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Abstract

Traditional survey methods have been successful for nearly a century, but recently response rates have been

declining and costs have been increasing, making the future of survey science uncertain. At the same time,

new media sources are generating new forms of data, population data is increasingly readily available, and

sophisticated machine learning algorithms are being created. This dissertation uses modern data sources

and tools to improve survey estimates and advance the field of survey science.

We begin by exploring the challenges of using data from new media, demonstrating how relationships

between social media data and survey responses can appear deceptively strong. We examine a previously

observed relationship between sentiment of “jobs” tweets and consumer confidence, performing a sensitivity

analysis on how sentiment of tweets is calculated and sorting “jobs” tweets into categories based on their

content, concluding that the original observed relationship was merely a chance occurrence. Next we track

the relationship between sentiment of “Trump” tweets and presidential approval. We develop a framework to

interpret the strength of this observed relationship by implementing placebo analyses, in which we perform

the same analysis but with tweets assumed to be unrelated to presidential approval, concluding that our

observed relationship is not strong. Failing to find a meaningful signal, we next propose following a set of

users over time. For a set of politically active users, we are able to find evidence of a political signal in terms

of frequency and sentiment of their tweets around the 2016 presidential election.

In a given corpus of tweets, there are likely to be several topics present, which has the potential to

introduce bias when using the corpus to track survey responses. To help discover and sort tweets into these

topics, we create a clustering-based topic modeling algorithm. Using the entire corpus, we create distances

between words based on how often they appear together in the same tweet, create distances between tweets

based on the distance between words in the tweets, and perform clustering on the resulting distances. We

show that this method is effective using a validation set of tweets and apply it to the corpus of tweets from

politically active users and “jobs” tweets.

Finally, we use population auxiliary data and machine learning algorithms to improve survey estimates.

We develop an imputation-based estimation method that produces an unbiased estimate of the mean response

of a finite population from a simple random sample when population auxiliary data are available. Our method

allows for any prediction function or machine learning algorithm to be used to predict the response for out-of-

sample observations, and is therefore able to accommodate a high dimensional setting and all covariate types.

x



Exact unbiasedness is guaranteed by estimating the bias of the prediction function using subsamples of the

original simple random sample. Importantly, the unbiasedness property does not depend on the accuracy of

the imputation method. We apply this estimation method to simulated data, college tuition data, and the

American Community Survey.
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Chapter 1

Introduction

Surveys are crucial for social research and used in a wide variety of application, including official statistics,

political polling, and market reserach. Results from these surveys are important for setting public policy

and understanding the public’s reaction to events. Traditional survey methodology has its roots in the

early 1900s, when random sampling, as opposed to purposeful sampling, was thought to be an important

component to survey sampling (Bowley 1906). It wasn’t until Neyman (1934) that probability sampling

became an essential component of survey sampling, applying similar methods to social surveys as Fisher had

applied to agricultural experiments. Over the subsequent decades, classical theory on survey sampling had

nearly been completed (Hansen and Hurwitz 1943; Horvitz and Thompson 1952).

While traditional survey sampling methods have been successfully implemented for many years, recently

they are becoming increasingly difficult to perform, with people being more reluctant to respond and growing

costs to implementation. Despite many methods being proposed to overcome this problem, such as methods

for analyzing data from non-simple random samples, the future of survey science remains unclear (Keeter

2012; Massey and Tourangeau 2013).

In the modern era, there are many forms of data that were not available in the past. This is due to multiple

reasons, including new forms of media being developed, data being generated at an unprecedented rate, and

data being more widely available than ever before. This ‘new data’ ushers in a new era of survey science,

with novel methods of utilizing this new data being developed and implemented in practice. At the same

time, new predictive machine learning methods are being developed. These new algorithms can be applied

to a wide variety of data types and capture subtle relationships between covariates and a given response.

By taking advantage of data from new sources and developments in machine learning, both separately and

together, precision and accuracy of estimates from surveys can be improved upon.

One proposal in public opinion research is using data extracted from social media to supplement or

replace traditional surveys (Murphy et al. 2014). On its face this might seems like a very fruitful method

of tracking public opinion, as social media has several advantages over traditional surveys: it is inexpensive

1



to acquire data (e.g. social media posts are sometimes free to obtain using an API), there is no burden on

the respondent (i.e. user), a variety of topics are discussed over social media, and much of the general public

engages with social media.

Twitter has perhaps been the most widely used social media platform for statistical analysis due its

global popularity and public availablity of its data. There have been many studies establishing that signals

of interest can be extracted from Twitter data. For example, tweets have been shows to predict the results

of elections in Europe (Tumasjan et al. 2010; Ceron et al. 2014). This phenomenom is also seen in the

US, with Wikipedia page views helping to predict elections (Smith and Gustafson 2017). Golder and Macy

(2011) track the mood of Twitter users around the globe by their tweets, finding daily, weekly, and seasonal

patterns. Antenucci et al. (2014) predict unemployment claims based on the number of tweets mentioning

phrases related to ‘laid off’.

Early results also suggest that public opinion can be captured using social media data. O’Connor et al.

(2010) were one of the earliest and most influential analyses connecting social media data to public opinion

polling. They found correlations between sentiment of tweets containing the word “jobs” and consumer

confidence in 2008-2009 (r = 0.731 as measured by Gallup, and r = 0.635 as measured by the Index of

Consumer Sentiment), between sentiment of “Obama” tweets and presidential approval in 2009 (r = 0.725),

and between frequency of “Obama” and “McCain” tweets and presidential election polling in 2008 (r = 0.79

for “Obama” tweets, r = 0.74 for “McCain” tweets). Twitter was in its infancy during this time frame, but

relationships nonetheless remained strong over time as Twitter gained popularity. Cody et al. (2016), for

example, found similar correlations between sentiment of “Obama” tweets and presidential approval. This

phenomenon was not only present in tweets from the United States, but with other social media platforms in

other countries as well; Daas and Puts (2014) found strong relationships between sentiment of Dutch social

media posts and consumer confidence in the Netherlands. These early results helped to spark optimism in

the idea of replacing traditional public opinion surveys with social media data.

Despite the initial positive results, there are many criticisms and inconsistencies of social media analyses,

some of which were not fully realized until years later. For example, O’Connor et al. (2010) failed to find

a relationship between “job” (as opposed to “jobs”) or ”economy” tweets and consumer confidence, raising

concerns about the robustness of the findings. Further confusing the issue, Cody et al. (2016) did find a

relationship between “job” tweets and consumer confidence, resulting in a set of subtly contradictory findings.

Daas and Puts (2014) found correlations between Dutch consumer sentiment and various subsets of Dutch

social media messages (such as messages containing pronouns, messages containing the most frequent spoken

and written words in Dutch, and messages containing the Dutch equivalents of “the” and “a/an”) that were

just as strong as messages containing words about the economy, raising red flags for whether the economic

tweets were truly capturing consumer confidence. Furthermore, there are many ways in which social media

data differs from traditional survey data, such as with population and topic coverage (Schober et al. 2016).

New forms of bias and measurement error are introduced and constantly changing due to the nature of
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social media use. Social media data is not the only form of data from new media that has “believers” and

“skeptics” in terms of aiding survey estimation. Another form of new data that followed a similar story is

Google Trends (i.e. Google searches over time and location) (Jun, Yoo, and Choi 2018), which has famously

been used to track the number of flu cases each year (Yang, Santillana, and Kou 2015; Dugas et al. 2013).

However, this model needs to updated each year and failed to catch certain spikes in flu cases (Lazer et al.

2014). As another example, Choi and Varian (2009) predict unemployment claims using categories of Google

Trends, and go on to predict, among others, travel and automobile sales (Choi and Varian 2012).

We add to the field of analyzing Twitter data in a number of ways, the first being in developing methods

to evaluate relationships observed between tweets containing some keyword and survey responses. The first

relationship we consider is between sentiment of “jobs” tweets and consumer confidence, as was found in

O’Connor et al. (2010). If there is truly an underlying relationship between sentiment of tweets and survey

responses, the observed relationship should be robust to changes in sentiment calculation. We perform

such a sensitivity analysis, finding that these seemingly small changes can drastically change the resulting

relationship. By taking a closer look at the individual “jobs” tweets, we notice that while the intention was

to purposefully select tweets related to the economy, that is not the case. We create an algorithm to sort

the “jobs” tweets into five different categories. However, this did not restore the relationship. We conclude

that the relationship between “jobs” tweets and consumer confidence was likely spurious. Much of this work

can also be found in Conrad et al. (2019).

In our analysis of “jobs” tweets, we found it relatively easy to adjust analysis parameters such that a

seemingly strong relationship is found. Sensitivity methods used in the “jobs” analysis can help to determine

whether a relationship between tweets and survey responses is spurious, but given the optimizing over

parameters that is usually performed in observing such a relationship, it does not answer the question of

how strong and meaningful the relationship itself is. We develop a framework to do just that, and apply the

framework in the context of presidential approval. Using methods similar to O’Connor et al. (2010) and Cody

et al. (2016), we find the correlation between sentiment of “Trump” tweets and presidential approval from

2017 through mid-2019. In doing so, we optimize smoothing and lag parameters, and therefore traditional

correlation significance tests fail. To determine how strong the observed relationship is, we use the idea of

placebo analyses: we perform the exact same analysis, but with tweets assumed to be unrelated to presidential

approval. Comparing our observed correlation with “Trump” tweets to the distribution of correlations from

the placebo analysis, we conclude that our observed correlation is not strong.

Failing to find evidence that previously found relationships are meaningful, we propose a new method

of collecting tweets: instead of following tweets containing a given word over time, we follow users over

time. We create a set of politically active users and classify them as Democratic or Republican based on the

accounts they follow. We find convincing evidence of a political signal in terms of frequency and sentiment

of tweets from our set of Democrats and Republicans around the 2016 presidential election.

In all of the previously described analyses, the corpora of tweets were carefully chosen to capture a
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chosen signal of interest. However, despite these intentions, the resulting corpora contained tweets relating

to multiple topics. For example, as was evident from our analysis of “jobs” tweets, the corpus that was

intended to be about jobs in an economic sense contained tweets about many topics (e.g. our corpus of

“jobs” tweets contains tweets about job losses and Steve Jobs). Tweets from unwanted topics have the

potential to do more than add pure noise; they could introduce bias. Thus, we want a method to filter and

sort tweets to better understand what is being disucssed in a given corpus. Topic modeling is one method of

doing this. Many topic modeling methods are based off of Latent Dirichlet Allocation (LDA) (Blei, Ng, and

Jordan 2003), which assumes the topic of each word in a document is drawn from a multinomial distribution,

and the word itself is drawn from another multinomial distribution according to the topic. While LDA works

well with larger documents, it often fails with shorter documents such as tweets. Aggregation methods have

been proposed, where tweets are aggregated together by some criteria and LDA is applied to the aggregated

tweets (Hong and Davison 2010; Mehrotra et al. 2013; Alvarez-Melis and Saveski 2016; Quan et al. 2015).

Given the nature of tweeting and character limit of tweets, a more realistic assumption may be to assign

each tweet to a single topic. Zhao et al. (2011), for example, provide a variant of the LDA model where they

make this assumption.

To better understand what is being discussed in a corpus of tweets and filter unwanted tweets, we

introduce a clustering-based topic modeling algorithm. This algorithm creates a distance between each word

in the corpus’s vocabulary, and uses those distances to find the distance between each tweet in the corpus.

A distance-based clustering algorithm is applied to the resulting distance matrix to estimate the latent topic

for each tweet. We use this algorithm on a validation set of tweets from Twitter users who tweet about very

different topics to confirm its effectiveness. We apply this algorithm to our set of politically active users and

our corpus of “jobs” tweets.

Tweets often contain auxiliary data, such as the user information, that may be useful in analyses, es-

pecially when this information is known for the entire population of interest. While our topic modeling

algorithm by design does not take advantage of those auxiliary variables, we demonstrate how they can be

beneficial. Auxiliary population is not limited to just social media data, but is available in a wide variety of

applications.

Another modern method of improving survey estimates is incorporating auxiliary population information

and machine learning prediction models. Simple random samples resemble the population from which the

sample was drawn in expectation, but deviations are present in individual samples. Population auxiliary

information can be used to minimize the effect of these deviations and decrease the standard error of resulting

estimates. While population data has been collected for centuries (Bethlehem 2009), it has not always been

easily accessible. Population auxiliary data has long been used to improve estimates from samples; the

use of ratio and regression estimators go back decades (Hartley and Ross 1954; Williams 1961), although

these methods typically only assume knowledge of a population covariate mean, as estimates with more

information would be computationally intensive before computers were widely available.
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Many current methods for incorporating population auxiliary data with sample data rely on predictive

modeling, where models trained on sample data are used to predict responses for out-of-sample observations.

More sophisticated predictive models (e.g. Hastie, Tibshirani, and Friedman (2009)) are helpful in this regard:

better predictive models lead to better estimated responses. However, with more sophisticated predictive

modeling techniques it can be easier to overfit a model to a sample, especially for smaller sample sizes or when

the feature dimension is high. Model assumptions also might not be exactly met by the given population.

These can lead to overly optimistic estimates of standard error and biased estimates for response predictions,

and ultimately biased estimates for functions of the population response.

We introduce a new unbiased estimation method for predicting a population mean response from a

simple random sample given available population auxiliary information. For any chosen prediction function,

we estimate the bias of that prediction function by using leave-one-out subsamples of the original sample.

This method does not result in a large loss of precision over standard adjustment techniques using predictive

modeling. Since our estimation method works with any arbitrary prediction function, we are able to add

to the literature of incorporating modern machine learning models into survey estimation. Importantly, the

unbiasedness property of our method does not depend on the accuracy of the imputation method used. We

apply this method to simulated data, college tuition data, and the American Community Survey.

This dissertation is organized as follows. In chapter 2 we present two case studies in tracking public opin-

ion survey responses with data extracted from Twitter. The first is a sensitivity analysis on the relationship

between “jobs” tweets and consumer confidence. In the second we search for a political signal in Twitter

data, developing a method to interpret the strength of the observed correlation between the sentiment of

“Trump” tweets and presidential approval. We then search for a political signal when following politically

active users over time. In chapter 3 we develop a clustering-based topic modeling algorithm for tweets. In

chapter 4 we develop a new unbiased estimation method for a population mean response with presence of

population auxiliary variables using leave-one-out predictive modeling. Chapter 5 concludes.
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Chapter 2

Signals in Twitter Data: Case Studies

in Consumer Confidence and Politics

Relationships found between public opinion polls and data extracted from social media have led to optimism

about supplementing traditional surveys with these new sources of data. However, many initial findings have

not been met with usual levels of scrutiny and skepticism. Our goal is to introduce a higher level of scrutiny

to these types of analyses. In doing so, we demonstrate challenges of using social media data to track survey

responses: seemingly small researcher decisions can have a large effect on observed relationships, relationship

are inconsistent across time, and relationships are not much larger than we would observe by chance.

We first consider the relationship between sentiment of “jobs” tweets and consumer confidence, a rela-

tionship that has been observed to weaken over time. In hopes of restoring the relationship, we classify

“jobs” tweets into categories based on their content and calculate sentiment of tweets using a variety of

methods. None of these approaches improved the relationship in the original or more recent data. We find

no evidence that the original relationship in these data was more than a chance occurrence.

We then focus on political signals in Twitter data, which we believe might be some of the strongest signals

on social media, providing an illuminating test case. Our first contribution is to develop a framework to

interpret the strength of relationships found between public opinion poll surveys and tweets containing a given

keyword. Following methods that exist in the literature, we measure the association between survey based

measures of presidential approval and tweets containing the word “Trump”. We then implement placebo

analyses, in which we perform the same analysis as with the “Trump” tweets but with tweets unrelated

to presidential approval, concluding that the relationship between “Trump” tweets and survey responses is

not strong. As our second contribution, we suggest following social media users longitudinally. For a set of

politically active Twitter users, we classify users as a Democrat or Republican and find evidence of a political

signal in terms of frequency and sentiment of their tweets around the 2016 presidential election. However,

even in this best-case scenario of focusing exclusively on politics and following users who are politically
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engaged, the signal found is relatively weak. For the goal of supplementing traditional surveys with data

extracted from social media, these results are encouraging, but cautionary.

2.1 Introduction

Surveys are critical for understanding public opinion and setting public policy. While asking survey questions

to samples designed to represent the entire population has been very successful for many years, generally

producing quite accurate results, surveys are becoming increasingly costly to perform and people are in-

creasingly reluctant to respond (De Heer and De Leeuw 2002). It is unclear whether the traditional method

of gathering survey responses will remain viable in the future. One proposed alternative, as laid out by the

AAPOR task force on big data (Murphy et al. 2014), is to use data gathered from social media to supplement

or in some cases replace traditional surveys (Hsieh and Murphy 2017). While there are many open problems,

early analyses have been promising, suggesting there may be an underlying relationship between some social

media data and some public opinion surveys.

As one of the world’s largest and most popular social media platforms, Twitter has been used for many

studies in the social sciences (e.g. Golder and Macy 2011). Due to its popularity, a wide variety of topics

are discussed, making Twitter data potentially applicable to many fields of study. Moreover, recent posts

and user profile information are publicly available through Twitter’s API, unlike many other social media

platforms.

Early analyses were promising, finidng high correlations when tracking public opinion surveys with tweets

containing a given keyword. For example, O’Connor et al. (2010) calculate correlations between sentiment of

tweets containing a given word and consumer confidence, presidential approval, and election polling. They

find a high positive correlation between sentiment of tweets from 2009 containing the word “Obama” and

President Obama’s 2009 presidential approval rating. They also find a high correlation between Obama’s

standing in 2008 presidential election polls and the frequency - but not sentiment - of “Obama” tweets.

Surprisingly, they also find a positive correlation between the frequency of tweets that contain the word

“McCain” (Obama’s opponent in the 2008 presidential election) and Obama’s standing in election polls.

As demonstrated with these “Obama” and “McCain” tweets, sometimes a relationship is found with only

sentiment of tweets, other times with only frequency of tweets, and not always in the direction one might

expect.

Cody et al. (2016) find similar correlations with more recent tweets through 2015. Among others, corre-

lations are found between Obama’s quarterly presidential approval and average quarterly sentiment of tweets

containing the word “Obama” from 2008 through 2015. They find a correlation of 0.56 between sentiment

of “Obama” tweets and quarterly presidential approval with no lag, which increases to 0.76 when predicting

presidential approval one quarter out. The lag is interpreted as Twitter data having the potential to predict

future presidential approval.
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Not only is this phenonomon found in tweets from the US, but from other countries and other social

media platforms as well. Daas and Puts (2014) compare the sentiment of social media messages from multiple

social media platforms in the Netherlands from 2009 through 2014 to consumer confidence in the Netherlands,

finding very high correlations. All of these findings suggest there may be an underlying relationship between

data extracted from social media and public opinion surveys.

However, inconsistencies in these initial analyses warrant skepticism in underlying relationships between

social media data and survey responses. In O’Connor et al. (2010), sometimes a high correlation is observed

between survey responses and sentiment of tweets, and other times between survey responses and frequency of

tweets. O’Connor et al. (2010) did not find a relationship between “job” (as opposed to “jobs”) or “economy”

tweets and consumer confidence. This is contrast to Cody et al. (2016), who did find a relationship between

“job” tweets and consumer confidence. Daas and Puts (2014) find correlations between consumer confidence

and sentiment of twenty subsets of Dutch language social media messages. Some of these subsets contain

words related to consumer confidence (e.g. economy, job, jobs, etc.), whereas other subsets of social media

messages include messages containing pronouns, messages containing the most frequent spoken and written

words in Dutch, and messages containing the words “the” and “a/an”. Nearly all of the twenty subsets of

social media messages were found to have very high correlations with consumer confidence. Surprisingly, the

correlation between consumer confidence and sentiment of tweets containing a word related to the economy

is no stronger than the correlation between consumer confidence and any other subset of tweets. This result

is interpreted positively by Daas and Puts: changes in an underlying mood of the Dutch population affect

both the population responding to consumer confidence surveys and the population posting social media

messages. However, we interpret the result with more skepticism. We would expect tweets with keywords

related to the economy to be more closely related to consumer confidence than all tweets or tweets subsetted

by, say, personal pronouns. That this is not the case raises questions about how strong these relationships

between Twitter and various public opinion polls really are.

There are two main contributions in this chapter. Our first contribution is methodological. If social

media is to be reliably used to track public opinion, there needs to be a method of evaluating the strength

of association between social media data and public opinion surveys. While inconsistencies cast doubt on

the credibility of previously observed relationships between Twitter sentiment and public opinion surveys,

there remains a need for a systematic framework to interpret the strength of such relationships. Taking the

previously observed relationship between “jobs” tweet and consumer confidence, we perform a sensitivity

analysis on how sentiment of tweets is calculated, showing that it can be relatively easy to observe spurious

relationships that are deceptively strong. This demonstrates the need for a systematic way of interpreting

the strength of such an observed relationship. To address this issue we propose the use of placebo analyses.

The idea behind a placebo analysis is to replicate the primary analysis but using variables that are known

to have no true relationship with the response. As an example of a placebo analysis, DiNardo and Pischke

(1996) revisited a previous study that claimed wage differentials were due to computer use in the workplace.
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When replacing the variable for computer use with pen/pencil use, the estimated effect of pencil use on wage

differentials was similar to the estimated effect of computer use. This casts doubt on the original claim that

computers in the workplace were causing the wage differential since the true effect for the placebo variable

(pencil use) should be zero. The implication of an estimated non-zero effect is that the original analysis

was not credible, see Athey and Imbens (2017) for further details. We develop a framework to evaluate and

interpret the strength of observed correlations between social media sentiment and public opinion surveys

by essentially performing multiple placebo tests. In the context of presidential approval, we first calculate

the correlation between survey-based measures of presidential approval and the sentiment of tweets that

contain the word “Trump”. In doing so, however, we adjust smoothing and lag parameters to obtain the

best possible correlation, as is typically done in similar analyses (O’Connor et al. 2010; Cody et al. 2016).

Because we optimize over these parameters, it is difficult to interpret the strength of the resulting correlation.

We therefore compare our observed correlation to other correlations that are calculated in a similar way, but

which are assumed to be spurious. Using this framework, we conclude that while there may be a signal when

tracking sentiment of tweets containing the word “Trump” with presidential approval, it is small and not

obviously useful. These results cast doubt as to whether Twitter data can reliably be used as a replacement

for traditional surveys.

Our second contribution deals with the method in which social media data are obtained. As an alternative

to the commonly used method of simply collecting tweets that contain a given keyword (e.g. “Trump”)

irrespective of who is posting them, we propose following a set of politically active Twitter users over time.

This method of collecting tweets is similar to Golder and Macy (2011), who tracked mood using up to 400

tweets for each of millions of users. By collecting tweets in this manner we observe change among a set

of users. We classify politically active Twitter users as a Democrat or Republican and find evidence of

a political signal when tracking the frequency and sentiment of these users’ tweets around the 2016 U.S.

presidential election.

This chapter is organized as follows. In section 2.2 we examine the previously observed relationship

between sentiment of “jobs” tweets and consumer confidence, concluding that the original relationship was

likely spurious. In section 2.3 we develop a framework for interpreting the strength of a relationship between

messages containing a given word and survey responses. In section 2.4 we follow a set of politically active

users over time, finding a political signal in the frequency and sentiment of their tweets over time. Section

2.5 concludes.

2.2 Consumer Confidence

In this section we further explore the relationship between sentiment of tweets containing the word “jobs”

and consumer confidence, as originally reported in O’Connor et al. (2010). We first discuss the reseracher

decisions made in finding this relationship, and then show how each of these decision affects the resulting
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relationship. Much of this section can be found in Conrad et al. (2019).

2.2.1 Methods

Data Sources

A dataset of tweets from January 2007 through June 2014 containing the word “jobs” is provided by a

third-party service Topsy, which provides the tweet text, user, and date and time the tweet was created.

This is the same keyword as in O’Connor et al. (2010). Topsy has since bought out by Apple in 2013 and no

longer provides this service. Topsy removed spam tweets, but the exact method of doing so is not publicly

available. We omit tweets from 2007 since there were so few tweets in that year as Twitter was only starting

to emerge as a social media presence. To reduce computational burden, we use a random sample of 500

tweets per day (or all of the tweets from a day if there are less than 500 “jobs” tweets).

Consumer confidence data is taken from the University of Michigan Survey of Consumers survey (SCA).

The SCA conducts about 500 (mostly) telephone interviews for a national sample of U.S. adults. The

monthly Index of Consumer Sentiment (ICS) is calculated using responses to five questions. These five

questions are given in appendix B. In O’Connor et al. (2010) and Cody et al. (2016), Twitter sentiment was

only compared to the overall monthly ICS. The five questions making up ICS range from personal finances

to expectation of the U.S. economy; we look at responses to these individual questions. In particular, we

are interested in the two questions: “Now looking ahead–do you think that a year from now you (and your

family living there) will be better off financially, or worse off, or just about the same as now?” (which we

refer to as the self question) and “Now turning to business conditions in the country as a whole–do you

think that during the next twelve months we’ll have good times financially, or bad times, or what?” (which

we refer to as the collective question). While this consumer confidence survey data is publicly available on

a monthly basis, through our affiliation with the University of Michigan we are able to access individual

responses, which are gathered nearly daily.

Somewhat surprisingly, perceptions of society differ from aggregated individual circumstances since trends

have not yet impacted individuals. As an example, asking individuals who they think will win an election

often outperforms polls asking individuals who they will vote for (Graefe 2014). With this idea in mind,

we hypothesize that sentiment from social media will match up closer to survey data measuring individuals’

perceptions about society rather than measuring personal circumstances. That is, we expect that Twitter

sentiment will be more accurate in predicting the collective survey question than the self survey question.

Classifying Tweets

Consider the number of “jobs” tweets per day (before downsampling to 500 “jobs” tweets per day) in Figure

2.1. The eight days with the most “jobs” tweets, in decreasing order, are: October 6, 2011; October 7, 2011;

August 25, 2011; July 20, 2011; October 5, 2012; July 22, 2011; September 7, 2012; and October 17, 2012.
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Figure 2.1: Number of “jobs” tweets from 2007 through mid-2014.

By looking at individual tweets from each of those day, it becomes obvious what causes the spike in number

of tweets for each of those days.

Steve Jobs died October 5, 2011. The first two days with the largest number of “jobs” tweets are the

two days immediately following his death. The fifth day with the largest number of tweets is the one year

anniversary of Steve Jobs’s death. Steve Jobs resigned as CEO of Apple on August 25, 2011, the day with

the third highest frequency. These events should not have an impact on consumer confidence, but with the

high volume of tweets in response to these events, it is likely to introduce unwanted bias to the sentiment

of “jobs” tweets. For the purpose of finding some underlying relationship between Twitter sentiment and

consumer confidence, these tweets are irrelevant and should not be taken into account.

On the fourth and sixth highest days, July 20 and 22, 2011, Twitter was spammed with many variants

of ‘Unemployed single mom makes $$$ from home. Check it out << link >>.’ We consider these tweets to

be junk tweets since they should be unrelated to the public’s opinion on the economy.

