
Automatic Designs in Deep Neural Networks

by

Lanlan Liu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2020

Doctoral Committee:

Assistant Professor Jia Deng, Co-Chair
Professor Satinder Singh, Co-Chair
Professor Jason J. Corso
Associate Professor Honglak Lee

Lanlan Liu

llanlan@umich.edu

ORCID iD: 0000-0002-9776-5768

© Lanlan Liu 2020

To the journey

ii

ACKNOWLEDGMENTS

First I would like to give special thanks to my advisor, Professor Jia Deng. It has been an honor

and privilege to be his student. I am grateful for his great support along the journey and amazing

guidance that teaches me a lot in research and academic life.

I would also thank the committee members Professor Satinder Singh, Professor Jason Corso

and Professor Honglak Lee. It is a great honor to have them on my dissertation committee.

I am also grateful to my awesome colleagues in our Vision and Learning lab: Weifeng Chen,

Ankit Goyal, Darby Haller, Hei Law, Lahav Lipson, Alejandro Newell, Jonathan Stroud, Zachary

Teed, Emily Walters, Mingzhe Wang, Dawei Yang and Kaiyu Yang. They are great companions

and supporters along this long journey.

I would also like to thank the mentors in my industrial experiences: Thomas Pfister, Jia Li

at Google; Yuting Zhang, Stefano Soatto, Pietro Perona at Amazon. Their guidance is valuable

for my PhD journey and the coming industrial career. My amazing colleagues in Google and

Amazon: Michael Mully, Lu Jiang, Donghoon Lee, Ming-Hsuan Yang, Wei Wei, Nam Vo, Shasha

Li, Zezhou Chen, Chenxi Liu, Jiyang Gao, Ankan Bansal, Rui Zhang and many others, have also

brought me great fun and interesting discussions.

Great thanks also go to my friends and family who give me their full support in both the happy

and sour moments of the PhD journey: Yuhui Wang, Tianjie Wang, Ke Yu, Bowen Wei, Weier

Wan, Yuan Xu, Xuke Zhai, Ruxin Zhang, Yuqi Wang, Chen Shao, Chuhang Zou, Lily Chen, Jia

Li, Shang Zhang, Fangting Xia, Shike Mei, Fei Tian, Yin Xi and many others.

At last, my greatest thanks go to my parents and Donghoon, who support me with their full

love and encouragement that gave me great power to get through all, even the darkest moments.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . x

Abstract . xi

Chapter

1 Introduction . 1

1.1 Background: Design in Deep Neural Networks 1
1.2 Motivation . 2
1.3 Contributions . 4
1.4 Thesis Outline . 5

1.4.1 Automated Dynamic Inference (Chapter 2) 5
1.4.2 Unified Loss Design (Chapter 3) . 6
1.4.3 Synthetic Data Generation for Small-data Object Detection (Chapter 4) . 6
1.4.4 Architecture Search for GANs (Chapter 5) 7

1.5 Related Work . 7
1.5.1 Automated Data Design . 7
1.5.2 Automated Model Design . 8
1.5.3 Automated Loss Design . 9

2 Automated Dynamic Inference . 10

2.1 Introduction . 10
2.2 Related work . 12
2.3 Definition and Semantics of D2NNs . 14

2.3.1 D2NN definition . 14
2.3.2 D2NN Semantics . 15

2.4 D2NN Learning . 17

iv

2.4.1 Learning a Single Control Node . 17
2.4.2 Mini-Bags for Set-Based Metrics . 18

2.5 Experiments . 22
2.5.1 High-Low Capacity D2NN . 22
2.5.2 Cascade D2NN . 23
2.5.3 Chain D2NN . 24
2.5.4 Hierarchical D2NN . 25
2.5.5 Comparison with Dynamic Capacity Networks 26
2.5.6 Visualization of Examples in Different Paths 27
2.5.7 CIFAR-10 Results . 27

2.6 Conclusion . 28
2.7 Appendix . 28

2.7.1 Implementation Details . 28
2.7.2 ILSVRC-10 Semantic Hierarchy . 29
2.7.3 Configurations . 29

3 Unified Loss Design . 35

3.1 Introduction . 35
3.2 Related Work . 39

3.2.1 Direct Loss Minimization . 39
3.2.2 Surrogate Losses . 41

3.3 UniLoss . 42
3.3.1 Overview . 42
3.3.2 Example: Multi-class Classification . 44
3.3.3 Refactorization . 45
3.3.4 Interpolation . 46

3.4 Experimental Results . 47
3.4.1 Tasks and Metrics . 48
3.4.2 Average Precision for Unbalanced Binary Classification 49
3.4.3 PCKh for Single-Person Pose Estimation 50
3.4.4 Accuracy for Multi-class Classification 52
3.4.5 Discussion of Hyper-parameters . 53

3.5 Conclusions . 54
3.6 Appendix . 55

3.6.1 Binary Classification . 55
3.6.2 Pose Estimation . 55
3.6.3 Classification . 56

4 Synthetic Data Generation for Small-data Object Detection 58

4.1 Introduction . 58
4.2 Related Work . 61

4.2.1 Image-to-image Translation. 61
4.2.2 Object Insertion with GANs. 61
4.2.3 Integration of GANs and Classifiers. 61
4.2.4 Data Augmentation for Object Detection 62

v

4.3 DetectorGAN . 63
4.3.1 Model Architecture . 63
4.3.2 Train Generator with Detection Losses 64
4.3.3 Overall Losses and Training . 67

4.4 Experiments . 69
4.4.1 Disease Localization . 71
4.4.2 Pedestrian Detection . 74

4.5 Conclusion . 75

5 Architecture Search for GANs . 76

5.1 Introduction . 76
5.2 Related Work . 78

5.2.1 Improving GANs . 78
5.2.2 Architecture Search with GANs . 79
5.2.3 Neural Architecture Search . 80
5.2.4 Hybrid Optimization . 80

5.3 Dynamically Grown GAN . 81
5.3.1 Dynamic Growing Overview . 81
5.3.2 Search Algorithm . 84

5.4 Experimental Results . 84
5.4.1 Datasets and Evaluation Metrics . 85
5.4.2 CIFAR-10 . 86
5.4.3 LSUN . 89

5.5 Analysis . 90
5.5.1 How does the capacity of the generator (G) and the discriminator (D)

affect training? . 91
5.5.2 How does each action affect training? 91
5.5.3 How does greedy pruning affect searching? 93
5.5.4 Discussion on Efficiency . 94

5.6 Conclusions . 95
5.7 Appendix . 95

5.7.1 Additional Analysis . 95

6 Limitations and Future Work . 99

6.1 Integration of Multiple Automated Techniques 99
6.2 Unified Loss . 100
6.3 Architecture Search . 100
6.4 Complete Automated System . 100

Bibliography . 102

vi

LIST OF FIGURES

2.1 Two D2NN examples. Input and output nodes are drawn as circles with the output
nodes shaded. Function nodes are drawn as rectangles (regular nodes) or diamonds
(control nodes). Dummy nodes are shaded. Data edges are drawn as solid arrows
and control edges as dashed arrows. A data edge with a user defined default value is
decorated with a circle. 11

2.2 The accuracy-cost or fscore-cost curves of various D2NN architectures, as well as
conventional DNN baselines consisting of only regular nodes. 20

2.3 Four different D2NN architectures. 21
2.4 Distribution of examples going through different execution paths. Skipped nodes are

in grey. The hyperparameter λ controls the trade-off between accuracy and efficiency.
A bigger λ values accuracy more. Left: for the high-low capacity D2NN. Right: for
the hierarchical D2NN. The X-axis is the number of nodes activated. 24

2.5 Examples with different paths in a high-low D2NN (left) and a hierarchical D2NN
(right). 24

2.6 Accuracy-cost curve for a chain D2NN on the CMNIST task compared to DCN. 25
2.7 The semantic class hierarchy of the ILSVRC-10 dataset. 29

3.1 Computation graphs for conventional losses and UniLoss. Top: (a) testing for conven-
tional losses. The decoder and evaluator are usually non-differentiable. (b) training
for conventional losses. To avoid the non-differentiability, conventional methods op-
timize a manually-designed differentiable loss function instead during training. Bot-
tom: (a) refactorized testing in UniLoss. We refactorize the testing so that the non-
differentiability exists only in Sign(·) and the multi-variant function. (b) training in
UniLoss with the differentiable approximation of refactorized testing. σ(·) is the sig-
moid function. We approximate the non-differentiable components in the refactorized
testing pipeline with interpolation methods. 36

4.1 DetectorGAN generates object-inserted images as synthesized data to improve the de-
tection performance. DetectorGAN integrates a detector into the generator-discriminator
loop. 59

4.2 The illustration for Eqn. 4.3 – unrolling one forward-backward pass for trainingDET
to bridge the link between GX and Lreal

Det (detection loss on real images). Detection
loss on real images has no direct link to the generator GX . Last step of training old
DET (noted as DET ′ in the figure, refers to same DET module but in the previous
training step) is unrolled as in the dotted rectangle. The red arrow represents the fact
that there is a differentiable link between GX and Lreal

Det after the unrolling. 65

vii

4.3 Example generated images from CycleGAN and DetectorGAN for NIH. The details
are high-lighted in green boxes (added for visualization). Both methods generate syn-
thetic images from clean images and bounding box masks. DetectorGAN generates
nodule inserted images with better local and global quality. 69

4.4 Examples of generated synthetic images from PS-GAN and DetectorGAN. The de-
tails are high-lighted in green boxes (added for visualization). We see qualitative
improvement for pedestrian task as well. 69

4.5 Comparison showing that adding synthetic images can help detect nodules in NIH
Chest X-ray more accurately. Here, green boxes are ground truth and red are predic-
tions. 70

5.1 Overview of the Dynamically Grown GAN. Bottom: The dynamic growing process.
We alternate between growing the architecture and training the weights of the new
architectures. Each growing step chooses among actions including growing the gen-
erator (G) with a certain convolution layer, or growing discriminator (D) with a certain
convolution layer, or growing both G and D to a higher resolution. In each training
step, the new architectures inherit the weights from the old architectures. Top: Exam-
ples of growing steps. 81

5.2 Examples of generated LSUN Images by ProgGAN and our DGGAN at 256×256
resolution. Top: ProgGAN, obtained from their paper. It is not stated whether it is
randomly generated; Bottom: Our DGGAN, randomly generated. 88

5.3 Examples of generated CIFAR-10 Images by ProgGAN, AutoGAN and our DGGAN,
from left to right. ProgGAN and our DGGAN are randomly generated. AutoGAN
images are obtained from their paper, which is also randomly generated. 88

5.4 G-to-D number of parameters ratio and normalized FID for candidates on CIFAR-10.
Left: all the candidates. Right: zoom-in to candidates with normalized FID smaller
than 1.2. The red arrows show the growing process of the best performing GAN. . . . 92

5.5 How each action affects training, i.e. how much is the improvement of normalized
FID over parent. Actions include “Upscale”, which means increasing the resolution
of both G and D by 2, “G, a, b”, which means growing a layer in G with a as filter
size and b as number of filters, “D, a, b”, which means growing a layer in D with a
as filter size and b as number of filters. Top: Percentage of candidates with positive
improvement over parent after each action. Bottom: Average and standard deviation
of the improvement for each action. 92

5.6 Left: How likely good/sub-optimal parent candidates result in good child candidates
with different normalized FID thresholds. The good candidates given a threshold
are defined as candidates with normalized FID larger than the threshold and the sub-
optimal ones are lower than the threshold. Each threshold holds for both parent can-
didates and child candidates. Right Simulation with different hyper-parameters p and
K. 93

5.7 Left: G-to-D number of parameters ratio and normalized FID for all the candidates in
LSUN. Right: zoom-in to candidates with normalized FID smaller than 1.2. 96

viii

5.8 How each action affects training, i.e. how much is the improvement of normalized FID
over parent. Top: Percentage of candidates with positive improvement over parent
after each action. Bottom: Average and standard deviation of the improvement for
each action. 97

5.9 Left: How likely good/sub-optimal parent candidates result in good child candidates
with different normalized FID thresholds. Right: Simulation with different hyper-
parameters p and K. 97

ix

LIST OF TABLES

3.1 PCKh of Stacked Hourglass with MSE and UniLoss on the MPII validation. 51
3.2 Accuracy of ResNet-20 with CE loss and UniLoss on the CIFAR-10 and CIFAR-100

test set. 52
3.3 Ablation study for mini-batch sizes on CIFAR-10. 53
3.4 Ablation study for number of anchors on the three tasks. 53

4.1 Nodule AP on expanded annotation setting on the test set with IoU = 0.1 for NIH.
Baseline is using only real training data. We add 1000 synthetic images from Cycle-
GAN and GAN-D for training. 67

4.2 Localization accuracy with different TIOU on “old annotations” test set for NIH. The
latter three uses RetinaNet as the model. 67

4.3 Localization accuracy with different TIOBB on the “old annotations” test set on NIH. . 70
4.4 User study on the NIH Chest X-ray dataset. 70
4.5 Pedestrian detection AP trained with real data, synthetic data generated by PS-GAN,

pix2pix and DetectorGAN. 74

5.1 Quantitative evaluation on CIFAR-10, compared with ProgGAN at each resolution. . . 86
5.2 Quantitative evaluation on CIFAR-10, compared to prior state-of-the-art works. Top:

manually-designed GANs. Bottom: automatic GANs. Lower FID and higher Incep-
tion Score indicate better generation quality. 86

5.3 Quantitative evaluation on LSUN, compared with ProgGAN at each scale. 89
5.4 Quantitative evaluation on LSUN, compared to prior state-of-the-art works. SWD

averages over multiple feature scales from 256 to 16. Lower FID and smaller SWD
indicate better generation quality. All methods except COCO-GAN are non part-based
GANs that learns to generate the whole images. COCO-GAN learns to generate parts
of images instead. 89

x

ABSTRACT

To train a Deep Neural Network (DNN) that performs well for a task, many design steps are

taken including data designs, model designs and loss designs. Despite that remarkable progress

has been made in all these domains of designing DNNs, the unexplored design space of each com-

ponent is still vast. That brings the research field of developing automated techniques to lift some

heavy work from human researchers when exploring the design space. The automated designs can

help human researchers to make massive or challenging design choices and reduce the expertise

required from human researchers.

Much effort has been made towards automated designs of DNNs, including synthetic data

generation, automated data augmentation, neural architecture search and so on. Despite the huge

effort, the automation of DNN designs is still far from complete. This thesis contributes in two

ways: identifying new problems in the DNN design pipeline that can be solved automatically, and

proposing new solutions to problems that have been explored by automated designs.

The first part of this thesis presents two problems that were usually solved with manual designs

but can benefit from automated designs. To tackle the problem of inefficient computation due

to using a static DNN architecture for different inputs, some manual efforts have been made to

use different networks for different inputs as needed, such as cascade models. We propose an

automated dynamic inference framework that can cut this manual effort and automatically choose

different architectures for different inputs during inference. To tackle the problem of designing

differentiable loss functions for non-differentiable performance metrics, researchers usually design

the loss manually for each individual task. We propose an unified loss framework that reduces the

amount of manual design of losses in different tasks.

