Development of a Planar Piecewise Continuous Lumped Muscle Parameter Model for
Investigation of Joint Stiffness in Walking on a Level Surface

by

Qianyi Fu

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Industrial and Operations Engineering)
in the University of Michigan
2020

Doctoral Committee:

Professor Thomas J. Armstrong, Co-Chair
Professor Albert J. Shih, Co-Chair
Research Professor James A. Ashton-Miller
Associate Professor Bernard J. Martin



Qianyi Fu

gifu@umich.edu

ORCID iD: 0000-0002-4623-3550

© Qianyi Fu 2020



DEDICATION

To my mother, father, wife, and daughter Michi E. Fu



ACKNOWLEDGMENTS

This dissertation was completed thanks to the help, support, and guide of many people.
First, | want to thank my advisors Dr. Thomas J. Armstrong and Dr. Albert Shih for all their
support and guidance through the years of my Ph.D. Dr. Armstrong has provided tremendous
guidance and how to think like a professional researcher. Dr. Shih has kindly provided lots of
support and time to help me through the difficulties in both life and academia. | appreciate your
advice that helps me grow as a researcher. I would also like to thank the members of my
dissertation committee, Dr. Bernard Martin, Dr. James Ashton-Miller, and Dr. Clive D’Souza.

All of your suggestions and comments made this dissertation better.

| am grateful to my colleagues, Robert Chisena and Deema Totah, under the NSF Cyber-
Physical Service System for 3D-Printing of Adaptive Custom Orthoses Project (PFI:BIC project
#1534003) for their support and guidance. | am also grateful to Darren Bolger and Jeff
Wensman, who work at the University of Michigan Orthotic and Prosthetic Center for their help

on recruiting patients and providing ideas.

To my fellow Ph.D. students and labmates, Miguel Funes, Yadrianna Acosta, Michael
Daly, Aanya Agarwal, Na Du, Teerachart Soratana, Kieran Obrien, Nicholas Sandhu, Yidu Lu,
Kamolnat Tabattanon, Yifan Li, Rosemarie Figueroa, Vernnaliz Carrasquillo, Yuzhi Wan, Justin
Young, Brandon Pitts, thank you for your advice on both life and research during my Ph.D.
years. Especially, Miguel Funes figured out the hardware for the inertial measurement unit

mounted on the ankle-foot orthosis, Yadrianna Acosta helped me with the electromyogram setup



for my experiment, Michael Daly developed the basis of the webpage presented in this

dissertation, and Aanya Agarwal assisted on subject recruitment and most of the data collection.

| am grateful to all faculty and staff in the Department and the Center for Ergonomics. A
special thanks to Charles Wooley, Matt Ireland, Tina Picano Blay, Chris Konrad, Eyvind

Claxton, Olof (Mint) Minto, and Rodney Capps for their steady support.

Last but not least, thanks to the support from my family, especially to my father and

mother, for their support and encouragement!



TABLE OF CONTENTS

D110 AN I N OSSPSR i
ACKNOWLEDGMENTS ...ttt st e et e e e ssa e e e naae e e nneeeanna e i
LIST OF TABLES ...ttt e bttt sttt st et neene s Vi
LIST OF FIGURES ...ttt e et e e e aa e e e st e e e ne e e anneeeanneas viil
LIST OF APPENDICES ..ottt sttt sttt ebe ettt s e nne s Xi
y N S 12 ¥ PSR Xii
CHAPTER 1 INTrOTUCTION. ...c.tiiiitt ittt sttt sttt 1
IR O 1 T T TSR 1
N |1 1L USSP PPN 1
1.3. Background and SIgNITICANCE .........cuiiiiiiieiiieii e 2
1.4, Dissertation OrganiZation ............cceoiueiieiieie ettt se et raeste s e s be e e s e e sreeneenee e 5
CHAPTER 2 A Planar Piecewise Continuous Lumped Muscle Parameter Model for Prediction of
Walking Gait with Passive-Dynamic Ankle-FOot OrthosSiS..........cccoveiieveiiic i 6
220 I )£ (T [Tt 4 o o SR 7
2.2. The Planar Piecewise Continuous Lumped Muscle Parameter (PPCLMP) Model.................. 8
2.2.1. LUMpPed MUSCIE PAraMELEIS. .....ccueiuieiieieieie ittt bbbt 12
2.2.2. SINGIE STANCE PRASE ....cuvicviiceicie ettt ettt e sbe e teeste e e e sneeanas 13
2.2.3. DOUDIE StANCE PRaSE.......ceiiiieii ettt nns 14
2.2.4, SWING PRESE ...ttt ettt e e e e e raeera e 16
2.2.5. Phases Continuity — FOrward DYNAMICS.........ccuiiriiirieiieriesie sttt 17
2.2.6. Initial Conditions at the RIGNt TO ......ooiiiiie e 19
2.2.7. SENSITIVITY ANAIYSIS ...ttt bbbttt sb e b b i eneas 20
2.2.8. Summary of the Planar Piecewise Continuous Lumped Muscle Parameter (PPCLMP)

0o [ USSR 27
2.3 EXPEIIMENT SBIUD....ueiitieiiiie sttt sttt ettt b e sbe e nbe et b e e nbe e e e sbeennas 28
2.4, RESUITS ...t bbbt bbbttt bbb b nnenre s 30
241, PHOE STUAY ...ttt ettt b et et e b et sne e e 31
2.4.2. Model Prediction fOr SiX SUDJECES .....c.vcviiieiecic et 38



2. DISCUSSION ettt e ettt e e e e e e e e et eeeeeeeeee et eeeeeeeaa e e eeeeeeeeeaannnees 39

2.5.1. KNEE ROM ...ttt ettt e e s bt et e e be e e ste e sbeesnbeenbeeenneen 40
2.5.2. HIp ROM and Step LENGLN ...c.viie e 41
2.5.3. SWING aNd StANCE TIME ....viiiieiieie ettt re et e sneenns 42
2.5.4. Model Applications, Assumptions, and LIMItations............ccccceevereereiiieve e 42
pZL I ©70] 4 Tod 131 ] TR 46
CHAPTER 3 Utilization of the Inertial Measurement Unit for Evaluation of Gait with Passive
Dynamic Ankle-foot Orthosis based on the PPCLMP Model .........ccccoeviiiiiiinniiiniiecceseen, 47
X T0 O 101 0o L1t 4 ] o RSO PSORRR TP 48
3.2. Algorithm for Estimating Initial Conditions and Lumped Muscle Parameters based on IMU
Data — INVEIrSE DYNAIMICS .......eeiviiieiiieiie et e et e e sta e teeeesreesbeenesneenteeneens 51
TN B @Y= Y -SSR R 51
3.2.2. Framework for Gait Event Identification and Angle Estimation..............cccccovveviviiennnee. 52
3.2.3. Optimization Problem for Searching the Initial Conditions and Lumped Muscle Parameters
....................................................................................................................................................... 54
3.2.4. SENSITIVITY ANAIYSIS ..ottt bbbttt ettt b e eneas 60
3.2.5. AlQOrIthmM SUMIMAIY ...c.ooiiiieieie ettt sbe e te e nte e eeeneeenas 62
3.3. SUDJECES aNd MELNOUS ......c.eeeiiiiiieeee e 62
Buh RESUILS ...ttt bbbttt b bbbt Rttt ettt bennenne s 65
3.4.1. Observed and Estimated Initial Joint Angles and Angular Velocities..........ccccooevirinnnnns 65
3.4.2. Estimated Lumped MUSCIE Parameters............covevveieiieiec et 67
3.4.3. Observed and Predicted Gait Parameters...........cocuoviiiieieiene et 68
3.4.4. Gait Symmetry and Efficiency for Evaluation.............c.cccoveiiiiiiicic e 70
TR TR I T 1ot U 11 [ o OSSR 74
3.5.1. Initial Joint Angles and Angular Velocities DIifferences .........cccvveiveeiie i 74
3.5.2. Estimated Lumped MUSCIE Parameters...........cocoiiiiiiiieiiieie st 74
3.5.3. GaIL PATAMEBLEIS ...ttt ettt b et b et e et e et e ne e 75
3.5.4. Evaluation of Gait With AFOS ........ccccieieiieiieie et sae e e e 78
35,5, LIMIEALIONS ...ttt ettt b e bbbt e et st e et e ne e e 80
KB 0] o] 131 (] 1SS 81
CHAPTER 4 An Investigation of Gait Prediction Accuracy of the PPCLMP Model .................. 82
I 1 (oo (0ot T o F TSRS P S PTPT PR PR 84
4.2, IMIBENOUS. ...t b etttk R e bt bRt b e ene e bt et nne e 86



O S TU o =T od £ 86

A o (0 Tox =T (1] - OSSP 86
R B D L W O] | [T {0 o SRS P PP 87
4.2.4. DAta PrOCESSING. .. c.ueiteiiieiieiieteete ittt b bbbt b e e bbb 89
4.2.5. STAtiStICAl ANAIYSIS......eiiiiiieieee et e 91
G - T1 ] L OSSR 92
4.3.1. RMSE between Observed and Predicted RESUILS ..........ccoeiiiiiiiiniiinicicee e 93
B A NN [ 1 OSSP 93
4.3.3. Accuracy of Initial CoONItIONS.........ccciviiiiieie et 95
4.3.4. Accuracy of Lumped MUSCIe Parameters...........cooviiiiiiieiieiese e 95
4.3.5. Accuracy of Step Lengths and SWING TIME ........cccoeiioiiiiiieeie e 95
4.3.6. Accuracy of Gait Symmetry INAeX (SI) ..o 97
4.3.7. Accuracy of WalKing SPEEA .......cc.ooveiiieciece et 98
O D T ol B (S1S] o] OSSR 98
4.4.1. Accuracy of the Initial Conditions and Lumped Muscle Parameters ...........ccccccevvevneennnne. 98
4.4.2. Accuracy of the Step Lengths, Swing Time, Gait Symmetry, and Walking Speed ......... 101
4.4.3. Other SUDJECT VariabIES .......c.ocviiiiiie et 101
4.4.4, LiImitations and FULTUIE WOTK.........ccueiiiieiieie ettt sneenne e 102
4.5, CONCIUSIONS ..ottt sttt b ettt e et et be s be bt e st e s et e nbesbesbenbenreas 102
CHAPTER 5 DISCUSSION.......ciitteuieitiesiteieeseesteesieaseesseesteeseesseesseaseessessssessesssesseessessessseesseensessesssenns 104
5.1. Broader APPHICALIONS ........ccviiiiii ettt e e s e sre e e e reene s 104
5.1.1. Developing a Decision Support System of AFO DeSign.........cccovriririnienenene e 104
5.1.2. Developing a Cyber-based System for AFO Evaluation .............cccccevvevieiiiiiic e, 106
5.1.3. Investigating of JOINE STIFTNESS........ooiiiiiiiei e 107
5.2. Suggestions fOr FULUIE WOIK ..........c.ooiiiiii it 109
CHAPTER 6 CONCIUSIONS.......ceiiiiiieiireieeieseese e siee e eaessaesteesaesseestaesesseesseessesseesseesseensessessseans 113
APPENDICES ..ottt ettt sttt ettt ettt n et ettt neene s 118
REFERENQ E ... ..ottt e et e e e bt e e et e e e ae e e e neeeenseeeeseeeenneeeanes 145



LIST OF TABLES

Table 2-1: The link-length and link-mass ratios used to estimate the link lengths and masses for
simulation, and the measured link lengths and estimated link masses for the male subject in
1< o] 12 TSRS RU TP 12

Table 2-2: Summary of lumped muscle parameters in the model ............cccoovreievie i, 13

Table 2-3: Summary of variables and equations used in Appendix A to solve the movement
(o [U T T TR L= 1D PSSR 16

Table 2-4: Summary of observed joint angles for hip, knee, and ankle, joint angular velocities for
hip and knee at right TO, and the step length (S;) to stature (L) ratio during the walking gait. . 22

Table 2-5: Range of initial conditions for the sensitivity analysis and simulation....................... 24

Table 2-6: The statistics of sensitivity analysis output (error vectors and gait parameters) and the
percent contributions of variations in initial state vectors to variations in error vectors and gait
parameters for all 918 valid combinations of initial state VEeCtOrS. ..........ccccceviverviieiiieic e 26

Table 2-7: Summary of AFO stiffness, error vectors, and comparisons between observed (O) and
predicted (P) initial conditions for simulations (hip flexion/extension with +/—; knee flexion with

+). The errors were estimated with the scalar factor, f, equal to 0.1 seconds............c.ccccveverneenee. 32
Table 2-8: Correlation coefficient (CC) and root mean square error (RMSE) between observed
and predicted ankle, knee, and hip flexion angles for 10 complete gait cycles..........c.cccoeevenenee. 34
Table 2-9: Comparison between the observed (O) and predicted (P) range of motion (ROM) for
KNEE AN NP ANGIES .....viiieeieiee e re et e et e st e s beeteeneesae e 35
Table 3-1: Summary of 10 lumped muscle parameters in the model. ..........ccccocevvvevviiniiieieennnnn, 58

Table 3-2: Ranges of the initial conditions and lumped muscle parameters for the enumeration
method and the ranges of AFO stiffness and subject parameters for the sensitivity analysis. ..... 60

Table 3-3: Percent contribution of variations in the initial conditions, lumped muscle parameters,

AFO stiffness, gender, stature, and body mass to variations in gait parameters. ...........c.ccoceevene. 62
Table 3-4: Anthropometry of Subjects 1 and 2 and the stiffnesses of AFOs used in the
S d o L=] 1 1T o SO USSP RO P PR PRTROR 63

Table 3-5: Summary of the estimated swing time, stance time, and shank pitch angles and
angular velocities at TOs and HS for the impaired leg based on the IMU attached to the
IMPAITEA-SIAE SNANK. ...ttt e et e sre e sbeeseesreesbeenee s 66

Table 3-6: Comparison of initial impaired-leg hip and ankle joint angles and angular velocities
between observed values (O) and predicted (P) ValUES. .........ccoueiiiiiiiiiiie e 66

Vi



Table 3-7: Statistics of lumped muscle parameters of the hip and knee joints, k;;,,, in Nm/deg,

and ankle joints, 7j3,, iIn Nm/kg summarized in Table 3-2. ..o, 68
Table 3-8: Summary of the observed (O) and predicted (P) gait parameters. ..........cc.ccevverveennnne. 69
Table 4-1: Anthropometry Of SIX SUDJECLS ......ccvviiiiiiie e 86

Table 4-2: ANOVA table for independent variables with significant effects (p < 0.05). L
represents the left side, R represents the right side, M represents the male, and F represents the
female. The significant effect of gender is shown as pooled value comparisons between males
and females. The significant effect of stature is shown as the first-order coefficient and the
intercept from ANOVA. The body mass and the interaction terms had no significant effect on the
dePendent VariabIES. ..........ooieieeiece ettt nn 94

Table 4-3: The correlation coefficients between the stature and ¢, of initial angles and angular
velocities. The g, of all initial angles and angular velocities were ANOVA-significant (p < 0.05)

affected by stature except the ;- of the initial back-ankle angle (613 (t0))....cccccooininiiniiniinnnnns 95
Table 4-4: The rgy¢ during the SW and DS for six subjects. The L and R for g, during DS

represent the side of the DACK-1€Q. ..o 95
Table 4-5: Calculated gait symmetry indices (Sls) for observed (O) and predicted (P) step lengths
and SWinNg tiMe OF SIX SUDJECTS. .....ccuoiuiiiiiiiiiiei bbb 97
Table B1: Combinations of joint angles (65, =20 deQ) ....ccvevveiieiiicieiiece e 128
Table B2: Combinations of joint angles (65, =25 deQ) ....coveieiieiiiieieece e 129
Table B3: Combinations of joint angles (625, =30 0EQ) ..oovevverierireieiieieieere e 130
Table B4: Combinations of joint angles (6,5, =35 deQ) ...ooovveieiieiiiieieee e 131
Table B5: Combinations of joint angles (62, =40 dEQ) ..ocvevveririeiiiiiieieieee e 132
Table B6: Combinations of joint angles (6,5, =45 deQ) ...ooovveieiieiiiiiieee e 133
Table B7: Combinations of joint angular VEIOCILIES............cccccveiieiiiiciiece e 134

Table C1: The slope, intercept, and goodness of fitting of the linear regression between reaction
torque and DENAING ANGIE.......cc.oi i 137

Table D1. Observed (O) and predicted (P) initial angles (initial shank pitch angle 6(t,), back-hip
angle 64, (t,), and back-ankle angle 6,5(t,)) and angular velocities (shank pitch angular velocity
6(t,), back-hip angular velocity 8, (t,), and back-ankle angular velocity 6,5 (t,)) for 40 gait
cycles (n = 40) for each subjects under each CONdition...........cccccveieiiiereiienieece e 138

Table E1. The measured SEMG root mean square (RMS) for left biceps femoris (IBF), left rectus
femoris (IRF), right biceps femoris (rBF), and right rectus femoris (rRF), and the predicted hip
and knee lumped muscle parameters during the SW and DS. n = 40 for each subject under each

(o70] 0o L1 ([ o FOR SRRSO PSPPSR 140
Table F1. Observed (O) and predicted (P) step lengths, swing time, and walking speed for six
subjects with 40 gait cycles (n = 40) for each subject under each condition.............cccccoeevernennee. 142

Vii



LIST OF FIGURES
Figure 1-1: Definitions of gait phases reprinted from [9]........ccccooviiiiiiiii i, 3

Figure 2-1: The phases and events of the left (red) and right (green) legs during a gait cycle: the
gait starts from the right TO, then to the right SW and left SS, then to the right HS, then to the
DS (right leg in front), then to the left TO, then to the right SS and left SW, then to the left HS,
then to the DS (right leg in the back), and then back to the right TO (start of the gait). ................ 9

Figure 2-2: (a) Biomechanical model with definitions of limb links, joints, and joint angles in the
sagittal plane and (b) the foot anatomy and dimensions in the sagittal plane (part of the image
AAOPLEA TrOM [52]). vttt bbbttt bbbt ene s 11

Figure 2-3: Summary of state vectors transferred between phases and forces and equations
related to each phase assuming the AFO is on the left ankle. Top diagrams represent the joint
angles and lumped muscle parameters related to the right leg (solid black) movement during each
phase: (a) The right leg movement during the SW is simulated by a double-pendulum with two
rotational springs on the knee and hip joints, from right TO (to) to right HS (t1), (b) the leg
movements during the DS are simulated by a kinematic chain model with the right leg in front,
from right HS (t1) to left TO (t2), (c) the right leg movement during the SS is simulated by an
inverted pendulum, from left TO (t2) to left HS (t3), and (d) the leg movements during the DS are
simulated by a kinematic chain model with the right leg in the back, from left HS (t3) to right TO

) TSRS 15
Figure 2-4: Flowchart of the proposed PPCLMP model for predicting gait parameters.............. 28
Figure 2-5: Marker settings for the controlled experiment. ... 30

Figure 2-6: Comparisons between the observed (n = 10) and predicted hip flexion angles for the
left and right legs under each condition. The presented phase blocks are colored based on the
model-predicted time 0f SS, SW, and DS.........coooiii s 33

Figure 2-7: Comparisons between the observed (n = 10) and predicted knee flexion angles for the
left and right sides under each condition. The presented phase blocks are colored based on the
model-predicted time 0f SS, SW, @nd DS.........coooiiiiiiee e 33

Figure 2-8: Comparisons between the observed (n = 10) and predicted ankle flexion angles for
the left and right sides under each condition. The presented phase blocks are colored based on

the model-predicted time 0f SS, SW, and DS..........coiiiiii e 34
Figure 2-9: Comparisons between the observed and predicted step length for left (AFO) and right
sides under each condition (n = 10). Values are mean £ SE.........ccccociveiieiinieneene e 36

Figure 2-10: Comparisons between the observed and predicted swing time for left (AFO) and
right sides under each condition (n = 10). Values are mean £ SE. ..........cccccooiiiiiiiiinicnenieens 37

viii



Figure 2-11: Comparisons between observed and predicted stance time for left (AFO) and right
sides under each condition (n = 10). Values are mean £ SE.........ccccocvvieiiieieninneene e 37

Figure 2-12: Comparison between observed and predicted step lengths for left (AFO) and right
sides under each condition for six subjects (n = 40). Values are mean £ SE. ..........cccccevevevennnnne. 38

Figure 2-13: Comparison between observed and predicted swing time for left (AFO) and right
sides under each condition for six subjects (n = 40). Values are mean £ SE. ..........cc.ccecvevennnne. 39

Figure 2-14: Hill muscle model that contains a contractile element (CE), a series spring element
(SE), and a parallel spring element (PE). Diagram downloaded from [167].........cccocevvninninnnns 44

Figure 3-1: The global coordinate system (xo-, yo-, and zo-axes) and local coordinate system (x-,
y-, and z-axes) of the IMU defined in this study from (a) the side view of the IMU-attached AFO
and (b) the back view of the IMU-attached AFO, and (c) the local coordinate system of the IMU
attached to the back of the AFO calf rotating with respect to the global coordinate system in the
Sagittal Plane (SIAE VIBW). ..cveeiiieie ettt ettt e e te e sreenneenee e 50

Figure 3-2: The framework for gait event identification and angle estimation based on
accelerations, angular velocities, and headings measured by the IMU. The peaks of resultant
acceleration measured from the accelerometer are used to identify the gait events and calculate
swing and stance time. The angular velocities measured from the gyroscope and the headings
measured from the magnetometer are used to calculate the shank pitch angle and angular
velocities. The swing and stance time and shank pitch angles and angular velocities then are used
as the constraints in the optimization problem to find the optimal initial conditions and lumped
MUSCIE PATAMIELEIS. ..ottt s et e et e s b e et e e e s be e teersesbeenbeansesbeesesneesreeneens 53

Figure 3-3: The optimization problem for searching the optimal initial conditions and lumped
muscle parameters for model prediction and gait evaluation based on the estimated swing time,
stance time, and shank pitch angles and angular velocities at identified gait events to minimize

estimated total energy eXPENItUIE. ..........cocoiiiiiieie et 54
Figure 3-4: The geometry and angle definitions at the impaired-side TO, t,, as shown in Figure
B ettt ettt bRt R e Rt Ao £ e be R e Ee R e Rt Rt e R e e R e et e be e Ee R e Rt e Rt e Rt e Rt et e benbenbeebenreareas 56
Figure 3-5: IMU attachment for the LEGSys™: one IMU on each thigh, one on each shank, and
0ne 0N the TOWer DACK TrUNK. .......ccui i 65
Figure 3-6: Observed and predicted SI under all conditions based on mean step lengths. Values
ArE IMEAN £ SE. oottt et e s e et e e e e e b et e e e raeeanreeans 71
Figure 3-7: Observed and predicted SI under all conditions based on mean swing time. Values
L oo e PRSP 72
Figure 3-8: Observed and predicted walking speed under all conditions as summarized in Table
3-8. ValUBS @I MEAN £ SE.. ..ottt et e e et e e e ae e sae e beesraeareeas 73
Figure 3-9: Predicted energy expenditure under all conditions. Values are mean + SE. ............. 73

Figure 4-1: Equipment for measuring movements and muscle activities of the BF and RF: (a) the
placement of vision-based motion tracking markers from the side view, (b) the IMU attached to
the back of the AFO calf, and (c) the placement of four SEMG units on IBF, IRF, rBF, and rRF.
....................................................................................................................................................... 89



Figure 4-2: Amplified SEMG RMS during a sample gait of Subject 3 under the NAFO condition.
TO represents the toe-off, HS represents the heel strike, SW represents the swing phase, SS
represents the single stance phase, DS1 represents the doubles stance phase with right leg behind,
and DS2 represents the double stance phase with left leg behind, IBF represents the left biceps
femoris, IRF represents the left rectus femoris, rBF represents the right biceps femoris, and rRF
represents the right rectus femoris. The top table shows the mean and standard deviation of the
SEMG RMS during each phase that are used to compare with the associated lumped muscle

(S5 L =T 4TS (=T 6O PP PR 91
Figure 4-3: The range of errors of predicted step lengths for subjects with different statures (all
CONAITIONS POOIEA). ...ttt sb e 96
Figure 4-4: The range of errors of predicted swing time for subjects with different statures (all
CONAITIONS POOIEA). ...t bbb bbb ene s 96
Figure 4-5: The range of errors of predicted Sls for step length and swing time of subjects with
different statures (all conditions POOIEA). ........coveiiiiiiiiiiiee e 97
Figure 4-6: The range of errors of predicted walking speed for subjects with different statures (all
CONAITIONS POOIEA). ... bbbt sb b 98
Figure 5-1: Workflow for predicting AFO stiffness effect on gait and searching for optimal AFO
] L S3STTSRSPRRSSRS 105
Figure 5-2: Overview of a cyber-based AFO design and evaluation system ...........c.ccccceveeueenee. 107
Figure 6-1: Overview of the model inputs (orange) and model outputs (blue). ..........cc.ccovnene. 114

Figure 6-2: The scope of investigations on model inputs and outputs in Chapters 2, 3, and 4. . 117

Figure Al: Diagram of DS posture with the right leg in front............ccocoooiiiie 119
Figure A2: Diagram of forces and torque that applied to the left foot.............ccccovveiiiiincnn 121
Figure A3: Diagram of forces and torque that applied to the left lower leg............cocvvvrininns, 123
Figure A4: Diagram of forces and torque that applied to the left upper leg.........ccccooevveinennnne. 125
Figure A5: Diagram of forces and torque that applied to front-leg (right)........cccocoeviniininnnnns 126
Figure C1: Component of the SMApp machine developed by Barton Research Group at the
UNIVErSIty OF MICRIQAN. .......ooiiiiiiie e 135
Figure C2: The stiffness plots for (a) AFO1 before the trials, (b) AFO1 after the trials, (c) AFO2
before the trials, and (d) AFO2 after the trialS...........cccooriiiiii e 136
Figure G1. The webpage with input predicted animation of gait and joint angles for demonstration
OF MOl APPHICATION. ... ettt 144



LIST OF APPENDICES

Appendix A: Modeling of the Kinematic Chain during DS ... 118
YN I CT=To] 1111 £ TP UPTOPRRURTOTRPORN 118
A2. Free Body Diagram — Back-FOot (Left)........ccccooiiieiiieii e 120
A3. Free Body Diagram — Back-Lower-Leg (Left) ........ccooieiiiiiiiiriieeee e 122
A4. Free Body Diagram — Back-Upper-Leg (Left) ......ccccoveeiieii e 124
Ab. Free Body Diagram — Front-Leg (RIGNT) ......ccooiiiiiiiiieeeeee e 126
AAB. SUMMIATY vttt ettt ettt ettt ekt e et b e e e b et e e R bt e e e s e e e Rt e e eR b e e e nn b e e e nnb e e e nnb e e e neeennnes 127
Appendix B: List of Combinations for Sensitivity Analysis in Chapter 2 ..........cccccocvniiinnne 128
AppendiX C: AFO SHTFNESS TESL. ....vviiiiieecece ettt 135
Appendix D: Observed and IMU Predicted Shank Pitch Angles and Angular Velocities in

(@8 T o) ] TSP PRSPPI 138
Appendix E: Measured Electromyography (EMG) Signals and the Estimated Hip Lumped

Muscle Parameters during the Swing Phase (SW) and Double Stance Phase (DS)................... 139
Appendix F: Observed and Predicted Gait Parameters in Chapter 4..........cccccoovvivencieninnnnnns 141
Appendix G: Webpage for Demonstration of Model Application..............ccccccevvieiiviviiiieieens 143

Xi



ABSTRACT

When joint stiffnesses are affected by injuries or illnesses they can interfere with gait and
with activities of daily living, work, and leisure. Biomechanical models have been proposed for
describing the effects of these conditions and various interventions on the different phases of

gait.