The last two dates, September 7 and October 17, 2012, both have large amounts of tweets related to

politics. Around September 7, a jobs report was released and many tweets were discussing job creation as a

factor in the upcoming 2012 presidential elections. The second Obama-Romney presidential debate was held

on October 16, during which a question about job creation was asked to each candidate. Many tweets on

the 17th were in response to this. Unlike the previous examples with Steve Jobs and spam, “jobs” mentions

on these days might actually be useful in determining the public’s opinion on the direction of the economy.

The context of “jobs” mentions varies greatly. Some contexts we would expect to be related to various

aspects of consumer confidence, while others we expect to be completely unrelated. The wide variety of

“jobs” content may cause unwanted variation. Through inspection, we classify “jobs” tweets into five broad

categories: news/politics, personal, advertisement, junk and other. Each of these categories is described

below. In appendix C we provide example tweets that fall into each of these five categories.
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1. News and Politics: This category of tweet generally refers to either current events on the national

level or political opinions. Many of these tweets have to do with the U.S. economy as a whole.

2. Personal: Tweets in this category refer to one’s individual job, many times commenting on job

satisfaction or change in employment status.

3. Advertisements: Tweets in this category display jobs available in various fields and various cities.

Many of these are through a ‘Tweet My Jobs’ third party service. Despite referring to actual jobs,

we don’t expect these tweets to have much relationship with consumer confidence since they do not

provide any opinion.

4. Other: Tweets in the Other category are usually articles or lists, unrelated to current economic events,

but typically having to do with employment in some way. For example, more articles may be written

about recession-proof jobs during a recession.

5. Junk: The jobs mentioned in junk tweets refer to something other than employment. The most

common include Steve Jobs, the TV show Dirty Jobs, and jobs of a sexual nature. Junk tweets should

be independent of economic conditions and consumer confidence.

These five categories are not necessarily distinct; many tweets could easily fit into two or more categories.

For simplicity, we assign each tweets to only one category.

In the appendix C we provide the detailed classification algorithm used to sort “jobs” tweets into one of the

five categories mentioned above and provide evidence that it works as intended by comparing classifications

as given by the algorithm to classifications given by manually.

Sentiment Calculation

Whereas survey responses directly measure sentiment, tweets do not. We score the sentiment of tweets using

two broad methods: aggregate scoring and individual scoring.

Aggregate sentiment scores are only meaningful when examining many tweets across a given time period;

these sentiment scores are not very meaningful at an individual tweet level. Aggregate methods are often

dictionary-based, meaning they use a dictionary of words, each word being labeled positive or negative (or

sometimes neutral). Because tweets contain relatively few words, many tweets contain no words in a given

dictionary. Even if a tweet contains one or two words found in a dictionary, it is difficult to assign such tweets

a meaningful continuous sentiment score. Instead, we use aggregate methods to assign individual tweets to

sentiment categories, such as a positive tweet or negative tweet depending on the number of positive and

negative words the tweet contains. We can also count the number of positive and negative words found in all

tweets from a given time period. The overall sentiment for a given day is then calculated by using either the

number of positive and negative tweets from that day or the number of positive and negative words found

in all tweets from that day.
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Dictionary-based method are the most straightforward method of sentiment analysis. While there are

numerous limitations (such as a single word being both negative and positive in different contexts, inability

to detect sarcasm), they are relatively easy to implement. Once we have the total number of positives or

negatives (counted as either tweets or words) for a single day, we calculate overall sentiment for that day in

one of three ways: (1) positives
negatives , (2) positives−negatives

total , or (3) positives
positives+negatives . Considering these multiple

metrics using dictionary-based methods allows us to both reproduce previous results and check whether these

seemingly small changes affect the resulting relationships.

We consider three dictionaries:

Lexicoder: Lexicoder was developed to measure tone in news content (Young and Soroka 2012). Lexicoder

was trained on and shown to perform well on measuring the sentiment of political newspaper articles. The

dictionary consists of 1,700 positive and 2,857 negative words. One difference between Lexicoder and the

other two dictionaries in the inclusion of negation. That is, for each positive and negative word in the

dictionary (e.g. “happy”, “sad”), there is an associated negated term (e.g. “not happy”, “not sad”). The

final positive word count is calculated as the number of positive words + number of negated negative words -

number of negative positive words. The final negative word count is calculated as number of negative words

+ number of negated positive words - number of negated negative words. We implement Lexicoder using

the quanteda package in R (Benoit et al. 2018).

Liu-Hu. The second dictionary we consider is Liu-Hu (Hu and Liu 2004; Liu, Hu, and Cheng 2005).

This dictionary was created using online product reviews, where customers often mention both positive and

negative aspects of a product. Because this data comes from consumer reviews instead of professionally

published words, it contains some common misspellings, and therefore may be better suited for analyzing

Twitter sentiment. The dictionary contains 4,783 negative words and 2,006 positive words. We implement

Liu-Hu through the SentimentAnalysis package in R (Feuerriegel and Proellochs 2018).

OpinionFinder. The final dictionary we consider is OpinionFinder, which was developed to evaluate a

theory of polarity in lexical semantics (Wilson, Wiebe, and Hoffmann 2005). The OpinionFinder word lists

consist of 1,600 positive and 1,200 negative words. Similar to Lexicoder, this dictionary does not contain

slang or misspellings. This was the same dictionary as used in O’Connor et al. (2010).

Individual scoring methods, on the other hand, assign a continuous sentiment score to each individual

tweet and typically make use of machine learning algorithms. These scores are meaningful and continuous

on the tweet level; they indicate not just whether a tweet is positive or negative, but also to what degree.

Scores are assigned using rule-based models based on lexical feature of the tweet. They often take into

account not just words (such as content words, negated words, intensifier words), but nonword entries such

as punctuation, capitalization, and emojis as well. We include two machine learning-based methods in our

study:

Vader. Vader was trained on and shows to perform very well at evaluating the sentiment of individual

short messages (Hutto and Gilbert 2014). It takes into account text features commonly found in tweets, such
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as words, slang, negations, intensifies, punctuation, emoticons, and emojis. Vader assigns each individual

tweets a sentiment score between -1 and 1.

TextBlob. The second machine learning-based method we use is TextBlob, a Naive Bayes classifier

trained on the Stanford NLTK data set of movie reviews. TextBlob outputs a sentiment score of -1 to 1

for each individual tweets. Similar to Vader, it incorporates negation and intensifier words when calculating

sentiment of tweets.

Overall sentiment for a single day, when using machine learning-based sentiment methods, is calculated

as the mean sentiment of all tweets from that day.

Measures of Association

We measure the relationship between sentiment of tweets and consumer confidence using two methods: (1)

correlation and (2) comovement, a measure of how often two time series move in the same direction from

one time period to the next.

Person’s correlation is the most commonly used method for assessing relationships between survey re-

sponses and Twitter sentiment. Before computing the correlation between Twitter sentiment and survey

responses, we first smooth both the Twitter sentiment and survey responses. For each day in our time frame,

we have an ICS score (based on the telephone interviews from that day) and Twitter sentiment (calculated

using one of the methods mentioned above). Both of these time series are very noisy day-to-day. We intro-

duce a smoothing parameter k and calculate the smoothed sentiment for a given day as the mean sentiment

of that day and the previous k − 1 days (therefore averaging k days total). We use the same k value for

both time series. We also include a shift term L, which tells us whether Twitter sentiment leads or lags

consumer confidence by L days. We then find the correlation between the smoothed Twitter sentiment and

the smoothed and lagged survey responses.

As a technical note, the number of available data points used to find the correlation between smoothed

Twitter sentiment and lagged survey responses decreases when smoothing and lag are added in this way.

For example, if k = 30 we lose the first 29 days in the data since we cannot do 30-day smoothing unless we

have tweets from the previous 29 days. If we shift survey responses up 30 days, we lose 30 additional days

from the data. Overall, we lose k+ l−1 data points. This is relevant because decreasing the number of data

points used to calculate correlation can result in artificially inflated correlations, especially if we do not have

many data points to begin with.

The second measure of association we use is comovement, which measures how often two time series move

in the same direction from one time period to the next. While correlation takes into account the actual value

of the time series on a given day, comovement only uses the direction of the differences. If we have T time

units and two time series x1, x2, . . . , xT and y1, y2, . . . , yT , we calculate the comovement as

comovement(x, y) =
1

T − 1

T∑
t=2

1(sgn(xt − xt−1) == sgn(yt − yt−1))
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where 1(sgn(xt−xt−1) == sgn(yt− yt−1)) is 1 if x and y move in the same direction from time period t− 1

to t, 0 otherwise.

After shifting survey responses by L days, we calculate comovement on various timescales: daily, weekly,

or monthly. Since comovement measures the percent of time two time series move in the same direction from

one time period to the next, each time series can only have one value per time period. So depending on

the timescale chosen, for each time series we only have one value per day, one value per week, or one value

per month. Aggregating by time period with comovement is analogous to the k-day smoothing done with

correlation.

We have some freedom in how exactly to calculate weekly and monthly comovement by choosing which

day of the week or month to start on. For example, when calculating weekly sentiment, we can start the

week on Sunday, meaning sentiment for a week is the average sentiment from Sunday through the following

Saturday, or we can choose to start the week on Monday, meaning sentiment for a week in the average

sentiment from Monday through the following Sunday, and so on. As a robustness check, we can start

comovement on various days and compare the results. For example, if we start comovement on the 1st of the

month compared to starting comovement on the 2nd, we don’t expect a very large change in comovement if

there is an underlying relationship between the two time series.

2.2.2 Results

Replicating Previous Results

We begin by replicating the analysis from O’Connor et al. (2010). Recall that in this paper, sentiment of

tweets from 2008-2009 containing the word “jobs” was compared to consumer confidence as measured by

the ICS. We attempt to replicate their results by using the same settings and time frame. Specifically, we

calculate daily sentiment as the ratio of positive to negative tweets as measured using the OpinionFinder

dictionary. A tweet is considered positive if it contains at least on positive word, similarly for negative tweets.

Under this method of calculating tweet sentiment, a single tweet can be positive, negative, both positive

and negative, or neither. We use the same smoothing parameter of k = 30 days and shift of L = −50 days.

There are two main differences between our analysis and O’Connor et al. (2010): (1) a different corpus of

“jobs” tweets (our corpus was provided by Topsy, their corpus was obtained using the Twitter API) and (2)

ICS is computed daily in our study and monthly in theirs. O’Connor et al. (2010) found a correlation of

0.64; we find a correlation of 0.65. See top left cell of Table 2.1. Our replication succeeded.

Sorting by Tweet Category

We calculate the sentiment of the tweets sorted into each of the five content categories and, using the same

settings as above, find the correlation between each of these categories and ICS. Results can be seen in the

first column of Table 2.1. We expected the sentiment of tweets from the news/politics category to have
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Category of Tweets positive tweets
negative tweets

positive tweets−negative tweets
total tweets

positive tweets
positive tweets+negative tweets

All tweets 0.65 0.00 0.48
News/politics 0.17 0.30 0.19
Personal -0.23 -0.30 -0.26
Advertisements 0.71 -0.24 0.32
Junk 0.42 0.16 0.32
Other 0.19 0.43 0.52

Table 2.1: Correlations between sentiment of tweet categories and ICS by how daily sentiment is calculated
(using the OpinionFinder dictionary), based on settings in O’Connor et al. (2010).

the highest correlation with survey responses and junk and advertisements to have the lowest. This is self-

explanatory for junk tweets: these tweets are by definition unrelated to the economy/jobs in the economic

sense. Advertisement tweets are sent by accounts that specialize in posting job openings; they do not give

any opinion about the state of the economy or job losses/gains. However, we find the opposite than what we

expected. Correlation with advertisements (0.71) and junk (0.42) are much higher than with news/politics

(0.17). The correlations with personal (-0.23) and other (0.19) are also not particularly strong. We assumed

advertisements and junk tweets would be unrelated to employment, so these two high correlations may very

well be spurious.

Robustness of Results

With many researcher decisions (e.g. choice of dictionary, the determination to count words vs. tweets,

the particular smoothing interval chosen) contributing to the resulting correlation of 0.65 above, we are

interested in how these decisions affect the observed correlation. To assess this, we adjust these parameters

and compare the resulting correlations.

We begin by adjusting the method used to calculate sentiment. We use the three formulas as given in

the “Sentiment Calculation” Section. Results can be seen in Table 2.1. We see that the choice of formula

can drastically change the results. The most striking change in correlation with with all tweets, dropping

from 0.65 to 0.00 when calculating sentiment as positive tweets−negative tweets
total tweets . Had O’Connor et al. (2010)

used this scoring formula, they would have reached a drastically different conclusion: no relationship instead

of a fairly strong relationship. The correlation with advertisements changes even more: from a strong

positive relationship to moderately negative to moderately positive (0.71 to -0.24 to 0.32). Correlations

with news/politics and personal tweets remained relatively constant and small. Clearly, the formula used to

calculate sentiment of tweets can make a large difference.

We next explore the choice of dictionary and the difference between counting tweets versus counting

words. Results can be seen in Table 2.2. We see that these decisions do not have a dramatic effect on the

correlation with all tweets, with all of the correlations hovering around 0.6. Similar to what we saw in Table

2.1, the most dramatic effect of dictionary choice was with the advertisement tweets, ranging from 0.71 using

OpinionFinder to 0.19 when using Lexicoder and counting words. In general, counting words versus tweets
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Category
OpinionFinder Lexicoder Liu-Hu

pos tweets
neg tweets

pos words
neg words

pos tweets
neg tweets

pos words
neg words

pos tweets
neg tweets

pos words
neg words

All tweets 0.65 0.64 0.56 0.56 0.66 0.61
News/politics 0.17 0.10 0.30 0.39 0.15 0.18
Personal -0.23 -0.25 -0.07 0.02 0.07 0.11
Advertisements 0.71 0.67 0.29 0.19 0.57 0.53
Junk 0.19 0.19 0.51 0.48 0.28 0.30
Other 0.42 0.33 0.56 0.36 0.49 0.43

Table 2.2: Correlations with ICS and tweets from 2008-2009 using various dictionaries.

Category Vader TextBlob
All tweets 0.54 0.18
News/politics 0.51 0.10
Personal -0.05 0.22
Advertisements -0.25 -.39
Junk 0.45 0.05
Other 0.64 0.60

Table 2.3: Correlations between sentiment of tweets using Vader and TextBlob and ICS from 2008-2009.

did not make a large difference in the resulting correlations. This is most likely due to the fact that tweets

often only contain one word in a given dictionary due to the limitation on number of characters in a tweet.

As an alternative to the dictionary-based methods, we next look at the resulting correlations when using

the machine learning-based sentiment methods in Table 2.3. Correlation between all tweets and ICS is 0.54

using Vader and 0.18 using TextBlob; correlation with news/politics is 0.51 using Vader and 0.10 using

TextBlob; correlation with irrelevant tweets is 0.45 with Vader and 0.05 with TextBlob. The differences in

size of these correlations presumably reflects the differences in the actual sentiment scores assigned to each

tweet. This is evident in the modest correlation between Vader’s and TexxtBlob’s sentiment scores, r = 0.54.

Table 2.4 gives the correlations between many different sentiment methods. Many of these correlations

are modest or low, suggesting that sentiment scoring tools–at least the five we consider in the table–are not

interchangeable.

Lastly we compare results with different levels of smoothing and lag. Using the original settings as in

O’Connor et al. (2010), we see how the correlation between all “jobs” tweets and survey responses changes as

we adjust smoothing from k = 1, . . . , 100 and the shift from L = −100,−99, . . . , 99, 100 days. The resulting

OpinionFinder Lexicoder Liu-Hu Vader TextBlob
OpinionFinder 1 0.564 0.471 0.424 0.264

Lexicoder 1 0.805 0.714 0.475
Liu-Hu 1 0.670 0.563
Vader 1 0.537

TextBlob 1

Table 2.4: Correlations between (unsmoothed) average daily sentiment of “jobs” tweets from 2008-2009.
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Figure 2.2: Effect of smoothing and lag parameters on correlation between ICS and all tweets from 2008-2009
using settings from O’Connor et al. (2010)

contour map can be seen in Figure 2.2. In general, under these settings, correlation increases as L changes

from positive to negative, becoming largest (corresponding to the darkest region) when the lag is most

negative, corresponding to social media preceding survey data in 100 days. However, we have no theoretical

justification why such a large lag of over 3 months corresponds to a stronger correlation under the given

settings. In particular, we would expect daily Twitter sentiment and daily ICS to be more or less aligned

(i.e. a lag of around 0). While it may be the case that Twitter users form opinions at a somewhat different

rate than the general population, we would expect this difference to be on the order of days, not months.

The fact that we see the largest correlations with a shift on the order of months suggests that one should

not read too much into these correlations as they may well be spurious.

We also note that while correlation tends to increase as smoothing increases, high levels of smoothing

can artificially inflate correlation between two time series.

Comovement

We compute comovement using the same settings as O’Connor et al. (2010). Results are in Table 2.5. Using

comovement there are no strong relationship between any Twitter categories and ICS survey responses at the

daily or weekly levels; all hover around 0.5, what we would expect by chance. When calculating comovement

on the monthly timescale using two years of data, there are only 23 monthly differences. With so few data

points, it is easier to obtain more extreme comovements due to chance. At the monthly level, comovement

varies depending on which day of the month we start on. If there is a true underlying relationship between

survey responses and Twitter sentiment, we would not only expect comovement to be large, but also robust

to starting date. Since that is not the case, it does not appear that there is a significantly strong relationship

between survey response and Twitter sentiment.

Lastly, we note that for the two categories that we expected to be related to survey responses, news/pol-

itics and personal, the comovement is not particularly large for any timescale or start date.
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Category Daily Weekly Monthly 1st Monthly 2nd Monthly 4th
All 0.47 0.52 0.70 0.61 0.65
News/politics 0.46 0.53 0.39 0.35 0.35
Personal 0.46 0.47 0.65 0.65 0.61
Advertisements 0.43 0.40 0.48 0.52 0.57
Junk 0.52 0.54 0.57 0.70 0.57
Other 0.50 0.46 0.39 0.43 0.70

Table 2.5: Comovement between sentiment of tweets and ICS from 2008-2009 calculated daily, weekly, and
monthly starting on the 1st, 2nd, and 4th day of the month.

Extension in Time

When we began this study, our motivation was to understand why the relationship between Twitter sentiment

and survey responses deteriorated over time, raising the question of whether the relationship actually does

weakened over time or simply started and remained volatile. To examine this, we compute the correlation for

each year from 2008 through mid-2014 under the settings originally used by O’Connor et al. (2010) for 2008

through 2009. These correlations are displayed in Table 2.6. In some years, there is a very high correlation,

which disappears or moves in the opposite direction the following year. Furtermore, there is no discernible

pattern throughout. In particular, correlations do not slowly deteriorate over the years. If this had been the

case, it could have suggested some systematic change in the Twitter data. Instead, the evidence suggests

there never was a relationship to begin with.

Personal versus Collective Hypothesis

Conrad et al. (2015) hypothesized that a stronger relationship would be present when comparing Twitter

sentiment to individual ICS questions as opposed the the overall ICS. Specifically, if people are writing

tweets for others to read, like, and retweet, the content of the tweet might be more similar to questions

about the national economy (collective) than about one’s personal financial circumstances (self). Indeed,

they observed a higher correlation with a collective question (“Now turning to business conditions in the

country as a whole–do you think that during the next twelve months we’ll have good times financially, or

bad times, or what?”), r = 0.84, than with a self question (“Now looking ahead–do you think that a year

from now you (and your family living there) will be better off financially, or worse off, or just about the same

as now?”), r = 0.39. These correlation were measured over the years 2008-2011 in Conrad et al. (2015).

We revisit this main collective-vs-self hypothesis over a larger time period (2008-2014) and correlate

survey responses with each category of tweet whose content may be relevant to the two survey questions

examined. We expect the collective question to have a stronger relationship with news/politics tweets and

the personal question to have a stronger relationship with personal tweets. We calculate sentiment as

# positive words
# negative words using Lexicoder (same as Conrad et al. (2015)) and use 30-day smoothing and 50-day lag

(same as O’Connor et al. (2010)) Table 2.7 gives the correlations between each category of tweets and the

two questions. There is no clear pattern throughout. Tweets about the U.S. economy (news/politics) are
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Settings as in O’Connor et al. (2010):

Category 2008 2009 2010 2011 2012 2013 2014
All tweets 0.21 0.66 -0.03 0.54 0.02 0.28 0.41
News/politics -0.05 0.18 0.22 0.37 -0.02 0.02 -0.61
Personal -0.10 0.36 0.08 0.23 -0.07 0.09 -0.24
Advertisements -0.02 0.64 0.01 0.59 -0.17 0.29 0.84
Junk 0.06 0.29 -0.21 -0.21 -0.16 -0.16 0.16
Other -0.38 0.46 -0.57 0.67 0.02 0.53 -0.25

Vader:

Category 2008 2009 2010 2011 2012 2013 2014
All tweets -0.18 0.71 0.21 0.62 -0.04 -0.10 0.35
News/politics 0.21 0.45 0.75 0.47 0.20 -0.15 0.48
Personal -0.32 0.11 0.49 0.44 0.09 -0.21 0.34
Advertisements -0.14 -0.69 0.28 -0.07 -0.37 0.20 -0.74
Junk 0.16 0.51 0.52 -0.31 -0.32 -0.16 -0.71
Other -0.05 0.78 -0.49 0.76 0.03 0.17 -0.33

TextBlob:

Category 2008 2009 2010 2011 2012 2013 2014
All tweets -0.45 0.39 -0.44 0.37 0.23 -0.21 0.07
News/politics -0.10 0.28 0.40 0.16 0.33 -0.41 0.40
Personal -0.24 0.18 0.05 0.28 0.02 -0.20 0.27
Advertisements -0.25 -0.41 -0.23 -0.21 -0.06 0.13 -0.46
Junk -0.13 0.01 -0.24 -0.51 0.18 -0.10 -0.39
Other 0.41 0.45 -0.43 0.59 0.27 0.07 0.61

Table 2.6: Correlations between ICS and Twitter categories for years 2008-2014 under settings used in
O’Connor et al. (2010) (top), Vader (middle), and TextBlob (bottom).
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Collective:

Category 2008 2009 2010 2011 2012 2013 2014
All tweets 0.18 0.84 0.24 0.44 0.18 0.07 0.70
News/politics 0.16 0.25 0.68 0.50 0.21 -0.41 0.80
Personal 0.44 -0.14 0.60 0.33 0.35 -0.21 -0.19
Advertisements 0.06 0.65 0.39 0.20 0.15 0.12 -0.66
Junk 0.08 0.62 0.34 0.03 -0.38 0.14 0.16
Other -0.30 0.72 -0.53 0.60 0.30 0.14 0.23

Self:

Category 2008 2009 2010 2011 2012 2013 2014
All tweets 0.19 0.52 0.27 0.02 0.03 0.13 -0.36
News/politics 0.17 -0.16 0.59 0.28 0.14 -0.14 -0.53
Personal 0.15 0.20 0.37 -0.03 0.08 -0.17 -0.15
Advertisements 0.01 0.52 0.42 -0.02 -0.08 0.01 0.35
Junk -0.08 0.41 0.40 0.32 -0.31 0.14 0.37
Other -0.61 0.29 0.33 0.07 0.29 0.21 -0.04

Table 2.7: Correlation between Twitter categories and ICS questions by year. Collective on top; self below.

no more related to survey responses about the direction of the national economy than any other category

of tweets, and tweets about one’s own job (personal) were no more related to survey responses about one’s

own personal finances than any other category of tweets.

Concluding Results

When we began our investigation, we hoped to discover why previously observed relationships between

Twitter sentiment and survey responses fall apart over time, and possibly find the proper settings to restore

the relationship. Despite our optimism that filtering out irrelevant tweets, or using the correct sentiment

method, or using a more robust measure of association would restore the relationship, we ultimately cast

doubt on whether the originally observed relationship was present to begin with.

2.3 Presidential Approval

In the previous section we concluded that the observed seemingly strong relationship between sentiment of

“jobs” tweets and consumer confidence is likely spurious. If data from social media are ever going to be

used to serve as an adequate substitute for traditional surveys, there needs to be a method of interpreting

the strength of the correlation between sentiment of social media sentiment and survey responses. It can

be relatively easy to find highly spurious correlations with time series data, as demonstrated by Daas and

Puts (2014) and Vigen (2014). Additionally, as we demonstrated in the previous section, there are several

researcher decisions that contribute to the final observed relationship; optimizing over these decisions can

lead to artificially strong relationship, and standard techniques for assessing relationship strength fail.

With the benefit of hindsight, it is perhaps not surprising that public opinion for select topics, such as

the economy, can be difficult to obtain from social media. For example, even if a user’s “jobs” tweet is

21



about the economy (as opposed to, for example, Steve Jobs), the user’s opinion about the economy is not

always clear from the tweet. Tweets about politics, on the other hand, are often quite clear with regard

to who or what a users supports or opposes. Furthermore, there is evidence that non-probability online

survey panels produce plausible estimates of Americans’ political ideology (Kennedy et al. 2016). Therefore,

if there is a strong, reliable signal present in Twitter data that might be used to supplement traditional

surveys, we might reasonably expect to find it in the political realm. In this section, we focus our attention

on tracking presidential approval, which we regard as the “best-case scenario” for the goal of using social

media to supplement traditional surveys.

The contribution of this section is developing a method to interpret the strength of observed relationships

between social media sentiment and survey responses. We calculate the correlation between presidential

approval and sentiment of tweets from January 2017 through August 2019 that contain the word “Trump”.

Similar to analyses described earlier (O’Connor et al. 2010; Cody et al. 2016; Conrad et al. 2019), we adjust

smoothing and lag parameters to obtain this correlation. To interpret the strength of such relationships, we do

not want to compare our observed correlation to zero. Rather, we want to compare our observed correlation

to spurious correlations between Twitter sentiment and presidential approval. We then ask ourselves how

large our observed correlation is compared to the spurious correlations. That is, we implement a placebo

analysis, most commonly used in econometrics, to assess the strength of the observed correlation. The idea

behind placebo analysis is to replicate the primary analysis using variables that are unrelated to the outcome.

As an example, DiNardo and Pischke (1996) revisit an analysis that claimed wage differentials were due to

computer use in the workplace. DiNardo and Pischke (1996) found that when replacing the variable for

computer use with pen/pencil use, the effect of pencil use on wage differentials was similar to the effect of

computer use. This casts doubt on the original claim that computers in the workplace were causing the

wage differential. The true effect for the placebo variable (pencil use) should be zero. The implication of

a non-zero effect is that the original analysis was not credible, see Athey and Imbens (2017) for further

details. We develop a framework to evaluate and interpret the strength of observed correlations between

social media sentiment and public opinion surveys by essentially performing multiple placebo tests. Using

this framework, we conclude that while there may be a signal when tracking sentiment of tweets containing

the word “Trump” with presidential approval, it is small and not obviously useful. This result casts doubt

on whether Twitter data can reliably be used as a replacement for traditional surveys.

2.3.1 Methods

Daily presidential approval is taken from the website FiveThirtyEight, a data journalism website which

publishes articles on politics, public opinion, and sports-based statistical analyses. FiveThirtyEight fits pres-

idential approval and disapproval trend lines based on multiple polls, weighting each poll by sample size and

pollster ratings (based on a poll’s historical accuracy in predicting elections and methodological standards)

(Silver 2017). The trend lines are fit using a local polynomial regression model. Three quadratic regression
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Figure 2.3: Daily presidential approval (green, bottom) and disapproval (orange, top) as given by FiveThir-
tyEight from January 2017 through August 2019.

models are fit with 10, 20, and 30 day bandwidth, giving three different estimates for presidential approval.