The second part of this thesis discusses developing new techniques in domains where the au-

xi

tomated design has been shown effective. In the synthetic data generation domain, we propose a

novel method to automatically generate synthetic data for small-data object detection. The syn-

thetic data generated can amend the limited annotated real data of the small-data object detection

tasks, such as rare disease detection. In the architecture search domain, we propose an architec-

ture search method customized for generative adversarial networks (GANs). GANs are commonly

known unstable to train where we propose this new method that can stabilize the training of GANs

in the architecture search process.

xii

CHAPTER 1

Introduction

1.1 Background: Design in Deep Neural Networks

With the big success of deep neural networks (DNNs) in vision, language, recommendation

and many other Machine Learning (ML) fields, lots of efforts are put into designing deep neural

network models that perform better, in terms of better accuracy, efficiency, and generalization

ability. To train a DNN that performs well for a task, especially a supervised task, designing

the DNN architecture is not the only step. It starts from data collection where we collect raw

data such as images, videos or words from all kinds of sources, and human workers annotate the

collected data with the desired labels. We also augment the data with flipping, re-scaling and more

to improve the generalization ability. Next, we design the architecture of the DNN to train. We also

design a loss function and choose the optimization method and hyper-parameters. Finally, when

we deploy the trained model to certain applications, we may use the trained DNN with certain

post-processing steps and evaluate it with the performance metrics that we care about.

The whole pipeline can be categorized into three types of designs: data design, model de-

sign and loss design. More specifically, the data design include data collection, data annotation,

data augmentation etc. The model design include architecture design, network compression, etc.

The loss design include differentiable loss function design, optimization method design, hyper-

parameters exploration and so on.

In each line of work, enormous new works have been proposed in recent years. For example,

in data design, data augmentation techniques (Xu et al., 2016; Perez and Wang, 2017) improve the

1

generalization ability of DNNs significantly; hard-example mining techniques (Shrivastava et al.,

2016; Loshchilov and Hutter, 2015) improve effective use of data in unbalanced data situations.

In model design, revolutionary architectures have been proposed, including Inception-Net (Szegedy

et al., 2015), residual networks (He et al., 2016), dense networks (Huang et al., 2017) and so on. To

address the issue that networks are sometimes too computationally expensive for edge devices, net-

work compression (Han et al., 2015; Denton et al., 2014; Chen et al., 2014; Gupta et al., 2015) and

conditional computation (Bengio et al., 2015, 2013; Shazeer et al., 2017) techniques are proposed.

In loss design, with a large amount of new tasks emerging, exploration for both using existing

loss functions for newer tasks or developing new loss functions is conducted (Taylor et al., 2008;

Henderson and Ferrari, 2016; Liu et al., 2016). In addition, new optimization methods (Reddi

et al., 2018; Kingma and Ba, 2015; Loshchilov and Hutter, 2019; Ma and Yarats, 2019) and hyper-

parameter tuning techniques (Bergstra et al., 2011; Bardenet et al., 2013) are proposed for faster

and better optimization of the losses.

1.2 Motivation

Despite that remarkable progress has been made in all these domains of designing DNNs, the

unexplored design space of each component is still vast. With the deep neural networks helping

to lift some tiring and massive work from human workers, for example automatically detecting

irregular events, classifying inappropriate entertainment content, a natural question arises: can

we also develop automated techniques to lift some heavy work from human researchers when

exploring the design space of the deep neural networks?

This is one of the biggest motivations behind this thesis. We expect automated design of deep

neural networks can help lift the heavy work from human researchers in two aspects:

1. Automated design help human researchers to make massive or challenging design choices;

2. Automated design reduce the expertise required for human researchers.

We illustrate how exactly automated design can help in these two aspects below.

2

Massive or Challenging Design Choices In each component of the DNN training, there remains

large unexplored design spaces. To explore them, massive work that shares certain similar sub-

processes needs to be done. With those sub-processes automated and even smartly-oriented, the

labor of human researchers can be freed.

For example, in architecture design, there is a big space to choose which layers to have and how

to connect layers. Automated design can be used to explore these choices. Neural Architecture

Search (NAS) (Zoph et al., 2018; Zoph and Le, 2017) explores to search over these choices to

construct neural networks for various tasks, including image classification (Real et al., 2019; Liu

et al., 2019b, 2018), segmentation (Liu et al., 2019a; Chen et al., 2018), and others (So et al., 2019;

Wong et al., 2018).

In addition to architecture design, other design choices such as hyper-parameters, can also be

explored automatically (Snoek et al., 2015; Domhan et al., 2015).

There are also design decisions where it is challenging to accomplish with only human labors.

For example, training data is often obtained by many human annotators collecting and annotating

data. However, sometimes obtaining training data is challenging, either due to the rarity of the data

itself, or difficulties to obtain high quality data. One common example is to collect medical related

images – some diseases are naturally rare to observe, and to annotate these images, well-trained

medical specialists is needed. In such cases, methods such as the automatic annotation (Murthy

et al., 2015), synthetic data generation (Liang et al., 2017; Gurumurthy et al., 2017; Li et al., 2017a;

Yang and Deng, 2018) are used to help.

Human Expertise Automated design can also reduce the level of expert knowledge required.

For example, many of the model design require human expertise, such as how to choose model

capacity with different amounts of data and how to select thresholds for cascade models. With

the automated neural architecture search and hyper-parameter tuning techniques, less expertise

is needed to train a model. For example, sometimes a simple start button can do all the hyper-

parameter tuning process. This further enables broader application of DNNs in various domains. A

3

typical application case is the AutoML service in the cloud industry, where small business holders

are able to train image classifiers for their own business needs.

In loss design, to optimize for non-differentiable performance metrics that we care about, re-

searchers often need to propose differentiable surrogate losses for network training. However, de-

signing surrogate losses can sometimes incur substantial manual effort, including a large amount

of the trial and error and the hyper-parameter tuning. This effort is important because a poorly

designed loss can be misaligned with the final performance metric and lead to ineffective training.

Automated design of surrogate losses such as learning to learn (Li and Malik, 2017; Chen et al.,

2017) helps to reduce the level of expert knowledge required.

1.3 Contributions

Recent works towards automated design of DNNs include synthetic data generation, automated

annotation, automated data augmentation, neural architecture search, automated hyper-parameter

tuning and so on. Despite the huge effort, the automation of DNN design is still far from com-

plete. Towards automated design of DNNs, this thesis contributes in two ways: 1) identifying new

problems in the DNN design pipeline that can be solved automatically, such as automated dynamic

inference and unified loss, and 2) proposing new solutions to problems that have been explored by

automated designs, such as synthetic data generation and architecture search.

We identify problems that were usually solved with manual design but can benefit from auto-

mated design.

• To tackle the problem of inefficient computation due to using a static DNN architecture for

different inputs, some manual efforts have been made to use different networks for differ-

ent inputs as needed, such as cascade models. We propose the first automated dynamic

inference framework that can cut this manual effort and automatically choose different ar-

chitectures for different inputs during inference.

• To tackle the problem of designing differentiable loss functions for non-differentiable per-

4

formance metrics, manual trials are made for each task by researchers. We propose the first

unified loss framework that reduces the amount of manual design of losses in different tasks.

We also make efforts towards developing new techniques in domains where the automated

design has been shown effective.

• In synthetic data generation domain, we propose a novel method to automatically generate

synthetic data for small-data object detection.

• In architecture search domain, we propose an architecture search method customized for

Generative Adversarial Networks (GANs).

1.4 Thesis Outline

This thesis first summarizes our motivation and contributions in Chapter 1. Chapter 2-5 il-

lustrate in detail about the particular problems in automated design that we are solving and the

solutions we propose. Chapter 6 further discusses the limitations and future works.

1.4.1 Automated Dynamic Inference (Chapter 2)

In this chapter, we use automated design to address the problem of unnecessary computation

in inference. During the inference of a DNN model, the same amount of computation is used for

every input because the DNN is static. However, this is often not necessary because each input may

require different amounts of computation to be classified correctly (some are difficult to classify but

some are easy). Manual efforts such as cascade models are used to reduce unnecessary computation

in the past. Instead of manually-designed cascades, we introduce Dynamic Deep Neural Networks

(D2NN), a new type of feed-forward deep neural network that allows automatic dynamic inference.

That is, given an input, only a subset of D2NN neurons are executed, and the particular subset is

determined by the D2NN itself automatically. By pruning unnecessary computation depending on

input, D2NNs provide a way to improve computational efficiency. With extensive experiments of

various D2NN architectures on image classification tasks, we demonstrate that D2NNs are general

5

and flexible, and can effectively improve computational efficiency during inference. This chapter

is based on a joint work with Jia Deng (Liu and Deng, 2018).

1.4.2 Unified Loss Design (Chapter 3)

In this chapter, we use automated design to reduce the manual efforts needed to design loss

functions. The target performance metric for a task is often non-differentiable with respect to the

DNN parameters. We thus need to design trainable surrogate losses that are differentiable and

properly approximating the performance metrics. Large amount of manual effort is needed to de-

sign task-specific surrogate losses. To reduce this manual effort, we introduce UniLoss, a unified

framework to generate surrogate losses for training deep networks with gradient descent. Our key

observation is that in many cases, evaluating a model with a performance metric on a batch of

examples can be refactored into four steps: from input to real-valued scores, from scores to com-

parisons of pairs of scores, from comparisons to binary variables, and from binary variables to

the final performance metric. Using this refactorization we generate differentiable approximations

for each non-differentiable step through interpolation. Using UniLoss, we can optimize for differ-

ent tasks and metrics using one unified framework, achieving comparable performance compared

with manually-designed losses. This chapter is based on a joint work with Mingzhe Wang and Jia

Deng (Liu et al., 2020a).

1.4.3 Synthetic Data Generation for Small-data Object Detection (Chapter 4)

In this chapter, we explore a new method in synthetic data generation, where we generate

synthetic data to amend real data collected by human annotators. In particular, we explore object

detection in the small data regime, where only a limited number of annotated bounding boxes

are available due to data rarity and annotation expense. We address this problem by learning

to generate new synthetic images with associated bounding boxes, and using these for training

an object detector. We show that simply training previously proposed generative models does

not yield satisfactory performance due to them optimizing for image realism rather than object

6

detection accuracy. To this end we develop a new model with a novel unrolling mechanism that

jointly optimizes the generative model and a detector such that the generated images improve

the performance of the detector. We show this method outperforms the state of the art on two

challenging datasets, disease detection and small data pedestrian detection. This chapter is based

on a joint work with Michael Muelly, Jia Deng, Tomas Pfister and Li-Jia Li (Liu et al., 2019c).

1.4.4 Architecture Search for GANs (Chapter 5)

In this chapter, we explore a new strategy in architecture search domain. While architecture

search methods have been successfully applied in many problems, little effective effort has been

made for GANs, especially considering the difficulties and instabilities to train large-scale GANs.

In light of the recent work introducing progressive network growing as a promising way to ease the

training for large GANs, we propose a method to dynamically grow GANs during training, opti-

mizing the network architecture and its parameters together with automation. The method embeds

architecture search techniques as an interleaving step with gradient-based training to periodically

seek the optimal architecture-growing strategy for the generator and discriminator. It enjoys the

benefits of both eased training because of the progressive growing and improved performance be-

cause of the broader architecture design space. Experimental results demonstrate state-of-the-art of

image generation. Observations in the search procedure also provide constructive insights into the

GAN model design such as the generator-discriminator balance and convolutional layer choices.

This chapter is based on a joint work with Yuting Zhang, Jia Deng and Stefano Soatto (Liu et al.,

2020b).

1.5 Related Work

1.5.1 Automated Data Design

With the enormous progress in the data design, especially in constructing larger and larger

datasets (Deng et al., 2009; Lin et al., 2014; Cordts et al., 2016), automated assistance to obtain

7

and annotate data becomes essential. Automatic annotation techniques (Murthy et al., 2015) have

been developed to reduce the workload to manually annotate data with human labors. Synthetic

data generation is one of the techniques to automatically obtain clean and annotated data in many

domains including 3D reconstruction, semantic segmentation, object detection and so on (Liang

et al., 2017; Gurumurthy et al., 2017; Li et al., 2017a; Yang and Deng, 2018). As the first few to

explore synthetic data generation for the small-data object detection task, we propose a GAN-based

method that is fundamentally different from previous work—we construct a direct feedback link

between the image generator and the object detector while previous work has no such feedback.

1.5.2 Automated Model Design

Neural Architecture Search (NAS) (Zoph et al., 2018; Zoph and Le, 2017) explores to search

neural network architectures for various tasks, including image classification (Real et al., 2019;

Liu et al., 2019b, 2018), segmentation (Liu et al., 2019a; Chen et al., 2018), image generation with

GANs (Wang and Huan, 2019; Gong et al., 2019) and others (So et al., 2019; Wong et al., 2018).

For architecture search of GANs, we propose a new method that combines progressive growing

with architecture search. Our new method is thus able to search for high-resolution (256×256)

GANs while previous work (Wang and Huan, 2019; Gong et al., 2019) can search for only lower

resolution (up to 48×48) GANs.

Most of these works focus on the accuracy performance. To improve the efficiency perfor-

mance of neural networks, learned network compression (Han et al., 2015; Denton et al., 2014;

Chen et al., 2014; Gupta et al., 2015) is proposed to eliminate redundancy in data or computa-

tion in a way that is input-independent. Also, conditional computation (Bengio et al., 2015, 2013;

Shazeer et al., 2017) techniques are proposed to perform input-dependent pruning of the network.

Along the line of input-dependent computation saving, we propose a new framework with auto-

matic dynamic inference: with a large computation graph, the inference of each image involves a

dynamic part of the computation graph and which part is determined by the model itself.

8

1.5.3 Automated Loss Design

Automated design of surrogate losses of non-differentiable performance metrics is proposed to

ease the design process and reduce the level of expert knowledge required. Reinforcement learning

algorithms have been also used to optimize performance metrics for structured output problems,

especially those that can be formulated as taking a sequence of actions (Ranzato et al., 2016;

Liu et al., 2017b; Caicedo and Lazebnik, 2015; Yeung et al., 2016; Zhou et al., 2018). Learning

to learn methods (Li and Malik, 2017; Chen et al., 2017) use neural networks to learn a loss

function using output-performance data pairs. We provide a new framework to propose surrogate

losses in a unified way that does not involve substantial task-specific designs. It does not involve

learning parameters as learning to learn methods or formulating the task as a sequence of actions

as reinforcement learning methods.

In addition, automatic hyper-parameter tuning techniques (Snoek et al., 2015; Domhan et al.,

2015) are proposed for faster and better optimization of the losses.

9

CHAPTER 2

Automated Dynamic Inference 1

2.1 Introduction

In this chapter, we address the problem of unnecessary computation in inference. There has

been need for inference computational efficiency, in particular, by the need to deploy deep networks

on mobile devices and data centers. Mobile devices are constrained by energy and power, limiting

the amount of computation that can be executed. Data centers need energy efficiency to scale to

higher throughput and to save operating cost.

However, during the inference of a traditional DNN model, the same amount of computation

is used for every input because the DNN is static. This is often not necessary because each input

may requires different amount of computation to be classified correctly. For example, to classify

whether an image contains a car or not, some images with a front view of the car may be easy to

classify with a small network but some images with only a part of the car visible may be difficult

and need a larger network.

