 

interpreted as evidence by an asymmetric model for a several fold higher transition rate from the 

viviparous state to the oviparous state than the reverse, as this is a likely explanation (under an 

asymmetric CTMC) for observing so many ancestor-descendant pairs in the same oviparous state 

(i.e. any transitions to viviparity must revert back quickly). Although such an explanation may 

make sense for a nucleotide substitution process, I find it very hard to justify for the complex 
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traits like reproductive mode that are typically studied in macroevolution, and I think many 

empirical estimates of transition rate asymmetries may ultimately result from this behavior of the 

likelihood function, including the observation that rate estimates are frequently biased toward the 

majority tip-state (Nosil & Mooers 2005). I do not intend to argue that asymmetric Markov 

models have no place in macroevolution, and the arguments in the appendix apply only to the 

simplest of cases. But until we have a better understanding of how different sources of 

information in comparative datasets influence transition rate estimates, I think it is best to be 

wary of inferences resulting from asymmetric models, a recommendation that was made quite 

early on when these models were first being applied to comparative trait datasets (Schluter et al. 

1997). 

Chapter summaries 

 In Chapter 2, I describe a Bayesian approach for detecting phylogenetic shifts in the 

evolutionary rate of a two-state discrete character, and I implement the method in the BAMM 

software program (Rabosky 2014). At the initial time of writing, the likelihood equations, which 

were derived using the approach pioneered by Maddison et al. (2007), were a novel feature of the 

method since they directly solved a system of ordinary differential equations to obtain the 

conditional likelihoods for ancestral states, instead of using the more familiar algorithm 

introduced by Felsenstein (1981). The approach has since been generalized to characters with 

more than two states by Louca and Pennell (2019), although to my knowledge the closed-form 

solutions presented in Chapter 2 do not yet appear in the literature. One of the interesting aspects 

to emerge from this study was the realization that the rate-shift mechanism employed by the 

model essentially introduced a second way for the character to change state along a lineage. In 

the absence of constraints, the model would infer a rate-shift at each location where a maximum 
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parsimony reconstruction implied a change of state. Upon reflection, this finding was actually 

quite consistent with earlier mathematical results by Tuffley and Steel (1997) revealing some of 

the links between parsimony and likelihood1, but it meant that the unconstrained model was not 

very useful for its intended purpose of detecting clade-level differences in rates of character state 

change. My ad hoc solution was to constrain the model so that forward and reverse transition 

rates were identical. I present some simulation results demonstrating that the method does a 

reasonable job detecting rate-shifts, even when data are simulated under an asymmetric process. 

 In Chapter 3, I explore an alternative estimator for transition rates that appear in 

continuous-time Markov chain models of discrete character evolution. This work was motivated 

by the question of whether maximum parsimony reconstructions could serve as a source of 

useful information for estimating transition rates, and by the observation that rate estimates 

reported in the literature on phenotypic macroevolution often appear (to my subjective prior 

expectation) unusually large. The basic approach was first used by Janson (1992) in a study of 

seed dispersal syndromes in plants, but it was not picked up on by the field. One of the 

fundamental differences between the estimator in Chapter 3 and the maximum average 

likelihood estimator used in standard practice is that in the latter variation in branch lengths 

influences the estimated relative rate values whereas in the former relative rate values are only 

affected by the pattern of ancestor-descendant character state changes. I use simulations to 

demonstrate that maximum average likelihood estimates of transition rates have higher mean 

squared errors than estimates based on maximum parsimony reconstructions. Quite 

unexpectedly, errors in maximum average likelihood estimates are accentuated in simulated 

                                                
1 In particular, that for a two-state character the method maximum parsimony agrees with the method of maximum 
likelihood under a fully-symmetric Markov model where the rate of change is 0 for all branches where ancestor and 
descendant are in the same state and is infinite for all branches where ancestor and descendant are in different states. 
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datasets where likelihood-ratio tests strongly favor the choice of a model with asymmetric 

transition rates over a model with symmetric transition rates. In these same situations, by 

contrast, parsimony-based estimates retain their good performance. 

 In Chapter 4, I describe a novel phylogenetic comparative method that I developed for 

working with observational count data sampled from a set of discrete resource categories. This 

work arose from the need to analyze the dataset on snake diets described in Chapter 5 but is 

applicable to multivariate count data more generally. The data described in Chapter 5 are highly 

heterogeneous: sample sizes vary dramatically among species and numerous zeros pervade the 

data matrix. Given these facts it seemed inappropriate to simply normalize observational counts 

to proportions and use existing Gaussian diffusion models for three reasons. First, numerous 

zeros mean that many data points are near the edges of the constrained simplex space where a 

normal approximation to the untransformed or square-root transformed proportions is unreliable 

(e.g., Cavalli-Sforza & Edwards 1967). Second, zeros also prevent the use of log-ratio 

transformations that would take the data into an unconstrained space where a Gaussian diffusion 

is appropriate (e.g., Aitchison 1986). And third, normalizing counts to proportions implies an 

equivalency among species with respect to how well characterized patterns of resource use are 

that does not, in fact, exist. These considerations motivated the development of the new method 

described in Chapter 4. I assume that individual species belong to a finite set of ecological states, 

which evolve along the branches of a phylogeny according to a fully symmetric continuous-time 

Markov chain. I imagine that ecological states assign each species a vector of proportions and 

that observational counts are sampled from multinomial distributions parameterized by these 

proportion vectors. The method seeks to estimate ecological state assignments and underlying 
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proportion vectors, and I present simulation results demonstrating that it achieves satisfactory 

performance in both these objectives. 

 In Chapter 5, I present a large, open-source data set on observations of prey acquisition 

by snakes. The data, which are fairly comprehensive with respect to snake phylogeny, synthesize 

numerous literature reports and incorporate some of my own observations from fieldwork and 

museum specimen dissections. This effort was motivated by the lack of comprehensive databases 

covering aspects of vertebrate trophic ecology. FishBase (Froese & Pauly 2000) is an 

outstanding exception, but among tetrapods comparable efforts are nowhere close. Widely used 

databases for birds (Sekercioglu et al. 2004) and mammals (Kissling et al. 2014; Wilman et al. 

2014) do not actually contain any primary natural history observations on resource utilization. 

For example, the proportional utilizations of different foods by birds and mammals reported in 

Wilman et al. (2014) are not, in spite of appearances, quantitative measures (although they are 

sometimes treated this way [e.g. Pigot et al. 2016]). They are, in fact, ordinal ranks derived from 

the subjective impressions of data compilers when reading textual descriptions in field guides. 

These impressions can vary greatly from one observer to the next (e.g. Parravicini et al. 2020). 

The data described in Chapter 5 only include direct observations of organisms in nature and are 

subject to little ambiguity. 

 In Chapter 6, I present an empirical analysis of the diet data described in Chapter 5 using 

the method developed in Chapter 4. Variation in trophic ecology is a conspicuous feature of 

animal diversity, and numerous studies have now analyzed diet datasets within a phylogenetic 

context. In the main, these studies use discrete character encodings designed to capture major 

differences in feeding ecology among the focal organisms. In the macroevolutionary literature 

this tradition goes back at least to the influential study by Mitter et al. (1988) linking the 
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evolution of plant-feeding in insects to enhanced diversification. Even earlier antecedents, 

however, can be seen in the works of Simpson (1944), Van Valen (1971), and Root (1967), 

whose concepts of adaptive zones, ways of life, and ecological guilds align closely with how 

many researchers categorize species into different ecological states. The central motivation for 

the work in Chapter 6 is certainly not to argue that such concepts are without merit or that studies 

based on discrete character encodings are not useful. Rather, it is to explore how studies can 

approach phylogenetic comparative analysis of animal diets in a more data-driven fashion, using 

primary natural history observations, such that ecological state descriptions emerge as an output 

of analysis rather than an input. 

Appendix 
 

This appendix develops an argument that asymmetries in estimated transition rates are 

often more strongly informed by patterns of character state stasis rather than by patterns of 

character state change, thereby complicating their interpretation as descriptors of change, a 

viewpoint common in the empirical literature. The intent is to explore how the two patterns that 

inform the likelihood calculations – a net change of state across a branch and no net change of 

state across a branch (which I call stasis) – influence the maximum likelihood estimate of 

transition rate asymmetry. To a first order approximation, I find that the ratio of transition rates 

equals the ratio of the number of character state changes (i.e., when the pattern of asymmetry in 

rates matches the pattern of asymmetry in character change) only when the amount of time spent 

in stasis in each state is equal. When the amount of time in stasis in each state is unequal, the 

ratio of transition rates is biased in the direction of the state displaying the most stasis, 

sometimes to the point where it can overwhelm the pattern change. In other words, even if nearly 

all net change is from A to B the transition rate from B to A can be much higher than the reverse 
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rate if most of the tree is in state B. While these conclusions make sense given the model, I do 

not think they are widely appreciated. Indeed, the attempt in this appendix was motivated 

precisely because there is so little information in the literature about this topic. 

For a two-state continuous-time Markov chain of discrete character evolution the lineage 

transition probabilities are, 

𝑝#$(𝑡) =
𝜀

1 + 𝜀 −
𝜀

1 + 𝜀 𝑒
./0 

 

𝑝##(𝑡) =
1

1 + 𝜀 +
𝜀

1 + 𝜀 𝑒
./0 

 

𝑝$#(𝑡) =
1

1 + 𝜀 −
1

1 + 𝜀 𝑒
./0 

 

𝑝$$(𝑡) =
𝜀

1 + 𝜀 +
1

1 + 𝜀 𝑒
./0 

 

where 𝜏 = (𝑞#$ + 𝑞$#), 𝜀 =
345
354

, and 𝑞#$ and 𝑞$# are the forward and reverse transition 

rates, respectively. My focus concerns the behavior of the maximum likelihood estimator for the 

parameter 𝜀 and how it may be affected by the pattern of evolutionary stasis. I use the symbol 𝐿78  

to represent the likelihood of 𝑋8, which represents an assignment of character states to all nodes 

in a phylogeny that is consistent with the observed state assignments at the terminal nodes. In 

standard practice, the likelihood L of the observed state assignments is computed by summing 

over all possible 𝑋8 so that 𝐿 = ∑ 𝐿7878 . Because 𝐿78  is just a product of independent lineage 

transition probabilities we have, 
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𝜕𝐿
𝜕𝜀 = < 𝐿78𝑏(𝑋8)

78
 

𝑏>𝑋8? = <
𝜕
𝜕𝜀 𝑝78(@)78(A)(𝑡B)
𝑝78(@)78(A)(𝑡B)BC(@,A)

 

Where the second sum runs over each edge 𝑒 = (𝑢, 𝑣) connecting ancestral node u with 

descendant node v. We can gain insight into the behavior of the likelihood function by studying 

𝑏>𝑋8?, which can be written as  

𝑏>𝑋8? = <
1

(1 + 𝜀)𝜀
BC(@,A):
78(@)C#
78(A)C$

− <
1

1 + 𝜀
BC(@,A):
78(@)C$
78(A)C#

+ <
1 − 𝑒./0H

(1 + 𝜀)(𝜀 + 𝑒./0H)
BC(@,A):
78(@)C$
78(A)C$

− <
1 − 𝑒./0H

(1 + 𝜀)(1 + 𝜀𝑒./0H)
BC(@,A):
78(@)C#
78(A)C#

 

To a first order Taylor series approximation, which will be reasonably accurate whenever the 

rate of character evolution 𝜏 is low, this can be represented as, 

𝑏>𝑋8? = <
1

(1 + 𝜀)𝜀
BC(@,A):
78(@)C#
78(A)C$

− <
1

1 + 𝜀
BC(@,A):
78(@)C$
78(A)C#

+ <
𝜏𝑡B

(1 + 𝜀)I
BC(@,A):
78(@)C$
78(A)C$

− <
𝜏𝑡B

(1 + 𝜀)I
BC(@,A):
78(@)C#
78(A)C#

 

Recalling that 𝜀 = 345
354

, the above tells us that the ML estimate of 𝜀 is an increasing 

function of the number of changes from ancestral state 0 to descendant state 1 and the total 

amount of time where ancestor and descendant are both in state 1 (stasis). Conversely, the ML 

estimate of 𝜀 is a decreasing function of the number of changes from ancestral state 1 to 

descendant state 0 and the amount of time where ancestor and descendant are both in state 0. 

The ML estimate of 𝜀 for the average likelihood L (i.e., the likelihood that results from 

summing the individual character history likelihoods) is influenced by each character history 𝑋8. 

Each configuration 𝑋8 will tend to pull the estimate of 𝜀 towards its own ML estimate, and it will 

do so with a force equal to 𝐿78𝑏(𝑋8). In other words, high likelihood configurations influence the 
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ML estimate more than low likelihood configurations. The ML estimate of 𝜀 for each individual 

history is just the value of 𝜀 that solves 𝑏>𝑋8? = 0. The behavior of these individual configuration 

ML estimates can be studied graphically as follows. I let 𝑓$# =
L54

L45ML54
 be the fraction of all state 

changes from ancestor to descendant that represent reversals to state 0, and I let  

𝜓 = $
L45ML54

(∑ 𝜏𝑡BBC(@,A):
78(@)C$
78(A)C$

− ∑ 𝜏𝑡BBC(@,A):
78(@)C#
78(A)C#

), which represents the between state difference in 

summed lineage length displaying stasis scaled by the number of net changes from ancestor to 

descendant. Positive values correspond to an excess of stasis in state 1 and negative values 

correspond to an excess of stasis in state 0. Solutions to 𝑏>𝑋8? = 0 can then be expressed as, 

𝑓$# =
1

1 + 𝜀 +
𝜀

(1 + 𝜀)I 𝜓 

Approximate ML estimates of 𝜀 occur where the horizontal line 𝑓$# intersects the curve	 $
$MP

+

P
($MP)Q

𝜓. Examples of these solution curves are shown in Figure 1.1. The overall picture that 

emerges is that the pattern of stasis can dramatically impact the ML estimate of the ratio of 

transition rates. For example, even if nearly 100 percent of state changes between ancestor and 

descendant represent gains of state 1, the transition rate from state 1 to state 0 can be higher, 

sometimes much higher, than the transition rate from state 0 to state 1 if the majority of tree 

length is in state 0. 
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Figure 1.1 The role of stasis in maximum likelihood estimates of transition rate asymmetry 

Left: Approximate ML estimates of the ratio of transition rates (𝜀) occur where horizontal lines 

intersect the different stasis (𝜓) curves. Right: Example illustrating the behavior of the 

approximate ML estimate of 𝜀 as a function of stasis for a fixed proportion of changes from state 

1 to state 0 (f10 = 0.5). 

 

To verify the accuracy of this approximation I applied it to the squamate reproductive mode 

dataset published by Pyron & Burbrink (2014). I sampled 100 maximum parsimony histories of 

reproductive mode evolution and for each of these numerically estimated the maximum 

likelihood value of 𝜀 and 𝜏. I then calculated the predicted ML estimate of 𝜀 using the 

approximation method discussed above while holding 𝜏 fixed to the ML estimate found earlier. 

The correspondence between true and predicted estimates is quite good and is illustrated in 

Figure 1.2. Thus, even though more than three-quarters of the parsimony implied events of 

character state change represent origins of viviparity from an oviparous ancestor, the transition 

rate from viviparity to oviparity is upwards of twice the transition rate from oviparity to 
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viviparity, simply because the majority of lineage length in maximum parsimony reconstructions 

is in the oviparous state. 

 

Figure 1.2 Accuracy of approximation to ML estimate of transition rate asymmetry  

Correspondence between the predicted ML estimate of 𝜀 obtained using the approximation 

method developed above and the true ML estimate of 𝜀 obtained using numerical optimization 

with the squamate reproductive mode dataset. 
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Chapter 2  
Macroevolutionary Analysis of Discrete Traits with Rate Heterogeneity2 

 

Abstract 
 

Organismal traits show dramatic variation in phylogenetic patterns of origin and loss 

across the tree of life. Understanding the causes and consequences of this variation depends 

critically on accounting for heterogeneity in rates of trait evolution among lineages. Here, we 

describe a method for modeling among-lineage evolutionary rate heterogeneity in a trait with 

two discrete states. The method assumes that the present-day distribution of a binary trait is 

shaped by a mixture of stochastic processes in which the rate of evolution varies among lineages 

in a phylogeny. The number and location of rate changes, which we refer to as rate-shift events, 

are inferred automatically from the data. Simulations reveal that the method accurately 

reconstructs rates of trait evolution and the number and location of rate-shift events, even when 

simulated data violate model assumptions. We apply the method to an empirical dataset of 

mimetic coloration in snakes and find elevated rates of trait evolution in two clades of harmless 

snakes that are broadly sympatric with dangerously venomous New World coral snakes, 

                                                
2 Grundler, M.C. and Rabosky, D.L. (2020). Macroevolutionary analysis of discrete traits with rate heterogeneity. 
BioRxiv, 897777, https://doi.org/10.1101/2020.01.07.897777. 
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recapitulating an earlier analysis of the same dataset. Although the method performed well on 

many simulated data sets, we caution that overall power for inferring heterogeneous dynamics of 

single binary traits is low. 

 

Introduction 
 

Organismal traits evolve recurrently across the tree of life, and the frequency with which 

traits evolve varies widely among clades. Among extant amniotes, for example, viviparity has 

evolved at least 100 times but only a single origin of it (in mammals) occurs outside squamate 

reptiles (Blackburn 1982, 1985). Similarly, sugar-secreting glands known as extrafloral nectaries 

have arisen hundreds of times among plants, mainly within the legumes, but not once among 

gymnosperms (Weber and Keeler 2013). Identifying the causes and consequences of repeated 

convergence depends critically on accounting for heterogeneity in rates of trait evolution. 

Ancestral trait reconstructions reveal evidence of convergence and can identify other traits 

enabling the repeated evolution of a convergent trait (Maddison 1990; de Queiroz and 

Rodríguez-Robles 2006; Marazzi et al. 2012; Christin et al. 2013). However, inferences of 

ancestral states may be seriously misled by models that fail to account for rate heterogeneity 

(King and Lee 2015). Several evolutionary theories also link how quickly traits evolve to how 

quickly lineages diversify (Vermeij 1973; Stanley 1979), and the repeated evolution of a trait 

together with methods that model among-lineage variation in evolutionary rates allows for direct 

tests of this coupling (Rabosky et al. 2013; Igea et al. 2017). 

Methods to account for evolutionary rate heterogeneity have grown in number and in 

sophistication over recent years (O’Meara 2006; Revell and Collar 2009; Eastman et al. 2011; 

Lloyd et al. 2012; Marazzi et al. 2012; Beaulieu et al. 2013; Landis et al. 2013; Rabosky et al. 
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2014; Uyeda and Harmon 2014), but much of this methodological progress has focused on 

continuous traits such as body mass or seed size. Phylogenetics deals extensively with rate 

heterogeneity in discrete character evolution because of the challenge it poses for inference of 

evolutionary relationships (e.g. Heath et al. 2012), and some of these methods carry over to the 

study of non-molecular traits. The “hidden rates” (Beaulieu et al. 2013) and “precursor” 

(Marazzi et al. 2012) models, first introduced to study variation in growth form and extrafloral 

nectary production in plants, are closely related to covarion models of nucleotide substitution 

(Fitch and Markowitz 1970; Galtier 2001; Penny et al. 2001). The “random local clock” model 

(Drummond and Suchard 2010) used to study variation in the rate of nucleotide substitution has 

also been used to study evolutionary rate variation in mimetic color pattern (Davis Rabosky et al. 

2016) and reproductive mode parity (King and Lee 2015) in squamate reptiles.  