This dissertation reports the development of a planar piecewise continuous lumped
muscle parameter (PPCLMP) model for investigating how different joint stiffnesses affect the
gait phases individually and collectively. The proposed PPCLMP model characterizes the
movements of lower limbs during each gait phase by a simplified dynamic system: the single
stance phase by an inverted pendulum, the double stance phase by a kinematic chain, and the
swing phase by a double pendulum. The model uses lumped muscle parameters to characterize
the joint torques during each phase. The phase continuity is achieved by setting the joint angles
and angular velocities at the end of one phase equal to those at the start of the next phase. The
model can predict gait movements from given initial conditions (initial joint angles and angular
velocities), anthropometry, lumped muscle parameters, and joint stiffness in a forward-dynamic
mode. Also, if the gait movements are known, the model could estimate the lumped muscle

parameters in an inverse-dynamic mode.

In the first study, the model was used in the forward-dynamic mode to predict joint
angles and gait parameters for six healthy subjects’ anthropometry, ankle joint stiffnesses

(without ankle-foot orthosis (AFO), with a low-stiffness AFO, and with a high-stiffness AFO),
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initial conditions, and constant lumped muscle parameters. Results showed that the trend of gait
parameters changings (longer step length and shorter swing time on the AFO-side for higher
AFO stiffness) with different AFO stiffnesses were qualitatively well predicted by the model but
quantitative prediction accuracy was limited (the mean errors were 0.15 m and 5% for the
predicted step length and swing time, respectively) due to the constant values of lump muscle

parameters.

The second study examined the use of the model in an inverse-dynamic mode using data
from a single inertial measurement unit (IMU) attached to the lower shank in order to estimate
the initial conditions and lumped muscle parameters for each gait cycle. These were used by the
model in the forward-dynamic mode to enhance the gait prediction. Results from two patients
wearing AFOs demonstrated that the model prediction was markedly improved comparing with
the first study by utilizing the inverse-dynamic mode as the mean RMSE was 0.07 m and 2% for

predicted step length and swing time, respectively.

The third study investigated the PPCLMP model prediction accuracy using the
inverse- and forward-dynamic processes proposed in the second study. Three male and three
female healthy subjects were recruited to walk with IMU-instrumented AFOs on their left feet to
measure step lengths and swing time, while surface electrodes measured selected muscle
activities for comparison with lumped muscle parameters. Results showed that the model
prediction accuracy of step lengths and walking speed improved significantly (p < 0.05) with

increasing stature; however, model prediction accuracy of swing time unaffected by stature.

It was concluded that the PPCLMP model of gait has the potential for predicting how the
prescription of an AFO of a given stiffness will affect gait, but more research is needed to refine

model predictions by improving the representation of joint torques during gait.

Xiii



CHAPTER 1 Introduction

1.1. Overview

Joint stiffness that describes the linear relationship between joint torques and joint angles
can be affected by impairments, assistive devices, and activities [1-4]. Biomechanical models of
human walking gait can be used to characterize joint stiffness and predict gait performance.
These models are useful in investigating how the change of joint stiffness, like suffering from
muscle spasticity or wearing ankle-foot orthosis (AFO), affects gait. This thesis develops and
evaluates a planar piecewise continuous lumped muscle parameter (PPCLMP) model that
characterizes gait phases as continuous dynamic systems and lumps joint muscle forces to
simplify the analysis of human gait and predict gait with different joint stiffnesses based on the

kinematic data measured from an inertial measurement unit (IMU) attached to the AFO.

1.2.  Aims

The general aim of this work is to develop and evaluate the PPCLMP model that can be
used to predict walking gait based on anthropometry, lumped muscle parameters, joint stiffness
(ankle with AFO as an example), and the initial conditions (initial joint angles and angular

velocities) of the gait. To achieve this aim, the following objectives are established:

1. Develop a PPCLMP model that predicts how joint stiffness affects gait via forward

dynamics.



2. Utilize IMU data to estimate the initial conditions and lumped muscle parameters of

each gait cycle via inverse dynamics to enhance the model prediction of gait.

3. Evaluate the model prediction accuracy for various anthropometric inputs by

comparing predicted gait parameters with measurements.

1.3. Background and Significance

Joint stiffness change and underlying pathologies have been identified based on
observations of gait patterns by clinicians as movements and gait patterns reveal much about the
physical and behavioral aspects of individuals [5-7]. For example, stroke patients may tend to

circumduct or lift their legs as a result of increasing joint stiffnesses in their ankle and knee [5,8].

To learn the mechanism of human gait, gait patterns are commonly divided into “stance”
and “swing” phases as shown in Figure 1-1 [9]. The stance phase accounts for approximately
60% of the total gait cycle and begins at the heel strike (HS), which is the instance that the heel
of the forward-moving foot makes contact with the walking surface. This phase continues while
the foot is in contact with the walking surface and ends when the foot leaves the walking surface
at “toe-off” (TO). The swing phase (SW) begins at the TO and ends at the HS. The stance and
swing phases alternate between the right and left legs during gait. Since there are overlaps
between the stance phases of the right and left legs, investigators have further divided the stance
phase into two phases: 1) single stance phase (SS) when only one leg is in stance phase and 2)
double stance phase (DS) when both legs are in stance phase [10-12]. These definitions help
when building biomechanical models for characterizing movements during each phase of

walking gait.
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Figure 1-1: Definitions of gait phases reprinted from [9].

Biomechanical models have been developed to characterize, predict, and study various
aspects of human gait movement [10,13-15]. The human body is characterized as an array of

link lengths, 1;, and time-dependent joint angles, 01y, () in biomechanical models [13,16-18].

These biomechanical models can be used to describe the spatial and temporal relationship
between the segments of the body during walking [19]. Further, biomechanical models can
explain how individual physical attributes, behavior attributes, task attributes, and environmental
attributes affect biomechanical loads and contribute to gait performance [20-22]. Common
approaches using biomechanical models to study walking gait include: 1) dividing the walking
gait into separate phases, 2) characterization of the legs as a series of links, 3) adding inertial

properties to lower limbs, and 4) adding muscle forces to joints.



By adding inertial properties to lower limbs, models have been developed to characterize
lower limb movements during the SS by an inverted pendulum [13,23-25]. The inverted
pendulum models were attempts to simplify gait in order to investigate leg movements.
However, these models for the SS assume no active joint torques, which is not true for the SW

and DS.

Biomechanical models have been developed to investigate lower limb movements during
the SW and DS by characterizing hip, knee, and ankle joint torques as they were found to be
related to gait performance and stability [26—28]. Double pendulum models were proposed to
calculate the duration of SW and step length by characterizing the movements of lower limbs
during the SW by a double pendulum with torques on the hip and knee joints [29-33]. Kinematic
chain models have been used to characterize the lower limb movements during the DS with the

active push-off torque at the back-ankle [34,35].

However, all these models focus on a specific phase or aspect of normal walking gait and
are not used to investigate how different joint stiffnesses resulted from impairments and wearing
assistive devices could affect movements across the whole gait cycle. This work contributes a
planar piecewise continuous lumped muscle parameter, PPCLMP, model describing how
anthropometry, lumped muscle parameters, joint stiffness, and initial conditions of gait
contribute to gait performance across the entire gait cycle by using gait with an AFO as an

example. The proposed model could be used to:

e Predict the effect of different joint stiffnesses on step length and swing time
e Utilize IMU data to estimate initial conditions and lumped muscle parameters for each

gait cycle to enhance model prediction



e Evaluate AFOs for gait performance based on predicted gait performance concerning gait

efficiency and symmetry

1.4.  Dissertation Organization

The remainder of the dissertation has four additional chapters. Chapter 2 derives the
PPCLMP model and demonstrates the model in the forward-dynamic mode for gait prediction.
Chapter 3 derives an algorithm that uses the model developed in Chapter 2 in the
inverse-dynamic mode to estimate the initial conditions and lumped muscle parameters for each
gait cycle based on the kinematic data measured from an IMU attached to the AFO. Chapter 4
examines the model prediction accuracy of walking gaits with AFOs for males and females of
various sizes. Chapter 5 discusses model applications and suggests future work regarding the

proposed model. Chapter 6 summarizes the dissertation.



CHAPTER 2 A Planar Piecewise Continuous Lumped Muscle Parameter Model for

Prediction of Walking Gait with Passive-Dynamic Ankle-Foot Orthosis

Abstract

This work proposes a planar piecewise continuous lumped muscle parameter (PPCLMP)
model for predicting human walking gait with the passive-dynamic ankle-foot orthosis (AFO)
based on forward dynamics. The model characterizes the sagittal-plane movement of the lower
limbs during the single stance phase as an inverted pendulum, the double stance phase as a
kinematic chain, and the swing phase as a double pendulum. For the normal gait, the
model-predicted step length was sensitive (> 1% contribution) to the initial joint angle, and the
predicted swing and stance time were sensitive to the initial angular velocity. To demonstrate the
model could predict how different AFO stiffnesses affect gait in the forward-dynamic mode and
validate the results, two AFOs with low (3.4 Nm/deg) and high (6.9 Nm/deg) stiffnesses were
tested on seven healthy subjects (four males and three females) for level-walking. The model
successfully predicted that the high-stiffness AFO resulted in longer step length and shorter swing
time on the side wearing the AFO comparing to the gait with the low-stiffness AFO. The same
trend was found in the experimentally observed step length and swing time. The model was good
at qualitatively predicting the trend of three gait parameters (step lengths, swing time, and stance
time) changing with different AFO stiffnesses but limited on quantitative prediction accuracy due

to the constant values of lump parameters.



2.1. Introduction

Gait impairments that affect walking interfere with activities of daily living, work, and
leisure. One of the leading gait impairment syndromes is the drop foot, and stroke is the leading
cause of the drop foot syndrome. Approximately 795,000 people suffer a new or recurrent stroke
each year [36], and 20% to 30% of stroke patients are affected by drop foot during their
rehabilitation [37]. Drop foot affects patients’ gait and abilities to participate in regular daily
activities safely. To help improve and restore normal gait functions for drop foot patients,
passive-dynamic ankle-foot orthoses (AFOs) are commonly used as assistive devices. The
bending stiffness of AFO has been found to be the main factor that affects the patient’s gait
performance [38-41]. Currently, determining the ideal stiffness of an AFO for a patient is a
subjective process based on the observation and experience of clinicians, as well as feedback
from the patient. A knowledge gap addressed in this chapter is how or if the stiffness of the

prescribed AFO would improve the patient’s gait is barely predictable.

Biomechanical modeling has been investigated in quantifying the walking gait to aid
clinicians in evaluating gait after treatment. The gait for walking is commonly divided into single
stance phase (SS), double stance phase (DS), and swing phase (SW). Detailed biomechanical
models have been built to characterize the leg movements in SS, DS, and SW. The SS was
characterized by the inverted pendulum model with the leg rotating about the ankle joint [13,23—
25]. The DS was characterized by a kinematic chain model with both feet constrained on the
ground [34,35]. The SW was characterized by a double pendulum model with the upper leg as
the upper pendulum and lower leg as the lower pendulum [29-33]. However, the ability to
combine these models into a continuous gait model for the whole gait prediction is still missing.

The goal of this work, therefore, is to develop a planar piecewise continuous lumped muscle



parameter (PPCLMP) model in which each leg is continuously looped from SW to DS to SS to
DS, and then back to SW. The concept of piecewise continuous proposed by Fu et al. [42]
specifies that the joint angles and angular velocities of hips, knees, and ankles at the end of one
phase should be equal to those values at the start of the next phase. After being given the initial
hip, knee, and ankle joint angles and angular velocities at the start of SW, the PPCLMP model
should be able to predict the joint angles and angular velocities as well as the step lengths, swing

time, and stance time throughout the walking gait cycle.

Toward this end, the goal of this study is to develop a PPCLMP model to predict human
walking gait, as well as the effect of AFO stiffness on gait performance. Section 2.2 derives the
PPCLMP model. Section 2.3 outlines the experimental setup to measure the human walking gait.
Section 2.4 compares the model-predicted and the experimentally observed gait parameters of a
healthy male subject. Section 2.5 discusses the model prediction accuracy, potential applications,

and limitations.

2.2.  The Planar Piecewise Continuous Lumped Muscle Parameter (PPCLMP) Model

As shown in Figure 2-1, the model simulates each gait cycle starting from and ending at
the right toe-off (TO). For the right leg, the gait loops from SW to DS to SS to DS, and then back
to SW. Accordingly, for the left leg, the gait loops from SS to DS to SW to DS, and then back to
SS. Between the right TO and the right heel strike (HS) are the right SW and left SS. After the
right HS and before the left TO is the DS with the right leg being the front-leg. After the left TO
and before the left HS are the right SS and left SW. After the left HS and before the right TO is

the DS with the right leg being the back-leg.
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Figure 2-1: The phases and events of the left (red) and right (green) legs during a gait cycle: the gait starts from the right TO, then
to the right SW and left SS, then to the right HS, then to the DS (right leg in front), then to the left TO, then to the right SS and
left SW, then to the left HS, then to the DS (right leg in the back), and then back to the right TO (start of the gait).

As shown in Figure 2-2(a), the planar link system of lower limbs [43-45] has been
adopted in this study to characterize the movements of four gait phases. The planar link system
contains six body segments (left upper leg, right upper leg, left lower leg, right lower leg, left
foot, and right foot) and six hinge joints (left hip, right hip, left knee, right knee, left ankle, and
right ankle joints). Body segments are represented as homogenous rod links with lengths of L;
and uniformly distributed masses of M. The foot dimensions are characterized by the rocker

model [46-48] in four parts: forefoot, mid-foot, heel, and ankle, as shown in Figure 2-2(b).

The length of link i is denoted as L, which could be from direct measurements of
individuals. When the direct measurements of the subject are not accessible, the link length can

also be estimated based on the link-length ratio that follows:

L; = Lol; (2-1)



where [; is the link-length ratio of link i and L, is the measured stature of the subject. Similarly,

the mass of link i is denoted as M; follows:
Mi = Momi (2_2)
where m; is the mass-ratio of link i and M, is the measured body mass.

The [; and m; are commonly used to estimate the length and mass of each body link
[16,49-51]. The [; (upper leg, lower leg, ankle, forefoot, mid-foot, and heel length ratios) and m;

(upper body, upper leg, lower leg, and foot mass ratios) for male are listed in Table 2-1.

10



Torso, M,

Left (right) hip joint /4
o

Right upper leg,
Ly, M,

Left upper leg,
Ly, M,

Right | flexion, Left knee joint

hip 8.,
flexion,
ell

Right knee joint

Right lower leg,
Lo, M,

" Left
_I_

kneeg
flexion,
H 12

Left lower leg,
Ls, My

Right ankle joint

Right — .-

ar.gkle i Left ankle joint

flexion, Right foot —)

[, I Left foo
Leftankle 1

- ¥
'Flexmn,ﬁﬁ:"_ \

— =
_—
Mid-foot, L3, M, Forefoot, Lg

Ball Toe

I_ Ankle , L, ——

“— Heel . l.5

Ankle Projection
(b)

Figure 2-2: (a) Biomechanical model with definitions of limb links, joints, and joint angles in the sagittal plane and (b) the foot
anatomy and dimensions in the sagittal plane (part of the image adopted from [52]).



Table 2-1: The link-length and link-mass ratios used to estimate the link lengths and masses for simulation, and the measured link
lengths and estimated link masses for the male subject in Section 2.3.

Parameters i Ratios*, l;  Subject’s values**, L; (cm)
Stature 1 178
Upper leg length 1 0.257 41
Lower leg length 2 0.229 40
§ Ankle height 3 0042 7
> Forefoot length 4 0.026 4
g Mid-foot length 5 0.1 13
=3 Heel length 6 0.03 5
5% Parameters Ratios, m;  Subject’s values***, M; (kg)
< Body mass 1 68.4
Upper leg mass 1 0.132 9
Lower leg mass 2 0.044 3
Foot mass 3 0.014 1
Upper body mass 4 0.62 424

* The link-length ratios are from ANSUR 11 [53]. The heel ratio is separately estimated based on data reported by Hansen et al.
[48].

** The link lengths are from the direct measurement from the subject in Section 2.3.

*** The body mass value is from direct measurement of the subject in Section 2.3. The link masses are estimated from the
link-mass ratios reported by Drillis and Contini [16].

As shown in Figure 2-2(a), the joint angles are denoted as 8;; where i represents the side
(1 for left and 2 for right) and j represents the joint (1 for hip, 2 for knee, and 3 for ankle). All the
angles are measured from the standing neutral posture angles. Flexion directions (dorsiflexion
for ankle joint) are considered positive, and extension directions (plantar flexion for ankle joint)

are considered negative.

2.2.1. Lumped Muscle Parameters

For the planar link system used in this work, it is assumed that the adjacent links are
connected by a hinge joint where muscle torques are lumped into one joint torque that linearly
changing with the associated joint angle. This linear relationship is characterized by the lumped
muscle parameters (stiffness of a rotational spring), k;;,, in Nm/deg, where i represents the side
(1 for left and 2 for right), j represents the joint (1 for hip, 2 for knee, and 3 for ankle), and p
represents the phase (1 for SS, 2 for DS, and 3 for SW). Especially, the ankle torque during DS is
characterized by the lumped muscle parameter, r;5,, in Nm/kg, as normalized by body mass. A

summary of the lumped muscle parameters used in the planar link system is listed in Table 2-2.
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The definitions of the hip, knee, and ankle joint angles are shown in Figure 2-2(a). The

biomechanical models of the three phases are described in the following sections.

Table 2-2: Summary of lumped muscle parameters in the model
Phase Joint(i=1land2) Value

Hip, kiiz (Nm/deg) 20
Ds Knee, kizz (Nm/deg) 20

Lumped muscle Ankle, rizz (Nm/kg) 1.5
parameters

Hip, kizs (Nm/deg) 20
SW
Knee, kizs (Nm/deg) 8

*The lumped muscle parameters of the hip and knee joints describe the joint torques by spring stiffness. The lumped muscle
parameters of ankle joints describe the joint torques normalizing by body mass.

2.2.2. Single Stance Phase

An inverted pendulum model is used to predict the leg movement during the SS (Figure
2-3(a)). The upper leg and lower leg are rotating about the ankle joint with the knee being
straight. By assuming the knee is straight and the foot is flat on the ground during SS, the
equation of motion for the inverted pendulum can be adapted from [31] as:

. . 6g(MyLy + MyLy + 2ML, + 2M4(Ly + L,))
Bil = 9i3 = 2 Sin 91'1
MyI2 + My(Ly + 2L,)% + 12M,(Ly + Ly)?

(2-3)
12kAFO Bil

 M,L3 + My(Ly + 2Ly)% + 12M,4(Ly + L,)?

where 6;; is the hip angle, ;5 is the ankle angle, L1 is the upper leg length, Lo is the lower leg
length, M1 is the upper leg mass, M is the lower leg length, My is the upper body mass, g is the
gravitational acceleration, and k4, is the stiffness of the AFO. Additionally, it is assumed that
;1 is equal to 6,5 (knee straight) during the SS. The first term of Eq. (2-3) is from Srinivasan

and Ruina [31]. The second term is added by this work to simulate the effect of AFO stiffness.

13



2.2.3. Double Stance Phase

As shown in Figures 2-3(b) and (d), the movements of both legs during the DS is
characterized as a series of planar kinematic chain movements in the sagittal plane. This
kinematic chain model is simplified from the existing kinematic chain model [35] by assuming
the front knee is straight during the DS. The kinematic chain is constrained at the toe of the back-
foot, which is on the ground, and the front-foot, which is flat on the ground. A series of force and
torque balance equations are solved to achieve the equations of motion for the leg movement
during the DS. A summary of variables and equations is shown in Table 2-3Table 2-3 for a total
of 31 equations and 34 variables. Three equations of motion for 8;;(t), ;,(t), and 8;3(t) for the
back-leg are derived from these equations for finding the implicit solution if the initial conditions
of the DS are known. The detailed derivation for the equations of motion during DS is presented

in Appendix A.
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Figure 2-3: Summary of state vectors transferred between phases and forces and equations related to each phase assuming the AFO is on the left ankle. Top diagrams represent the
joint angles and lumped muscle parameters related to the right leg (solid black) movement during each phase: (a) The right leg movement during the SW is simulated by a
double-pendulum with two rotational springs on the knee and hip joints, from right TO (to) to right HS (t1), (b) the leg movements during the DS are simulated by a kinematic
chain model with the right leg in front, from right HS (t1) to left TO (t2), (c) the right leg movement during the SS is simulated by an inverted pendulum, from left TO (t2) to left
HS (t3), and (d) the leg movements during the DS are simulated by a kinematic chain model with the right leg in the back, from left HS (ts) to right TO (t4).
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Table 2-3: Summary of variables and equations used in Appendix A to solve the movement during the DS
Types Number of variables Number of equations

G . Angles 5 ;
eometr
y Angular velocities

External forces

Internal forces
24 (Non-linear

Dynamics Joint velocities . .
simultaneous equations)

Link center of mass velocities

A O OO o NG

Link rotation angular velocities

Since the active ankle torque during the DS does not follow the spring property [13], the
active ankle torque is estimated based on the body mass. The effect of AFO stiffness on the ankle
joint is simulated by changing the ankle stiffness. For the ankle wearing the AFO, it is assumed
that the active ankle torque does not change with different AFO stiffnesses. Thus, the total ankle

torque, T35, is determined as:

Tiz2(t) = 1i32Mo + kapo0;3(t) (2-4)
where 8;5(t) > 0° represents the dorsiflexion of the ankle, 8;5(t) < 0° represents the plantar
flexion of the ankle, and r;3, is the active ankle torque of the push-off ankle (Table 2-2)

normalized by body mass.

2.2.4. Swing Phase

For the SW, the swing leg is characterized as a double-pendulum, with knee and hip
muscle torques linearly changing with the associated joint angles, as shown in Figure 2-3(c).
Equations of motion for the double-pendulum are solved by the Euler-Lagrange differential

equations [54] and given by:
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12M1L%911 + 6M2L%9l1 + 3M2L1L2éi2 COS(Qil - 9,:2)
+ 3M,L,L,6% sin(8;; — 6;5) + 3M,L,g sin 6, (2-5)
+ 6M2ng Sin 9i1 + 6ki13 = 0

3MzL1Lzéi1 cos(8;; — 0;p) + ZMnggiz - 3M2L1L29i21 sin(6;; — 6;;)
(2-6)
+ 3M2ng Sin 9i2 + 6ki23 - O

where 6;, is the knee angle, kiuz is the lumped muscle parameter of the hip joint during the SW,
and kiz3 is the lumped muscle parameter of the knee joint during the SW. The ankle angle, 6;5,

was assumed neutral (6;3 = 0) during the SW.

2.2.5. Phases Continuity — Forward Dynamics
The angle and angular velocity of each joint (Figure 2-2(a)) at time t, 6;;(t) and éij (v),

are summarized in an angle state vector and an angular velocity state vector, 85(t) and Og(t):

(611 (6))
012(t)
013(t)
6,1 (t)
6,2 (t)

\O,5(t)/

~"

O5(t) = < (2-7)

(6,1(D))
9:12 (1)
013(t) [
6,1 (1)
62(1)

\0,3(t)/

05(t) = (2-8)

In between the phases, these state vectors are transferred from the end of one phase to the
start of the next phase to pass the values of angle and angular velocity of each joint. The state

vectors flow between phases and the equations associated with each phase are summarized in
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Figure 2-3. The initial state vectors are defined as the initial conditions of the right SW and left
SS, B5(t,) and O(t,). By solving the forward dynamics based on the equations of motion of
right SW and left SS, the end conditions of this phase are calculated and used as the initial
conditions of the next phase. This process continues through all four phases and finally ends at

the start of the right SW and left SS. The state vectors for the end conditions of the gait are

represented as B¢(t,) and O(t,).

The gait event time is denoted as ti, where i represents the gait event (0 for right TO, 1 for
right HS, 2 for left TO, 3 for left HS, and 4 for right TO). Similarly, the start time and end time
of each phase are denoted as tij, where i represents the start or end gait event of the phase, and j
represents the phase (1 for right SW, 2 for DS with right leg in front, 3 for right SS, and 4 for DS

with right leg in the back). Considering the continuity of the gait, the time denotation follows:
t; = ti(i+1) — At = t;; + At fori= 0, 1, 2, 3, and 4 (2'9)

where At is short enough time in between phases. Consequently, the continuity between phases

can be expressed with the equations of state vectors as:
gs(ti(i+1) — At) = 04(t;) = O4(t; + At) Fori=0,1,2, 3, and 4 (2-10)
9S(ti(i+1) — At) = 04(t;) = O4(t;; + At) Fori=0,1,2 3, and 4 (2-11)

The errors between the initial conditions and end conditions are defined with two error

vectors:

18



(2-12)

M
cz:
I
e
M
N

o
w

~

> (2-13)

where each element is the absolute value of differences between the elements in the state vector

at the initial conditions and the associated end conditions:

fori=1and2
€, = |6:;(t0) — 6 ()] (2-14)
forj=1,2,and 3
_ _ fori=1and2
o, = |9ij(to) - 9ij(t4)| (2-15)

forj=1,2,and 3

2.2.6. Initial Conditions at the Right TO

To simplify the state vectors for the initial conditions, several assumptions are made to
reduce the dimension of the state vectors. Since front-foot and back-toe are assumed to be on the
ground (Figure 2-3(d)) during the DS and at the right TO (start of the gait), the vertical distances

between them and the hip joints satisfy:

(L +L,)cosBy; + L,

= L,y cos(0y; — 01 — 923) (2-16)
+ L3 sin(0y; — 631 — 0,3) + Ly cos(b; — 04)
- Ll COS 021
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Thus, the back-ankle angle and angular velocity, 6,5 and 8,5, can be derived from other

joint angles (0,4, 8,1, and 6,,) and angular velocities (6, 6,1, and 8,,) and link lengths (L,

L,, L3, and L,). Also, the front-leg is assumed straight, and the front-foot is assumed flat on the

ground during the DS and at the right TO (start of the gait):

012(to) = 612(tp) =0

013(to) = —011(to)

613(tp) = —611(to)

Thus, the state vectors for the initial conditions can be simplified as:

0s5(ty) = Ao

( 011(to)
0

—011(to)
6,1 (to)
6,2 (to)

Os(ty) = 1

\ 6,3(to) /

[ 60;1(to) )
0

—6,1(t0)

62 (to)

: ’
621 (to)

\ 6,3 (to) /

(2-17)

(2-18)

(2-19)

(2-20)

(2-21)

where the angle state vector has 3 dimensions, 6,4 (t,), 621 (ty), and 8,,(t,), and the angular

velocity state vector has 3 dimensions, 8,1 (to), 821 (to), and 6,5 (to). O3 (to) and B,5(t,) can be

derived from other angles and angular velocities based on Eq. (2-16).