Manual efforts such as cascade models (Li et al., 2015; Sun et al., 2013) are used to reduce un-

necessary computation in the past. Instead of manually-designed cascades, we introduce Dynamic

Deep Neural Networks (D2NN), a new type of feed-forward deep neural network that allows au-

tomatic dynamic inference. That is, given an input, only a subset of neurons are executed, and the

particular subset is determined by the network itself based on the particular input. In other words,

the amount of computation and computation sequence are dynamic based on input. This is dif-

1This chapter is based on a joint work with Jia Deng

10

Figure 2.1: Two D2NN examples. Input and output nodes are drawn as circles with the output
nodes shaded. Function nodes are drawn as rectangles (regular nodes) or diamonds (control nodes).
Dummy nodes are shaded. Data edges are drawn as solid arrows and control edges as dashed
arrows. A data edge with a user defined default value is decorated with a circle.

ferent from standard feed-forward networks that always execute the same computation sequence

regardless of input.

A D2NN is a feed-forward deep neural network (directed acyclic graph of differentiable mod-

ules) augmented with one or more control modules. A control module is a sub-network whose

output is a decision that controls whether other modules can execute. Fig. 2.1 (left) illustrates a

simple D2NN with one control module (Q) and two regular modules (N1, N2), where the controller

Q outputs a binary decision on whether module N2 executes. For certain inputs, the controller may

decide that N2 is unnecessary and instead execute a dummy node D to save on computation. As

an example application, this D2NN can be used for binary classification of images, where some

images can be rapidly classified as negative after only a small amount of computation.

D2NNs provide a way to improve computational efficiency by selective execution, pruning

unnecessary computation depending on input. D2NNs also make it possible to use a bigger network

under a computation budget by executing only a subset of the neurons each time.

A D2NN is trained end to end. That is, regular modules and control modules are jointly trained

to optimize both accuracy and efficiency. We achieve such training by integrating backpropagation

with reinforcement learning, necessitated by the non-differentiability of control modules.

Compared to prior work that optimizes computational efficiency in computer vision and ma-

chine learning, our work is distinctive in four aspects: (1) the decisions on selective execution are

part of the network inference and are learned end to end together with the rest of the network,

as opposed to hand-designed or separately learned (Li et al., 2015; Sun et al., 2013; Almahairi

et al., 2016); (2) D2NNs allow more flexible network architectures and execution sequences in-

11

cluding parallel paths, as opposed to architectures with less variance (Denoyer and Gallinari, 2014;

Shazeer et al., 2017); (3) our D2NNs directly optimize arbitrary efficiency metric that is defined

by the user, while previous work has no such flexibility because they improve efficiency indirectly

through sparsity constraints (Bengio et al., 2015, 2013; Shazeer et al., 2017). (4) our method op-

timizes metrics such as the F-score that does not decompose over individual examples. This is

an issue not addressed in prior work. We will elaborate on these differences in the Related Work

section of this chapter.

We perform extensive experiments to validate our D2NNs algorithms. We evaluate various

D2NN architectures on several tasks. They demonstrate that D2NNs are general, flexible, and can

effectively improve computational efficiency.

Our main contribution is the D2NN framework that allows a user to augment a static feed-

forward network with control modules to achieve automated dynamic inference. We show that

D2NNs allow a wide variety of topologies while sharing a unified training algorithm. To our

knowledge, D2NN is the first single automated framework that can support various qualitatively

different efficient network designs, including cascade designs and coarse-to-fine designs.

2.2 Related work

Input-dependent execution has been widely used in computer vision, from cascaded detec-

tors (Viola and Jones, 2004; Felzenszwalb et al., 2010) to hierarchical classification (Deng et al.,

2011; Bengio et al., 2010). The key difference of our work from prior work is that we jointly learn

both visual features and control decisions end to end, whereas prior work either hand-designs fea-

tures and control decisions (e.g. thresholding), or learns them separately.

In the context of deep networks, two lines of prior work have attempted to improve computa-

tional efficiency. One line of work tries to eliminate redundancy in data or computation in a way

that is input-independent. The methods include pruning networks (Han et al., 2015; Wen et al.,

2016; Alvarez and Salzmann, 2016), approximating layers with simpler functions (Denton et al.,

2014; Zhang et al., 2016), and using number representations of limited precision (Chen et al., 2014;

12

Gupta et al., 2015). The other line of work exploits the fact that not all inputs require the same

amount of computation, and explores input-dependent execution of DNNs. Our work belongs to

the second line, and we will contrast our work mainly with them. In fact, our input-dependent

D2NN can be combined with input-independent methods to achieve even better efficiency.

Among methods leveraging input-dependent execution, some use pre-defined execution-control

policies. For example, cascade methods (Li et al., 2015; Sun et al., 2013) rely on manually-selected

thresholds to control execution; Dynamic Capacity Network (Almahairi et al., 2016) designs a way

to directly calculate a saliency map for execution control. Our D2NNs, instead, are fully learn-able;

the execution-control policies of D2NNs do not require manual design and are learned together with

the rest of the network.

Our work is closely related to conditional computation methods (Bengio et al., 2015, 2013;

Shazeer et al., 2017), which activate part of a network depending on input. They learn policies

to encourage sparse neural activations (Bengio et al., 2015) or sparse expert networks (Shazeer

et al., 2017). Our work differs from these methods in several ways. First, our control policies are

learned to directly optimize arbitrary user-defined global performance metrics, whereas conditional

computation methods have only learned policies that encourage sparsity. In addition, D2NNs allow

more flexible control topologies. For example, in (Bengio et al., 2015), a neuron (or block of

neurons) is the unit controllee of their control policies; in (Shazeer et al., 2017), an expert is the

unit controllee. Compared to their fixed types of controllees, our control modules can be added in

any point of the network and control arbitrary subnetworks. Also, various policy parametrization

can be used in the same D2NN framework. We show a variety of parameterizations (as different

controller networks) in our D2NN examples, whereas previous conditional computation works

have used some fixed formats: For example, control policies are parametrized as the sigmoid or

softmax of an affine transformation of neurons or inputs (Bengio et al., 2015; Shazeer et al., 2017).

Our work is also related to attention models (Denil et al., 2012; Mnih et al., 2014; Gregor et al.,

2015). Note that attention models can be categorized as hard attention (Mnih et al., 2014; Ba

et al., 2014; Almahairi et al., 2016) versus soft (Gregor et al., 2015; Stollenga et al., 2014). Hard

13

attention models only process the salient parts and discard others (e.g. processing only a subset of

image subwindows); in contrast, soft attention models process all parts but up-weight the salient

parts. Thus only hard attention models perform input-dependent execution as D2NNs do. However,

hard attention models differ from D2NNs because hard attention models have typically involved

only one attention module whereas D2NNs can have multiple attention (controller) modules —

conventional hard attention models are “single-threaded” whereas D2NN can be “multi-threaded”.

In addition, prior work in hard attention models have not directly optimized for accuracy-efficiency

trade-offs. It is also worth noting that many mixture-of-experts methods (Jacobs et al., 1991; Jordan

and Jacobs, 1994; Eigen et al., 2013) also involve soft attention by soft gating experts: they process

all experts but only up-weight useful experts, thus saving no computation.

D2NNs also bear some similarity to Deep Sequential Neural Networks (DSNN) (Denoyer and

Gallinari, 2014) in terms of input-dependent execution. However, it is important to note that al-

though DSNNs’ structures can in principle be used to optimize accuracy-efficiency trade-offs,

DSNNs are not for the task of improving efficiency and have no learning method proposed to

optimize efficiency. And the method to effectively optimize for efficiency-accuracy trade-off is

non-trivial as is shown in the following sections. Also, DSNNs are single-threaded: it always acti-

vates exactly one path in the computation graph, whereas for D2NNs it is possible to have multiple

paths or even the entire graph activated.

2.3 Definition and Semantics of D2NNs

Here we precisely define a D2NN and describe its semantics, i.e. how a D2NN performs infer-

ence.

2.3.1 D2NN definition

A D2NN is defined as a directed acyclic graph (DAG) without duplicated edges. Each node

can be one of the three types: input nodes, output nodes, and function nodes. An input or output

node represents an input or output of the network (e.g. a vector). A function node represents

14

a (differentiable) function that maps a vector to another vector. Each edge can be one of the two

types: data edges and control edges. A data edge represents a vector sent from one node to another,

the same as in a conventional DNN. A control edge represents a control signal, a scalar, sent from

one node to another. A data edge can optionally have a user-defined “default value”, representing

the output that will still be sent even if the function node does not execute.

For simplicity, we have a few restrictions on valid D2NNs: (1) the outgoing edges from a node

are either all data edges or all control edges (i.e. cannot be a mix of data edges and control edges);

(2) if a node has an incoming control edge, it cannot have an outgoing control edge. Note that these

two simplicity constraints do not in any way restrict the expressiveness of a D2NN. For example,

to achieve the effect of a node with a mix of outgoing data edges and control edges, we can just

feed its data output to a new node with outgoing control edges and let the new node be an identity

function.

We call a function node a control node if its outgoing edges are control edges. We call a

function node a regular node if its outgoing edges are data edges. Note that it is possible for a

function node to take no data input and output a constant value. We call such nodes “dummy”

nodes. We will see that the “default values” and “dummy” nodes can significantly extend the

flexibility of D2NNs. Hereafter we may also call function nodes “subnetwork”, or “modules” and

will use these terms interchangeably. Fig. 2.1 illustrates simple D2NNs with all kinds of nodes and

edges.

2.3.2 D2NN Semantics

Given a D2NN, we perform inference by traversing the graph starting from the input nodes.

Because a D2NN is a DAG, we can execute each node in a topological order (the parents of a

node are ordered before it; we take both data edges and control edges in consideration), same as

conventional DNNs except that the control nodes can cause the computation of some nodes to be

skipped.

After we execute a control node, it outputs a set of control scores, one for each of its outgo-

15

ing control edges. The control edge with the highest score is “activated”, meaning that the node

being controlled is allowed to execute. The rest of the control edges are not activated, and their

controllees are not allowed to execute. For example, in Fig 2.1 (right), the node Q controls N2 and

N3. Either N2 or N3 will execute depending on which has the higher control score.

Although the main idea of the inference (skipping nodes) seems simple, due to D2NNs’ flex-

ibility, the inference topology can be far more complicated. For example, in the case of a node

with multiple incoming control edges (i.e. controlled by multiple controllers), it should execute if

any of the control edges are activated. Also, when the execution of a node is skipped, its output

will be either the default value or null. If the output is the default value, subsequent execution will

continue as usual. If the output is null, any downstream nodes that depend on this output will in

turn skip execution and have a null output unless a default value has been set. This “null” effect

will propagate to the rest of the graph. Fig. 2.1 (right) shows a slightly more complicated exam-

ple with default values: if N2 skips execution and outputs null, so will N4 and N6. But N8 will

execute regardless because its input data edge has a default value. In our Experiments Section, we

will demonstrate more sophisticated D2NNs.

We can summarize the semantics of D2NNs as follows: a D2NN executes the same way as a

conventional DNN except that there are control edges that can cause some nodes to be skipped. A

control edge is active if and only if it has the highest score among all outgoing control edges from

a node. A node is skipped if it has incoming control edges and none of them is active, or if one of

its inputs is null. If a node is skipped, its output will be either null or a user-defined default value.

A null will cause downstream nodes to be skipped whereas a default value will not.

A D2NN can also be thought of as a program with conditional statements. Each data edge is

equivalent to a variable that is initialized to either a default value or null. Executing a function

node is equivalent to executing a command assigning the output of the function to the variable. A

control edge is equivalent to a boolean variable initialized to False. A control node is equivalent

to a “switch-case” statement that computes a score for each of the boolean variables and sets the

one with the largest score to True. Checking the conditions to determine whether to execute a

16

function is equivalent to enclosing the function with an “if-then” statement. A conventional DNN

is a program with only function calls and variable assignments without any conditional statements,

whereas a D2NN introduces conditional statements with the conditions themselves generated by

learnable functions.

2.4 D2NN Learning

Due to the control nodes, a D2NN cannot be trained the same way as a conventional DNN. The

output of the network cannot be expressed as a differentiable function of all trainable parameters,

especially those in the control nodes. As a result, backpropagation cannot be directly applied. The

main difficulty lies in the control nodes, whose outputs are discretized into control decisions. This

is similar to the situation with hard attention models (Mnih et al., 2014; Ba et al., 2014), which use

reinforcement learning. Here we adopt the same general strategy.

2.4.1 Learning a Single Control Node

For simplicity of exposition we start with a special case where there is only one control node.

We further assume that all parameters except those of this control node have been learned and

fixed. That is, the goal is to learn the parameters of the control node to maximize a user-defined

reward, which in our case is a combination of accuracy and efficiency. This results in a classical

reinforcement learning setting: learning a control policy to take actions so as to maximize reward.

We base our learning method on Q-learning (Mnih et al., 2013; Sutton and Barto). We let each

outgoing control edge represent an action, and let the control node approximate the action-value

(Q) function, which is the expected return of an action given the current state (the input to the

control node).

It is worth noting that unlike many prior works that use deep reinforcement learning, a D2NN

is not recurrent. For each input to the network (e.g. an image), each control node only executes

once. And the decisions of a control node completely depend on the current input. As a result,

an action taken on one input has no effect on another input. That is, our reinforcement learning

17

task consists of only one time step. Our one time-step reinforcement learning task can also be seen

as a contextual bandit problem, where the context vector is the input to the control module, and

the arms are the possible action outputs of the module. The one time-step setting simplifies our

Q-learning objective to that of the following regression task:

L = (Q(s,a)− r)2, (2.1)

where r is a user-defined reward, a is an action, s is the input to control node, and Q is computed

by the control node. As we can see, training a control node here is the same as training a network

to predict the reward for each action under an L2 loss. We use mini-batch gradient descent; for

each training example in a mini-batch, we pick the action with the largest Q, execute the rest of

the network, observe a reward, and perform backpropagation using the L2 loss in Eqn. 2.1.

During training we also perform ε-greedy exploration — instead of always choosing the action

with the best Q value, we choose a random action with probability ε. The hyper-parameter ε

is initialized to 1 and decreases over time. The reward r is user defined. Since our goal is to

optimize the trade-off between accuracy and efficiency, in our experiments we define the reward

as a combination of an accuracy metric A (for example, F-score) and an efficiency metric E (for

example, the inverse of the number of multiplications), that is, λA + (1 − λ)E where λ balances

the trade-off.

2.4.2 Mini-Bags for Set-Based Metrics

Our training algorithm so far has defined the state as a single training example, i.e., the control

node takes actions and observes rewards on each training example independent of others. This

setup, however, introduces a difficulty for optimizing for accuracy metrics that cannot be decom-

posed over individual examples.

Consider precision in the context of binary classification. Given predictions on a set of ex-

amples and the ground truth, precision is defined as the proportion of true positives among the

18

predicted positives. Although precision can be defined on a single example, precision on a set of

examples does not generally equal the average of the precisions of individual examples. In other

words, precision as a metric does not decompose over individual examples and can only be com-

puted using a set of examples jointly. This is different from decomposable metrics such as error

rate, which can be computed as the average of the error rates of individual examples. If we use

precision as our accuracy metric, it is not clear how to define a reward independently for each

example such that maximizing this reward independently for each example would optimize the

overall precision. In general, for many metrics, including precision and F-score, we cannot com-

pute them on individual examples and average the results. Instead, we must compute them using a

set of examples as a whole. We call such metrics “set-based metrics”. Our learning setup so far is

ill-equipped for such metrics because a reward is defined on each example independently.

To address this issue we generalize the definition of a state from a single input to a set of inputs.