In this paper, we describe a method for modeling evolutionary rate heterogeneity in a trait 

with two discrete states and implement it using the Bayesian Analysis of Macroevolutionary 

Mixtures (BAMM) framework (Rabosky 2014; Rabosky et al. 2014). The model discussed here 

is closely related to several existing phylogeny inference methods that model among-lineage 

substitution rate variation (Huelsenbeck 2000; Drummond and Suchard 2010) but differs in 

details of likelihood calculation and implementation. The general approach assumes that the 

present-day distribution of a binary state character is shaped by a mixture of stochastic processes 

in which the rate of evolutionary transition between the two states experiences shifts under a 

Poisson process across the branches of a phylogeny. The number and location of rate changes, 

which we refer to as rate-shift events, are inferred automatically from the data. Simulations 

reveal that the method accurately infers rates of evolution and the number and location of rate-

shift events, even when simulated data violate model assumptions. 
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Materials & Methods 

Likelihood of a binary state character 

We assume that each branch of a phylogeny evolves independently of the others and that 

the probability of a lineage transitioning to a character state different from its current state does 

not depend on its prior history of trait evolution (Pagel 1994). For a discrete character with two 

states, state 0 and state 1, trait evolution is modeled by a “forward” transition rate (denoted 𝑞#$), 

which governs how frequently a lineage in state 0 changes to state 1, and a “reverse” transition 

rate (denoted 𝑞$#), which governs how frequently a lineage in state 1 changes to state 0. For 

example, over a sufficiently small interval time Δ𝑡, the probability of observing a transition from 

state 0 to state 1 is approximately 𝑞#$Δ𝑡. 

To write down a likelihood function for estimating the transition rate parameters, we 

follow the approach of Maddison et al. (2007) and define 𝐷T#(𝑡) to be the probability that 

lineage N evolves the distribution of character states observed among its descendants given that it 

is in state 0 at time t. We define 𝐷T$(𝑡) analagously. Next, consider what can happen in the short 

interval of time between t and t+h, where t+h is closer to the root and where h is taken to be an 

interval of time small enough that the probability of more than one character state transition in 

the interval is negligible. There are only two possibilities. Either the lineage remains in the state 

that it was in at time t+h or it switches to the other state. We can therefore write 𝐷T#(𝑡 + ℎ) and 

𝐷T$(𝑡 + ℎ) as functions of 𝐷T#(𝑡), 𝐷T$(𝑡), and the transition rate parameters 𝑞#$ and 𝑞$#, 

𝐷T#(𝑡 + ℎ) = (1 − 𝑞#$ℎ)𝐷T#(𝑡) + 𝑞#$ℎ𝐷T$(𝑡) 

𝐷T$(𝑡 + ℎ) = (1 − 𝑞$#ℎ)𝐷T$(𝑡) + 𝑞$#ℎ𝐷T#(𝑡) 
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By rearranging and letting h approach zero we form two coupled differential equations that 

describe how these probabilities change through time, 

𝑑𝐷T#(𝑡)
𝑑𝑡 = −𝑞#$𝐷T#(𝑡) + 𝑞#$𝐷T$(𝑡) 

𝑑𝐷T$(𝑡)
𝑑𝑡 = −𝑞$#𝐷T$(𝑡) + 𝑞$#𝐷T#(𝑡) 

These can be solved (see appendix) to give the closed form solutions, 

           𝐷T#(𝑡) = 𝐴 + 𝐵#𝑒.(345M354)(0.04)         ( 1) 

           𝐷T$(𝑡) = 𝐴 + 𝐵$𝑒.(345M354)(0.04)         ( 2) 

Where 𝑡# is the initial time and, 

𝐴 = 𝜋#𝐷T#(𝑡#) + 𝜋$𝐷T$(𝑡#) 

𝐵# = 𝜋$𝐷T#(𝑡#) − 𝜋$𝐷T$(𝑡#) 

𝐵$ = 𝜋#𝐷T$(𝑡#) − 𝜋$𝐷T#(𝑡#) 

Where 𝜋] is the equilibrium frequency of state i. Equations (1) and (2) are evaluated for each 

branch of the phylogeny proceeding from the tips to the root in a post-order traversal. The 

quantities 𝐷T#(𝑡#) and 𝐷T$(𝑡#) are the initial conditions used to begin evaluation for each 

branch. If we have these values, we can compute the conditional likelihood of the data for a 

branch’s stem group by simply setting t equal to the time at the base (rootward) of the branch 

and 𝑡# equal to the time at the head (tipward) of the branch and evaluating equations (1) and (2). 

At each internal node, we form a new set of initial conditions by multiplying the 𝐷∙# and 𝐷∙$ at 

the base of the node’s left descendant branch with those of its right descendant. When we reach 

the root, R, of the tree 𝐷`#(𝑡`) and 𝐷`$(𝑡`) yield the probability of the data given the transition 

rate parameters and conditional on the root being in state 0 or state 1, respectively. To get the 

unconditional likelihood we must combine these two values, but doing so requires knowing the 
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probability of the root being in state 0 or in state 1. We assume that the root is in state 0 or state 1 

with probabilities implied by their conditional likelihoods and compute the full likelihood as 

ab4(0b)
ab4(0b)Mab5(0b)

𝐷`#(𝑡`) +
ab5(0b)

ab4(0b)Mab5(0b)
𝐷`$(𝑡`). This is the same weighting scheme used in 

some models of trait-dependent speciation and extinction (FitzJohn et al. 2009). To begin 

computation, the initial conditions for each tip in the tree are set to 𝐷∙#(0) = 1 and 𝐷∙$(0) = 0 if 

the tip is in state 0 and vice versa if the tip is in state 1. 

 

Rate-shift model for a binary state character 
 

At broad phylogenetic scales, it may be unreasonable to assume that the transition rates 

remain constant over all regions of phylogeny. We therefore allow regions of a phylogeny to 

belong to different macroevolutionary “rate-regimes”, which are independent sets of transition 

rate parameters that describe the evolution of a binary state character over the regions of 

phylogeny to which they pertain. Transitions between rate-regimes, which we refer to as “rate-

shift events”, are assumed to occur along the branches of a phylogeny according to a compound 

Poisson process (Huelsenbeck 2000; Blanquart and Lartillot 2006; Rabosky 2014). To compute 

the likelihood of the data under a rate-shift model requires minimal modification of the process 

described in the previous section. Rather than traversing directly from a node to its ancestor 

when evaluating equations (1) and (2), we pause at each rate-shift event that occurs on the 

branch and use the values of (1) and (2) at that point as starting values for an additional 

evaluation of (1) and (2) under the new set of transition rates. 

This model of rate variation is unsuitable when forward and reverse transition rates are 

asymmetric (Fig. 2.1). By proposing a new rate-shift event for every event of character state 

change and simply making one rate arbitrarily large and the other rate arbitrarily small it is 
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possible to fit any data set with probability 1 (when conditioned on the occurrence of the rate-

shift events). This is because we can guarantee with probability 1 the origin and persistence of a 

derived character state by making the transition rate toward the derived character state arbitrarily 

large and the reverse rate arbitrarily small. In such a scenario, rate-shift events become 

decoupled from broad-scale among-lineage variation in the rate of trait evolution. Our 

implementation of an asymmetric version of this rate-shift model yielded results consistent with 

these expectations for several empirical datasets. For this reason, the default implementation in 

BAMM constrains forward and reverse transition rates to be identical. All analyses presented 

below use this symmetric implementation. 

 

Implementation 
 

The rate-shift model described above is implemented in the Bayesian software program 

BAMM using reversible-jump Markov Chain Monte Carlo simulation (Rabosky 2014). Briefly, 

BAMM assumes that the number of rate-shift events on a phylogeny is drawn from a Poisson 

distribution with a rate parameter that is itself drawn from an exponential distribution. This 

formulation implies that the number of rate-shifts is drawn from a geometric distribution and that 

the expected number of rate-shifts, denoted by L, is simply the mean of the exponential 

hyperprior placed on the Poisson prior (Mitchell and Rabosky 2017). We extend the BAMM 

implementation for binary data by placing an exponential prior on the transition rate and use a 

proportional shrinking-expanding proposal mechanism to update its value. All other details 

remain the same and are described elsewhere (Mitchell and Rabosky 2017). 
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Simulation study 
 

We conducted a simulation study to assess how well the method estimates branch specific 

rates of evolution and infers the presence of rate-shift events. 

(1) Choice of phylogeny 

To carry out the simulations, we generated 100 phylogenies having between 50 and 1,000 tips by 

randomly sampling internal nodes from the 3,962-tip ultrametric squamate reptile phylogeny of 

Pyron and Burbrink (2014). Nodes were assigned weights such that all sizes (measured as the 

number of living descendants) of extracted clades had an equal probability of being selected. We 

chose to select subsets of a large empirical phylogeny, rather than simulated phylogenies, to 

introduce more realistic distributions of branch lengths than might be obtained using simple tree 

simulation models (e.g. Yule or constant-rate birth-death models). 

(2) Simulating trait evolution 

For each phylogeny, we simulated evolution of a binary state trait 10 times using 2 different 

procedures. In the first case, we determined the number of rate-shift events to place on the tree 

by drawing a random integer from a Poisson distribution with a rate of 1. We determined the 

locations for these rate-shifts by selecting that number of internal nodes randomly without 

replacement, again using weights that gave all sizes of subtrees an equal probability of being 

chosen, and choosing a uniform random point along each chosen node’s branch. We chose the 

transition rate for each rate-regime by drawing a random number from a log-normal distribution 

with a mean of log0.01 and a standard deviation of − $
g
log 0.01. This corresponds to a log-

normal distribution with a spread that position rates of 0.0001 and 1 three standard deviations 

below and above the mean, respectively, and these values were chosen simply for their potential 

to generate datasets having a range of phylogenetic signals. The second case was identical to the 
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first except that we allowed transition rates to be asymmetric. The degree of asymmetry was 

determined by drawing a random number from a log-normal distribution with a mean of log1 

and a standard deviation of $
g
log100. This corresponds to a log-normal distribution centered on 

unbiased transition rates with a spread that positions a 100-fold bias in transition rates 3 standard 

deviations from the mean.  

(3) Information content of rate-shift events 

Due to the stochastic nature of the simulations we expected rate-shift events to vary in their 

degree of detectability. To quantify this, we followed Rabosky et al. (2017) and calculated the 

“information content” of each rate-shift, which is a measure of how strongly the data support a 

model with rate variation over a model with no rate variation. For each simulated trait 

distribution, we optimized the value of the transition rate parameter to maximize the likelihood 

of the full data under a model with no rate-shifts. We denote this maximum-likelihood parameter 

estimate by 𝜃i` . Next, we denote by 𝐷] the trait data contained in the subtree formed by the set 

of all nodes and branch segments belonging to the i-th rate-regime and by 𝜃] the transition rate 

that generated those data. We calculated the information content of the i-th rate regime as the 

difference in log likelihoods of 𝐷] under the two parameter sets, 

ΔLog𝐿] = log𝐿(𝐷]|𝜃]) − log𝐿(𝐷]|𝜃i`) 

Where 𝐿(𝐷]|𝜃]) denotes the likelihood of the data in the i-th rate regime given the generating 

parameter, and 𝜃i`  indicates the transition rate obtained by maximizing the likelihood for the 

full data under a model with no rate-shifts. If the data support a model with rate-shift events, the 

ΔLog	𝐿 statistic must be greater than 0. In general, we expect that this statistic must be 

substantially greater than 0 for BAMM to detect a rate-shift event. If ΔLog	𝐿 is expressed using 

the Akaike Information Criterion it can be rewritten as ΔLog	𝐿 = 𝑆
2n + 𝑘, where S is the 
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difference in AIC scores needed to accept a model with an additional rate-shift and k is the 

number of extra parameters required to fit an additional rate-shift (in our implementation k = 2, 

corresponding to the location of the rate-shift and its rate parameter). If 𝑆 ≥ 0	is interpreted as 

support for a model with an extra rate-shift, the minimum ΔLog	𝐿 needed to detect an event is 2. 

 

BAMM analysis 
 

We analyzed each simulation with BAMM using a single Markov chain that ran for ten 

million generations with L set equal to 1. The transition rates governing trait evolution need 

starting values before BAMM can proceed. For each simulation, we divided the total number of 

observed character state transitions by the summed branch length of the simulation’s phylogeny 

and used this value for the initial transition rate and for the median of the exponential prior 

placed on the transition rate. This number is unavailable in empirical datasets but will be close to 

the number implied by parsimony when rates of character evolution are low. 

 

Performance assessment 
 

For each dataset simulated under a symmetric or asymmetric rate-shift model we assessed 

BAMM’s ability to estimate rates of trait evolution and to detect rate-shift events. We performed 

each assessment using the estimated posterior distribution after discarding the first ten-percent of 

samples. 

(1) Estimating the rate of trait evolution 

To determine how accurately BAMM infers rates of trait evolution we scaled each branch length 

to correspond to its average estimated rate of trait evolution. We performed this branch-by-
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branch calculation for each sample in the simulated posterior distribution using the BAMM-

estimated transition rate parameters and assigned each branch an overall length equal to, 

𝑣] =
∑ 𝑣],qq

𝑁  

Where 𝑣],q  denotes the rate of evolution of branch i in the s-th posterior sample, and 𝑁 indicates 

the number of samples in the posterior distribution. Using these values, we computed the tree-

wide proportional branch rate error for a simulation as, 

𝑅 =<
𝑡]
𝑇

]

(log𝑣] − log𝑉]) 

Where 𝑉] denotes the true rate of evolution of branch i, and the summation is taken over all 

branches in the phylogeny. The error of the i-th branch estimate was weighted by the 

proportional contribution of its branch length, 𝑡], to the sum of all branch lengths, T, in the 

phylogeny. For unbiased transition rate estimates this equation is equal to 0. 

(2) Detection of rate-shift events 

For each simulated rate-shift event, we computed the mean detection accuracy as ∑ wxx
T

, where 𝐽q 

indicates the detection accuracy in the s-th posterior sample and 𝑁 indicates the number of 

samples in the posterior distribution. Letting 𝐶q denote the set of rate-shift events detected by 

BAMM in the s-th posterior sample, we measured the detection accuracy of a generating rate-

shift event as, 

𝐽q = max	 ~�
|𝑁 ∩ 𝑁]|
|𝑁 ∪ 𝑁]|

, 𝑖 ∈ 𝐶q	�� 

Where 𝑁 is the set of tips descended from the generating rate-shift event and 𝑁] is the set of tips 

descended from the i-th rate-shift detected by BAMM in the s-th posterior sample. A value of 1 

occurs when BAMM identifies the precise node that corresponds to the generating rate-shift 
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event, and a value of 0 occurs when BAMM fails to identify the generating event at all. 

Intermediate values occur when BAMM identifies rate-shift events that correspond to nodes 

above or below the node where the generating rate-shift event occurred. 

(3) Empirical application 

Finally, we analyzed an empirical dataset of mimetic coloration in snakes previously analyzed 

with several related methods (Davis Rabosky et al. 2016). Red-black banded coloration arises 

repeatedly among harmless colubrid snakes that occur in broad sympatry with dangerously 

venomous red-black banded coral snakes in the Neotropics and parts of the North temperate 

zone. The incidence of red-black banded coloration is particularly high among dipsadine snakes, 

a highly diverse clade of colubrid snakes that occur in local and regional sympatry with coral 

snakes across the Neotropics. Using the random local clock model (Drummond and Suchard 

2010) and a Medusa-like (Alfaro et al. 2009) model of discrete trait evolution, Davis Rabosky et 

al. (2016) inferred elevated rates of mimetic color evolution within dipsadine snakes resulting 

from repeated independent origins of red-black banding coincident with the diversification of 

coral snakes in the Neotropics. We repeated their macroevolutionary rate analysis of this dataset 

using the method developed in this paper. We divided the number of parsimony-implied 

character state changes by the total branch length of the phylogeny to obtain a median rate for 

the transition rate prior and ran BAMM for 10 million generations with L set equal to 10. We 

repeated this analysis 3 times under 3 different transition rate prior specifications corresponding 

to a 2-, 5-, and 10-fold speedup over the median rate implied by parsimony.  

 

Results 
 

(1) Estimating the rate of trait evolution 
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Tree-wide proportional branch rate errors were low regardless of whether the data were 

simulated under a symmetric (mean = 0.09, median = 0.08) or asymmetric (mean = -0.27, 

median = -0.17) rate-shift model (Fig. 2.2). The correlations between estimated and true branch 

rates were high when data were simulated using a symmetric model (Pearson’s r = 0.64, 

Spearman’s r = 0.90) but were substantially noisier when data were simulated using an 

asymmetric model (Pearson’s r = 0.26, Spearman’s r = 0.60). When branch rates were 

multiplied by the temporal duration of each branch to convert them into the expected number of 

character state changes these correlations improved, particularly for the asymmetric model 

(symmetric: Pearson’s r = 0.66, Spearman’s r = 0.93; asymmetric: Pearson’s r = 0.37, 

Spearman’s r = 0.75). Spearman rank correlations were substantially higher than Pearson 

product-moment correlations for both models, indicating that relative branch rates are generally 

better estimated than absolute branch rates. 

(2) Detection of rate-shift events 

BAMM’s ability to detect rate-shift events was generally low due to the limited information 

content of rate-shift events in the simulated data (Fig. 2.4). Despite relative rate differences 

between ancestral and derived rate-shift events that varied over 6 orders of magnitude, only 400 

of 2045 simulated rate-shift events had an information content above 2, the theoretical minimum 

above which BAMM is expected to have power to detect them (see Discussion). This is due in 

part to the small average number of tips in simulated rate-regimes but also to the legitimate 

difficulty of simulating binary character data that reveal strong evidence for rate heterogeneity 

(cf. Fig. 2.4 rightmost panel). When BAMM has information to detect rate-shift events, however, 

it does reasonably well, and its performance improves monotonically as the information content 
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of rate-shifts increases (cf. Fig. 2.4 leftmost panel). For example, BAMM detected the locations 

of 36 rate-shifts with an information content of at least 10 with a mean accuracy of 88%. 

(3) Empirical application 

Analysis of the empirical dataset of red-black banded coloration in snakes largely recapitulated 

previous results showing an increased rate of trait evolution in Neotropical dipsadine snakes (but 

also revealed high rates in a clade of North temperate colubrine snakes) (Fig. 2.5). When 

analyzed under a strong, well-informed transition rate prior, rates of trait evolution ranged from a 

low of 0.00065 My-1 in basal snake lineages to a high of 0.0093 My-1 in dipsadine snakes, with 

an overall mean of 0.0024 My-1 that closely matched the overall rate of 0.002 My-1 obtained by 

dividing the number of parsimony-inferred state changes by the total branch length (cf. Fig. 2.5 

leftmost panel). More liberal priors did not change this general picture, however rates of trait 

evolution in the upper tail of the estimated branch rate distribution tended to creep upward as the 

transition rate prior flattened. Flatter transition rate priors were associated with a higher number 

of posterior rate-shifts caused by the partitioning of single rate-shift events inferred under steeper 

transition rate priors into multiple smaller rate-shift events (i.e. lineages left out of these new 

rate-shift events fell back into the ancestral root regime). These new rate-shift events tended to 

have estimated rates of evolution that were higher than estimates made using steeper transition 

rate priors. 

 

Discussion 
 

In this paper, we describe a Bayesian method, implemented in the BAMM software 

program, for studying among-lineage variation in the rate of evolution of a binary character. 

Overall, our results show that the method accurately infers rates of trait evolution and the 
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presence and location of among-lineage evolutionary rate variation, even when simulated data 

violate model assumptions. Although the method performed well on many simulated data sets, 

we caution that overall power for inferring heterogeneous dynamics of single binary traits may 

be low.  

The ability of the method to detect rate-shift events depends on the size of the clade 

belonging to a rate-regime but also on how much information the data contain with respect to the 

parameters of the rate-regime. In our simulations, we estimated this information content using a 

log-likelihood ratio that measures the likelihood of a given rate-shift event under the true 

parameters relative to the corresponding likelihood under a simple model where the rate is set to 

the whole-tree average. This information content can be surprisingly low even for large clades. 