These three estimates are averaged together to give the final estimate for a given day. FiveThirtyEight

calculates two different trend lines, one for all adults and one for likely voters. The fitted approval and dis-

approval trend lines and all poll data used to calculate the trend lines are publicly available for download1.

In our analysis we consider only the trend lines for all adults since Twitter users consist of all adults and not

just those who are registered to vote. The fitted approval and disapproval trend lines for all adults, along

with their respective confidence bands, can be seen in Figure 2.3.

During the time period from January 20, 2017 through August 25, 2019, we scraped 1000 tweets per day

containing the word “Trump” using the Twitter API. This particular interval started with the first day of

the Trump administration and covered the following 31 months.

Sentiment of tweets is calculated using Vader (Hutto and Gilbert 2014). Vader calculates sentiment of

short social media messages through a rule-based model using lexical features of the message. These features

include words, emoticons, acronyms, slang, punctuation, capitalization, degree modifiers, and contrast words.

Each of these features has either a corresponding polarity and intensity of sentiment between -1 and 1 or

an associated rule (e.g. negation words reversing the polarity of the following word). Vader combines these

scores to give an overall sentiment score for each individual tweet between -1 and 1. We choose Vader as a

sentiment tool as it was both trained on and shown to perform well in calculating the sentiment of individual

tweets.

We calculate unsmoothed Twitter sentiment for a given day as the mean sentiment of all “Trump”

tweets from that day. Unsmoothed sentiment is noisy day-to-day. This is not due to the fact that we have

downsampled tweets, but rather a property of the population of tweets. Confidence intervals for sentiment

1https://projects.fivethirtyeight.com/trump-approval-ratings/
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Figure 2.4: 95% confidence intervals for average daily unsmoothed sentiment of “Trump” tweets.

of “Trump” tweets often do not intersect from one day to the next, see Figure 2.4. We calculate smoothed

daily Twitter sentiment for a given day by taking the average sentiment of that day and previous k − 1

days. We introduce a lag term l, shifting survey responses ahead or behind by l days. This tells whether

Twitter sentiment leads or lags presidential approval. We choose k to be in {1, 2, . . . , 45} and l to be in

{−30,−29, . . . , 29, 30}. We choose k and l such that we obtain the highest correlation between sentiment of

“Trump” tweets and presidential approval. We choose k and l in this manner for three reasons: (1) it is not

clear a priori whether social media lags survey responses or vice versa and it is not clear what the optimal

smoothing might be, (2) we want to give the political signal the best chance of emerging, and (3) similar

methods were performed in previous analyses (e.g. O’Connor et al. (2010) and Cody et al. (2016)).

After determining the smoothing and lag parameters that maximize the correlation, we then want to

interpret the strength of the observed correlation. Autocorrelation and trends in time series data effectively

reduces the sample size, making spurious correlations more common in time series data. To interpret the

strength of the correlation, we want to take into account the relationship between sentiment of various

subsets of tweets and presidential approval. If many of the subsets of tweets were more correlated with

presidential approval than sentiment of “Trump” tweets, then we conclude the correlation we observed is

spurious. Although this is similar to what was observed in Daas and Puts (2014) when looking at the

relationship between sentiment of tweets containing the words “economy”, “job”, or “jobs” and consumer

confidence, the conclusion is the opposite. When we compare against overall Twitter sentiment, it is a check

for spuriousness.

We create a reference distribution using tweets containing everyday words. To define a set of everyday

words, we use a random sample of 5000 tweets per day from the same time period and find words and symbols

(such as emojis) that appear at least once every day. After removing stop words (e.g. “the”, “an”), we are

left with 495 such words. We call these placebo words, as the only relationship we expect to find between

these words and presidential approval are assumed to be spurious. There are some “Trump” tweets in our

random sample of all tweets, but they constitute a small percentage of our random sample. For each of these
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Figure 2.5: Correlation between sentiment of “Trump” tweets and presidential approval for various smoothing
and lag values.

words, we repeat the same analysis as we did with the “Trump” tweets: using tweets that contain a given

placebo word, adjust smoothing and lag such that we obtain the maximum absolute correlation between

sentiment of tweets containing the placebo word and presidential approval.

Note that this framework can be used to evaluate the strength of any measure of association and any pre-

processing of sentiment between messages containing some keyword and survey responses, not just correlation

when adjusting for smoothing and lag in the context of presidential approval.

2.3.2 Results

Figure 2.5 shows how the correlation between sentiment of “Trump” tweets and presidential approval changes

with various smoothing and lag values. With an optimal smoothing of 45 days and optimal lag of 30 days

(meaning that Twitter sentiment lags presidential approval by 30 days), we obtain a maximum correlation

of 0.516 between sentiment of “Trump” tweets and presidential approval. While this is not as high as was

previously found using “Obama” tweets and presidential approval (as in O’Connor et al. (2010) and Cody

et al. (2016)), the correlation of 0.516 nonetheless seems to suggest there is a relationship between “Trump”

tweets and presidential approval from 2017 through mid-2019.

To demonstrate the placebo analysis, in Figure 2.6 we take a random sample of six placebo words and show

how changing smoothing and lag parameters affect the correlation between those six words and presidential

approval. Similar to “Trump” tweets, a higher level of smoothing often leads to higher correlations with

these six random words. This is consistent with O’Connor et al. (2010), in which it was found that higher

levels of smoothing of sentiment of “jobs” tweets leads to higher correlations with consumer confidence, as

measured both by Gallup and the University of Michigan Index of Consumer Sentiment. Indeed, the optimal

smoothing values often occur at the highest level of smoothing allowed in the windows, which is 45 in this

case. Figure 2.7 shows where the optimal smoothing and lag parameters fall for each of the 495 placebo
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Figure 2.6: Correlation between sentiment of a random sample of six words and presidential approval for
various smoothing and lag values.

Figure 2.7: Locations of optimal smoothing and lag parameters between the 495 words and presidential
approval. Each point represents where the maximum correlation occurs for one of the 495 words appearing
in the Twitter corpus every day.

words. This is a cautionary message: too much smoothing can lead to artificially inflated correlations. This

is the case with “Trump” tweets as well, and demonstrates why we cannot simply compare the observed

relationship to 0.

For each of the 495 placebo words we find the most extreme correlation, i.e. the correlation with the

maximum absolute value, within the given smoothing and lag values. The set of these correlations creates

what we call the reference distribution. To assess the strength of the relationship between “Trump” tweets

and presidential approval, we compare the observed correlation in relation to the reference distribution. If

there truly is a relationship between sentiment of “Trump” tweets and presidential approval, the observed

correlation should be much larger than nearly all of the placebo correlations. The reference distribution

can be seen in Figure 2.8. The reference distribution is bimodal. This is because we manipulated the

smoothing and lag parameters to find the optimal correlation between sentiment of tweets containing each
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Figure 2.8: Reference distribution of maximum absolute correlations between presidential approval and
sentiment of 495 placebo words with k ∈ {1, . . . , 45} and l ∈ {−30,−29, . . . , 30}. Maximum correlation
between sentiment of “Trump” tweets and presidential approval, 0.516, is denoted by the dashed vertical
line.

of the placebo words and presidential approval. The vertical dashed line in Figure 2.8 is the correlation

between the sentiment of “Trump” tweets and presidential approval, 0.516. This correlation is larger than

many of the placebo correlations, but not considerably so. About 5.3% of the placebo correlations are

larger in absolute value than the correlation between presidential approval and “Trump” tweets. However,

none of the placebo words with maximum absolute correlations greater than 0.516 are meaningfully related

to presidential approval, e.g. “giveaway”, “17”, “enough”, “city”, and “name” are the five words with the

highest maximum absolute correlation with presidential approval. While there appeared to potentially be a

signal, if anything it is a very small signal, a signal that cannot by itself predict public opinion.

Robustness over time

Throughout the time period of performing the analysis, we re-ran the analyses several times as newer data

became available. Results often depend on the last data point available in the analysis, especially through

early 2018. Consider finding the optimal correlation between sentiment of “Trump” tweets and presidential

approval when the last data point available ranges from May 2017 to August 2019. For each of those end

dates we find the smoothing and lag parameter that leads to the maximum absolute correlation. Figure 2.9

shows the maximum absolute correlation (thick line) and the correlation with 45 day smoothing and 30 day

lag (dashed line) change over time. Figure 2.10 shows the optimal smoothing (top) and lag (bottom) values

that produce the maximum absolute correlation as the end date of the data changes.

The reference distribution also changes as end date changes. Figure 2.11 shows how the proportion of

placebo correlations that are more extreme that the correlation between sentiment of “Trump” tweets and

presidential approval as end date changes. Around mid-2018, this proportion stabilizes to between 0.05 and
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Figure 2.9: Maximum absolute correlation (bold) and correlation using 45 day smoothing and 30 day lag
(dashed) as end date of data changes.

Figure 2.10: Optimal smoothing (top) and lag (bottom) parameters as end date of data changes.
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Figure 2.11: Proportion of placebo correlations more extreme than observed correlation between “Trump”
tweets and presidential approval as end date changes.

0.10.

2.4 Longitudional Analysis of Politically Active Users

The results of the previous section raise concern on the utility of social media as a method of gauging

public opinion. Our goal in this section is to determine whether we can convincingly detect any credible,

non-spurious political signal in data extracted from Twitter. As an alternative to following the sentiment of

tweets that contain the word “Trump” in a repeated cross-sectional design, we follow a group of politically

active users over time. This idea is similar to Golder and Macy (2011), who tracked mood using tweets

from a set of users. A longitudinal study performed in this manner may have several advantages. As noted

in the introduction, when following the word “Trump” over time, we cannot be sure as to what extent

the demographics of users tweeting about Trump are changing over time. We do not have this issue when

following the same set of users longitudinally over time.

In this section we gather a set of politically active users and classify each of them into a political party

based on profile information. We search for what we assume to be one of the largest signals on Twitter for

this set of users: the outcome of the 2016 presidential election.

2.4.1 Methods

Identifying Politically Active Users

Using a corpus of tweets2 provided by Sysomos, we classify tweets from 2016 as political or not political

based on the words within each tweet. If a tweet contains at least one of the words “Obama”, “Clinton”,

2All tweets in the provided corpus contained the word “jobs” and was related to the data used in section 2.2.
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“Trump”, “Ryan”, “McConnell”, “potus”, “teaparty”, “democrat”, “republican”, “trade”, “taxes”, “senate”,

or “president”, the tweet was classified as political. We created this list of political words by hand based

on viewing the content of many tweets in our corpus. We then took a random sample of size 15,000 of the

users whose tweet was classified as political and retrieved their 2016 tweet history through the Twitter API.

We then identified ‘politically active users’ as follows. For each of these 15,000 users, we checked if the user

produced at least 20 original tweets (non-retweets) in 2016, 10 of which contain at least one of the political

words listed earlier. If so, we consider that user a politically active user. Note that under this definition of a

political tweets, we surely have not identified all political tweets, but the tweets we identify as political are

very likely to be political. We obtain 4189 politically active users using this definition.

Identifying Political Beliefs

Since our end goal is to find a political signal in the tweets belonging to our set of politically active users, we

would ideally like to know each user’s political party affiliation. We begin this process by creating a training

set of users with known political affiliation from which we train a classifier. We identify a list of politi-

cal words commonly found in users’ self-provided profile description on Twitter (“conservative”, “Trump”,

“MAGA”, “NRA”, “Constitution”, “Republican”, “Libertarian”, “Democrat”, “liberal”, “Hillary”, “Clin-

ton”, “Obama”, “progress*”, “Bern*”, “resist*”, “president”). If a user’s self-provided provided profile

description contained one of these words, we hand-classify the user as belonging to one of the two major

political parties in the US: Democratic or Republican. These users were explicitly clear in their profile

description about their political beliefs or about which candidate they did or did not support in the 2016

presidential election. We classify self-described libertarians as Republicans, and classify self-described so-

cialists as Democrats. We classify Never-Trump Republicans as Republicans, and classify Never-Hillary

Democrats as Democrats. This creates our training set of 170 Democrats and 393 Republicans.

The classifier for predicting political party is built using the list of Twitter accounts that the users with

known political party follow. As predictor variables we use Twitter accounts that are followed by at least

30 of the users with known political party. There are 3040 such accounts, meaning we have 3040 binary

variables (following or not) that are used to predict political party. A random forest is used as a classifier.

Table 2.8 gives the classification error rates for the random forest. Out of the 170 users hand classified

as Democrats, 160 were correctly identified as Democrats, and 388 out of the 393 users hand classified as

Republicans were correctly identified as being Republicans. Overall, only 2.66% of users with known po-

litical party were incorrectly sorted by the random forest. Investigating the known Republican users who

were misclassified revealed they were either self-described libertarians or outspoken anti-Trump Republicans.

This is because there were relatively few of these users and they tended to follow both liberal and conser-

vative accounts. Figure 2.12 gives the variable importance of the Twitter accounts used to classify. The

most important accounts for classification are either politicians (e.g. BarackObama, realDonaldTrump, Sen-

Warren, HillaryClinton, newtgingrich), political commentators (e.g. seanhannity, IngrahamAngle, maddow,
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Predicted
Democrat Republican classification error

Actual Democrat 160 10 0.090
Republican 5 388 0.0085

Table 2.8: Random forest confusion matrix. Actual party affiliation corresponding to the hand classification;
predicted party affiliation corresponding to the random forest out-of-bag prediction.

Figure 2.12: Variable importance of following accounts used in classifying users as Democrat or Republican.

TheDailyShow), or family members of politicians (e.g. DonaldJTrumpJr, EricTrump, MichelleObama). The

random forest appears to find a true political signal within the 3040 accounts used to classify.

The trained random forest is used to predict political party for the remaining users with unknown political

party. Since the users in the training set make their political opinions explicitly known in their self-provided

description, they may have stronger political opinions or their political opinions may be more closely tied

with their personal identity than the users with unknown political party. Therefore, it is possible that

the users with known political affiliation are fundamentally different than the users with unknown political

affiliation. When using the random forest to predict political affiliation of the remaining users, we want to

both be fairly confident that users predicted to be in a certain political party are actually members of that

party and have enough users in each party to detect a potentially small political signal. We choose an 80%

cutoff rate to accomplish both goals. That is, a user is considered to be a Democrat if at least 80% of the

trees predict the user the be a Democrat; similarly for Republican. This gives 489 total Democrats and 996

total Republicans that we use going forward.
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Bots

The set of politically active users was created in mid-2017. Twitter has since deleted many bot accounts

that had the goal of influencing other users’ political opinions. We want to ensure that we have not gathered

multiple bot accounts in our set of politically active users. We want the opinions of real people.

Out of the 1485 politically active users identified in mid-2017, 99 accounts were unable to be scraped

again in May 2018. These are split fairly evenly across Democrats and Republicans: 7% of Republicans’ and

5% of Democrats’ tweets were not able to be gathered using the Twitter API in May 2018. However, this

does not mean the account was a bot; users can choose to delete their account at any time, can make their

account private, or have their account suspended by Twitter, all of which would result in the account being

inaccessible using the Twitter API.

NBC published a list of 453 bot users and tweets from those bots (Popken 2018). None of these known

bots were included in our list of Democrats and Republicans.

Metrics

The politically active users identified above do not tweet exclusively about politics. Some tweets are about

their personal life and other interests (sports, entertainment, etc.). We found it difficult to hand classify

these users’ tweets as political or not political, much less create an algorithm to do so, since we do not know

the intention of the user or the context in which the tweet was sent. Additionally, when a user retweets, we

do not know if they are retweeting because they agree with the sentiment of the original tweet or are making

fun of the original tweet/retweeting sarcastically. It has been found that users either retweet users who share

very similar or very antagonistic views (Guerra et al. 2017). Thus, only original tweets are considered, and

retweets ignored.

We consider two metrics to demonstrate that a political signal exists in tweets from 2016: frequency of

tweets and sentiment of tweets. Frequency indicates whether or not our set of useres tweet about political

events, and sentiment tells us their reaction to those events. For frequency we will look at the number of

original tweets sent per user per day. For sentiment we continue to use Vader to calculate sentiment of

original tweets (Hutto and Gilbert 2014).

2.4.2 Results

Figure 2.13 shows the frequency of original tweets for Democrats and Republicans from 2016 through mid-

2017. The vertical lines on these plots represent election day (November 8, 2016) and inauguration day

(January 20, 2017). The top four days with the highest frequency of tweets for Democrats, in order of

frequency, are November 9, 2016; October 10, 2016; October 20, 2016; and September 27, 2016. These days

correspond to the day after the election and the days after the three presidential debates between Hillary

Clinton and Donald Trump. The top four days for Republicans are November 9, 2016; October 20, 2016;
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Figure 2.13: Average number of original tweets per day per Democrat (top) and Republican (bottom) from
2016 through mid 2017. Vertical lines represent election day (November 8, 2016) and inauguration day
(January 20, 2017).

November 8, 2016; and October 10, 2016. These days correspond to the day after the election, election day,

and days after the third and second debates. The frequency of tweets is clearly politically driven for both

Democrats and Republicans.

We next consider sentiment of original tweets. We find that while frequency of tweets is mainly driven by

political events, sentiment for both Democrats and Republicans is also driven by events outside of politics.

Large daily spikes, i.e. increases, in average sentiment are due to holidays, such as Christmas and Thanks-

giving (in late November), and a large daily drop is in response to a mass shooting, as can be seen in Figure

2.14. Many events that affect sentiment occur outside of the political realm. Therefore, with the idea that

Democrats and Republicans react to holidays and tragedies with similar sentiment, we are also interested in

the difference in sentiment between Democrats and Republicans. Figure 2.15 shows the daily difference in

the mean sentiment of Democratic and Republican tweets from two months before the election through two

months after the election. There is a clear drop the day after the election, and a general a change after the

election, with Democrats generally happier before and Republicans happier after. Presumably because the

election results were a surprise for many, there was a notable change in sentiment from the days leading up

to the election compared to the days after as opposed to a gradual change.

To get a more detailed understanding of what is driving the change in difference in sentiment, we next

look at how the positive and negative sentiments change over time. Figure 2.16 shows the difference in
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Figure 2.14: Average daily sentiment for Democrats (dark grey line) and Republicans (light grey line) from
May 2016 through May 2017.

Figure 2.15: Difference in average sentiment between Democrats and Republicans (Democrat minus Repub-
lican) from two months before the election (September 8, 2016) to two months after the election (January
8, 2017). The vertical line is election day (November 8, 2016). The difference in sentiment is almost always
positive before the election and often negative after the election.
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Figure 2.16: Difference in means of positive tweets (top) and negative tweets (bottom) for Democrats minus
Republicans. The vertical lines are election day (November 8, 2016) and inauguration (January 20, 2017).
The different shaded lines are for different smoothing levels to more easily see how sentiment changes over
time.

means of the positive tweets and difference in means of the negative tweets for various smoothing levels. We

see a clear drop in difference in positive means immediately following the election, and a small drop around

inauguration. However, we do not see a similar change in negative means. The overall change in difference

in sentiment was driven by Republicans’ positive tweets becoming more positive post-election.

To summarize, analysis of both frequency and sentiment of politically active users’ tweets suggest that

tweets from the politically active users do indeed contain a political signal. This raises the possibility that

following the users longitudinally may be a viable alternative for tracking public opinion as opposed to

following the sentiment of tweets containing a given word under a repeated cross-sectional design.
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2.5 Discussion

Summary of Results

If social media data is ever to be used to supplement or replace survey tracking public opinion, there must be

sufficient evidence that the social media data is indeed a valid way of measuring public opinion. This includes

evidence that we are indeed tracking the signal of interest, a high signal to noise ratio, and stability of the

relationship over time. We address these issues in accomplishing our main goals: assessing the stability of a

previously observed relationship, developing a framework to interpret the strength of an observed relationship

between tweets containing some word and survey responses, and finding evidence of a political signal when

following Twitter users longitudinally.

We had initially believed that the relationship between sentiment of “jobs” tweets and consumer confi-

dence could be restored with the correct analytic techniques, such as using the correct sentiment analysis

method or filtering out tweets irrelevant to the economy. To test this idea, we attempted to list the decisions

that were made along the way. We classified “jobs” tweets into five different categories based on the content:

news/politics, advertisements, personal, irrelevant, and other. This did not restore the relationship. In fact,

we found the highest correlations with advertisements and irrelevant tweets, which we have to reason to

expect to have any meaningful relationship with consumer confidence.

We also hypothesized that sentiment methods tailored to tweets might help to restore the relationship,

since the writing styles in tweets is less formal. However, using Twitter-specific machine learning methods

for sentiment calculation did not restore the relationship. Furthermore, seemingly small changes in how

sentiment is calculated using dictionary-based methods resulted in large changes in the resulting relationship.

Overall, in our analysis of “jobs” tweets, we find that minor changes can have major impacts on outcomes.

We found it is not difficult to create relatively large correlations by arbitrarily adjusting parameters, leading

to deceptively encouraging results.

With this conclusion in mind, our goal for the second analysis was to develop a framework for interpreting

the strength of these observed relationships, which we explored in the context of presidential approval. We

found the correlation between sentiment of “Trump” tweets and presidential approval, 0.516, by optimiz-

ing smoothing of sentiment and lag between survey responses and tweets. We developed a framework to

interpret the strength of this observed correlation by comparing it to 495 placebo correlation obtained by

performing the same analysis, but with tweets containing placebo words unrelated to presidential approval.

The correlation of 0.516 was not especially strong in comparison with the reference distribution. This shows

that there is a high level of noise in Twitter data; many of the placebo correlations, which should consist of

nearly pure noise, were as high as the correlation between “Trump” tweets and presidential approval. The

resulting relationships were also not consistent over time.

As an alternative method to tracking tweets that contain the word “Trump” over time, we proposed

following politically active users longitudinally over time. We found evidence of a political signal when
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classifying users as Democrat or Republican based on the accounts they follow. When tracking the frequency

of their tweets over time, we found a clear political signal, with frequency of tweets spiking around political

events. The difference in sentiment between Democrats’ and Republicans’ tweets also changed immediately

following the 2016 election. Noticeable changes in the tweeting patterns of our set of users around political

events confirms that we are indeed capturing our political signal of interest. This is consistent with previous

results that found events in Twitter data, for example frequency of “Obama” and “Romney” tweets leading

up the 2012 presidential election (Barberá and Rivero 2015) and sentiment of “Obama” tweets spiking on

Obama’s birthday (Pasek et al. 2019). However, given that the election was what we assumed to be one of

the clearest signals on Twitter for this particular set of users, the change in sentiment is relatively small.

While we only considered social media data extracted from Twitter, similar methods are applicable to

data extracted from other social media platforms. For example, we can interpret the relationship between

Reddit posts containing the word “Trump” and presidential approval using our placebo analysis framework.

Following social media users from other platforms over time is also a valid and fruitful method of data

collection.

Challenges of Future Work

Creating a post on social media is in many ways different from responding to a survey (Schober et al. 2016),

so in hindsight maybe the initial seemingly optimistic results should have been met with more skepticism.

All of these differences have the potential to introduce bias, and completely removing this bias from social

media data may be a nearly impossible task. Going forward with these types of analyses, these differences

must be addressed.

One such challenge in using social media data to track survey responses is that the population of social

media users does not fully represent the general population. One suggestion is to apply methods that

were developed for nonprobability samples to social media data. This can be difficult since demographic

information of users is often not known. Methods exist for infering users’ demographics in some cases,

but they do not cover every demographic characteristic and far from perfect. Some of these categories

include location (Ajao, Hong, and Liu 2015; Jurgens et al. 2015; Schulz et al. 2013), political affiliation (as

demonstrated in section 2.4.1), income (Preoţiuc-Pietro et al. 2015), age (Antenucci et al. 2014), and gender

(Antenucci et al. 2014). Pasek et al. (2018) adjusted consumer confidence survey responses to match the

demographic characteristics of the Twitter population, but that did not strengthen the relationship.

One possible avenue for further research includes improving current sentiment methods for tweets. While

there are sentiment methods created specifically for short social media messages, they may fail to accurately

capture intended sentiment for different writing styles and need to be continually updated as the social media

language evolves (Shen et al. 2018).

Another suggested line of work is taking the content of the tweets more seriously instead of relying on

purely the sentiment and frequency, as using just the sentiment might lose too much information. Many
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standard text modeling methods are developed with longer texts in mind. Tweets, however, contain auxiliary

information that longer texts do not, such as when the tweet was sent, information about the user, and

information about the popularity of the tweet (likes, retweets). This auxiliary data may be able to be

utilized in the creation of newer text modeling methods for social media messages.

While there is no evidence that tweets containing a given word reliably track public opinion, we still

believe there is potential for social media data to be utilized. The results of our longitudinal analysis suggest

that there is a real signal in Twitter data, and a future line of work could make use of that signal. This may

not be in a way that replaces traditional public opinion surveys, but rather supplements surveys. Smith and

Gustafson (2017) provide an example of supplementing election polls with Wikipedia page views of candidates

to more accurately predict election results. Many challenges lie ahead, but with the right methods, there is

potential for social media data to improve upon traditional methods of capturing public opinion.
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Chapter 3

Clustering-Based Topic Modeling for

Short Texts

In a given corpus of tweets, there are likely to be many topics present. Some of these topics may be unrelated

to the signal of interest, introducing noise and potentially bias. By correctly sorting tweets by topic, we hope

uncover signals of interest. In this chapter we introduce a new clustering-based topic modeling algorithm

to sort tweets into categories based on their content. First, distances between words are created based on

how often two words appear together in the entire corpus. Then, distances between tweets are created using

the distances between the words in the two tweets. A distance-based clustering algorithm is applied to the

resulting distance matrices to reveal the latent topic for each tweet. This algorithm does not take advantage

of any auxiliary information typically available in social media posts, and is therefore able to applied to any

corpus of short texts. We apply this algorithm to a validation set of Twitter users that are known to tweet

about different topics, a corpus of “jobs” tweets, and tweets from a set of politically active users.

3.1 Introduction

As one of the world’s most popular social media platforms, Twitter is a source of breaking news and public

discussion on nearly every topic. Tweet and user information are also by default publicly available for

download through the Twitter API (and can be disabled if a user specifies). This makes Twitter a valuable

data source for the analysis of societal reactions and how information disseminates through social networks.

Twitter data has been used in a variety of applications, from tracking public opinion polls (e.g. O’Connor et al.

(2010)), to capturing change in an individual’s mental state (e.g. Resnik et al. (2015)), to predicting election

outcomes (e.g. Tumasjan et al. (2010)). However, tweets are characterized by having short length (limited

to 280 [formerly 140] characters), informal language, and noise, which makes analysis of tweets challenging.

In analyzing Twitter data, tweets are typically sampled in some strategic way to reflect the given study.
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Figure 3.1: Plate notation for LDA, from Blei, Ng, and Jordan (2003).

For example, sampling tweets that contain a given word over time when tracking the relationship between

tweets and survey responses (e.g. tweets containing the word “jobs” when tracking consumer confidence), or

tweets from users that are politically active when searching for political signals in Twitter data. However,

even the most strategic sampling of tweets will contain tweets on topics unrelated to the sought after topic.