We define such a set of inputs as a mini-bag. With a mini-bag of images, any set-based metric can

be computed and can be used to directly define a reward. Note that a mini-bag is different from

a mini-batch which is commonly used for batch updates in gradient decent methods. Actually in

our training, we calculate gradients using a mini-batch of mini-bags. Now, an action on a mini-bag

s = (s1, . . . , sm) is now a joint action a = (a1, . . . , am) consisting of individual actions ai on

example si. Let Q(s, a) be the joint action-value function on the mini-bag s and the joint action a.

We constrain the parametric form of Q to decompose over individual examples:

Q =
m∑
i=1

Q(si, ai), (2.2)

where Q(si, ai) is a score given by the control node when choosing the action ai for example si.

We then define our new learning objective on a mini-bag of size m as

L = (r −Q(s, a))2 = (r −
m∑
i=1

Q(si, ai))
2, (2.3)

where r is the reward observed by choosing the joint action a on mini-bag s. That is, the control

19

0 0.20.4 0.60.8 10
0.2
0.4
0.6
0.8

1
a) High-Low (LFW-B)

cost

fs
co

re

D2NN
High NN
Low NN

0 0.20.4 0.60.8 10.4
0.5
0.6
0.7
0.8
0.9

1
b) Cascade (LFW-B)

cost

fs
co

re

D2NN
static NNs

0 0.20.4 0.60.8 10.8

0.9

1

c) Chain (LFW-B)

cost

fs
co

re

D2NN
N-2-5-8
N-3-6-9

0.2 0.4 0.6 0.8 10
0.2
0.4
0.6
0.8
d) Hierarchy (ILSVRC-10)

cost

ac
cu

ra
cy

D2NN
NN

Figure 2.2: The accuracy-cost or fscore-cost curves of various D2NN architectures, as well as
conventional DNN baselines consisting of only regular nodes.

node predicts an action-value for each example such that their sum approximates the reward defined

on the whole mini-bag.

It is worth noting that the decomposition of Q into sums (Eqn. 2.2) enjoys a nice property:

the best joint action a∗ under the joint action-value Q(s, a) is simply the concatenation of the best

actions for individual examples because maximizing

a∗ = argmax
a

(Q(s, a)) = argmax
a

(
m∑
i=1

Q(si, ai)) (2.4)

is equivalent to maximizing the individual summands:

a∗i = argmax
ai

Q(si, ai), i = 1, 2...m. (2.5)

That is, during test time we still perform inference on each example independently.

Another implication of the mini-bag formulation is:

∂L

∂xi
= 2(r −

m∑
j=1

Q(sj, aj))
∂Q(si, ai)

∂xi
, (2.6)

where xi is the output of any internal neuron for example i in the mini-bag. This shows that

there is no change to the implementation of backpropagation except that we scale the gradient

using the difference between the mini-bag Q-value Q and reward r.

Joint Training of All Nodes We have described how to train a single control node. We now

describe how to extend this strategy to all nodes including additional control nodes as well as

20

Figure 2.3: Four different D2NN architectures.

regular nodes. If a D2NN has multiple control nodes, we simply train them together. For each mini-

bag, we perform backpropagation for multiple losses together. Specifically, we perform inference

using the current parameters, observe a reward for the whole network, and then use the same reward

(which is a result of the actions of all control nodes) to backpropagate for each control node.

For regular nodes, we can place losses on them the same as on conventional DNNs. And we

perform backpropagation on these losses together with the control nodes. The implementation

of backpropagation is the same as conventional DNNs except that each training example have a

different network topology (execution sequence). And if a node is skipped for a particular training

example, then the node does not have a gradient from the example.

It is worth noting that our D2NN framework allows arbitrary losses to be used for regular nodes.

For example, for classification we can use the cross-entropy loss on a regular node. One important

detail is that the losses on regular nodes need to be properly weighted against the losses on the

control nodes; otherwise the regular losses may dominate, rendering the control nodes ineffective.

One way to eliminate this issue is to use Q-learning losses on regular nodes as well, i.e. treating the

outputs of a regular node as action-values. For example, instead of using the cross-entropy loss on

the classification scores, we treat the classification scores as action-values—an estimated reward

of each classification decision. This way Q-learning is applied to all nodes in a unified way and

no additional hyperparameters are needed to balance different kinds of losses. In our experiments

unless otherwise noted we adopt this unified approach.

21

2.5 Experiments

We here demonstrate four D2NN structures motivated by different demands of efficient network

design to show its flexibility and effectiveness, and compare D2NNs’ ability to optimize efficiency-

accuracy trade-offs with prior work.

We implement the D2NN framework in Torch. Torch provides functions to specify the subnet-

work architecture inside a function node. Our framework handles the high-level communication

and loss propagation.

2.5.1 High-Low Capacity D2NN

Our first experiment is with a simple D2NN architecture that we call “high-low capacity D2NN”.

It is motivated by that we can save computation by choosing a low-capacity subnetwork for easy

examples. It consists of a single control nodes (Q) and three regular nodes (N1-N3) as in Fig. 2.3a).

The control node Q chooses between a high-capacity N2 and a low-capacity N3; the N3 has fewer

neurons and uses less computation. The control node itself has orders of magnitude fewer compu-

tation than regular nodes (this is true for all D2NNs demonstrated).

We test this hypothesis using a binary classification task in which the network classifies an

input image as face or non-face. We use the Labeled Faces in the Wild (Huang et al., 2007;

Learned-Miller, 2014) dataset. Specifically, we use the 13k ground truth face crops (112×112

pixels) as positive examples and randomly sampled 130k background crops (with an intersection

over union less than 0.3) as negative examples. We hold out 11k images for validation and 22k for

testing. We refer to this dataset as LFW-B and use it as a testbed to validate the effectiveness of

our new D2NN framework.

To evaluate performace we measure accuracy using the F1 score, a better metric than percent-

age of correct predictions for an unbalanced dataset. We measure computational cost using the

number of multiplications following prior work (Almahairi et al., 2016; Shazeer et al., 2017) and

for reproductivity. Specifically, we use the number of multiplications (control nodes included),

normalized by a conventional DNN consisting of N1 and N2, that is, the high-capacity execu-

22

tion path. Note that our D2NNs also allow to use other efficiency measurement such as run-time,

latency.

During training we define the Q-learning reward as a linear combination of accuracy A and

efficiency E (negative cost): r = λA+ (1− λ)E where λ ∈ [0, 1]. We train instances of high-low

capacity D2NNs using different λ’s. As λ increases, the learned D2NN trades off efficiency for

accuracy. Fig. 2.2a) plots the accuracy-cost curve on the test set; it also plots the accuracy and

efficiency achieved by a conventional DNN with only the high capacity path N1+N2 (High NN)

and a conventional DNN with only the low capacity path N1+N3 (Low NN).

As we can see, the D2NN achieves a trade-off curve close to the upperbound: there are points

on the curve that are as fast as the low-capacity node and as accurate as the high-capacity node.

Fig. 2.4(left) plots the distribution of examples going through different execution paths. It shows

that as λ increases, accuracy becomes more important and more examples go through the high-

capacity node. These results suggest that our learning algorithm is effective for networks with a

single control node.

With inference efficiency improved, we also observe that for training, a D2NN typically takes

2-4 times more iterations to converge than a DNN, depending on particular model capacities, con-

figurations and trade-offs.

2.5.2 Cascade D2NN

We next experiment with a more sophisticated design that we call a “cascade D2NN” (Fig. 2.3b).

It is inspired by the standard cascade design commonly used in computer vision. The intuition is

that many negative examples may be rejected early using simple features. The cascade D2NN

consists of seven regular nodes (N1-N7) and three control nodes (Q1-Q3). N1-N7 form 4 cascade

stages (i.e. 4 conventional DNNs, from small to large) of the cascade: N1+N2, N3+N4, N5+N6,

N7. Each control node decides whether to execute the next cascade stage or not.

We evaluate the network on the same LFW-B face classification task using the same evaluation

protocol as in the high-low capacity D2NN. Fig. 2.2b) plots the accuracy-cost tradeoff curve for the

23

Figure 2.4: Distribution of examples going through different execution paths. Skipped nodes are
in grey. The hyperparameter λ controls the trade-off between accuracy and efficiency. A bigger λ
values accuracy more. Left: for the high-low capacity D2NN. Right: for the hierarchical D2NN.
The X-axis is the number of nodes activated.

Figure 2.5: Examples with different paths in a high-low D2NN (left) and a hierarchical D2NN
(right).

D2NN. Also included are the accuracy-cost curve (“static NNs”) achieved by the four conventional

DNNs as baselines, each trained with a cross-entropy loss. We can see that the cascade D2NN

can achieve a close to optimal trade-off, reducing computation significantly with negligible loss of

accuracy. In addition, we can see that our D2NN curve outperforms the trade-off curve achieved

by varying the design and capacity of static conventional networks. This result demonstrates that

our algorithm is successful for jointly training multiple control nodes.

For a cascade, wall time of inference is often an important consideration. Thus we also measure

the inference wall time (excluding data loading with 5 runs) in this Cascade D2NN. We find that a

82% wall-time cost corresponds to a 53% number-of-multiplication cost; and a 95% corresponds

to a 70%. Defining reward directly using wall time can further reduce the gap.

2.5.3 Chain D2NN

Our third design is a “Chain D2NN” (Fig. 2.3c). The network is shaped as a chain, where each

link consists of a control node selecting between two (or more) regular nodes. In other words, we

perform a sequence of vector-to-vector transforms; for each transform we choose between several

24

0 2 4 6 8
x 107

0
0.2
0.4
0.6
0.8

1

#multiplications
ac

cu
ra

cy

D2NN
DCN

Figure 2.6: Accuracy-cost curve for a chain D2NN on the CMNIST task compared to DCN (Alma-
hairi et al., 2016).

subnetworks. One scenario that we can use this D2NN is that the configuration of a conventional

DNN (e.g. number of layers, filter sizes) cannot be fully decided. Also, it can simulate shortcuts

between any two layers by using an identity function as one of the transforms. This chain D2NN

is qualitatively different from other D2NNs with a tree-shaped data graph because it allows two

divergent data paths to merge again. That is, the number of possible execution paths can be

exponential to the number of nodes.

In Fig. 2.3c), the first link is that Q1 chooses between a low-capacity N2 and a high-capacity

N3. If one of them is chosen, the other will output a default value zero. The node N4 adds the

outputs of N2 and N3 together. Fig. 2.2c) plots the accuracy-cost curve on the LFW-B task. The

two baselines are: a conventional DNN with the lowest capacity path (N1-N2-N5-N8-N10), and a

conventional DNN with the highest capacity path (N1-N3-N6-N9-N10). The cost is measured as

the number of multiplications, normalized by the cost of the high-capacity baseline.

Fig. 2.2c) shows that the chain D2NN achieves a trade-off curve close to optimal and can speed

up computation significantly with little accuracy loss. This shows that our learning algorithm is

effective for a D2NN whose data graph is a general DAG instead of a tree.

2.5.4 Hierarchical D2NN

In this experiment we design a D2NN for hierarchical multiclass classification. The idea is to

first classify images to coarse categories and then to fine categories. This idea has been explored

25

by numerous prior works (Liu et al., 2013; Bengio et al., 2010; Deng et al., 2011), but here we

show that the same idea can be implemented via a D2NN trained end to end.

We use ILSVRC-10, a subset of the ILSVRC-65 (Deng et al., 2012). In ILSVRC-10, 10

classes are organized into a 3-layer hierarchy: 2 superclasses, 5 coarse classes and 10 leaf classes.

Each class has 500 training images, 50 validation images, and 150 test images. As in Fig. 2.3d),

the hierarchy in this D2NN mirrors the semantic hierarchy in ILSVRC-10. An image first goes

through the root N1. Then Q1 decides whether to descend the left branch (N2 and its children),

and Q2 decides whether to descend the right branch (N3 and its children). The leaf nodes N4-N8

are each responsible for classifying two fine-grained leaf classes. It is important to note that an

input image can go down parallel paths in the hierarchy, e.g. descending both the left branch and

the right branch, because Q1 and Q2 make separate decisions. This “multi-threading” allows the

network to avoid committing to a single path prematurely if an input image is ambiguous.

Fig. 2.2d) plots the accuracy-cost curve of our hierarchical D2NN. The accuracy is measured

as the proportion of correctly classified test examples. The cost is measured as the number of

multiplications, normalized by the cost of a conventional DNN consisting only of the regular nodes

(denoted as NN in the figure). We can see that the hierarchical D2NN can match the accuracy of

the full network with about half of the computational cost.

Fig. 2.4(right) plots for the hierarchical D2NN the distribution of examples going through exe-

cution sequences with different numbers of nodes activated. Due to the parallelism of D2NN, there

can be many different execution sequences. We also see that as λ increases, accuracy is given more

weight and more nodes are activated.

2.5.5 Comparison with Dynamic Capacity Networks

In this experiment we empirically compare our approach to closely related prior work. Here

we compare D2NNs with Dynamic Capacity Networks (DCN) (Almahairi et al., 2016), for which

efficency measurement is the absolute number of multiplications. Given an image, a DCN applies

an additional high capacity subnetwork to a set of image patches, selected using a hand-designed

26

saliency based policy. The idea is that more intensive processing is only necessary for certain

image regions.

To compare, we evaluate with the same multiclass classification task on the Cluttered MNIST (Mnih

et al., 2014), which consists of MNIST digits randomly placed on a background cluttered with

fragments of other digits. We train a chain D2NN of length 4 , which implements the same idea of

choosing a high-capacity alternative subnetwork for certain inputs. Fig. 2.6 plots the accuracy-cost

curve of our D2NN as well as the accuracy-cost point achieved by the DCN in (Almahairi et al.,

2016)—an accuracy of 0.9861 and and a cost of 2.77 × 107. The closest point on our curve is an

slightly lower accuracy of 0.9698 but slightly better efficiency (a cost of 2.66 × 107). Note that

although our accuracy of 0.9698 is lower, it compares favorably to those of other state-of-the-art

methods such as DRAW (Gregor et al., 2015): 0.9664 and RAM (Mnih et al., 2014): 0.9189.

2.5.6 Visualization of Examples in Different Paths

In Fig. 2.5 (left), we show face examples in the high-low D2NN for λ=0.4. Examples in low-

capacity path are generally easier (e.g. more frontal) than examples in high-capacity path. In

Fig. 2.5 (right), we show car examples in the hierarchical D2NN with 1) a single path executed

and 2) the full graph executed (for λ=1). They match our intuition that examples with a single

path executed should be easier (e.g. less occlusion) to classify than examples with the full graph

executed.

2.5.7 CIFAR-10 Results

We train a Cascade D2NN on CIFAR-10 where the corresponded DNN baseline is the ResNet-

110. We initialize this D2NN with pre-trained ResNet-110 weights, apply cross-entropy losses on

regular nodes, and tune the mixed-loss weight as explained in Sec. 4. We see a 30% reduction of

cost with a 2% loss (relative) on accuracy, and a 62% reduction of cost with a 7% loss (relative)

on accuracy. The D2NN’s ability to improve efficiency relies on the assumption that not all inputs

require the same amount of computation. In CIFAR-10, all images are low resolution (32 × 32),

27

and it is likely that few images are significantly easier to classify than others. As a result, the

efficiency improvement is modest compared to other datasets.

2.6 Conclusion

In this chapter, we have introduced Dynamic Deep Neural Networks (D2NN), a new type of

feed-forward deep neural networks that allow automated dynamic inference. Extensive experi-

ments have demonstrated that D2NNs are flexible and effective.