In retrospect, this is not necessarily surprising because with only two character states there is a 

limit to how different data generated by two different rates can become. A 10- or even 100-fold 

rate increase will not be detectable if the ancestral rate is already high enough as to leave no 

phylogenetic signal. Similarly, a 10- or 100-fold rate decrease will not be detectable if the 

ancestral rate is already so low as to make character change highly improbable. In general, we 

expect detectability of rate-shifts to depend strongly on how distinct one rate’s phylogenetic 

signal is from another. This will have a strong stochastic component to it, and for binary data 

will likely have a low signal-to-noise ratio making detection of rate-shift events difficult. 

While we did not explore prior sensitivity exhaustively in this study, the empirical results 

indicate that branch rate estimates (and ancestral state reconstructions by implication) are 

sensitive to the transition rate prior. In the empirical example, disagreements among the different 

priors occur in regions of phylogeny having elevated rates of evolution. This is not surprising 

given that the method works with only a single binary character and that the fast-evolving clades 
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in the empirical phylogeny have relatively few taxa, but it does call for vigilance. A sensible rule 

of thumb is to treat with caution any result where the overall mean rate estimate disagrees 

strongly with the rate implied by parsimony. Encouragingly, the different prior specifications are 

in broad agreement on where relative rate differences occur in the empirical phylogeny despite 

disagreements over absolute rate estimates. The results also indicate that the transition rate prior 

interacts with the prior on the number of rate-shifts, suggesting that the method’s ability to 

estimate the precise location of a rate-shift and its ability to estimate the associated rate of 

evolution may trade-off. Finally, the combination of a prior with a high number of expected rate-

shift events and a relatively flat transition rate prior can lead to an apparent abundance of single 

tips with derived character states having elevated rates of evolution. This is because dropping a 

high rate of evolution on such a branch entails no penalty. It makes the derived state more 

probable and with only a single lineage does not suffer from the likelihood penalty that a larger 

clade fixed for a derived state would suffer from if given an elevated rate. Users should remain 

alert to this scenario and treat its presence as an indication that the priors are exerting an undue 

influence. For all these reasons, we recommend the use of a strong, well-informed prior on the 

transition rate and setting the median rate of the prior equal to the parsimony-implied rate seems 

like a sensible choice. 

A fundamental difficulty facing macroevolutionary models of discrete character 

evolution is that the data contain low information content with respect to rates of evolution since 

actual events of character state change are not directly observed. This challenge is exacerbated 

further in asymmetric Markov models which must estimate the rate of evolution while 

simultaneously inferring the equilibrium frequencies of the character states. From this fact alone, 

we should expect asymmetric Markov models to have lower information content with respect to 
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transition rates than symmetric Markov models, which a priori assume equilibrium frequencies 

of character states are equal. In a discrete-time version of the Markov model used by this and 

many other studies, Sanderson (1993) has shown that maximum likelihood parameter estimates 

are intrinsically biased upwards for an asymmetric model with two character states but are 

unbiased for a symmetric model. The extent to which these conclusions apply in continuous-time 

or generalize to more than two states is not known to us but warrants further study.  

One consequence of the low information content of binary data are ancestral state 

reconstructions that may appear nonsensical when performed with asymmetric models. For 

example, Pagel (1999) presented a comb phylogeny in which every tip in the clade was fixed for 

one of two possible character states and showed that an asymmetric Markov model reconstructed 

the root as belonging to either state with equal probability. From an asymmetric model’s 

perspective, a clade that is almost entirely fixed for a single character state is likely to have been 

generated by a process with a very high transition rate toward the majority state and a very low 

transition rate away from it, which makes the tip states mostly independent of the ancestral states 

because the asymmetry in rates will yield the same outcome at the tips regardless of the 

assignment of states to internal nodes. By contrast, from a symmetric model’s perspective the 

clade simply has a very low rate of evolution and the tip states resemble their ancestors as a 

result. In fact, transition rates are nearly always biased in the direction of the state appearing 

most frequently among the tips of the tree (Nosil and Mooers 2005; Maddison 2006). This means 

that in an analysis that infers a high rate of transition from state 0 to state 1 and low rate of 

transition from state 1 to state 0, it will sometimes be the case that a majority of the evolutionary 

transitions were from state 1 to state 0. This runs counter to intuition and indicates the need for 
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caution when using transition rates to infer directionality in the history of trait evolution (Nosil 

and Mooers 2005; Goldberg and Igic 2008). 

 
Appendix 
 

Derivation of likelihood equations (1) and (2) 

Begin with the differential equations, 

    �a�4(0)
�0

= −𝑞#$𝐷T#(𝑡) + 𝑞#$𝐷T$(𝑡)         (A1) 

    �a�5(0)
�0

= −𝑞$#𝐷T$(𝑡) + 𝑞$#𝐷T#(𝑡)         (A2) 

By solving (A1) for 𝐷T$(𝑡) and equating its derivative to (A2) we can form the second-order 

differential equation, 

𝑑I𝐷T#(𝑡)
𝑑𝑡I + (𝑞#$ + 𝑞$#)

𝑑𝐷T#(𝑡)
𝑑𝑡 = 0 

Which, after finding the roots of its auxiliary equation, has the general solution, 

    𝐷T#(𝑡) = 𝑐$ + 𝑐I𝑒.(345M354)(0.04)	        (A3) 

Where 𝑡# is a starting time on node N’s branch, 𝑐$and 𝑐I are constants, and 𝑡 is larger than 𝑡# but 

smaller than the time at the base of node N’s branch.  

 

To solve for 𝑐$ note that at our initial condition when 𝑡 = 𝑡#, 

    𝑐I = 𝐷T#(𝑡#) − 𝑐$	          (A4) 

Furthermore, differentiating equation (A3) gives, 

    �a�4(0)
�0

= −(𝑞#$ + 𝑞$#)𝑐I𝑒.(345M354)(0.04)                               (A5) 

And equating (A1) with (A5) and setting 𝑡 = 𝑡# yields, after some algebra,  
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    𝑞#$𝑐$ − 𝑞$#𝑐I = 𝑞#$𝐷T$( #)                                                     

(A6) 

By substituting the right-hand side of (A4) for 𝑐I in (A6) and solving for 𝑐$ we find, 

    𝑐$ =
345a�5(04)M354a�4(04)

345M354
          (A7) 

Finally, by substituting the right-hand side of (A7) for 𝑐$ in (A6) and solving for 𝑐I we find, 

    𝑐I =
345a�4(04).345a�5(04)

345M354
                                                          (A8) 

Thus, equation (A3) is equivalent to equation (1) after substitution of (A7) and (A8), noting that 

345
345M354

= 𝜋$ and that 354
345M354

= 𝜋#. An equivalent derivation of equation (2) is performed by 

starting with 𝐷T$(𝑡) = 𝑐$ + 𝑐I𝑒.(345M354)(0.04). When 𝜋# = 𝜋$ =
$
I
	as in the BAMM 

implementation this is simply a special case of the JC69 model (Jukes and Cantor 1969) with two 

states. 
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Figure 2.1 Why a rate-shift mechanism is unsuitable for asymmetric Markov models 

A worked example showing why asymmetric Markov models are unsuitable for BAMM-type 

rate-shift models. A single rate-shift event (denoted by a white circle) is placed along the branch 

subtending the clade fixed for character state 0. The x-axes in the left plot depict transition rates 

for this rate-shift and for the root event (denoted by a black circle). Note that they run in opposite 

directions, e.g. the upper x-axis is q01 for the root event but is q10 for the rate-shift event. As the 

asymmetry in transition rates is increased the probability of the data (denoted by the solid line) 

rises to 1 while the overall rate of character evolution (denoted by the dashed line) falls to 0. 

Simultaneously, as the rate of character evolution falls to 0 the asymmetry in transition rates 

causes the prior probability of being in one or the other character state to rise to 1, e.g. the inset 

plot denoted by an asterisk depicts the probability of being in state 0 or state 1 as a function of 

the asymmetric transition rates of the rate-shift event. Thus, at the extreme a “rate-shift” event 

simply introduces a second way to observe a stochastic event of character state change and does 

not correspond to among-lineage heterogeneity in rates of character evolution. 
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Figure 2.2 Tree-wide error in branch rate estimates 

Tree-wide proportional branch rate error in BAMM-estimated branch rates when data are 

simulated under a symmetric rate-shift model (left) or an asymmetric rate-shift model (right). 

Branch rates are measured as the expected number of character transitions per million years. 

Tree-wide proportional branch rate error is a weighted sum of the logarithmic difference between 

estimated branch rates and true branch rates over all branches in a phylogeny. Errors on short 

branches are down-weighted relative to errors on long branches. Unbiased estimates have an 

error of 0, negative and positive values correspond to under- and over-estimation errors, 

respectively. Each histogram depicts the distribution of tree-wide proportional branch rate error 

over simulations with at least one rate-shift event. The vertical lines show the mean (solid) and 

median (dashed) of each distribution. 
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Figure 2.3 Correlation of branch rate estimates with true values   

Correlation between true branch rates/lengths and BAMM-estimated branch rates/lengths when 

data are simulated under a symmetric rate-shift model (left panels) or an asymmetric rate-shift 

model (right panels). Branch rates (top panels) are measured as the expected number of 

character transitions per million years. Branch lengths (bottom panels) are measured as the 

expected number of character transitions occurring along the length of a branch. Each point 

depicts the average posterior rate estimate for a single branch of a phylogeny in one simulation, 

and the color of each point corresponds to the density of neighboring points (warm colors 

indicate high densities). Only branches from phylogenies with at least one simulated rate-shift 

are represented. The one-to-one line is dashed. 
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Figure 2.4 Rate-shift detection accuracy 

Rate-shift detection accuracy with BAMM when data are simulated under a symmetric rate-shift 

model (top panels) or an asymmetric rate-shift model (bottom panels). The average detection 

accuracy measures how accurately BAMM inferred a rate-shift’s location. The information 

content of a rate-shift event is a log-likelihood ratio that measures the likelihood of a given rate-

shift event under the true parameters relative to the corresponding likelihood under a simple 

model where the rate is set to the whole-tree average. In the leftmost panels, the vertical line is 

the theoretical minimum log-likelihood ratio above which BAMM is expected to have power to 

detect a rate shift event, and it closely coincides with the upward inflection of the LOWESS 

regression lines (dashed). The rightmost panels plot an event’s information content against its 

proportional rate difference. The proportional rate difference of an event is the ratio of its rate of 

evolution to the ancestral rate preceding it. In all panels, each point represents a simulated rate-

shift event, and the color of each point corresponds to the density of neighboring points (warm 

colors indicate high densities). 
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Figure 2.5 Empirical estimates of rate variation in red-black banded coloration in snakes 

Evolution of mimetic coloration in snakes under four different transition rate priors in BAMM. A 

high rate of evolution of red-black banded mimetic coloration in snakes is inferred in Neotropical 

dipsadine snakes and North American colubrines, although precise locations of rate-shifts and 

rate estimates differ across prior specifications. In the lower panels, the x-axis is the average 

posterior rate of trait evolution (expected number of character state changes per million years) 

and the y-axis is a kernel density estimate of the branch-specific rate distribution over 4 different 

prior specifications. The dashed line shows the prior distribution of the rate of evolution and the 

prior median is indicated by the inset expression. Average posterior branch rates are mapped 

onto the phylogeny in the center panels. The line graphs above each phylogeny show the 

posterior distribution of the number of rate-shift events (solid line) in the credible shift set 

compared to the prior distribution (dashed line). Branches colored red in the topmost panel show 

the distribution of red-black banded mimetic coloration among tips in the empirical phylogeny. 

Phylogeny from Pyron and Burbrink (2014). 
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Chapter 3  
Parsimony-based Transition Rate Estimates Outperform Maximum 

Average Likelihood Estimates for a Two-state Character3 
 

Abstract 
 

Rates of character evolution in macroevolutionary datasets are typically estimated by 

maximizing the likelihood function of a continuous-time Markov chain (CTMC) model of 

character evolution over all possible histories of character state change, a technique known as 

maximum average likelihood. An alternative approach is to estimate ancestral character states 

independently of rates using parsimony and to then condition likelihood-based estimates of 

transition rates on the resulting ancestor-descendant reconstructions. We use maximum 

parsimony reconstructions of possible pathways of evolution to implement this alternative 

approach for single-character datasets simulated on empirical phylogenies using a two-state 

CTMC. We find that transition rates estimated using parsimonious ancestor-descendant 

reconstructions have lower mean squared error than transition rates estimated by maximum 

average likelihood. Although we use a binary state character for exposition, the approach 

remains valid for an arbitrary number of states. Finally, we show how this method can be used to 

                                                
3 Grundler, M.C. and Rabosky, D.L. (2020). Macroevolutionary analysis of discrete character evolution using 
parsimony-informed likelihood. BioRxiv, 897603, https://doi.org/10.1101/2020.01.07.897603. 
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rapidly and easily detect phylogenetic variation in tempo and mode of character evolution with 

two empirical examples from squamates. These results highlight the mutually informative roles 

of parsimony and likelihood when testing hypotheses of character evolution in macroevolution. 

 

Introduction 
 

Continuous-time Markov chains (CTMC) are commonly used in macroevolution to 

model the evolution of discrete characters to make inferences about evolutionary rates and 

patterns of change. Because the historical sequence of ancestor-descendant character state 

changes in most cases is not directly observed, statistical inference about Markov chain models 

is typically performed by summing over all possible histories of character evolution that could 

have resulted in the observed distribution of character states among living species using the well-

known peeling algorithm (Felsenstein 1981). This technique, sometimes referred to as 

“maximum average likelihood” (Steel & Penny 2000), weights each possible evolutionary 

pathway by its probability of generating the observed data, and the resulting parameter estimates 

are therefore not conditioned on any particular history of character evolution. Pagel (1999) terms 

these “global estimators” and they are recommended as best practice by Mooers & Schluter 

(1999) and the only implementation available in most commonly used software packages in 

macroevolution (e.g., Paradis et al. 2004; Revell 2012; FitzJohn 2014). 

An alternative approach to maximum average likelihood, termed “most-parsimonious 

likelihood”, is to estimate both the unknown internal node states and the unknown transition 

rates simultaneously using likelihood (Barry and Hartigan 1987). Goldman (1990) refers to 

internal node states as “incidental parameters”, since they are realizations of a random process, 

and raises concerns about the statistical consistency of such estimates (because the number of 
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parameters grows with the addition of new species to the dataset). Perhaps as a result, most-

parsimonious likelihood techniques do not appear to be used in common practice. Alternatively, 

internal node states can be estimated independently (using parsimony), and likelihood estimates 

of transition rate parameters can be made by conditioning on these possible parsimonious 

pathways of evolution. In a macroevolutionary context, Janson (1992) appears to have been the 

first to use such an approach in a study of seed dispersal syndromes in plants. Some properties of 

these estimators were later studied by Sanderson (1993). The approach has received little 

attention since these two early works. 

 Here we revisit the approach of conditioning transition rate estimates on parsimonious 

ancestral state reconstructions, an approach we term parsimony-informed likelihood. We find 

that transition rates estimated using parsimony-informed likelihood have lower mean-squared 

error than rates estimated using maximum average likelihood and that this difference is 

accentuated in simulations where likelihood-ratio tests support an asymmetric model over a 

symmetric model of character evolution. We then show how the simple form of the parsimony-

informed likelihood estimator leads to a rapid way of exploring datasets for phylogenetic 

variation in tempo and mode of character evolution. 

 

Materials & Methods 
 

General theoretical background 
 

 Given an assignment of character states to each node in a phylogeny the likelihood of the 

observed character state data at the terminal nodes is the product of state-to-state transition 

probabilities over all ancestor-descendant pairs. The full likelihood is computed by summing 
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these evolutionary pathway likelihoods over all possible histories of character evolution that 

could have given rise to the observed character state data using Felsenstein’s (1981) peeling 

algorithm. We refer to transition rates estimated with this method as maximum average 

likelihood rates, abbreviated MAV. In the general multistate case, the transition probabilities 

used in the peeling algorithm are computed by numerically solving the matrix exponential 

exp(Qt), where Q is the matrix of transition rates and t is the branch length separating ancestor 

and descendant. However, the simple two-state case like the kind used in this study permits an 

analytic solution given by, 

𝑝#$(𝑡) =
𝜀

1 + 𝜀 −
𝜀

1 + 𝜀 𝑒
./0 

 

𝑝##(𝑡) =
1

1 + 𝜀 +
𝜀

1 + 𝜀 𝑒
./0 

 

𝑝$#(𝑡) =
1

1 + 𝜀 −
1

1 + 𝜀 𝑒
./0 

 

𝑝$$(𝑡) =
𝜀

1 + 𝜀 +
1

1 + 𝜀 𝑒
./0 

 

where 𝜏 = (𝑞#$ + 𝑞$#), 𝜀 =
345
354

, and 𝑞#$ and 𝑞$# are the forward and reverse transition 

rates, respectively. 

Parsimony-informed likelihood begins by restricting attention only to the histories of 

character of evolution inferred with maximum parsimony (MP). There will often be more than 

one MP history and the set of MP histories will be a subset of the character histories used in the 
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computation of the maximum average likelihood. By treating these ancestor-descendant state 

reconstructions as “observations” sampled from a CTMC at random time points we can estimate 

the transition probability matrix of the discrete-time Markov chain embedded within the CTMC. 

This is, 

𝑷� = �1 − 𝑝̂#$ 𝑝̂#$
𝑝̂$# 1 − 𝑝̂$#

�	

𝑝̂]� =
𝑛]�

𝑛]] + 𝑛]�
			𝑖, 𝑗 ∈ {0, 1} 

Here, 𝑝̂]�  is the probability of a gain or loss and is calculated as the number of branches where a 

change from 𝑖 → 𝑗 occurred divided by the number of branches where such a change could have 

occurred. In practice, these probabilities are calculated by sampling MP histories of character 

evolution using Fitch’s three algorithms (1971). We estimated this matrix by sampling 1000 MP 

histories such that each permissible state-to-state transition had uniform weight. In actuality, the 

number of MP histories can be much larger than this. If we further assume that the random time 

points at which we “observe” the CTMC are independent of the process of character evolution 

and distributed according to a Poisson process, we can use 𝑷� to estimate the transition rate 

matrix Q of the CTMC. This is, 

𝑸� = 𝜆�(𝑰 − 𝑷�.$) 

Where 𝜆� is the estimated rate of the Poisson process that generates the time points at which we 

observe the chain’s state. In this study, we take 𝜆� = T
∑ 0��
��5

, the number of nodes divided by the 

summed branch length of the phylogeny. For a two-state model 𝑸�  is simply, 

𝑸� =
𝜆�

1 − 𝑝̂$# − 𝑝̂#$
�−𝑝̂#$ 𝑝̂#$
𝑝̂$# −𝑝̂$#

� 
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This estimator is derived by Karr (1991, pp. 384-386). It was used by Janson (1992) in a study of 

plant dispersal syndromes that remains a lucid but under cited discussion of the role of Markov 

models in macroevolutionary inference. Although we present results for only two states the 

method is applicable to any number of states (i.e., for K states 𝑝̂]� =
L��

∑ L���
			𝑖, 𝑗 ∈ {0, … ,𝐾 − 1}). 

Note that 𝜆� does not influence the relative values of the estimated rate matrix. Only the pattern of 

transitions (including apparent stasis) affects the relative values. This is an important difference 

from the MAV estimator used in standard practice, which is also affected by variation in branch 

lengths over which transitions occur. We refer to rates estimated with this method as parsimony-

informed likelihood transition rates, abbreviated PIL. 