2.2.7. Sensitivity Analysis

A sensitivity analysis was performed to investigate the effect of different initial

conditions on error vectors and gait parameters. The inputs (independent variables) were 0¢(t,),

20



which includes the initial left hip angle, 6,4 (t,), the initial right hip angle, 6,, (t,), and the
initial right knee angle, 8,,(t,), and 8¢(t,), which includes the initial left hip angular velocity,
6,4 (ty), the initial right hip angular velocity, 8,, (t,), and the initial right knee angular velocity,
6, (t,). The outputs (dependent variables) were &g, £, step length, swing time, and stance time.

The subject variables were the stature and body mass.

To determine the normal range of the inputs, 11 references on joint angles (hip, knee, and
ankle angles) and angular velocities (hip and knee angular velocities) in the sagittal plane for the
normal gait at TO were studied. As the range summarized in Table 2-4, the hip flexion angles of

the front- and back-leg at TO were ranged from 5 to 30° and —30 to —5°, respectively [13,55-60].
The knee flexions of the front- and the back-leg were ranged from 0 to 20° and 20 to 45°,

respectively [13,55-64]. Part of these investigators also reported that the hip flexion angular

velocities for front- and back-leg at TO were ranged from —200 to —100° per second and 100 to
150° per second, respectively [59,60]. Tong and Granat [60] reported the observed knee flexion
angular velocities for front- and back-leg were 20° per second and ranged from 100 to 270° per

second, respectively. Some investigators reported that ankle flexion angles for front- and

back-leg were ranged from -5 to 10° and —45 to 0°, respectively [13,55-57,59,61,62,64]. These

studies gave a reference on the normal range of joint angles and angular velocities as inputs for

the model.
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Table 2-4: Summary of observed joint angles for hip, knee, and ankle, joint angular velocities for hip and knee at right TO, and the step length (S;) to stature (L,) ratio during the

walking gait.
Front-leg Back-leg
Paper 0 Hip . Knee . Ankle Hip . Knee . Ankle S, /Lo
911 611 912 912 913 921 921 922 922 923
(deg) (degls) (deg) (deg/s)  (deg)  (deg) (degls)  (deg)  (deg/s) (deg)
Begg et al., 2006 [62] 24 5 -5 30 ~ 45 -30~0 0.41 ~ 0.45%
Buczek et al., 2010 [55] 25 25-~30 0~10 -5~5 -15~-5 25~30 —46 ~ -25
Collins et al., 2009 [56] 10 25 10 5 -10 20 -5
Eltoukhy et al., 2017 [57] 10 15 10 0 25 -5 0.44*
Kiss et al., 2004 [63] 51 10 45 0.27 ~ 0.29**
Mills et al., 2007 [64] 10 5 10 45 -25
Ramakrishnan et al., 1991 [58] 1 30 0 -5 30
Seel et al., 2014 [61] 1 4 -5 30 -30
Tadano et al., 2013 [59] 5 20~30 -200~-100 10~15 -5~5 -10~-5 100~120 30~50 -20~-10 0.22 ~0.36***
Tong et al., 1999 [60] 2 5~15 -130~-100 15 20 -30~-25 100~150 20~30 100~270
Winter, 1984 [13] 16 10 20 -5 -15 35 -15
Range 212 5~30 -200~-100 0~20 20 -5~10 -30~-5 100~150 20~45 100~270 -45~0 0.22 ~0.45

* S1. /Lo for self-selected comfort walking speed.
** S, /L for preset walking speed on a treadmill (0.83 m/s).

*** G, /L, for self-selected comfort walking speed estimated by a lower-limbs-mounted IMU system.
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To validate the model-predicted step length, the step length-to-stature ratio reported in
the references are also summarized in the last column of Table 2-4, with a range from 0.22 to
0.45 [57,59,62,63]. This range will be compared with the model-predicted step length-to-stature

ratio in this work.

The sensitivity analysis was performed for a 50" percentile healthy male (176.3 cm and
86.4 kg) walking with no AFO to preliminary examine the effect of initial conditions on global
errors. The link length and mass were estimated based on the ratios reported in Table 2-1. The
lumped muscle parameters were estimated based on joint torques during gait reported by Winter
[13], as shown in Table 2-2. The range of the initial conditions was determined based on the
range summarized in Table 2-4. The sensitivity analysis examined all possible combinations of
initial conditions within the range and calculated the error vectors for each combination. The first

set of combinations examined was with 6, (t,) from 5 to 30° with steps of 5°, while 6,,(t,) =
—5°, 8,,(ty) = 20°, 6,4 (t,) = —50° per second, 0,4 (t,) = 100° per second, and 6,,(t,) = 100°
per second. Then 6,4 (t,) was decreased by 5°, and the same process was performed for 6,4 (t,)
from 5 to 30° with steps of 5°. This whole process was performed until all combinations of

011 (to), B21(to), B2, (te), 811 (to), 6,1 (ty), and 6,,(t,) had been examined. A summary of the
start, stop, and step values for each initial angle and angular velocity is shown in Table 2-5. A

complete list and explanations of combinations examined can be found in Appendix B.
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Table 2-5: Range of initial conditions for the sensitivity analysis and simulation
Range (start, stop, step)

State vector Elements  Unit

Sensitivity analysis (Section 2.2.7)  Simulation (Section 2.3)

011 (t) (5, 30, 5) (5,30, 1)
0,(t) NG) deg (-5,-30,-5) (-5,-30,-1)
02,(t) (20, 45, 5) (20, 45, 1)
N G) (~100, —200, -50) (-100, —200, -50)
NG 6,,(t)  degls (100, 150, 50) (100, 150, 50)
NG) (100, 300, 50) (100, 300, 50)

There were in total 6,480 combinations of the initial conditions examined during the
sensitivity analysis via simulation. Part of the combinations had invalid geometry at the initial
conditions or resulted in incomplete phases. Only 918 of the combinations resulted in complete
gaits and were considered valid. For these valid combinations, a series of regressions were
performed with the initial conditions as the predictor, and the error vectors and gait parameters as

responses to examine the contributions of variations in each input.

Contributions of variations in each dimension of the initial state vectors to variations in each
element of the error vectors and gait parameters are listed in
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Table 2-6. Only the front-hip (left) and back-hip (right) initial angle explained more than
1% of the variations in error vectors. The back-knee initial angle explained more than 0.5% of
the variations in error vectors. None of the initial angular velocities explained more than 0.1% of
the variations in error vectors. This implied that reducing the magnitude of the error vectors
should mainly focus on changing initial angles in smaller steps. This also implied that the
velocity vector did not contribute much to the error vectors. For this reason, the angular velocity

error vector should be weighted less than the angle error vector.
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Table 2-6: The statistics of sensitivity analysis output (error vectors and gait parameters) and the percent contributions of
variations in initial state vectors to variations in error vectors and gait parameters for all 918 valid combinations of initial state
vectors.

£g, (deg) €4, (deg/s)

. . . . . S, (M) Tgy (S) Tsr (5)
€11 €12 €13 €21 €22 &3 €11 €12 €13 €21 €22 €23

Mean 062 - 062 0.75 0.46 049 11 - 11 37 35 95 070 031 042
g SD 041 - 041 060 040 058 18 - 18 62 62 19 013 017 0.27
'§ Min 006 - 006 0 0O O O - 0 0302 0 035 010 021

Max 22 - 22 62 56 28 245 - 245 135 970 289 0.76 056 1.1

6,,(tp) 03 - 03 26 38 01 05 - 05 77 35 01 67 13 13
S 0,() 70 - 70 14 11 40 18 - 18 50 22 04 21 0 0
S Ou(t) O - 0 01 05 0 0 - 0 0506 0 12 03 03
ééll(to) 0o - 0 0 0101 0 - 0 01 0 01 O 12 12
S6u) 0 - 0 0 0 0O 0 - 0 0 0 0 0 53 52

0,60 0 - 0O O O O O - 0 O 0O O O 6.0 5.8

* S, is step length, Ty, is swing time, and T is stance time (SS+DS).

The step lengths were mainly determined by the initial angle state vector. The predicted
step length-to-stature ratio was within 0.20 to 0.43, which was close to the range, 0.22 to 0.45,
reported in Table 2-4. The step length was determined by the initial geometry of the gait because
the step length is a spatial parameter. Similarly, the swing and stance time were mainly

determined by the initial angular velocity state vector.

To quantitatively compare the overall error from different initial conditions, a global

error vector, E, is proposed in this work with its s element as:

E(s) = llggll + flIg5ll (22)

where s is the order of the initial conditions being examined, ||&g]| is the norm of the angle error
vector for the s initial conditions, [|£51] is the norm of the angular velocity error vector for the
st initial conditions, and f is a scalar factor that is used to adjust the weighing between errors in

angles and angular velocities.
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As shown in Figure 2-3, it was assumed that the end conditions of a gait should be equal
to the initial conditions of that gait to maintain the consistency and continuity between phases.
Thus, the initial conditions with the minimum global error were considered as the optimal initial

conditions for gait prediction.

2.2.8. Summary of the Planar Piecewise Continuous Lumped Muscle Parameter (PPCLMP)
Model

The proposed model is based on an inverted pendulum model, a kinematic chain model,
and a double pendulum model that correspond to SS, DS, and SW, respectively. The joint angles
and angular velocities at the end of each phase are used to determine the initial conditions of the
next phase. In other words, elements in Egs. (2-12) and (2-13) should be all equal to zero. For

gait with AFOs, the model changes the ankle stiffness to simulate the effect of AFO stiffnesses.

The flowchart of the model is shown in Figure 2-4. Along with the initial conditions, the
additional inputs of the model are anthropometry data, lumped muscle parameters, and AFO
stiffness. The model examines all possible combinations of initial conditions and stores the
global error of each combination in the global vector. After all combinations are examined, the
initial conditions with the minimum global error are found and used to predict the gait

parameters.
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Combinations of initial conditions

Anthropometn at right toe-off

Gender State matrices, 0,(t,) & 95 (tg)

Stature

Weight

Link Length

Lumped muscle parameters Een :
piecewise . . -
Hip torques during DS and SW continuous lumped Global error vector, Er Find gait with minimum
Knee torques during DS and SW muscle parameter model global error
Ankle torque during DS
AFO stiffness Output: gait parameters
karo

Figure 2-4: Flowchart of the proposed PPCLMP model for predicting gait parameters.

2.3.  Experiment Setup

A pilot study was designed to demonstrate the use of the proposed model to predict the
effect of three different ankle stiffnesses in a healthy (no known conditions that affect gait) male
subject (29-year-old) with 70'" percentile stature (178 cm). Then the model prediction of gait
parameters was validated with six additional college-age subjects. For the first condition, the
subjects wore their regular shoes and socks. For the second and third conditions, they wore two
AFOs, respectively, that increased ankle stiffnesses. Before participation, the goal, experimental
procedure, and possible risks were explained to the subjects. An informed consent form
approved by Institutional Review Boards of the University of Michigan (HUMO00090458) was
signed by each subject. The anthropometric inputs for the first subject are shown in Table 2-1.
The link lengths and body mass were from direct measurement, and the link masses were
estimated based on mass ratios reported by Drillis and Contini [16]. The lumped muscle
parameters were estimated based on joint torques during gait reported by Winter [13], as shown

in Table 2-2. To achieve better prediction outcome from simulating subjects’ gaits, the steps for
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initial angle state matrix elements was reduced to 1°, as shown in Table 2-5. The steps for

angular velocities remained the same, as they did not significantly contribute to the error vectors.

The vision-based measurement system with two sensor units (three cameras each) by
NDI Optotrak Certus (NDI Waterloo, Ontario, Canada) was used to capture the locations and
movements of lower limbs at 100 Hz. As shown in Figure 2-5, three marker clusters were placed
on each upper leg, lower leg, and foot. The marker cluster was used to track the rotation of the
associated body segment. Additional markers were placed on the hip, knee, and ankle joints for
calibration purposes. Based on the reported common AFO stiffness range of 0.02 to 8.17 Nm/deg
from the review by Totah et al. [65], two passive-dynamic AFOs with stiffnesses of 3.4 Nm/deg
(denoted as AFOL1 hereafter) and 6.9 Nm/deg (denoted as AFO2) were used for this study. Each
subject was asked to perform the level ground walking without the AFO (denoted as NAFO),

with AFO1, and with AFO2 on his left foot. To gain enough strides (= 10), each subject was

asked to walk with self-selected comfort speed for 10 trips within the motion capture area. One
trip was defined as walking from one side of the walking area to the other side with at least two
complete strides (exclude the first and last strides) for each trip. For each of the AFO condition,
each subject was asked to walk with the AFO for 5 minutes before the experiment trial to get

used to the stiffness at his ankle.
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Figure 2-5: Marker settings for the controlled experiment.

The motion tracking data were imported into MATLAB (MathWorks, Natick, MA, USA)
to calculate the joint angles, initial conditions, and gait parameters of each gait cycle to compare
with the model prediction. Meanwhile, the joint angles, initial conditions, and gait parameters
were also predicted by the model based on the anthropometry data (Table 2-1), lumped muscle
parameters (Table 2-2), and AFO stiffness (Table 2-7Error! Reference source not found.). The
global error was calculated with &4 in degree, and &, in degree per second. Since the magnitude
of joint angular velocities in degree per second is on average about 10 times the magnitude of
joint angles in degree (Table 2-4) and the angular velocities contributed less to the error vectors,
the scalar factor f was assigned as 0.1 seconds. The correlation between the observed and

predicted joint angles were calculated using Minitab 18 (Minitab LLC, Chicago, IL, USA).

2.4. Results

In total, 10 complete gait cycles were measured and analyzed for each condition for the
first subject. 40 complete gait cycles were measured and analyzed for each condition for each of

the six additional subjects. Overall, the model successfully predicted the changing trend of the
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gait parameters, except the hip range of motion (ROM) with the AFO2. Moreover, the model is

limited in quantitatively predicting the gait parameters.

2.4.1. Pilot Study
The results of initial conditions, error vectors, joint kinematics, step lengths, swing time,
and stance time for the subject in the pilot study are summarized in this section to demonstrate

the use of the model for investigation of joint stiffness effect on gait.

2.4.1.1 Initial Conditions and Error Vectors

The observed initial conditions, predicted initial conditions, and error vectors of the

prediction are shown in Table 2-7. The minimum global errors were less than 3° for all the
conditions. The angle errors were all less than 0.5°. The angular velocity errors were all less than
or equal to 12° per second, whose magnitude was about 23 times greater than the magnitude of

angle errors.

2.4.1.2 Joint Kinematics

Observed and predicted joint angles for left and right legs for each gait cycle are
presented in Figures 2-6, 2-7, and 2-8, starting from right TO to right TO. As shown in Table
2-8, the predicted hip flexion angles were strongly correlated with the observed hip flexion
angles, with the correlation coefficient (CC) range from 0.85 to 0.98, and the root mean square

error (RMSE) range from 5.2 to 11°. The predicted knee flexion angle was strongly correlated

with the observed knee flexion angle, with the CC range from 0.87 to 0.99, and the RMSE range

from 5.7 to 11°. The predicted ankle flexion angles were strongly correlated with the observed

ankle flexion angles, with the CC range from 0.83 to 0.92, and the RMSE range from 4 to 7.2°.
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Table 2-7: Summary of AFO stiffness, error vectors, and comparisons between observed (O) and predicted (P) initial conditions
for simulations (hip flexion/extension with +/—; knee flexion with +). The errors were estimated with the scalar factor, f, equal to
0.1 seconds

Parameters (i =1, 2) NAFO AFO1 AFO2
AFO Structural stiffness, karo (Nm/deg) - 3.4 6.9
O P e} P O P
Left hip angle, 6, (deg) 1.7£47 19 67£31 11 7.1+£45 11
,9 Left knee angle, 6,, (deg) 09+16 0 884+33 0 11£26 O
§ Right hip angle, 8, (deg) -18+27 -19 -50+51 -11 -85+21 -9
2 Right knee angle, 9,, (deg) 26+6.2 32 29452 34 19+27 35
% Left hip angular velocity, 6,, (deg/s) -182+167 -150 -81+18 -100 -107+15 -100
<_§ Left knee angular velocity, 6,, (deg/s) 68+144 0 75+40 0 77+35 O
E Right hip angular velocity, 8, (deg/s) 94433 150 88+29 150 166+47 150
Right knee angular velocity, 8,, (deg/s) 205+33 200 239431 250 265144 250
Minimum global error, min(E) (deg) 1.2 2.6 2.6
Left hip angle error, &, (deg) 0.20 0.37 0.43
Left knee angle error, &;, (deg) 0 0 0
Left ankle angle error, &5 (deg) 0.20 0.37 0.43
Right hip angle error, €,, (deg) 0.12 0.37 0.17
g Right knee angle error, &,, (deg) 0.17 0.35 0.35
% Right ankle angle error, &,3 (deg) 0.13 0.20 0.27
L% Left hip angular velocity error, ;4 (deg/s) 5.9 12 12
Left knee angular velocity error, &;, (deg/s) 0 0 0
Left ankle angular velocity error, &3 (deg/s) 5.9 12 12
Right hip angular velocity error, £,, (deg/s) 2.9 6.0 6.2
Right knee angular velocity error, £,, (deg/s) 0.12 0.43 0.25
Right ankle angular velocity error, &,5 (deg/s) 0.75 4.4 2.0
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Figure 2-6: Comparisons between the observed (n = 10) and predicted hip flexion angles for the left and right legs under each
condition. The presented phase blocks are colored based on the model-predicted time of SS, SW, and DS.
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Figure 2-7: Comparisons between the observed (n = 10) and predicted knee flexion angles for the left and right sides under each
condition. The presented phase blocks are colored based on the model-predicted time of SS, SW, and DS.
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Figure 2-8: Comparisons between the observed (n = 10) and predicted ankle flexion angles for the left and right sides under each
condition. The presented phase blocks are colored based on the model-predicted time of SS, SW, and DS.

Table 2-8: Correlation coefficient (CC) and root mean square error (RMSE) between observed and predicted ankle, knee, and hip
flexion angles for 10 complete gait cycles

NAFO AFO1 AFO2
Joint Side
CC RMSE(deg) CC RMSE(deg) CC RMSE (deg)
Hi L (AFO) 0.85 11 0.95 6.0 0.98 5.2
i
P R 0.97 9.2 0.92 7.1 0.87 9.5
L (AFO) 0.99 5.7 0.98 7.1 0.99 9.3
Knee
0.99 7.7 0.87 11 0.99 7.4
L(AFO) 0.83 6.9 0.84 6.8 0.90 4.5
Ankle
0.87 5.2 0.88 7.2 0.92 4.0

The statistics for ROM of the knee and hip are shown in Table 2-9. Comparing with the
NAFO condition, the observed left knee ROM was decreased with the AFO1 and AFO2. The
observed right knee ROM was increased with the AFO1 and was further increased with the
AFO2. The predicted left and right knee ROMs were changing in the same trend as the observed
knee ROM for all conditions. Comparing with the NAFO condition, the observed left hip ROM
was decreased with both the AFO1 and the AFO2. The observed right hip ROM was decreased

with the AFO1 but slightly decreased with the AFO2. Comparing with the NAFO condition, both
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predicted left and right hip ROMs were decreased with the AFO1 but were not decreased with

the AFO2.

Table 2-9: Comparison between the observed (O) and predicted (P) range of motion (ROM) for knee and hip angles
Unit: deg NAFO AFO1 AFO2

Side O(M=100 P OM=10) P O(n=10) P
L (AFO) 289+58 190 19.6+¢1.1 154 14526 16.0

Peak flexion
Hi R 30.0#3.0 19.0 13.6+16 188 20.2+1.9 144
i
P . L (AFO) 285155 189 9.4+1.3 16.0 15.0+0.6 20
Peak extension
R 26.1+2.0 18.9 9.0+2.8 110 186+44 230
) L (AFO) 50.3+24 462 29.8+1.0 217 414431 419
Knee Peak flexion
R 467440 46.2 54.2+32 50.0 60.0+2.3 53.8
o L (AFO) 11.8+20 1238 11£2.2 10 8.5+4.3 5
Peak dorsiflexion
ANk R 16.0+1.2 128 13+1.3 18 11+0.83 13
nkle
) L(AFO) 128+11 160 59=*16 13 52+1.1 13
Peak plantar flexion
R 85+13 16.0 12+2.4 10 14+25 20

2.4.1.3 Step Length

The average observed step lengths of left and right legs for 10 gait cycles, and predicted
step lengths are shown in Figure 2-9. Comparing with the NAFO condition, the observed left
step lengths were slightly decreased with the AFO1 but were increased with the AFO2. The
observed right step lengths were decreased with both the AFO1 and the AFO2. The predicted left
and right step lengths were changing in the same trend as the observed step lengths for all

conditions.
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Figure 2-9: Comparisons between the observed and predicted step length for left (AFO) and right sides under each condition (n =
10). Values are mean + SE.

2.4.1.4 Swing and Stance Time

The average observed swing time of the left and right legs for 10 gait cycles, and
predicted swing time are shown in Figure 2-10Error! Reference source not found.. Comparing
with the NAFO condition, the observed left swing time was increased with the AFO1 but was
decreased with the AFO2. The observed right swing time was decreased with both the AFO1 and
the AFO2. The predicted left and right swing time was changing in the same trend as the

observed swing time for all conditions.

The average observed stance time of the left and right legs for 10 gait cycles, and
predicted stance time is shown in Figure 2-11. Comparing with the NAFO condition, the
observed left stance time was decreased with both the AFO1 and the AFO2. The observed right
stance time was increased with the AFO1 but decreased with the AFO2. The predicted left and

right stance time had a similar trend as the observed stance time for all conditions.
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Figure 2-10: Comparisons between the observed and predicted swing time for left (AFO) and right sides under each condition (n
=10). Values are mean + SE.

The average observed stance time of the left and right legs for 10 gait cycles, and
predicted stance time is shown in Figure 2-11. Comparing with the NAFO condition, the
observed left stance time was decreased with both the AFO1 and the AFO2. The observed right
stance time was increased with the AFO1 but decreased with the AFO2. The predicted left and

right stance time was changing in the same trend as the observed stance time for all conditions.

1.2

H
HH

Stance Time (sec)
=] =] =]
i o (5]

e
[

NAFO AFO1 AFO2

Predicted value

w Left oberved value  ORight observed value

Figure 2-11: Comparisons between observed and predicted stance time for left (AFO) and right sides under each condition (n =
10). Values are mean + SE.
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2.4.2. Model Prediction for Six Subjects
The results of step lengths and swing time for the six additional subjects are summarized
in this section to validate the model prediction. As shown in Figure 2-12, the predicted left and

right step lengths were changing in the same trend as the observed step lengths for all conditions.
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Figure 2-12: Comparison between observed and predicted step lengths for left (AFO) and right sides under each condition for six
subjects (n = 40). Values are mean + SE.

Similarly, the predicted left and right swing time were changing in the same trend as the

observed swing time for all conditions as shown in Figure 2-13.
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Figure 2-13: Comparison between observed and predicted swing time for left (AFO) and right sides under each condition for six
subjects (n = 40). Values are mean + SE.

2.5. Discussion

This study showed the capability of the proposed PPCLMP model in qualitatively
predicting gait changes with AFOs of different stiffnesses. For both the AFO conditions, the
model predictions revealed the trend of changing in gait parameters. There were also high

correlations between observed and predicted joint angles for both hip and knee under all three
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conditions (Table 2-8). Besides, the proposed model reveals how the AFO affects joint

kinematics and gait parameters.

Overall, the model prediction had better agreement with observed data for the NAFO
condition than for the AFO conditions (Figures 2-9, 2-10, 2-11, 2-12, and 2-13). For the NAFO
condition, the predicted gait was symmetric on joint ROMs, step length, swing time, and stance
time. However, the observed step lengths were longer for the left side (AFO side for AFO
conditions) than the right side. Similarly, asymmetric patterns were found on all the other gait
parameters. This asymmetric pattern for normal gait was quantitatively evaluated by using the
symmetry index (SI) [66] and observed by a group of investigators [67,68]. They reported the Sl
of step length was ranged from 0 to 10%, and the SI of swing time was ranged from 0 to 9% for
college students. The SI of step length from this study was 6%, and the SI of swing time was 5%

under the NAFO condition. Both Sls were within the range from the previous investigations.

2.5.1. Knee ROM

The predicted greater peak knee flexion on the AFO side for AFO2 than for AFO1 might
be explained by the energy generation process during the push-off (Table 2-9). Though the
passive AFO releases energy during push-off and might decrease overall energy cost for walking
[39], it constrained the ankle from performing a plantar flexion during the later push-off stage.
Lewis et al. [69] and Malcolm et al. [70] observed that most of the push-off force at the ankle
joint was generated when the ankle was in plantar flexion. Comparing with the normal gait,
wearing the AFO1 might overall decrease the push-off power, and resulted in the observed and
predicted decreasing peak knee flexion on the AFO side, or left side for the subject of this study.

Despite the AFO2 was stiffer and constrained the ankle more from performing a plantar flexion,
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it released more energy during the push-off. This could explain the predicted greater peak knee

flexion on the AFO side for the AFO2 than for the AFOL1.

Similarly, explanations can be found for the observed increasing peak knee flexion on the
contralateral (right) side with increasing the AFO stiffness (Table 2-9). The AFOs stored energy
during the SS, which slowed the forward rotation of the inverted pendulum [71]. To maintain the
forward movement, the contralateral-side ankle, or right-side ankle for the subject of this study,
had to push-off with greater power. Though the model assumed that the muscle torque patterns
did not change between the AFO and NAFO conditions, it found a different dynamic state with
greater initial knee angular velocities, greater initial knee angles, and less initial hip angles right
after the push-off on the contralateral side as a feasible solution for the model (Table 2-7Error!
Reference source not found.). Consequently, the model successfully predicted the increasing
peak knee flexion with the increasing AFO stiffness. These findings are consistent with the

observed excessive knee flexion with AFOs reported by [72].