2.7 Appendix

2.7.1 Implementation Details

We implement the D2NN framework in Torch. Torch already provides implementations of

conventional neural network modules (nodes). So a user can specify the subnetwork architecture

inside a control node or a regular node using existing Torch functionalities. Our framework then

handles the communication between the user-defined nodes in the forward and backward pass.

To handle parallel paths, default-valued nodes and nodes with multiple data parents, we need to

keep track of an example’s execution status (which nodes are activated by this example) and output

status (which nodes have output for this example). An example’s output status is different from

its execution status if some nodes are not activated but have default values. For runtime efficiency,

we implement the tracking of examples at the mini-batch level. That is, we perform forward and

backward passes for a mini-batch of examples as a regular DNN does. Each mini-batch consists

of several mini-bags of images.

We describe the implementation of D2NN learning procedure as two steps. First, the pre-

processing step: When a user-defined D2NN model is fed into our framework, we first perform

a breadth-first search to get the DAG orders of nodes while performing structure error checks,

contructing data and control relationships between nodes and calculating the cost (number of mul-

tiplications) of each node.

28

Bird

Object

Car Cat DogBoat

AnimalVehicle

Black
grouseAmbulance Egyptian

cat
Great
DaneFireboat PtarmiganJeep Persian

cat DeerhoundGondalo

Figure 2.7: The semantic class hierarchy of the ILSVRC-10 dataset.

After the preprocessing, the training step is similar to a regular DNN: a forward pass and a

backward pass. All nodes are visited according to a topological ordering in a forward pass and the

reverse ordering in a backward pass.

For each function node, the forward pass has three steps: fetch inputs, forward inside the

node, and send data or control signals to children nodes. When dealing with multiple data inputs

and multiple control signals, the D2NN will filter examples with more than one null inputs or all

negative control signals. When a default value has been set for a node, all examples have to send

out data. If the node is not activated for a particular example, the output will take the default

value. A backward pass has similar logic: fetch gradients from children, perform the backward

pass inside and send out gradients to parents. It is worth noting that when a default value is used

in a node, the gradients can be blocked by this node because it is not actually executed.

2.7.2 ILSVRC-10 Semantic Hierarchy

The ILSVRC-10 dataset is a subset of the ILSVRC-65 dataset (Deng et al., 2012). In our

ILSVRC-10, there are 10 classes organized into a 3-layer hierarchy: 2 superclasses, 5 coarse

classes and 10 leaf classes as in Fig 2.7. Each class has 500 training images, 50 validation images,

and 150 test images.

2.7.3 Configurations

High-Low Capacity D2NN The high-low capacity D2NN consists of a single control node (Q)

and three regular nodes (N1,N2,N3) as illustrated in Fig. 2.3a).

29

• Node N1: a convolutional layer with a 3×3 filter size, 8 filters and a stride of 2, followed by

a 3×3 max-pooling layer with a stride of 2.

• Node N2: a convolutional layer with a 3×3 filter size and 16 filters, followed by a 3×3

max-pooling layer with a stride of 2. The output is reshaped and fed into a fully connected

layer with 512 neurons followed by another fully connected layer with the 2-class output.

• Node N3: three 3×3 max-pooling layers, each with a stride of 2, followed by two fully

connected layers with 32 neurons and the 2-class output.

• Node Q1: a convolutional layer with a 3×3 filter size and 2 filters, followed by a 3×3 max-

pooling layer with a stride of 2. The output is reshaped and fed into a fully connected layer

with 128 neurons followed by another fully connected layer with the 2-action output.

Cascade D2NN The cascade D2NN consists of a sequence of four regular nodes (N1 to N7) and

three control nodes (Q1-Q3) as in Fig. 2.3b).

• Node N1: a convolutional layer with a 3×3 filter size, 2 filters and a stride of 2, followed by

a 3×3 max-pooling layer with a stride of 2.

• Node N2: three 3×3 max-pooling layers with strides of 2. The output is reshaped and fed

into a fully connected layer with the 2-class output.

• Node N3: two convolutional layers with both 3×3 filter sizes and 2, 8 filters respectively,

each followed by a 3×3 max-pooling layer with a stride of 2.

• Node N4: two 3×3 max-pooling layers with strides of 2. The output is reshaped and fed into

a fully connected layer with the 2-class output.

• Node N5: two convolutional layers with both 3×3 filter sizes and 4, 16 filters respectively,

each followed by a 3×3 max-pooling layer with a stride of 2.

30

• Node N6: two 3×3 max-pooling layers with strides of 2. The output is reshaped and fed into

a fully connected layer with the 2-class output.

• Node N7: five convolutional layers with all 3×3 filter sizes and 2, 8, 32, 32, 64 filters

repectively, each followed by a 3×3 max-pooling layer with a stride of 2 except for the third

and fifth layer. The output is reshaped and fed into a fully connected layer with 512 neurons

followed by another fully connected layer with the 2-class output.

• Node Q1, Q2, Q3: the input is reshaped and fed into a fully connected layer with the 2-action

output.

Chain D2NN The Chain D2NN is shaped as a chain, where each link consists of a control node

selecting between two regular nodes. In the experiments of LFW-B dataset, we use a 3-stage Chain

D2NN as in Fig. 2.3c).

• Node N1: a convolutional layer with a 3×3 filter size, 2 filters and a stride of 2, followed by

a 3×3 max-pooling layer with a stride of 2.

• Node N2: a convolutional layer with a 1×1 filter size and 16 filters.

• Node N3: a convolutional layer with a 3×3 filter size and 16 filters.

• Node N4: a 3×3 max-pooling layer with a stride of 2.

• Node N5: a convolutional layer with a 1×1 filter size and 32 filters.

• Node N6: two convolutional layers with both 3×3 filter sizes and 32, 32 filters repectively.

• Node N7: a 3×3 max-pooling layer with a stride of 2.

• Node N8: a convolutional layer with a 1×1 filter size and 32 filters followed by a 3×3 max-

pooling layer with a stride of 2. The output is reshaped and fed into a fully connected layer

with 256 neurons.

31

• Node N9: a convolutional layer with a 3×3 filter size and 64 filters. The output is reshaped

and fed into a fully connected layer with 256 neurons.

• Node N10: a fully connected layer with the 2-class output.

• Node Q1: a convolutional layer with a 3×3 filter size and 8 filters with a 3×3 max-pooling

layer with a stride of 2 before and a 3×3 max-pooling layer with a stride of 2 after. The

output is reshaped and fed into two fully connected layers with 64 neurons and the 2-action

output respectively.

• Node Q2: a 3×3 max-pooling layer with a stride of 2 followed by a convolutional layer with

a 3×3 filter size and 4 filters. The output is reshaped and fed into two fully connected layers

with 64 neurons and the 2-action output respectively.

• Node Q3: a convolutional layer with a 3×3 filter size and 2 filters. The output is reshaped

and fed into two fully connected layers with 64 neurons and the 2-action output respectively.

Hierarchical D2NN Fig. 2.3d) illustrates the design of our hierarchical D2NN.

• Node N1: a convolutional layer with a 11×11 filter size, 64 filters, a stride of 4 and a 2×2

padding, followed by a 3×3 max-pooling layer with a stride of 2.

• Node N2 and N3: a convolutional layer with a 5×5 filter size, 96 filters and a 2×2 padding.

• Node N4 N8: a 3×3 max-pooling layer with a stride of 2 followed by three convolutional

layers with 3×3 filter sizes and 160, 128, 128 filters respectively. The output is fed into a

3×3 max-pooling layer with a stride of 2 and three fully connected layers with 2048 neurons,

2048 neurons and the 2 fine-class output respectively.

• Node Q1 and Q2: two convolutional layers with 5×5, 3×3 filter sizes and 16, 32 filters

respectively (the former has a 2×2 padding), each followed by a 3×3 max-pooling layer

with a stride of 2. The output is reshaped and fed into three fully connected layers with 1024

neurons, 1024 neurons and the 2-action output respectively.

32

• Node Q3 Q7: two convolutional layers with 5×5, 3×3 filter sizes and 16, 32 filters respec-

tively (the former has a 2×2 padding), each followed by a 3×3 max-pooling layer with

a stride of 2. The output is reshaped and fed into three fully connected layers with 1024

neurons, 1024 neurons and the 2-action output respectively.

Comparison with Dynamic Capacity Networks We train a chain D2NN of length 4 similar to

Fig. 2.3c).

• Node N1: a convolutional layer with a 3×3 filter size and 24 filters.

• Node N3: a convolutional layer with a 3×3 filter size and 24 filters.

• Node N4: a 2×2 max-pooling layer with a stride of 2.

• Node N6: a convolutional layer with a 3×3 filter size and 24 filters.

• Node N7: an identity layer which directly uses inputs as outputs.

• Node N9: a convolutional layer with a 3×3 filter size and 24 filters.

• Node N10: a 2×2 max-pooling layer with a stride of 2.

• Node N12: a convolutional layer with a 3×3 filter size and 24 filters.

• Node N2, N5, N8, N11: an identity layer.

• Node N13: a convolutional layer with a 4×4 filter size, 96 filters, a stride of 2 and no

padding, followed by a 11×11 max-pooling layer. The output is reshaped and fed into a

fully connected layer with the 10-class output.

• Node Q1: a convolutional layer with a 3×3 filter size and 8 filters with two 2×2 max-pooling

layers with strides of 2 before and one 2×2 max-pooling layer with a stride of 2 after. The

output is reshaped and fed into two fully connected layers with 256 neurons and the 2-action

output respectively.

33

• Node Q2: a convolutional layer with a 3×3 filter size and 8 filters with a 2×2 max-pooling

layer with a stride of 2 before and a 2×2 max-pooling layer with a stride of 2 after. The

output is reshaped and fed into two fully connected layers with 256 neurons and the 2-action

output respectively.

• Node Q3: a convolutional layer with a 3×3 filter size and 8 filters with a 2×2 max-pooling

layer with a stride of 2 before and a 2×2 max-pooling layer with a stride of 2 after. The

output is reshaped and fed into two fully connected layers with 256 neurons and the 2-action

output respectively.

• Node Q4: a convolutional layer with a 3×3 filter size and 8 filters, followed by a 2×2 max-

pooling layer with a stride of 2. The output is reshaped and fed into two fully connected

layers with 256 neurons and the 2-action output respectively.

For all 5 D2NNs, all convolutional layers use 1×1 padding and each is followed by a ReLU

layer unless specified individually. Each fully connected layer except the output layers is followed

by a ReLU layer.

34

CHAPTER 3

Unified Loss Design 1

3.1 Introduction

In this chapter, we make efforts towards designing loss functions with reduced manual efforts.

Many supervised learning tasks involve designing and optimizing a loss function that is often

different from the actual performance metric for evaluating models. For example, cross-entropy is

a popular loss function for training a multi-class classifier, but when it comes to comparing models

on a test set, classification error is used instead.

Why not optimize the performance metric directly? Because many metrics or output decoders

are non-differentiable and cannot be optimized with gradient-based methods such as stochastic

gradient descent. Non-differentiability occurs when the output of the task is discrete (e.g. class

labels), or when the output is continuous but the performance metric has discrete operations (e.g.

percentage of real-valued predictions within a certain range of the ground truth).

To address this issue, designing a differentiable loss that serves as a surrogate to the original

metric is standard practice. For standard tasks with simple output and metrics, there exist well-

studied surrogate losses. For example, cross-entropy or hinge loss for classification, both of which

have proven to work well in practice.

However, designing surrogate losses can sometimes incur substantial manual effort, including

a large amount of trial and error and hyper-parameter tuning. For example, a standard evaluation

of single-person human pose estimation—predicting the 2D locations of a set of body joints for

1This chapter is based on a joint work with Mingzhe Wang and Jia Deng

35

loss
Manual loss

function

score

DNN

image

discrete output

Decoder Evaluator

score

DNN

image
performance

b) Training

a) Testing

a) Testing:
re-expressed

b) Training:
differentiable

approximation

Multi-variant
function

Sign(·)

{0,1}d

Score
comparisons

score

DNN

image
performance

σ(·)
Multi-variant
interpolation

Score
comparisons

score

DNN

image
performance

score differences

score differences

[0,1]d

: continuous value
: differentiable func.
: discrete value
: non-differentiable func.

Conventional loss

UniLoss

Figure 3.1: Computation graphs for conventional losses and UniLoss. Top: (a) testing for con-
ventional losses. The decoder and evaluator are usually non-differentiable. (b) training for con-
ventional losses. To avoid the non-differentiability, conventional methods optimize a manually-
designed differentiable loss function instead during training. Bottom: (a) refactorized testing in
UniLoss. We refactorize the testing so that the non-differentiability exists only in Sign(·) and the
multi-variant function. (b) training in UniLoss with the differentiable approximation of refactor-
ized testing. σ(·) is the sigmoid function. We approximate the non-differentiable components in
the refactorized testing pipeline with interpolation methods.

a single person in an image—involves computing the percentage of predicted body joints that are

within a given radius of the ground truth. This performance metric is non-differentiable. Existing

work instead trains a deep network to predict a heatmap for each type of body joints, minimizing

the difference between the predicted heatmap and a “ground truth” heatmap consisting of a Gaus-

sian bump at the ground truth location (Tompson et al., 2014; Newell et al., 2016). The decision for

what error function to use for comparing heatmaps and how to design the “ground truth” heatmaps

are manually tuned to optimize performance.

This manual effort in conventional losses is tedious but necessary, because a poorly designed

loss can be misaligned with the final performance metric and lead to ineffective training. As

we show in the experiment section, without carefully-tuned loss hyper-parameters, conventional

manual losses can work poorly.

In this chapter, we seek to reduce the efforts of manual design of surrogate losses by introducing

a unified surrogate loss framework applicable to a wide range of tasks. We provide a unified

36

framework to mechanically generate a surrogate loss given a performance metric in the context of

deep learning. This means that we only need to specify the performance metric (e.g. classification

error) and the inference algorithm—the network architecture, a “decoder” that converts the network

output (e.g. continuous scores) to the final output (e.g. discrete class labels), and an “evaluator”

that converts the labels to final metric—and the rest is taken care of as part of the training algorithm.

We introduce UniLoss (Fig. 3.1), a unified framework to generate surrogate losses for training

deep networks with gradient descent. We maintain the basic algorithmic structure of mini-batch

gradient descent: for each mini-batch, we perform inference on all examples, compute a loss using

the results and the ground truths, and generate gradients using the loss to update the network

parameters. Our novelty is that we generate all the surrogate losses in a unified framework for

various tasks instead of manually design it for each task.

The key insight behind UniLoss is that for many tasks and performance metrics, evaluating a

deep network on a set of training examples—pass the examples through the network, the output

decoder, and the evaluator to the performance metric—can be refactorized into a sequence of four

transformations: the training examples are first transformed to a set of real scores, then to some

real numbers representing comparisons (through subtractions) of certain pairs of the real-valued

scores, then to a set of binary variables, and finally to a single real number. Note that the four

transforms do not necessarily correspond to running the network inference, the decoder, and the

evaluator.

Take multi-class classification as an example, the training examples are first transformed to a

set of scores (one per class per example), and then to pairwise comparisons (subtractions) between

the scores for each example (i.e. the argmax operation), and then to a set of binary values, and

finally to a classification accuracy.