For example, “jobs” tweets contain tweets about Steve Jobs, and politically active users also tweet about

non-political events. If we can accurately extract topics from tweets and filter unwanted topics, Twitter

analyses can hopefully be improved, being better able to determine when users tweet about certain topics

and what their reactions are to topical events.

Topic modeling is one of the most popular text mining methods and is used to extract common themes

from bodies of texts, typically without human supervision. This allows one to more easily analyze and

understand a large corpus of texts. Topic models assume some number of underlying topics, where a topic is

often defined by the distribution of words found in that topic. Applying topic models to social media posts

helps to better understand what users are discussing online and has been used in many fields, including

physical health (Karami et al. 2018a) and mental health (Resnik et al. 2015).

The most common method for topic modeling of texts is Latent Dirichlet Allocation (LDA), a hierarchical

Bayesian model introduced in Blei, Ng, and Jordan (2003). LDA assumes that each document in a corpus of

texts is comprised of a distribution of topics, where a topic is defined as a probability distribution over words.

More formally, let M denote the number of documents and Ni denote the number of words in document

i. Document i has topic distribution θi, where θi ∼ Dirichlet(α). Each word wij in document i belongs

to topic zij ∼ θi, and wij ∼ Dirichlet(β), where β is the prior on the per-topic word distribution. In this

model, only the words w are known, the remaining variables are latent. Figure 3.1 gives the plate notation

for this generating model. LDA typically works well with larger bodies of text, such as newspaper articles

and books, but is less accurate with shorter bodies of texts due to the small number of word co-occurrences

within each short text (Tang et al. 2014).

While standard LDA achieves mixed results when applied to tweets due to the small number of words

in each document (tweet), there are several extensions of LDA that have been proposed to mitigate that

problem. One such proposed method, and perhaps the most straightforward, is tweet aggregation. Tweet

aggregation is performed as a processing step, with LDA (as well as other topic modeling methods) being
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applied to the newly created documents consisting of multiple tweets. In the case of tweet aggregation by

user, for example, all tweets sent by the same user are aggregated into a single new document, reducing

the overall number of documents. Various methods of aggregation that have been proposed include by user

(Hong and Davison 2010), hashtag (Mehrotra et al. 2013), conversation (Alvarez-Melis and Saveski 2016),

and information retrieval information (Hajjem and Latiri 2017). While aggregating tweets removes the

problem of applying topic models to small bodies text, aggregation methods are limited by the method in

which the corpus was sampled and the auxiliary information available for each tweet. Additionally, these

methods are not generalizable to short texts that are not from social media.

Zuo et al. (2016) use the idea of a pseudo-document, where each tweet is generated from a smaller number

of larger latent documents; the aggregation method for this method is latent. Quan et al. (2015) suggest

aggregating short texts into pseudo-documents using automatic clustering algorithms in combination with

LDA, with each tweet assumed to be a text snippet sampled from the longer pseudo-document. These

methods do not assume knowledge of auxiliary information for each text. Aggregating multiple tweets

into new documents increases the word co-occurrence within each new document compared to the word

co-occurrence in the original tweets.

Another method of mitigating the problem of few words per document in topic modeling is to artificially

enrich the short documents using relevant texts to create longer documents. By adding more words to a text,

within-document word co-occurrences increase, which increases the accuracy of standard topic models such

as LDA. This is typically done using texts that exist outside of the corpus of texts being modeled. Bicalho

et al. (2017) expand tweets (i.e. add words to tweets) using random draws of words weighted by how ‘close’

words in a dictionary are to words in a given tweet, using Wikipedia as an external data set to determine

word relatedness. Jin et al. (2011) propose a Dual LDA model that performs LDA jointly on short texts and

auxiliary related longer texts. However, it may not be clear a priori which external data set to use to enrich

texts. In some cases, a proper external data set may not exist.

Standard LDA models assume that each document is a mixture of several topics, with the topic of each

word in a document being drawn from some multinomial distribution. However, given the nature of tweeting

and that tweets are short and contain few words, it may be more realistic to assume that each tweet belongs

to only one topic. This is known as the unigram model (Nigam et al. 2000). There are variants of the LDA

model that make this assumption, such as the Twitter-LDA model introduced by Zhao et al. (2011), which

assumes the topic of each tweet is drawn from a distribution of topics unique to each author. However,

this method assumes multiple tweets from the same author, which is not always the case in a given corpus

of social media posts. Li et al. (2018) assume that each tweet contains only one functional topic, but also

contain ‘common topics’, which refer to common and uninformative words (e.g. ‘haha’, ‘rt’ for retweet) that

are spread across functional topics.

Another method for extracting topics from texts is Latent Semantic Analysis (LSA) (Landauer, Foltz,

and Laham 1998; Deerwester et al. 1990). LSA creates a term-document matrix. This matrix is often quite
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sparse, especially for shorter texts, so SVD is used to de-sparsify and reduce the dimension of the matrix.

Documents are compared to one another by taking the dot product of the normalizations between vectors,

with similar documents taking values close to 1 and dissimilar documents taking a value close to 0. However,

LSA has been shows to perform worse at extracting topics from tweets than LDA (Qomariyah, Iriawan, and

Fithriasari 2019).

We assume a unigram model, where each tweet is assumed to belong to only one of several latent topic.

Our goal is to determine which topic each tweet belongs to. That is, we wish to discover the latent topic

variable for each tweet. With that goal in mind, we approach topic modeling of tweets as a clustering

problem. This is similar to Karami et al. (2018a), who use fuzzy clustering to determine topics of texts;

and Quan et al. (2015), who use clustering within the context of LDA; and Xu, Liu, and Gong (2003),

who cluster documents using matrix factorization. To generalize to multiple settings, we do not assume any

auxiliary information is know for the tweets (similar to many others, such as Karami et al. (2018a), Yan

et al. (2013), and Quan et al. (2015)). In this case, all we have to go off of are the words in the tweets

themselves. Typical topic modeling methods, such as LDA, do not work well when applied to short texts

since each individual document has sparse word co-occurrence (Wang and McCallum 2006; Boyd-Graber

and Blei 2010). To overcome this, we use word co-occurrences found within the entire corpus, similar to Yan

et al. (2013). Using corpus-level word co-occurrence, we create a measure of distance between words found

in the corpus. We then find the distance between tweets based on the distance between each of the words

found in the tweets. An unsupervised clustering algorithm is then applied to the distance matrix of tweets

to uncover the latent topics for each tweet in the corpus. As far as the author is aware, calculating distances

in this manner and the use of distance-based clustering is novel in the field of short text topic modeling.

This chapter is organized as follows. In section 3.2 we present the topic modeling algorithm. In section

3.3 we apply our method a validation set to confirm that our algorithm works as intended. We then apply

the algorithm to a corpus of “jobs” tweets and tweets from politically active users. Section 3.4 concludes.

3.2 Method

Many topic modeling algorithms assume each document is a mixture of several topics (e.g. LDA (Blei, Ng,

and Jordan 2003)). While this is a realistic assumption for longer bodies of text, we believe that the unigram

model is a more realistic assumption for analysis of Twitter data, where each tweets belongs to only one topic

(Nigam et al. 2000). With this idea in mind, we approach topic modeling of tweets as a clustering problem,

where the goal is to unmask the latent clusters each tweet belongs to, similar to Karami et al. (2018b) and

Xu, Liu, and Gong (2003).

Aggregation methods for tweets rely on tweets being sampled in a specific manner, such as having multiple

tweets for each user, and do not work well when tweets are collected in a different manner. For example,

tweet aggregation by user will not be effective when sampling tweets containing a given word, as many users
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in the corpus will only have one tweet containing the given word. We want our topic modeling method to

be applicable to any collection of tweets, or any collection of short texts, so we do not take advantage of

auxiliary information of tweets, such as user and time sent. We use only the words found within each tweet.

The intuition behind our method is that tweets belonging to the same topic will in some sense be ‘close’ to

one another. Since tweets consist of words, if two tweets are from the same latent topic, their words will

be in some way similar. So if we know the ‘distance’ between words, we can use those distances to find the

‘distance’ between tweets. This is similar to the ideas behind latent semantic analysis (Landauer, Foltz, and

Laham 1998; Deerwester et al. 1990), where distances are found between texts based on the singular value

decomposition of a term-document matrix.

In this section we describe our topic modeling algorithm. The general steps of our algorithm, which we

describe in greater detail below, consist of pre-processing tweets, creating a document-term matrix, creating a

word co-occurrence matrix, creating a word distance matrix, creating a tweet distance matrix, and clustering

on the resulting distance matrix.

3.2.1 Pre-Processing

Similar to many text analysis techniques, the first step we take is to pre-process the tweets. This is not a

necessary step for he rest of the algorithm to run, but make results more accurate and interpretable. These

processing steps can be altered and chosen as one sees fit given the corpus at hand. We generally process

tweets in the following ways:

• Convert every letter to lowercase. This is so a word is considered the same whether it starts a sentence

(i.e. capitalized), in all uppercase for emphasis, or in all lowercase in the middle of a sentence.

• Removing certain words and symbols. We remove the ‘#’ and ‘@’ symbols, urls, and stopwords. We

remove stop words (such as ‘the’, ‘an’) since they presumably show up fairly often in nearly every

topic; two tweets should not be considered ‘close’ just because they both contain the word ‘the’. We

are interested in the words relating to the content of the tweet.

• Stemming. Stemming attempts to get at the base of the word, typically removing suffixes such as

‘-s’ and ‘-ing’. For example, ‘walked’, ‘walks’, and ‘walking’ are all stemmed to the base word ‘walk’.

Stemming does not always work perfectly, but for our purposes it does well enough.

These steps also reduce the run time of the algorithm since multiple original words can be condensed into

one word (e.g. through stemming) and certain words are deleted (e.g. stop words and urls).

3.2.2 Term-Document Matrix

Once tweets are pre-processed, we create a term-document, or word occurrence, matrix W . Each row of W

represents a single tweet, and each column of W represents a word. wij is the number of times word j appears
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in tweet i. Creating this term-document matrix is a very common step present in nearly all bag-of-words

models.

Since tweets contain few words, W is very sparse. There are often many words that appear less than a

handful number of times. This could be for a variety of reasons, such as uncommon words, misspellings, or

words in a different language. We remove these words from the analysis. That is, we remove the columns

whose sum is less than some specified number. We generally set this number to be small, so the only

words that are removed do not carry much information. After removing these columns, we remove rows

whose sum is 0. This updates the term-document matrix W , with n rows (i.e. tweets) and v columns (i.e.

words and symbols). In doing this, some tweets will be removed from the analysis and not be assigned to

a topic. Similar to Yang et al. (2014), we assume some tweets are ‘pointless babble’. These tweets have no

meaningful content, so by removing these tweets we are essentially removing noise. In practice, removing

‘pointless babble’ tweets results in the removal of only a small percentage of tweets.

The term-document matrix follows a bag-of-words model, where the ordering of words does not matter;

the only thing that matters is whether or not a word appears somewhere in a tweet. Alternatively, word

occurrence can be counted using a sliding window, where words are considered to co-occur only if they

are within the window of each other (Zuo, Zhao, and Xu 2016). Transformations and reweightings can be

applied to the term-document matrix. Some of these transformations give weaker weights to more common

words or correct for differences in document length. These types of transformations are commonly referred

to as tf-idf, or term frequency-inverse document frequency. Berry and Browne (2005) give some common

transformations of the term-document matrix. Yan et al. (2012) introduce a normalized cut term weighting

for clustering short texts based on if-idf.

3.2.3 Co-occurrence Matrix

Conventional topic models tend to fail with short texts because of sparse document-level word co-occurrence

(Wang and McCallum 2006; Boyd-Graber and Blei 2010). For this reason, instead of focusing on document-

level word co-occurrences, we focus on corpus-level word co-occurrences. Yan et al. (2013) are one of the few

who also take this approach, modeling biterms, or unordered word pairings. Yan et al. (2013) directly model

the biterms, whereas we use the biterms as the foundation for finding the distance between words found in

the corpus’s vocabulary. The reasoning for using co-occurrence of words is that if two words often appear

together in the same tweet, they are likely from the same underlying topic.

Using the term-document matrix W , we create the v × v co-occurrence matrix C, where cij represents

the number of times words i and j appear in the same tweet together. C is a symmetric matrix and cii is

the number of tweets in the corpus that contain word i.

44



3.2.4 Word Distance Matrix

Next we create a measure of distance between words using C. The idea behind the distance between two

words is fairly simple: if two words appear together frequently, they are likely to be from the same topic.

We do recognize that it is possible for a word to belong to multiple topics. This is especially prevalent when

a single word has multiple meanings. For example, the word ‘play’ can be in reference to a Broadway play

or a sports player. Nonetheless, we create distance measures based on how often two words appear together

in tweets. In our example, the word ‘play’ would end up closer to words in two different clusters: Broadway

words and sports words.

We create a distance matrix Dv×v, where dij is the distance between words i and j. This is similar to

Pedrosa et al. (2016) and Bicalho et al. (2017). As D is a distance matrix, we require D to be symmetric. We

create D from the corpus-level word co-occurrence matrix C. There are many possible distance measures;

we give two of them below.

The first distance measure between word i and word j involves the conditional probability of observing

word i in a tweet given that word j is in the tweet, and vice versa.

dij = 2− [P (word i ∈ tweet|word j ∈ tweet) + P (word j ∈ tweet|wordi ∈ tweet)]

Using this conditional probability measure of distance between words, each entry of D ranges from 0 to 2,

where dij = 2 if words i and j never appear together in the same tweet and dij = 0 if words i and j always

appear together in the same tweet. We use this method exclusively for the analyses in the chapter.

Another method for calculating distance between tweets, using the Jaccard index as described in Pedrosa

et al. (2016) and Bicalho et al. (2017), is

dij = 1− (#tweets with word i AND j)

(#tweets with word i OR j)

The above distance measures are two of many different possible distance measures available. Transfor-

mations of the above distance measures are also a valid option for calculating distance between words. The

main goal we try to achieve for the distance measure is that it gives a smaller value when two words are

from the same topic, and a larger value when two words are from two separate topics.

Since the distance between words is determined by the co-occurrence matrix, the distance between words

is dependent on the corpus itself. Words i and j can be close in one corpus, and distant in another. If

co-occurrence or word distance was based on outside text documents, such as Wikipedia pages, the distance

between words would not depend on the corpus, but on the outside texts chosen. It is not always clear a

priori which outside text is most appropriate for a given corpus, and, in fact, an appropriate outside text

may not exist for a given corpus. Choosing the wrong outside text may make the results in less accurate

results. For these reasons we do not use outside texts in determining distance between words found in the
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corpus.

3.2.5 Tweet Distance Matrix

Using the word distance matrix D we create distances between each tweet. Call this matrix Sn×n, where

sij is the distance from tweet i to tweet j. If two tweets are ‘close’ (i.e. belonging to the same topic), we

would expect all the words in one tweet to be fairly related to all words in the other tweet To calculate the

distance between tweets i and j, we restrict D such that the columns are words found in tweet i but not j,

and rows corresponding to words found in tweet j but not i. We restrict d in this way so a word that appears

in both texts but with different meaning does not make the two tweets artificially close. Then let sij be the

mean of this restricted matrix. To give an example, for tweets t1 and t2 consisting of words w1, w2, . . . , w5,

let t1 = w1w2w3w4 and t2 = w2w4w5. Then

s12 = mean



w5

w1 d1,5

w3 d3,5




=
1

2
(d1,5 + d3,5)

If either dimension of the restricted matrix is 0, let sij = 0. This happens in the case where one tweet is a

subset of another tweet and when two tweet are exactly the same, which happens in the case of retweets.

3.2.6 Clustering

Now that we have distances between all the words and tweets in our corpus, we find latent topics. Unlike

other topic modeling methods that perform clustering, we do not have coordinate values for each tweet, but

rather the distance between them. To uncover the latent topics we perform clustering techniques on the

distance matrices. We use k-medoids (also known as Partitional Around Medoids, or PAM). K-medoids is

similar to k-means clustering, but with observations being centers of the clusters instead of coordinate values

(Kaufman and Rousseeuw 1987). This algorithm has fairy quick runtime (Schubert and Rousseeuw 2019).

Because we have distance matrices between both words and tweets, we are able to find latent topics in

both words and tweets. However, a given cluster in words does not necessarily have an analogous topic in

tweets. An alternative is to perform clustering on the tweets, and then find the word distribution across

clusters. This outputs word distributions over topics that is comparable to other standard topic modeling

methods such as LDA.

Since we have the option of performing clustering on both the words and tweets (i.e. rows and columns of

the term-document matrix), connections can be drawn to biclustering. Biclustering is a technique in which

clustering is performed simultaneously on rows and columns of a matrix (Hartigan 1972; Mirkin 2013). Since

the term-document matrix W is very sparse, applying biclustering algorithms (e.g. Cheng and Church (2000),
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Dhillon (2001), and Dhillon, Mallela, and Modha (2003)) directly on W might not yield accurate results due

to low word co-occurrence within each short text. This is the same reason why standard LDA fails on short

texts.

Clustering assigns each tweet (or word) to a single latent topic. The number of topics k is chosen by

the user. There are several ways to determine the optimal number of clusters k. One such way is the

elbow method, where the total within-cluster sum of squares in plotted for various values of k and we look

for a bend in the curve. However, this method can be ambiguous, with the optimal number of clusters k

not always clear. Other methods include using the gap statistic (Tibshirani, Walther, and Hastie 2001),

which compares the within-cluster variation to what is expected under a null distribution, and the silhouette

coefficient (Rousseeuw and Kaufman 1990).

The output of the k-medoids algorithm assigns each tweet to one single topic, matching our unigram

assumption. However, it is possible to relax the unigram assumption and allow tweets to belong to multiple

topics. Karami et al. (2018a) use fuzzy clustering to find the degree to which a tweet belongs to each topic.

Karami et al. (2018a) do not use corpus-level co-occurrence, but SVD on a weighted word-document matrix

as coordinate data points for each tweet.

3.3 Results

We apply our topic modeling algorithm to three corpora of tweets. With the first, we seek to validate the

algorithm, demonstrating the accuracy of our algorithm with users we know tweet about very different topics.

For the second, we apply the topic modeling to the corpus of “jobs” tweets from section 2.2. Lastly, we

apply the algorithm to the corpus of tweets from politically active users from section 2.4.

3.3.1 Validation With Control Users

To assess the performance of our topic modeling algorithm, we apply the method to a set of tweets from

a hand-selected set of users that we know tweet about very different topics. Specifically, we obtain tweets

from four Twitter users: University of Michigan Football (UMichFootball), Vegan Cooking (vegancook101),

Planned Parenthood (PPFA), and AccuWeather (breakingweather). These are tweets that a human could

fairly easily classify as belonging to the correct user. While each of these users tweets about a single topic in

general, these topics contain subtopics, and we assume there to be relatively little user overlap in the larger

topics. We have nearly 3200 of the most recent tweets from each of the four users scraped from the Twitter

API in R.

We begin with 12780 tweets from the four users, consisting of 12063 unique words after pre-processing.

We keep words that appear at least 20 times, leaving 1349 unique words and symbols. There are 12443

tweets that have at least one word in this vocabulary. Therefore, we only discard 2.6% of tweets as pointless

babble due to not having any common words that appear at least 20 times in the corpus. These pointless

47



Figure 3.2: Weighted sum of squares by number of clusters for clustering on words in validation set.

Figure 3.3: Silhouette by number of clusters for clustering on words in validation set.

babble tweets mainly consist of urls. We calculate the distance between words using conditional probability.

Note that we also performed the analysis using Jaccard index, but the conditional probability appear to

perform slightly better. We omit results using Jaccard index as the distance between words.

First we perform k-medoids clustering on the distance between words found in the corpus of tweets. To

determine the optimal number of clusters k, we consider the elbow method using the within sum of squares

and silhouette analysis. The plot of weighted sum of squares can be seen in figure 3.2. As mentioned earlier,

the optimal number of cluster can be ambiguous using this method; this is one such example. We also

consider a silhouette analysis, as can be seen in figure 3.3. Using this method, 13 is the optimal number of

clusters. Thus, we choose 13 clusters.

Appendix D gives tables showing the words found in each cluster as given by our algorithm. The size

of the clusters varies, but nearly every topic fairly clearly refers to only one user. For example, cluster 9

(‘earthquak’, ‘accord’, ‘feel’, ‘felt’, ‘magnitud’, ‘report’, ‘san’) refers to earthquakes and cluster 8 (‘vegan’,

‘ad’, ‘add’, ‘almond’, ‘amaz’, ‘appl’, ‘asparagu’, ‘avocado’, ‘bake’, ‘banana’, ‘bar’, ‘base’, ‘basil’, ‘bbq’,...)

clearly refers to vegan cooking. Note that the first word in each cluster (also bold in the table) is the word

chosen as the centroid for each cluster, and in most cases this word accurately describes the general theme

of that particular cluster, e.g. ‘storm’, ‘health’, ‘ppfa’ (note that ppfa is the Twitter handle of the Planned

Parenthood account), ‘goblu’, ‘earthquak’, ‘rain’, ‘tropic’, and ‘snow’.

We compare these results to using LDA, again using 13 topics. In appendix D we give the top 30 words

with the highest frequency in each latent topic as determined by LDA. Most of these topics generally refer
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PPFA UMichFootball breakingweather vegancook1010

1 265 2825 128 48
2 12 7 4 3047
3 2781 53 61 23
4 91 65 2998 35

Table 3.1: Users versus sorted tweet topic as given by our topic modeling algorithm: 4 clusters.

PPFA UMichFootball breakingweather vegancook1010

1 57 2366 54 61
2 13 88 3026 16
3 3064 388 106 70
4 15 108 5 3006

Table 3.2: Users versus sorted tweet topic as given by LDA: 4 clusters.

to only one topic, such as topic 2 referring to rainfall. According to the results on words, both methods

appear to do fairly well at finding latent topics based on words.

Next we perform clustering on the tweets themselves. Since there are four users specifically chosen

because they tweet about different topics, we first perform clustering using four topics. These results can

be seen in table 3.1 for our algorithm, and table 3.2 for LDA. For LDA with k topics, each tweet has an

associated k-dimensional probability distribution across topics, with an entry for each category. To make the

results comparable with our method, we assign each tweet to a single category, essentially fitting the LDA

to a unigram model. We assign each tweet to the topic containing the maximum entry for the k-dimension

probability distribution across the k topics. Both algorithms seem to work fairly well at determining which

tweets belong to which users.

We now choose there to be 13 latent topics, as we did with the words. Table 3.3 gives the users versus

topic each tweet was sorted into. Our algorithm appears to work fairly well: most latent topics consist of

tweets from mostly one single user. Furthermore, each user has one cluster that contains most of their tweets.

Some topics appear to do particularly well, containing only tweets from a single user, such as cluster 2 having

222 of its 223 tweets from ‘vegancook101’. Taking a closer look at one of the clusters that appeared to do

the worst, nearly every tweet in cluster 5, a mix of ‘PPFA’ and ‘vegancook101’ tweets, contained the word

‘black’; for PPFA tweets that was in reference to race, and with vegancook101 tweets this was in reference

black beans, black olives, etc. Note that since clustering is done independently on word and tweet distances

using our algorithm, a specific cluster in words does not necessarily have a corresponding cluster in tweets.

With LDA, on the other hand, a given topic number for frequent words is associated with the same topic

number in table 3.4.

We compare this tweet clustering result with LDA. Table 3.4 gives these results aggregated by user.

Comparing these results to the results using our algorithm in table 3.3, our algorithm performs much better.

This demonstrates how standard LDA can fail for short texts such as tweets. Figure 3.4 gives the log-

likelihood ± one standard deviation for various numbers of clusters. According to this measure, LDA has
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PPFA UMichFootball breakingweather vegancook101

1 237 2767 127 42
2 1 0 0 222
3 2348 44 42 17
4 1 12 0 0
5 85 2 2 104
6 335 39 29 15
7 1 12 0 0
8 80 63 2811 42
9 49 3 173 2
10 0 1 0 77
11 12 6 4 2525
12 0 1 0 105
13 0 0 3 2

Table 3.3: Users versus sorted tweet topic as given by our topic modeling algorithm.

Figure 3.4: Log-likelihood of LDA model by number of topics.

the best fit with 4 topics and declines as the number of topics increases.

As another metric to compare how LDA performs on the corpus, we consider the mean of the posterior

probability distribution for each tweet that belongs to each user. Results using this metric can be seen in

appendix E. Our method still outperforms LDA when using this metric.

To compare these methods to another topic modeling method designed explicitly for this format of text

documents (i.e. multiple tweets by a number of users), we apply Twitter-LDA to our validation set of users

(Zhao et al. 2011)1. Twitter-LDA follows a framework similar to standard LDA, but assumes the unigram

model. This model assumes some number of underlying topics shared between all of the users. Note that it

does not assume that any single topic is present in only one user, as is roughly the assumption for the setup

of this validation set. This model requires several tweets from a single user; if tweets are not collected in

this manner, the model may not perform as well. The results from Twitter-LDA are in table 3.5.

1Java code to implement Twitter-LDA is available at https://github.com/minghui/Twitter-LDA
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PPFA UMichFootball breakingweather vegancook101

1 83 393 64 110
2 106 83 903 84
3 879 233 118 29
4 999 79 125 43
5 89 149 114 32
6 116 189 209 52
7 61 1157 323 13
8 37 58 185 489
9 92 109 104 78
10 403 166 14 81
11 60 163 959 29
12 39 64 30 2034
13 185 107 43 79

Table 3.4: Users versus sorted topic as given by LDA.

PPFA UMichFootball breakingweather vegancook101

1 812 51 72 1
2 2 26 768 0
3 2 6 1129 0
4 4 2 2 1524
5 0 0 0 1650
6 12 6 715 0
7 7 15 396 1
8 499 138 1 5
9 859 13 5 0
10 934 11 40 0
11 11 1242 12 0
12 40 420 55 19
13 0 1304 5 0

Table 3.5: Users versus sorted topic as given by Twitter-LDA.
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Figure 3.5: Purity for our method compared to LDA for various number of clusters.

We compare the performance of these three methods using a measure of purity. A ‘perfect’ fit of the

clustering would have each cluster consist of tweets from just one user. We count the maximum number of

tweets belonging to a single user for each cluster, added up for each cluster, and divide by the total number

of tweets. This gives a purity measure of 1 if each cluster consists of tweets from a single user. Figure

3.5 give this for various number of clusters. The purity of our method stays relatively high throughout,

outperforming LDA for every cluster size. Twitter-LDA, on the other hand, often performs better than our

method on the validation set. However, Twitter-LDA has a serious advantage in that it is given an accurate

starting point; it is given the user that each tweet belongs to (i.e. the larger topic that the tweet belongs to)

and finds the subtopics. User is not taken into account using either our algorithm or LDA. This is especially

an advantage in this specific case, as user and topic are synonymous.

3.3.2 Application to “Jobs” Tweets

Relationships found between sentiment of tweets containing a given word and public opinion surveys have

sparked optimism in the potential for tracking public opinion with social media data. For example, O’Connor

et al. (2010) found relationships between sentiment of “jobs” tweets and consumer confidence, sentiment of

“Obama” tweets and presidential approval, and frequency of “Obama” tweets and Obama’s standings in

2008 election polls. Furthermore, results in Cody et al. (2016) and Daas and Puts (2014) support the results

in O’Connor et al. (2010), also finding seemingly strong relationships between tweets containing a given word

and survey responses. This is discussed in greater detail in chapter 2.