From a computational perspective PIL has a clear advantage over MAV because it 

requires only a single matrix inversion instead of repeated matrix exponentiation, which makes 

PIL more feasible for datasets with many character states. A disadvantage of PIL is that it can 

lead to undefined transition rates when change is rare enough that not all possible transitions are 

observed in parsimony reconstructions. A second potential advantage is that 𝑸���  may be less 

variable and therefore less prone to error than 𝑸�¡¢£ because 𝑸���  is conditioned on a minimal 

set of character state changes needed to explain the data. We explore this possibility in the 

simulations described below. 

 

Simulations 
 

 We simulated 100 single-character datasets on each of 50 empirical phylogenies using a 

two-state CTMC model of discrete character evolution. To ensure simulated character datasets 

were evolved on phylogenies with realistic branch length distributions, we obtained empirical 
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phylogenies by randomly sampling clades containing between 100 and 1,000 terminal nodes 

from a recent phylogeny of ray-finned fishes (Rabosky et al. 2018). For each simulation we 

chose model parameters 𝜀 and 𝜏 such that the probability of state identity between every ancestor 

and descendant pair was at least one-half. In other words, simulations were parameterized such 

that a change of state from ancestor to descendant was never more probable than retaining the 

ancestral state. This property does not preclude simulations from having a fast rate of evolution, 

but it does require that transition rates become more symmetrical as the rate of evolution 

increases. For each simulated dataset we estimated 𝜀 and 𝜏 using the MAV and PIL estimators 

discussed above. When performing MAV estimates we used both an unconstrained and a 

constrained (𝜀 = 1) model. Our rationale for fitting a constrained model to simulated datasets is 

that in practice researchers will often select an unconstrained model for analysis only when a 

likelihood ratio test indicates it substantially improves model fit over a constrained model. We 

conducted all simulations and parameter estimation in R 3.5.2 (R Core Team 2018) using the 

package macroevolution (available from https://github.com/blueraleigh/macroevolution). 

 

Variation in tempo and mode 
 

Because 𝑸���  can be computed relatively rapidly it presents a simple method for 

detecting phylogenetic variation in tempo and mode of character evolution. First, compute 𝑸���  

for the entire tree and for each clade showing some minimum number of parsimony-inferred 

character state changes. If the minimum number of parsimony changes required for the test is too 

low rates cannot be estimated, but if it is too high there will be no opportunity to test for 

variation in tempo and mode. We used a value of 10 in our analysis. Second, for each of these 

clades compute the maximum average likelihood of their data using their clade-specific 𝑸���  as 
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well as the tree-wide 𝑸��� . The magnitude of the log-ratio formed from these two likelihoods 

will be an indicator of how strongly the rate and pattern of character state changes in the clade 

differs from the rest of the phylogeny. For a two-state character the log-ratio should be at least 4 

before concluding that a clade displays a significantly different tempo and mode of character 

evolution than the rest of the phylogeny. This is only a heuristic since we do not actually fit a 

model with multiple rate matrices. Its value can be derived by assuming the clade-specific log-

likelihood ratio represents the difference in log-likelihoods between a model with and without a 

clade-specific rate-matrix and by requiring a minimum difference of zero in the AIC between 

these two models before accepting the model with the clade-specific rate-matrix. 

 

Results 
 

Across all simulations the mean squared error (MSE) in 𝜀̂ for MAV (MSE = 1.86) and 

PIL (MSE = 1.82) estimators was very similar (Fig. 3.1). However, comparing just the subset of 

simulations for which an unconstrained model outperforms a constrained model by a likelihood-

ratio test reveals dramatic differences, with MSE for PIL estimates being substantially lower 

(MSE = 1.82) than for MAV estimates (MSE = 6.99) (Fig. 3.1). The cause of this difference is 

evidently from the tendency of the likelihood-ratio test to select a subset of simulations that show 

clearly biased MAV estimates. When comparing 𝜏̂ across all simulations, unconstrained MAV 

(MSE = 1.38) and constrained MAV (MSE = 1.18) estimates had higher MSE than PIL (MSE = 

0.0012) estimates (Fig. 3.2). These differences also persisted in the subset of simulations for 

which an unconstrained model outperforms a constrained model by a likelihood-ratio test, with 

unconstrained MAV estimates (MSE = 2.80) having the highest MSE, followed by constrained 
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MAV estimates (MSE = 0.35), and with PIL estimates (MSE = 0.00081) again achieving the 

lowest MSE. 

When we used PIL to detect phylogenetic variation in tempo and mode in datasets 

simulated with no variation in tempo and mode, from 0% – 11% of simulations showed clades 

with significant departures in tempo and mode from the rest of the phylogeny. Pooling 

simulations across all phylogenies, only 2.6% of simulations detected significant phylogenetic 

variation in tempo and mode. Using stricter criteria (i.e. requiring more character state changes 

and a higher log-likelihood ratio) would further lower these percentages. These values indicate 

that the test does not readily identify variation in tempo and mode where none exists, although 

they do not provide insight into the converse question. When we applied the test to two 

previously analyzed empirical datasets it identified sets of clades showing variable tempo and 

mode that were in broad agreement with previous analyses that used computationally intensive 

MCMC techniques for the same purpose (Fig. 3.3, 3.4). We note that each of these two empirical 

applications of the test requires only a few seconds, permitting rapid exploration of datasets for 

clades with variable tempo and mode. 

 

Discussion 
 

In this study we show that maximum average likelihood estimates of transition rates for 

continuous-time Markov chain models of single-character evolution can be improved by using 

parsimonious ancestral state reconstructions to inform their calculation. We also show how this 

approach leads to a simple, fast, and effective means of exploring datasets for among-clade 

variation in tempo and mode of character evolution. 
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To see how combining parsimony and likelihood might be applied to other problems in 

macroevolutionary inference consider Pagel’s (1994) test for correlated evolution. If we perform 

this test without using parsimonious ancestor reconstructions a single co-distributed event of 

character change can lead to a highly significant result (Maddison and FitzJohn 2015; Uyeda et 

al. 2018). On the other hand, because the data can be explained by a single co-distributed event 

of character change such a test using a parsimony-informed likelihood estimator would lead to 

undefined transition rates because (under parsimony) no reconstructed ancestors would have the 

requisite states (i.e., 01 and 10) needed to compute the transition probabilities. In some respects, 

the specter of undefined transition rates is an undesirable property of the PIL approach, but the 

explicit dependence of transition probabilities on independent evolutionary transitions is an 

important reminder of the need to consider phylogenetic replication when making statements 

about correlated evolution. 

One of the reasons a parsimony-informed approach may be underutilized is that it 

conditions transition rate estimates on parsimony reconstructions that assume an equally-

weighted cost matrix, and parsimony does not provide any criteria for justifying this assumption 

(Ree and Donoghue 1999). However, the use of simple parsimony makes the approach 

conservative. If we detect differences in transition rates among states based on reconstructions 

derived from a cost matrix that assumes there are no differences, we can reasonably conclude 

that differences exist (Maddison 1994). Furthermore, the alternative, which is to ignore 

parsimony, conditions transition rate estimates on histories of character evolution for which there 

is no empirical evidence, or which could be rejected on the grounds of implausibility. For many 

macroevolutionary datasets we are not interested in those histories as they are unlikely to affect 

our conclusions, and it is reasonable to ignore them in the computation of the likelihood. In some 
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cases, conditioning rate estimates on the universe of possible histories may actually be 

misleading. For example, if we attempt to reconstruct the reproductive mode of the most recent 

common ancestor of living squamates using a Markov model that ignores parsimony it favors a 

viviparous ancestor at almost two-to-one odds (Pyron and Burbrink 2014). This result is almost 

certainly incorrect given what we know about the biology of squamate reproductive mode (Shine 

2014). The conventional reason given for the model’s failure in this case is the presence of 

phylogenetic variation in tempo and mode that the model does not account for (King and Lee 

2015). While this may be part of the reason, it is worth noting that if we fit the exact same model 

but condition transition rate estimates on parsimony reconstructions it now favors an oviparous 

ancestor at almost twenty-to-one odds, a result that is much more plausible but, from a 

(unconditioned) Markov chain model’s perspective, not as probable. 

So far, the discussion has not addressed why mean-squared error in transition rates is 

lower using parsimony-informed likelihood compared to maximum average likelihood. We 

suggest this is in part because conditioning rate estimates on parsimony reconstructions helps to 

reduce the variance in parameter estimates that comes from incorporating the contributions of all 

possible pathways of evolution. This seems to be most clearly the case for estimates of 𝜏, the 

sum of forward and reverse transition rates (Fig. 3.2). The parsimony-informed likelihood 

estimates show a clear negative bias compared to the constrained maximum average likelihood 

estimates but also less variance, which drives overall mean-squared down. Interestingly, 

unconstrained maximum average likelihood estimates of 𝜏 show a strong positive bias and 

substantially more variance than either of the two other estimators. This positive bias has been 

noted before (Beaulieu & O’Meara 2016) and is an intrinsic property of the related discrete-time 

ML estimators studied by Sanderson (1993). 
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An unexpected result was the increase in mean-squared error we observed among the 

unconstrained MAV estimates when we examined only the subset of simulations where an 

unconstrained (asymmetric) model was favored over a constrained (symmetric) model by a 

likelihood-ratio test. This is cause for concern because it indicates that the rule we use to select a 

more complicated model over a simpler model also selects for situations that lead to greater 

estimation errors. Precisely why we observe a difference in performance of the two estimators is 

not known, but it appears that conditioning estimates on parsimony reconstructions acts to shrink 

the estimate of 𝜀 toward 1, which prevents the more extreme biased estimates observed with the 

MAV estimator. 

Finally, we conclude with some remarks on how the results of this study might be 

affected by a different simulation procedure. Recall that all simulated datasets were generated 

such that the probability of a net state change from ancestor to descendant was never more 

probable than retaining the ancestral state. This does not preclude simulations from having a high 

rate of character evolution, but it does mean that when the rate of character evolution is high the 

generating model is close to symmetrical. In this case, the likelihood of the model is not 

influenced by the polarity of state changes and is a decreasing function of the number of 

character state changes (Tuffley and Steel 1997; Lewis 2001). This helps explain the good 

performance of parsimony-informed likelihood even when rates of character evolution are high. 

The possible pathways of character state change that the model assigns a high likelihood closely 

align with MP pathways. If we did not impose conservative behavior on our simulations it would 

create a situation where the outcome of a net state change from ancestor to descendant was more 

likely than the outcome of retaining the ancestral state for at least some, and potentially a large 

fraction, of the branches in a phylogeny. We do not believe that this is a plausible description of 
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the macroevolutionary process of character evolution given the tendency of researchers to study 

traits that are often fixed for large clades. Nonetheless, even in such a situation it is not 

immediately clear that the performance of the parsimony-informed likelihood approach 

discussed here would decrease relative to maximum average likelihood because the loss in 

phylogenetic signal engendered by such a process seems likely to increase the variance of 

parameter estimates made without the information added by parsimony. 

 

 

Figure 3.1 Correlation between true and estimated rate ratios with maximum average likelihood 
and parsimony-informed likelihood 
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Relationship between the true (𝜀) and estimated (𝜀̂) ratio of forward and reverse transition rates 

for maximum average likelihood (MAV) and parsimony-informed likelihood (PIL) estimators. 

Darker shading indicates a higher density of points. The top panels show estimates for the full set 

of simulations. The bottom panels show estimates for the subset of simulations for which a 

likelihood ratio test determined an unconstrained model offered a significantly better fit than a 

constrained (𝜀 = 1) model. 

 

Figure 3.2 Correlation between true and estimated rates with maximum average likelihood and 
parsimony-informed likelihood 

Relationship between the true (𝜏) and estimated (𝜏̂) sum of forward and reverse transition rates 

for maximum average likelihood (MAV) and parsimony-informed likelihood (PIL) estimators. 

Darker shading indicates a higher density of points. The top panels show estimates for the full set 

of simulations. The bottom panels show estimates for the subset of simulations for which a 

likelihood ratio test determined an unconstrained model offered a significantly better fit than a 

constrained (𝜀 = 1) model. 
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Figure 3.3 Variation in tempo and mode of squamate reproductive mode detected with 
parsimony-informed rate estimates 

Evolutionary gains and losses of viviparity show variable tempo and mode across the squamate 

tree of life. Rate matrices were estimated using maximum likelihood conditioned on histories of 

character evolution inferred with parsimony for clades with at least 10 parsimony-inferred 

changes. Each clade-specific rate matrix was then compared to the rate-matrix for the whole tree. 

If the log-likelihood of the data in the subtree formed by a clade was at least 4 log-likelihood 

units greater under its clade-specific rate matrix than under the tree-wide rate matrix its branches 

were colored according to the parameters of that matrix. Data from Pyron and Burbrink (2014). 
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Figure 3.4 Variation in tempo and mode of red-black banded coloration detected with 
parsimony-informed rate estimates 

Evolutionary gains and losses of red-black banded coloration show variable tempo and mode 

across the snake tree of life. Rate matrices were estimated using maximum likelihood 

conditioned on histories of character evolution inferred with parsimony for clades with at least 

10 parsimony-inferred changes. Each clade-specific rate matrix was then compared to the rate-

matrix for the whole tree. If the log-likelihood of the data in the subtree formed by a clade was at 

least 4 log-likelihood units greater under its clade-specific rate matrix than under the tree-wide 

rate matrix its branches were colored according to the parameters of that matrix. Data from Davis 

Rabosky et al. (2016). 
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Chapter 4  
Complex Ecological Phenotypes on Phylogenetic Trees: A Markov 

Process Model for Comparative Analysis of Multivariate Count Data4 
 

Abstract 
 

The evolutionary dynamics of complex ecological traits – including multistate 

representations of diet, habitat, and behavior – remain poorly understood. Reconstructing the 

tempo, mode, and historical sequence of transitions involving such traits poses many challenges 

for comparative biologists, owing to their multidimensional nature. Continuous-time Markov 

chains (CTMC) are commonly used to model ecological niche evolution on phylogenetic trees 

but are limited by the assumption that taxa are monomorphic and that states are univariate 

categorical variables. A necessary first step in the analysis of many complex traits is therefore to 

categorize species into a pre-determined number of univariate ecological states, but this 

procedure can lead to distortion and loss of information. This approach also confounds 

interpretation of state assignments with effects of sampling variation because it does not directly 

incorporate empirical observations for individual species into the statistical inference model. In 

this study, we develop a Dirichlet-multinomial framework to model resource use evolution on 

                                                
4 Grundler, M.C. and Rabosky, D.L. (2020). Complex ecological phenotypes on phylogenetic trees: a Markov 
process model for comparative analysis of multivariate count data. Systematic Biology, accepted, 
https://doi.org/10.1093/sysbio/syaa031 
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phylogenetic trees. Our approach is expressly designed to model ecological traits that are 

multidimensional and to account for uncertainty in state assignments of terminal taxa arising 

from effects of sampling variation. The method uses multivariate count data across a set of 

discrete resource categories sampled for individual species to simultaneously infer the number of 

ecological states, the proportional utilization of different resources by different states, and the 

phylogenetic distribution of ecological states among living species and their ancestors. The 

method is general and may be applied to any data expressible as a set of observational counts 

from different categories. 

 

Introduction 
 

Most species in the natural world make use of multiple, categorically-distinct types of 

ecological resources. Many butterfly species use multiple host plants, for example (Ehrlich & 

Raven 19645/14/20 9:07:00 AM; Robinson 1999). Insectivorous warblers in temperate North 

America use multiple distinct microhabitats and foraging behaviors (MacArthur 1958), as do 

honeyeaters in mesic and arid Australia (Miller et al. 2017). The evolution of novel patterns of 

resource use can impact phenotypic evolution (Martin & Wainwright 2011; Davis et al. 2016), 

diversification (Mitter et al. 1988; Givnish et al. 2014), community assembly (Losos et al. 2003; 

Gillespie 2004), and ecosystem function (Harmon et al. 2009; Bassar et al. 2010). Consequently, 

there has been substantial interest in understanding how ecological traits related to resource use 

evolve and for exploring their impacts on other evolutionary and ecological phenomena (Vrba 

1987; Futuyma & Moreno 1988; Forister et al. 2012; Price et al. 2012; Burin et al. 2016). 

Making inferences about the evolutionary dynamics of resource use, however, first 

requires summarizing the complex patterns of variation observed among taxa into traits that can 
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be modeled on phylogenetic trees. Typically, this is done by explicit or implicit projection of a 

multidimensional ecological phenotype into a greatly simplified univariate categorical space (e.g. 

“carnivore”, “omnivore”, “herbivore”). It is widely recognized that the real-world complexities 

of resource use are not adequately described by a set of categorical variables (Hardy & Linder 

2005; Hardy 2006). Nonetheless, it is also true that major differences in resource use can 

sometimes be summed up in a small set of ecological states, a point made by Mitter et al. (1988) 

in their study of phytophagy and insect diversification. For this reason, continuous-time Markov 

chain (CTMC) models, which require classifying species into a set of character states, have 

become commonplace in macroevolutionary studies of ecological trait evolution (Kelley & 

Farrell 1998; Nosil 2002; Price et al. 2012; Hardy & Otto 2014; Cantalapiedra et al. 2014; Burin 

et al. 2016). CTMC models describe a stochastic process for evolutionary transitions among a set 

of character states and are used to infer ancestral states and evolutionary rates, and to perform 

model-based hypothesis tests (O’Meara 2012). Many complex ecological traits, however, will be 

poorly characterized by a set of univariate categorical states. Consequently, species classified in 

single state can nonetheless exhibit substantial differences in patterns of resource use, creating 

challenges for interpreting evolutionary transitions among character states as well as for 

understanding links between character state evolution and diversification. 

An additional limitation of currently used continuous-time Markov chains for modeling 

resource use evolution emerges from the fact that species are classified into ecological states 

without regard for the quality and quantity of information available to perform the classification 

exercise. As an example, species with few ecological observations might be classified as 

specialists for a particular resource, when their apparent specialization is strictly a function of the 

small number of ecological observations available for the taxon. More generally, by failing to 
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use a statistical model for making resource state assignments, we neglect a major source of 

uncertainty in our data: the uneven and incomplete knowledge of resource use across different 

taxa. This uncertainty, in turn, has substantial implications for how we project patterns of 

resource use onto a set of resource states. By failing to account for uneven and finite sample 

sizes characteristic of empirical data on resource use we cannot be certain if state assignments 

reflect true similarities or differences in resource use or are merely the expected outcome of 

sampling variation. 

Consider the simple example in Figure 4.1, consisting of four species and three resources. 

Panels (a) and (b) illustrate the true resource states and their phylogenetic distribution across a 

set of four species and their ancestors. Here, an ancestral specialist evolved a generalist diet via a 

single transition (panel b), such that there are two extant species with the ancestral specialist diet 

(species X and Y) and two with the derived generalist diet (species P and Q). Panel (c) illustrates 

the observation process: empirical observations on diet are collected for each taxon, which are 

influenced by sampling variation. For each taxon, the data consist of a set of counts, each count 

recording the number of times the taxon was observed to use a specific resource. In panel (d), 

these empirical observations are used to classify each species into one of two diet states, based 

on the sampled relative importance of the three food resource categories (e.g., panel c). These 

relative importance estimates are based on uneven, and in some cases quite small, sample sizes, 

consistent with many empirical datasets (Vitt & Vangilder 1983; Shine 1994; Alencar et al. 

2013). In panel (e) we imagine repeating the state assignment process on independent datasets 

while holding the samples sizes fixed to those in panel (c), which reveals that both the initial 

state assignments and the number of states from (d) are highly sensitive to real-world levels of 

sampling variation. This has obvious implications for downstream macroevolutionary analyses. 
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There is a serious risk that incorrect classification, and therefore spurious diet state variation, will 

emerge from sampling variation alone. In the analyses that underlie Figure 1, we find that more 

than 70 percent of tip state classifications do not match the true pattern of resource use. 