The final performance metric is non-differentiable with respect to network weights because the

decoder and the evaluator are non-differentiable. But this refactorization allows us to generate a

differentiable approximation of each non-differentiable transformation through interpolation.

Specifically, the transformation from comparisons to binary variables is nondifferentiable, we

37

can approximate it by using the sigmoid function to interpolate the sign function. And the trans-

formation from binary variables to final metric may be nondifferentiable, we can approximate it

by multivariate interpolation

The proposed UniLoss framework is general and can be applied to various tasks and perfor-

mance metrics. More specifically, when the nondifferentiability only occurs as step functions (i.e.

comparisons), the metric can always be refactorized as our formulation. Many tasks and metrics

satisfy this requirement. For example, classification scenarios such as accuracy in image classi-

fication, precision and recall in object detection; ranking scenarios such as average precision in

binary classification, area under curve in image retrieval; pixel-wise prediction scenarios such as

mean IOU in segmentation, PCKh in pose estimation. However, UniLoss cannot be applied to

evaluation metrics that have learnable parameters. Because our UniLoss does not involve learning

parameters in the loss function. Learnable parameters in the evaluation metric (Lita et al., 2005) is

however rare in practice.

To validate its effectiveness, we perform experiments on three representative tasks from three

different scenarios. We show that UniLoss performs well on a classic classification setting, multi-

class classification, compared with the well-established conventional losses. We also demonstrate

UniLoss’s ability in a ranking scenario that evolves ranking multiple images in an evaluation set:

average precision (area under the precision-recall curve) in unbalanced binary classification. In

addition, we experiment with pose estimation where the output is structured as pixel-wise predic-

tions.

Our main contributions in this work are:

• We present a new perspective of finding surrogate losses: evaluation can be refactorized

as a sequence of four transformations, where each nondifferentiable transformation can be

tackled individually.

• We propose a new method: a unified framework to generate losses for various tasks without

tedious task-specific manual design.

38

• We validate the new perspective and the new method on three tasks and four datasets, achiev-

ing comparable performance with conventional losses.

3.2 Related Work

3.2.1 Direct Loss Minimization

The line of direct loss minimization works is related to UniLoss because we share a similar

idea of finding a good approximation of the performance metric. There have been many efforts to

directly minimize specific classes of tasks and metrics.

For example, Taylor et al. (2008) optimized ranking metrics such as Normalized Discounted

Cumulative Gain by smoothing them with an assumed probabilistic distribution of documents.

Henderson and Ferrari (2016) directly optimized mean average precision in object detection by

computing “pseudo partial derivatives” for various continuous variables. Nguyen and Sanner

(2013) explored to optimize the 0-1 loss in binary classification by search-based methods including

branch and bound search, combinatorial search, and also coordinate descent on the relaxations of

0-1 losses. Liu et al. (2016) proposed to improve the conventional cross-entropy loss by multi-

plying a preset constant with the angle in the inner product of the softmax function to encourage

large margins between classes. Fu et al. (2018) proposed an end-to-end optimization approach for

speech enhancement by directly optimizing short-time objective intelligibility (STOI) which is a

differentiable performance metric.

In addition to the large algorithmic differences, these works also differ from ours in that they

are tightly coupled with specific tasks and applications.

Hazan et al. (2010) and Song et al. (2016) proved that under mild conditions, optimizing a max-

margin structured-output loss is asymptotically equivalent to directly optimizing the performance

metrics. Specifically, assume a model in the form of a differentiable scoring function S(x, y;w) :

X × Y → R that evaluates the compatibility of output y with input x. During inference, they

39

predict the yw with the best score:

yw = argmax
y

S(x, y;w). (3.1)

During training, in addition to this regular inference, they also perform the loss-augmented infer-

ence (Tsochantaridis et al., 2005; Hazan et al., 2010):

y† = argmax
y

S(x, y;w) + εξ(yw, y), (3.2)

where ξ is the final performance metric (in terms of error), and ε is a small time-varying weight.

Song et al. (2016) generalized this result from linear scoring functions to arbitrary scoring func-

tions, and developed an efficient loss-augmented inference algorithm to directly optimize average

precision in ranking tasks.

While above max-margin losses can ideally work with many different performance metrics ξ,

its main limitation in practical use is that it can be highly nontrivial to design an efficient algorithm

the loss-augmented inference, as it often requires some clever factorization of the performance met-

ric ξ over the components of the structured output y. In fact, for many metrics the loss-augmented

inference is NP-hard and one must resort to designing approximate algorithms, which further in-

creases the difficulty of practice use.

In contrast, our method does not demand the same level of human ingenuity. The main human

effort involves refactoring the inference code and evaluation code to a particular format, which may

be further eliminated by automatic code analysis. There is no need to design a new inference algo-

rithm over discrete outputs and analyze its efficiency. The difficulty of designing loss-augmented

inference algorithms for each individual task makes it impractical to compare fairly with max-

margin methods on diverse tasks, because it is unclear how to design the inference algorithms.

Recently, some prior works propose to directly optimize the performance metric by learning

a parametric surrogate loss (Huang et al., 2019; Wu et al., 2018; Santos et al., 2017; Grabocka

et al., 2019). During training, the model is updated to minimize the current surrogate loss while

40

the parametric surrogate loss is also updated to align with the performance metric.

Compared to these methods, UniLoss does not involve any learnable parameters in the loss. As

a result, UniLoss can be applied universally across different settings without any training, and the

parametric surrogate loss has to be trained separately for different tasks and datasets.

Reinforcement learning algorithms have been used to optimize performance metrics for struc-

tured output problems, especially those that can be formulated as taking a sequence of actions (Ran-

zato et al., 2016; Liu et al., 2017b; Caicedo and Lazebnik, 2015; Yeung et al., 2016; Zhou et al.,

2018). For example, Liu et al. (2017b) use policy gradients (Sutton et al., 2000) to optimize metrics

for image captioning.

We differ from these approaches in two key aspects. First, we do not need to formulate a task

as a sequential decision problem, which is natural for certain tasks such as text generation, but

unnatural for others such as human pose estimation. Second, reinforcement learning approaches

treat performance metrics as black boxes, whereas we assume access to the code of the performance

metrics, which is a valid assumption in most cases. This access allows us to reason about the code

and generate better gradients.

3.2.2 Surrogate Losses

There has been a large body of literature studying surrogate losses, for tasks including multi-

class classification (Bartlett et al., 2006; Zhang, 2004; Tewari and Bartlett, 2007; Crammer and

Singer, 2001; Allwein et al., 2000; Ramaswamy et al., 2013, 2014), binary classification (Bartlett

et al., 2006; Zhang, 2004; Ramaswamy et al., 2013, 2014) and pose estimation (Tompson et al.,

2014).

Compared to them, UniLoss removes the tedious manual effort to design task-specific losses.

We demonstrate that UniLoss, as a general loss framework, can be applied to all these tasks and

achieve comparable performance.

41

3.3 UniLoss

3.3.1 Overview

UniLoss provides a unified way to generate a surrogate loss for training deep networks with

mini-batch gradient descent without task-specific design. In our general framework, we first re-

formulate the evaluation process and then approximate the non-differentiable functions using in-

terpolation.

3.3.1.1 Original Formulation

Formally, let x = (x1, x2, . . . , xn) ∈ X n be a set of n training examples and y = (y1, y2, . . . , yn) ∈

Yn be the ground truth. Let φ(·;w) : X → Rd be a deep network parameterized by weights w that

outputs a d-dimensional vector; let δ : Rd → Y be a decoder that decodes the network output to

a possibly discrete final output; let ξ : Yn × Yn → R be an evaluator. φ and δ are applied in a

mini-batch fashion on x = (x1, x2, . . . , xn); the performance e of the deep network is then

e = ξ(δ(φ(x;w)),y). (3.3)

3.3.1.2 Refactorized Formulation

Our approach seeks to find a surrogate loss to minimize e, with the novel observation that in

many cases e can be refactorized as

e = g(h(f(φ(x;w),y))), (3.4)

where φ(·;w) is the same as in Eqn. 3.3, representing a deep neural network, f : Rn×d×Yn → Rl

is differentiable and maps outputted real numbers and the ground truth to l comparisons each

representing the difference between certain pair of real numbers, h : Rl → {0, 1}l maps the l

score differences to l binary variables, and g : {0, 1}l → R computes the performance metric from

binary variables. Note that h has a restricted form that always maps continuous values to binary

42

values through sign function, whereas g can be arbitrary computation that maps binary values to a

real number.

We give intermediate outputs some notations:

• Training examples x,y are transformed to scores s = (s1, s2, . . . , snd), where s = φ(x;w).

• s is converted to comparisons (differences of two scores) c = (c1, c2, . . . , cl), where c =

f(s,y).

• c is converted to binary variables b = (b1, b2, . . . , bl) representing the binary outcome of the

comparisons, where b = h(c).

• The binary variables are transformed to a single real number by e = g(b).

This new refactorization of a performance metric allows us to decompose the metric e with g,

h, f and φ, where φ and f are differentiable functions but h and g are often non-differentiable. The

non-differentiability of h and g causes e to be non-differentiable with respect to network weights

w.

3.3.1.3 Differentiable Approximation

Our UniLoss generates differentiable approximations of the non-differentiable h and g through

interpolation, thus making the metric e optimizable with gradient descent. Formally, UniLoss gives

a differentiable approximation ẽ

ẽ = g̃(h̃(f(φ(x;w),y))), (3.5)

where f and φ are the same as in Eqn. 3.4, and h̃ and g̃ are the differentiable approximation of h

and g.

We explain a concrete example of multi-class classification and introduce the refactorization

and interpolation in detail based on this example in the following sections.

43

3.3.2 Example: Multi-class Classification

We take multi-class classification as an example to show how refactorization works. First,

we give formal definitions of multi-class classification and the performance metric: prediction

accuracy.

Inputs are a mini-batch of images x = (x1, x2, . . . , xn) and their corresponding ground truth

labels are y = (y1, y2, . . . , yn) where n is the batch size. yi ∈ {1, 2, . . . , p} for i = 1, 2, . . . , n

and p is the number of classes, which happens to be the same value as d in Sec. 3.3.1. A network

φ(·;w) outputs a score matrix s = [si,j]n×p and si,j represents the score for the i-th image belongs

to the class j.

The decoder δ(s) decodes s into the discrete outputs ỹ = (ỹ1, ỹ2, . . . , ỹn) by

ỹi = argmax
1≤j≤p

si,j, (3.6)

and ỹi represents the predicted label of the i-th image for i = 1, 2, . . . , n.

The evaluator ξ(ỹ,y) evaluates the accuracy e from ỹ and y by

e =
1

n

n∑
i=1

[yi = ỹi], (3.7)

where [·] is the Iverson bracket.

Considering above together, the predicted label for an image is correct if and only if the score

of its ground truth class is higher than the score of every other class:

[yi = ỹi] = ∧
1≤j≤p
j 6=yi

[si,yi − si,j > 0],

for all 1 ≤ i ≤ n,

(3.8)

where ∧ is logical and.

We thus refactorize the decoding and evaluation process as a sequence of f(·) that transforms

s to comparisons—si,yi − si,j for all 1 ≤ i ≤ n, 1 ≤ j ≤ p, and j 6= yi (n × (p − 1) comparisons

44

in total), h(·) that transforms comparisons to binary values using [· > 0], and g(·) that transforms

binary values to e using logical and.

Next, we introduce how to refactorize the above procedure into our formulation and approxi-

mate g and h.

3.3.3 Refactorization

In Eqn. 3.4, after we transform the training images into scores s = (s1, s2, . . . , snd), we get

the score comparisons (differences of pairs of scores) c = (c1, c2, . . . , cl) using c = f(s,y). Each

comparison is ci = sk1i − sk2i , 1 ≤ i ≤ l, 1 ≤ k1i , k
2
i ≤ nd. The function h then transforms the

comparisons to binary values by b = h(c). The h is the sign function, i.e. bi = [ci > 0], 1 ≤ i ≤ l.

The function g then computes e by e = g(b), where g can be arbitrary computation that converts

binary values to a real number. In practice, g can be complex and vary significantly across tasks

and metrics.

Given any performance metrics involving discrete operations in function ξ and δ in Eqn. 3.3

(otherwise the metric e is differentiable and trivial to be handled), the computation of function

ξ(δ(·)) can be refactorized as a sequence of continuous operations (which is optional), discrete

operations that make some differentiable real numbers non-differentiable, and any following oper-

ations. The discrete operations always occur when there are step functions, which can be expressed

as comparing two numbers, to the best of our knowledge.

This refactorization is usually straightforward to obtain from the specification of the decoding

and evaluating procedures. The only manual effort is in identifying the discrete comparisons (bi-

nary variables). Then we simply write the discrete comparisons as function f and h, and represent

its following operations as function g.

In later sections we will show how to identify the binary variables for three commonly-used

metrics in three scenarios, which can be easily extended to other performance metrics. On the other

hand, this process is largely a mechanical exercise, as it is equivalent to rewriting some existing

code in an alternative rigid format.

45

3.3.4 Interpolation

The two usually non-differentiable functions h and g are approximated by interpolation meth-

ods individually.

3.3.4.1 Scores to Binaries: h.

In b = h(c), each element bi = [ci > 0]. We approximate the step function [·] using the

sigmoid function. That is, b̃ = h̃(c) = (b̃1, b̃2, . . . , b̃l), and each element

b̃i = sigmoid(ci), (3.9)

where 1 ≤ i ≤ l. We now have h̃ as the differentiable approximation of h.

3.3.4.2 Binaries to Performance: g.

We approximate g(·) in e = g(b) by multivariate interpolation over the input b ∈ {0, 1}l.

More specifically, We first sample a set of configurations as “anchors” a = (a1, a2, . . . , at), where

ai is a configuration of b, and compute the output values g(a1), g(a2), . . . , g(at), where g(ai) is

the actual performance metric value and t is the number of anchors sampled.

We then get an interpolated function over the anchors as g̃(·; a). We finally get ẽ = g̃(b̃; a),

where b̃ is computed from h̃, f and φ.

By choosing a differentiable interpolation method, the g̃ function becomes trainable using

gradient-based methods. We use a common yet effective interpolation method: inverse distance

weighting (IDW) (Shepard, 1968):

g̃(u; a) =


∑t

i=1
1

d(u,ai)
g(ai)∑t

i=1
1

d(u,ai)

, d(u, ai) 6= 0 for 1 ≤ i ≤ t;

g(ai), d(u, ai) = 0 for some i.
(3.10)

where u represents the input to g̃ and d(u, ai) is the Euclidean distance between u and ai.

46

We selecting a subset of anchors based on the current training examples. We use a mix of three

types of anchors—good anchors with high performance values globally, bad anchors with low

performance values globally, and nearby anchors that are close to the current configuration, which

is computed from the current training examples and network weights. By using both the global

information from the good and bad anchors and the local information from the nearby anchors, we

are able to get an informative interpolation surface.

We adopt a straightforward anchor sampling strategy for all tasks and metrics: we obtain good

anchors by flipping some bits from the best anchor, which is the ground truth. The bad anchors are

generated by randomly sampling binary values. The nearby anchors are obtained by flipping some

bits from the current configuration.

Under our unified framework, there are other sophisticated choices for the interpolation meth-

ods and the sampling strategy for anchors. We adopt the current way for simplicity and an easy

generalization across different tasks and metrics.

3.4 Experimental Results

To use our general framework UniLoss on each task, we refactorize the evaluation process of

the task into the format in Eqn. 3.4, and then approximate the non-differentiable functions h and g

using the interpolation method in Sec. 3.