However, a closer examination of these results concluded that the seemingly strong relationships between

tweets and survey responses were likely spurious. In chapter 2 we performed a sensitivity analysis on the

relationship between “jobs” tweets and consumer confidence as originally presented in O’Connor et al. (2010),

finding that seemingly small changes in how sentiment is calculated can result in large changes in the resulting

52



correlation.

While the criteria for tweets being in the corpus (i.e. a tweet containing the word “jobs”) was specifically

chosen to reflect feeling towards the economy, not every tweet in the corpus was relevant to the economy. For

example, many tweets were about Steve Jobs, the co-founder of Apple. Even among tweets that were relevant

to actual economic jobs, the content of the tweets varied greatly. Some of these tweets were statements of a

personal job search (e.g. “applying for jobs”), while others dealt with the economy as a whole (e.g. “company

cuts many jobs”). We created an algorithm by hand to sort tweets into one of five categories: news/politics,

personal, advertisements, other, and junk. See section 2.2.1 and appendix C for further details on this hand-

created classification algorithm. However, despite evidence that the hand-classification algorithm worked

fairly well as intended, it did not help to restore or strengthen the relationship between sentiment of “jobs”

tweets and consumer confidence.

We apply our topic modeling algorithm to a sample from the same set of “jobs” tweets from section 2.2.1,

limited to tweets from 2008-2009. For each day in the time frame we sample 300 tweets, then take a random

sample of size 20000 from those tweets. We sample in this way to get roughly the same number of tweets

from each day in our final sample since there was a higher frequency of tweets as time went on since Twitter

was gaining in popularity throughout the time period of 2008 and 2009. We consider tweets that contain at

least one word that was mentioned at least 10 times in the entire corpus. This removed only 0.3% of the

tweets as pointless babble. We calculate distance between words using conditional probability.

Figure 3.6 gives the silhouette measure for our method for clustering tweets. According to silhouette,

four is the optimal number of clusters. However, from inspection we know that there are more than four

topics present in the corpus; in section 2.2 we created an algorithm by hand to classify these “jobs” tweets

into five topics. Instead, we choose there to be 10 latent topics. This is twice the number of clusters that

was chosen in chapter 2.2.1. Previously, we relied on humans to determine the categories of “jobs” tweets

and create the classification algorithm based on a relatively small set of words. We chose broad categories

when creating the topics by hand, some of which contained several sub-topics. For example, junk tweets

contained tweets about Steve Jobs and the TV show “Dirty Jobs”; tweets in the other category were not

necessarily on the same topic, but just contained links to articles online. With an automated algorithm, we

can more easily allow for more, and hopefully better, categorization of “jobs” tweets.

Table 3.6 compares the category as given by the topic modeling algorithm to the classification as given

by the hand-created algorithm. Keep in mind that neither the hand-classifications nor the topic modeling

clusters should be considered ground truth. Furthermore, with lack of ground truth, we do not know which

algorithm is in any sense ‘better’. From table 3.6 we can see that many clusters are not clearly dominated

by a single hand-created classification. However, most of the advertisement tweets were clustered together,

similarly with irrelevant tweets. There is some agreement between to two classification methods, but not an

incredibly large overlap. The hand-created algorithm does have an advantage in that it does use the user

name to classify tweets news/politics and advertisements, whereas the automated topic modeling algorithm
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Figure 3.6: Silhouette by number of clusters for “jobs” tweets.

Advertisements Irrelevant News/Politics Other Personal
1 26 9 33 74 386
2 0 1 0 2 8
3 25 35 23 58 286
4 272 2520 314 1145 1896
5 72 11 29 121 143
6 1256 252 526 4074 2467
7 85 7 367 468 265
8 0 1 0 1 11
9 138 3 10 90 5
10 144 40 191 1536 515

Table 3.6: Number of tweets classified in each cluster as given by the topic modeling algorithm compared to
classification as given by the hand-created classification algorithm.

by design uses just the words within the tweets. This is especially helpful when searching for certain topics,

such as advertisements, which very often contain the word “job” or “career” in the user name and do not

have many common words between then. Similarly for news/politics tweets containing the word “news” in

the user name.

For each topic, we give general themes of the topic by looking at individual tweets from that topic,

calculate the proportion of tweets that are sorted into that topic, average sentiment as calculated by Vader

(Hutto and Gilbert 2014), and correlation between sentiment of tweets from the cluster and consumer

confidence (both with 30-day smoothing and no lag). These results are in Table 3.7. Previous results in

section 2.2 suggest that the relationship between sentiment of “jobs” tweets and consumer confidence is likely

spurious, so we do not expect to observe any strong relationships; a seeming strong observed relationship

could likely be spurious.

The cluster having the highest correlation with consumer confidence, cluster 10, contained many tweets

about local news events, such as local companies cutting jobs. Many of these contained links to articles online,

which is why many of these tweets were sorted into the other category. Since many economic news stories
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Cluster Themes Proportion Mean Sent. Correlation
1 Personal: applying for jobs 0.0264 0.0936 -0.1819
2 Personal 0.0006 -0.1210 0.1035
3 Personal: working two jobs 0.0214 0.0736 0.0984
4 Steve Jobs, personal 0.3074 0.1049 0.1343
5 Personal, Advertisements 0.0188 0.1128 -0.1720
6 Mixed 0.4288 0.1060 0.2356
7 News: adding jobs 0.0596 0.2035 0.0524
8 Personal 0.0006 0.1407 0.2522
9 Advertisements 0.0123 0.0336 0.3127
10 News: cutting jobs 0.1213 -0.1491 0.4628

Table 3.7: Information on each cluster of “jobs” tweets: cluster number, proportion of “jobs” tweets belonging
to each cluster, average sentiment of a cluster, and correlation between sentiment of tweets from each cluster
and consumer confidence (with 30-day smoothing) for 2008-2009.

from 2008-2009 were about cutting jobs rather than adding jobs, it makes sense that this cluster also has the

lowest mean sentiment. Looking at the content cluster 9, nearly all of these tweets were advertisements. This

cluster had a mean sentiment close to 0, which makes sense given that job advertisements do not contain

much sentiment. However, this cluster also had the second highest correlation with consumer confidence.

This correlation is presumably spurious since advertisements do not give any opinion or statement about the

economy. Many tweets in cluster 7 were about job gains, either at the individual or community level. With

this theme in mind for cluster 7, it makes sense why cluster 7 has the highest mean sentiment. However,

it curiously has the weakest correlation with consumer confidence. The content for cluster 4 appears to be

very mixed, from talking about Steve Jobs to individuals commenting on their job status to new about job

losses.

We did try various parameter values, such different number of clusters and different number of minimum

word thresholds, but results were relatively consistent throughout; results did not appear to substantially

weaker or stronger with neither consumer confidence nor hand-classification agreement when altering various

parameters.

Overall, the topic modeling of the “jobs” tweets does not substantially improve any previously found

relationship. This is not a surprising result given the conclusions in chapter 2. Furthermore, if we had

initially chosen the new clusters as our categories instead of the previous hand-created classification system,

we likely would have reached the same conclusions.

There are advantages and disadvantages to both the topic modeling and hand-classification methods.

As humans, we can determine which tweets may fall under the same category even when their words are

entirely different; understanding the larger societal context is important in accomplishing this task. The

human knowledge, along with using user name, is a huge advantage for the hand-classification algorithm.

However, with human-created keywords, it is difficult to create nuanced categories with any decent level of

accuracy, and a human might not pick up on some of these nuanced categories to begin with. The advantages

and disadvantages are reversed with the automated topic modeling: it can pick up on many more topics than
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the hand-classification algorithm, but without a larger context it can be prone to error. While we do not

explore the idea in this dissertation, sorting tweets into different categories may be able to be improved by

combining aspects of the hand-created and automated classifications. For example, the topic modeling could

be performed on tweets the hand-created algorithm classified as personal to reveal themes within personal

tweets, similarly with news/politics tweets to extract themes of potentially losing jobs, creating jobs, and

political aspects of the economy. This type of semi-supervised hierarchical topic modeling may be very

applicable in future analyses.

3.3.3 Application to Politically Active Users

In chapter 2.4, we concluded that while a political signal was not strong in tweets containing the word

“Trump” in terms of capturing presidential approval, a convincing political signal was present when following

tweets from politically active users in terms of the frequency and sentiment of their tweets around the 2016

election. In finding this signal, we considered all original tweets from the set of Democratic and Republican

users. However, these users do not tweet exclusively about politics; they tweet about sports, entertainment,

and random thoughts and musings. The non-political tweets are more than just pure noise. If we can

properly identify tweets as being political or not, we can hopefully strength the political signal from the

politically active users. We found it difficult to even manually determine whether tweets were political or

not based purely on content. For example, say a user is live-tweeting a presidential debate. If we knew that

context, we would easily classify all of the tweets from that live tweeting session as political. However, if

we see one of those tweets in isolation and without the larger context (e.g. “What a ridiculous answer!”),

we would not necessarily hand classify that tweet as political. This was the justification for using all tweets

from the politically active users in section 2.4. We see if automated topic modeling helps to achieve the

goal of classifying tweets as political or not. We apply our topic modeling algorithm on a random sample of

100 Democratic users and 100 Republican users (see chapter 2.4 for details of how these sets of users were

created).

The politically active users have thousands of tweets each; running our topics modeling algorithms on

the entire corpus of tweets from these users would take a large amount of memory and a long time to run.

Instead, we run the topic modeling algorithm on each user individually. We choose there to be 10 latent

topics for each user. We then need a method to extract which clusters are political. To accomplish this goal,

we take advantage of the large amount of information available online. The use of outside data is not itself

a novel idea; for example, Jin et al. (2011) and Bicalho et al. (2017) also make use of outside data from long

texts in topic modeling of short texts. However, we make use of this data in a different way: instead of using

outside data to help in clustering, we use it to help determine which clusters are of interest to our study.

Using larger texts with known target topic (politics in this case), we insert artificial political ‘tweets’

into the set of tweets for each user. These are tweets that are specifically created to be political. There

were many political events that occurred in the given time frame, and we do not want our personal biases of
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what constitutes a meaningful political event to affect the outcome. Therefore, we do not want to create the

individual tweets by hand ourselves. We download the Wikipedia pages for the 2016 presidential election

(https://en.wikipedia.org/wiki/2016_United_States_presidential_election) and the Trump pres-

idency (https://en.wikipedia.org/wiki/Presidency_of_Donald_Trump). These two Wikipedia pages

account for an extensive review of nearly all political events in the given time frame. We generate artificial

political tweets using Markov chains, with the transition matrix created from each of the Wikipedia pages.

Resulting artificial political ‘tweets’ are fairly nonsensical, but nonetheless are clearly political. As examples:

• “National Committee (DCCC) and controversial nature set the Russian businessman from New York,

North Carolina, 43 to be ”a social discord in a Democrat and also took place between groups are paid

to fix problems in several electors in 1996, while Pennsylvania (three swing states are indirect election,

held on September”

• “Republican National Convention was released by the election, and statisticians, including Florida.

Rubio won the Clinton said Vladimir Putin had secured Trumpś smaller victories in the campaign.

The following the GOP electors) Wisconsin, and ”violated U.S. democratic means The United States

Code, nor military experience, denounced Trump won 2,204 pledged to”

• “Trump to ask her illness. Video footage of the 2016 Republican candidate Lawrence Lessig withdrew

due to receive more than among blacks and Pennsylvania election interference in 2012, although the

project Nicknames used to low-income occupations or non-employment as his lead in 1948 presidential

candidate ever,” exceeding George H. W. Bush”

• “Rioters also served only three recount in New York primary process, Clinton won in recent Republican

National Convention, Pence head the race, he notified Congress officially sanctioned televised debates

based on September and rented a private email server, in Houston, Texas. Constitution provides that

the Electoral College to same-sex marriage, and”

Since the topic modeling algorithm takes a bag-of-words approach, the words being political is what matters,

not their meaning as a coherent sentence. We do not assume the political tweets are generated from a

Wikipedia pseudo-document (like Zuo et al. (2016) do) since Wikipedia states what events happened, whereas

tweets also include reactions to those events and generally in less formal language. Political tweets and

artificial political tweets are related in that they share some similar words, but not exactly generated from

the same pseudo-document. We insert 20 artificial political tweets into each user’s set of tweets.

After running the topic modeling on the tweets, it remains to extract which resulting clusters are political.

We consider a cluster to be political if it contains at least three artificial tweets. Using this definition of a

political cluster, most users only had 1 or 2 political clusters out of 10 total clusters. Out of the 200 users

in our study, 63.5% have one political cluster, 32% have two political clusters, and 4.5% have 3 political

clusters; none had more than three political clusters. The fact that the artificial tweets end up in the same
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Figure 3.7: Proportion of tweets that are labeled political for each user.

small number of clusters confirms that our clustering method is working as intended, with political tweets

being clustered together. The artificial tweets are used for clustering purposes only; they are removed from

the analysis after we have determined which clusters are political. We consider a tweet to be political if it

belongs to a cluster that has at least three of the artificial political tweets. Figure 3.7 gives the distribution

of the proportion of tweets that we consider political for each user. From this distribution we see that some

users tweets almost exclusively about politics, and others hardly at all. This is not an unexpected result,

as we did not have any requirements about what proportion of tweets had to contain a political words for a

user to be considered politically active, and many users have interests outside of politics. This distribution

looks similar for Democrats and Republicans.

Similar to chapter 2.4, we compare the frequency and sentiment of political versus non-political tweets

around the 2016 presidential election.

First we consider frequency of political and nonpolitical tweets. Figure 3.8 gives the frequency of political

and nonpolitical tweets. Frequency of political tweets spike around political events, such as the election and

debates. However, we see similar spikes in nonpolitical tweets. We also spikes in August for the nonpolitical

tweets, when there were no notable political events happening. Political tweets see a spike in March 2016.

This was right around Super Tuesday (when multiple states voted in presidential primaries for both parties),

and was not seen in the nonpolitical tweets. While the political and nonpolitical look to be capturing some

signals that the other is not, overall the signal does not appear to be much stronger in the political tweets

versus nonpolitical.

Next we compare sentiment of political and nonpolitical tweets for Democrats and Republicans. To

ensure that every user is weighted equally regardless of how often they tweet, we create a political and

nonpolitical daily sentiment score for each user. The weighted sentiment score for a given day weights the

sentiment of a user’s tweets from the past 30 days, with more recent tweets being more heavily weighted.

For similar reasons as in chapter 2.4, we are interested in the difference in sentiment between Democrats

and Republicans.

Figure 3.9 gives the difference in sentiment (Democrats-Republicans) for political and nonpolitical tweets,
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Figure 3.8: Frequency of political and nonpolitical tweets.

with a smoothed trend line for each. We found in chapter 2.4 that Democrats were generally happier before

the election, and Republicans generally happy after the election. From Figure 3.9, we see that this is due

to what our algorithm classified as nonpolitical tweets. This difference in sentiment peaks in late summer

2016, with Democrats being happier than Republicans. We also do see a decrease in difference in sentiment

of political tweets in the months leading up to the election. We do see a decrease in difference in political

sentiment immediately following the election, which is not see in the nonpolitical tweets. Democrats were

presumably not happy politically during that time, which indicates that we may be capturing a true political

signal, however small. The political tweets were more positive for Republicans in for nearly the entire time

period we consider.

3.4 Discussion

In this chapter we developed a new method for topic modeling of short texts that is based on clustering on

distances between tweets. This method assigns a latent topic to each tweet or word found in the corpus

based on the distances calculated using corpus-level word co-occurrence. This method is flexible in that it

allows multiple methods for calculating the distance between words. More importantly, unlike many other

topic modeling algorithms for tweets, this method has the advantage of being applicable to any corpus of

tweets or short texts and does not require any auxiliary information for each text.

Applying this method to a validation set of users confirmed that this algorithm does indeed work as

intended. It also validated the manually-chosen categories of “jobs” tweets used in Conrad et al. (2019).
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Figure 3.9: Difference in sentiment (Democrat-Republican) for political and nonpolitical tweets.

However, it did not greatly improve the strength of the observed signal when tracking politically active

users over time. Previous results have concluded that signals in social media data are not simple and

straightforward, and the topic modeling of these tweets adds to the literature in that it is not necessarily

irrelevant ‘noisy’ tweets included in the corpus that are at fault. We do not conclude that there is no signal

in Twitter data, but rather it is difficult to extract.

This algorithm may also be applied to document summarization, when a larger body of text is to be

summarized by a few sentences. For example, say we want to automatically summarize a research paper

with a few sentences. There are likely several topics present in the paper, such as background/literature

review, methods used, results, and discussion. We can treat the entire paper as a corpus, and each sentence

as a ‘tweet’. After apply our methods outlined in this chapter to the corpus of sentences in the paper, we

have k resulting topics. We can choose the sentences chosen as the centers of the cluster to summarize the

entire paper. If we want to summarize the paper in only one sentence, we can choose the sentence that has

the smallest average distance between itself and all other sentences in the corpus.

While our algorithm worked fairly well on the validation set of tweets, especially in comparison with

LDA, its performance was lacking for the politically active users. This suggests that the differences between

political and nonpolitical tweets in not purely the words used in tweets. It is important to remember that

tweets do not happen in a vacuum; events happening outside of Twitter are very relevant to the meaning,

intention, and interpretation of tweets, and individual tweets must be understood in that larger context. For

example, we know that events are of particular importance in term of frequency of tweets relating to some

topic. While our method was specifically designed to not incorporate auxiliary information so it could be

applied to all types of corpora, we do acknowledge that this auxiliary information can be valuable and it

may be worth considering in future work of social media data.
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Chapter 4

Unbiased Survey Estimation with

Population Auxiliary Variables

Another method for improving survey estimates is by taking advantage of available population data and

advances in machine learning predictive modeling algorithms. Using these methods can decrease standard

error of estimates, therefore reducing the sample size required for a given level of uncertainty.

In many applications, population auxiliary variables can be utilized to increase the precision and accuracy

of survey estimates. We develop an imputation-based estimation method that produces an unbiased estimate

of the mean response of a finite population from a simple random sample when population auxiliary data

are available. Our method allows for any prediction function or machine learning algorithm to be used to

predict the response for out-of-sample observations, and is therefore able to accommodate a high dimensional

setting and many covariate types. Exact unbiasedness is guaranteed by estimating the bias of the prediction

function using subsamples of the original simple random sample. Importantly, the unbiasedness property

does not depend on the accuracy of the imputation method. We apply this estimation method to simulated

data, college tuition data, and the American Community Survey, showing a decrease in variance compared

to the sample mean and increased accuracy compared to standard adjustment methods.

4.1 Introduction

Traditional probability-based samples are the “gold-standard” of survey sampling due to the sample being

representative in expectation of the population from which it is drawn. Many methods for making inferences

about a population from a sample rely on this property of probability-based samples. However, due to ran-

domness in sampling, a single sample may not be exactly representative of the population. If population-level

auxiliary data are known (i.e. covariates known for all individuals in the population), however, adjustments

can be made to account for the differences between the population- and sample-level covariates to improve
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inference on a population response. There currently exist many methods for integrating population data and

survey data, but these methods are often biased (e.g. Breidt and Opsomer (2017)), sensitive to misspecifi-

cation (Hansen, Madow, and Tepping 1983), or fail to work with high-dimensional data.

Population auxiliary data are available in a wide variety of applications and are often provided by gov-

ernment agencies. For example, the Census Bureau provides demographic characteristics from the person

level to the federal level, the National Center for Education Statistics provides data for educational institu-

tions, and the Department of Health and Human Services provides data for all substance abuse treatment

centers. If population-level data are not directly available, a synthetic population can be generated from

a well-designed, probability-based reference survey. In one recent example, Rafei, Flannagan, and Elliott

(2020) suggest potentially generating a synthetic population through finite population bootstrap.

Population auxiliary information has long been used to improve population point estimates from a sample.

Ratio estimators were an early method of incorporating population information. Ratio estimators historically

only assumed knowledge of a single population mean covariate, making calculations easier before computers

were widely available. There are many ratio estimators, typically functions of the population covariate mean

and the ratios of the sample means of the covariate and response. Standard ratio estimators are biased;

an unbiased ratio estimator is derived in Hartley and Ross (1954). A class of unbiased ratio estimators

are derived in Mickey (1959) and Williams (1961) (Williams (1962) shows these are equivalent). Ratio

estimators can be improved upon by using more than a single covariate and more information than simply

the population mean of the covariate, see Subramani (2013) for an extensive list of ratio estimators.

Many modern methods for incorporating population auxiliary information with sample data can be

considered predictive inference methods, where response values are imputed for out-of-sample observations

using some prediction function trained on in-sample observations. We describe some of these methods below.

See Valliant, Dorfman, and Royall (2000) and Buelens, Burger, and Brakel (2015) for further details.

The first approach we consider is the model-assisted approach, where individual out-of-sample responses

are imputed using predictive modeling algorithms trained on the sample. We refer to these as standard

adjustment methods. A variety of prediction algorithms can be used, such as GLMs, random forest, or

k-Nearest Neighbors (Hastie, Tibshirani, and Friedman 2009). As an example, when performing regression

adjustment, all of the observations in the sample are used to fit a regression function that predicts the re-

sponse variable given the covariates. Then using that regression function, response values are predicted for

each observation not in the sample. This is also simply refered to as the regression estimator (Mickey 1959;

Williams 1961; Särndal, Swensson, and Wretman 2003). A number of these estimators have been studied

with different prediction functions. For example, McConville et al. (2017) discuss finite population lasso im-

putatation under sparsity assumptions, Breidt and Opsomer (2000) discuss model-assisted estimation with

local polynomail regression, and Dagdoug, Goga, and Haziza (2020) use random forest for finite population

inference. These adjustment methods can also be applied in a Bayesian setting, where values are imputed

for non-sampled units based on the posterior predictive distribution (Dong, Elliott, and Raghunathan 2014).
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Imputation methods can also be used when combining probability and non-probability surveys, with predic-

tion models for a response being trained on the non-probability sample and applied to the probability sample

(Kim and Rao 2011; Chipperfield, Chessman, and Lim 2012). One caution with these standard adjustment

methods is overfitting a prediction model to the sample data, which can lead to biased response estimates

for the out-of-sample observations (Hawkins 2004).

Another method for integrating population data and sample data is weighting, where responses in the

sample are weighted with respect to how prevalent similar subjects are in the population, or probability

of inclusion in the sample. Post-stratification and the Horvitz-Thompson estimator are two examples of

weighting a sample to resemble the population of interest (Horvitz and Thompson 1952). Both of these esti-

mators give an unbiased estimate of the population mean response. Post-stratification can also be considered

a predictive inference method in which the response for each out-of-sample observation is imputed as the

mean of the sample observations in the same strata (Buelens, Burger, and Brakel 2015). Breidt and Opsomer

(2017) discuss the model-assisted estimator, which uses the Horvitz-Thompson estimator with imputation

to estimate a mean population response.

Buelens, Burger, and Brakel (2015) and Liu, Chen, and Gelman (2019) compare through simulation

the performance of multiple predicitive inference methods. Buelens, Burger, and Brakel (2015) simulate

non-probability samples from the Online Kilometer Registration in the Netherlands, using as comparative

predictive inference methods the sample mean, stratification, GLM, k-nearest neighbors, artificial neural

nets, regression tress, and support vector machines. Liu, Chen, and Gelman (2019) consider the sample

mean, post-stratification, raking weights, Bayesian Additive Regression Trees (BART) prediction, and Soft

Bayesian Additive Regression Tree (SBART) prediction, finding that the SBART prediction model often

performs the best on the simulated data, having the lowest bias and lowest RMSE. BART closely followed.

They then apply the methods to data on substance abuse treatment centers to predict the total number of

patients receiving substance abuse treatment in the United States.

There are several drawbacks to predictive inference methods: estimated parameters in prediction models

are subject to error, model assumptions can be violated, and prediction models can be biased. These errors

carry through to the predicted responses and ultimately the final estimate for the population mean response

(Buelens, Burger, and Brakel 2015). And while post-stratification works well when there are a manageable

number of strata, when the number of variables grows and there are relatively few observations in each

strata, population response estimates have high variance (Little 1993).

In this paper we consider a finite population model with fixed response values in which the population

covariates are known for each member of the population and the response is known for only a simple random

sample of the population. We derive an unbiased imputation-based estimation method for estimating the

population mean response. We obtain this estimation method by estimating the bias of the chosen predicting

function using subsamples of the original sample, specifically in a leave-one-out fashion. This estimation

method has the flexibility of a user-chosen prediction function. With this flexibility we contribute to the
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literature on bringing machine learning techniques into survey adjustment, accommodating any covariate

type (continuous or categorical) and a high-dimensional setting where the number of covariates is greater

than the sample size. Our estimation method potentially opens the door to make use of nontraditional data,

such as social media data, for which formal modeling methods with realistic assumptions may not be fully

developed. Because the prediction function is arbitrary, we can achieve unbiased estimates regardless of how

well a particular machine learning algorithm fits the data.

This paper is organized as follows. In section 4.2 we introduce our estimator, show it is unbiased, and

provide a variance estimate. In section 4.3 we apply our estimator to simulated data, college data, and the

American Community Survey using population tax data. Section 4.4 concludes.

4.2 Method

In this section we introduce the estimation method, which provides an unbiased estimate of a population

mean response from a simple random sample when we have full knowledge of population covariates. We

show that this estimator is unbiased and provide an estimate of the variance.

4.2.1 Estimator

Consider a finite population in which there are N members, indexed by i = 1, 2, . . . , N , where N is known.

For each member of the population we observe a fixed p-dimensional covariate vector xi = (xi1, xi2, . . . , xip)
T .

Each member of the population has a fixed scalar response value yi. Our primary parameter of interest is

the population mean response:

µ =
1

N

N∑
i=1

yi

A simple random sample (without replacement) S of size n is taken from the population. Let si be the

indicator variable for whether observation i is in S. That is, si = 1(i ∈ S). si is independent of xi and yi,

so P (si = 1) = n
N for all i. For each member in S we observe the response value yi and the covariates xi.

In general, let bold letters denote a vector or matrix and let nonbold letters denote a scalar.

In this setting, the sample mean 1
n

∑
i∈S yi gives an unbiased estimate of the population mean µ, but

by incorporating the additional information in the covariates we may be able to decrease the standard error

of the estimate. A common method of incorporating the covariates is through predictive modeling: use

observations in the sample to train a function that predicts the response given the covariates, and apply that

function to predict the response values for observations not in the sample. The estimate of the population

mean µ is taken as the mean of the responses in the sample and predicted responses for observations not

in the sample. However, in a finite population setting with fixed response values, imputing the response

variable for individuals not in S can lead to biased estimates of µ. Using ideas similar to Mickey (1959), we

estimate the bias using sub-samples of S. The intuition for our estimation method is as follows. Suppose
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the sample S is split into two sub-samples S(1) and S(2). Using the observations in S(1), train some function

f(·) to predict y from x. The function f(·) could be biased for the observations not in S(1). S(2) is a random

sample of the observations not in S(1), so the bias observed in S(2) is an unbiased estimate of the bias in

S\S(1). Then for all observations not in S we can impute the estimated y value using f(·) and subtract the

estimated bias. We implement this idea in a leave-one-out fashion: for each observation i ∈ S, we train f(·)

on S\i, estimate the bias as the difference between yi and the predicted value for yi using f(·) trained on

S\i, predict the response for the out-of-sample observations using f(·) trained on S\i and subtract the bias,

and take the mean of the known and estimated response values.