Is this a problem in practice? This issue is difficult to assess because few studies provide 

information about the sample sizes that underlie state assignments. In most cases, ecological 

states are simply asserted as known. It is also important to emphasize that the specific problem in 

Figure 1 is an outcome of a more general problem: standard CTMC models have a limited ability 

to model complex ecological phenotypes because of the assumption that states in the model are 

univariate categorical variables (Hardy & Linder 2005; Hardy 2006). While it is true that CTMC 

models operate on a countable state space, it is not true that the states of the system must be 

univariate categorical variables. In this paper we treat states as multivariate probability 

distributions to develop a model for studying the evolutionary dynamics of ecological resource 

use on phylogenetic trees that avoids the need to classify taxa into univariate categorical states. 

Our approach is explicitly designed to model resource traits that are multidimensional 

and to account for uncertainty in ecological state assignments of terminal taxa arising from 

effects of sampling variation. Antecedents to our approach can be found in the use of hidden 

Markov models in macroevolution (Felsenstein & Churchill 1996; Marazzi et al. 2012; Beaulieu 

et al. 2013; Beaulieu & O’Meara 2016; Caetano et al. 2018), which assume a deterministic 

many-to-one mapping from a set of hidden states to a set of observable states. By contrast, we 

assume that each hidden state is a multinomial distribution and that observed data are sampled 

outcomes from these distributions (see panels (a) through (c) of Fig. 1). The number of states in 

the model and the states themselves are not directly observed and are estimated from the data. 

Using simulations and an empirical dataset of snake diets, we show how the method can use 
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observational counts from a set of discrete resource categories to simultaneously infer the 

number of resource states, the proportional utilization of resources by different states, and the 

phylogenetic distribution of ecological states among living species and their ancestors. The 

method is general and applicable to any data expressible as a set of observational counts from 

different resource categories. 

 

Materials & Methods 
 

General overview 
 

 We assume there is a discrete set of resource niches, which we refer to as “resource 

states” or, more simply, as “states”. We use the term resource in a broad sense, with the 

understanding that it may refer to behavior, habitat, prey, predators, etc. Although the set of 

resource states is finite, we imagine that a state assigns a taxon a continuously-valued parameter 

that determines its proportional utilization of different resources. Taxa that share a resource state 

therefore exhibit similar patterns of resource utilization. The data for each taxon consist of a set 

of counts, with each count recording the number of times a specific taxon was observed to use a 

specific resource. We refer to different resources as “resource categories”. The set of resource 

states and their associated distributions over resource categories are therefore not directly 

observed but must be estimated from empirical count data. We assume that resource states 

evolve along a phylogenetic tree according to a CTMC process and that empirical counts are 

observations drawn from a multinomial distribution associated with each resource state. Our 

approach is similar to phylogenetic threshold models that combine a probability model for the 

evolution of an unobserved variable and a probability model for sampling the observed data 
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conditioned on the set of unobserved variables (Felsenstein 2012; Revell 2014). The general 

approach of treating states as probability distributions is due to Baum and Petrie (1966). 

 

Model description 
 

Let 𝑫 = {𝒅$,… , 𝒅L} denote the data observed for a set of n related taxa. Each datum 

𝒅] = {𝑑]$, … , 𝑑]w} records the number of times the i-th taxon was observed to use each of J 

possible resource categories. For example, in MacArthur's (1958) study on foraging behaviors in 

five species of wood-warblers, he counted the number of times he observed each species use 

different foraging orientations (radial, tangential, vertical). For Blackburnian warblers, 

observations (counts) for each of these behaviors were 11, 1, and 3; the resource vector for this 

species is thus d = {11, 1, 3}, for a total of 15 observations across all three “resource categories”. 

We assume that each taxon belongs to one of K possible states, and we let 𝑿 = {𝑋$, … , 𝑋L}, 

where each 𝑋] ∈ {1,… , 𝐾} denotes the state of a particular taxon. States are unobserved but are 

assumed to represent distinct resource niches so that X partitions D into subsets of taxa with 

homogeneous patterns of resource utilization. Our target of inference is the posterior distribution 

of resource state assignments 𝑝(𝑿|𝑫) ∝ 𝑝(𝑫|𝑿)𝑝(𝑿). To that end we define a probability model 

for the data as 

𝑝(𝑫|𝑿) =¨ℎ({𝒅]|7�C©})
ª

©C$

 

where ℎ({𝒅]|7�C©}) is the marginal likelihood function of the data for taxa assigned to 

state 𝑘. We assume that 

ℎ>«𝒅]|7�C©¬? = ­ ¨ 𝑓>𝒅]|7�C©|𝜽©?
]|7�C©

𝑔(𝜽©|𝜷)
𝜽

𝑑𝜽 
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where 𝑓 is a multinomial density with parameter 𝜽©  and g is a Dirichlet prior on 𝜽©  with 

hyperparameter 𝜷. Because the Dirichlet distribution is conjugate to the multinomial distribution 

this parameterization allows us to analytically marginalize over the unknown multinomial 

parameters. Concretely, this means that ℎ>«𝒅]|7�C©¬? is a Dirichlet-multinomial density, which, 

ignoring multinomial coefficients associated with each 𝒅], is equal to 

ℎ>«𝒅]|7�C©¬? =
Γ>∑ 𝛽�

w
�C$ ?

Γ ³∑ ∑ 𝑑]�]|7�C©
w
�C$ + ∑ 𝛽�

w
�C$ ´

∏ Γ>𝛽� + ∑ 𝑑]�]|7�C© ?w
�C$

∏ Γ>𝛽�?
w
�C$

 

Formally, this model equates a resource niche (state) to a multinomial density and 

thereby assumes that resource use observations for taxa belonging to the same state are 

independent and identically distributed. As a model for count data it is closely related to topic 

models of word composition in a collection of text documents (Blei et al. 2003; Yin and Wang 

2014) and to population genetic models of allele frequency composition in a set of populations 

(Pritchard et al. 2000). The key difference here is the specification of a prior model for X. 

Because taxa are related, X is the outcome of evolution and individual 𝑋] are not independent. 

We model evolution as a CTMC process where the rate of change is the same between all states 

(i.e. there is no evolutionary trend in the model) but varies independently among lineages. Our 

prior model for X is then the familiar phylogenetic likelihood function (Felsenstein 1981). 

Following Huelsenbeck et al. (2008), we treat lineage-specific rates of evolution as nuisance 

parameters drawn independently from a Gamma prior with shape parameter 𝛼 and rate parameter 

fixed to 1. This model induces the same distribution on X as a model where the number of 

expected state changes along a branch is the same for all branches. Steel (2011) refers to this as 

the ultra-common mechanism model (UCM) to mark its contrast with the no-common 
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mechanism model (Tuffley and Steel 1997) from which it derives. Concretely, this means that 

the transition probabilities used in the pruning algorithm to compute 𝑝(𝑿) are equal to  

𝑝3· =
1
𝐾 −

1
𝐾 ¸

𝐾
𝐾 − 1 + 1¹

.º

 

when ancestor and descendant states differ and to   

𝑝33 =
1
𝐾 +

𝐾 − 1
𝐾 ¸

𝐾
𝐾 − 1+ 1¹

.º

 

when ancestor and descendant states are the same. The full specification of the model is 

therefore 

𝑿	~	UCMª(𝛼)	

𝜽©C$,…,ª	~	Dirichletw(𝜷)	

𝒅]|7�C©	~	Multinomialw ~𝜽©,< 𝑑]�
�

� 

Interpretation of hyperparameters 
 

The hyperparameter 𝛼 of UCM controls phylogenetic signal and equals the expected 

number of state changes along any branch separating ancestor and descendant. As 𝛼 → 0, 

phylogenetic signal approaches 1 because descendants almost surely resemble their ancestors. As 

𝛼 → ∞, phylogenetic signal approaches 0 because a descendant’s state becomes independent of 

its ancestor’s state and resembles a random draw from a discrete uniform distribution. The 

hyperparameter 𝜷 acts as a vector of pseudo-counts for each resource category. Larger values 

place more prior weight on observing a particular resource category in a set of counts than 

smaller values. This has implications for how the model makes decisions about when to separate 

taxa into different resource states. Differences among resource categories assigned a low prior 



 63 

weight contribute more toward separating taxa into distinct resource states than differences 

among resource categories assigned a high prior weight. 

 

Posterior inference 
 

 Inference under the model results in a sequence of samples of resource state assignments 

X for terminal taxa that approximate the posterior distribution 𝑝(𝑿|𝑫). Each sample partitions 

terminal taxa into some number 𝑐(𝑿) ≤ 𝐾 of groups, and each such group implies a posterior 

distribution over the parameter 𝜽©  of the multinomial density that the group represents. 

Specifically, due to the conjugacy of the multinomial and Dirichlet distributions the posterior 

distribution of each 𝜽©  is also Dirichlet with parameter {𝛽$ + ∑ 𝑑]$]|7�C© ,… , 𝛽w + ∑ 𝑑]w]|7�C© }. 

Therefore, inference of X implicitly yields posterior information about both the number of 

distinct resource niches and the relative importance of each resource category to each resource 

niche. Furthermore, because 𝑝(𝑿) accounts for phylogenetic relatedness among terminal taxa, 

each sample of X induces a posterior distribution over ancestral resource states which we can 

explore using, e.g., stochastic character mapping (Nielsen 2002) or marginal ancestral state 

reconstructions (Schluter et al. 1997). 

 

Influence of 𝐾 
 

 We define phylogenetic signal as the quantity 

𝑝33 − 𝑝·3 = ¸
𝐾

𝐾 − 1 + 1¹
.º

 

which ranges from 0 to 1 and quantifies how much information a descendant’s state 

provides about the state of its ancestor (Royer-Carenzi et al. 2013). A value of 1 means the 
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ancestor was almost surely in the same state while a value of 0 means the ancestor was just as 

likely to have been in a different state than in the same state. Viewed as a function of 𝐾, 

phylogenetic signal approaches the curve 2.º as 𝐾 → ∞. Compared to a smaller value of 𝐾, a 

larger value of 𝐾 therefore results in greater phylogenetic signal under the prior model for any 

given value of 𝛼. Because a large phylogenetic signal imposes a relatively greater prior penalty 

on events of character state change than a small phylogenetic signal, increasing 𝐾 is expected to 

decrease the range of values of 𝑐(𝑿) observed in posterior samples of 𝑿 because closely related 

taxa will preferentially be placed into a shared resource state unless the data provide strong 

evidence against such a grouping. We note that the symmetry in the prior model means that the 

algorithmic complexity of evaluating 𝑝(𝑿) is related to 𝑐(𝑿) and not to 𝐾. This means that 

larger values of 𝐾 may actually speed up computation relative to smaller values. As 𝐾 → ∞ the 

prior model approaches the random cluster model studied by Mossel and Steel (2004). 

 

Implementation 
 

 A Bayesian implementation of the model is available as an R package from 

github.com/blueraleigh/macroevolution. A Gibbs sampler for 𝑝(𝑿|𝑫) is derived using results 

from Yin and Wang (2014) and Schadt et al. (1998) and presented in the Appendix. The 

hyperparameters 𝛼 and 𝜷 are updated using slice sampling (Neal 2003). 

 

Simulation study 
 

To illustrate application of the method we designed a simulation study using an empirical 

dataset on pseudoboine snake diets (Alencar et al. 2013). Our rationale for basing simulations on 
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an empirical dataset is to ensure that properties of the data used to evaluate performance of the 

method are consistent with real studies, especially the distribution of observations per taxon and 

the distribution of resource specialization. Pseudoboine snakes are common members of the 

squamate reptile communities found in lowland rainforests of South America. Predominantly 

terrestrial or semi-arboreal, these snakes mainly eat small mammals, lizards, and other snakes. 

The dataset includes 606 observations of prey items from 8 prey categories for 32 species of 

pseudoboine snakes. Per species sample sizes range from 1 to 56 observations. We reanalyzed 

these data using a 33-species pseudoboine phylogeny extracted from the posterior distribution of 

trees in Tonini et al. (2016). We chose to use a different phylogeny from the original authors 

because their phylogeny excluded many species represented in the empirical dataset by small 

sample sizes, including some with the potential to impact state reconstructions at deeper nodes 

(Fig. 4.2). Using a more fully sampled phylogeny allowed us to better explore the influence of 

sample size on parameter estimation. The original publication coded each species with at least 8 

diet observations into a set of 5 specialist diet states and 1 generalist diet state. Species were 

considered specialists if the prey resource represented at least 70 percent of recorded prey items 

(as in our Figure 4.1). When we applied the resampling procedure illustrated in Figure 4.1 to this 

empirical dataset under the assumption that the original state assignments represented the 

“truth”, we found that in approximately 20 percent of resampled datasets at least one original 

state (not always the same state) was not present and that in about 84 percent of cases at least one 

species was coded incorrectly (although overall coding accuracy was high, ranging from 0.77 to 

1). Thus, this dataset illustrates some of the concerns raised in our introduction but is also well-

sampled enough and shows enough variation to facilitate the estimation of separate multinomial 

distributions. 
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We first analyzed the empirical dataset assuming a prior model with 𝐾 = 20 states, and 

we ran a Markov chain for 160000 iterations sampling every 128 iterations while holding the 𝜷 

hyperparameter at a constant value of {1,… , 1}. We subsequently extracted the maximum a 

posteriori estimate of X, which implied a total of 6 resource states, and set the multinomial 

parameters for each of these states to their posterior mean value. We then simulated 20 datasets 

at each of 7 different levels of phylogenetic signal (0.1, 0.3, 0.5, 0.6, 0.7, 0.8, and 0.9) under the 

UCM model assuming 𝐾 = 2, 3, 4, 5 and 6 resource states, and used the empirically estimated 

multinomial parameters and the empirical sample size distribution to generate prey resource use 

observations for each dataset. We analyzed the 700 simulated datasets assuming a prior model 

with 𝐾 = 20 resource states, and we ran each Markov chain for 160000 iterations sampling 

every 128 iterations, again keeping the 𝜷 hyperparameter at a constant value of {1, … , 1}. 

 To assess model performance, we compute a per-taxon accuracy index that measures how 

closely the multinomial density estimated for a taxon matches the multinomial density that 

generated the taxon’s data. Specifically, for terminal taxa accuracy is computed as 

𝑇] = 1 −
1
𝑀< sup�Ë𝜃8]�Ì − 𝜃]�Ë

Ì
 

 where 𝜃8]�Ì  is the posterior mean estimate of the j-th multinomial proportion for the i-th 

taxon in the m-th posterior sample and 𝜃]�  is the true proportion and the average is taken over M 

posterior samples. The summand measures the largest absolute difference in proportions 

assigned by true and estimated multinomial densities to the same resource category. When the 

estimated and true multinomial densities perfectly coincide, the summand will equal 0 and 

accuracy will be 1. We can compute a similar metric for internal nodes using marginal ancestral 

state reconstructions as  
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𝐴] = 1 −
1
𝑀< < 𝑤]©

©
sup�Ë𝜃8]�©Ì − 𝜃]�Ë

Ì
 

 where 𝑤]©  is the marginal posterior probability that the i-th internal node is assigned to 

resource state k. 

 

Results 
 

 Results from the empirical dataset suggest at least five distinct trophic modalities among 

pseudoboine snakes with a posterior mode of six, corresponding to three highly specialized and 

three rather generalized diets (Fig. 4.3). Marginal posterior probabilities from ancestral state 

reconstructions reveal a scenario where a specialized diet of lizards was likely ancestral for the 

clade. Two subsequent dietary niche shifts occurred: one to a diet of lizards + mammals, and 

another to lizards + mammals + snakes. Interestingly, there is no evidence for a stepwise 

expansion of diet to first include mammals and then snakes. Rather, it appears these two states 

evolved independently: the ancestor of the lizard + mammal + snake diet is inferred to feed on 

lizards alone, rather than lizards + mammals. The lizard + mammal expansion occurred in the 

ancestor of the genus Oxyrhopus, and the lizard + mammal + snake expansion occurred in the 

ancestor of the clade containing Pseudoboa and Mussurana. Several lineages in this latter clade 

appear to have then undergone niche contractions to specialist diets of lizards (Pseudoboa nigra), 

lizard eggs (Drepanoides anomalus), and bird eggs (Rhachidelus brazili). 

Analysis of simulated datasets show that posterior frequency distributions of the number 

of resource states among terminal taxa were highly concentrated or centered on the number of 

resource states used to generate simulated datasets, indicating that the data were informative 

about the number of distinct resource use patterns among terminal taxa (Fig. 4.4). For taxa with 
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moderate sample sizes, the posterior mean estimate of each taxon’s multinomial density was 

highly similar to the true distribution in the generating model (Fig. 4.5). This high similarity 

persisted across varying levels of phylogenetic signal, but small sample sizes resulted in lower 

accuracy when phylogenetic signal was low, creating in a distinctly triangular distribution of 

accuracy scores for terminal taxa. By contrast, accuracy scores for internal nodes decreased 

monotonically with decreasing phylogenetic signal and showed a close correspondence to the 

lower boundary observed for terminal node accuracy scores (Fig. 4.6). Because terminal nodes 

are associated with observational data, their states can be reasonably well-estimated even when 

phylogenetic signal is low. When signal is low, however, it is very difficult to estimate states at 

internal nodes because the observational data at tip nodes contain little information about 

ancestral states in this case. 

 

Discussion 
 

 We developed a comparative method for macroevolutionary analysis of multivariate 

count data. The method is general and may be applied to any data expressible as a set of 

observational counts from different categories. Such datatypes arise frequently in community 

ecology and behavior. Potential applications include the comparative analysis of diet, foraging 

behavior, activity patterns, and habitat preferences. The method is similar to standard 

continuous-time Markov chain (CTMC) models of phenotypic evolution but differs in several 

important respects. First, the number of states in the model and the states themselves are 

unobserved and must be estimated from empirical data on resource use. Second, each state is a 

multinomial distribution rather than a categorical variable. This latter property enables 

researchers to model complex multidimensional phenotypes that cannot readily be expressed in 
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univariate space without considerable loss of information. Moreover, this property allows the 

method to accommodate uncertainty in the state assignments of terminal taxa that arises from the 

effects of sampling variation. 

 Simulations revealed that the new method is generally able to determine the correct 

number of states and that it provides accurate estimates of the underlying multinomial 

distributions, both for terminal taxa as well as internal nodes. We designed simulations around 

empirical patterns of resource use in a dataset on snake diets (Alencar et al. 2013). Therefore, 

caution is warranted in generalizing the good performance observed in the current study to other 

datasets. In particular, performance of the model will depend on the idiosyncrasies of individual 

datasets, including the distribution of sample sizes and the distribution of overlaps in resource 

use among species. We expect that states represented by few observations will be difficult to 

infer, especially if those states show appreciable overlap with other states. 

 Our empirical analysis identified at least two feeding modalities among the set of species 

Alencar et al. (2013) recognize as “generalists”: species that feed predominantly on snakes but 

that regularly eat lizards and mammals, and species that feed predominantly on mammals and 

lizards. Ancestral state estimates strongly suggest that each of these feeding modalities arose 

from a more specialized diet comprised almost entirely of lizards. This is in contrast to the 

results of Alencar et al. (2013), which imply that nearly all origins of specialized feeding 

modalities occurred from a generalist ancestor. Interestingly, the model finds evidence that the 

data-poor species Mussurana bicolor occupies a distinct dietary niche (cf. Fig. 4.3). This is 

because the relatively high proportion of amphibians in M. bicolor diet samples, although 

supported by few observations, is highly unlikely given the complete absence of amphibian prey 

items from its close relatives. However, because M. bicolor has such a poorly characterized diet 
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a more conservative prior model (larger K) can easily cause M. bicolor to fall back into the state 

of its close relatives. The model also fails to recognize the small mammal and snake “specialist” 

states recognized by Alencar et al. (2013) even though the species representing these states have 

larger sample sizes than M. bicolor. Our explanation for this is that both mammals and snakes 

are commonly observed prey items in the diets of species closely related to these putative 

mammal and snake specialists. As a result, the amount of data needed to recognize a specialist on 

one of these prey resources is substantially greater than what would be needed to recognize a 

specialist on a prey resource that is rarely or never observed in the diet of close relatives. 