We validate the effectiveness of the UniLoss framework in three representative tasks in dif-

ferent scenarios: a ranking-related task using a set-based metric—average precision, a pixel-wise

prediction task, and a common classification task. For each task, we demonstrate how to formu-

late the evaluation process to our refactorization and compare our UniLoss with interpolation to

the conventional task-specific loss. More experimental details can be found in the supplementary

material.

47

3.4.1 Tasks and Metrics

3.4.1.1 Average Precision for Unbalanced Binary Classification

Binary classification is to classify an example from two classes—positives and negatives. Po-

tential applications include face classification and image retrieval. It has unbalanced number of

positives and negatives in most cases, which results in that a typical classification metric such as

accuracy as in regular classification cannot demonstrate how good is a model properly. For exam-

ple, when the positives to negatives is 1:9, predicting all examples as negatives gets 90% accuracy.

On this unbalanced binary classification, other metrics such as precision, recall and average

precision (AP), i.e. area under the precision-recall curve, are more descriptive metrics. We use AP

as our target metric in this task.

It is notable that AP is fundamentally different from accuracy because it is a set-based metric.

It can only be evaluated on a set of images, and involves not only the correctness of each image

but also the ranking of multiple images.

This task and metric is chosen to demonstrate that UniLoss can effectively optimize for a set-

based performance metric that requires ranking of the images.

3.4.1.2 PCKh for Single-Person Pose Estimation

Single-person pose estimation predicts the localization of human joints. More specifically,

given an image, it predicts the location of the joints. It is usually formulated as a pixel-wise

prediction problem, where the neural network outputs a score for each pixel indicating how likely

is the location can be the joint. We choose this task to validate that UniLoss can also handle

pixel-wise prediction tasks.

Following prior work, we use PCKh (Percentage of Correct Keypoints wrt to head size) as

the performance metric. It computes the percentage of the predicted joints that are within a given

radius r of the ground truth. The radius is half of the head segment length.

This task and metric is chosen to validate the effectiveness of UniLoss in optimizing for a

48

pixel-wise prediction problem.

3.4.1.3 Accuracy for Multi-class Classification

Multi-class classification is a common task that has well-established conventional loss — cross-

entropy loss. We use this task to show that UniLoss performs comparably in such a common

setting.

We use accuracy (the percentage of correctly classified images) as our metric following the

common practice.

This task and metric is chosen to demonstrate that for a most common classification setting,

UniLoss still performs similarly effective as the well-established conventional loss.

3.4.2 Average Precision for Unbalanced Binary Classification

3.4.2.1 Dataset and Baseline

We augment the handwritten digit dataset MNIST to be a binary classification task, predicting

zeros or non-zeros. Given an image containing a single number from 0 to 9, we classify it into the

zero (positive) class or the non-zero (negative) class. The positive-negative ratio of 1:9. We create

a validation split by reserving 6k images from the original training set.

We use a 3-layer fully-connected neural network with 500 and 300 neurons in each hidden

layer respectively. Our baseline model is trained with a 2-class cross-entropy loss. We train both

baseline and UniLoss with a fixed learning rate of 0.01 for 30 epochs. We sample 16 anchors for

each anchor type in our anchor interpolation for all of our experiments except in ablation studies.

3.4.2.2 Formulation and Refactorization

The evaluation process is essentially ranking images using comparisons between each pair of

scores and compute the area under curve based on the ranking. Given that the output of a mini-

batch of n images is s = (s1, s2, . . . , sn), where si represents the predicted score of i-th image to

49

be positive. The binary variables are b = {bi,j = [ci,j > 0] = [si − sj > 0]}, where i belongs to

positives and j belongs to negatives.

3.4.2.3 Results

UniLoss achieves an AP of 0.9988, similarly as the baseline cross-entropy loss (0.9989). This

demonstrates that UniLoss can effectively optimize for a performance metric (AP) that is compli-

cated to compute and involves a batch of images.

3.4.3 PCKh for Single-Person Pose Estimation

3.4.3.1 Dataset and Baseline

We use MPII (Andriluka et al., 2014) which has around 22K images for training and 3K images

for testing. For simplicity, we perform experiments on the joints of head only, but our method could

be applied to an arbitrary number of human joints without any modification.

We adopt the Stacked Hourglass (Newell et al., 2016) as our model. The baseline loss is the

Mean Squared Error (MSE) between the predicted heatmaps and the manually-designed “ground

truth” heatmaps. We train a single-stack hourglass network for both UniLoss and MSE using

RMSProp (Hinton et al., 2012) with an initial learning rate 2.5e-4 for 30 epochs and then drop it

by 4 for every 10 epochs until 50 epochs.

3.4.3.2 Formulation and Refactorization

Assume the network generates a mini-batch of heatmaps s = (s1, s2, . . . , sn) ∈ Rn×m, where

n is the batch size, m is the number of pixels in each image. The pixel with the highest score in

each heatmap is predicted as a key point during evaluation. We note the pixels within the radius

r around the ground truth as positive pixels, and other pixels as negative and each heatmap sk can

be flatted as (skpos,1, s
k
pos,2, . . . , s

k
pos,mk

, skneg,1, . . . , s
k
neg,m−mk

), where mk is the number of positive

pixels in the k-th heatmap and skpos,j (skneg,j) is the score of the j-th positive (negative) pixel in the

k-th heatmap.

50

Table 3.1: PCKh of Stacked Hourglass with MSE and UniLoss on the MPII validation.

Loss MSE σ = 0.1 σ = 0.5 σ = 0.7 σ = 1 σ = 3 σ = 5 σ = 10 UniLoss

PCKh 91.31 95.13 93.06 95.71 95.74 94.99 92.25 95.77

PCKh requires to find out if a positive pixel has the highest score among others. Therefore,

we need to compare each pair of positive and negative pixels and this leads to the binary variables

b = (bk,i,j) for 1 ≤ k ≤ n, 1 ≤ i ≤ mk, 1 ≤ j ≤ m−mk, where bk,i,j = [skpos,i − skneg,j > 0], i.e.

the comparison between the i-th positive pixel and the j-th negative pixel in the k-th heatmap.

3.4.3.3 Results

It is notable that the manual design of the target heatmaps is a part of the MSE loss function

for pose estimation. It heavily relies on the careful design of the ground truth heatmaps. If we

intuitively set the pixels at the exact joints to be 1 and the rest of pixels as 0 in the heatmaps, the

training diverges.

Luckily, Tompson et al. (2014) proposed to design target heatmaps as a 2D Gaussian bump

centered on the ground truth joints, whose shape is controlled by its variance σ and the bump size.

The success of the MSE loss function relies on the choices of σ and the bump size. UniLoss, on

the other hand, requires no such design.

As shown in Table 3.1, our UniLoss achieves a 95.77 PCKh which is comparable as the 95.74

PCKh for MSE with the best σ. This validates the effectiveness of UniLoss in optimizing for a

pixel-wise prediction problem.

We further observe that the baseline is sensitive to the shape of 2D Gaussian, as in Table 3.1.

Smaller σ makes target heatmaps concentrated on ground truth joints and makes the optimization

to be unstable. Larger σ generates vague training targets and decreases the performance. This

demonstrates that conventional losses require dedicated manual design while UniLoss can be ap-

plied directly.

51

Table 3.2: Accuracy of ResNet-20 with CE loss and UniLoss on the CIFAR-10 and CIFAR-100
test set.

Loss CIFAR-10 CIFAR-100

CE (cross-entropy) Loss 91.49 65.90
UniLoss 91.64 65.92

3.4.4 Accuracy for Multi-class Classification

3.4.4.1 Dataset and Baseline

We use CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton, 2009), with 32 × 32 images and

10/100 classes. They each have 50k training images and 10k test images. Following prior work (He

et al., 2016), we split the training set into a 45k-5k train-validation split.

We use the ResNet-20 architecture (He et al., 2016). Our baselines are trained with cross-

entropy (CE) loss. All experiments are trained following the same augmentation and pre-processing

techniques as in prior work (He et al., 2016). We use an initial learning rate of 0.1, divided by 10

and 100 at the 140th epoch and the 160th epoch, with a total of 200 epochs trained for both baseline

and UniLoss on CIFAR-10. On CIFAR-100, we train baseline with the same training schedule and

UniLoss with 5x training schedule because we only train 20% binary variables at each step. For a

fair comparison, we also train baseline with the 5x training schedule but observes no improvement.

3.4.4.2 Formulation and Refactorization

As shown in Sec. 3.3.2, given the output of a mini-batch of n images s = (s1,1, s1,2.., sn,p), we

compare the score of the ground truth class and the scores of other p − 1 classes for each image.

That is, for the i-th image with the ground truth label yi, bi,j = [si,yi − si,j > 0], where 1 ≤ j ≤ p,

j 6= yi, and 1 ≤ i ≤ n. For tasks with many binary variables such as CIFAR-100, we train a

portion of binary variables in each update to accelerate training.

52

Table 3.3: Ablation study for mini-batch sizes on CIFAR-10.

Batch Size 8 16 32 64 128 256 512 1024

Accuracy 87.89 90.05 90.82 91.23 91.64 90.94 89.10 87.20

Table 3.4: Ablation study for number of anchors on the three tasks.

Task #Anchors in Each Type Performance

5 0.9988
Bin. Classification (AP) 10 0.9987

16 0.9988

5 91.55%
Classification (Acc) 10 91.54%

16 91.64%

5 94.79%
Pose Estimation (PCKh) 10 94.95%

16 95.77%

3.4.4.3 Results

Our implementation of the baseline method obtains a slightly better accuracy (91.49%) than

that was reported in (He et al., 2016)—91.25% on CIFAR-10 and obtains 65.9% on CIFAR-100.

UniLoss performs similarly (91.64% and 65.92%) as baselines on both datasets (Table 3.2), which

shows that even when the conventional loss is well-established for the particular task and metric,

UniLoss still matches the conventional loss.

3.4.5 Discussion of Hyper-parameters

3.4.5.1 Mini-batch Sizes

We also use a mini-batch of images for updates with UniLoss. Intuitively, as long as the batch

size is not extremely small or large, it should be able to approximate the distribution of the whole

dataset.

53

We explore different batch sizes on the CIFAR-10 multi-class classification task, as shown in

Table 3.3. The results match with our hypothesis—as long as the batch size is not extreme, the

performance is similar. A batch size of 128 gives the best performance.

3.4.5.2 Number of Anchors

We explore different number of anchors in the three tasks. We experiment with 5, 10, 16 as the

number of anchors for each type of the good, bad and nearby anchors. That is, we have 15, 30, 48

anchors in total respectively.

Table 3.4 shows that binary classification and classification are less sensitive to the number of

anchors, while in pose estimation, fewer anchors lead to slightly worse performance. It is related

to the number of binary variables in each task: pose estimation has scores for each pixel, thus has

much more comparisons than binary classification and classification. With more binary variables,

more anchors tend to be more beneficial.

3.5 Conclusions

We have introduced UniLoss, a framework for generating surrogate losses in a unified way, re-

ducing the amount of manual design of task-specific surrogate losses. The proposed framework is

based on the observation that there exists a common refactorization of the evaluation computation

for many tasks and performance metrics. Using this refactorization we generate a unified differ-

entiable approximation of the evaluation computation, through interpolation. We demonstrate that

using UniLoss, we can optimize for various tasks and performance metrics, achieving comparable

performance as task-specific losses.

54

3.6 Appendix

3.6.1 Binary Classification

3.6.1.1 Network Architecture

The network takes a 28×28 image as input and flatten it to be one dimension with 784 elements.

It then pass the flattened input through two fully-connected layers, one with 500 neurons and one

with 300 neurons. Each fully-connected layer has a ReLU activation layer followed. The prediction

is then given with an output layer with a 2-way output.

3.6.1.2 Training Details

The baseline loss is a 2-class cross-entropy loss. Our loss is formulated as described in Sec. 4.2.

The h function is the sigmoid relaxation of the binary variables. The g function is the interpolation

over anchors of the binary variables. For example, the anchor that gives the best performance is

that all positive examples have higher scores than negative examples—all bi,j = 1. Following Sec.

3.4, three types of anchors are generated randomly. The good anchors and nearby anchors are

obtained by flipping one binary bit from the best anchor and the anchor at the current training step

respectively.We sample 16 anchors for each type.

We train models with the baseline loss and UniLoss with SGD using the same training schedule:

with a fixed learning rate of 0.01 for 30 epochs.

3.6.2 Pose Estimation

3.6.2.1 Network Architecture

We use the Stacked Hourglass Network architecture. It takes a 224×224 image as input and

passes it through one hourglass block as described in (Newell et al., 2016). It outputs a heatmap

for each joint. A heatmap essentially gives scores measuring how likely is the joint to be there for

each pixel or region centered at that pixel.

55

3.6.2.2 Training Details

The baseline loss is the Mean Squared Error (MSE) between the predicted heatmaps and the

manually-designed “ground truth” heatmaps. More specifically, the target “ground truth” heatmap

has a 2D Gaussian bump centered on the ground truth joint. The shape of the Gaussian bump is

controlled by its variance σ and the bump size. The commonly chosen σ is 1 and the bump size 7.

Our loss is formulated as in Sec. 4.3. The h function is the sigmoid relaxation of the binary

variables. The g function is the interpolation over anchors of the binary variables. For example, the

anchor that gives the best performance is that all binary values to be 1. Following Sec. 3.4, three

types of anchors are generated. For good anchors, we flip a small number of bits from the best.

Nearby anchors are flipped from the current configuration by randomly picking a positive/negative

pixel in the current output heatmaps and flipping all bits associated with this pixel. We sample 16

anchors for each type.

We train the model both UniLoss and MSE with RMSProp (Hinton et al., 2012) using an initial

learning rate 2.5e-4 for 30 epochs and then divided by 4 for every 10 epochs until 50 epochs.

3.6.3 Classification

3.6.3.1 Network Architecture

We use the ResNet-20 architecture (He et al., 2016). The network takes a 32×32 image as input.

The input image first goes through a 3 × 3 convolution layer followed by a batch normalization

layer and a ReLU layer. It then goes through three ResNet building blocks with down-sampling in

between. After an average pooling layer, the output layer is a fully-connected layer with a 10-way

output.

3.6.3.2 Training Details

Our baseline loss is a 10-way cross-entropy (CE) loss. Our loss is formulated as in Sec. 4.4.

The h function is the sigmoid relaxation of the binary variables. The g function is the interpolation

56

over anchors of the binary variables. For example, the anchor that gives the best performance

is that all binary values to be 1, meaning that for each image, the ground truth class has higher

score than every other class. The good anchors and nearby anchors are obtained by flipping one

binary bit from the best anchor and the anchor at the current training step respectively.We sample

16 anchors for each type.

We use the same data augmentation for both with random cropping with a padding of 4 and

random horizontal flipping. We also pre-process the images with per-pixel normalization. We train

both models with SGD using an initial learning rate of 0.1, divided by 10 and 100 at the 140 epoch

and the 160 epoch, with a total of 200 epochs on CIFAR-10. On CIFAR-100, we train baseline

with the same training schedule and UniLoss with 5x training schedule but 20% binary variables

at each step.