To define the estimator formally, we first define several variables. Let f(·;x(n−1)×p,y(n−1)×1) be a

prediction function parameterized by n− 1 (x, y) pairs that predicts y given x. Let

fi = f(xi;xS\i,yS\i)

be defined if i ∈ S. fi is the predicted response value for observation i ∈ S when the prediction function is

trained on S\i, so fi and yi are independent. Let

gi =
1

n

∑
j∈S

f(xi;xS\j ,yS\j)

be defined if i 6∈ S. gi is the average of the response value predictions for observation i 6∈ S from each of the

n leave-one-out prediction models. Let

hi =

fi, if i ∈ S

gi, if i 6∈ S

and let

ŷi = yi + (1− si)(hi − yi) + si

(
N − n
n

)
(yi − hi)

=


N
n yi −

N−n
n fi, if i ∈ S

gi, if i 6∈ S

ŷi can be thought of as an estimate of yi since, as we will show below, E(ŷi) = yi. Our estimator for the

population response mean, which we denote µ̂, is the mean of the ŷs:

µ̂ =
1

N

N∑
i=1

ŷi (4.1)

When OLS regression is used as the prediction function, our estimator is the same as the leave-one-out

regression estimator given in Mickey (1959). In the case of regression, we can relax the assumption of full

knowledge of population covariates; it is sufficient to know the population means of the covariates and the
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individual covariate values for only the sample. We discuss this case in greater detail in the Appendix.

Another special case of interest is mean imputation. That is, ignoring covariate values and letting

f(·;xS\i,yS\i) be the mean of yS\i. In this case, our µ̂ estimator reduces to the sample mean 1
n

∑
i∈S yi.

We show this in the Appendix. Note that when no population auxiliary information is available, the sample

mean is the best (least squares) estimate of the population mean response. The sample mean can be

considered a predictive inference adjustment method since we are in essence predicting the response for

every out-of-sample response to be the sample mean response. It is well known that the sample mean gives

an unbiased estimate of the population mean response for a simple random sample. The standard error of

this estimate can potentially be decreased by improving upon mean imputation and incorporating additional

covariate information.

Our estimation method allows for any prediction function to be chosen for f(·), allowing the prediction

function f(·) to be as simple or complex as one desires and be appropriate for the given data set. For example,

one can use lasso, random forest, or neural networks in cases where the number of covariates is greater than

the number of observations. The estimator is similar to the model-assisted difference estimator presented

in Breidt and Opsomer (2017) under simple random sampling, which also allows for an arbirary prediction

function. Breidt and Opsomer (2017) use the entire sample to train the prediction function, making their

method asymptotically unbiased, whereas we use a leave-one-out procedure to ensure exact unbiasedness at

all sample sizes and for any prediction function. This can make a notable difference. For example, under

simple random sampling, the model-assisted difference estimator with regression reduces to the regression

estimator, which as we show below can lead to biased estimates under slight model misspecification. The

closed-form for our estimator with regression prediction can be found in the Appendix. The leave-one-out

nature of our method also protects against overfitting of the prediction function to the sample data, whereas

overfitting to the sample data is possible using the difference estimator, which can introduce bias and affect

the estimated standard errors.

4.2.2 Unbiased

We show that our estimation method is unbiased for µ, regardless of the chosen prediction function f(·).

First, define ei = E(hi), and note that ei is the same regardless of whether observation i is in the sample or

not: ei = E(hi) = E(hi | si = 1) = E(hi | si = 0). Further, let δi = hi − ei. Then E(δi) = E(δi | si = 1) =

E(δi | si = 0) = 0. Now ŷi can be rewritten as

ŷi = yi + (1− si)(ei + δi − yi) + si

(
N − n
n

)
(yi − ei − δi)
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In the above formula, only the variables si and δi are random; the remaining variables are fixed. Taking the

expectation of this expression gives

E(ŷi) = E
[
yi + (1− si)(ei + δi − yi) + si

(
N − n
n

)
(yi − ei − δi)

]
= E

(
ei + δi −

N

n
siei −

N

n
siδi +

N

n
siyi

)
= ei −

N

n
eiE(si)−

N

n
E(siδi) +

N

n
yiE(si)

= ei −
N

n

n

N
ei −

N

n
E [E(siδi | si)] +

N

n

n

N
yi

= yi

It follows that the estimator (4.1) is unbiased for µ. This property does not depend on the prediction function

f(·) chosen; the estimation method is unbiased even if f(·) is not an accurate prediction function for the

given data. While the choice of f(·) does not affect the bias of µ̂, the accuracy of f(·) does affect the variance

of µ̂.

4.2.3 Variance Estimation

We now provide a variance estimate of µ̂. The true variance of µ̂, as we derive in the Appendix, is

var(µ̂) =
N − n
nN

[
1

N

N∑
i=1

(yi − ei)2 +
1

N

N∑
i=1

var(fi | si = 1)

]

+
N − n
N3

N∑
i=1

[var(gi | si = 0)− var(fi | si = 1)]

+
1

N2

∑
i 6=j

cov(ŷi, ŷj) (4.2)

Our estimator from (4.1) can be rewritten as

µ̂ =
1

N

[
N∑
i=1

hi +
N

n

∑
i∈S

(yi − hi)

]
(4.3)

The first term in equation (4.3) is the mean of the predictions for each observation, and the second term

in equation (4.3) is equivalent to the Horvitz-Thomspon estimator on the leave-one-out residuals (Horvitz

and Thompson 1952). This is of similar form as the difference estimator presented in (Breidt and Opsomer

2017). Following Breidt and Opsomer (2017), we can estimate the variance of µ̂ as

v̂ar(µ̂) =
N − n
nN

 1

n

∑
i∈S

(yi − fi)2 −
1

n(n− 1)

∑
i,j∈S

(yi − fi)(yj − fj)

 (4.4)
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To relate the estimation of the variance in equation (4.4) to the true variance in equation (4.2), the first

term in (4.4), 1
n

∑
i∈S(yi − fi)2, is an unbiased estimate of the first term in (4.2),[

1
N

∑N
i=1(yi − ei)2 + 1

N

∑N
i=1 var(fi | si = 1)

]
; and the second term in (4.4), − 1

n(n−1)
∑
i,j∈S(yi−fi)(yj−fj),

is an estimate of the last covariance term in (4.2), 1
N2

∑
i6=j cov(ŷi, ŷj). In the Appendix we give further

justification for this variance estimate and derive some of its properties. Simulations in Section 4.3 suggest

equation (4.4) is typically a conservative estimate of the true variance in expectation.

4.3 Results

In this section we apply the estimator to both simulated and real data. For the simulations we consider a

variety of relationships between the covariate and response variables, both linear and non-linear, showing

that the estimation method is unbiased, results in a reduction in variance compared to the sample mean,

and that our variance estimate is accurate. We then apply the estimation method to real data.

4.3.1 Simulations

We consider three population settings: (1) a linear relationship between a covariate and a response, (2) a

slightly non-linear relationship between a covariate and a response, and (3) a highly non-linear relationship

between covariates and a response.

Linear Relationship

We first consider a simple setting. We let x be a one-dimensional covariate, where xi ∼ N(0, 1), and

yi = 3 + 2xi + εi, where εi ∼ N(0, 1). We consider population sizes of N = 50, 500, and 10000, where

{(x1, y1), (x2, y2) . . . , (xu, yu)} ⊂ {(x1, y1), (x2, y2) . . . , (xv, yv)} for u < v. We consider sample sizes of

n = 10, 100, and 1000 (where n < N). For each of 10000 simulations, we take a simple random sample of

size n from the population of size N and estimate µ using three methods: the sample mean, standard OLS

adjustment, and our estimation method with OLS as the prediction function. For the OLS adjustment, we

train an OLS regression model on the sample data to predict y given x, and apply that model to out-of-sample

observations to predict their responses.

In Table 4.1 we present the simulation estimate of the true standard error (i.e., standard deviation of

the 10000 estimates). We also present the mean of the estimated standard errors. In particular, for our

method we calculate the estimated standard error of each sample using the formula in equation (4.4). For the

sample mean we calculate the standard error for each sample as
[
N−n
nN ×

1
n−1

∑
i∈S(yi − ȳS)2

]1/2
. Finally,

for adjustment methods we calculate the standard error for each sample as
[
N−n
nN ×

1
n−2

∑
i∈s r

2
i

]1/2
where

ri is the residual for the ith observation (Royall and Cumberland 1978).

The simulated standard error for the sample mean is over twice as large as the other two methods, while

the simulated standard error for our method and OLS adjustment are nearly identical. This is the most
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True SE Est. SE

N = 50

n = 10
Sample Mean 0.5093 0.5135

OLS Adjustment 0.2331 0.2220
Our Method with OLS 0.2424 0.2687

N = 500

n = 10
Sample Mean 0.7008 0.7017

OLS Adjustment 0.3117 0.2925
Our Method with OLS 0.3177 0.3502

n = 100
Sample Mean 0.1984 0.2006

OLS Adjustment 0.0842 0.0839
Our Method with OLS 0.0843 0.0852

N = 10000

n = 10
Sample Mean 0.7118 0.7141

OLS Adjustment 0.3381 0.3131
Our Method with OLS 0.3428 0.3744

n = 100
Sample Mean 0.2231 0.2246

OLS Adjustment 0.0989 0.0987
Our Method with OLS 0.0988 0.1022

n = 1000
Sample Mean 0.0667 0.0667

OLS Adjustment 0.0300 0.0297
Our Method with OLS 0.0300 0.0298

Table 4.1: Simulation estimate of true standard error and estimated standard error for the sample mean,
OLS adjustment, and our method using OLS prediction for a population with a linear relationship between
x and y.
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Figure 4.1: Slightly non-linear population.

generous setting for using OLS adjustment, and our estimation method has equivalent performance in terms

of standard error.

For our method, the estimated standard error is slightly larger than than the simulated standard error

in nearly every case. Based on this simulation, the formula for the estimated standard error gives a slightly

conservative estimate of the true standard error, confirming the validity of the variance estimation equation

(4.4). The conservativeness of the standard error estimate depends on n, with the overestimation decreasing

as n increases. Finally, note that the bias for all three methods was not significantly different from 0; see

the Appendix for further details.

Slightly Non-Linear Relationship

Next we perform a similar analysis, but with a slightly nonlinear relationship between x and y. We let

xi ∼ N(0, 1) and let yi = 1(xi ≥ −0.5)(2xi + 0.5) + εi, where εi ∼ N(0, 1). A scatterplot of this population

can be seen in Figure 4.1. We use a population size of N = 500 and sample sizes of n = 25, 50, and 100.

As before, we compare estimates using the sample mean, standard OLS adjustment, and our method with

OLS. Results are in Table 4.2. In this table, the simulated estimate of the true standard error and the

estimated standard error as calculated similarly as in Table 4.1. In Table 4.2 we also include a column for

the estimated bias, calculated as the difference between the population response mean and the mean of the

10000 estimates, with (*) indicating that the bias is significantly different from 0 at the 0.05 level.

The bias for OLS adjustment is significantly different than 0 at all sample sizes. This demonstrates

how traditional adjustment methods can fail (i.e., give a biased estimate) when model assumptions are even

slightly not met. Our method, on the other hand, remains unbiased in the case of model misspecification.

As with the previous simulation, the true standard error for our method and OLS imputation are nearly

identical. Furthermore, the estimated standard error is generally a conservative estimate of the simulated

true standard error. This simulation demonstrates how our estimation method is unbiased even when the
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True SE Est. SE Bias

n = 25
Sample Mean 0.3226 0.3227 -0.0037

OLS Adjustment 0.2335 0.2229 0.0270 (*)
Our Method with OLS 0.2346 0.2416 -0.0017

n = 50
Sample Mean 0.2227 0.2219 -0.0020

OLS Adjustment 0.1576 0.1539 0.0116 (*)
Our Method with OLS 0.1579 0.1601 -0.0017

n = 100
Sample Mean 0.1464 0.1478 -0.0018

OLS Adjustment 0.1045 0.1029 0.0046 (*)
Our Method with OLS 0.1045 0.1049 -0.0012

Table 4.2: Simulation estimate of the true standard error, estimated standard error, and estimated bias
using the sample mean, OLS adjustment, and our method with OLS for a slightly nonlinear population.

Method True SE Est. SE Bias

n = 25

Sample Mean 0.7633 0.7698 0.0113
OLS Adjustment 1.3284 0.2011 0.0584 (*)

Our Method with OLS 1.7033 1.6680 0.0219
Random Forest Adjustment 0.7286 0.3218 0.0605 (*)

Our Method with Random Forest 0.7024 0.7317 0.0039

n = 50

Sample Mean 0.5249 0.5305 -0.0048
OLS Adjustment 0.4511 0.2653 0.0169 (*)

Our Method with OLS 0.4740 0.4764 -0.0015
Random Forest Adjustment 0.4622 0.2022 0.0364 (*)

Our Method with Random Forest 0.4432 0.4505 -0.0057

n = 100

Sample Mean 0.3533 0.3542 0.0028
OLS Adjustment 0.2603 0.2078 0.0095 (*)

Our Method with OLS 0.2669 0.2687 0.0012
Random Forest Adjustment 0.2777 0.1179 0.0324 (*)

Our Method with Random Forest 0.2677 0.2663 0.0023

Table 4.3: Simulation estimate of true standard error, estimated standard error, and bias for the sample
mean, OLS adjustment, our method with OLS, random forest adjustment, our method with random forest
for a non-linear relationship between x and y.

prediction function is not the best fit for the given data.

Non-Linear Relationship

In the next simulation we consider a more complicated relationship between x and y. We generate a 20-

dimensional x, where xi ∼ N(0, I), and yi = x3i,1+2|xi,2|1/2+xi,1xi,2+sin(xi,3)+εi, where εi ∼ N(0, 1). This

simulation is nonlinear and includes interactions and noise variables. We use a population size of N = 500

and sample sizes of n = 25, 50, and 100. As estimation methods we use the sample mean, standard OLS

adjustment, our method with OLS prediction, standard random forest adjustment, and our method with

random forest. Results are in Table 4.3.

In this nonlinear setting, the standard random forest adjustment produces a biased estimate for the

population mean response for all sample sizes. This may be due to the random forest overfitting to the

sample. Our method with random forest is unbiased throughout. Despite a nonlinear relationship between
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Method True SE Est. SE Bias

n = 100

Sample Mean 1457.21 1462.54 12.78
OLS Adjustment 643.06 601.11 -2.57

Our Method with OLS 641.92 650.73 -0.23
Random Forest Adjustment 615.49 618.99 -41.46 (*)

Our Method with Random Forest 613.04 618.66 7.29

n = 1000

Sample Mean 218.32 219.55 -1.48
OLS Adjustment 93.75 92.98 0.00

Our Method with OLS 93.74 93.66 0.07
Random Forest Adjustment 78.16 78.33 -5.18 (*)

Our Method with Random Forest 78.42 78.30 -0.42

Table 4.4: Simulated true standard error, estimated standard error, and bias for average tuition from a
simple random sample as estimated by the sample mean, OLS adjustment, our method with OLS, random
forest adjustment, and our method with random forest.

the covariates and response, our method with OLS was unbiased throughout, while standard OLS adjust-

ment was biased for n = 50, 100. However, the estimated standard error for OLS adjustment was greatly

underestimated, especially for smaller sample sizes. Our estimated standard error, on the other hand, was

slightly conservative throughout.

4.3.2 Application to College Tuition

We next apply the estimator to college tuition data by simulating sampling from the population of colleges.

The IPEDS database (https://nces.ed.gov/ipeds/) provides annual data on all postsecondary educa-

tional institutions in the U.S. We focus on the public and not-for-profit private institutions that offer at least

a bachelor’s degree. We simulate taking samples from this population of colleges and universities. As the

response variable we use tuition (in-state for public institutions) from the 2017-2018 academic year, and as

covariates we use admission rate, graduation rate, student to staff ratio, highest degree offered (bachelors,

master, doctoral), and whether the institution is public or private, all from the 2016-2017 academic year.

There are a total of 1262 institutions in our study.

We first simulate taking simple random samples of size n = 100, 1000. For each sample size, we simulate

10000 simple random samples, and for each sample we predict the average tuition for all institutions using our

estimation method using the sample mean, standard OLS adjustment, our method with OLS as the prediction

function, standard random forest adjustment, and our method with random forest as the prediction function.

Results are in Table 4.4. Additional results with more sample sizes can be found in the Appendix.

In Table 4.4 we can compare the standard error for each of the estimation methods. The standard error

is nearly identical for our method with OLS and OLS adjustment, and similar for our method with random

forest and random forest adjustment. All of these methods have smaller standard error than the sample

mean. The reduction in true standard error from OLS to random forest demonstrate the advantages of using

more sophisticated machine techniques as opposed to OLS. In fact, while the true standard error shrinks

for both prediction methods of our estimator, the true standard error of our method using random forest
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Method True SE Est. SE Bias

n = 100

Sample Mean 1480.35 1474.39 -2897.45
OLS Adjustment 645.29 594.23 -421.88

Our Method with OLS 644.76 642.12 -417.52
Random Forest Adjustment 591.38 619.20 -812.23

Our Method with Random Forest 591.40 618.40 -716.18

n = 1000

Sample Mean 206.00 220.34 -1192.33
OLS Adjustment 93.24 92.60 -174.71

Our Method with OLS 93.24 93.27 -174.62
Random Forest Adjustment 73.84 78.64 -189.44

Our Method with Random Forest 74.06 78.61 -184.84

Table 4.5: Simulated true standard error, estimated standard error, and bias for average tuition from a non-
simple random sample as estimated by the sample mean, OLS adjustment, our method with OLS, random
forest adjustment, and our method with random forest.

shrinks faster than OLS. See the Appendix for further details. A lower standard error can be one of the

advantages of using machine learning methods over standard regression models.

The standard error estimate using standard OLS adjustment underestimates the true simulated standard

error. This may be due to the OLS overfitting to outlier points. There are a few outlier colleges, namely

two campuses of Brigham Young University and three campuses of Inter American University of Puerto

Rico. These are private universities, but with much lower tuition than other private universities (about

$5000/year). Whether or not these universities are included in the sample can affect the accuracy of the

estimated standard error for standard OLS adjustment. This does not affect our method with OLS.

Table 4.4 also gives the simulated bias and associated simulated estimate of the standard error for each

method and sample size. Our method, with both OLS and random forest, remains fairly unbiased throughout.

OLS adjustment is also unbiased, whereas the random forest adjustment is biased for every sample size. This

again demonstrates how our method produces an unbiased estimate of the population mean response, even

when the prediction function is itself biased.

In all of the previous simulations, we simulated taking simple random samples from the population.

However, even well-designed surveys rarely result in a truly simple random sample in real life settings; if

implementing an actual survey to colleges asking for the next academic year’s tuition, response rates will

vary. It is conceivable, for example, that colleges with lower tuition will have less money for administrative

positions that would be responsible for completing surveys, leading to lower response rates for colleges with

lower tuition. We are interested in how our estimation method performs under such settings. We simulate

samples in which the probability of inclusion in the sample is a linear function of tuition, where the college

with the highest tuition being twice as likely to be chosen as a member of the sample as the college with the

lowest tuition. For each sample size of n = 100, 1000 we simulate 10000 nonprobability samples, estimating

the mean 2017 tuition using the same estimation methods as earlier: our method with OLS and random

forest prediction, OLS and random forest adjustment, and the sample mean. Results for additional samples

sizes can be found in the Appendix.
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Variable ACS CoreLogic
Lot Size 0 0.025
Value 0.138 0.002
Property Tax 0.180 0
# of People 0 N/A
Income 0 N/A

Table 4.6: Proportion of variables missing for ACS and CoreLogic data.

In Table 4.5 we give the simulated bias and simulated standard error. All five of the estimation methods

are biased in estimating the mean tuition of all colleges for all sample sizes. This bias decreases as the sample

size grows, as schools with lower tuition are more likely to be included in the sample, but nonetheless remains

biased. The bias for OLS is smaller than the bias for random forest; this may because OLS extrapolates better

than random forest. While our method and adjustment methods are biased, they are still an improvement

over using simply the sample mean. The bias for our method is smaller than the associated bias using

adjustment methods throughout.

4.3.3 Application to the American Community Survey

For our last application we apply our estimator to the American Community Survey, using property tax data

as our population data set, to estimate average household income and the total number of people living in

single family homes in Washtenaw County, MI.

As our population of interest we use parcel-level tax data provided by CoreLogic, accessed through the

University of Michigan Library. CoreLogic aggregates publicly available parcel-level tax data, real estate

transactions, and foreclosure data throughout the entire United States, with some records going back as

far as 50 years. The CoreLogic data includes information for nearly every single land parcel in the United

States, making it an ideal choice for a population data set. We restrict this data set to 2016 property tax

observations located in Washtenaw County, MI, home to Ann Arbor. We consider single family residential

homes. This gives 77910 observations from the CoreLogic data set.

The American Community Survey (ACS) is an annual survey given to millions of households and indi-

viduals in the United States each year. The ACS achieves a very high response rate, typically over 95%. By

utilizing CoreLogic population data on individual land parcels, we can increase precision of estimates other-

wise estimated using only the ACS. Similar to the CoreLogic data, we limit the ACS data to single-family

homes in Washtenaw County, MI from 2016. There are 930 such households in the ACS data set. To demon-

strate how our method performs when covariates have different levels of predictiveness of the response, we

consider two different response variables: number of people living in each household and household income.

Using our estimator, we estimate the total number of people and the average household income for families

living in single-family homes in Washtenaw County, MI.

Common variables with low levels of missingness found in both the ACS and CoreLogic are lot size
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Figure 4.2: Density of home value and property tax before and after imputation for ACS and CoreLogic
data sets.

ACS CoreLogic
< 1 acre 0.6882 0.7090
between 1 and 10 acres 0.2333 0.2431
> 10 acres 0.0785 0.0479

Table 4.7: Proportion of observation in each lot size category for each data set after imputation.

(categorized by <1 acre, between 1 and 10 acres, and >10 acres), property value, and property taxes paid.

Table 4.6 gives the proportion of missingness for each variable. To deal with this missingness, we impute

missing values as the mean of the CoreLogic variable. Note that there were some ACS observations that had

a value of 0 for property tax; CoreLogic data says that zero property tax is not possible, so we consider those

values to be missing. We impute missing lot size observations in the CoreLogic data set as < 1 acre, the most

common value in the both the ACS and CoreLogic data sets. Figure 4.2 shows the distribution of log-value

and log-property tax for both data sets before and after imputation. Table 4.7 gives the distribution for lot

size for both data sets after imputation.

All of the variables appear to have relatively similar distributions between both data sets. While the ACS

data appears is close to a random sample, it is not exactly a simple random sample. This is known from

the ACS sampling mechanism, but also from looking at the distributions of the variables. Evidence suggests

that the ACS sample distribution of lot size was not drawn from the CoreLogic population distribution of

lot size. The unbiasedness property of our method and the sample mean relies on simple random sampling,

but the simulation in section 4.3.2 suggest that our method will result in a smaller bias and smaller standard

error compared to using the sample mean.

Since the ACS data is sampled from a population frame, each observation in the ACS data set presumably

has an exact match in the CoreLogic data. However, because of the imputed values and variables originally
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Total # of People Mean Income
Estimate Est. SE Estimate Est. SE

Our method with OLS 188463 3552 $109641 $3359
Our method with Random Forest 191400 3511 $117207 $3098
Sample Mean 191081 3552 $120515 $3762

Table 4.8: Mean and estimated standard error for total number of people living and household income for
single family homes in Washtenaw County using the new method with OLS, random forest, and the sample
mean.

measured slightly differently (e.g., exact property tax as measured by CoreLogic and binned estimates of

property tax as measure by ACS), we do not have exact values to match one observation in the ACS data set

to just one observation in the CoreLogic data set. For simplicity, we consider the entire population the set of

observations in either ACS or CoreLogic; the observations in the CoreLogic data are considered observations

not in the sample. Linking observations is not an insurmountable challenge; the institutions that performs

the sampling (Census Bureau in this case) presumably has identifying information for each observation in

the sample that can be used to link it to an observation in the population.

For estimating the total number of people living in single family homes and the average income of single

family households in Washtenaw County, we use the sample mean and our method with both OLS and

random forest as the prediction function. Results can be seen in Table 4.8.

We first estimate the total number of people in Washtenaw County that reside in single family homes.

Using our method with OLS, we estimate 188463 people living in single family homes, with an estimated

standard error of 3552. Using our method with random forest, we estimate 191400 people living in single

family homes, with a standard error of 3511. Finally, using just the sample mean, we estimate 191081 people,

with a standard error of 3552. The estimated standard error for these three estimates are very similar, and

the same for the sample mean and our method with OLS. This is because the covariates of lot size, value,

and property tax are not very predictive of number of people living in a single family residence; an OLS

regression on the ACS data gives an adjusted R2 of 0.008 and a residual standard error of 1.38. When the

prediction function is not very predictive of the response variable, our estimation method performs roughly

equivalently to using the sample mean.

Next we estimate average household income. Value, property tax, and lot size are more predictive of

income than number of people in household, with an associated adjusted R2 of 0.215. Again using our

method with OLS and random forest and sample mean, we estimate mean household income to be $109641,

$117207, and $120515, respectively, with estimated standard errors of $3359, $3098, and $3762. In this case

the standard error does decrease when using our method compared to the sample mean. The more accurate

the prediction function is, the better our method performs compared to the sample mean.

In both the number of people living in single family homes and average income examples above, the

random forest outperformed OLS in terms of estimated standard error with our estimation method. This

indicates that the random forest is a better prediction method than OLS for the given data, that there are
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nonlinear relationships in the data that the OLS fails to accurately capture. This demonstrates how machine

learning techniques can be used to improve estimates from traditional surveys.

4.4 Discussion

In this paper we developed a predictive inference method to unbiasedly estimate a population mean response

when there is full knowledge of the population auxiliary data. Unbiasedness is guaranteed by estimating the

bias of the prediction function using subsamples of the original random sample. Even in the case of model

misspecification, the method produces accurate (i.e. unbiased) results. Our method works with a variety

of data types and settings, allowing for the user to choose whichever prediction algorithm is best suited

for the data at hand. This is in contrast to other methods for integrating population auxiliary data and

sample data that are tailored to specific prediction methods, such as using lasso as the prediction method

in McConville et al. (2017). Our method provides a general framework that can accommodate any of these

prediction functions.

We demonstrated through simulation that our method outperforms standard imputation methods by

guaranteeing exact unbiasedness without sacrificing standard error. Our estimator is similar to the difference

estimator found in Breidt and Opsomer (2017); the leave-one-out nature of the prediction function makes

our estimation method exactly unbiased, whereas the difference estimator is only asymptotically unbiased.

Exact versus asymptotic unbiasedness can make a difference quantitatively and qualitatively. Theoretical

guarantees rely on the sample being a simple random sample. However, even well-designed surveys are

rarely truly simple random samples. As a suggested area of future research, our new estimation method

could be extended to estimate functions of a population response from nonprobability samples when auxiliary

population data is known.

There are many applications for this method that we have not explored. For example, our method can

be applied to social media data. Social media companies have access to many features for each of their users.