2.5.2. Hip ROM and Step Length

Comparing with NAFO condition, the AFO-side and contralateral-side hip ROMs were
decreased with the AFO1 for observed and predicted results, and consequently led to shorter step
lengths on both sides (Table 2-9), which were consistent with the trend reported by other
investigators [73,74]. The observed and predicted hip ROMSs were not consistent for both sides
under the AFO2 condition. As mentioned, the AFO could affect both sides’ dynamics. For the
AFO side, the AFO deaccelerated the push-off (late DS) by constraining the plantar flexion
(Figure 2-8) and accelerated the push-off by releasing stored energy. Depending on which effect
was dominant, the initial swing velocities on the AFO side might be increased or decreased. For

the contralateral side, either the hip angular velocity at push-off or push-off force during DS
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might be increased to compensate for the slowed inverted pendulum movement on the AFO side.
However, this slowed movement might be compensated or partially compensated [8,75], which
could result in similar hip ROM or reduced hip ROM on the contralateral side. The
compensation done by the subject’s muscle torque patterns changing might not be equivalent
simulated by only changing the initial conditions. This individual compensation strategy might

explain the inconsistency between observed and predicted hip ROMs with the AFO2,

2.5.3. Swing and Stance Time

The swing time and stance time were consistent between observed and predicted results
under all conditions. The differences in the swing time and stance time among conditions could
be explained similarly to the hip ROMs differences. The collective effect between the AFO
stiffness and the compensations, either the muscle torque patterns change or the initial velocities

change, led to the various gait timing.

2.5.4. Model Applications, Assumptions, and Limitations

The proposed model could form the basis of a decision support system for AFO design. It
could be used to provide insight into how an AFO might change a person’s gait, and help
clinicians determining the appropriate AFO stiffness for each patient. Furthermore, with given
movement patterns, the model has the potential to estimate the joint torque patterns based on the

estimated lumped muscle parameters.

The two major assumptions of the proposed model were end conditions equaled to initial
conditions and the front-knee at the initial conditions (back-leg TO) was straight. The error

vectors revealed high agreement (< 0.5° differences) between end angles and initial angles, and

fair agreement (< 12° per second differences) between end angular velocities and initial angular
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velocities (Table 2-7). The better agreement in angle errors was due to the scalar factor (f)
selection in Eq. (2-22). Furthermore, the contributions of initial angular velocities to error
vectors were all low (<1%), which justified the scalar factor selection that weighed angular
velocity errors less than the angle errors. This scalar factor could be changed to explore different
weightings between angle errors and angular velocity errors. For real gait, the assumption of the
end conditions equal to the initial conditions might not be true. As shown in Table 2-7Error!
Reference source not found., the observed initial conditions were variated among gait cycles.
The subject might adjust muscle torque patterns to compensate for the different initial conditions
and maintain continuous gait cycles, which could not be predicted by the model. Besides, by
assuming the continuity of gait for both joint angles and angular velocities, the model assumed

no energy loss, which was observed by a group of investigators during HS [76-78].

For the straight knee assumption, the observed knee flexion at initial TO was about 0° for
NAFO condition and around 10° for AFO conditions. Besides, most of the literature reported less
than 10° in knee flexion during the DS (Table 2-4). Comparing with a straight knee, 10° in knee
flexion would only result in a 1.5% reduction in the front-leg length and was considered

negligible in this model.

The model had three limitations: long processing time, spring representation of muscles,
and constant lumped muscle parameters. The searching method for optimal initial conditions
took several hours and could be improved. Currently, the model examined all combinations
within the given range (Table 2-5) and then found the optimal initial conditions with the
minimum global error. This process was time-consuming and required a lot of system memory.

To reduce the amount of calculation, the step length, or prediction precision was limited to 1°
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and 50° per second. An advanced searching algorithm might be useful to reduce the number of

iterations, processing time, and increase prediction precision. Further investigations are needed

to evaluate different search algorithms for the optimal initial conditions.

The lumped muscle parameters for the knee and hip joints were proposed based on the
rotational spring representation of related muscles. This representation was simplified from
Hill’s muscle model [166] that has a contractile element and two spring elements, as shown in
Figure 2-14. The viscoelasticity of muscles can be further represented by adding damping factors
to the spring element. The simplification of the muscle model in this dissertation was proposed to
reduce the dimensions of variables in the model. Further, Chapter 2 used constant lumped muscle
parameters to characterize the joint torques generated by associated muscles. The constant
lumped muscle parameter assumption ignores the adjustments, adaptions, and preferences of
individuals among different scenarios. Due to this assumption, the model only shows the
capability of qualitatively predicting gait parameter changes with different AFO stiffnesses.

F

CE

e

SE

F

Figure 2-14: Hill muscle model that contains a contractile element (CE), a series spring element (SE), and a parallel spring
element (PE). Diagram downloaded from [167].

The other limitation of this model was the assumption of homogenous muscle torque

patterns for different people walking under different environments for different tasks. For a
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human subject, walking without and with the AFO could involve different muscle torque patterns
and different dynamic system states, like velocities and angles. However, the model only adapted
the dynamic system states to look for a feasible solution without changing the muscle torque
patterns. In other words, the model overestimated the AFO effect on gait. Unsurprisingly, the
model predicted less hip ROM and less step length with the AFO2 (Table 2-9), which could be
due to significant muscle torque patterns changes to compensate the stiffer AFO. For healthy
subjects, the muscle torque patterns could be different between different genders, different ages,
and even between individuals with similar anthropometry [79-81]. Furthermore, the final users
of the AFOs would be drop foot patients, who could have various muscle strength and activity
from a healthy subject with or without the AFOs [37,82-84]. How to determine the correct
lumped muscle parameters in the model to make the prediction more individualized is

challenging.

Known individual movement patterns could be helpful in determining individual lumped
muscle parameters to improve the gait prediction. Luckily, wearable technologies become more
available nowadays. As most commonly used gait tracking wearable devices, inertia
measurement units (IMUs) have advantages in its accuracy, less intrusive, and robustness in
challenging environments [61,85-87]. Most of the studies focused on mounting multiple IMUs
for gait tracking, but orthotic clinical applications may only accept a limited number of IMUs.
With the proposed model, mounting only one IMU on the AFO would be enough to acquire the
needed data to estimate the muscle torque patterns of the person while wearing the AFO for in
and post clinical evaluations of the AFO designs. Further investigations are needed to evaluate

the IMU assisted prediction.
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2.6. Conclusions

The PPCLMP model has the capability to qualitatively predict gait parameter changes
with the different ankle stiffnesses in the forward-dynamic mode. The model prediction had the
same trend as the experimental measurements regarding step length and swing time. The ankle
stiffness increased by the AFO affects the gait in two ways. During the SS, the AFO stiffness
slows down the inverted pendulum movement and stores energy. During the DS with the AFO
on the back-leg, the AFO releases energy when the ankle is in dorsiflexion but prevents the ankle
from generating more energy when the ankle is in plantar flexion. These findings explain how
AFO affects gait from the energy perspective besides simply helping lift the foot during SW.
Because the lumped muscle parameters in the model were separately estimated based on joint
torques reported by a previous study and did not change among different conditions, the model is
limited on quantitatively predicting gait parameters regarding step length, swing time, and stance

time.

46



CHAPTER 3 Utilization of the Inertial Measurement Unit for Evaluation of Gait with

Passive Dynamic Ankle-foot Orthosis based on the PPCLMP Model
Abstract

This study aims to utilize the data from a single inertial measurement unit (IMU) attached
to the passive-dynamic ankle-foot orthosis (AFO) to enhance the planar piecewise continuous
lumped muscle parameter (PPCLMP) model for predicting gait patterns. An algorithm utilizing
IMU’s accelerometer, gyroscope, and magnetometer measurements was developed to estimate
the initial conditions and lumped muscle parameters for each gait cycle based on the
inverse-dynamic mode of the PPCLMP model. The observed step length, swing time, and stance
time using five IMUs (one on each thigh, one on the unimpaired-side shank, one on the
impaired-side shank as attached to the AFO, and one on the lower back trunk of the subject)
were compared with model prediction results for two patients with drop foot syndrome while
walking without and with AFOs with low and high stiffnesses (3.6 and 4.5 Nm/deg). The data
from the IMU attached to the AFO was utilized to estimate the optimal initial conditions and
lumped muscle parameters of the model for gait prediction. The root mean square errors
(RMSEs) of the predicted impaired-side step length, unimpaired step length, and the swing time

were less than 0.09 m, less than 0.20 m, and less than 6% of gait duration, respectively.
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3.1. Introduction

Various conditions of birth, injuries, and diseases that affect ankle stiffness may
adversely affect gait patterns. About 80% of multiple sclerosis (MS) population experience gait
problems [88,89], and 20% of the stroke population are affected by the drop foot syndrome
during their rehabilitation [65,90,91]. Drop foot gait is asymmetric and different from normal
gait. Kottink et al. [5] and Don et al. [8] demonstrated that drop foot patients used two
compensatory strategies, increasing the hip abduction or knee flexion angle on the impaired side
during the swing phase (SW), to avoid stubbing their toes. Drop foot patients were also found to
have shorter step length and longer swing time on the impaired side [6,7]. The differences
between the impaired and unimpaired sides resulted in asymmetric gait, which was also

considered inefficient.

Ankle-foot orthoses (AFOs) are frequently used to enhance ankle stiffness and help
restore gait function for drop foot patients [73,92,93]. Bartonek et al. [73] and Radtka et al. [94]
observed increased walking speed (10%) and step length (6%) on the impaired side during SW
for a patient’s gait while wearing AFOs. The bending stiffness of AFO was found to be the main

effect that could affect step length, walking speed, and gait symmetry [91,95,96].

To evaluate pathological gait and the gait improvement made by AFOs, several quality
metrics were developed. Gait symmetry index (SI), or Robinson Index [66], was proposed to

evaluate the quality of the patient’s gait [97-99]:

|Xr — X.| (3-1)

sf =228 Ll 100%
Xp+ X, 0
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where Xj is the gait parameter on the right side, and X, is the gait parameter on the left side.
Examples of X include the step length and swing time. In addition to the SI, faster walking speed

and less energy expenditure during gait have been used as signs of gait improvement [100-103].

While most pathological gait evaluations were performed within laboratory or clinical
settings with dedicated optical tracking systems, investigation on patients’ gaits with AFOs
during daily activities is limited. Because the optical tracking systems are expensive, intrusive,
and require structured environments, the cheaper and less intrusive wearable motion tracking

system is desirable in measuring the human gait during daily activities [104—108].

Inexpensive inertial measurement units (IMUs) that measure three axes of accelerations,
angular velocities, and headings have been utilized for gait tracking in recent studies to estimate
gait parameters [61,109-111]. IMUs can be integrated with microprocessors and communication
modules to record and transmit data over several days to a server for gait evaluation as patients
go about their activities of daily living, work, or recreation. Li et al. [112] estimated the gait
speed with a root mean squared error (RMSE) of only 7% based on the data from a
shank-mounted IMU. Sijobert et al. [113] instrumented one IMU on the patient’s shank to detect
the freezing of gait in the early stage of Parkinson’s disease. Similar to mounting on the shank,
IMU could be attached to the back of the AFO calf (Figures 3-1(a) and (b)) to provide kinematic

data of the gait.
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Y, Yo

(a) (b) (©
Figure 3-1: The global coordinate system (xo-, yo-, and zo-axes) and local coordinate system (x-, y-, and z-axes) of the IMU
defined in this study from (a) the side view of the IMU-attached AFO and (b) the back view of the IMU-attached AFO, and (c)
the local coordinate system of the IMU attached to the back of the AFO calf rotating with respect to the global coordinate system
in the sagittal plane (side view).

To interpret the IMU data, the planar piecewise continuous lumped muscle parameter
(PPCLMP) model proposed in Chapter 2 is used. The model represents the lower limbs’
segments as homogenous rod links with lengths of L; and uniformly distributed masses of M;.
Adjacent segments are connected by a hinge joint with joint torque linearly changing with the
joint angle. This linear relationship is represented by lumped muscle parameters in the model.
Furthermore, the model characterizes the single stance phase (SS) by an inverted pendulum, the
double stance phase (DS) by a kinematic chain, and the SW by a double pendulum. The joint
angles and angular velocities are continuously transferred between adjacent phases so that the
joint angles and angular velocities at the end of one phase are equal to those values at the start of
the next phase. The model can be used to describe the gait starting from the toe-off (TO) and
ending at the next TO of the same side based on the initial conditions and lumped muscle
parameters for the gait cycle. This model is limited by the assumption of constant lump

parameters, which assumes the same joint torque patterns for gaits with different joint stiffnesses
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and among different people. Variabilities among gaits of the same person with different joint
stiffnesses and among gaits of different people are not investigated. Instead of assuming constant
lumped muscle parameters for all gaits, the lumped muscle parameters for each gait cycle could
be estimated based on the kinematic data measured by the IMU attached to AFO. In addition, the

kinematic data could be utilized to estimate the initial conditions of each gait cycle at the TO.

The goal of this study is to utilize the data measured from the IMU attached to AFO to
improve the gait prediction of the PPCLMP model and use the predicted gait for gait evaluation.
The hypothesis is that the model prediction accuracy can be increased by utilizing the data from
IMU. Section 3.2 derives the algorithm that estimates the initial conditions and lumped muscle
parameters for each gait cycle based on the IMU data. Section 3.3 outlines the experimental
setup to measure the walking gaits of two drop foot patients. Section 3.4 compares the
model-predicted and the experimentally observed gait parameters of two drop foot patients.
Section 3.5 discusses the algorithm estimation accuracy, model prediction accuracy, and

potential model applications in evaluating gait with AFOs.

3.2.  Algorithm for Estimating Initial Conditions and Lumped Muscle Parameters based

on IMU Data - Inverse Dynamics

3.2.1. Overview

To estimate the initial conditions and lumped muscle parameters in the PPCLMP model
for each gait cycle, an algorithm is developed to utilize the kinematic data measured by the IMU
attached to the back of the AFO calf. The IMU data are first processed by a framework that
identifies gait events, calculates phase durations, and estimates shank pitch angles and angular

velocities. The duration of gait phases and estimated shank pitch angles and angular velocities
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are utilized as constraints in an optimization problem to search for the optimal initial conditions
and lumped muscle parameters for the gait cycle. The initial conditions and lumped muscle

parameters are inputs for the PPCLMP model to predict and evaluate gait.

3.2.2. Framework for Gait Event Identification and Angle Estimation

As shown in Figures 3-1(a) and (b), the IMU is attached to the AFO in the way that the
X-, ¥-, and z-axes of the IMU’s local coordinate are aligned with the global anterior-posterior
(xo-axis), lateral-medial (yo-axis), and superior-inferior axes (zo-axis), respectively, while the
subject is standing. Because the PPCLMP model only characterizes body movements in the
sagittal plane, this study has a special interest in the pitch angle, 8(t), which the IMU, or shank,

rotates about the y-axis with in the sagittal plane as shown in Figure 3-1(c).

Figure 3-2 shows the framework for gait event identification and angle estimation based
on the IMU measurements. The IMU measures: 1) three accelerations (a,(t), a, (t), and d,(t))
from the accelerometer, 2) three angular velocities (@, (t), @, (t), and @,(t)) from the
gyroscope, and 3) three headings (yaw @(t) for the x-axis, pitch 8(t) for the y-axis, and roll #(t)
for the z-axis) from the magnetometer. The accelerations measured by IMU are inputs to identify
the gait events. The angular velocity for the y-axis, @, (t), and pitch angle, 6(t), measured by

IMU are used to determine the shank pitch angles and angular velocities at gait events.

The gait event identification algorithm [114] is utilized to determine the time of the initial
TO, t,, heel strike (HS), t;, and end TO, t,, based on the resultant acceleration. The swing time

of the impaired side, tg,, is calculated as

tew =t — o (3-2)
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Similarly, the stance time of the impaired side, tg, which is the time duration of one SS

of the impaired side and two DSs before and after the SS, is calculated as

st =t —t4 (3-3)
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Figure 3-2: The framework for gait event identification and angle estimation based on accelerations, angular velocities, and
headings measured by the IMU. The peaks of resultant acceleration measured from the accelerometer are used to identify the gait
events and calculate swing and stance time. The angular velocities measured from the gyroscope and the headings measured from
the magnetometer are used to calculate the shank pitch angle and angular velocities. The swing and stance time and shank pitch
angles and angular velocities then are used as the constraints in the optimization problem to find the optimal initial conditions and
lumped muscle parameters.

Since there is redundancy in the heading and angular velocity measurements, the adaptive
Kalman Filter [109] can be applied to reduce the drift in the angular velocity measurement by

utilizing the heading measurement for better angle estimation. The Kalman-Filter processed

shank pitch angular velocity, 8(t), is utilized to calculate the shank pitch angle, 8(t), via angular
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integration. The 6(t) is compared with the measured pitch angle, 8(t), to estimate the drift in the
angular velocity measurements. The 8(t) and 8(t) are used to find the shank pitch angles
(0(to), O(t1), B(ty)) and angular velocities (8(t,), 8(t,), and 8(t,)) at the identified gait

events.

3.2.3. Optimization Problem for Searching the Initial Conditions and Lumped Muscle
Parameters

An optimization problem is constructed to use the estimated swing time, stance time, and
shank pitch angles and angular velocities at gait events as constraints to search for the optimal
initial conditions (the IMU only provides the initial shank pitch angle and angular velocity while
the initial joint angles of the lower limbs are unknown) and lumped Muscle parameters of the
PPCLMP model, as shown in Figure 3-3. The model then estimates the gait parameters and

calculates the quality metrics of gait symmetry and efficiency to evaluate the gait.
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Figure 3-3: The optimization problem for searching the optimal initial conditions and lumped muscle parameters for model
prediction and gait evaluation based on the estimated swing time, stance time, and shank pitch angles and angular velocities at
identified gait events to minimize estimated total energy expenditure.
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3.2.3.1 Initial Conditions at the TO

Since the IMU could only provide the pitch angle and angular velocity of the shank, this
section derives the quantitative relationship between the initial joint angles and shank pitch
angle. This relationship is further used to decrease the variable dimension of the optimization

problem proposed in this study.

Because the IMU is attached to the AFO, which is strapped to the impaired leg, the
IMU-identified TO is the impaired-side TO. Thus, the front-leg is the unimpaired leg, and the
back-leg is the impaired leg at this TO (Figure 3-4). There are six joint angles determining the
initial posture at this TO: 1) the impaired-side hip angle, 8, (t,), 2) the impaired-side knee
angle, 6,,(t,), 3) the impaired-side ankle angle, 8,5(t,), 4) the unimpaired-side hip angle,

0, (t,), 5) the unimpaired-side knee angle, 6,,(t,), and 6) the unimpaired-side ankle angle,
0,5 (t,). All these joint angles are measured from the standing neutral posture angles. Flexion
directions (dorsiflexion for ankle joint) are considered positive, and extension directions (plantar

flexion for ankle joint) are considered negative.
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Figure 3-4: The geometry and angle definitions at the impaired-side TO, t,, as shown in Figure 3-2.

The model assumes the front-knee is straight [58,61,64] and the front-foot is flat on the

ground at the TO. Thus, the unimpaired-side joint angles and angular velocities at the TO satisfy:

0,2 (to) = 052(t) = 0 (3-4)
023(to) = —0,1(to) (3-5)
6,3(to) = =021 (to) (3-6)

which means the unimpaired-side leg posture at the TO is only determined by the hip joint angle,
0,1 (ty), or the ankle joint angle, 8,5 (t,). In this way, the number of joint angles determining the
initial posture at the TO is reduced to four: 6,4 (t,), 612(t,), 613(ty), and 6, (t,). For the
impaired-side leg, the estimated shank pitch angle, 6(t), and angular velocity, 6(t), are:

012(t) — 611(2) = 0(t) (3-7)

012(t) — 611(t) = 6(t) (3-8)
Because the back-toe and front-foot are assumed on the ground at the TO, the front-hip

(unimpaired-side hip) joint angle at the TO, 6, (t), Is:
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(L1 + L) cos 6,1 (to)

= Ly c08(012(to) — 611 (to) — 013(t0)) — Ly + Lz sin(1(to) — 611(to) — 613(t0)) (3-9)
+ Ly c0s(8:12(to) — 611 (to)) — Ly cos 61, (to)

where L, is the upper leg length, L, is the lower leg length, L5 is the foot length, and L, is the

ankle height. Based on Eq. (3-7), Eq. (3-9) can be rewritten as:

621 (to)
os(L4 cos(0(ty) — 613(tp)) — Ly + Ly sin(B(ty) — 013(to)) + Ly C05(9 (to)) — Ly cos 014 (to)
L+ 1L,

To summarize, if 6(t,), 611 (ty), and 8,5(t,) are known, the other joint angles at the TO

) (3-10)

can be estimated based on Egs. (3-5), (3-7), and (3-10).

3.2.3.2 Lumped Muscle Parameters

There are 10 lumped muscle parameters as listed in Table 3-1. The hip and knee lumped
muscle parameters are used to describe the linear relationship between the hip and knee joint
torques and the associated joint angles. The joint torques are estimated as:

Tijp = kijp0ij (3-11)
where i represents the side (1 for the impaired side and 2 for the unimpaired side), j represents
the joint (1 for the hip joint and 2 for the knee joint), and p represents the phase (1 for SS, 2 for
DS, and 3 for SW). Since the push-off ankle torque during DS does not follow the spring
property [13], a lumped ankle torque is separately applied during DS based on the body mass.
The ankle torque of the unimpaired side is estimated based on the body mass as:

Tysp = Ta32M (3-12)
where M, is the body mass and r,, (the first 2 represents the unimpaired side, 3 represents the
ankle joint, and the second 2 represents the DS phase) is the lumped muscle parameter of the

unimpaired-side ankle.

The ankle torque of the impaired side is affected by the AFO stiffness and estimated as:

57



T3z = r132Mo + Kkppob13 (3-13)

where ry3, IS the lumped muscle parameter of the impaired-side ankle and k4 is the AFO

stiffness that is simulated by changing the ankle stiffness.

Table 3-1: Summary of 10 lumped muscle parameters in the model.
Side Phase Lumped muscle parameter Representation

Hip k112

DS Knee k122

Impaired Ankle T132
Hi k

SW p 113

Knee k123

Hip k212

DS Knee k222

Unimpaired Ankle 7232
Hi k

SW p 213

Knee kyo3

For each gait cycle (from initial TO, t,, to end TO, t,), there are two initial joint angles
(611 (to) and 615 (t,)), two initial joint angular velocities (814 (t,) and 6,3 (t,)), and ten lumped
muscle parameters (Table 3-1) needed to be solved. The constraints need to be satisfied are the

information provided by the IMU: three shank pitch angles (8(t,), 6(t,), and 8(t,)), three

shank pitch angular velocities (6(t,), 8(t,), and 6(t,)), swing time (tsy,), and stance time (tsr).

3.2.3.3 Optimization Problem

To find the optimal initial conditions and lumped muscle parameters for each gait cycle,
an optimization problem is constructed. Since the most commonly used objective function for
gait simulation is minimizing system energy expenditure [115-117], the objective function for
this study is proposed as minimizing the model estimated total energy expenditure at the hip,

knee, and ankle joints for each gait cycle:

min Yia([ Tizpdt + 35, X321 [ kijpbijp (D)dE) (3-14)
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where [ Tj3,dt is the total energy expenditure at the ankle joint and Y¥7_, Y51 [ kijp0;jp (t)dt is
the total energy expenditure at the hip and knee joints. x is the variable vector, which can be

written as:

X =
{gll(tO)l ng(tO)l éll(tO)l élS(tO)' k112' k122' T132, k113' k123' k212' k222! 7232, k213! k223} (3-15)

where the first four elements are the initial joint angles and angular velocities and the rest

elements are the lumped muscle parameters listed in Table 3-1.

To satisfy the IMU measured swing time and stance time, the equality constraints are
defined as:
tswp = tsw (3-16)

tpsip + tssp + tpsap = Lor (3-17)

where tgy p is the model-predicted SW time of the impaired side, tg,p is the model-predicted
DS time with the impaired leg in front, tggp is the model-predicted SS time of the impaired side,

and tps,p IS the model-predicted DS time with the impaired leg behind.

Furthermore, to satisfy the IMU measured shank pitch angles and angular velocities at the

TOs and HS, the inequity constraints are defined as:

1(6:2(t) = 612 (e))| — 0| < & (3-18)
16:2(t0) = 612 (e)| - 6| < & (3-19)
|1615(85) — 611 (£2)| — 8(t)| < & (3-20)
1612(2) = 611.(82)| — 6(t2)| < & (3-21)

where &, is the error tolerance for angle prediction and ¢, is the error tolerance for angular

velocity prediction.

Because this optimization problem is non-linear and non-convex, the enumeration search
method [118,119] is utilized to solve this problem. The searching boundaries of the variable
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vector, X, for the enumeration method are listed in Table 3-2. The searching boundaries of the
lumped muscle parameters are set from 1 Nm/deg to twice the values estimated from Winter
[13]. The boundaries of initial angular values are set based on the normal range in the literature
review in Table 2-4. The error tolerance for angle predictions, &, is set to 1°, and the error

tolerance for angular velocity predictions, &, is set to 10° per second.

Table 3-2: Ranges of the initial conditions and lumped muscle parameters for the enumeration method and the ranges of AFO
stiffness and subject parameters for the sensitivity analysis.

Ranges for the enumeration method Variables Unit Range (start, stop, step)
0(to) Deg (-75,-25, 1)
011 (to) Deg (-30,-5,1)
. . 0,5 (tg) Deg (-45,0,1)
Initial conditions B(to) Deg (-170. 0, 10)
611 (to) Deg/s (100, 150, 10)
613 (to) Deg/s (100, 450, 10)
kij, Nm/deg (1,20,1)
Lumped muscle parameters kijs Nm/deg (1,40,1)
Tizz Nm/kg (0.1,3,0.1)
Additional ranges for the sensitivity analysis ~ Variable Unit Values to be tested
Karo Nm/deg 0,3.6,45
. Gender - M, F
AFO stiffness and anthropometry Lo* m 151, 1.70, 1.88
M, kg 51, 88, 125

*Ly is the stature.

3.2.4. Sensitivity Analysis

A sensitivity analysis was performed to investigate the effects of the initial conditions,
lumped muscle parameters, AFO stiffness, gender, stature, and body mass on gait parameters
within the range listed in Table 3-2. The AFO stiffness was selected based on the measured
stiffnesses of two AFOs. The stature and body mass were selected to cover the stature and body
mass ranged from 5" percentile female to 95" percentile male reported by ANSUR Data [53]. To
reduce the number of enumerations, only the start, stop, and mean of the start and stop values for

initial conditions and lumped muscle parameters were used in the sensitivity analysis.