 As currently implemented, the approach described here does not directly model 

evolutionary gains and losses or substitutions of different resources. Indeed, under the prior 

model no resource is ever truly absent from the reconstructed states (although its proportional 

representation may approach zero as values in 𝜷 become small). This contrasts with 

biogeographic-type models that explicitly model resource use expansions, contractions, and 

substitutions (e.g. see Hardy (2017) for application of Ree and Smith’s (2008) dispersal-

extinction-cladogenesis model to binary encoded diet data). Although these types of changes are 

implicit in the sequence of reconstructed states derived from the model, future studies might 

want to explore how to combine more complex evolutionary models with the current model for 

count data. Nonetheless, the advantage of a simple evolutionary model is that it has broad scope. 

It would be possible, for example, to apply the current approach to continuous characters by 

keeping the same evolutionary model but changing the model for observations from a 

multinomial to a multivariate-normal distribution, which could then be applied to other data 

types used for quantifying resource use such as stable isotope ratios of carbon and nitrogen. 
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 One challenge for comparative methods is their limited ability to model ecological 

phenotypes that cannot be neatly summarized by a single value (Hardy & Linder 2005; Hardy 

2006). Recent years have seen progress in this direction for continuous traits, including models 

that accommodate intraspecific variation, function-valued traits, and other non-gaussian data 

(Ives et al. 2007; Felsenstein 2008; Evans et al. 2009; Jones & Moriarty 2013; Goolsby 2015; 

Quintero et al. 2015). The general approach developed here, where each state is a multinomial 

distribution rather than a categorical variable, extends this progress to traits like diet and habitat 

that are typically treated as univariate categorical variables. By placing an emphasis on 

individual natural history observations, the method draws attention to the central role such 

observations play in evolutionary biology (Greene 1986) and to the many remaining 

opportunities for developing comprehensive ecological databases that advance our understanding 

of biodiversity (Hortal et al. 2015). 

 

Summary 
 

We described a novel methodological framework for studying the evolutionary dynamics 

of complex ecological traits on phylogenetic trees. Previous approaches to this problem have 

assumed that ecological states are categorical variables and that species are monomorphic for 

particular states. We relaxed this assumption through the use of a CTMC model that treats 

ecological states as probability distributions from which observed data are sampled. Results from 

our model provide a much richer understanding of macroevolutionary patterns than past 

approaches and can help illuminate the “phylogenetic natural history” of particular systems 

(Uyeda et al. 2018). Although our method is designed for the analysis of multivariate count data, 
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we suggest that the approach of treating states as probability distributions has wide applicability 

and will greatly facilitate the comparative analysis of novel sources of ecological data. 

 

Appendix 
 

If we update X one terminal taxon at a time by sampling a new state from the proposal 

distribution 𝑝(𝑋] = 𝑘|𝑿.], 𝑫), the Metropolis-Hastings acceptance ratio will equal 1. We derive 

this distribution below using results from Yin and Wang (2014) and Schadt et al. (1998) and 

present an algorithm for its implementation. First, we have 

𝑝(𝑋] = 𝑘|𝑿.], 𝑫) =
𝑝(𝑫,𝑿.], 𝑋] = 𝑘)

𝑝(𝑫,𝑿.])
	

∝
𝑝(𝑫,𝑿.], 𝑋] = 𝑘)
𝑝(𝑫.], 𝑿.])

	

=
𝑝(𝑫|𝑿.], 𝑋] = 𝑘)
𝑝(𝑫.]|𝑿.])

𝑝(𝑿.], 𝑋] = 𝑘)
𝑝(𝑿.])

	

∝
𝑝(𝑫|𝑿.], 𝑋] = 𝑘)
𝑝(𝑫.]|𝑿.])

𝑝(𝑿.], 𝑋] = 𝑘) 

The symbols 𝑫.] and 𝑿.] is refer to the data matrix and resource state vector with terminal 

taxon i excluded. The first proportionality follows because 𝑝(𝑫,𝑿.]) can be written as 

𝑝(𝒅], 𝑫.], 𝑿.]) = 𝑝(𝑫.], 𝑿.]|𝒅])𝑝(𝒅]). But 𝒅] contains no information about (𝑫.], 𝑿.]) so 

𝑝(𝑫.], 𝑿.]|𝒅]) = 𝑝(𝑫.], 𝑿.]) and we simply ignore the constant 𝑝(𝒅]). The second 

proportionality follows because 𝑝(𝑿.]) does not depend on i and hence is the same for all values 

of 𝑋]. Yin and Wang (2014) derive Î>𝑫Ë𝑿.], 𝑋] = 𝑘?
Î>𝑫.]Ë𝑿.]?

 which can be written as 

𝑝(𝑫|𝑿.], 𝑋] = 𝑘)
𝑝(𝑫.]|𝑿.])

∝
Γ>∑ 𝑛©�¬] + 𝛽�� ?

Γ>∑ 𝑛©�¬] + 𝑑]� + 𝛽�� ?
∏ Γ>𝑛©�¬] + 𝑑]� + 𝛽�?�

∏ Γ>𝑛©�¬] + 𝛽�?�
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where 𝑛©� = ∑ 𝑑Ð�Ð|7ÑC©  and 𝑛©�¬] = 𝑛©� − 𝑑]�. To compute 𝑝(𝑿.], 𝑋] = 𝑘) we make use of 

the recurrence relations described Schadt et al. (1998). Let a(m) denote m’s ancestor and let s(m) 

denote m’s sibling. We write s(m)=r and s(m)=l when m is a left, respectively right, descendant 

of a(m). With 𝑻 representing the entire phylogeny, we let 𝑻Ì denote the subtree rooted at node m 

and we let 𝑻.Ì denote the complementary subtree that results from pruning 𝑻Ì from T. The 

notation {𝑋Ð, ℎ ∈ 𝑻Ì} is used to indicate the set of resource states in X where h is a terminal 

node in 𝑻Ì. We implicitly augment the state vector X to 𝑿�  so that it include states at terminal 

and internal nodes and use the notation 𝑋8Ì to refer to the state of any node. If m is a terminal 

node 𝑋8Ì = 𝑋Ì.  Let 𝑭Ì = {𝐹Ì(1),… , 𝐹Ì(𝐾)} where each 𝐹Ì(𝑟) = 𝑝({𝑋Ð, ℎ ∈ 𝑻Ì}	|𝑋8Ì = 𝑟) 

and let 𝑺Ì = {𝑆Ì(1),… , 𝑆Ì(𝐾)} where each 𝑆Ì(𝑞) = ∑ 𝑝3·𝐹Ì(𝑟)·  and 𝑝3· denotes the 

transition probability. 𝑭Ì and 𝑺Ì are computed with a postorder traversal of T using the 

standard peeling algorithm (Felsenstein 1981). Now let 𝑼Ì = {𝑈Ì(1),… , 𝑈Ì(𝐾)} where each 

𝑈Ì(𝑟) = 𝑝>{𝑋Ð, ℎ ∈ 𝑻.Ì}	Ë𝑋8Ì = 𝑟?𝑝(𝑋8Ì = 𝑟) = ∑ 𝑈Ù(Ì)(𝑞)3 𝑝3·𝑆q(Ì)(𝑞). 𝑼Ì can be 

computed with a preorder traversal of T after defining 𝑼`ÚÚÛ = {$
ª
, … , $

ª
}. When m is a terminal 

node the joint probability 𝑈Ì(𝑟) = 𝑝>{𝑋Ð, ℎ ∈ 𝑻.Ì}	Ë𝑋8Ì = 𝑟?𝑝(𝑋8Ì = 𝑟) can be written as 

𝑈Ì(𝑟) = 𝑝(𝑿.Ì	|𝑋Ì = 𝑟)𝑝(𝑋Ì = 𝑟) = 𝑝(𝑋Ì = 𝑟,𝑿.Ì). Putting these threads together gives 

𝑝(𝑋] = 𝑘|𝑿.],𝑫) ∝
Γ>∑ 𝑛©�¬] + 𝛽�� ?

Γ>∑ 𝑛©�¬] + 𝑑]� + 𝛽�� ?
∏ Γ>𝑛©�¬] + 𝑑]� + 𝛽�?�

∏ Γ>𝑛©�¬] + 𝛽�?�
𝑈](𝑘) 

With 𝑭, 𝑺, and 𝑼 precomputed from an initial configuration of X we use algorithm A.1 to update 

X, which assumes each internal node has only two immediate descendants and that a preorder 

traversal always visits a left descendant before visiting a right descendant. 
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Algorithm A.1 

 

for each node i in a preorder traversal of T: 

 if 𝑼Ù(]) is marked: 

  update 𝑼] 

 if 𝑼] is marked: 

  update 𝑺q(])CÜ 

  update 𝑼] 

 if i is a tip: 

  set z = 𝑋] 

  for each resource category j: 

   set 𝑛Ý� = 𝑛Ý� − 𝑑]�  

  sample 𝑧∗~	 $
à
𝑝(𝑋] = 𝑘|𝑿.],𝑫) with 𝑊 = ∑ 𝑝(𝑋] = 𝑟|𝑿.],𝑫)·  

  set 𝑋] = 𝑧∗ 

  if 𝑧∗ does not equal z: 

   set 𝐹](𝑧) = 0 

   set 𝐹](𝑧∗) = 1 

   if s(i)=r: 

    mark 𝑼q(])C· 

   else: 

    update 𝑺] 

   mark 𝑭Ù(]) 

  for each resource category j: 

   set 𝑛Ý∗� = 𝑛Ý∗� + 𝑑]�  

 set g = i 

 while a(g) not null and s(g)=l: 

  set g = a(g) 
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Algorithm A.1 ensures that whenever we visit a terminal node the local 𝑼] needed to compute 

𝑝(𝑋] = 𝑘|𝑿.], 𝑫) are correct. When the first preorder traversal of T has finished 𝑭 and 𝑺 

correctly specify the conditional likelihood arrays for the new X. However, the update operations 

leave the joint likelihood arrays in 𝑼 out of date even though they are locally correct for each 

individual update. Therefore, a second preorder traversal of T to update 𝑼 is necessary before 

updating X again. 
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Figure 4.1 Why neglecting sampling variation can mislead state assignments 

Distribution and representation of multivariate ecological phenotypes (a, b, c), data as sampled 

by researchers (c), and sampled states as typically represented by univariate categorical traits (d, 

e). Loss and distortion of information associated with complex phenotypes motivates the 

development of the Dirichlet-multinomial model described in this article. a) True resource states 

are multinomial distributions that determine the proportional utilization of three dietary resource 

categories by four species. Species X and Y are primarily specialists on resource category R2 

whereas species P and Q exhibit generalized use of all three resource categories. b) The resource 

state of a species is the outcome of evolution via a CTMC process where the states correspond to 

multinomial distributions over a set of resource categories. Here, the multinomial distributions 

from (a) are represented as rose plots: the direction of a spoke identifies the resource category 

and the length of a spoke is equal to the proportional utilization of that category. The phylogeny 

depicts the true evolutionary history of change. c) Sampling: empirical data are sampled 
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outcomes from these multinomial distributions, and the number of observations can differ among 

species. Here, for example, species Q has 20 observations and species P has just 4. d) Univariate 

projection: typically, these multivariate outcomes are projected onto univariate categorical 

resource states, resulting in loss of information and sensitivity to sampling variation. In this 

example, a species is considered a “specialist” on a particular category if the sampled proportion 

of the category exceeds 0.7. Otherwise, it is considered a “generalist”. In this case, the dataset 

and cutoff value align to match each species with its correct modal resource category. e) 

Simulation illustrating how univariate projection and sampling effects can lead to spurious 

variation in state assignments and incorrect evolutionary histories. The sampling and projection 

process illustrated above was repeated 1000 times, holding true resource distributions (a) and 

sample sizes (c) identical. State assignments are sorted along the x-axis according to their 

frequency of occurrence in the simulated datasets. Note that the procedure correctly matches all 

species with their modal food resource in a minority of cases and results in a variable number of 

states across datasets. The implication for macroevolutionary studies is that we cannot be certain 

whether state assignments are reflective of true patterns of resource use or are merely the 

expected outcome of sampling variation and projection. 
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Figure 4.2 Empirical dataset of pseudoboine snake diets and original character state encodings 

Summary attributes of the snake dietary dataset used to parameterize the simulation study, 

including phylogeny of pseudoboine snakes from Tonini et al. (2016) (left), and relative prey 

frequencies (middle left), total numbers of food observations per snake species (middle right), 

and cladogram with univariate ecological state encodings plus maximum parsimony 

reconstruction from Alencar et al. (2013) (right). Dark colors in the prey frequency matrix 

indicate higher sampled proportions of a particular prey item in a given diet. Our decision to use 

a different phylogeny from Alencar et al. (2013) was motivated by the observation that the 

original study excluded many species with low sample sizes, including species in 

phylogenetically informative positions with the potential to impact reconstructed evolutionary 

scenarios at deeper nodes (i.e., Rodriguesophis). In the present approach, ecological states are 

assumed to be multivariate probability distributions from which observed data are sampled, and 
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the model estimates these distributions from the empirical data. In this case, even species with 

small sample sizes are informative and are therefore not excluded. 

 

 

Figure 4.3 Results of reanalysis of original pseudoboine dataset with model-identified diet states 

Reanalysis of the dataset presented in Figure 2 using the new model. a) The phylogeny and 

sampled diet observations were used to infer the diet states (colored circles) and their 

evolutionary history (marginal ancestral state probabilities shown as pie charts on the 

phylogeny). b) Posterior frequency distribution of the number of diet states among terminal taxa, 

computed from the posterior distribution of tip state assignments. The tip states in panel (a) 

depict the maximum a posteriori estimate from the posterior distribution of tip state assignments. 

Note that diet states are not observed directly, even at the tips of the tree; rather, all observed 

data are assumed to be sampled from a set of multinomial distributions. c) The maximum a 

posteriori estimate of the multinomial distributions for the diet states depicted on the phylogeny 
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in panel (a). Here, the model inferred 6 states, corresponding to 3 specialist (> 70% specificity 

for a single prey group) and 3 generalist diets. Note that the terminal node marked with an 

asterisk is missing data, and information about its probable diet state is drawn only from what the 

model has learned about the states of its neighbors and the likelihood of evolutionary change.  

 

Figure 4.4 Posterior distributions of the number of model-identified resource states 

Each bar chart depicts the posterior frequency distribution of the number of resource states 

observed among the set of extant taxa; black bars highlight the number of resource states in the 

generating model. In all cases the prior model assumed there were 20 resource states that 

terminal taxa could potentially occupy.  
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Figure 4.5 Accuracy of estimated resource use distributions as a function of sample size 

Accuracy of model-inferred resource use distributions for terminal taxa as a function of the 

number of resource use observations available. Each point corresponds to a terminal taxon in one 

simulation. Accuracy is a measure of the difference between true and estimated multinomial 

densities. An accuracy of 1 means that the posterior mean estimate of the multinomial density 

and the true multinomial density assign precisely the same proportions to each resource category. 

See main text for more details. Accuracy is consistently high across all simulations for taxa with 

moderate sample sizes. 
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Figure 4.6 Accuracy of estimated resource use distributions as a function of phylogenetic signal 
for terminal and internal nodes 

Accuracy of model-inferred resource use distributions for terminal taxa and internal nodes. Each 

point corresponds to a node in one simulation and points are colored according to the 

phylogenetic signal that was used to generate the simulated dataset. Accuracy is a measure of the 

difference between true and estimated multinomial densities. An accuracy of 1 means that the 

posterior mean estimate of the multinomial density and the true multinomial density assign 

precisely the same proportions to each resource category. In the case of internal nodes, 

differences are also averaged using the marginal posterior probabilities assigned to the different 

resource use distributions. See main text for more details. The triangular distribution of accuracy 

for terminal nodes is evidently caused by small sample sizes (cf. Fig. 5). Accuracy for internal 

nodes decreases monotonically with decreasing phylogenetic signal and appears to track the 

lower bound for accuracy of terminal taxa. Because tip nodes are associated with observational 

data, their states can be estimated with reasonable accuracy even when phylogenetic signal is 
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low. However, low signal makes it very difficult to reconstruct internal node states, as expected 

because tip states provide very little information about the states of their ancestors in this case. 
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Chapter 5  
SquamataBase: A Natural History Database and R Package for 

Comparative Biology of Snake Feeding Habits5 
 

Abstract 
 

Public databases in taxonomy, phylogenetics, and geographic and fossil occurrence 

records are key research tools that provide raw materials, on which broad-scale analyses and 

synthesis in their respective fields are based. Comparable repositories for natural history 

observations are rare. Publicly available natural history data on traits like diet, habitat, and 

reproduction are scattered across an extensive primary literature and remain relatively 

inaccessible to researchers interested in using these data for broad-scale analyses in 

macroecology and macroevolution. In this paper, I introduce SquamataBase, an open-source R 

package and database of predator-prey records involving the world’s snakes. SquamataBase 

facilitates the discovery of natural history observations for use in comparative analyses and 

synthesis and, in its current form, contains observations of at least 18,304 predator individuals 

comprising 1,227 snake species and at least 58,633 prey items comprising 3,231 prey taxa. To 

facilitate integration with comparative analysis workflows, the data are distributed inside an R 

                                                
5 Grundler, M.C. (2020). SquamataBase: a natural history database and R package for comparative biology of snake 
feeding habits. Biodiversity Data Journal 8: e49943. 
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package, which also provides basic functionality for common data manipulation and filtering 

operations. Moving forward, the continued development of public natural history databases and 

their integration with existing digitization efforts in biodiversity science should become a 

priority. 

Introduction 
 

Understanding how organisms interact with their environment lies at the heart of 

evolutionary biology and ecology. The data that furnish this understanding come from the 

practice of natural history. Careful observations about diet, habitat, reproduction, behavior, and a 

range of other ecological traits are vital, not only for a basic understanding of an organism's way 

of life, but also for a broad array of more general questions in evolutionary biology and ecology. 

This is not a new perspective (e.g. Greene 2005). Natural history is fundamental to our 

understanding of a broad variety of phenomena, from diversity gradients to adaptive radiation to 

community assembly (Futumya 1998, Stroud and Losos 2016). Yet despite this central role for 

natural history, the growth of online public repositories for natural history data lags far behind 

comparable repositories for other types of data, such as nucleotide sequences and geographic 

occurrence records. Whereas large, specimen-based databases are available for these latter data 

types, they are woefully lacking for natural history observations (but see databases in Toledo et 

al. 2007; Schalk and Cove 2018; and Jobe et al. 2019). 

This is surprising owing to the fact that such observations ultimately furnish the raw data 

used to test and challenge theoretical predictions (Greene 1986). Unexpected or unusual natural 

history observations, often dismissed out of hand as “anecdotal”, can also reveal novel patterns 

and spur new lines of enquiry when carefully catalogued (Boero 2013). For example, researchers 

who analyzed thousands of anecdotal reports of unusual feeding behavior in birds discovered 
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that a clade’s rate of behavioral innovation is positively correlated with the ability of species to 

expand their geographic range (Sol et al. 2002), as well as with a clade’s species richness 

(Nicolakakis et al. 2003), lending support to the hypothesis that behavioral flexibility can drive 

accelerated rates of evolution and, more generally, to the idea that evolvability is an important 

driver of macroevolutionary patterns. 