By having a random sample of users partake in a survey, unbiased estimates for the population of users

can be obtained using our method. Our method can also be utilized by government agencies in possession

of population data and the ability to link sample observations to population observations. Many of these

data sets are anonymized when publicly released, such as the ACS data used earlier, but by knowing which

observation in the population corresponds to each observation in the sample, unbiased estimates of the

population mean response with lower standard error can be obtained.
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Chapter 5

Discussion

The goal of this dissertation is to contribute to the evolving field of modern survey science. Traditional

probability-based surveys are becoming increasingly difficult to implement, and it is unknown if traditional

survey estimation methods will remain feasible in the future. Modern sources of data and modern predictive

modeling algorithms have the potential to improve upon traditional survey estimation methods. We in

particular consider the use of social media data in tracking survey responses and the use of population

auxiliary data in combination with predictive modeling to improve survey estimates.

The process of finding a relationship between a given survey and data extracted from Twitter commonly

consists of: collecting tweets over time that contain some word related to the given survey, calculating

sentiment of the tweets over the time period, processing the sentiment of tweets (e.g. smoothing and adding

lag), and finding the relationship between the processed tweets and survey responses. Our work demonstrates

challenges of finding relationships in this way.

Individual researcher decisions can have a surprisingly large impact on the observed relationship. For

example, choosing one sentiment method over another can change the conclusion from a strong relationship

to no relationship, as we showed with “jobs” tweets and consumer confidence. This demonstrates how fragile

such relationships can be and the need for robustness tests on these types of analyses. On a similar note,

by optimizing over various parameters, it can be relatively easy to cherry-pick positive results. This makes

standard significance tests invalid. Cherry-picking results is a problem not just in our specific example,

but prevalent in nearly every application of statistics. One solution is to state decisions, with well-founded

reasoning, beforehand, preventing the optimization of decisions during the course of the analysis.

Theoretical understanding for the relationship between social media data and survey responses is lacking

and it is not always clear a priori what adjustments and decisions should be made, so empirical optimizations

must be performed. Under this framework of optimization, if there is truly a relationship between survey

responses and tweets containing a given word, we would expect the observed relationship under optimization

to be much stronger than a similarly calculated relationship under optimization between survey responses
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and all tweets. Thus, we should not be asking whether the observed relationship is significantly different

from zero, but whether it is significantly different from all tweets. Our implementation of placebo tests

addresses this issue.

Our work raises serious doubt as to whether survey responses can reliably be tracked using tweets con-

taining a given word. We present one alternative: collecting tweets from a set of users over time. By focusing

on tracking individual users longitudinally we ensure that the demographics of users is constant across the

entire time period. We found evidence of a political signal around the 2016 election. However, similar as

with the relationship between “Trump” tweets and presidential approval, it is possible that this signal is not

much stronger than what we would observe among users completely unengaged with politics. Our placebo

analysis framework may be able to be extended to answer such questions.

We successfully classified users as Democrats or Republicans. Future methods may be able to be devel-

oped, as well as current methods improved, to learn other demographic characteristics of users. With correct

demographic information we can weight users to reflect the population of interest.

Another alternative for potentially improving alignment between survey responses and social media is

to track users for which we know their survey response. That is, track users that have responded to the

survey of interest. This may provide valuable insights on how users’ tweets are related to various opinions.

For example: do people have similar sentiment when responding to a private survey versus making a public

statement on social media? Do users only tweet about topics in which they have strong feelings? Do users

tweet when they change their opinion?

We may also be able to take advantage of the network structure of social media. We only lightly take

advantage of this information in classifying users as Democrats or Republicans. By analyzing how information

disseminates through a network, we might, for example, discover that we only need to track influential users

(i.e. users with a high follower count), therefore decreasing the computation burden. We may also be able

estimate a user’s opinion on a particular subject based on the opinions of accounts they follow and interact

with.

Many analyses with Twitter data tend to reduce the data to either sentiment or frequency. It is possible

that by reducing the content of tweets to purely sentiment and frequency we are removing too much valuable

information. Another suggestion that can be applied to tweets regardless of how they are collected is to

more carefully consider the content of the tweets. Despite purposefully gathering tweets that are related to

the signal of interest, there are likely to be tweets that are irrelevant. Furthermore, there are many aspects

of public opinion, and correctly modeling the topics being discussed in a corpus might help to reveal those

aspects. While our topic modeling method does not take into account auxiliary information by design, future

areas of research may be able to take advantage of the auxiliary information in each tweet, such as the user

and date.

As we demonstrate in chapter 3, auxiliary information can be very valuable. In the case of social media,

this auxiliary information (e.g. user and account information, temporal tweeting patterns) is known for every
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user (at least readily available for the social media platforms). Say, for example, that Twitter was interested

in the number of political tweets that were being sent. Using a random subset of tweets (or users), topic

modeling may be used to determine the proportion of tweets that are political. Then using the auxiliary

information that is known about every user as covariates and the labels from topic modeling as the response,

our estimation method from chapter 4 can be used to estimate the overall number of political tweets. With

the large amount of covariates that can be generated from the auxiliary information, it can be relatively easy

to overfit the prediction model to the sample covariates; the estimation method derived in chapter 4 ensures

that the overfitting does not affect the overall bias of the estimator. Furthermore, the estimation method is

unbiased and gives an accurate estimate of the standard error even if assumptions for the prediction model

are not met.

The estimation method might also be useful for combining traditional survey responses and social media

data. Most of the analyses we have performed with social media are tracking rather than supplementing

surveys responses. Social media may be a way to gather information on otherwise hard-to-reach populations,

so combining the two sources of data may provide valuable insights. For example, if we are interested in

the number of people that are politically engaged, we might have daily estimates of political activity from

survey responses and social media posts, and some true measure of political activeness on only certain days,

such as election days. Our estimator may be able to be used in this context to estimate the average political

activity over the given time frame.

Our estimation method works for simple random samples, but it is not guaranteed to be unbiased for

non-simple random samples. While this is a reasonable assumption when our population is all social media

posts or users, Twitter users are not a random sample of the population. As a next step, our estimation

method may be able to be extended to other types of samples. Many general methods exist for various types

of samples, and these methods could potentially be incorporated into our framework.

This dissertation makes valuable contributions to the field of survey science. New forms of media and

data and new machine learning prediction models will be created in the future, and methods that we lay

out in this dissertation provide a foundation for how to incorporate the new data and prediction models into

future survey estimation.
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Appendix A: Data and Code

Availability

“Jobs” Tweets Analysis

The average daily ICS from 2008 to 2014 as well as the average daily measures from the five SCA questions

on which the ICS is based can be found at https://www.openicpsr.org/openicpsr/project/109581/

version/V1/view/. The daily average sentiment scores for jobs tweets from 2008 to 2014 computed with

five different tools can be found at https://www.openicpsr.org/openicpsr/project/109581/version/

V1/view/

A script for a Shiny app that allows a user to assess the relationship between the sentiment data and

survey responses, along with a script that allows the user to reproduce all results and figures reported in

these analyses, can be found at https://github.com/robynferg/Twitter_ICS. R code for all results and

figures can be found at https://github.com/robynferg/Twitter_ICS/blob/master/ResultsFigures.R

“Trump” Tweets and Politically Active Users Analysis

Presidential approval was downloaded from the website FiveThirtyEight, available at https://projects.

fivethirtyeight.com/trump-approval-ratings/?ex_cid=rrpromo. Data and scripts for replicating all

analyses in this paper can be found at https://github.com/robynferg/Tracking_Presidential_Approval_

with_Twitter. The Twitter data available online used in the placebo analysis gives the daily average senti-

ment for tweets containing each of the placebo words. To protect the privacy of the politically active users,

we have blinded the user name and tweet content in the data set available online.

Estimation Method with Auxiliary Data

Data and script to reproduce most results presented in chapter 4 can be found at https://github.com/

robynferg/Population-Auxiliary-Data-and-Sample-Data. All analyses were done in R. We provide a

script containing a function to run our estimator with OLS, random forest, or sample mean. We provide

data and code to reproduce all results for simulated data and simulated sampling of colleges. The CoreLogic
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data is not publicly available, so we provide population means needed to apply the new estimator using OLS.
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Appendix B: SCA Questions

The five survey questions used to calculate ICS are:

1. “We are interested in how people are getting along financially these days. Would you say that you

(and your family living there) are better off or worse off financially than you were a year ago?”

2. “Now looking ahead–do you think that a year from now you (and your family living there) will be

better off financially, or worse off, or just about the same as now?”

3. “Now turning to business conditions in the country as a whole–do you think that during the next

twelve months we’ll have good times financially, or bad times, or what?”

4. “Looking ahead, which would you say is more likely–that in the country as a whole we’ll have continuous

good times during the next five years or so, or that we will have periods of widespread unemployment

or depression, or what?”

5. “About the big things people buy for their homes–such as furniture, a refrigerator, stove, television,

and things like that. Generally speaking, do you think now is a good or bad time for people to buy

major household items?”
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Appendix C: “Jobs” Tweets Sorting

Algorithm

In this section we give examples of tweets that fall into each of the five “jobs” tweets categories: news/politics,

personal, advertisements, other, and junk. We then give details of our algorithm to classify each tweet as a

member of one of the classes.

1. News and Politics: This type of tweet generally refers to either current events on the national level

or political opinions. Many of these tweets have to do with the U.S. economy as a whole.

• “President Obama adds 244,000 new jobs this month. Thank you Mr. President @Whitehouse

#tcot #teaparty #p2”

• “Do Republicans really believe governors create jobs? This is so gross.”

• “want more jobs &better economy? elect ppl who will CUT corp taxes & regulations. It’s not

rocket science #teaparty #icaucus #sgp #tcot #gop”

2. Personal: Tweets in this category refer to one’s individual job, many times commenting on job

satisfaction or change in employment status.

• “I got 3 emails about photography jobs in one day. this rocks!!!”

• “Going out to apply for jobs. Yay?”

• “wasting time on computer when I should be applying for jobs”

• “Finally off from both of my 2 jobs today - need time to catch up on sleep & exercise!”

3. Advertisements: Tweets in this category display jobs available in various fields and various cities.

Many of these are through a ‘Tweet My Jobs’ third party service. Despite referring to actual jobs,

we don’t expect these tweets to have much relationship with consumer confidence since they do not

provide any opinion.

• “Found 50 new jobs in Cincinnati, OH - check it at << link >>”

• “DENTAL ASSISTANT - Las Vegas, NV (<< link >>) Get Dental Assistant Jobs”
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• “Sales Information Analyst - Jobs in Ireland”

4. Other: Tweets in the Other category are usually articles or lists, unrelated to current economic events,

but typically having to do with employment in some way. For example, more articles may be written

about recession-proof jobs during a recession.

• “Green Jobs Czar Says ‘White Polluters’ Steered Poison Into Minority Communities << link >>”

• “<< link >> Jobs, Bartending Secrets Revealed << link >>”

• “The Top 5 Reccession-Proof Jobs (Chart) - << link >>”

5. Junk: The jobs mentioned in junk tweets refer to something other than employment. The most

common include Steve Jobs, the TV show Dirty Jobs, and jobs of a sexual nature. Junk tweets should

be independent of economic conditions and consumer confidence.

• “Steve Jobs... I’m really proud of you, and I’ma let u finish... but Moses had one of the best

tablets of all time”

• “My first ex-boyfriend was in a Dirty Jobs show with Mike Rowe. The one about making shark

repellent from actual sharks.”

We create an algorithm to sort tweets into one of the five categories listed above. There are many aspects

of tweets that make building a perfect classifier nearly impossible, such as the 140 character limit, slang

words, misspellings, and unknown intentions of the user (sarcasm, etc.). Our classification algorithm works

as follows for an individual tweet:

1. If the tweets contains at least one word from a user-defined list of junk words, that tweet is classified

as junk.

• For junk words we used: steve, apple, iphone, itunes, ipad, mac, wozniak, gates, dirty, blow, hand,

whack, nut

2. Otherwise, if the tweet contains an ad word or user name contains a user ad word, that tweet is

classified as an advertisement.

• For ad words we used: #hiring, #jobs (these are vary common among ‘tweet my jobs’ tweets)

• For ad user words we used: job, tmj, career

3. Otherwise if the tweet contains at least one word of a list of news/politics words or user name contain

user news/politics word, the tweet is classified as news/politics.

• For news/politics words we used: obama, clinton, trump, mcconnell, ryan, boehner, potus, cantor,

palin, teaparty, democrat, repbulic, mccain, romney, trade, taxes, senate, president, gop

93



Algorithm
Advertisement Junk News/Politics Other Personal

Hand-Classification

Advertisement 183 7 4 45 4
Junk 0 41 0 5 5
News/Politics 2 3 25 15 12
Other 4 2 2 39 2
Personal 0 2 2 6 90

Table 5.1: Comparison between hand classification and classification as given by the algorithm for a random
sample of 500 tweets.

Figure 5.1: Proportion of “jobs” tweets belonging to each category by year.

• For news/politics user words we used: news

4. Otherwise, if the tweet contains a url, it is classified as other.

5. Otherwise, the tweet is classified as personal.

To verify the accuracy of this algorithm, we randomly sampled 500 tweets and hand-classified them into

one of the above five categories. Table 5.1 compares the hand classification to the classification as given by

the algorithm. About 75% of these tweets were classified correctly (Cohen’s κ = 0.67). The most difficult

category for the algorithm was other. If we remove the other category, the algorithm accuracy jumps to 89%

(Cohen’s κ = 0.83).

The proportion of “jobs” tweets in each category varies from year to year. Figure 5.1 shows the distri-

bution from year to year. On average, 8% of the tweets were news/politics, 28% were personal, 27% were

advertisements, 12% were junk, and 24% were other.
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Appendix D: Word Clusters

In this appendix we give words from the set of validation users as sorted into clusters. Tables 5.2 and 5.2

give the words as sorted by our algorithm. Tables ?? and ?? give the most frequent words in each cluster as

given by LDA.
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Latent
Topic

Words in Cluster

1 storm, 35, 60, 70, accurayno, accuweather, afternoon, ago, aim, along, alreadi, also, appear,
approach, around, associ, away, batter, bay, blast, blizzard, breaking, breakingweath, brief,
bring, bud, canada, capabl, carolina, categori, caus, central, chicago, chill, coast, coastal,
colder, counti, country, coupl, creat, cross, current, dakota, damag, delay, deliv, despit, dis-
cuss, disrupt, dorian, drench, drop, due, east, eastern, elev, england, enough, episod, erupt,
evan, even, expect, eye, farther, fast, forecast, friday, gust, gusti, hail, higher, hit, hurrican,
hurricanedorian, impact, indian, intens, isol, juli, larg, latest, least, level, lightn, lik, listen,
local, lorenzo, lower, major, maximum, mediterranean, mid, midweek, midwest, mile, missis-
sippi, missouri, monday, morn, morning, mov, move, mph, multipl, myer, nebraska, night,
northeast, northern, northward, northwest, northwestern, novemb, pack, part, path, penin-
sula, pennsylvania, period, plain, pois, possibl, potent, potenti, power, prior, produc, race,
radar, region, relief, remain, resid, rest, road, rough, seek, send, separ, seri, sever, shelter,
side, sight, slow, south, southern, spin, spread, states, strengthen, strong, surf, sustain, sweep,
system, thanksgiv, threaten, thunderstorm, thursday, tier, tornado, toward, track, troubl, tues-
day, typic, upper, valley, warn, washington, wednesday, weekend, west, wide, wind, winterlik,
wintri, worst, york

2 10, age, cdt, evacu, fight4birthconrol, houston, nearli
3 health, 50, abil, abort, aca, access, accur, act, action, activist, administr, administration,

advanc, advoc, affect, afford, alway, among, and, answer, appoint, appointment, ask, assault,
attack, attempt, awar, ban, bansoffmybodi, basic, believ, believesurvivor, benefit, beyond,
birth, black, blavityxpp, block, bodi, breast, busi, cancer, cannot, care, case, center, chat,
choos, color, commit, common, commun, confirm, congratul, congress, contracept, control,
cost, countri, court, cover, coverag, crisi, critic, cultur, deal, decis, deserv, die, differ, digniti,
discrimin, doctor, don, door, drleanawen, ed, educ, effort, emerg, ensur, equal, essenti, everi,
everyon, everyth, exam, experienc, expert, face, fact, famili, fight, find, forc, forward, freedom,
full, fund, futur, gag, gender, gener, get, getcov, give, hand, harm, heard, heart, help, hiv, hu-
man, ident, iheartsex, immigr, import, includ, incom, inform, insur, intern, issu, istandwithpp,
justic, keep, know, leader, learn, legal, lgbtq, life, like, live, locat, lose, low, make, manag, mani,
matern, matter, mea2018, mean, medic, million, miss, more, mother, must, nation, need, news,
nogagrul, now, nurs, offer, often, option, orient, outsid, parent, parenthood, patient, penc,
peopl, people, piec, plan, polici, politician, pp, pregnanc, pregnant, prevent, pride, program,
protect, protectx, proud, provid, public, put, qualiti, question, rate, recogn, regardless, rela-
tionship, reproduct, resourc, respect, rewire new, right, roe, rule, safe, save, screen, seen, serv,
sex, sexual, shame, sign, singl, skill, someon, speak, staff, stand, statu, stay, std, step, stigma,
still, stop, stoptheban, suprem, survivor, take, talk, teen, test, thing, think, thisishealthcar,
thxbirthcontrol, titl, today, tran, transgend, treat, treatment, trump, trust, updat, via, violenc,
visit, voic, wade, way, we, weareunstopp, well, whether, white, without, women, won, would,
you, young, youth

4 11, 45, edt, pm
5 ppfa, 800, abl, address, affili, anyon, app, bad, beauti, best, bill, bless, call, cecilerichard, check,

chelsea, clear, comfort, concern, condom, connect, consent, contact, cut, decid, definit, defund,
defunds, difficult, direct, donat, done, dr, email, ever, experi, explain, feder, folk, frustrat,
girl, glad, grate, gt, happen, healthcar, hear, here, hey, hi, hope, inspir, instead, kendal, kind,
leadership, leav, match, media, member, method, metoo, might, movement, offic, onlin, org,
out, partner, pay, person, phone, pill, place, pleas, ppact, pre, presid, protectourcar, read, real,
refinery29, releas, role, saw, say, senat, servic, share, social, sorri, spot, standwithpp, support,
tell, text, thank, they, tip, truli, trumpcar, tweet, understand, unstopp, us, use, video, vote,
went, what, woman, wonder, work, worri, ye

Table 5.2: Words in each cluster for validation set of users using our clustering-based topic modeling algo-
rithm. Part 1/3.

96



Latent
Topic

Words in Cluster

6 13, children, moon, other
7 goblu, 000, 100, 12, 14, 15, 16, 17, 18, 19, 20, 2018, 2019, 21, 24, 25, 28, 30, 31, 40, dbush11,

accept, all, american, ann, announc, annual, arbor, armi, athlet, atlanta, avail, award, awesom,
b1g, back, ball, beat, beatnd, beatosu, beatstat, behind, bell, ben, bestchanceu, better, big,
blue, book, boy, bush, came, camp, can, car, career, catch, celebr, cfapeachbowl, charbonnet,
charleswoodson, chase, chase winovich, class, co, coach, coach gatti, coachjim4um, colleg, com-
plet, congrat, consecut, convers, dame, day, defens, detail, devin, digit, dljxxii, draft, dream,
drive, earn, elect, enjoy, et, excit, fan, fbcoachdbrown, field, final, finish, first, five, footbal, for-
mer, four, fun, game, go, goal, good, got, greatest, ground, group, guid, guy, half, hall, happi,
hard, he, head, higdon, highlight, hill, histori, home, honor, hour, hous, huge, icymi, illinoi,
improv, in, indiana, info, insid, interact, iowa, it, job, join, jonjansen77, josh, karan, kick, last,
law, lbg nico7, lead, left, let, lewisjeweleri, light, line, list, littl, ll, long, look, loss, lot, love,
man, march, maryland, meet, men, michigan, minut, moment, name, never, nfl, nflcombin,
nfldraft, nflnetwork, nice, nico, noon, noth, notr, nsd, nsd19, number, offens, offici, ohio, old,
one, opportun, pass, patriot, patterson, penn, per, perform, photo, pick, play, player, podcast,
point, posit, practic, prepar, problu, punt, qb, quarter, rashanagari, readi, realli, recap, repres,
return, run, rush, rutger, sack, saturday, school, score, season, second, see, select, senior, seven,
shea, sheapatterson 1, show, sit, six, someth, special, sport, spring, st, stadium, stage, stori,
student, sure, tackl, tbt, td, team, ten, tennesse, that, the, there, third, thisismichigan, thought,
three, ticket, tie, tim, time, togeth, tom, tombradi, tomorrow, tonight, top, toss, total, touch-
down, trench, trip, tune, two, ubuntublu, umichathlet, umichfootbal, umichfootball, univers,
up, victori, vs, wait, wallpaperwednesday, want, watch, welcom, who, win, wino, wisconsin,
wolverin, wow, yard, year, yesterday, zach

8 vegan, ad, add, almond, amaz, appl, asparagu, avocado, bake, banana, bar, base, basil, bbq,
bean, birthday, bite, blueberri, bowl, bread, breakfast, broccoli, brown, browni, buffalo, bun,
burger, burrito, butter, butternut, cake, caramel, carrot, cashew, cauliflow, chees, cheesecak,
chia, chicken, chickpea, chili, chip, chocol, christma, cinnamon, coconut, comment, comments,
cook, cooki, corn, cream, creami, crispi, cup, curri, date, delici, dessert, dinner, dip, dish, donut,
dress, easi, eat, egg, energi, falafel, favorit, fill, food, found, fre, free, fresh, fri, friend, frost,
garlic, ginger, gluten, green, grill, healthi, homemad, hot, hummu, idea, ingredi, jackfruit, kale,
lasagna, lemon, lentil, lime, link, lunch, mac, made, mango, meal, meat, milk, mom, muffin,
mushroom, no, noodl, nut, oat, oil, onion, orang, pan, pancak, pasta, pea, peanut, pepper,
perfect, pesto, pie, pizza, post, pot, potato, prep, pretti, protein, pud, pumpkin, quick, quinoa,
ramen, raspberri, raw, recip, red, rice, roast, roll, salad, salt, sandwich, sauc, sausag, scrambl,
seed, seitan, sesam, simpl, slice, smoothi, snack, soup, soy, spaghetti, spanish, spice, spici,
spinach, sprout, squash, stew, stir, strawberri, stuf, style, sugar, sun, super, sushi, sweet, taco,
tast, tasti, tempeh, thai, toast, tofu, tomato, tri, turmer, turn, veget, veggi, version, walnut,
whole, wing, wrap, zucchini

9 earthequak, accord, feel, felt, magnitude, report, san
10 rain, amount, arriv, august, beach, began, break, broke, cape, citi, deadli, death, drought,

event, flash, flood, freez, heavi, imelda, kansa, lo, main, month, normal, outdoor, overnight,
portion, pound, previou, receiv, rememb, river, soak, southeast, start, stormi, strike, sunday,
texa, torrenti, town, unleash, whip, widespread

11 week, 80, 90, across, ahead, air, allow, anoth, arctic, autumn, averag, begin, bermuda, bright,
british, build, burn, california, centr, challeng, chanc, chang, chilli, close, cloud, condit, continu,
cool, cooler, could, daili, danger, deep, degre, doesn, downpour, dri, earli, earlier, end, europ,
expand, extend, extrem, far, fire, focu, follow, frequent, georgia, goblue, grip, heat, high, histor,
hold, holiday, howev, humid, increas, incred, india, kingdom, known, late, later, less, mark,
may, meteor, middl, monsoon, much, natur, new, next, north, northeastern, numer, octob,
ongo, past, pattern, peak, persist, pose, pressur, progress, push, rainfal, rais, reach, recent,
record, remind, renew, replac, rise, risk, round, santa, septemb, set, settl, shift, shot, shower,
signific, sinc, sky, soon, southward, southwest, southwestern, star, state, store, stream, stretch,
summer, surg, target, temperatur, though, to, unit, unusu, usher, view, wake, warm, warmth,
wave, weather, western, wet, wildfir, yet

Table 5.3: Words in each cluster for validation set of users using our clustering-based topic modeling algo-
rithm. Part 2/3.
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Latent
Topic

Words in Cluster

12 tropic, accuweath, activ, addit, africa, alabama, alert, america, area, asia, atlant, bahama,
basin, bear, becom, brace, brew, brought, caribbean, china, closer, come, cyclon, days, depress,
develop, disturb, erick, featur, florida, form, grow, gulf, hawaii, humberto, imag, island, japan,
karen, korea, landfal, louisiana, meteorologist, mexico, moistur, monitor, near, nestor, non,
ocean, open, organ, pacif, philippin, puerto, result, rico, sea, short, southeastern, strength,
taiwan, threat, took, trop, typhoon, water, weaken, world, zone

13 snow, accumul, cold, colorado, credit, denver, eastward, effect, fall, feet, front, great, hal-
loween, highest, ice, inch, interior, lake, mix, montana, mountain, or, plummet, rang, realfeel,
roadway, rocki, said, snowfal, snowstorm, swath, syndic, throughout, travel, unload, visibl,
winter

Table 5.4: Words in each cluster for validation set of users using our clustering-based topic modeling algo-
rithm. Part 3/3.

Latent
Topic

Frequent Words

1 across make right made help goblu look watch along sunday morn time problu good first sure
even 10 like fall guy educ incred dbush11 nfl show catch nfldraft yet soak

2 rain week continu bring flood recip snow need forecast night thunderstorm could downpour
shower northeast flash tonight round mexico period accuweath japan wave around last everyon
warn remain drench senat

3 peopl part women here live use support power two learn impact famili coverag sex life countri
becom protect like would sexual inform program video without produc thank doctor major top

4 health plan unit parenthood area new includ provid center wednesday month join ppfa reprod-
uct state sever travel potenti commun far follow abort share spread challeng late sexual us
trump listen

5 weekend one come track sever hurrican via fight cold it break middl southeast florida read
southwest current cooler matter wake soon 12 goblu radar first lead hot missouri second state

6 may high record control birth set work temperatur anoth thursday mani week summer full citi
accuweath day world proud player discuss final insid team open build hey amaz disturb import

7 goblu day michigan week much northern coast central east monday game threat move state
big today west umichfootbal latest risk stand play everi chang report saturday lead touchdown
winter find

8 weather system air expect heavi south tuesday local black vegan midwest fire well pacif ocean
strengthen sea that rice week activ can more thing water low tri you warm tomato

9 take earli heat today plain year california best call reach hour mph form see test india bowl
hail away monsoon larg danger super vote offici ahead welcom mile fan less

10 care ppfa access go thank chelsea develop patient keep let us want feel deserv depress servic
love happi thanksgiv toward abort mean alreadi blue ask person hear istandwithpp great real

11 storm wind season state way atlant dorian thunderstorm end friday eastern northeast north
near western strong gusti start make portion first damag region rainfal check northeastern
midweek stori half hit

12 vegan next southern condit easi tofu safe later healthi potato chocol bean chickpea comment
soup sweet sauc mushroom roast free rule pasta bake cake fri delici curri lentil southwestern
chees

13 tropic get we salad know like tell experi close still possibl daili don begin line say philippin
pleas sorri chanc never ll pressur degre back ball seen front start long

Table 5.5: 30 most frequent words for each latent topic using LDA on tweets of control users.
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Appendix E: User Clusters

To calculate the overall probability distribution of topics for each user, we consider two methods for deter-

mining topic distribution for each user. The first (as shows in Table 3.4 in the main text) was to assign each

tweet to a single topic. The second being to take the mean of the probability distributions for each tweet

belonging to a user. Results using this metric are in Table 5.6. Most entries are fairly small, with one or

two more strongly expressed topics per user. For Planned Parenthood, these are topics 3 and 10; topic 7 for

Michigan football; topics 12 and 8 for vegan cooking; and topic 11 for AccuWeather.
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PPFA UMichFootball breakingweather vegancook101

1 0.061 0.114 0.052 0.052
2 0.058 0.047 0.161 0.052
3 0.177 0.077 0.059 0.036
4 0.187 0.042 0.077 0.041
5 0.048 0.057 0.066 0.028
6 0.058 0.075 0.066 0.035
7 0.046 0.287 0.102 0.027
8 0.039 0.035 0.080 0.151
9 0.059 0.051 0.066 0.047
10 0.114 0.057 0.025 0.046
11 0.040 0.068 0.161 0.033
12 0.043 0.040 0.044 0.411
13 0.071 0.052 0.041 0.041

Table 5.6: Mean topics for tweets by users using LDA.
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Appendix F: Closed Form Solution for

Estimator When Using Sample Mean

and OLS Prediction

In this section we solve for the µ̂ estimate in equation (4.1) when the sample mean or OLS is used as the

prediction function f(·).