The contribution of each variable is listed in
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Table 3-3. The unimpaired-side step length increased with increasing stature and initial
shank pitch angle. This was consistent with the findings that step length should be proportional
to the stature [57,62]. The impaired-side step length increased with increasing joint angular
velocities. The SW time of the impaired side decreased with increasing initial angular velocities
of the AFO. This implied that the initial angular velocities had more impact on the SW time than
initial angles, which was consistent with the findings in Chapter 2. The time of the DS with the
impaired side in front was decreased with increasing unimpaired-side ankle torque. This was
because the unimpaired-side ankle torque was the main power source to activate the DS
movement. The SS time of the impaired side increased with increasing AFO stiffness and with
decreasing ankle torque of the unimpaired side during DS. The longer SS time with higher AFO
stiffness was consistent with the hypothesis made in Chapter 2: the AFO at ankle joint prevented
the inverted pendulum from swing forward. The ankle torque of the unimpaired side during DS
(with the impaired side in front) determined the initial state of the SS of the impaired side. The
DS time with the unimpaired side in front was not significantly (>10% contribution) affected by

any input tested.
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Table 3-3: Percent contribution of variations in the initial conditions, lumped muscle parameters, AFO stiffness, gender, stature,
and body mass to variations in gait parameters.
Input Variable Dy D, tewp tpsip tssp tpsop
0(ty) 39(+) 1 1
011(ty) 32(-) 1 5 2 3
b13(to) 6 1 2

Initial conditions

6(to) 16(+) 27(-)
611 (to) 10 4 6 4
013(to) 1
k113 8 4 3
k123 1 17(7) 4 3
k112
k122 6
Lumped muscle parameters ka1 ! ! °
k223 1
k212
k222 2 2
7132 3 1
T332 22(-) 22(-)
Karo 9 13(+) 1
Gender
Anthropometry and AFO Lo 23(+) 1 9 2 2
M, 6 6 4 4

* (+) represents a positive relationship between variables and (-) represents a negative relationship between variables for
contribution greater than 10%. Contributions that less than 1% are not included. D; is the step length of the impaired side, and Dy,
is the step length of the unimpaired side.

3.2.5. Algorithm Summary

The proposed algorithm (Figures 3-2 and 3-3) is used to estimate the initial conditions
and lumped muscle parameters for each gait cycle based on the data from an IMU sensor
attached to AFO. The IMU data are used to estimate the swing and stance time of the impaired
side and the pitch angle and angular velocity of the impaired-side shank. This information then is
used to search for the optimal initial conditions and lumped muscle parameters for the lowest
energy expenditure predicted by the model for each gait cycle. The optimal initial conditions and

lumped muscle parameters are used in the model to estimate gait parameters and evaluate gait.

3.3.  Subjects and Methods

To test the proposed PPCLMP model, observed and predicted gait parameters were
compared for one male and one female subjects with drop foot syndrome wearing AFOs. Both
subjects suffered drop foot syndrome on their left side, denoted as impaired side hereafter, due to
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spastic hemiparesis. The anthropometric data of the two subjects are shown in Table 3-4. The
body link lengths were directly measured from the subjects. The body link masses were
estimated based on the measured subjects’ body masses and mass ratios reported by Drillis and
Contini [16]. Each subject was prescribed with a plaster-molded AFO (AFO1) and a 3D-printed

AFO (AFO2). AFO1’s stiffness was 3.6 Nm/deg, and AFO2’s stiffness was 4.5 Nm/deg.

Table 3-4: Anthropometry of Subjects 1 and 2 and the stiffnesses of AFOs used in the experiment.

Subject Subject 1 Subject 2
Gender Male Female
Age 62 26
0 Stature, Ly 1.96 1.69
= Upper leg length, L, 0.47 0.33
= Lower leg length, L, 0.45 0.36
2 Mid-foot length, Ls 0.20 0.16
£ Ankle height, L, 0.11 0.10
) Heel length, Ls 0.06 0.05
M Fore-foot length, L 0.05 0.04
Body mass, M, 113 49
ié £ Upper leg mass, M, 15 6.5
28 g Lower leg mass, M, 5 2.2
2 = Foot mass, M 1.6 0.7
Upper body mass, M, 70 30
AFO stiffness (Nm/deg) AFOL — AFO2 - AFOL ~ AFO2

3.4 6.9 3.4 6.9

* The mass for each segment was estimated based on the measured body mass of the subject and the link-mass ratios reported by
Drillis and Contini [16].

The goal, experimental procedure, and possible risks were explained to the subjects
before participation. Each subject signed the informed consent form approved by Institutional

Review Boards of the University of Michigan (HUMO00090458).

A five-IMU system, LEGSys™ (BioSensics LLC, Newton, MA, USA), was used to
measure shank and hip planar movements at a 100 Hz sampling rate and calculate step length,
swing time, and stance time using the algorithm described by Chen et al. [120]. The IMU
attachment is shown in Figure 3-5 with one IMU on each thigh, one on the unimpaired-side
shank, one on the impaired-side shank, and one on the lower back trunk of the subject.

Separately, the IMU attached to the impaired shank was used as the IMU attached to AFO to
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predict the gait parameters based on the PPCLMP model for comparison with the observed gait

parameters based on the five-IMU system.

Each subject was asked to perform level ground walking without AFO (NAFO), with
AFO1, and with AFO2 on his/her impaired (left) ankle. Before each AFO trial, the subjects were
asked to walk with the AFO for 5 minutes to practice. For each trial, the subject was asked to
walk for 6 eight-meter trips with the comfortable self-selected speed in the gait room at the
University of Michigan Orthotic and Prosthetic Center (UMOPC). The first and last gaits of each

trip were excluded during the analysis.

To quantitatively evaluate the patients’ compensatory strategies for impairment. The
maximum hip abduction and knee flexion angles during SW were calculated separately based on
the thigh and shank IMUs via MATLAB (MathWorks, Natick, MA, USA). The data from the
IMU attached to the impaired-side shank were processed by the proposed algorithm (Figures 3-2
and 3-3) implemented in MATLAB to estimate the initial conditions and lumped muscle
parameters (Table 3-2) for each gait cycle. The paired t-test was used to determine the significant
differences of gait parameters among conditions and between observed and predicted gait

parameters.
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Figure 3-5: IMU attachment for the LEGSys™: one IMU on each thigh, one on each shank, and one on the lower back trunk.

3.4. Results

3.4.1. Observed and Estimated Initial Joint Angles and Angular Velocities

Table 3-5 shows the shank pitch angles and angular velocities at the initial TO (t,), HS
(t1), and end TO (t,) that were predicted from the raw accelerations, angular velocities, and
headings measured by the IMU on the impaired-side shank (Figure 3-2). These data were used as
constraints in the optimization problem to search for the optimal, denoted as predicted hereafter,
initial conditions and lumped muscle parameters for the observed gaits. The impaired-side shank
pitch angles were significantly (p < 0.05) greater for AFO conditions comparing with NAFO

condition at t, (60+9° versus 49+7°), t; (—7+4° versus —17+4°), and t, (61+8° versus 51+5°).

The comparisons of observed (O) and predicted (P) initial joint angles and angular
velocities are shown in Table 3-6. Significant differences (p < 0.05) were found between the
observed and predicted values for initial ankle angle and angular velocity for both subjects under

the NAFO condition. Such differences were not found for the AFO conditions. For Subject 2, the
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predicted angular velocity of the hip was significantly (p < 0.05) less than the observed value for

all conditions.

Table 3-5: Summary of the estimated swing time, stance time, and shank pitch angles and angular velocities at TOs and HS for
the impaired leg based on the IMU attached to the impaired-side shank.

Subject 1 Subject 2
Type Variables
NAFO AFO1 AFO2 NAFO AFO1 AFO2
n 33 24 26 24 30 22
0(to) 5045 67471 674671 43+9  54+111 53457
Shank pitch angle (deg) 6(ty) -10+5 -3+41 —4+21 —23+3  -8+411 1341
0(t,) 5045 68+71  67#671 51+5  55+111 5351
6(to) 166+7  159+36 138433 236+21 216433 2881221
Shank pitch angular velocity 120+11  117+49] 112+49]  37+12 842711 6417
(degs) 6(t1) + 9| 9| + +2711  64%171
6(ty) 166+7  159+36 138+33] 16748 21644317 28812211
tsw 0.47+0.07 0.46+0.01 0.44+0.03 0.47+0.11 0.47+0.03 0.46%0.09
Swing and stance time (s)
tsr 0.74£0.01 0.73+0.03 0.76+0.03 0.73+0.01 0.73+0.03 0.77+0.031

1 represents the value of the AFO condition was significantly (p < 0.05) greater than the NAFO condition
11 represents the value of the AFO condition was significantly (p < 0.05) greater than the NAFO condition and the other AFO

condition
| represents the value of the AFO condition was significantly (p < 0.05) smaller than the NAFO condition

Table 3-6: Comparison of initial impaired-leg hip and ankle joint angles and angular velocities between observed values (O) and
predicted (P) values.

Subject 1 Subject 2
NAFO AFO1  AFO2 NAFO AFO1  AFO2
n 33 24 26 24 30 22
_ O  —2045 2648  -23t6 _19+4 2543 _16+4
Hip 644 (tp)
|n|t|a| |mpa|red_|eg J0|nt P —2813 —2611 —2211 —27i04 —2612 —1211
angle (deg) O  21+6* 17+4 1643 1941* 11+4 1746
Ankle  8,5(to)
P 4448* 6+21 15+10 4045* 27412 1#1
" , O 160+13 16749  162+13  48+7*  79+27*  70+26*
1 6,4(t
Initial impaired-leg joint Poofult) o 0gi16 120423 110812 100814  120823* 100425+
angular velocity (deg) , O -387+19% 3030 362413 -—271427* 314427 267426
Ankle  013(to)
P _290+19% -333+11 -374420 -394422* 320437 —290+19

* represents that the predicted value was significantly different from observed value based on paired t-test, p < 0.05
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3.4.2. Estimated Lumped Muscle Parameters

The statistics of estimated lumped muscle parameters are shown in Table 3-7. For the
impaired side during SW, the lumped muscle parameter of the impaired-side hip joint was
significantly (p < 0.05) increased under the AFO1 condition comparing with the NAFO

condition for both subjects (23+4 Nm/deg versus 17+4 Nm/deg). The lumped muscle parameter

of the impaired-side hip joint during SW was significantly (p < 0.05) increased under the AFO2

condition comparing with the NAFO condition for Subject 1 (26+2 Nm/deg versus 18+2
Nm/deg) but was significantly (p < 0.05) decreased for Subject 2 (8+1 Nm/deg versus 13+6
Nm/deg).

The rest estimated lumped muscle parameters did not significantly change under both
AFO conditions comparing with the NAFO condition for Subject 1. For Subject 2, the lumped

muscle parameters of the unimpaired-side hip joint during SW were significantly (p < 0.05)

decreased under the AFO2 condition comparing with the NAFO condition (12+5 Nm/deg versus
18+4 Nm/deg). The lumped muscle parameter of the unimpaired-side hip joint during DS was

significantly (p < 0.05) increased under the AFO1 condition comparing with the NAFO

condition (22+5 Nm/deg versus 10+5 Nm/deg). The impaired-side ankle torque was

significantly (p < 0.05) decreased under the AFO2 condition comparing with the NAFO

condition (0.94+0.16 Nm/kg versus 2.08+0.22 Nm/kg). The unimpaired-side ankle torques were

significantly (p < 0.05) increased under the AFO1 condition comparing with the NAFO

condition (2.07+0.10 Nm/kg versus 1.94+0.33 Nm/kg).
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Table 3-7: Statistics of lumped muscle parameters of the hip and knee joints, k;;,, in Nm/deg, and ankle joints, 7;3,, in Nm/kg
summarized in Table 3-2.

Subject 1 Subject 2

Type Variable NAFO AFO1 AFO2 NAFO AFO1 AFO2

n 33 24 26 24 30 22

Impaired-side k13 1842 26£31 26421 1346 204 1 841 |
SW K123 9+1 8+3 104 943 10+3 65

K112 6+4 442 543 1042 15+2 65

Impaired-side Kizo 1143 945 13+8 10+1 1345 9+2
T132 1.77¢0.20 1.77#0.23 1.69+0.28 2.08£0.22 1.95+0.25 0.94+0.16 |

o k213 1542 1243 1442 18+4 203 1245 |

Unimpaired-side SW

Kza3 9+6 1343 121 1043 1143 7+8

kz1s 113 1342 203 1045 22451 1245

Unimpaired-side DS k5, 1743 15+1 141 2042 1543 18+8

T332 1.72+0.21 1.75+0.32 1.77#0.33 1.94+0.33 2.07+0.1 1  2.24+2.03

1 represents the value of the AFO condition was significantly (p < 0.05) greater than the NAFO condition.

11 represents the value of the AFO condition was significantly (p < 0.05) greater than the NAFO condition and the other AFO
condition.

| represents the value of the AFO condition was significantly (p < 0.05) smaller than the NAFO condition.

3.4.3. Observed and Predicted Gait Parameters

A summary of the observed and predicted gait parameters (step lengths, maximum hip
abduction, maximum knee flexion, phase time, and walking speed) is shown in Table 3-8. The
RMSEs between observed and predicted unimpaired-side step length were all significantly (p <
0.05) greater than the RMSEs for impaired-side step length (RMSEs of 0.11 m versus 0.06 m).
Besides, the predicted gait parameters all had significantly (p < 0.05) greater variations than
observed gait parameters (standard deviations of 0.10 m versus 0.03 m). The observed and
predicted SW time for the impaired side were the same because they were estimated based on the
same algorithm. No significant differences were found between all observed and predicted gait

parameters based on the paired t-test (p < 0.05).
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Table 3-8: Summary of the observed (O) and predicted (P) gait parameters.

Subject 1 Subject 2
NAFO AFO1 AFO2 NAFO AFO1 AFO2
n 33 24 26 24 30 22

O  0.68+0.03 0.78+0.03 0.75+0.03 0.35+0.03 0.44+0.02 0.38+0.04

Impaired-leg step length (m) P  0.66+0.13 0.81+0.12 0.74+0.16 0.31+0.07 0.40+0.14 0.36+0.07
RMSE 0.04 0.08 0.06 0.02 0.07 0.09

O  0.48+0.03 0.47+0.02 0.45%+0.02 0.46+0.03 0.54+0.03 0.48+0.03

Unimpaired-leg step length (m) P 0.49+0.03 0.48+0.09 0.48+0.09 0.51+0.12 0.55+0.15 0.42+0.05
RMSE  0.05 0.09 0.09 0.09 0.20 0.13
Max impaired-leg hip abduction O 7+3 5+4 5+4 1548 10+2 1243

663 63+3 61+2 53+7 6024 605
6427 64+4  62+10 604 57+3  62+12
tow/T (%) O(P) 386  36+10 372 4615 39+4 4242
13+2 10£3 11#1 623 1142 1041

Max impaired-leg knee flexion

tps1/T (%
ps1/T (%) 15+3 105 112 7+3 1245 112

P

(0] 335 3519 37+1 35+2 33+1 32+1
P 32+7 34+11 40+6 34+17 32+12 3349
O 16+3 19+3 15+3 13+4 17+4 16+2
P
O

tss/T (%)

tps2/T (%
ps2/T (%) 15+3 20+7 1242 1445 18+7 1645

0.93+0.15 0.98+0.25 1.00+0.04 0.67+0.05 0.81+0.04 0.7+0.05

P 0.92+0.13 1.03+0.22 1.02+0.16 0.68+0.12 0.77+0.15 0.73+0.06

* tsy IS the duration of the SW of the impaired side, tpg4 is the duration of the DS with the impaired side in front, tg is the
duration of the SS of the impaired side, t)g, is the duration of the DS with the impaired side behind, and T is the duration of the
whole gait that equal to the sum of tg, tps1, tss, and tps,.

Walking speed (m/s)

The step length of the impaired side was significantly (p < 0.05) longer than the
unimpaired side for Subject 1. Contrarily, the step length of the impaired side was significantly
(p < 0.05) shorter than the unimpaired side for Subject 2. Comparing with the NAFO condition,
the impaired step length was significantly (p < 0.05) longer under both AFO conditions for both
subjects, and the unimpaired step length was significantly (p < 0.05) shorter under both AFO

conditions for Subject 1, but longer under the AFO1 condition for Subject 2.

The observed maximum hip abduction angles were significantly (p < 0.05) higher for

Subject 2 than Subject 1 (12+7° versus 6+4°). Comparing with the NAFO condition, the

impaired-side hip abduction was significantly (p < 0.05) decreased under both AFO conditions
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for both subjects (8+4° versus 11+5°). Both observed and predicted impaired-side maximum

knee flexion was significantly (p < 0.05) higher for Subject 1 than for Subject 2 under NAFO

condition (63+7° versus 59+6°). Comparing with the NAFO condition, the maximum

impaired-side knee flexion was significantly (p < 0.05) decreased under both AFO conditions for

Subject 1 (63+5° versus 65+7°) but significantly (p < 0.05) increased under both AFO

conditions for Subject 2 (60+9° versus 57+5°).

The swing time of the impaired side was significantly (p < 0.05) shorter for Subject 1
than for Subject 2 (36% versus 43% of gait duration). Comparing with the NAFO condition, the
swing time was significantly (p < 0.05) decreased under both AFO conditions for Subject 2 (41%
versus 46% of gait duration), but not significantly changed under both AFO conditions for

Subject 1.

3.4.4. Gait Symmetry and Efficiency for Evaluation

The observed and predicted Sls for step length are shown in Figure 3-6. Comparing with
the NAFO condition, the Sl significantly (p < 0.05) increased under both AFO conditions for
Subject 1 (50% versus 34%) but significantly (p < 0.05) decreased under both AFO conditions
for Subject 2 (22% versus 28%). This trend was consistent between observed and predicted

values.

The Sls under both AFO conditions were not consistent between observed and predicted
values. In between the AFO conditions for Subject 1, the observed SI was equal under both AFO
conditions, but the predicted SI was significantly (p < 0.05) lower under the AFO2 condition
than under the AFO1 condition (41% versus 51%). In between the AFO conditions for Subject 2,

the observed SI was significantly (p < 0.05) less under the AFO1 condition (20% versus 24%),
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but the predicted SI was significantly (p < 0.05) greater under the AFO1 condition (31% versus

26%).
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Figure 3-6: Observed and predicted Sl under all conditions based on mean step lengths. Values are mean + SE.

The observed and predicted Sls for swing time are shown in Figure 3-7. Comparing with
the NAFO condition, the Sl significantly (p < 0.05) decreased under both AFO conditions (4%
versus 15%) for both subjects except that the observed SI with AFO 2 condition for Subject 2
was equal to the observed Sl under the NAFO condition. This trend was overall consistent
between observed and predicted values. The Sl changing trend under both AFO conditions was
consistent between observed and predicted for Subject 2, but was inconsistent for Subject 1. In
between the AFO conditions for Subject 1, the observed SI was significantly (p < 0.05) greater
under the AFO1 condition (3% versus 0%), but the predicted SI was significantly (p < 0.05) less
under the AFO1 condition (6% versus 8%). In between the AFO conditions for Subject 2, the
observed and predicted Sl was significantly (p < 0.05) less under the AFO1 condition (22%

versus 29%).
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Figure 3-7: Observed and predicted SI under all conditions based on mean swing time. Values are mean + SE.

The observed and predicted preferred walking speed are shown in Figure 3-8 and Table

3-8. The walking speed was significantly (p < 0.05) faster for Subject 1 than for Subject 2 (0.98+
0.19 m/s versus 0.73+0.12 m/s). Comparing with the NAFO condition, the walking speed was
significantly (p < 0.05) increased under both AFO conditions for both subjects (0.88+0.18 m/s
versus 0.80+0.11 m/s). This trend was consistent between observed and predicted values. The

walking speed under both AFO conditions was consistent between observed and predicted

values. The walking speed was not significantly different between the AFO conditions.
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Figure 3-8: Observed and predicted walking speed under all conditions as summarized in Table 3-8. Values are mean + SE.

The predicted energy expenditure for each condition is shown in Figure 3-9. The NAFO
condition had significantly (p < 0.05) lower energy expenditure comparing with the AFO
conditions for both subjects (89 J/gait versus 133 J/gait), while the AFO2 condition had
significantly (p < 0.05) higher energy expenditure comparing with the other two conditions for
both subjects (143 J/gait versus 105 J/gait).
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Figure 3-9: Predicted energy expenditure under all conditions. Values are mean + SE.

73



3.5. Discussion

3.5.1. Initial Joint Angles and Angular Velocities Differences

Most of the observed and predicted values were within the normal range from the
literature review in Table 2-4 except the observed initial hip angular velocity for Subject 2 was
30% less than the normal range (Table 3-6). This implied the slowed gait that resulted from the
impairment [100-103]. The differences between observed and predicted initial ankle angles

(RMSE = 17°) and angular velocities (RMSE = 52 deg/s) might due to the forefoot stiffness

created by the shoe. Several studies showed that the forefoot stiffness created by the shoe
affected gait performance [121,122]. While the proposed model considered the forefoot as a rigid
link and resulted in a biased initial ankle angle. For both AFO conditions, the AFO footplate was
more rigid than the shoe. This made gait with AFOs similar to the gait predicted by the PPCLMP
model and explained that no significant differences were found for ankle angle and angular

velocities between observed and predicted values under AFO conditions.

3.5.2. Estimated Lumped Muscle Parameters
The lumped muscle parameters of hip and ankle joints were significantly changed among
different conditions, while the lumped muscle parameters of knee joints were not significantly

changed among the AFO conditions.
The increment of impaired-side hip lumped muscle parameter with AFO1 during SW for
two subjects (23+4 Nm/deg versus 17+4 Nm/deg) and the inconsistency changing trend with

AFO2 during SW between two subjects (Table 3-7) can be explained by the two AFO effects
during DS addressed in Chapter 2. The AFO released energy during push-off, but also

constrained the ankle from performing plantar flexion during the later push-off stage, which
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constrained the ability of energy generation. The AFO1 had less stiffness and released less
energy for initial SW. This resulted in higher hip muscle activity to pull the leg forward during
SW to compensate for less energy at the beginning. On the other hand, the AFO2 had higher
stiffness and released more energy for initial SW. Depends on which effect (release energy and
constrain the ankle) was dominating, the hip lumped muscle parameter could increase or

decrease during SW.

The decrement of the unimpaired-side ankle torque for Subject 2 with AFO2 (Table 3-7,

0.94+0.16 Nm/kg versus 2.08+0.22 Nm/kg) was because AFO2 was stiffer and released more
energy. The increment of unimpaired-side ankle torque for Subject 2 with AFO1 (2.07+0.10
Nm/kg versus 1.94+0.33 Nm/kg) was a result of compensating for the constrain-ankle effect of

the AFO during SS. During the DS with unimpaired side behind, the subject might want to
push-off harder to maintain higher initial velocities of the impaired side at initial SS that right
after the DS to compensate the slowing effect of the AFO stiffness proposed in Chapter 2. The
inconsistency trend in lumped muscle parameters changing between subjects might due to
gender, anthropometry, and gait preference differences. Further investigation is needed to study

how these factors could affect lumped muscle parameters and model predictions.

3.5.3. Gait Parameters

Overall, the PPCLMP model predictions of gait parameters were improved by utilizing the IMU
data comparing with results in Chapter 2 (RMSE of step length: 0.07 m versus 0.15 m; RMSE of
swing time: 2% versus 5% of gait duration). The RMSE of step lengths ranged from 0.02 to 0.20
m. The RMSE was resulted from the higher variations found in the predicted step length
comparing with the observed step length (Table 3-8). The differences between the mean
observed and predicted step lengths were all less than 0.05 m. This suggested that the model was
good in predicting multiple gait cycles instead of the individual gait cycle. The higher RMSE of
the unimpaired-side step length suggested that the prediction of step length on the impaired side
was better than the prediction of the unimpaired side. This was because the IMU was attached to
the impaired side. There was more information provided for the impaired side from the IMU.
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The movement of the unimpaired side was only based on model prediction. The impaired-side
step length (Table 3-8) was changing in the same direction with the impaired-side hip joint

lumped muscle parameter (Table 3-7), which was consistent with the sensitivity analysis shown
in
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Table 3-3. For both subjects, the AFO made the impaired-side step length longer and was
inconsistently affect the step length on the unimpaired side. This was consistent with the finds

reported by previous investigations of AFO effects on impaired gait [123-125].

Subject 1 had a longer step length on the impaired side than on the unimpaired side (0.74

+0.18 m versus 0.47+0.07 m), while Subject 2 had longer step length on the unimpaired side
(0.49+0.03 m versus 0.39+0.03 m). This could be explained by the two compensatory strategies

described by Konttink et al. [5] and Don et al. [8]. As observed, Subject 1 tended to use more

knee flexion (Table 3-8, 63+7° versus 59+6°) on the impaired side to lift his foot during SW in

order to avoid stubbing his toe. Because of more knee flexion, the HS occurred later and further
away from the stance leg, which led to longer step length. On the other hand, Subject 2 tended to

utilize more hip abduction (Table 3-8, 12+7° versus 6+4°) and perform the circumduction

movement of the leg on the side of the body. This resulted in longer SW time (Table 3-8) and
shorter step length. The differences in compensatory strategies between the two subjects might
be due to the differences in gait patterns between males and females. Females have been found to
have more hip abduction and internal rotation due to wider pelvis and less effective hip

abductors during walking [126,127].

The prediction of step length was better for Subject 1 than Subject 2 (RMSE < 0.09
versus RMSE < 0.20 m). This is because the significant hip abduction performed by Subject 2
during gait was not characterized by the planar model. Possible solutions are adding one degree
of freedom to the hip joint (abduction/adduction) to advance the model into a 3-D model, or
compensating the 3-D movement in the planar model by changing the effective lengths of the

body segments in the sagittal plane.
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The walking speed was overall faster with AFO conditions comparing with the NAFO

condition (0.88+0.18 m/s versus 0.80+0.11 m/s), which suggested that AFOs could improve

walking speed. This was consistent with the findings reported by previous investigations of AFO

effects on impaired gait [123-125].

3.5.4. Evaluation of Gait with AFOs

The IMU-attached AFO shows the possibility of evaluating gait with AFOs during the
patient’s daily activity. The IMU data can be stored locally or uploaded to a server via Wi-Fi for
indoor or 2G-5G for outdoor connection for gait analysis and evaluation regarding gait symmetry

and efficiency.