At a more fundamental level, publicly recorded natural history is essential for revealing 

the extent of our knowledge about the lives of other organisms. The widespread availability of 

field guides, carrying concise species accounts, can lead to the perception that much of the 

autecology of organisms is already known. This assumption is probably premature for the 

majority of life on Earth and our ability to identify knowledge gaps rests on the availability of 

natural history data (Hortal et al. 2015, Poisot et al. 2016). For example, after reviewing species 

accounts in a major compendium of mammal biology, only 38% of terrestrial mammals had 

recorded diet preferences (Kissling et al. 2014). The situation is undoubtedly worse for less 

charismatic groups of organisms. 

Recognizing the importance of and the need for repositories of publicly recorded natural 

history, standards-based frameworks capable of aggregating natural history observations from 

diverse sources are beginning to emerge (Poelen et al. 2014). Ideally, such initiatives will help 

identify and fill shortfalls in our knowledge of biodiversity and facilitate the discovery of natural 

history observations for use in comparative analyses and synthesis. In practice, the limited 

number of providers that maintain high-resolution natural history datasets make the realization of 

these goals difficult. 

Existing natural history datasets are generally derived from coarse summaries of the 

primary or secondary literature. For example, recent studies have used species accounts in major 
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compendiums of bird and mammal biology to assemble global-scale datasets on traits like diet 

and foraging mode and these data have been used to address a range of questions in 

macroecology and macroevolution (Kissling et al. 2014, Pigot et al. 2016, Price et al. 2012, 

Wilman et al. 2014). However, the coarseness of such datasets can mask patterns that are 

apparent at finer scales (e.g. Borries et al. 2013), potentially limiting our ability to identify 

knowledge gaps and to develop novel lines of inquiry and analysis into how patterns of 

intraspecific trait variability are related to patterns at broader interspecific scales. 

Natural history observations, like geographic occurrences or nucleotide sequences, are 

inherently tied to individual organisms, but unlike these latter, data can seldom be queried and 

downloaded at a specimen-based level. In the sections below, I briefly introduce and describe 

SquamataBase, an open-source R package and specimen-based database of predator-prey 

observations involving the world’s snakes. 

 

Installation 
 

The development version of SquamataBase is hosted on Github and can be installed with 

the aid of the package devtools from within R, using the command 

devtools::install_github("blueraleigh/squamatabase") 

The source code and commit history of the project can be viewed at 

https://github.com/blueraleigh/squamatabase 

Each stable release (including data and code) is also automatically archived with the Zenodo data 

repository. The current stable version is archived at 

https://doi.org/10.5281/zenodo.3667777 

 



 88 

Data Model 
 

The core of SquamataBase is a database for storing data on specimens and trophic 

interactions between specimens. In the context of the SquamataBase data model, a "specimen" is 

a set of individual organisms (or components thereof) belonging to the same taxon (e.g. species, 

genus, family etc.). Each set has two measures of size (count and mass) and can be fleshed out 

with additional attributes if they are available, such as age, sex and body length. This generalized 

definition of a specimen to include multiple individuals is necessary because many publications 

present aggregate observations (e.g. 12 Thamnophis sirtalis ate 34 Anaxyrus americanus 

tadpoles), lacking individual-specific data. A generalized definition allows us to easily 

incorporate these observations alongside more specific observations. 

A predator-prey interaction, or “food record" in SquamataBase terminology, is an 

observation of a snake specimen eating or attempting to eat a prey specimen. SquamataBase does 

not impose any particular categorization of prey specimens, instead it simply records their 

taxonomic identities as stated by the original authors. Categorization of prey specimens into a 

smaller number of groups for analysis is left to users (see below) because, in general, there will 

be many possible ways to categorize the original prey specimen taxonomic identities into a 

smaller number of prey types. 

Each food record is linked to a reference publication where the data originate. Numerous 

contextual details are associated with a food record, including the basis for the record, whether 

the interaction was directly observed or inferred from evidence, the spatiotemporal context of the 

interaction, its outcome, and details regarding habitat, ingestion direction, and foraging strategy. 

To ensure standardization, all taxonomic names reported in reference publications are 

matched against the taxonomy provided from the Catalogue of Life (Roskov et al. 2016). 
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Detailed documentation about each of the database fields, as well as the methods used to compile 

the data, are available in the package help documentation and can be accessed with the command 

help(diet). In its current form, the database contains observations of at least 18,304 predator 

individuals comprising 1,227 snake species and at least 58,633 prey items comprising 3,231 prey 

taxa. These observations originate from a broad sample of geographic regions and phylogenetic 

lineages (Fig. 5.1). 

Approximately 1,700 different scientific publications currently serve as the source of 

observations recorded in SquamataBase. Relevant publications were located through the use of 

keyword queries in academic search engines and by a systematic review of table of contents for 

well-known herpetological journals (e.g. Herpetological Review, Herpetology Notes). I also 

located additional relevant articles by consulting the references in reviewed articles. Every effort 

was made to ensure that the same observation, reported in two different publications, was not 

also duplicated in SquamataBase (e.g. Gaiarsa et al. 2013 and Ferreto Fiorillo et al. 2013 report 

on the same specimen of Mussurana bicolor preying on a watersnake). The majority of 

observations in the database result from papers describing (1) dissections of fluid preserved 

museum specimens and (2) direct encounters with snakes in the field that were actively 

consuming a prey or had recently consumed a prey item that could be regurgitated by forced 

palpation. Glaudas et al. 2017 have noted that these sources of information can provide different 

pictures of the prey spectrum for Bitis arietans (Puff Adder). 

 

Filtering Records 
 

SquamataBase provides functionality for filtering records by taxonomy and geography 

via the filter_records function. Taxonomic filtering can be performed on both predator and 
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prey. For example, filtering records to only include observations from the snake genus Chironius 

is performed as: 

> diet <- filter_records(predator_taxon = "Chironius") 

 

To constrain this record further, we can pass the returned object to filter_records 

again with an additional criterion. For example, if we only wanted records involving prey items 

of the frog genus Scinax we would do: 

> diet <- filter_records(diet, prey_taxon = "Scinax") 

Geographic filtering can be performed with country level administrative names or with a 

bounding box. For example, the following line constrains the existing record set to only include 

records from Ecuador and Peru: 

> diet <- filter_records(diet, locality_adm0_name = c("Ecuador", 

"Peru")) 

Whereas the next line will constrain the existing record set to only include records lying 

between 80°W longitude and 60°W longitude and between 10°S latitude and the equator: 

> diet <- filter_records(diet, xmin = -80, xmax = -60, ymin = -10, 

ymax = 0) 

 

Prey Classification 
 

There are many ways to categorize prey items into different groups, but a relatively 

common categorization scheme is simply to use higher prey taxonomy. SquamataBase therefore 

provides two out-of-the-box categorization schemes that can be used to group prey specimens 
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into a relatively small number of prey types according to higher taxonomy. These two built-in 

schemes also serve as examples of how users may programmatically devise their own 

categorization schemes using the taxonomic metadata associated with each data record. The 

function that performs prey categorization is group_prey and we invoke it on a record set like 

so: 

> diet <- group_prey(diet, grouping = "coarse") 

 

If the argument "grouping" is a character mode, then it must be one of "coarse" or "detailed", 

which correspond to the two built-in categorization schemes alluded to above. In either case, the 

function returns a modified record set that contains an additional field identifying the prey 

category into which each prey specimen has been placed. 

The group_prey function also allows users to define their own prey categorization 

scheme and pass it to the function through the grouping argument. In this case, the argument 

must be a named list of functions, each one of which must return either TRUE or FALSE. For each 

record in the record set, each function in the list is tried, in order, until a TRUE value is returned. 

The name of the first function that returns TRUE is then the name of the prey group applied to the 

record. Arguments to these functions are expected to be fields that are present in the record set to 

which the prey grouping is being applied. Users can study the two built-in examples by 

inspecting the function bodies for the commands prey_coarse and prey_detailed. 

 

Aggregating Records 
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SquamataBase provides several options for aggregating records to create higher level 

summaries of the recorded prey items for snakes in a record set. These are available through the 

aggregate_records function. By default, the function will create a 3-column data frame with 

each row comprising a tuple of the form (q, r, n), where q is a snake species, r is a prey group 

and n is the number of recorded instances of r appearing in the diet of q. The optional "by" 

argument to the aggregate_records function serves to disaggregate this default layout by 

specifying a set of additional fields to preserve as columns in the result. For example, invoking 

the command aggregate_records(diet, by = "locality_adm0_name") will return 

tuples of the form (q, r, p, n) and n is now the number of recorded instances of r appearing in the 

diet of q in country p. Due to the nature of the data, there are several ways the value for n can be 

computed, because each data record contains the number npred of predator and the number 

nprey of prey individuals involved in the trophic interaction. The default behavior of the function 

computes n by taking min(npred, nprey), but this can be changed by the user through the 

use of function arguments. 

 

Conclusion 
 

Shortfalls in our knowledge of species interactions and species trait distributions pose 

significant challenges to the study and understanding of biodiversity (Hortal et al. 2015). 

Specimen-based natural history databases can help delimit knowledge gaps and provoke 

solutions for their resolution (Poisot et al. 2016). By developing SquamataBase, my goal is 

simultaneously to facilitate the discovery and reuse of natural history data in comparative 

analyses and to encourage researchers to continue to publish and make available their 

observations. There is considerable scope for expanding the development of specimen-based 
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natural history databases and integrating them with existing digitisation initiatives in biodiversity 

informatics and I suggest that this is a promising area in which to invest more effort. 
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Figure 5.1 Taxonomic and geographic distribution of prey records in SquamataBase 

Predator-prey observations recorded in SquamataBase originate from a broad sampling of 

geographic regions and phylogenetic lineages. The bar graph illustrates the number of prey items 

currently recorded from major snake families. Many of these observations are georeferenced and 

their locations are illustrated as marks on the orthographic projections. 
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Chapter 6  
Diversification of Snake Diets Revealed by Primary Natural History 

Observations 
 

Abstract 
 

The origin of novel trophic ecologies underlies the diversification of many different 

animal groups and is frequently investigated at the macroevolutionary scale by using coarse 

character state encodings. These simple approaches seldom reflect the complex patterns evident 

in nature, posing a major challenge for constructing data-driven evolutionary scenarios of trophic 

niche evolution and ecological diversification. Primary natural history observations from the 

field and museum provide the most direct link to organismal ecology and can help meet this 

challenge but are seldom used in macroevolutionary studies, either because data are unavailable 

or because existing comparative methods are unsuitable. Here, we show how to use such 

observations for investigations of macroevolutionary tempo and mode by inferring evolutionary 

histories of trophic niche evolution across the global radiation of extant snakes. We assembled a 

dataset on snake diets (33,925 primary natural history observations of prey acquisition for 880 

species) and used these data together with a novel analytical framework that allows us to directly 

integrate observations of prey use into the comparative inference model. Our results reveal 

repeated convergences of feeding strategies across the snake tree of life and differences in the 
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rate of trophic innovation associated with major lineages of snakes and colonization of new 

biogeographic theaters. Most feeding modalities in snakes appear after the K-Pg boundary during 

the Eocene, suggesting that ecological diversification was facilitated by new opportunities 

arising during the recovery and reorganization of biotic communities in the wake of mass 

extinctions. Our results demonstrate how fundamental observations of organisms in nature can 

be used to make quantitative inferences about the macroevolution of complex ecological traits 

and suggest new ways of integrating natural history data into comparative biology. 

 

Introduction 
 

Animal diversity harbors an enormous variety of foraging behaviors and dietary 

preferences. To make sense of this variety, biodiversity researchers group species into a smaller 

number of adaptive zones or ecological guilds based on broadly similar patterns of resource use 

(Simpson 1944; Root 1967; Van Valen 1971; Simberloff & Dayan 1991). This practice is 

fundamental to our understanding of the evolutionary history of animal feeding and ecological 

diversification (Losos & Mahler 2010). Reducing natural complexity into a small but meaningful 

number of groups has allowed researchers to address how shifts in trophic strategy influence the 

diversification of species and phenotypes and the assembly of species-rich communities (Mitter 

et al. 1988; Lovette et al. 2002; Seehausen 2006; Reddy et al. 2012). 

 The discretization of animal trophic diversity into a small number of groups, however, 

poses two primary challenges. First, the actual classification of taxa into groups is frequently 

guided by researcher experience and intuition rather than by quantitative data. This results in 

ambiguity and disagreement about where to place certain species when boundaries between 

groups are fuzzy, as they often are (Parravicini et al. 2020). Second, researcher concepts of 
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adaptive zones or ecological guilds are often deliberately simplified, focusing on first-order 

patterns of variation evident in nature. As a result, infrequent variation that is nonetheless 

important for understanding aspects of trophic diversity, such as why African cichlids with 

narrow diet breadths still exhibit functional and behavioral capacities for trophic generalism, is 

missed (Liem 1980; Golcher-Benevides & Wagner 2019). 

One promising strategy for addressing these challenges is to directly incorporate primary 

natural history observations into comparative inference methods. In principal, such approaches 

accommodate greater natural complexity without sacrificing the useful idea of a supra-specific 

niche embodied in concepts of adaptive zones and ecological guilds, which then emerge as 

outputs of data-driven, phylogenetically informed analyses rather than as inputs. In practice, 

however, the rarity of comparative diet datasets that include firsthand observations of organisms 

in nature, and the limited data repertoire of comparative methods, means that most studies 

continue to rely on highly simplified character state encodings to describe trophic differences 

among species (e.g., Price et al. 2012; Cantalapiedra et al. 2014; Burin et al. 2016; but see, e.g., 

Vitt & Pianka 2005; Colston 2010; Hardy & Otto 2014; Forister et al. 2015). 

In this study we describe the dynamics of trophic niche evolution across extant snakes, a 

global radiation of more than 3,500 species that accounts for over 10% of terrestrial vertebrate 

diversity. We assembled a dataset on snake diets (33,925 primary natural history observations of 

prey acquisition for 880 species) and used these data together with a new stochastic model-based 

comparative method that we developed to reconstruct evolutionary histories of dietary change 

from primary natural history data (Grundler & Rabosky 2020). The analytical framework we use 

here enables us to derive all results directly from observations as they might be recorded in field 

notebooks, without a priori categorization of snakes into highly simplified ecological states. 
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Snake evolution has given rise to a remarkable diversity of feeding habits, many of which 

are highly specialized and dramatically different from the diets of other squamate reptiles 

(lizards). While the ecological origins of early snakes are uncertain, a number of lines of 

comparative evidence indicate that the diversity of modern feeding styles is descended from a 

burrowing ancestor with a restricted gape and limited ability to ingest large prey (Greene 1983; 

Hsiang et al. 2015; Shine & Wall 2008; Wiens et al. 2006; Yi & Norell 2015). Subsequently, 

numerous functional innovations facilitated the evolutionary expansion of snake diets, including 

the origin of novel prey subjugation behaviors (Greene & Burghardt 1978; Jayne et al. 2002), 

highly kinetic skulls with complex musculature (Gans 1961; Cundall & Greene 2000), and 

sophisticated venom delivery systems (Kardong 1980; Savitzky 1980; Fry et al. 2008). These 

innovations dramatically increased the breadth of ecological opportunity available to snakes, 

ultimately leading to the many species we observe today. 

We find that after an initial shift away from eating invertebrates, the diversity of snake 

feeding habits increased rapidly after the K-Pg boundary, with substantial increases in the rate of 

trophic innovation associated with more recent radiations resulting from the colonization of new 

biogeographic theaters. Our results demonstrate how fundamental observations of organisms in 

nature can be used to make quantitative inferences about the macroevolution of complex 

ecological traits and suggest new ways of integrating natural history data into comparative 

biology. 

 

Results and Discussion 
 

The merged phylogenetic and diet dataset contains 880 species representing 354 genera 

from nearly all snake families (the only exceptions being Anomochilidae and Gerrhopilidae). 
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Per-species sample sizes (number of observed prey items) range from 1 to 746 with a mean of 38 

and a median of 12, while per-genus sample sizes range from 1 to 2749 with a mean of 96 and a 

median of 25, for a total of 33,925 observations (Fig. 6.1). Most observations in the database are 

from direct encounters with snakes in the field or from dissections of preserved museum 

specimens. Combining these two sources of data results in a more complete picture of the prey 

spectrum consumed by any given species, as field and museum specimens sometimes differ in 

relative frequencies of recorded prey types (Glaudas et al. 2017). Snake diets can vary within 

species, driven by sexual and ontogenetic differences in body size and by geographic variation in 

available prey types (Shine 1991). Our compilation records these details when possible, but the 

dataset used for analysis in the present study aggregates all records available for a given species, 

thereby creating a composite picture of the prey spectrum sampled by individual species. 

 The nature of the snake diet data poses analytical challenges because sampling is highly 

uneven across species, and the data matrix consists of unnormalized observational counts of 

sampled prey items with numerous zeroes. We analyzed the data with a new stochastic model-

based inference method that uses phylogeny and the observed counts of sampled prey items to 

jointly infer continuous dietary niche states for each species and their unsampled ancestors 

(Methods). The resulting trophic network structure is informed by both the observed diet data 

and the phylogenetic relationships of sampled species, and these two sources of information 

allow us to incorporate observations from species with highly variable sample sizes because the 

model can use information from well-sampled phylogenetic relatives to estimate dietary niches 

for species with poorly characterized diets. 

 A striking visual aspect of the inferred trophic network structure is the variation in 

connectivity observed among different categories of prey (Fig. 6.2). Nearly all prey groups have 
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an associated set of specialist predators, but more generalized predators occur almost exclusively 

among snakes that feed on terrestrial vertebrates. The relative absence of generalized diets that 

include invertebrates and fishes may stem from the unique adaptations required to subdue and 

consume these prey and the constraints imposed by small body size and specific macrohabitat 

associations (Savitzky 1981). Even among more generalized species, however, sampled diets 

rarely include more than two or three distinct kinds of prey. Of these, there are clear tendencies 

for some combinations of prey items to co-occur more commonly in sampled diets than others, 

reinforcing prior concepts of snake feeding guilds (Ditmars 1912; Arnold 1972; Toft 1985). How 

these associations arise is uncertain. Proposed mechanisms include the correlated co-occurrence 

of prey items in the environment as well as chemical and functional similarity of exploited prey 

(Greene 1983; Cadle & Greene 1993; de Queiroz & Rodríguez-Robles 2006; Cooper 2008).  

The inferred trophic structure suggests that vertebrate prey resources can be loosely 

arranged along a primary gradient with terrestrial endotherms (birds and mammals) on one end 

and aquatic ectotherms (fishes) on the other (Fig. 6.2). Along this gradient, terrestrial ectotherms 

(mainly frogs and squamates) occupy intermediate positions, with amphibians closer to fishes 

and squamates closer to birds and mammals. At the broadest scale, these associations are likely 

to be driven, in part, by effects of body size and macrohabitat. Aquatic snakes that prey on fishes 

regularly encounter frogs and tadpoles that rely on water for reproduction and larval 

development, for example, and only larger snakes can safely subdue and consume birds and 

mammals. However, the network structure also makes clear that no single prey resource gradient 

adequately summarizes dietary variation. Moreover, differences in sampled diets among many 

closely-sized snakes with similar macrohabitat associations indicate that trophic niche variation 

defies any simple explanation in terms of habitat and body size alone. 
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An interesting aspect of the inferred trophic network concerns terrestrial snakes that eat 

invertebrates and the extent to which their feeding habits differ from lizards. Most of the 

commonly recorded invertebrate prey items in sampled snake diets (annelids, mollusks, 

centipedes, spiders and scorpions, various insects and their larvae) appear rarely in sampled 

lizard diets or are recorded along with many other invertebrate prey groups, contrasting with the 

extreme level of specialization observed in snakes (Pianka 1986; Vitt & Pianka 2005). One 

possible explanation for the contrasting lizard and snake patterns is that many of the prey items 

used by snakes (centipedes and arachnids) are themselves dangerous predators that are important 

sources of mortality in squamate reptiles (Schalk & Cove 2018; von May et al. 2019), requiring 

large body size and venom to subdue (Rodríguez-Robles 1994). Likewise, several groups that are 

disproportionately used by snakes are heavily defended by shells (snails) and defensive mucosal 

production (slugs and annelids) and require specialized behaviors, dentition, and oral gland 

secretions to surmount (Sazima 1989; Rossman & Myer 1990; Hoso et al. 2007; Zaher et al. 