Sample Mean

In the case of the sample mean, let ȳS = 1
n

∑
i∈S yi be the sample mean and ȳS\i = 1

n−1
∑
j 6=i∈S yj be the

sample mean of S\i when i ∈ S. Then fi = N
n yi −

N−n
n ȳS\i and

gi =
1

n

∑
j∈S

ȳS\j

=
1

n(n− 1)

∑
j∈S

∑
k 6=j∈S

yk

=
1

n(n− 1)
(n− 1)

∑
j∈S

yj

= ȳS
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Then for the overall estimator we have

µ̂ =
1

N

∑
j∈S

(
N

n
yi −

N − n
n

ȳS\i

)
+

1

N

∑
i 6∈S

ȳS

=
1

n

∑
i∈S

yi −
N − n
nN

∑
i∈S

ȳS\i +
N − n
N

ȳS

=
2N − n
N

ȳS −
N − n

nN(n− 1)

∑
i∈S

∑
j 6=i∈S

yj

=
2N − n
N

ȳS −
N − n
N

ȳS

= ȳS

Thus, our estimator reduces to the sample mean when we use the mean as the prediction function.

OLS

In this section we solve for the µ̂ estimate when OLS is used as the prediction function f(·). In this case, as

is shown below, it is sufficient to know the population means of the covariates; it is not necessarily to know

the individual population x values, as was assumed earlier. Let tx =
∑N
i=1 xi be the known population

totals for the covariates, tSx =
∑
i∈S xi be the sample totals for the covariates, and t−Sx =

∑
i 6∈S xi = tx− tSx

be the covariate totals for observations not in the sample.

For a given sample S, let xS be the covariates for observations in the sample and let yS be the response

values for the sample. Let β̂S =
(
xTSxS

)−1
xTSyS be the OLS coefficient estimate obtained using the full

sample. Let HS = xS
(
xTSxS

)−1
xTS be the hat matrix for the sample and e = (I −HS)yS . Then when

observation i is left out, the OLS coefficients will be

β̂
(−i)
S = β̂S −

(xTSxS)−1xTi ei
1−Hii

It follows that fi = xiβ̂
(−i)
S . We have that gi = 1

n

∑
j∈S xiβ̂

(−j)
S . Then

∑
i 6∈S

gi =
∑
i 6∈S

 1

n

∑
j∈S

xiβ̂
(−j)
S


=
∑
j∈S

(
1

n

∑
i∈S

xiβ̂
(−j)
S

)

=
∑
j∈S

 1

n

∑
i 6∈S

xi

 β̂
(−j)
S

=
1

n

∑
j∈S

t−Sx β̂
(−j)
S

102



For the µ̂ estimator we have

µ̂ =
1

N

∑
i∈S

(
N

n
yi −

N − n
n

xiβ̂
(−i)
x

)
+

1

nN

∑
i∈S

t−Sx β̂
(−i)
S

=
1

nN

∑
i∈S
{Nyi +

[
t−Sx − (N − n)xi

]
β̂
(−i)
S }

This estimate will be unbiased, regardless of how well the regression model fits the data.
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Appendix G: Variance of Estimation

Method

In this section we give justification for our variance estimate of µ̂ in equation (4.4) presented in Section 4.2.3.

First we derive the variance of µ̂. We then provide an estimate for that variance.

Variance Calculation

We have that

var(µ̂) =
1

N2

N∑
i=1

var(ŷi) +
1

N2

∑
i 6=j

cov(ŷi, ŷj) (5.1)

We first solve for var(ŷi) directly. Recall that ŷi = yi + (1 − si)(hi − yi) + si
(
N−n
n

)
(yi − hi). Also recall

that δi = hi − ei, so E(δi) = E(δi | si) = 0. Let ri = yi − ei, and note that ri is a constant.

var(ŷi) = var

[
δi

(
1− N

n
si

)
+
N

n
siri

]
= var

{
E
[
δi

(
1− N

n
si

)
+
N

n
siri

∣∣∣∣si]}+ E
{

var

[
δi

(
1− N

n
si

)
+
N

n
siri

∣∣∣∣si]}
= var

[
N

n
siri

]
+ E

[(
1− N

n
si

)2

var(δi | si)

]

=
N2

n2
r2i var(si) + P (si = 1)

(
N − n
n

)2

var(fi | si = 1) + P (si = 0)var(gi | si = 0)

=
N − n
n

r2i +
(N − n)2

nN
var(fi | si = 1) +

N − n
N

var(gi | si = 0)
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Plugging this expression into variance equation (5.1) gives

var(µ̂) =
1

N2

N∑
i=1

[
N − n
n

r2i +
(N − n)2

nN
var(fi | si = 1) +

N − n
N

var(gi | si = 0)

]
+

1

N2

∑
i6=j

cov(ŷi, ŷj)

=
N − n
nN

(
1

N

N∑
i=1

r2i +
1

N

N∑
i=1

var(fi | si = 1)

)
+
N − n
N3

N∑
i=1

[var(gi | si = 0)− var(fi | si = 1)]

+
1

N2

∑
i6=j

cov(ŷi, ŷj) (5.2)
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We now calculate cov(ŷi, ŷj).

1

N2

∑
i 6=j

cov(ŷi, ŷj) =
1

N2

∑
i 6=j

E(ŷiŷj)−
1

N2

∑
i 6=j

E(ŷi)E(ŷj)

=
1

N2

∑
i 6=j

E(ŷiŷj | si = 1, sj = 1)P (si = 1, sj = 1)

+
2

N2

∑
i 6=j

E(ŷiŷj | si = 1, sj = 0)P (si = 1, sj = 0)

+
1

N2

∑
i 6=j

E(ŷiŷj | si = 0, sj = 0)P (si = 0, sj = 0)− 1

N2

∑
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yiyj

=
n(n− 1)

N3(N − 1)

∑
i 6=j

E
[(

N

n
yi −

N − n
n
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)(
N

n
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N − n
n
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)∣∣∣∣si = 1, sj = 1

]

+
2n(N − n)

N3(N − 1)

∑
i 6=j

E
[(

N

n
yi −

N − n
n

fi

)
gi

∣∣∣∣si = 1, sj = 0

]

+
(N − n)(N − n− 1)

N3(N − 1)

∑
i6=j

E(gigj | si = 0, sj = 0)− 1

N2

∑
i 6=j

yiyj

=
n(n− 1)

N3(N − 1)

∑
i 6=j

E
(
N2

n2
yiyj −

2N(N − n)

n2
yifj +

(N − n)2

n2
fifj

∣∣∣∣si = 1, sj = 1

)

+
2n(N − n)

N3(N − 1)

∑
i 6=j

E
(
N

n
yigj −

N − n
n

figj

∣∣∣∣si = 1, sj = 0

)

+
(N − n)(N − n− 1)

N3(N − 1)

∑
i6=j

E(gigj | si = 0, sj = 0)− 1

N2

∑
i 6=j

yiyj

= − N − n
nN2(N − 1)

∑
i 6=j

yiyj −
2(N − n)(n− 1)

nN2(N − 1)

∑
i 6=j

yiE(fj | si = 1, sj = 1)

+
(N − n)2(n− 1)

nN3(N − 1)

∑
i6=j

E(fifj | si = 1, sj = 1)

+
2(N − n)

N2(N − 1)

∑
i 6=j

yiE(gj | si = 1, sj = 0)

− 2(N − n)2

N3(N − 1)

∑
i 6=j

E(figj | si = 1, sj = 0)

+
(N − n)(N − n− 1)

N3(N − 1)

∑
i6=j

E(gigj | si = 0, sj = 0)
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For the overall variance of µ̂ we have:

var(µ̂) =
N − n
nN

(
1

N

N∑
i=1

r2i +
1

N

N∑
i=1

var(fi | si = 1)

)
+
N − n
N3

N∑
i=1

[var(gi | si = 0)− var(fi | si = 1)]

− N − n
nN2(N − 1)

∑
i 6=j

yiyj −
2(N − n)(n− 1)

nN2(N − 1)

∑
i6=j

yiE(fj | si = 1, sj = 1)

+
(N − n)2(n− 1)

nN3(N − 1)

∑
i6=j

E(fifj | si = 1, sj = 1) +
2(N − n)

N2(N − 1)

∑
i 6=j

yiE(gj | si = 1, sj = 0)

− 2(N − n)2

N3(N − 1)

∑
i 6=j

E(figj | si = 1, sj = 0)

+
(N − n)(N − n− 1)

N3(N − 1)

∑
i6=j

E(gigj | si = 0, sj = 0)

Estimate of Variance

Recall that our variance estimate for µ̂ in equation (4.4) is

v̂ar(µ̂) =
N − n
nN

 1

n

∑
i∈S

(yi − fi)2 −
1

n(n− 1)

∑
i 6=j∈S

(yi − fi)(yj − fj)

 (5.3)

We motive this estimate of the variance below. We do this in three steps:

(a) 1
n

∑
i∈S(yi − fi)2 in (5.3) is an unbiased estimate of

(
1
N

∑N
i=1 r

2
i + 1

N

∑N
i=1 var(fi | si = 1)

)
in (5.2)

(b) N−n
N3

∑N
i=1 [var(gi | si = 0)− var(fi | si = 1)] in (5.2) is nonpositive and small

(c) − N−n
n2N(n−1)

∑
i6=j∈S(yi − fi)(yj − fj) in (5.3) is an estimate of 1

N2

∑
i 6=j cov(ŷi, ŷj) in (5.2)

We show each of these below.
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(a)

Below we show that 1
n

∑
i∈S(yi − fi)2 is an unbiased estimate of

(
1
N

∑N
i=1 r

2
i + 1

N

∑N
i=1 var(fi | si = 1)

)
:

E

[
1

n

∑
i∈S

(yi − fi)2
]

= E

[
1

n

∑
i∈S

(yi − ei − fi + ei)
2

]

=
1

n
E

[
N∑
i=1

si(ri − δi)2
]

=
1

n

N∑
i=1

E(sir
2
i − 2siriδi + siδi)

=
1

n

N∑
i=1

r2iE(si)−
2

n

N∑
i=1

riE(siδi) +
1

n

N∑
i=1

E
(
siδ

2
i

)
=

1

N

N∑
i=1

r2i +
1

N

N∑
i=1

var(fi | si = 1)

(b)

Next we show that the second term in equation (5.2), N−n
N3

∑N
i=1 [var(gi | si = 0)− var(fi | si = 1)], is non-

positive, so ignoring this term will only make the variance estimate more conservative. We first define new

variables. Let d be a random indicator vector such that one entry is 1 and the remaining entries are 0 and

s · d = 1. Let T ≡ {i : si − di = 1} and φ ≡ f(·;xT , yT ) and φi ≡ f(xi;xT , yT ). That is, φi is the estimated

y response value for observation i using a prediction function trained on set of observations T , where d

indicates the observation that is dropped from the sample to create the training set.

Then we have that φi | si = 0 and fi | si = 1 are equal in distribution. These two functions predict yi

using a function trained a random sample of size (n− 1) that does not include observation i. It follows that

var(fi | si = 1) = var(φi | si = 0).

We also have that gi | si = 0 is equal to E(φi | S) | si = 0. It follows that var(gi | si = 0) = var[E(φi |

S) | si = 0)].

Therefore, to show that var(gi | si = 0)− var(fi | si = 1) ≤ 0, it is sufficient to show that

var[E(φi | S) | si = 0)] ≤ var(φi | si = 0)

We have that

var(φi | si = 0) = E[var(φi | S) | si = 0] + var[E(φi | S) | si = 0]

and

0 ≤ E[Var(φi | s) | si = 0]

It follows that var(gi | si = 0)− var(fi | si = 1) ≤ 0.

It follows that the second term in equation (5.2), N−n
N3

∑N
i=1 [var(gi | si = 0)− var(fi | si = 1)], is less
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than 0. Note also the factor of N−n
N3 ; for even moderate population sizes, this term will be small. Ignoring

this term will give a slightly conservative estimate of the variance.

(c)

It remains to show that − N−n
n2N(n−1)

∑
i 6=j∈S(yi − fi)(yj − fj) is an estimate of 1

N2

∑
i6=j cov(ŷi, ŷj).

First consider the expectation of the first term.

E

− N − n
n2N(n− 1)

∑
i6=j∈S

(yi − fi)(yj − fj)

 = − N − n
n2N(n− 1)

E

∑
i 6=j

sisj(yi − fi)(yj − fj)


= − N − n

n2N(n− 1)

∑
i 6=j

E [(yi − fi)(yj − fj) | si = 1, sj = 1)]P (si = 1, sj = 1)

= − N − n
nN2(N − 1)

∑
i 6=j

E(yiyj − yifj − yjfi + fifj | si = 1, sj = 1)

= − N − n
nN2(N − 1)

∑
i 6=j

yiyj +
2(N − n)

nN2(N − 1)

∑
i 6=j

yiE(fj | si = 1, sj = 1)

− N − n
nN2(N − 1)

∑
i 6=j

E(fifj | si = 1, sj = 1)

The true sum of the covariances between the yis, as we showed earlier, is equal to:

1

N2

∑
i 6=j

cov(ŷi, ŷj) = − N − n
nN2(N − 1)

∑
i 6=j

yiyj −
2(N − n)(n− 1)

nN2(N − 1)

∑
i 6=j

yiE(fj | si = 1, sj = 1)

+
(N − n)2(n− 1)

nN3(N − 1)

∑
i6=j

E(fifj | si = 1, sj = 1)

+
2(N − n)

N2(N − 1)

∑
i 6=j

yiE(gj | si = 1, sj = 0)

− 2(N − n)2

N3(N − 1)

∑
i 6=j

E(figj | si = 1, sj = 0)

+
(N − n)(N − n− 1)

N3(N − 1)

∑
i6=j

E(gigj | si = 0, sj = 0)

These two term are not exactly the same, but we argue that they are similar. Consider the difference between
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the two terms.

E

− N − n
n2N(n− 1)

∑
i 6=j∈S

(yi − fi)(yj − fj)

− 1

N2

∑
i 6=j

cov(ŷi, ŷj)

=
N − n

N2(N − 1)

{
N − n
N

∑
i6=j

[E(fifj | si = 1, sj = 1) + E(gigj |si = 0, sj = 0)− 2E(figj | si = 1, sj = 0)]

+ 2
∑
i 6=j

yi [E(gj | si = 1, sj = 0)− E(fj | si = 1, sj = 1)]

+
1

N

∑
i6=j

[E(fifj | si = 1, sj = 1)− E(gigj | si = 0, sj = 0)]

}
(5.4)

Using the following assumptions we show that each of the three sums in equation (5.4) converges to zero

faster than 1
n :

(A1): Assume that φi = α
(0)
i +

∑
j 6=i

α
(1)
ij

n sj + o
(
1
n

)
. We assume that each of the α values are bounded: for

all n and for all i, j, |α(0)
i | ≤ αmax and |α(1)

ij | ≤ αmax. Then φi | (sj = 1)− φi | (sj = 0) =
α

(1)
ij

n + o
(
1
n

)
. In

other words, we assume the function is asymptotically linear with bounded coefficients.

Note in particular that as a direct consequence of assumption (A1), E(fi | si = 1, sj) and E(gi | si = 0, sj)

vary from ei = E(fi | si = 1) = E(gi | si = 0) by c1
nq , where c1 > 0 and q > 0, for all i 6= j. That is, for all

i 6= j we have that

ei −
c1
n

+ o

(
1

n

)
≤ E(fi | si = 1, sj = 1) ≤ ei +

c1
n

+ o

(
1

n

)
ei −

c1
n

+ o

(
1

n

)
≤ E(fi | si = 1, sj = 0) ≤ ei +

c1
n

+ o

(
1

n

)
ei −

c1
n

+ o

(
1

n

)
≤ E(gi | si = 0, sj = 1) ≤ ei +

c1
n

+ o

(
1

n

)
ei −

c1
n

+ o

(
1

n

)
≤ E(gi | si = 0, sj = 0) ≤ ei +

c1
n

+ o

(
1

n

)

This means that the inclusion or exclusion of observation j in the sample has minimal effect on the expected

value of fi and gi, with the effect decreasing with 1
n .

(A2): There exists some emax such that |ei| ≤ emax for all i and for all n. We also assume that yi is bounded

for all i and for all n: yi ≤ ymax ∀i, n.

(A3): There exists some σ2
max such that var(fi | si = 1, sj) ≤ σ2

max and var(gi | si = 0, sj) ≤ σ2
max for all

i, j and let σ2
max ≤ c2

np for some c2 > 0 and p > 0.

There are three sums in equation (5.4) that we consider individually. Starting with the second sum, we
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have that by assumption (A1)

E(gj | si = 1, sj = 0)− E(fj | si = 1, sj = 1) =
1

n
E(fj | sj = 1, si = 0) +

n− 1

n
E(fj | si = 1, sj = 1)

− E(fi | si = 1, sj = 1)

=
1

n
[E(fj |sj = 1, si = 0)− E(fj |si = 1, sj = 1)]

=
α
(1)
ji

n2
+ o

(
1

n2

)

Therefore, for the second sum we have

2(N − n)

N2(N − 1)

∑
i 6=j

yi [E(gj | si = 1, sj = 0)− E(fj | si = 1, sj = 1)] =
2(N − n)

N2(N − 1)

∑
i6=j

yi

[
α
(1)
ji

n2
+ o

(
1

n2

)]

which is on the order of 1
n2 .

Next consider the last sum in Equation (5.4). Using assumptions (A1), (A2), and (A3), we have that

(N − n)

N3(N − 1)

∑
i 6=j

[E(fifj | si = 1, sj = 1)− E(gigj | si = 0, sj = 0)]

≤ (N − n)

N3(N − 1)

∑
i 6=j

[|cov(fi, fj | si = 1, sj = 1)|+ |cov(gi, gj | si = 0, sj = 0)|

+ E(fi | si = 1, sj = 1)E(fj | si = 1, sj = 1)− E(gi | si = 0, sj = 0)E(gj | si = 0, sj = 0)]

≤ (N − n)

N3(N − 1)

∑
i 6=j

[
2c2
np

+
4c1emax

n
+ o

(
1

n

)]

=
2(N − n)

N2np
c2 +

4(N − n)

N2n
emax +

N − n
N2

o

(
1

n

)
≤ 2(N − n)c2

Nnp+1
+

4(N − n)emax
Nn2

+ o

(
1

n2

)

This term approaches 0 faster than 1
n .

We have not yet been able to show that the first term converges to zero faster than 1
n but conjecture it

does and continue to pursue this in future work.
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Appendix H: Additional Tables from

Estimation Method

Simulations

The standard error of the bias can be calculated as the simulated estimate of the true standard error divided

by 100 (square root of number of simulations). To test whether or not the observed bias is due to chance, we

calculate the t-test statistic of the bias as t = Bias
True SE/100 . We consider the bias significantly different from 0

if |t| > 2, corresponding to a significance level of about 0.05. Results from the linear population simulation,

with simulated bias and t-test statistics, are in Table 5.7. In this simulation, the only observed bias that is

significantly different than 0 is the sample mean with N = 50 and n = 10, with an associated t-test statistic

of -2.1957. Since the sample mean is known to be unbiased for all N and n, this was due to chance.

We also consider the setting where there is no relationship between the covariates and the response.

We let the population size be 100,000, the covariates for each observation be a 20-dimensional vector ,

X ∼ N(0, I), and Y ∼ N(0, 1). We take 1000 random samples and estimate the population mean using the

sample mean, random forest adjustment, and our method with random forest prediction. Results can be

seen in Table 5.8. In the comparison with the sample mean, neither the random forest adjustment nor our

method with random forest prediction had much of an adverse effect on the standard error nor bias.

College Tuition

In Tables 5.10 and 5.11 we give the simulated estimate of the true standard error and estimated bias of all

five methods for n = 100, 200, . . . , 1000. For the nonprobability sample, the bias was significantly different

from 0 for all methods at all sample sizes. To demonstrate the improvement that more sophisticated machine

learning methods can provide, we give the ratio of simulated true standard error using out method using

OLS compared to random forest in Table 5.9. Our method with random forest had lower standard error

throughout compared to our method with OLS. As the sample size, the standard error using random forest

improved fast then with OLS. This demonstrates the advantage that machine learning models can have over

less sophisticated modeling techniques.
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True SE Est. SE Bias t

N = 50

n = 10
Sample Mean 0.5093 0.5135 -0.0112 -2.1957

OLS Adjustment 0.2331 0.2220 -0.0015 -0.6469
Our Method with OLS 0.2424 0.2687 0.0008 0.3479

N = 500

n = 10
Sample Mean 0.7008 0.7017 -0.0023 -0.3265

OLS Adjustment 0.3117 0.2925 0.0047 1.4961
Our Method with OLS 0.3177 0.3502 -0.0009 -0.2795

n = 100
Sample Mean 0.1984 0.2006 0.0007 0.3413

OLS Adjustment 0.0842 0.0839 0.0003 0.3183
Our Method with OLS 0.0843 0.0852 -0.0004 -0.4591

N = 10000

n = 10
Sample Mean 0.7118 0.7141 -0.0041 -0.5765

OLS Adjustment 0.3381 0.3131 0.0029 0.8583
Our Method with OLS 0.3428 0.3744 0.0036 1.0413

n = 100
Sample Mean 0.2231 0.2246 0.0037 1.6423

OLS Adjustment 0.0989 0.0987 0.0019 1.8814
Our Method with OLS 0.0988 0.1022 0.0019 1.9097

n = 1000
Sample Mean 0.0667 0.0667 -0.0008 -1.1258

OLS Adjustment 0.0300 0.0297 -0.0002 -0.5445
Our Method with OLS 0.0300 0.0298 -0.0002 -0.5416

Table 5.7: Bias, simulated standard error, t-statistics, and estimated standard error for our method using
OLS prediction, OLS adjustment, and sample mean for a population with a linear relationship between x
and y.

True SE Est. SE Bias

n = 25
Sample Mean 0.2323 0.2241 0.0069

Random Forest Adjustment 0.2355 0.0970 0.0078
Our Method with Random Forest 0.2362 0.2395 0.0076

n = 50
Sample Mean 0.0997 0.1004 0.0073 (*)

Random Forest Adjustment 0.1022 0.0406 0.0076 (*)
Our Method with Random Forest 0.1011 0.1030 0.0067 (*)

n = 100
Sample Mean 0.0322 0.0315 0.0004

Random Forest Adjustment 0.0324 0.0125 0.0006
Our Method with Random Forest 0.0323 0.0318 0.0003

Table 5.8: Simulation estimate of the true standard error, estimated standard error, and estimated bias
using the sample mean, OLS adjustment, and our method with OLS for a population with no relationship
between X and Y .
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n SE(Ours:RF )
SE(Ours:OLS)

100 0.96
200 0.90
300 0.87
400 0.86
500 0.86
600 0.85
700 0.84
800 0.83
900 0.83
1000 0.84

Table 5.9: Decrease in simulated standard error when using our method with random forest as opposed to
OLS.
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Ours: OLS OLS Adj. Ours: RF RF Adj. Sample Mean
n Sim. SE Bias Sim. SE Bias Sim. SE Bias Sim. SE Bias Sim. SE Bias

100 641.92 -0.23 643.06 -2.57 613.04 7.29 615.49 -41.46 1457.21 12.78
200 421.75 -1.64 421.98 -2.86 383.24 -2.82 379.07 -44.61 992.38 -9.89
300 330.23 -2.82 330.40 -3.59 289.90 -1.62 287.00 -33.57 771.34 1.18
400 268.85 -2.64 268.93 -3.23 233.44 -2.77 231.18 -28.28 622.82 -8.43
500 226.40 -3.45 226.45 -3.86 191.92 -2.11 190.38 -21.92 527.22 -4.32
600 192.01 -0.10 192.04 -0.40 162.82 -0.74 161.74 -16.68 446.87 -1.21
700 163.02 -2.14 163.04 -2.36 137.92 -0.91 137.13 -13.25 382.26 -2.95
800 139.82 0.13 139.84 -0.02 116.95 0.80 116.38 -8.71 323.41 3.70
900 115.35 -2.71 115.36 -2.82 96.89 -2.09 96.48 -8.96 270.14 -6.26
1000 93.74 0.07 93.75 0.00 78.42 -0.42 78.16 -5.18 218.32 -1.48

Table 5.10: Simulated bias and simulated standard error for mean college tuition for simple random samples.

Ours: OLS OLS Adj. Ours: RF RF Adj. Sample Mean
n Sim. SE Bias Sim. SE Bias Sim. SE Bias Sim. SE Bias Sim. SE Bias

100 644.76 -417.52 645.29 -421.88 591.40 -716.18 591.38 -812.23 1480.35 -2897.45
200 422.15 -401.16 422.45 -403.33 373.66 -561.15 369.43 -620.99 997.26 -2742.66
300 324.11 -383.01 324.23 -384.33 278.61 -482.55 275.67 -524.69 773.69 -2596.72
400 269.51 -367.31 269.57 -368.24 225.75 -435.34 224.29 -465.61 623.56 -2454.67
500 226.20 -335.52 226.23 -336.14 187.05 -386.31 185.75 -409.09 529.01 -2293.47
600 192.74 -316.27 192.77 -316.70 157.92 -352.08 156.77 -368.58 447.20 -2116.24
700 162.64 -285.59 162.65 -285.89 131.13 -312.02 130.40 -324.62 371.41 -1916.76
800 140.24 -252.13 140.25 -252.34 112.68 -271.89 112.24 -281.13 318.37 -1708.96
900 116.16 -215.90 116.16 -216.04 92.67 -230.47 92.31 -237.22 261.61 -1463.60
1000 93.24 -174.62 93.24 -174.71 74.06 -184.84 73.84 -189.44 206.00 -1192.33

Table 5.11: Simulated bias and simulated standard error for estimating mean college tuition for nonprobability samples.
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