The observed Sl for step length (Figure 3-6) suggested that Subject 1 had worse spatial
symmetry in his gait with the AFOs (Sl for step length: 50% versus 34%), and Subject 2 had
better spatial symmetry in her gait with the AFOs comparing with the NAFO condition (SI for
step length: 22% versus 28%). This was because that Subject 1 had longer step lengths on his
impaired side, while Subject 2 had shorter step lengths on her unimpaired side under the NAFO
condition. Since the AFOs increased the step lengths on the impaired side, it was reasonable to
see Subject 1 got worse gait with the AFOs, and Subject 2 got better gait with the AFOs based on
the Sl for step length. This suggested that patients with longer impaired-side step length
(compensate by flexing knee) would get even more asymmetry on step lengths, while patients
with shorter impaired-side step length (compensate by circumduction) would gain more
symmetry on step lengths by wearing AFO. Neither AFOs could correct the SI for step length to
normal range (0~10%, [67,68]), which was consistent with the findings from Guillebastre et al.

[128] and Esposito [40].
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Due to the better prediction of impaired-side step length (RMSE < 0.09 m) and poor
unimpaired-side step length (RMSE < 0.20 m) mentioned above, the model did not demonstrate
good prediction on the SI for step length. Especially for Subject 2, the model prediction would
suggest AFO2 was better than AFO1, while the observed step lengths would suggest the other
way around. Also, the RMSE of step length prediction for Subject 1 was less than 0.09 m
compared with 0.20 m for Subject 2. This inconsistency of the step length prediction accuracy
between the two subjects might be the result of differences in stature, gender, and age of two
subjects. Females were found to have a wider pelvis and more pelvic obliquity range than males
during gait [129,130], while the linkage system of the PPCLMP model ignores the size and
movements of the pelvis link during gait. This may contribute to the prediction errors when
predicting gait for females. Further investigation is needed to evaluate the effect of these

anthropometric parameters on model prediction accuracy.

Overall, the SI for swing time (Figure 3-7) suggested that drop foot patients would gain
more temporal symmetry with the AFOs (4% versus 15%). For Subject 2, the model prediction
was consistent with the observation results: AFO1 was better. For Subject 1, the model
prediction suggested AFO1, while the observed results suggested AFO2. However, both AFOs
corrected the Sl for swing time of Subject 1 back to normal range (0~9%, [67,68]) and might be
good options for Subject 1. Thus, the model had consistent results in evaluating the gait with

AFO1 and AFO2 with the observed results on Sl for swing time.

Similarly, the model had consistent results in evaluating the gait with AFO1 and AFO2
with the observed results on walking speed (Figure 3-8). Based on the walking speed, AFO1 and
AFO2 were equivalent in improving Subject 1’s gait, while the AFO1 showed better gait

improvement on Subject 2 than the AFO2.
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The predicted energy expenditure was increasing under the AFO conditions comparing
with the NAFO condition (Figure 3-9, 89 J/gait versus 133 J/gait). This was inconsistent with the
observed reduction in oxygen consumption with AFO use reported by many investigators
[96,131-133]. Hassler [134] proposed that the possible reason for oxygen consumption reduction
was stability improvement. The proposed model did not consider the stability of the movement,
since the model characterized the lower limb movement of each phase with continuous dynamic
systems that describe smooth movements. The lateral stability was also not considered due to the
limitation of the planar analysis. Furthermore, the model estimated the energy expenditure based
on the lumped muscle works at each joint. The model did not separate the passive stiffness of
joints from the active muscle activities, neither the work from agonist and antagonist. For
instance, the two subjects in this study suffered from drop foot due to spastic hemiparesis. This
pathology resulted in the involuntary contraction of the ankle plantar flexor [135,136], whose
passive work was included in the energy expenditure of this study. The model also assumed the
knee was straight during SS, and the front-knee was straight during DS. The energy needed to

keep the knee straight was not considered in the model.

3.5.5. Limitations

As discussed, the model was limited to predicting energy expenditure because the work
of agonist and antagonist, the smoothness of movement, and lateral movements were not
characterized by the model. In addition, using the minimization of energy expenditure as the
objective of the optimization problem was a major limitation. The optimization strategies of
subjects during walking may not be limited to minimize energy expenditure, but also comfort
and movement smoothness. Also, only two subjects were recruited in this study, which limits

the statistical power of the results.
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3.6. Conclusions

This work demonstrated how the model could be used to quantitatively predict and
evaluate gait with different ankle stiffnesses based on the data from a single IMU attached to the
impaired shank. Results showed that the IMU could be utilized to estimate the initial conditions
and lumped muscle parameters for each gait cycle by the inverse-dynamic mode of the PPCLMP
model. The estimated initial conditions and lumped muscle parameters can be used by the
forward-dynamic mode of the model to enhance the gait prediction and evaluation. The
model-predicted step lengths, swing time, and walking speed were consistent with the observed
gait parameters, and the prediction accuracy was improved comparing with results in Chapter 2.
The model-predicted Sl for swing time was consistent with the observed SI, while the
model-predicted Sl for step length was inconsistent with the observed SI among different
conditions. The model-predicted energy expenditure was not a good quality metric for gait
evaluation because the model ignored the amount of energy needed to perform stable and smooth

movements.
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CHAPTER 4 An Investigation of Gait Prediction Accuracy of the PPCLMP Model
Abstract

This study aims to investigate the gait prediction accuracy of the planar piecewise
continuous lumped muscle parameter (PPCLMP) model. Three male (13" to 96" percentile stature)
and three female (22" to 97" percentile stature) healthy subjects were recruited to walk with and
without two ankle-foot orthoses (AFOs) with low and high stiffnesses (3.4 and 6.9 Nm/deg) on
their left ankles to measure their step lengths and swing time during gait using the vision-based
motion tracking system. The kinematic data measured from the inertial measurement unit (IMU)
attached to the AFO calf were utilized by the inverse-dynamic mode of the PPCLMP model to
predict the initial conditions and lumped muscle parameters that characterize joint torques. The
predicted initial conditions and lumped muscle parameters were then utilized by the
forward-dynamic mode of the PPCLMP model for gait prediction. Additionally, the electrical
activities of muscles related to hip joint torques were measured by four surface electromyogram
(SEMG) units: one on the biceps femoris and one on the rectus femoris of each thigh. The
model-predicted initial conditions and lumped muscle parameters were compared with the
experimentally measured initial conditions and SEMG profiles, respectively. The model-predicted
step lengths and swing time were also compared with the experimental observations. Results
demonstrated that the increasing stature significantly (p < 0.05) improved the model prediction
accuracy regarding the initial conditions and lumped muscle parameters while body mass and

gender had no significant effect. Consequently, the increasing stature was found to significantly
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(p < 0.05) improve the model prediction accuracy of step lengths, as well as the walking speed and

symmetry index for step length.
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4.1. Introduction

Gait-related biomechanical models utilize anthropometric parameters (stature, body mass,
and gender) to characterize the linkage system of the human body and investigate movements
during gait phases [137-140]. The inverted pendulum model for the single stance phase (SS)
demonstrated that the stature and body mass distribution determined the energy transfer during
the SS [141]. The inverted pendulum model for the SS [141] and the double pendulum model for
the swing phase (SW) [142] revealed that the stature (particularly the lower limb lengths) but not
body mass affected the swing time and stance time ratio for walking gait. Further, various
stature, body mass, and gender affected the prediction of joint forces and movements from the
kinematic chain model [140,143] which was used to characterize the lower limb movements

during the double stance phase (DS) of walking.

Anthropometric parameters also affect the gait prediction of the planar piecewise
continuous lumped muscle parameter (PPCLMP) model (Chapters 2 and 3), which combines the
SS (inverted pendulum model), SW (double pendulum model), and DS (kinematic chain model)
to predict the walking gait with an ankle-foot orthosis (AFO) that increases the ankle joint
stiffness. The data from an inertial measurement unit (IMU) attached to the AFO are utilized by
the inverse-dynamic mode of the PPCLMP model to predict the initial conditions (joint angles
and angular velocities at the start of gait) and lumped muscle parameters that characterize joint
torques for each gait cycle (Chapter 3). The predicted initial conditions and lumped muscle
parameters are then utilized by the forward-dynamic mode of the PPCLMP model to predict gait
parameters (step lengths and swing time) for gait evaluation. Anthropometry of subjects affects
the model prediction accuracy. The PPCLMP model prediction accuracy of step lengths was

better for a tall male subject than for a short female subject (root mean square error (RMSE) <
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0.09 m versus RMSE < 0.20 m) in Chapter 3. The goal of this study is to investigate the

PPCLMP model prediction accuracy among subjects with various anthropometry.

Human subject tests of various anthropometry are required to evaluate the prediction
accuracy of biomechanical models [144-146]. Muscle electrical activity measured from surface
electromyogram (SEMG) units can be used to estimate the muscle force [64,147-149] which is
characterized as spring force by the lumped muscle parameters in the PPCLMP model. As biceps
femoris (BF) acting as the knee flexor and hip extensor and rectus femoris (RF) acting as the
knee extensor and hip flexor, SEMG signals of the BF and RF are commonly used to estimate
the hip extension and flexion torques, since they determine the lower limb movements during
each gait phase. The root mean square (RMS) of the SEMG profile for the BF mostly peaked
during the SW [150,151], while the RF of the back-leg was found to significantly active during

the DS [152-154].

To examine the prediction accuracy of the PPCLMP model, subjects of various stature,
body mass, and gender were recruited in this study to compare the SEMG measured muscle
activities and the model-predicted lumped muscle parameters as well as the observed and
model-predicted: 1) initial conditions of each gait cycle, 2) step lengths, 3) swing time, 4)

symmetry index (SI) for step length, 5) SI for swing time, and 6) walking speed.

This study investigates the PPCLMP model prediction accuracy among various
anthropometry. The hypothesis is that the anthropometric inputs affect the model prediction
accuracy. Section 4.2 outlines the subject recruitment, experiment procedure, data collection and
processing, and statistical analysis. Section 4.3 compares the model prediction accuracy among

subjects of various anthropometry. Section 4.4 discusses the effect of anthropometry on model
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prediction accuracy and explains the effect of subject variables on PPCLMP model prediction

accuracy.

4.2. Methods

The subjects, the procedure of the human subject test, experimental settings, data
processing, and the statistical analysis that examines the effect of anthropometry on model

prediction accuracy are summarized.

4.2.1. Subjects

Three male and three female healthy subjects were recruited to measure their muscle
activities, joint angles, step lengths, and swing time during walking gait. The gender, stature,
percentile of stature, body mass, and body mass index (BMI) of six subjects are listed in Table
4-1. The stature of female subjects ranged from 22" to 97*" percentile of the female population,
and the stature of male subjects ranged from 13" to 96™ percentile of the male population

reported in the ANSUR Data [53].

Table 4-1: Anthropometry of six subjects

Subject 1 2 3 4 5 6
Gender* F F F M M M
Stature (m) 1.55 1.61 1.74 1.65 1.75 1.88
Percentile of stature 22t 55t g7t 13th 55t 96
Body mass (kg) 50 56 56 68 85 95
BMI 21 22 18 25 28 27

*F represents the female and M represents the male.

4.2.2. Procedure

Three experimental conditions were carried out. In the first condition, the subjects walked
without any AFO, denoted as NAFO. In the second and third conditions, the subjects wore an
AFO with low (3.4 Nm/deg, as tested in Appendix C) or high stiffnesses (6.9 Nm/deg, as tested

in Appendix C) on their left ankle and denoted as AFO1 and AFO2, respectively. To gain data of
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40 gait cycles from each subject under each condition (NAFO, AFO1, and AFO2), the subject
was asked to walk with comfortable self-selected speed for 20 trips under each condition with at
least two complete gait cycles recorded (exclude the first and last gait cycles) for each trip. For
AFO1 and AFO2 conditions, each subject was asked to walk with the AFO for 5 minutes before
the experiment trial to adapt to the increased stiffness at the ankle joint. Before participation, the
goal, experimental procedure, and possible risks were explained to each subject. An informed
consent form approved by Institutional Review Boards (IRB) of the University of Michigan

(HUMO00090458) was signed by each subject before participation.

4.2.3. Data Collection
Three measurement devices were applied simultaneously to record the lower limb
movement and muscle activity data: 1) vision-based motion tracking system, 2) IMU attached to

the left shank or AFO, and 3) SEMG on BF and RF muscles.

The vision-based motion tracking system with two sensor units (three cameras each) by
NDI Optotrak Certus (NDI Waterloo, Ontario, Canada) was used to measure the movements of
lower limbs at a sampling rate of 100 Hz. As shown in Figure 4-1(a), six marker clusters were
placed on the upper leg, lower leg, and foot of both legs to track the movement of lower limb
segments in the sagittal plane. Additional markers were placed on the hip and ankle joints for

calibration purposes.

An IMU (Model BNOO55, Bosch Sensortec, Mount Prospect, Illinois, USA) was
attached to the back of the left lower shank for the NAFO condition and the AFO for AFO1 and
AFQO2 conditions as shown in Figure 4-1(b), to measure the shank movement at a sampling rate

of 100 Hz.
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Custom SEMG units with RMS filter (University of Michigan Center for Ergonomics,
Ann Arbor, Michigan, USA) were utilized to predict the muscle activities to compare to the
model prediction of the lumped muscle parameters. As shown in Figure 4-1(c), four SEMG units
were instrumented on: 1) left biceps femoris (IBF), 2) left rectus femoris (IRF), 3) right biceps
femoris (rBF), and 4) right rectus femoris (rRF) [150-154] to measure the electrical activities of
the hip extensors and flexors. Recorded SEMG signals were processed by the RMS filter with
the gain set to 10,000 and the delay set to 250 ms. The SEMG RMS data were synchronized with
the vision-based motion tracking system using the NDI data acquisition unit (NDI Waterloo,

Ontario, Canada).
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(b)

SEMG for BF

(©
Figure 4-1: Equipment for measuring movements and muscle activities of the BF and RF: (a) the placement of vision-based
motion tracking markers from the side view, (b) the IMU attached to the back of the AFO calf, and (c) the placement of four
SEMG units on IBF, IRF, rBF, and rRF.

4.2.4. Data Processing

The data measured from the vision-based motion tracking system were utilized to
calculate the initial conditions, step lengths, swing time, and walking speed of each gait cycle
using MATLAB 2017 (MathWorks, Natick, MA, USA). The amplified SEMG RMS data of each
muscle during one sample gait cycle is shown in Figure 4-2. Because each lumped muscle
parameter has only one value for each phase, the mean SEMG RMS of each phase was
calculated to compare with the hip joint lumped muscle parameters regarding changing trends.

The three-axis accelerations, angular velocities, and headings measured from the IMU were
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analyzed by the inverse-dynamic mode of the PPCLMP model to predict the initial conditions
and lumped muscle parameters (Figures 3-2 and 3-3). The predicted initial conditions and
lumped muscle parameters were then used in the forward-dynamics mode of the PPCLMP model
to predict the step lengths, swing time, and walking speed of the gait to compare with

experimental observations.

Differences between the observed and PPCLMP model-predicted initial conditions were
calculated to study the model prediction accuracy of the initial conditions. Correlations between
the mean of SEMG RMS and PPCLMP model-predicted hip joint lumped muscle parameters for
the swing leg during the SW and the back-leg during the DS were used to investigate the model
prediction accuracy of the lumped muscle parameters. Differences between the observed and
predicted step lengths and swing time were used to examine the model prediction accuracy of

gait parameters.
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Phase Associated lumped muscle Left DS1 (right leg Right DS2 (left leg

parameter SW behind) SW behind)
IBF Left hip 34412 16+2 14+11 63+9
Mean SEMG RMS  IRF Left hip 19+5 18+6 11+10 35+3
(mV) rBF Right hip 14410 47+5 28+6 18+3
rRF Right hip 3+3 52420 36110 6+1
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Figure 4-2: Amplified SEMG RMS during a sample gait of Subject 3 under the NAFO condition. TO represents the toe-off, HS
represents the heel strike, SW represents the swing phase, SS represents the single stance phase, DS1 represents the doubles
stance phase with right leg behind, and DS2 represents the double stance phase with left leg behind, IBF represents the left biceps
femoris, IRF represents the left rectus femoris, rBF represents the right biceps femoris, and rRF represents the right rectus
femoris. The top table shows the mean and standard deviation of the SEMG RMS during each phase that are used to compare
with the associated lumped muscle parameters.

To further examine the effect of anthropometry, the walking speed and Sls (Eq. 3-1, [66])
for step length and swing time were calculated for each subject for NAFO, AFO1, and AFO2
conditions based on observed and predicted gait parameters. Differences between the observed
and predicted walking speed and Sls were also used to determine the prediction accuracy of the

PPCLMP model.

4.2.5. Statistical Analysis

Seven dependent variables were used in this study to evaluate the model prediction
accuracy: 1) the correlation (denoted as 7)) between the mean SEMG RMS and predicted
lumped muscle parameters of the SW and DS, as well as the error of predicted: 2) initial

conditions (denoted as ;) including initial joint angles (initial shank pitch angle 8(t,), back-hip
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angle 6,4 (t,), and back-ankle angle 6,5(t,)) and angular velocities (initial shank pitch angular
velocity 8(t,), back-hip angular velocity 8,4 (t,), and back-ankle angular velocity 8,5 (o)), 3)
step lengths (denoted as ¢g; ), 4) swing time (denoted as ergy/), 5) walking speed (denoted as

&sp), 6) Sl for step length (denoted as &g;5; ), and 7) predicted Sl for swing time (denoted as

EsiTSw)-

These errors were defined as the absolute differences between the observed and predicted
values. The independent variables of this study were stature, body mass, gender, and AFO

stiffness.

Repeated measures analysis of variance (ANOVA) was performed using Minitab 18
(Minitab LLC, Chicago, IL, USA) to evaluate the effects of four independent variables (stature,
body mass, gender, and AFO stiffness) and their interaction terms on the dependent variables.
Subjects’ stature and body mass were used as covariates. Additional correlation analysis was
performed to further test the relations between the independent variables and the
ANOVA-significant (p < 0.05) affected dependent variables. As suggested by Evans [155], for

the absolute value of r:

e 0.00-0.19, “very weak”
e 0.20-0.39, “weak”

e 0.40-0.59, “moderate”

e 0.60-0.79, “strong”

e 0.80-1.00, “very strong”

4.3. Results

The model prediction accuracy of initial conditions, lumped muscle parameters, step

lengths, swing time, gait symmetry, and walking speed are presented.
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4.3.1. RMSE between Observed and Predicted Results

Results of observed and predicted initial joint angles and angular velocities (Appendix
D), measured SEMG RMS, the model-predicted hip and knee lumped muscle parameters during
the SW and DS (Appendix E), and observed and predicted step lengths, swing time, and walking
speeds (Appendix F) for 40 normal self-paced gait cycles are presented. The RMSE in predicted

initial joint angles and angular velocities ranged from 0 to 18° and 2 to 58 °/s, respectively. The

RMSE in predicted step lengths and swing time ranged from 0.01 to 0.16 m and 0.01 to 0.04
seconds, respectively. The model prediction accuracy was good for swing time and fair for step

length.

4.3.2. ANOVA

As the ANOVA results shown in Table 4-2, the stature and gender have significant
effects on the model prediction accuracy. The stature had significant effects (p < 0.05) on all the
dependent variables except the g, of the initial back-ankle angle, the &, of both sides, and
esirsw- Gender showed significant effects on the rg,,; of IBF (r = 0.79 for male versus r = 0.40
for female) and rRF (r = 0.63 for male versus r = 0.32 for female) during SW and rBF (r = 0.73
for male versus r = 0.44 for female), IRF (r = 0.81 for male versus r = 0.33 for female), and rRF

(r = 0.87 for male versus r = 0.61 for female) during DS.

The body mass, AFO stiffness, and the interaction terms between the independent

variables did not have significant effects on any of the dependent variables.
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Table 4-2: ANOVA table for independent variables with significant effects (p < 0.05). L represents the left side, R represents the right side, M represents the male, and F represents
the female. The significant effect of gender is shown as pooled value comparisons between males and females. The significant effect of stature is shown as the first-order
coefficient and the intercept from ANOVA. The body mass and the interaction terms had no significant effect on the dependent variables.

&ic TEMG &g, (M) Ersw (8)
. . . & & &
6(to) 611(to) 613(to) 8(to) 011 (to) O13(to) i DS L R L R (nf/I;) (%Z)L %%W
)y O ) Cls) (ls) (ls) IBF IRF rBF rRF IBF IRF rBF rRF  (AFO) (AFO)
0.79+0.08 0.63+0.06
Gender

0.81+0.06 0.73+0.12 0.87+0.02

(Mvs. F) VS, VS. VS. VS. VS,
' 0.40+0.04 0.32+0.14 0.33+0.01 0.44+0.10 0.61+0.21
Stature (m)
coefficient -26 -16 -65 -66 -51 1.3 09 05 11 0.9 14 1.3 14 -0.24 -0.33 -0.24 -37
(intercept) (54) (34) (129) (136) (105) (-1.6) (-1.1)(-0.3) (-1.4) (-1.1) (-1.8) (-17)  (-1.6) (0.49) (0.66) (0.52) (72)
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4.3.3. Accuracy of Initial Conditions
The model prediction accuracy of initial conditions (g;.) was correlated with stature as
shown in Table 4-3. Weak to strong negative correlations (r = —0.61 to —0.21) were found

between stature and the &, of all initial angles and angular velocities.

Table 4-3: The correlation coefficients between the stature and ¢, of initial angles and angular velocities. The g, of all initial
angles and angular velocities were ANOVA-significant (p < 0.05) affected by stature except the ¢, of the initial back-ankle

angle (613 (to))-

Correlation between stature and &

Shank pitch angle 0(to) -0.81
Back-hip angle 011 (to) —-0.60
Back-ankle angle 013 (to) -0.51
Shank pitch angular velocity 0(ty) -0.37
Back-hip angular velocity 011 (o) -0.35
Back-ankle angular velocity 013(to) -0.38

4.3.4. Accuracy of Lumped Muscle Parameters

The model prediction accuracy of lumped muscle parameters (rzp) Was correlated with
stature and gender as shown in Table 4-4. The gy, of BFs was generally close to that of RFs
during the SW among all subjects (r = 0.59 versus r = 0.50), while the ), of RFs were greater
than that of BFs during DS (r = 0.66 versus r = 0.48). The model prediction accuracy of the

lumped muscle parameters was better for males than for females (r = 0.68 versus r = 0.43).

Table 4-4: The 1y during the SW and DS for six subjects. The L and R for 14y during DS represent the side of the back-leg.

Subject 1 2 3 4 5 6

Gender F F F M M M Mean
Stature (cm) 155 161 174 165 1745 1875

L (AFO) BF 040 045 036 070 079 089 0.60
sSw RF 034 036 047 059 054 067 050
R BF 052 054 064 043 069 063 058
RF 0.13 037 047 0.67 068 055 0.49
TEMG L (AFO) BF 025 040 044 032 028 061 0.38
DS RF 035 032 033 073 087 082 057
R BF 030 055 046 070 060 089 0.58
RF 038 056 088 0.89 088 085 0.74

4.3.5. Accuracy of Step Lengths and Swing Time
As shown in Figures 4-3 and 4-4, the model prediction accuracy of step lengths (&g, ) was

correlated with stature, and the model prediction accuracy of swing time (&ergsy,) Was not
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correlated with any anthropometric parameter. Strong and moderate negative correlations were
found between the stature and &g, of both legs (r = -0.64 for the left side and —-0.44 for the right
side), and no correlation was found between the stature and &;, (r = -0.07 for the left side and

-0.06 for the right side).

B Error of left step length Error of right step length

0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04 o~

0.02

Errors of predicted step lengths (m)

1.55 1.61 1.65 1.74 1.75 1.88

Stature (m)
Figure 4-3: The range of errors of predicted step lengths for subjects with different statures (all conditions pooled).

M Error of left swing time Error of right swing time
0.045
0.04
0.035
0.03
0.025 ‘
0.02

0.015

0.01

Errors of predicted swing time (s)

0.005

1.55 1.61 1.65 1.74 1.75 1.88

Stature (m)
Figure 4-4: The range of errors of predicted swing time for subjects with different statures (all conditions pooled).
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4.3.6. Accuracy of Gait Symmetry Index (SI)
The observed and predicted Sls for step lengths and swing time of all six subjects are
summarized in Table 4-5. Consistency was found between the observed and predicted Sls for

swing time. Inconsistency was found between the observed and predicted Sls for step length.

The errors in observed and predicted Sls for step length and swing time are shown in
Figure 4-5. A weak negative correlation (r = —0.30) was found between the stature and errors of

predicted Sl for step length, and the error of predicted SI for swing time was not correlated with

stature (r = 0.09).

Table 4-5: Calculated gait symmetry indices (SIs) for observed (O) and predicted (P) step lengths and swing time of six subjects.

Subject 1 2 3 4 5 6
Gender F F F M M M
Stature (cm) 155 161 174 165 174.5 187.5
Ovs. P 0o P 0 P O P O P O P 0o P
Sl for step length NAFO 6+0.9 10+1.6 7+1.1 8+14 4+05 1+0.1 5+0.8 1+0.2 9+16 2+0.2 7+1 304
(%) AFOl1 12+2.2 7+1.2 8+1.3 16+24 29+3.1 11+1.8 3+04 9+1.8 14+1.7 4+04 3+05 3+0.6

AFO2 58+11.3 10+1.3 42+45.1 24+3.4 49+55 18+3.4 30+4 6+0.8 40+4.9 19+3.4 8+1.3 6+0.9
L NAFO 1+0.2 1+0.2 11+1.2 11+1.1 1+0.2 3+04 5+1 3+0.6 7+0.8 20+3.8 6+0.8 8+0.8
Sl for swing time

(%) AFOl1 10+1.1 13+2 23+35 22+3.1 6+1.2 6+1.1 6+1.2 15+2.7 6+0.7 3+0.3 10+1.6 10+1.7
0 AFO2 6409 11+1.7 23+3.6 24+4.2 6+0.9 12+1.7 23+2.6 23+4.3 23+2.9 21+3.3 174£2.9 22+4.3
B Error of Sl for step lengths Error in S for swing time

60
50
£ a0
5
% 30
g 20
10
— N
0 == — -
1.55 1.61 1.65 1.74 1.75 1.88

Stature (m)

Figure 4-5: The range of errors of predicted Sls for step length and swing time of subjects with different statures (all conditions
pooled).
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4.3.7. Accuracy of Walking Speed
The error of the predicted walking speed (5p) is shown in Figure 4-6. A moderate

negative correlation (r = —0.55) was found between the stature and error of predicted walking
speed.
0.25

0.2
0.15

0.1

0.05

Errors of predicted walking speed (m/s)

1.55 1.61 1.65 1.74 1.75 1.88

Stature (m)
Figure 4-6: The range of errors of predicted walking speed for subjects with different statures (all conditions pooled).