2014). Although it is clear that most lizard diets do not resemble the diets of vertebrate-feeding 

snakes, more detailed comparisons of lizard and snake diets are clearly warranted to determine 

the extent to which the feeding habits of invertivorous snakes have diverged from lizards. 

 Our analysis reconstructs the most recent common ancestor of all snakes as feeding 

exclusively on insects with high probability, followed by an early shift to a diet comprised 

predominantly of lizards (Fig. 6.2). An insect-feeding ancestor makes sense in light of the 

molecular phylogeny: the earliest diverging snake lineages, scolecophidians (blind snakes), 

comprise a paraphyletic assemblage of species that feed almost exclusively on eusocial insects. 

Feeding on insects or lizards is inferred to have characterized many of the Mesozoic ancestors of 

extant snakes, which subsequently diversified into elaborate feeding modalities after the K-Pg 
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boundary during the Eocene, a time when squamate communities were beginning to recover 

from end-Cretaceous extinctions (Longrich et al. 2012) (Fig. 6.4). There is little direct evidence 

about the diets of ancestral snakes, but what exists is consistent with an early shift to vertebrate 

feeding. The controversial snake-like fossil Tetrapodophis (possible a marine varanoid lizard) 

from the Early Cretaceous contains unidentified vertebrate remains (Martill et al. 2015; Lee et al. 

2016); the snake fossil Sanajeh from the Late Cretaceous may have eaten hatchling dinosaurs or 

their eggs (Wilson et al. 2010); an unidentified boa fossil from the Eocene contains a crocodilian 

(Greene 1983); an Eocene python fossil contains a lizard (Smith & Scanferla 2016). Beyond 

these few examples, inferences about ancestral snake diets rely primarily on phylogenetic 

comparisons among present-day species.  

How morphologically and ecologically representative blind snakes are of early ancestral 

snakes is contentious. Some have considered them to be surviving representatives of the earliest 

snakes (Bellairs & Underwood 1951; Miralles et al. 2018), but others have argued that they are 

highly derived and cannot be considered morphological or ecological analogs of snake ancestors 

(Evans 1955; Chretien et al. 2019). The situation is further obscured by conflicting placements of 

blind snakes with respect to fossil snakes and other crown-group snakes across different datasets 

and analysis techniques (Garberoglio et al. 2019). Regardless, it is clear that the shift to 

vertebrate feeding happened early in snake evolution, maybe even facilitated by the consequent 

increase in gut volume resulting from adaptive morphological changes in response to fossorial 

habits (Shine & Wall 2008). 

Our results imply that a striking diversity of trophic modalities, some quite distinct from 

one another, are inferred to have originated from a lizard-eating ancestor (Fig. 6.3). The 

preponderance of lizards in reconstructed ancestral diets stems, in part, from the fact that they are 
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the single most commonly recorded prey type in the current dataset. However, lizards are also 

abundant in the same terrestrial environments as snakes and their generally small body size 

compared to most snakes makes them suitable prey for a broad range of snake body sizes and 

gape widths. Indeed, many snakes that feed on birds and mammals as adults have juvenile diets 

comprised of lizards (Brito 2004), and lizards may have been the target of early selection during 

the shift to a vertebrate diet. 

This finding also rejects the idea that many specialized feeding modalities originated 

from more generalized ancestors. In fact, dietary niche breadths are highly heritable 

(phylogenetically), suggesting that “specialists” and “generalists” are neither more nor less 

evolutionary labile than the other, and increases and decreases in reconstructed dietary niche 

breadths are equally common (Fig S6.2). This is not to say that no dietary shifts toward highly 

specialized feeding modalities were preceded by generalized ancestors. For example, many egg-

eating snakes arose from ancestors inferred to occasionally eat eggs as part of a broader diet, 

consistent with previous findings (de Quieroz & Rodríguez-Robles 2006). However, in other 

cases such stepping-stone-like patterns are less clear. For example, 13 of the 15 recorded prey 

items for the Neotropical dipsadine Rhachidelus brazili are bird eggs, but no bird eggs are 

recorded in 139 prey items from the diets of its five closest relatives, which consist largely of 

lizards, snakes, and mammals. Such observations are speculative because in our method 

transitional diets can only be inferred for ancestors if they are preserved among living species. 

However, these results suggest the potential for occasional dramatic (rapid) dietary shifts, an 

inference that is supported by some observations from present-day snake populations. For 

example, the dipsadine snake genus Pseudalophis, present on the Galapagos Islands and the 

western coast of South America, preys predominantly on lizards and occasionally birds (Ortiz-
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Catedral et al. 2019). However, at least one population of Galapagos snakes has taken to 

intertidal foraging on coastal fishes (Merlen & Thomas 2013), a behavior unknown from any 

other populations or close relatives that lends support to the claim that niche shifts are frequently 

initiated by changes in behavior (Mayr 1963). 

Our analysis recovers numerous independent origins of similar feeding strategies across 

the global snake radiation. Notably, independent origins of specialized mammal-eaters first 

appear unambiguously in ancestral states with the most recent common ancestors of vipers, boas, 

and pythons during the Eocene, a time when rodents (the predominant mammals recorded in 

snake diets) were spreading and diversifying around the world (Wu et al. 2012) and consistent 

with prior suggestions that the rise of mammals, particularly rodents, provided ecological 

opportunity for the diversification of some snake clades (Maria Albino 1993; Rodríguez-Robles 

et al. 1999). Perhaps most remarkably, vermivory (earthworm feeding) has arisen independently 

in nearly all major snake lineages, including typhlopids (Acutotyphlops subocularis), 

xenodermids (Achalinus), pareids (Xylophis), viperids (Atheris barbouri), homalopsids 

(Brachyorrhos), elapids (Toxicocalamus, Ogmodon), uropeltids, natricids, pseudoxenodontids 

(Plagiopholis), dipsadids, and colubrids. Phylogenetic autocorrelation (a clustering metric) in the 

proportion of annelids in sampled snake diets is the lowest of all prey categories: despite a 

similar number of reconstructed gains, annelids in sampled snake diets show considerably lower 

phylogenetic clustering than vertebrate prey items like mammals and fishes (Fig. S6.3). Such 

differences hint at the possibility that feeding strategies differ in evolutionary accessibility and 

versatility, and earthworm feeding may be among the most evolutionary and ecologically 

accessible feeding strategies available to snakes. 



 105 

Reconstructed ancestor-descendant diet sequences reveal evidence of elevated rates of 

change among colubroid snakes (after Zaher et al. 2009), a cosmopolitan clade comprising just 

over one-half of living snake diversity (Fig. 6.2). Some of the fastest rates of change are 

associated with colonization of the nearctic and neotropical regions by the families Natricidae 

and Dipsadidae. Macroevolutionary rates often show time dependency: rates calculated over 

shorter time intervals are higher than rates calculated over longer intervals (Gingerich 1983). 

This time dependency also affects rates calculated in this study (Fig. S6.1). The cause and 

significance of this pattern is debated, but in our case part of the explanation appears simple: 

rates calculated over longer time intervals include more lineages with no dietary changes, which 

drive net rates of change down. A similar explanation has been proposed to explain time 

dependency observed in diversification rates (Henao Diaz et al. 2019). However, we do not 

exclude the possibility that clade-level differences in dietary lability also play a role in driving 

rate variation. For example, owing to their greater diversity, colubroid clades show 

systematically higher net rates of change than non-colubroids even when controlling for overall 

phylogenetic lineage length (Fig. S6.1), suggesting the possibility of a general coupling between 

rates of lineage diversification and rates of trophic evolution. In spite of generally higher rates of 

trophic innovation in colubroids, however, nearly all feeding modalities observed in the current 

dataset are represented by lineages that diverged prior to the origin of colubroids, indicating that 

the colubroid mega-radiation has been facilitated more by an ability to exploit existing ecological 

opportunities rather than by invasion of previously inaccessible trophic niches. 

 

Conclusion 
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We used a comprehensive dietary dataset and a novel stochastic framework to 

demonstrate how primary natural history observations can be integrated with stochastic-model 

based comparative methods to form quantitative inferences about macroevolutionary tempo and 

mode. Our results highlight the complex evolutionary dynamics of trophic niche evolution in 

snakes, and complement prior analyses emphasizing the deep historical roots of dietary 

differences observed in lizard (Vitt & Pianka 2005) and snake (Colston et al. 2010) communities. 

The data included in the present study represent the combined effort and observations of 

numerous field workers, yet there remain considerable opportunities for expanding the dataset to 

fill taxonomic and geographic sampling gaps and for methodological innovations to 

accommodate different sources of variation contributing to the tremendous diversity of snake 

feeding habits. 

 

Materials & Methods 
 

Data acquisition and prey categorization 
 

 We used a recent compilation of prey items observed in sampled snake diets to 

characterize feeding habits for as many snakes as possible (Grundler 2020). Observations in the 

database were compiled from an extensive review of the primary literature and subsequently 

categorized into 22 different prey groups according to higher level taxonomy. The analyzed 

dataset uses a composite picture of the prey spectrum sampled by individual species by 

aggregating records across different sources of intraspecific variation (e.g. age, sex, geography). 

This decision was motivated by the broad phylogenetic scope of the current study and uneven 

sampling across species, but there remain important opportunities for incorporating different 
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sources of intraspecific variation into comparative analyses of this sort. For comparative analysis 

we used the phylogenetic hypothesis from Tonini et al. (2016). 

 

Probabilistic reconstruction of diet states and trophic niche evolution 
 

We used a recently described comparative method to reconstruct the history of trophic 

niche evolution (Grundler & Rabosky 2020). Briefly, each extant species in a phylogeny can be 

characterized by a vector x that describes its proportional utilization of the 22 different diet 

categories. If we denote the full set of such vectors by the symbol X, the fundamental goal of the 

method is to both estimate X and to extend X so that hypothetical ancestral species, represented 

by internal nodes of the phylogeny, are also assigned proportional utilization vectors. We denote 

such extensions by 𝑿� , and the method probabilistically reconstructs all 𝑿�  that are consistent with 

X. By assumption, the proportional utilization vectors reconstructed for ancestors must be 

represented among the set observed in X. This is enforced by assuming that X contains at most K 

unique proportional utilization vectors corresponding to distinct trophic niche states (the actual 

number discovered by the method may be less than K). Because the observed data consist only of 

counts, the method samples a range of X that confer high probability on the observed count data 

under a Dirichlet-multinomial sampling model with hyperparameter a. As a result, the method 

returns posterior distributions for both X and 𝑿� , thereby naturally accommodating uncertainty in 

both observed and ancestral trophic niche states. We used an uninformative Dirichlet prior (a=1) 

and set K=1000, a relatively high value that favors more parsimonious evolutionary histories due 

to the stronger penalty incurred with each event of character state change. Gibbs sampling was 

performed for 30,000 iterations, and every 10-th sample was recorded for a total of 3000 
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posterior samples. Posterior averages reported in the main text were computed using the last 500 

samples. Likelihood and parameter traces are provided in the supplement (Fig. S6.5). 

 

Estimating evolutionary fluxes and net rates of change 
 

 We estimated average evolutionary fluxes between diet categories for each branch in the 

phylogeny under an optimal transport model. Specifically, for a given ancestor-descendant 

configuration on edge e = (u, v) we computed the matrix U that transformed an ancestral diet 

𝒙ã](𝑢) into a derived diet 𝒙ã](𝑣) (where 𝒙ã](𝑢) ≠ 	𝒙ã](𝑣)) at a minimum total cost 

𝑑𝑼(𝒙ã](𝑢), 𝒙ã](𝑣)). Note that the rows of U must sum to 𝒙ã](𝑢) and the columns to 𝒙ã](𝑣). The 

optimal transformation cost is defined as  

𝑑𝑼(𝒙ã](𝑢), 𝒙ã](𝑣)) = min
𝑼
<𝑈�©𝐶�©
�©

 

where the sum runs over all pairs of diet categories. The elements of U describe how 

much proportional utilization of each diet category in an ancestor must be transformed into 

proportional utilization of each diet category in a descendant. The matrix C assigns a value to the 

cost of transforming a unit of one diet category into a unit of another and must be directly 

specified. Matrices U were computed for each branch using the Sinkhorn-Knopp algorithm 

(Cuturi 2013) and averaged over the posterior. The matrix C was considered fixed, with diagonal 

elements set to 0 and off-diagonal elements set to 1. With this specification, the elements of U 

can be thought of as the effective number of gains and losses that take place during an 

evolutionary transition from one diet to another. In the extreme case, when ancestor and 

descendant are pure specialists on different prey groups, only a single element of U is non-zero 

and that element will equal 1. 
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We estimated the net rate of evolution for each clade by calculating the average total 

number of gains and losses of prey categories within a clade divided by the total branch length of 

all lineages in the clade. We used these clade rates to assign each terminal node a tip rate, which 

we computed as the weighted average of all clade rates on the phylogenetic path leading from the 

tip to the root. The weights attached to each clade rate increase as they approach the root, which 

relaxes each tip rate back to the overall average clade rate computed from the entire phylogeny. 

The strength of relaxation depends on how quickly weights increase toward the root, but the 

overall qualitative picture of variation in tip rates is unchanged by different weighting schemes 

(Fig. S6.4). 
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Figure 6.1 Phylogenetic distribution and sample size variation of snake diets included in 
analysis 

Complete species-level phylogeny of snakes from Tonini et al. (2016) highlighting major clades, 

evolutionary time-scale, and sample size distribution for number of prey use observations. Rank-

abundance curve below the phylogeny and segments along the outer semicircle depict the sample 

size distribution for all snakes with diet observations. Gaps along the outer semicircle occur for 

species with no diet observations, and these species were pruned from the phylogeny prior to 

analysis. A total of 33,952 primary natural history observations of prey acquisition by 880 

species of snakes were available for analysis. 
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Figure 6.2 Model inferred trophic network structure and evolutionary histories of diet evolution 
across extant snakes 

Model inferred trophic network structure (bottom) and evolutionary dynamics of diet evolution 

(top) across the radiation of extant snakes estimated from 33,952 primary natural history 

observations of prey acquisition by snakes. Bottom: Numbered circles represent the prey 
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categories used for analysis. Filled circles represent individual snake species in the dataset. Each 

species is connected to the prey items it feeds on using line widths proportional to the estimated 

relative importance of the item in its diet. Each prey item is represented by a color (shown by the 

borders of numbered circles) and the color assigned to an individual snake species is an additive 

mixture of the colors of the prey items it feeds on. Prey items that commonly co-occur in snake 

diets are positioned near one another, as are snakes with similar diets. Some prey items are rare 

enough that they do not appreciably alter the appearance of sampled species (e.g. crocodilians, 

turtles) and are omitted from the plot. Top: Reconstructions of ancestral snake diets (branch 

colors) and evolutionary rates of prey switching (outer semicircle) were inferred using a 

Dirichlet-multinomial Markov model for multivariate ecological trait evolution. Branch colors 

denote reconstructed patterns of resource use and are colored according to the same scheme used 

in the bottom panel. Outer semicircle denotes average rates of diet evolution for each taxon 

expressed relative to the average for all snakes (see text for details). Evolutionary rates are higher 

for the colubroid mega-radiation, which accounts for just over half of global snake diversity. 

Despite generally lower evolutionary rates, however, non-colubroid snakes display a similar 

breadth of feeding modalities as colubroids. Time-calibrated phylogeny for the 880 species for 

which field-based diet observations were available was taken from Tonini et al. (2016). 
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Figure 6.3 Evolutionary dynamics (gains and losses) of diet evolution across extant snakes 

Average number of evolutionary gains and losses among different prey categories in snake diets. 

Reconstructions of ancestral snake diets were inferred using a Dirichlet-multinomial Markov 

model, and gains and losses between ancestors and descendants were computed under an optimal 

transport model that minimized the cost of transformation (see text for details). Colors and 

numbers follow the same scheme used in Figure 6.2. Top panels depict evolutionary gains of 

different prey categories from the ancestral prey category highlighted in color. Bottom panel 
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depicts gains and losses for all categories. Line widths and point sizes are proportional to the 

total number of gains/losses. Numerous independent origins of similar feeding strategies occur 

across the snake tree of life, often from a lizard-eating ancestor. Gains and losses are unequally 

distributed among prey categories, and some feeding strategies show much greater turnover than 

others, suggesting that feeding strategies differ in evolutionary accessibility and versatility. 
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Figure 6.4 Snake diets through time 

Proportional lineage representation of different feeding strategies during the global radiation of 

extant snakes. Diet-through-time profile is formed by plotting the most probable dietary niche 

state for each lineage at consecutive time points from the root to the present. Diet states are 

represented by distinct colors following the same scheme used in Figure 6.2, and dominant 

components of each state are labelled. Each diet state is plotted so that it originates at the crown 

clade age of the reconstructed ancestor where it first appears (using stem clade age pushes first 

appearances of some states back to the late Cretaceous). Stable isotope data from Zachos et al. 

(2001) are shown in the top panel to provide a timeline of major earth history events. The 
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diversity of snake dietary niches begins to flourish during the Eocene, when reconstructed 

cladogenetic events mark the origin of many higher taxonomic snake lineages. 
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Figure S6.1 Evolutionary rates of dietary changes 

Net rates of diet evolution for all clades in the Tonini et al. (2016) phylogeny used in the present 

study show that, in general, colubroids have the highest rates of all snakes, even after controlling 

for effects of overall lineage length. This pattern arises mainly from the leveraging effects of 

dipsadines and natricines, which evolved lots of dietary diversity and speciated quickly upon 

arrival in the Nearctic and Neotropics. 
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Figure S6.2 Changes in dietary niche breadth from ancestor to descendant  

Average descendant niche breadths (effective number of different prey categories in diet) 

strongly resemble ancestral niche breadths (left) and increases and decreases in niche breadth are 

about equally common (right). These patterns suggest that “generalist” and “specialist” snakes 

do not differ in terms of overall evolutionary lability. 
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Figure S6.3 Phylogenetic clustering of proportional prey use  

Phylogenetic clustering (Moran’s I) of the relative importance of different prey categories. 

Boxplot widths for different prey categories are proportional to the estimated average number of 

evolutionary gains (numbers along the top margin). Annelids show the lowest levels of 

clustering, a consequence of their widespread phylogenetic distribution. More restricted prey 

categories have higher levels of clustering (e.g. mammals and insects). These numbers are 

potentially impacted by sampling effects. For example, some worm-eating clades have many 

species (e.g. Atractus, Calamaria) but are under-represented in the dataset. In this case, more 

complete sampling of these clades would be expected to increase Moran’s I. 
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Figure S6.4 Weighting schemes used for tip-rate calculation 

Different weighting schemes (left) applied to the clade rates shown in Figure S6.1 and their 

effect on tip rates (right). Tip rates are calculated as a weighted average of all clade rates on the 

phylogenetic path leading back to the root. While the weighting scheme influences the strength 

of relaxation toward the overall average rate, the qualitative pattern of tip rates is relatively 



 121 

unchanged by choice of weighting scheme. Tip rates in the main text (Figure 6.2) correspond to 

scheme w = 1. 

 

Figure S6.5 Likelihood and parameter traces during Gibb’s sampling 

Likelihood (left) and parameter (middle) traces reveal good mixing of the Gibb’s sampler. The 

number of distinct dietary niches (right) sampled during the run is far less than the number of 

species (880), indicating that many sampled snake diets are indistinguishable from one another. 

The highlighted portions correspond to the final 500 samples that were used to form posterior 

average summaries mentioned in the main text. 
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