4.4. Discussion

The model prediction accuracy among subjects with various anthropometry and other

potential subject variables that may affect model prediction accuracy are discussed.

4.4.1. Accuracy of the Initial Conditions and Lumped Muscle Parameters

The prediction accuracy of the initial conditions and lumped muscle parameters from the
inverse-dynamic mode of the PPCLMP model determines the model prediction accuracy of gait
parameters from the forward-dynamic mode of the PPCLMP model. The predicted initial
conditions were compared with observed initial conditions to quantitatively examine the
prediction accuracy of initial conditions among subjects. The predicted lumped muscle

parameters were compared with measured SEMG RMS regarding changing trends by utilizing
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correlations to qualitatively examine the prediction accuracy of lumped muscle parameters

among subjects.

The model prediction accuracy of the initial conditions (g;¢) was significantly (p < 0.05)

better with increasing stature (Table 4-2 and Table 4-3, the coefficients (&, to stature) were —26°
/m, —=16°/m, —65°/m-s, —66°/m-s, —51°/m:-s for the initial shank pitch angle 6(t,), back-hip angle

611 (to), shank pitch angular velocity 6(t,), back-hip angular velocity 8,4 (t,), and back-ankle
angular velocity 8,5 (t,), respectively), but not affected by body mass or AFO stiffness. The
variability of inter-subject prediction accuracy among various subjects was also reported by
Findlow et al. [156] and Goulermas et al. [157] when utilizing shank-mounted and foot-mounted
IMUs. One possible explanation is that taller subjects tend to walk faster which causes greater
magnitudes of the signals measured by the IMU sensors while the magnitudes of noises remain
the same, which resulted in better noise reduction performance of the Kalman filter [158] in
framework shown in Figure 3-2. On the other hand, males are generally taller and walking faster
than females [159,160] while females naturally have more hip abduction and pelvic obliquity
than males during walking gait [126,127]. As the gender and stature were correlated in this study
(r =0.59), another explanation is that the prediction accuracy of initial conditions was better for
males than females because of the gait pattern differences between genders instead of stature.
The prediction accuracy of the initial conditions based on planar inverse dynamics is better for
males because males have less lateral movements during gait. As discussed in Section 3.5.3, the
PPCLMP model is limited to planar movement analysis. Efforts are needed to further develop

the PPCLMP model to compensate for the 3-D movement or advance the model to a 3-D model.
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The measured SEMG RMS patterns of BFs and RFs are consistent with the patterns
reported in previous studies [150,151]. The correlations between the lumped muscle parameters
and the mean SEMG RMS, gy, Were increased for taller subjects (Table 4-2 and Table 4-4, the
coefficients (1, to stature) were 1.3 m,09m=*,05m*, 1.1m%,09m?, 1.4 m? 1.3 m™,
1.4 m~L for the IBF, IRF, rBF, and rRF during SW and DS, respectively). The 7z, Was greater
for the RF than for the BF during the DS. This is because the RFs are the agonists that mainly
contribute to the torque of the back-hip during DS while the BFs are acting mainly as the
antagonists that kept the hip torque stable. The significant increments in the SEMG RMS of RFs

during DS were consistently observed in this study (Figure 4-2) and previous studies [152—154].

The lumped muscle parameter prediction accuracy of hip joints was significantly better

for males than females (Table 4-2) regarding the IBF (0.79+0.08 versus 0.40+0.04) and rRF
(0.63+0.06 versus 0.32+0.14) during SW and the IRF (0.81+0.06 versus 0.33+0.01), rBF (0.73+
0.12 versus 0.44+0.10), and rRF (0.87+0.02 versus 0.61+0.21) during DS. Female was found to

have more complex recruitment of the lower limb muscles than male during walking gait as the
SEMG RMSs of VL and GM were significantly greater for female than male [127,161]. The
lumped muscle parameters for hip joints were only compared with the SEMG signals of the BF
and RF, while hip joint flexion and extension torques are generated by the work of a group of
related muscles including BF, RF, vastus lateralis (\VL), vastus intermedius (V1), vastus medialis
(VM), hamstrings, gluteus maximus (GM), etc. The method of using the correlation between
lumped muscle parameters and only BF or RF tends to be less effective for females than males,

which may explain the better prediction accuracy for males than females.
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The correlation between the SEMG of the BF and RF and the lumped muscle parameters
of the knee joint was not investigated in this study. Though the BF and RF also contribute to the
knee joint flexion and extension torques, the knee lumped muscle parameters were not

significantly changed in this study (Appendix E) and Chapter 3 (Table 3-7).

4.4.2. Accuracy of the Step Lengths, Swing Time, Gait Symmetry, and Walking Speed

The model prediction accuracy of step lengths (&g;) was found to be better for taller
subjects (Table 4-2 and Figure 4-3, coefficients of &, to stature were —0.04 and —0.08 for left
and right sides, respectively). This can be explained by better prediction accuracy of the initial
conditions and lumped muscle parameters for taller subjects as explained in Section 4.1.
Consequently, the model prediction accuracy of Sl for step length (Figure 4-5 and Table 4-2, the
coefficient of ;¢ to stature was —30%/m) and walking speed (Figure 4-6 and Table 4-2, the
coefficient of &sp to stature was —0.12/s) was better for taller subjects. The model prediction
accuracy of swing time was not significantly affected by any anthropometric parameter because
the swing time was estimated based on the three-axis accelerations measured by the IMU without
being processed by the Kalman filter or the inverse-dynamic mode of the PPCLMP model.
Results suggest that the model can be used to perform gait evaluations based on Sl for step
length and walking speed for tall subjects, while gait evaluations based on Sl for swing time can

be performed for subjects with a wide range of stature.

4.4.3. Other Subject Variables

Besides stature, body mass, and gender, other subject variables could also affect the
model prediction accuracy. The model characterizes lower limb segments as rods with masses
and negligible thickness, which ignores the body thickness. For subjects with higher BMI, this
assumption tends to be invalid. This study recruited subjects with a small range of BMI (18 to
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28). Larger sample size with a wider range of BMI is needed to further investigate how the BMI

could affect the model prediction accuracy.

Besides, researchers found that age was another factor that could affect gait performance
[162,163]. Elder people were found to have shorter step lengths, and the effect of stature on step
lengths was fading with increasing age [162]. The PPCLMP model was assuming the hip and
knee joint torques to be linearly related to joint angles based on the torques of young adults
reported by Winter [13]. However, people with advanced age were found to have more variation
and less stability on their joint torques [164,165]. Though the model showed good prediction
accuracy for six young adults in this study, the use of lumped muscle parameters might become
less effective while predicting gait for the elder populations. Further investigations are needed to

evaluate the model for predicting the gait of elder people.

4.4.4. Limitations and Future Work

The major limitations of this study were the number of SEMG units used and the sample
size. Only four SEMG units were used in this study that measured the activities of BFs and RFs
in order to validate hip lumped muscle parameters. Other muscles that contribute to hip joint
torques and other joint torques should be studied to thoroughly examine the prediction accuracy
of the lumped muscle parameters. Though anthropometric inputs were various in this study, there
were only six subjects recruited. More subjects should be studied to improve the statistical power

of the results.

45. Conclusions

This study investigated the model accuracy of the initial conditions, lumped muscle

parameters, step lengths, swing time, and walking speed among various anthropometry (stature,
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body mass, and gender). The model prediction accuracy of initial conditions, lumped muscle
parameters, step lengths, and walking speed was significantly better for taller subjects, while the
accuracy of swing time was not significantly affected by stature, body mass, gender, or AFO
condition. The prediction accuracy of lumped muscle parameters was better for males than
females. Other subject variables including BMI and age may affect model prediction accuracy

and need further investigation.
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CHAPTER 5 Discussion

The proposed planar piecewise-continuous lumped muscle parameter (PPCLMP) model
shows its capability in the investigation of joint stiffness change on gait performance. This
dissertation uses ankle stiffness that increased by ankle-foot orthosis (AFO) as an example to
demonstrate and examine the model. The broader applications and suggested future work for the

PPCLMP model are summarized in this chapter.

5.1. Broader Applications

5.1.1. Developing a Decision Support System of AFO Design

As discussed in Chapter 2, the model used in the forward-dynamic mode forms the basis
of a decision support system for AFO design. Though the current model could not determine the
optimal AFO stiffness for the user like artificial intelligence, it could help the users of this
system, clinicians and patients, investigate how different AFO designs could result in different
gait patterns without the time-consuming fabrication, fitting, and testing process. A webpage
listed in Appendix G is developed to demonstrate using this model as an investigation tool. As
shown in Figure 5-1, the user could input the patient’s height, weight, default or estimated
lumped muscle parameters, and an AFO stiffness to get the predicted gait parameters (joint
kinematics, swing time, step length) and quality metrics (walking speed and Sl for swing time

and step length) from the model based on phase continuity and forward dynamics. If the

104



predicted gait performance is not acceptable or below expectations, the user could change the

input AFO stiffness to repeat this process until the user accepts the predicted gait.

User Input

Anthropometry
Gender

Stature \ Planar piecewise continuous ; d
Body mass Gait parameters an
lumped muscle parameter model

Lumped muscle Phase continuity: find optimal

initial conditions
parameters L ) ]
Hip (DS and SW) L Forward dynamics: predict gait OK

Knee (DS and SW)
Ankle (DS)
AFO Stiffness
karo

T No, modify AFO stiffness

quality metrics

Figure 5-1: Workflow for predicting AFO stiffness effect on gait and searching for optimal AFO stiffness.

The ideal decision support system should be able to give the optimal AFO stiffness for a
given patient based on the patient’s information (anthropometry, impairment, etc.) collected at
the clinic. The gaps between the proposed model and an ideal decision support system are:

e The efforts needed to achieve the optimal AFO stiffness.
e The qualitative prediction is not sufficient.

To achieve the optimal AFO stiffness, the user may need to explore through all possible
AFO stiffness to compare among the predicted gait performances using the model. This could be
tedious and time-consuming. More efforts are needed to directly link the optimal AFO stiffness
with patients’ information to simplify this decision support process.

In addition, Chapter 2 only qualitatively predicts how AFO stiffness could affect gait as a
result of ignorance of the variability among gaits for the same person and among people under
different walking scenarios [79,168,169]. Therefore, the predicted gait may not be quantitatively
aligned with the actual gait of the person wearing the AFO. There are still many challenges to

quantitatively predict the patient’s gait with given AFO stiffness only based on their information
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collected at the clinic. These challenges include how a patient would adapt to the AFO stiffness
in both short and long term and how patients walking preference under different walking

scenarios.

5.1.2. Developing a Cyber-based System for AFO Evaluation

As Chapters 3 and 4 demonstrated the model’s capability in quantitatively predicting gait
parameters, Sl for swing time, and walking speed based on kinematic data measured by the
inertial measurement unit (IMU) attached to AFO, a cyber-based AFO evaluation system can be
built, as shown in Figure 5-2. Patients could wear an AFO with IMU that collects their gait
information both in and out of the clinic or other point-of-care site. This information will be
uploaded to a data center and utilized to estimate initial conditions and lumped muscle
parameters by the inverse-dynamic mode of the model. Based on the estimated initial conditions
and lumped muscle parameters, the model will provide the gait prediction and evaluation
concerning the quality metrics, such as Sl for swing time, Sl for step length, and walking speed.
The clinicians could have quantified feedback on the gait with the current AFO stiffness based
on these metrics. This information could help the clinicians determine if the current AFO
stiffness needs adjustment to better fit the patient, as well as give insights on future AFO design
that should be used for a specific patient in the future. The advantage of this system is not only
giving objective and quantitative feedback but also evaluating gaits with the AFO under different
walking scenarios and environments that the specific patient is engaging with during the
patient’s daily living. Furthermore, 3-D scanning, computer-aided design (CAD), and 3-D
printing technologies are now available to design and fabricate an AFO with a specific bending

stiffness in a day. The proposed evaluation system could integrate these technologies to improve
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the whole design and fabrication process of AFO from handmade to cyber-based to increase

fabrication quality and reduce processing time and cost [170].
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Figure 5-2: Overview of a cyber-based AFO design and evaluation system

5.1.3. Investigating of Joint Stiffness
Though the dissertation uses different AFOs, specifically different AFO bending
stiffnesses, as examples to develop and examine the proposed PPCLMP model on investigating
gait with different ankle joint stiffnesses, the PPCLMP model can be modified and implemented
in a wider range of gait investigations on:
o Different ball (of foot) stiffnesses due to wearing different shoes or different AFO

footplate stiffnesses.
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o Different knee and hip joint stiffnesses due to impairment or wearing passive-dynamic
assistive devices.
e More complicated joint toque patterns — active assistive devices, exoskeletons, etc.

The AFO footplate stiffness was found to be affecting the rotation of the ball of the foot
[171]. Further, ball of foot rotation during the stance phase was found to be the determinant of
ground reaction force pattern and energy transition between the swing (SW) and stance phases
[172,173]. The model has the capability of evaluating different AFO footplate stiffnesses by
adding a stiffness parameter to the ball of the foot.

The knee and hip stiffnesses during gait can be changed due to aging, different walking
tasks, wearing passive assistive devices (lower limbs orthotics or prosthetic devices),
osteoarthritis, joint replacement, etc. [174-179]. The effect of the knee and hip joint stiffness
changes can be evaluated and predicted by the model via changing the joint torque equations at
the hip and knee joints in the model. Similar to Eg. (2-4), the knee and hip joint torques can be

estimated by adding a stiffness term as shown below:

Tijp(t) = Sijp(0i)) + kijp; (1) (5-1)
where i represents the joint (1 for hip and 2 for knee), j represents the side (1 for left and 2 for

right), p represents the phase (1 for single stance phase (SS), 2 for double stance phase (DS), and

3 for SW), T, represents the torque for joint i on j side during the p phase, S;;, represents the

jp
joint stiffness, k;j, represents the lumped muscle parameter, and 6;; represents the joint angle.
The joint stiffness term might be a function of joint angle or a constant that could be different
between phases depending on the pattern of joint stiffness to be simulated. With this

modification, the model could give insights on how these changes would result in different gait

parameters and different gait performance regarding the SI and walking speed.
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As mentioned in Chapter 2, the muscle model was simplified as a rotational spring from
the classic Hill’s muscle model [166]. This does not mean that the model is limited to using
rotation spring representations for muscle activities or joint torque patterns. For gait with an
assistive device that has known torque patterns during each phase, the model can estimate and
predict the gait performance by modifying one or more of the joint torques into pre-determined
torque patterns during gait. For example, the active AFO is designed to provide a plantar-flexion
torque at the ankle to assist the push-off [180]. The equation for ankle torque during DS (Eqg.
2-4) could be modified into the following form to simulate the active AFO effect to the ankle
torque:

Tiz2(t) = Tppp(Oi3,t) + Mg + kypoBi3(t) (5-2)

where r represents the active torque normalized by body mass at the ankle joint generated by the
muscle, M, represents the body mass, and T4z represents the active torque provided by the
active AFO. Such torque patterns may be a function of ankle joint angle, time during the push-

off, or both [181].

5.2. Suggestions for Future Work

The PPCLMP model proposed in this dissertation shows a lot of potentials in estimating
and predicting the effect of changing joint stiffness in lower limbs on gait using the AFO as an
example. Further work is needed to thoroughly examine the model and develop the actual system
that utilizes the model for practical applications.

The study presented in Chapter 2 gives the qualitative prediction of gait that can be used
as a tool for investigating different AFO designs. However, there are still gaps between the

model and an intelligent system that gives the optimal stiffness of the AFO for a given patient.

109



More efforts are needed to simplify the process and reduce the efforts needed to achieve optimal
AFO stiffness and improve the model prediction.

The study presented in Chapter 3 shows the possibilities of longer-term quantitative gait
evaluation by attaching the IMU to AFO. However, there are still many practical issues including
IMU data transmission, battery charging, providing technical support, and improving system
robustness to be solved and examined before the implementation.

Both approaches in Chapters 2 and 3 find the optimal solution by utilizing the
enumeration searching method, which is slow and inefficient. There are other advanced non-
linear algorithms available to find the optimal solutions for non-convex optimization problems
[182-184]. Besides, machine learning could link the output with the input to simplify the
prediction process by training the system with a large amount of data [185,186]. Also, because
the possible input combinations are finite, if we limited the precision of the input, a lookup table
could be used for finding the optimal solutions by generating a multi-dimensional table for all
possible inputs and associated outputs [187,188]. Further investigations are needed to develop
and evaluate the means of applying these options in reducing the time and efforts needed for gait
prediction using the model.

The study presented in Chapter 4 shows the effect of different stature on model
prediction. There are other anthropometry or personal factors that could affect model prediction,
including age, gender, and BMI. Further studies with larger sample sizes are needed to
systematically examine these factors. In addition, investigations are needed to examine the
hypothesis of better IMU noise reduction for taller people (faster walking) in Chapter 4.

The model assumes the knee is straight during the inverted pendulum movement, and the

front-knee is straight during the kinematic chain movement. Though the observed knee angle
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during these phases was less than 10 degrees, these assumptions need to be examined for patients
who may have quite different joint kinematics than the subjects recruited in this dissertation.
Further, the effect of the flexed knee during DS and SS on model prediction should be
investigated.

The model was developed to only describe movement in the sagittal plane. However,
lateral movement of legs during gait was observed in Chapters 3 and 4, and also reported by
other studies [5,8]. Possible ways to resolve this issue should be proposed and evaluated. For
example, the model can be developed into a quasi-3-D model by adding one degree of freedom
(abduction/adduction) to the hip joint. This could improve the model prediction of the SW by
changing the planar double pendulum model to a more realistic conical double pendulum model.
Another possible way is to compensate for the lateral movement by changing the effective
lengths of the body segments in the model. These methods may help with estimating and
compensating the lower limb movements out of the sagittal plane.

The model was developed based on the dynamic models that describe walking on a level
surface. Walking on incline and decline surfaces, such as ramps, can have a quite different
mechanism due to the change of whole-body angular momentum [189,190]. Efforts are needed
to modify the model accordingly, such as change the direction of gravitational force, to predict
walking on a sloped surface.

Though the model utilizes spring representations for muscles to reduce the dimensions of
variables in the model, it ignores the viscoelasticity of muscles [166]. Classic Hill’s muscle
model may be implemented in the PPCLMP model to improve model prediction accuracy. The

trade-off between prediction accuracy and complexity of the model should be considered.
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The model was developed and evaluated by using the ankle with different AFOs as an
example of changing stiffness that affects gait. As discussed in Section 5.2.3, there are possible
applications of the model regarding investigating the effect of different joint stiffness on task
performance. Extra efforts are needed to examine the usability and values of the proposed model
in other applications.

The model shows the possibility of predicting human movement by using dynamic
systems to characterize the movements of body segments during different phases of walking gait.
Similar ideas might be able to work on the upper limbs to evaluate the effect of joint stiffness in
the upper limbs on task performance. The application includes but not limited to simulate the
effect of upper limbs industrial exoskeletons, prosthetic devices, clothing (space suit), and

impairments.
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CHAPTER 6 Conclusions

This dissertation describes the development of a planar piecewise continuous lumped
muscle parameter (PPCLMP) model for predicting gait and evaluating the effect of joint stiffness

on gait. This was achieved through the following aims:

e Develop a PPCLMP model that predicts how joint stiffness affects gait based on forward
dynamics.

e Utilize data from a single inertial measurement unit (IMU) attached to the lower shank to
estimate the initial conditions and lumped muscle parameters for each gait cycle based on
inverse dynamics to improve the model prediction of gait.

e Evaluate the model prediction accuracy for various anthropometric inputs by comparing

predicted gait parameters with measurements.

The proposed PPCLMP model connects three existing biomechanical models (the
inverted pendulum model for SS, the double pendulum model for SW, and the kinematic chain
model for DS) to predict leg movement across the whole gait cycle for investigation of joint
stiffness in walking on a level surface. By using the ankle with ankle-foot-orthosis (AFO) as an
example of changing joint stiffness, the PPCLMP model shows its capacity on investigating joint
stiffness in walking gait. The model also forms the basis of an AFO design and evaluation
system by predicting and evaluating gait with AFO based on the anthropometry, lumped muscle

parameters, initial conditions, and AFO stiffness, as shown in Figure 6-1.
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Figure 6-1: Overview of the model inputs (orange) and model outputs (blue).

Chapter 2 describes the development of the PPCLMP model. The model contains three
continuous dynamic systems: the inverted pendulum to simulate the single stance phase (SS)
movement, the double pendulum to simulate the swing phase (SW) movement, and the kinematic
chain to simulate the double stance phase (DS) movement. Within each dynamic system, the
joint torques are determined by the inputted lumped muscle parameters. With given initial
conditions of the gait, the model could calculate the end conditions of the gait based on the
equations of motion of each dynamic system based on forward dynamics. By assuming phase
continuity, the model utilizes the forward-dynamic mode to search for the initial conditions that
minimize the differences between the end conditions and the initial conditions based on the
lumped muscle parameters estimated from the join torques reported by Winter [13]. Comparing
with the experimental measurements, the model showed the capability of qualitatively predict
how increased ankle stiffness affects gait in terms of swing time and step length.

The model reveals the two major effects of the ankle stiffness increased by AFO on

walking gait. During the SS, the AFO slows down the inverted pendulum movement and stores
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energy. During the DS with the AFO on the back-leg, the AFO releases energy when the ankle is
in dorsiflexion but prevents the ankle from generating more energy when the ankle is in plantar
flexion. These findings explain how increased ankle stiffness affects gait from the energy
perspective.

To compensate for the gait variability among different people and different scenarios,
Chapter 3 focuses on utilizing the kinematic data measured by an IMU attached to the AFO to
estimate the initial conditions and lumped muscle parameters to enhance the model prediction
based on inverse dynamics. A framework was developed to estimate the swing time, stance time,
and shank pitch angles and angular velocities based on IMU data. These estimated values are
then used in an optimization problem to search for the optimal initial conditions and lumped
muscle parameters based on the commonly used minimizing energy expenditure assumption
[115-117]. Comparing with results in Chapter 2, the gait parameter prediction was improved by
utilizing the IMU: the RMSE of step length and swing time were 0.07 m and 2% of gait duration,
respectively, by utilizing IMU in Chapter 3 comparing with 0.15 m and 5% of gait duration in
Chapter 2.

Based on the process of finding the initial conditions and lumped muscle parameters
proposed in Chapter 3, the model showed the capability of quantitative prediction on swing time,
impaired side step length, and walking speed for two drop foot patients. However, the model
showed limited capability in predicting unimpaired side step length. The prediction of the step
length was better for the impaired side than the unimpaired side because more information about
the impaired side is provided by the IMU attached to the AFO.

To evaluate gait based on the predicted gait parameters, gait symmetry index (SI) [66],

and walking speed (gait efficiency) are used as criteria for gait evaluation. The model shows
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good prediction in walking speed and Sl for swing time but not in the SI for step length due to
the better prediction of the impaired-side step length than the unimpaired step length.

Chapter 4 is a data-based focusing on the effect of different anthropometric inputs on
model prediction accuracy. Results showed that the model prediction accuracy of gait parameters
was better for taller people than for shorter people, regardless of gender or body mass. A possible
explanation was that the IMU noise reduction, or the Kalman Filter performance, was better for
taller people because taller people walk faster, and have a greater magnitude of the signal

compared with the noise.

The PPCLMP model is limited by its assumption of the straight knee during SS and DS
(front knee) and the planar representation of leg movements during gait. The front knee was
found to be not exactly straight during SS and DS (Table 2-8Error! Reference source not f
ound.). The effect of a flexed knee on model prediction accuracy should be investigated. On the
other hand, leg movements during gait were found to be 3-D instead of planar, especially for
female [126,127]. Efforts are needed to further develop the model to accommodate the lateral

movements of legs during gait.

This dissertation builds into a broader set of research related to the biomechanical model
of human gait. This dissertation is using wearing different AFOs or changing ankle stiffness as
an example to show how different joint stiffnesses could affect gait performance. The three
studies gradually developed the model from a conceptual model to a practical model that could
utilize wearable technologies for gait prediction and evaluation and investigated each input type

of the model, as shown in Figure 6-2.
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Figure 6-2: The scope of investigations on model inputs and outputs in Chapters 2, 3, and 4.

The limitations of the model are not including viscous resistance of body tissues to joint
motion, not knowing the optimization strategy of subjects during gait, not looking at different
gait speeds, not looking at step over an obstacle or on a rough surface, not including the axial
movement of the pelvis, not including the lengthening versus shortening behavior of the
agonists, not including more EMGs, and not have enough subjects to give much statistical
power. Nonetheless, the hypotheses of each study were tested and the approaches in this
dissertation had promising results. Chapter 2 showed the model capacity in qualitatively
predicting gait parameter changes of gait with different AFOs while no motion tracking data are
available. Chapter 3 showed the model capacity in quantitatively predicting gait parameters
while utilizing IMU data. Chapter 4 showed the significant improvement of model prediction

accuracy for taller subjects.
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APPENDICES

Appendix A: Modeling of the Kinematic Chain during DS

The DS starts with HS and ends with TO. The DS is characterized as a kinematic chain
that consists of links and joints. During this phase, the front-foot and toe of the back-foot are
constrained on the ground. Thus, there is a series of geometry equations, force balance equations,

and torque equations need to be satisfied.

Al. Geometry

All the equations in this Appendix are based on DS with the right leg in front. The
kinematic chain during DS is constrained with the back-toe and front-heel on the ground. Thus,
the vertical location of the back-toe should be equal to the vertical location of the front heel

(Figure Al):

(Ll + Lz) COoS 921 + L4 = L4, COS 910 + L3 sin 910 + LZ COS(HlO + 013) - L1 COS 911

where L1 is the upper leg length, L> is the lower leg length, Ls is the foot length, 6, is the
front-hip (right) angle, 6, is the angle between the left foot and ground, 6,5 is the left ankle

angle, and 6, is the left hip angle.

The hip flexion angle is defined as the angle between the upper leg and the gravitational

direction. Thus, the relationship between angles is:

=011 =010+ 013 — 013
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where 8, is the back-knee (left) flexion angle.

The joint angles and angular velocities satisfy:

40y _ 0.

dt Y

Figure Al: Diagram of DS posture with the right leg in front.
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A2. Free Body Diagram — Back-Foot (Left)
As shown in Figure A2, the left foot angular acceleration satisfies the torque balance

equation:

d?6,, _ —FgxLzcos B3 + FoyLsysin O3 + Tizps — 0.5M3L39g cos by

1

3 (M5L3)

where Faxis the ankle axial force, Fay is the ankle shear force, Ms is the foot mass, w,,, is the
foot angular velocity.

The foot center of mass (COM) horizontal acceleration is:

1'73CX = _0'5wf00tL3 sin 910 - O.5a)]§00tL3 Ccos 910

_ —Fp + Fay cos(019 + 613) + Fyp sin(0y9 + 613)
= 78

where Fy is the horizontal ground reaction force.
Similarly, the foot COM vertical acceleration is:

_ Fv + Fay Sin(glo + 913) - Fax COS(QlO + 913) - MSQ
= M,

where Fy is the vertical ground reaction force.

Further, the toe was fixed to the ground, and the ankle was rotating about the toe. Thus,

the ankle joint horizontal and vertical accelerations are:
U3y = —Wfeorl3 Sin 610

173y = waOtL3 CoS 910
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Figure A2: Diagram of forces and torque that applied to the left foot.
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A3. Free Body Diagram — Back-Lower-Leg (Left)
As shown in Figure A3, the left lower leg angular acceleration satisfies the torque

balance equation:

. d?6y3
Wiowerleg = dt2 + Wroor

FixLy sin 015 — Fyy Ly c0s 015 — Ti3ps — K12psBi2 + 0.5Mp gL, sin(6yg + 643)

1
3 (M2L3)

where Fiy is the knee axial force, Fyy is the knee shear force, M2 is the lower leg mass, and

Wiowerieg 1S the lower leg angular velocity.
The lower leg COM horizontal acceleration is:

7.72cx = 7.73x - O-Sd)lowerlegLZ COS(910 + 613) + O'Swlzowerlegl'z Sil’l(@lo + 013))

_ Fkx sin 913 + Fky CoSs 013 - Fay COS(910 + 913) - Fax Sin(910 + 013)
= MZ

Similarly, the lower leg COM vertical acceleration is:

vZCy = 1']33/ - O-Sd)lowerlegLZ Sin(elo + 913) - O-SwlzowerlegLZ COS(HIO + 913)

_ _Fkx COoS 913 + Fky sin 613 - Fay Siﬂ(@lo + 913) + Fax COS(910 + 013) - Mzg
= MZ

Further, the knee joint horizontal and vertical accelerations are:
7}2x = 1'73x - d)lowerlegl‘z COS(910 + 613) + wlzowerlegLZ Siﬂ(@lo + 913)

o ) . . 2
UZy - U3y - wlowerlegLZ Sln(910 + 913) - (‘)lowerlegLZ COS(QIO + 913)
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Figure A3: Diagram of forces and torque that applied to the left lower leg.
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A4. Free Body Diagram — Back-Upper-Leg (Left)
As shown in Figure A4, the left upper leg angular acceleration satisfied the torque

balance equation:

. : d*6,, d*6y,
wupperleg:wlowerleg_ dtz = dt2

FpxLq sin(8y1 + 631) — FpyLy cos(011 + 031) — ky3psB13 + ki2psBi2 + (0.5M; + My) gLy sin 05

- 1
3 (M, 1Y)
where Fny is the back-hip axial force, Fny is the back-hip shear force, My is the upper leg mass,

Wypperteg 1S the Upper leg angular velocity.

The upper leg COM horizontal acceleration is:

2

i’lcx = 1'72x - 0-5d)upperlegL1 Cos 011 + O-Swupperleg

Ly sin 64,

_Fkx sin 011 — Fky cos 911 + th Ccos 921 — th sin 921
= M1

Similarly, the upper leg COM vertical acceleration is:

2

upperleng Cos 911

vlcy = vzy - O-Swupperlegl'l sin 011 - 05(1)

Fkx coS 911 - Fky sin 611 - th sin 921 - th COS 921 — Mlg — M4_g
= M1

Further, the hip joint horizontal and vertical accelerations are:

. . . 2 .
Vix = Uax — wupperleng cos 911 + wupperleng Sin 911

D . . . 2
vly - UZy - wupperleng sin 911 - wupperleng Cos 911
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Figure A4: Diagram of forces and torque that applied to the left upper leg.
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A5. Free Body Diagram — Front-Leg (Right)
As shown in Figure A5, the right front-leg angular acceleration satisfied the torque

balance equation:

. d?61
Wrrontleg = F

Fpy(Ly + Ly) = Myg(Ly + Ly) sin 0,1 — 0.5(M; + My)g(Ly + Ly) sin 6,1 + kpg3614

3Oy + M) (Ly + Ly)?
Where wgrontieq 1S the front-leg angular velocity.
The front-leg center of mass (COM) horizontal acceleration is:
Vpex = 0.5U1 = 0.5(Ly + L) Ofrontieg €0S 021 — 0.50Fonr1eqg (L1 + L) sin 64
Similarly, the front-leg center of mass (COM) vertical acceleration is:

1'7ny = 0.51')13/ = 05(L1 + Lz)d’frontleg sin 021 - O'Sw]%rontleg(l‘l + Lz) Ccos 921

Figure A5: Diagram of forces and torque that applied to front-leg (right).

126



A6. Summary
There were in total of 31 equations and 34 variables. Thus, these equations can be solved

implicitly to find the equations of motion that will be presented for angular accelerations:

611(1), 612(2), and ;3(0).
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Appendix B: List of Combinations for Sensitivity Analysis in Chapter 2

The combinations for joint angles are shown in Tables B1, B2, B3, B4, B5, and B6. The
combinations for joint angular velocities are separately listed in Table B7. For each joint angle

combination, all combinations of joint angular velocities were examined.

Table B1: Combinations of joint angles (6,,= 20 deg).

611 (deg) 612(=0 deg) 013(=-611) 6,1 (deg) 6, (deg) 023
5 0 5 5 20 -
10 0 -10 5 20 -
15 0 15 5 20 -
30 0 -30 ' 5 20 -
5 0 5 10 20 -
10 0 10 10 20 -
30 0 -30 ' 10 20 -
5 0 5 15 20 -
10 0 10 15 20 -
30 0 -30 ' 15 20 -
5 0 5 220 20 -
10 0 110 -20 20 -
30 0 -30 ' -20 20 -
5 0 5 25 20 -
10 0 110 25 20 -
30 0 -30 ' 25 20 -
5 0 5 30 20 -
10 0 -10 -30 20 -
30 0 -30 ' -30 20 -

*8,4 is calculated based on Eq. (2-16)
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Table B2: Combinations of joint angles (6,,= 25 deg).

61, (deg) 612(=0 deg) 013(= -011) 6,1 (deg) 6,2 (deg) 023
5 0 -5 -5 25 -
10 0 -10 -5 25 -
15 0 -15 -5 25 -
30 0 -30 -5 25 -
5 0 -5 -10 25 -
10 0 -10 -10 25 -
30 0 -30 -10 25 -
5 0 -5 -15 25 -
10 0 -10 -15 25 -
30 0 -30 -15 25 -
5 0 -5 -20 25 -
10 0 -10 -20 25 -
30 0 -30 -20 25 -
5 0 -5 -25 25 -
10 0 -10 -25 25 -
30 0 -30 -25 25 -
5 0 -5 -30 25 -
10 0 -10 -30 25 -
30 0 -30 -30 25 -

*0,5 is calculated based on Eq. (2-16)
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Table B3: Combinations of joint angles (6,,= 30 deg).

611 (deg) 612(=0 deg) 013(=-611) 6,1 (deg) 6, (deg) 0,3
5 0 -5 -5 30 -
10 0 -10 -5 30 -
15 0 -15 -5 30 -
30 0 -30 -5 30 -
5 0 -5 -10 30 -
10 0 -10 -10 30 -
30 0 -30 -10 30 -
5 0 -5 -15 30 -
10 0 -10 -15 30 -
30 0 -30 -15 30 -
5 0 -5 -20 30 -
10 0 -10 -20 30 -
30 0 -30 -20 30 -
5 0 -5 -25 30 -
10 0 -10 -25 30 -
30 0 -30 -25 30 -
5 0 -5 -30 30 -
10 0 -10 -30 30 -
30 0 -30 -30 30 -

*0,5 is calculated based on Eq. (2-16)
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Table B4: Combinations of joint angles (6,,= 35 deg).

611 (deg) 612(=0 deg) 013(=-611) 6,1 (deg) 6, (deg) 0,3
5 0 -5 -5 35 -
10 0 -10 -5 35 -
15 0 -15 -5 35 -
30 0 -30 -5 35 -
5 0 -5 -10 35 -
10 0 -10 -10 35 -
30 0 -30 -10 35 -
5 0 -5 -15 35 -
10 0 -10 -15 35 -
30 0 -30 -15 35 -
5 0 -5 -20 35 -
10 0 -10 -20 35 -
30 0 -30 -20 35 -
5 0 -5 -25 35 -
10 0 -10 -25 35 -
30 0 -30 -25 35 -
5 0 -5 -30 35 -
10 0 -10 -30 35 -
30 0 -30 -30 35 -

*0,5 is calculated based on Eq. (2-16)
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Table B5: Combinations of joint angles (6,,= 40 deg).

61, (deg) 612(=0 deg) 013(= -011) 6,1 (deg) 6,2 (deg) 023
5 0 -5 -5 40 -
10 0 -10 -5 40 -
15 0 -15 -5 40 -
30 0 -30 -5 40 -
5 0 -5 -10 40 -
10 0 -10 -10 40 -
30 0 -30 -10 40 -
5 0 -5 -15 40 -
10 0 -10 -15 40 -
30 0 -30 -15 40 -
5 0 -5 -20 40 -
10 0 -10 -20 40 -
30 0 -30 -20 40 -
5 0 -5 -25 40 -
10 0 -10 -25 40 -
30 0 -30 -25 40 -
5 0 -5 -30 40 -
10 0 -10 -30 40 -
30 0 -30 -30 40 -

*0,5 is calculated based on Eq. (2-16)
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Table B6: Combinations of joint angles (6,,= 45 deg).

61, (deg) 612(=0 deg) 013(= -011) 6,1 (deg) 6,2 (deg) 023
5 0 -5 -5 45 -
10 0 -10 -5 45 -
15 0 -15 -5 45 -
30 0 -30 -5 45 -
5 0 -5 -10 45 -
10 0 -10 -10 45 -
30 0 -30 -10 45 -
5 0 -5 -15 45 -
10 0 -10 -15 45 -
30 0 -30 -15 45 -
5 0 -5 -20 45 -
10 0 -10 -20 45 -
30 0 -30 -20 45 -
5 0 -5 -25 45 -
10 0 -10 -25 45 -
30 0 -30 -25 45 -
5 0 -5 -30 45 -
10 0 -10 -30 45 -
30 0 -30 -30 45 -

*0,5 is calculated based on Eq. (2-16)
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Table B7: Combinations of joint angular velocities

611 (deg/s) 612(=0 deg/s) 613(= -011) 621 (deg/s) 622 (deg/s) 623*
-200 0 200 100 100 -
-150 0 150 100 100 -
-100 0 100 100 100 -
-200 0 200 150 100 -
-150 0 150 150 100 -
-100 0 100 150 100 -
-200 0 200 100 150 -
-150 0 150 100 150 -
-100 0 100 100 150 -
-200 0 200 150 150 -
-150 0 150 150 150 -
-100 0 100 150 150 -
-200 0 200 100 200 -
-150 0 150 100 200 -
-100 0 100 100 200 -
-200 0 200 150 200 -
-150 0 150 150 200 -
-100 0 100 150 200 -
-200 0 200 100 250 -
-150 0 150 100 250 -
-100 0 100 100 250 -
-200 0 200 150 250 -
-150 0 150 150 250 -
-100 0 100 150 250 -
-200 0 200 100 300 -
-150 0 150 100 300 -
-100 0 100 100 300 -
-200 0 200 150 300 -
-150 0 150 150 300 -
-100 0 100 150 300 -

*@,, is calculated based on Eq. (2-16)
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Appendix C: AFO Stiffness Test.

As shown in Figure C1, the Stiffness Measurement Apparatus (Courtesy: Barton
Research Group) was used to test the stiffnesses of the AFOs used in this dissertation. The
stiffness of AFOs used in Chapter 4 was tested before (12/14/2019) and after (2/15/2020) the six
subjects’ trials to validate that the AFO stiffness was not changed significantly after used. Each

AFO was tested for 5 cycles (from neutral to dorsiflexion, then to plantar flexion, and back to

neutral) for before and after the trials.
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Figure C1: Component of the SMApp machine developed by Barton Research Group at the University of Michigan
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The tested stiffness curves with AFO reaction torques versus bending angles are shown in
Figure C2. Linear regressions were performed to test the linear relationship between the reaction
torque and bending angles, as well as the changes in AFO stiffness before and after the trials.
The linear regression slope (stiffness), intercept, and goodness of fitting are shown in Table C1.
The differences in the slope, or stiffness of the AFOs between before trials and after trials were

less than 2%, which was considered insignificant changes in AFO stiffness.
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Figure C2: The stiffness plots for (a) AFO1 before the trials, (b) AFO1 after the trials, (c) AFO2 before the trials, and (d) AFO2
after the trials.
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Table C1: The slope, intercept, and goodness of fitting of the linear regression between reaction torque and bending angle

Slope Intercept Goodness of Fitting
Before trials 3.64 0.009 0.98
AFO1 After trials 3.60 0.086 0.99
Error in Slope (%) 1.1 - -
Before trials 6.87 0.074 0.98
AFO2 After trials 6.96 —0.020 0.98
Error in Slope (%) 13 - -
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Appendix D: Observed and Predicted Initial Angles and Angular Velocities in Chapter 4

The initial angles and angular velocities for six subjects are presented in Table D1.

Table D1. Observed (O) and predicted (P) initial angles (initial shank pitch angle 6(t,), back-hip angle 6,4 (t,), and back-ankle
angle 6,5 (t,)) and angular velocities (shank pitch angular velocity 6(t,), back-hip angular velocity 6, (t,), and back-ankle
angular velocity 65 (to)) for 40 gait cycles (n = 40) for each subjects under each condition.
Subject 1 2 3
Condition NAFO AFO1 AFO2 NAFO AFOl1 AFO2 NAFO AFOl1 AFO2
O 6514 69+2 5319 42+16  36x15 4315 577 50+13 4715
0(ty) P 77114 77£9 65+13 32+17 28+16 5317 48+7 38+13 3715
RMSE 18 8 13 14 10 11 14 15 13
O 112422 118419 15319 110425 157424 104+14 141+17 119415 100£13
6(to) P 125414 162+14 113+26 117428 168+27 104+13 145415 12317 80+21

RMSE 18 58 52 9 16 5 5 4 28

0 -11+2 -30#12 -16+2 —-28+4 111 -9+¥4 -11+#5 -19+1 -19#4

611 (to) P —-21+5 -20+3 -25+6 —29#5 —11+1 -21+5 204 -15#5 3145
RMSE 14 13 12 1 2 15 11 5 15

(0] 179424 147+24 80+19 94429 106+29 7248 126427 199+23 134+14
611 (to) P 138+8 116+19 10515 110+23 121+13 72+#8 130+13 150+10 134+13

RMSE 50 38 25 38 19 10 5 59 5

O  —14+1 —19+2 —16+2 —3145 —20+2 —12#6 —38+7 —29+2 —2746

013(to) P —24+6 —30+9 —18+4 —31+6 —2243 2248 —38+8 —28+3 1745
RMSE 13 11 2 4 3 18 2 1 12

(0] 154+27 118426 10321 129426 165122 147+16 160+12 145+20 5446
913 (to) P 131446 119413 126423 125+32 183+42 147+16 1639 15022 5446
RMSE 39 1 33 5 26 2 4 7 3
Subject 4 5 6
Condition NAFO AFO1 AFO2 NAFO AFO1 AFO2 NAFO AFOl1 AFO2
(0] 4916 67+10 53£17 54+6 44+7 3844 49+12 6819 76113
0(ty) P 567 65+10 43£17 51+7 455 4414 53+11 65+10 74+14
RMSE 9 7 12 4 1 9 6 3 2
(6] 139412 159425 163422 131+17 12145 129+10 146+17 161426 154424
0(to) P 123+11 141+6 15623 143+27 160+41 160+13 145+21 163+12 16148

RMSE 19 2 3 16 45 31 1 3 9

o —2343 2246 —22+4 —8+3  —21+4 2343 —29+6 —11+1 —16+7

611 (to) P —21#3 2746 244 —14+4 —17+10 1645 —29+7 -—15+#1 2148
RMSE 2 10 4 7 4 9 2 4 7

0] 113+12 133+23 246+28 250+15 156+15 184+17 275+14 320+28 201+13
611 (to) P 13615 154425 226+#8 280+25 166+28 196+23 287+30 31619 210+27

RMSE 25 26 26 33 15 17 14 6 11
e} —34+7 -18+9 1445 -39+3 366 —20+3 —32+12 -26+8 -17+2
613 (to) P —37+7 2649 —14+3 —40+17 -33+4 —23+3 —35+12 -—24+8 —25+3
RMSE 3 9 0 1 4 4 4 3 11

0O 162+17 103+13 60+22 123422 160+14 97+13 191423 262+14 141+12
613(to) P 133+14 147419 91424 116423 184+16 120+28 193+10 269+23 131+19
RMSE 36 50 32 10 25 28 2 8 14
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Appendix E: Surface Electromyography (SEMG) Signals and the Hip and Knee Lumped

Muscle Parameters of the Swing Phase (SW) and Double Stance Phase (DS) in Chapter 4

There are SEMG RMS of BFs and RFs and hip and knee lumped muscle parameters

during SW and DS for six subjects under three conditions presented in Table E1.
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Table E1. The measured SEMG root mean square (RMS) for left biceps femoris (IBF), left rectus femoris (IRF), right biceps
femoris (rBF), and right rectus femoris (rRF), and the predicted hip and knee lumped muscle parameters during the SW and DS.
n = 40 for each subject under each condition.

Subject 1 2 3
Phase Condition NAFO AFO1 AFO2 NAFO AFO1 AFO2 NAFO AFO1 AFO2
g IBF 65+4 69+2 53+£19 42+16 36x15 43+5 57+7 50+13 4745
s IRF 8714 77x9 75+13 32+17 28116 63+t7 3817 38+13 3715
gé rBF 66122 69+19 87+19 65125 89+24 64+14 31+7 70425 60+13
7 rRF 73114 116424 67+16 6948 94+27 62+13 33+5 72+17 100421

% Left hip parameter (Nm/deg)  21+2 30£12 26+2 28+4 114 29+4 21+5 39x10 29+4
Right hip parameter (Nm/deg) 21+11 20+3 256 295 1145 41+5 20x4 355 415
Left knee parameter (Nm/deg) 943 9+2 1244 943 1245 8+3 11+4 843 9+1
Right knee parameter (Nm/deg) 11+2  9+2  11+2 9+3 1243 8+2 1041 10+2 9+1

g IBF 23+14 19+7 1543 4642 4614 44+3 6819 76117 28+10

e IRF 1744 2644 25412 4946 4613 4445 46111 51+18 21+4

n g E rBF 32412 28+13 32+12 5445 554 56+2 57+1 56x1 57+2

a 7 IRF 45424 21+9 36+12 52412 53#11 57+10 5741 55#1 55+1

Left hip parameter (Nm/deg)  16+3  18+2 15+2 22+7 17+4 18+3 2449 19+9 1743

Right hip parameter (Nm/deg) 155 18+5 155 2045 13+15 442 13+15 1949 242

Left knee parameter (Nm/deg) 13+3 154 13+4 15+2 17+#5 17+3 15+3 16x1 18+1

Right knee parameter (Nm/deg) 15+1 1646 17+2 16+4 2147 1643 2044 20+3 2242
Subject 4 5 6

Condition NAFO AFOl1 AFO2 NAFO AFOl1 AFO2 NAFO AFO1 AFO2

g IBF 49+6 67420 53+7 5446 44+7 3814 49422 68+19 7623

xS IRF 56+7 8520 43+7 51+7 45+5 4414 53+21 65+10 74424

‘§ E rBF 60+12 90+15 92+12 56+17 76+25 50+20 85+17 71+6 92+14

> 7 rRF 52411 91416 93+13 62+17 95+11 65+13 87411 72+12 96428

n Left hip parameter (Nm/deg)  23+3 326 22+4 18+3 21+4 23+3 29+6 11+5 1647

Right hip parameter (Nm/deg) 2143  47+6 34+4 14+4 17+4 1645 29+7 15+4 3148

Left knee parameter (Nm/deg) 1243 10+4 9+1 9+4  8+3 1244 11+2 131 104

Right knee parameter (Nm/deg)  9+2 945 1143 1244 104#3 13+3 13+1 13+4 1242

g IBF 13+4 1944 238 1648 1843 11+2 28+3 4534 4743

xS IRF 2045 2046 27+10 21412 29+4 11+5 25+5 4748 48113

» ‘§ E rBF 23+1 3741 19+2 18+1 1941 1946 1741 37+1 4843

e 7 rRF 15+10 38+3 18+3 17+6 20+2 13+5 20+3 37+1 4745

Left hip parameter (Nm/deg)  31+2 32+6 24+1 25+4 3646 18+3 2814 22+4 26+12
Right hip parameter (Nm/deg) 38+4 375 32+3 3245 27+#5 23+3 35+5 32+6 35%4
Left knee parameter (Nm/deg) 1641  14+3 13+8 21+2 23+3 2444 25+5 2547 2915

Right knee parameter (Nm/deg) 2245 2543 2549 2245 2246 24+1 27+4 2442 2247
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Appendix F: Observed and Predicted Step Lengths, Swing Time, and Walking Speeds

There are observed and predicted step lengths, swing time, and walking speeds for six

subjects under three conditions presented in Table F1.
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Table F1. Observed (O) and predicted (P) step lengths, swing time, and walking speed for six subjects with 40 gait cycles (n =
40) for each subject under each condition.

Subject 1 2 3
Condition NAFO AFO1 AFO2 NAFO AFO1 AFO2 NAFO AFO1 AFO2
O  0.34£0.04 0.274£0.02 0.38+0.02 0.43+0.06 0.37+0.03 0.46+0.05 0.46+0.06 0.51+0.05 0.61+0.05
L P 0.40+0.07 0.23+0.08 0.36+0.06 0.42+0.07 0.44+0.08 0.44+0.08 0.45+0.07 0.51+0.11 0.65+0.06
RMSE 0.11 0.12 0.10 0.12 0.12 0.08 0.07 0.05 0.10
O  0.3240.03 0.24+0.05 0.21+0.03 0.46+0.06 0.34+0.04 0.30+0.03 0.48+0.07 0.38+0.04 0.37+0.03
R P 0.3320.05 0.204+0.05 0.30+0.10 0.49+0.04 0.32+0.16 0.27+0.13 0.46+0.13 0.41+0.15 0.37+0.11
RMSE  0.13 0.12 0.16 0.11 0.14 0.13 0.11 0.12 0.07
O  0.35£0.03 0.42+0.06 0.34+0.06 0.33+£0.07 0.39+0.02 0.31+0.06 0.35+0.1 0.36+0.02 0.36+0.01
L P 0.36+0.01 0.40+0.07 0.34+0.04 0.33+0.01 0.40+0.03 0.29+0.01 0.35+0.02 0.37+0.01 0.36+0.05
RMSE  0.01 0.03 0.01 0.01 0.01 0.03 0.02 0.02 0.02
O  0.35£0.05 0.38+0.05 0.36+0.02 0.37+£0.08 0.31+0.09 0.39+£0.07 0.35x0.07 0.34+0.08 0.34+0.09
R P 0.36£0.03 0.35£0.03 0.38+£0.03 0.37+£0.04 0.32+0.01 0.37+£0.06 0.36+£0.05 0.35+0.07 0.32+0.1
RMSE  0.03 0.04 0.03 0.03 0.03 0.04 0.02 0.03 0.03
O  0.61+0.07 0.55+0.07 0.65+0.05 0.63+£0.12 0.59+0.07 0.51+0.08 0.73%£0.13 0.64+0.09 0.73+0.08

Step Length (m)

Swing Time (5)

T ~

?gﬁ P  0.68+0.09 0.46%+0.11 0.73+0.13 0.65+0.14 0.63+0.14 0.48+0.11 0.71+0.05 0.66+0.16 0.76+0.17

@ RMSE  0.16 0.12 0.14 0.12 0.16 0.15 0.13 0.13 0.14
Subject 4 5 6

Condition NAFO AFO1 AFO2 NAFO AFO1 AFO2 NAFO AFO1 AFO2
O 0.37+0.05 0.35+0.01 0.38+0.06 0.56+0.06 0.54+0.05 0.66+0.07 0.54+0.03 0.62+0.03 0.62+0.03
L P 0.36+0.07 0.3840.19 0.33+0.05 0.50+0.10 0.47+0.05 0.66+0.07 0.53+0.11 0.65+0.13 0.64+0.19
RMSE  0.07 0.10 0.06 0.06 0.08 0.05 0.02 0.04 0.03
O 0.39+0.06 0.36+0.05 0.28+0.04 0.51+0.04 0.47+0.05 0.44+0.02 0.58+0.05 0.60+0.06 0.57+0.05
R P 0.37+0.13 0.32+0.32 0.29+0.04 0.48+0.08 0.43+0.02 0.45+0.08 0.56+0.18 0.61+0.19 0.57+0.15
RMSE  0.11 0.13 0.12 0.09 0.07 0.09 0.03 0.04 0.01
O 0.41+0.13 0.36+0.08 0.31+0.04 0.31+0.04 0.34+0.05 0.31+0.01 0.34+0.04 0.33+0.01 0.38+0.06

Step Length (m)

E L P 040£0.09 0.36+0.08 0.31+0.06 0.32+0.06 0.36+0.12 0.30+0.02 0.34+0.03 0.33+0.04 0.36+0.09
E RMSE  0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02
=2 O  0.39+0.05 0.34+0.07 0.39+0.11 0.39+0.05 0.36+0.03 0.39+0.02 0.36+0.01 0.30+0.08 0.32+0.09
.UE) R P 0.39+0.08 0.31+0.05 0.39+0.07 0.39+0.05 0.37+0.04 0.37+0.03 0.37+0.03 0.30+0.06 0.29+0.02
RMSE  0.02 0.03 0.02 0.04 0.03 0.04 0.02 0.03 0.03
- O 0.75+0.11 0.65+0.06 0.46+0.1 1.05+0.1 1+0.1 1.16+0.09 1+0.08 1.12+0.09 1.23+0.08
(%_:E/ P 0.72+0.12 0.64+0.11 0.43+0.09 0.96+0.18 0.89+0.07 1.17+0.11 0.97+0.19 1.16+0.12 1.25+0.14

RMSE  0.04 0.03 0.04 0.11 0.12 0.05 0.04 0.05 0.02
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Appendix G: Webpage for Demonstration of Model Application

The webpage link is http://www-personal.umich.edu/~gifu/pendulum/flexPend.html. A

screenshot of the webpage is shown in Figure G1.
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Figure G1. The webpage with input predicted animation of gait and joint angles for demonstration of model application.
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