57

CHAPTER 4

Synthetic Data Generation for Small-data Object Detection 1

4.1 Introduction

Synthetic Data Generation methods (Shrivastava et al., 2017a; Yang and Deng, 2020; Sankara-

narayanan et al., 2018) has been proposed in various tasks to address the difficulties to collect real

data, including semantic segmentation, gaze estimation, 3D reconstruction and so on.

In this chapter, we explore a new method to use synthetic data generation to improve small

data object detection. Object detection (Lin et al., 2018b; Ren et al., 2015) requires a large amount

of training data to obtain good performance. But for many object detection tasks, large datasets

are difficult to obtain due to rare objects and difficulties in obtaining object location annotations.

One common example is with medical images – disease detection has very little labeled object

bounding box data because the diseases by nature are rare, and annotations can only be done by

professionals, and thus are costly. Solving such rare data object detection problems is valuable:

for example, for disease localization, a good disease detector can help provide assistance to radiol-

ogists to accelerate the analysis process and reduce the chance of missing tumors, or even provide

a medical report directly if a radiologist is not available.

In this chapter we explore using generative models to improve the performance in small-data

object detection. Directly applying existing generative models is problematic. First, previous

work on object insertion for generative models often needs segmentation masks, which are often

not available e.g. in disease detection tasks. Second, GANs are designed to produce realistic

1This chapter is based on a joint work with Michael Muelly, Jia Deng, Tomas Pfister and Li-Jia Li

58

Synthesized Data

Real Data Improved Detection

Clean Images
and Masks

Generator

Discriminator

Detector

DetectorGAN

Figure 4.1: DetectorGAN generates object-inserted images as synthesized data to improve the
detection performance. DetectorGAN integrates a detector into the generator-discriminator loop.

images (indistinguishable from real images), but realism does not guarantee that it can help with

the downstream object detection task. In particular, there is no direct feedback from the detector

to the generator; which means the generator cannot be trained explicitly to improve the detector.

To address this, we propose a new DetectorGAN model (shown in Fig. 4.1) that connects

the detector and the GAN together. This joint model integrates a detector into the generator-

discriminator pipeline and trains the generator to explicitly improve the detection performance.

DetectorGAN has two branches after the generator: one with discriminators to improve realism

and interpretability of the generated images, and another with a detector to give feedback on how

well the generated images improve the detector. We jointly optimize the adversarial losses and

detection losses. To generate images that are beneficial for the detector, the loss formulation is

non-trivial. One difficulty is that our goal is for the generated images to improve the detector

performance of real images, but the generator cannot receive gradients from the detection loss

on real images because the real images are not generated. To address this, the proposed method

bridges this link between the generator and the detection loss on real images by unrolling one

forward-backward pass of the detector training.

We demonstrate the effectiveness of using DetectorGAN to improve small-data object detection

59

in two datasets for disease detection and pedestrian detection. The detector-integrated GAN model

achieves state of the art performance on the NIH chest X-ray disease localization task, benefiting

from the additional generated training data. In particular, DetectorGAN improves the Average Pre-

cision of the nodule detector by a relative 20% by adding 1000 synthetic images, and outperform

the state of the art on localization accuracy by a relative 50%. We also show that the proposed

framework significantly improves the quality of the generated images: a radiologist prefers gener-

ated images by DetectorGAN over alternative methods in 96% of cases. The detector model can

be integrated into almost any existing GAN models to force them to generate images that are both

realistic and useful for downstream tasks. We give the pedestrian detection task and the associ-

ated PS-GAN (Ouyang et al., 2018) as an example, demonstrating a significant quantitative and

qualitative improvement in the generated images.

Our contributions are:

• To the best of our knowledge, this work is first to integrate a detector into the GAN pipeline

so that the detector gives direct feedback to the generator to help generate images that are

beneficial for detection.

• We propose a novel unrolling method to bridge the gap between the generator and the detec-

tion performance on real images.

• The proposed model outperforms GAN baselines on two challenging tasks including disease

detection and pedestrian detection, and achieves the state-of-the-art performance on NIH

chest X-ray disease localization.

• We are the first few works to explore generating synthetic data using GANs in small-data

object detection.

60

4.2 Related Work

4.2.1 Image-to-image Translation.

Based on a conditional version of Generative Adversarial Networks (GANs) (Goodfellow et al.,

2014), Isola et al (Isola et al., 2017) pioneered the general image-to-image translation task. Af-

terwards multiple other works have also exploited pixel-level reconstruction constraints to transfer

between source and target domains (Zhang et al., 2017; Wang et al., 2018). These image-to-image

translation frameworks are powerful, but require training data with paired source/target images,

which are often difficult to obtain. Unpaired image-to-image translation frameworks (Zhu et al.,

2017; Liu et al., 2017a; Shrivastava et al., 2017b; Kim et al., 2017; Lee et al., 2018b) remove this

requirement of paired-image supervision; in CycleGAN (Zhu et al., 2017) this is achieved by en-

forcing a bi-directional prediction between source and target. The proposed DetectorGAN falls in

the category of unpaired image-to-image translation frameworks. Its novelty is that it integrates a

detector into GAN to generate images as training data for object detection.

4.2.2 Object Insertion with GANs.

The idea of manipulating images by GANs has been explored recently (Lee et al., 2018a; Hong

et al., 2018; Chien et al., 2017; Lin et al., 2018a; Ouyang et al., 2018; Lee et al., 2019; Lin et al.,

2018a). These works use generative models to edit objects in the scene. In contrast, (1) our method

doesn’t require any segmentation information; and (2) our goal is to gain quantitative improvement

on object detection task while prior works focus on qualitative improvement such as realism.

4.2.3 Integration of GANs and Classifiers.

Beyond the basic idea of using adversarial losses to generate realistic images, some GAN mod-

els integrate auxiliary classifiers into the generative model pipeline, such as Auxiliary Classifier

GAN (ACGAN) and related works (Odena et al., 2017; Bazrafkan and Corcoran, 2018; Dash

et al., 2017; Bousmalis et al., 2017; Hoffman et al., 2018). At a first glance, these models bear

61

some similarity with our integration with detector. However, we differ from them both concep-

tually and technically. Conceptually, these methods only improve the realism of the generated

images and have no intention to improve the integrated classifier; in contrast, the purpose of our

integration is to improve the detection performance. Technically, our loss formulation is different:

ACGAN minimizes classification losses only on synthetic images and has no guarantee for im-

proving performance on real images, whereas ours optimizes losses on both synthetic and real by

adding unrolling step. Nevertheless, we construct a baseline with ACGAN-like losses, which only

minimizing detection losses on synthetic images, and show that our proposed method outperforms

it.

4.2.4 Data Augmentation for Object Detection

There are some works using data augmentation to improve object detection. A-Fast-RCNN (Wang

et al., 2017b) uses adversarial learning to generate hard data augmentation transformations, specif-

ically for occlusions and deformations. It differs from our method in two major ways: (1) It is not

a GAN model – it does not generate images but instead adds adversarial data augmentation into

the detector network. In contrast, our model has a discriminator and detector that work together to

generate synthetic images. (2) Its goal is to ‘learn an object detector that is invariant to occlusions

and deformations’. In contrast, our method focuses on generating synthetic data for the problem

setting where the amount of training data is limited.

Perceptual GAN (Li et al., 2017a) generates synthetic images to improve the detection. How-

ever, it is designed specifically for small-sized object detection by super-resolving the small-sized

objects into better representations. Their method does not generalize to general object detection.

Concurrent unpublished work PS-GAN (Ouyang et al., 2018) is most closely related: synthetic

images are generated to improve pedestrian detection. They generate synthetic images using a

traditional generator-discriminator architecture. In contrast, we add a detector in the generator-

discriminator loop and have direct feedback from the detector to the generator.

62

4.3 DetectorGAN

Our DetectorGAN method generates synthetic training images to directly improve the detection

performance. It has three components: a generator, (multiple) discriminators, and a detector. The

detector gives feedback to the generator about whether the generated images are improving the

detection performance. The discriminators improve the realism and interpretablity of the generated

images; that is, the discriminators help to produce realistic and understandable synthetic images.

4.3.1 Model Architecture

We implement our architecture based on CycleGAN (Zhu et al., 2017). The generator in Detec-

torGAN generates synthetic labelled (object-inserted) images that are fed into two branches later:

the discriminator branch and the detector branch. We consider clean images without objects belong

to domain X, and labelled images with objects belong to domain Y.

Generators. We use a ResNet generator with 9 blocks as our generators GX and GY following

(Zhu et al., 2017; He et al., 2016). The forward generator GX takes two inputs: one is a real clean

image, which is used as the background image to insert objects. The other one is a mask where the

pixels inside the bounding box of the object to insert are filled with ones while the rest are zeros.

The output of the generator is a synthetic image with the input background and an object inserted

at the marked location. Inversely, the backward generator GY takes a real labelled image and a

mask showing the object location, and outputs an image with the indicated object removed.

Plausible inserting locations of objects are difficult to obtain. For the NIH disease task, we

obtain these locations by pre-processing and random sampling. In theory, the location could be

in any position in the lung area, but since in practice we do not have segmentation mask for the

lung area, we first match each clean image to the most similar labelled image with bounding box

and then randomly shift the location around to get the sampled ground-truth box location. For the

pedestrian detection task, we follow the setup in the previous work (Ouyang et al., 2018). It is

notable that the selection of mask locations does not change our method – as an alternative one

63

could use trainable methods to predict plausible locations.

Discriminators. Our method contains two global discriminators DISglobalX and DISglobalY as

in Cycle-GAN (Zhu et al., 2017), and a local discriminator DISlocalX for local area realism (Lee

et al., 2019; Li et al., 2017b). The global discriminator DISglobalX and the local discriminator

DISlocalX discriminates between real labelled images and synthetic labelled images (generated by

GX), globally on the whole images or locally on the bounding box crops. DISglobalY discriminates

whatGY generates (synthetic clean images by removing objects from real labelled images) and real

clean images. DISlocalY is not needed because conceptually we do not care much about the local

realism after removing an object. We use 70×70 PatchGAN following (Johnson et al., 2016; Isola

et al., 2017; Zhu et al., 2017) for all of our discriminators.

Detector. The detector DET takes both real and synthetic labelled images with objects as input

and outputs bounding boxes. In our implementation we use the RetinaNet detector (Lin et al.,

2018b). But we are not only limited to RetinaNet: as long as the detector is trainable, we can

integrate it into the loop.

4.3.2 Train Generator with Detection Losses

The objective of the generator GX is to generate images with objects inserted that are both

realistic and beneficial to improve object detection performance. One of our main contributions

is that we propose a way to backpropagate the gradients derived from detection losses back to the

generator to help the generator to generate images that can better help improve the detector. In

other words, the detection losses give the generator feedback to generate useful images for the

detector.

We note the detection loss (regression and classification losses) as Ld(·), where · is a labelled

64

Gx DET’ L_Det’(Real + Syn.)

Syn. Image

Real Image

Clean Image

DET L_Det(Real Image)

Real Image

∇DET’Mask

Unroll one DET
training iteration

Figure 4.2: The illustration for Eqn. 4.3 – unrolling one forward-backward pass for training DET
to bridge the link between GX and Lreal

Det (detection loss on real images). Detection loss on real
images has no direct link to the generator GX . Last step of training old DET (noted as DET ′

in the figure, refers to same DET module but in the previous training step) is unrolled as in the
dotted rectangle. The red arrow represents the fact that there is a differentiable link between GX

and Lreal
Det after the unrolling.

image, either real or synthetic. The detection loss on real images and synthetic images are:

Lreal
Det (DET) = Ey∼pdata(Y)[Ld(DET (y))]

(4.1)

Lsyn
Det(GX , DET) = Ex∼pdata(X)[Ld(DET (GX(x)))]

(4.2)

Unroll to Optimize Detection Loss on Real Images. Intuitively, given a real image y, the goal

of GX is to use generated images to help minimize the detection loss on real images. That is, GX

should be trained to minimize the loss Lreal
Det in Eqn. 4.1. However, there is no GX involved at the

first glance – the loss Lreal
Det does not depend on the weights of the GX so GX cannot be trained.

But we observe that even though there is no direct link in one forward-backward loop from GX to

real images, the detector is trained by synthetic images generated by GX in the previous step. We

propose to bridge the link between GX and the real image detection loss Lreal
Det by unrolling a single

forward-backward pass of the detector as shown in Eqn. 4.3. A visualization of this unrolling

65

process is shown in Fig. 4.2. This allows us to train GX with respect to the loss Lreal
Det .

L̃real
Det (GX , DET) = Ey∼pdata(Y)[Ld(DET (y))]

where weights of DET , WDET , is updated with

∂(Lreal
Det (DET) + Lsyn

Det(GX , DET)))

∂WDET

(4.3)

Specifically, we train the weights DET with synthetic images and real images for one iteration

and obtain the gradients on DET . These gradients are linked to the generated synthetic images

and thus to the weights in the generator GX . Then we use the updated DET to get the Lreal
Det loss

and gradients. In this way, we obtain a link from GX to DET and then to Lreal
Det .

Intuitively, this Eqn. 4.3 can be seen as a simple estimation of how the change in GX will

change detection performance on real images in Eqn. 4.1.

Detection Loss on Synthetic Images. The generator aims to make the synthetic images helpful

for the detector. It maximizes the detection loss on synthetic images (Eqn. 4.2) to generate images

that the detector has not seen before and cannot predict well. In this case the generated images can

help improve the performance.

One might think the generator should instead minimize the detection loss on synthetic images.

This shares some similar ideas with ACGAN-like losses, where the auxiliary classification loss

on synthetic images is minimized to improve realism. But for our goal to improve the detection

performance on real images, minimizing detection losses on synthetic images may not help, or

may even hurt the detection performance on real images. The intuition behind this is that synthetic

objects may distract away from the optimization goal of the detector. In our experiments, we show

that minimizing synthetic image losses like ACGAN harms detection performance on real images.

66

Table 4.1: Nodule AP on expanded annotation setting on the test set with IoU = 0.1 for NIH.
Baseline is using only real training data. We add 1000 synthetic images from CycleGAN and
GAN-D for training.

Training data Nodule AP Nodule Recall
Real data only 0.124 0.184
Real + syn from ACGAN-like losses 0.154 0.607
Real + syn from CycleGAN + BboxLoss 0.196 0.541
Real + syn from DetectorGAN - unrolling 0.203 0.544
Real + syn from DetectorGAN 0.236 0.649

Table 4.2: Localization accuracy with different TIOU on “old annotations” test set for NIH. The
latter three uses RetinaNet as the model.

TIOU 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Avg
Wang et al. (Wang et al., 2017a) 0.14 0.05 0.04 0.01 0.01 0.01 0.00 0.04
Zhe et al. (Li et al., 2018) 0.40 0.29 0.17 0.11 0.07 0.03 0.01 0.15
real 0.15 0.15 0.15 0.08 0.08 0.00 0.00 0.09
real + syn from CycleGAN + BboxLoss 0.31 0.31 0.23 0.23 0.00 0.00 0.00 0.15
real + syn from DetectorGAN 0.31 0.31 0.31 0.23 0.23 0.15 0.08 0.23

4.3.3 Overall Losses and Training

Overall Losses. The objective of the generator GX is to generate images with an object inserted

at the indicated location in background images. The generated images should be both realistic

and beneficial to improve object detection performance. In other words, the DetectorGAN model

should generate images that: (1) can help to train a better detector; (2) have an object inserted; and

(3) are indistinguishable from real images, globally and locally.

We have introduced losses to help the detector above. For inserting an object, we use an L1

loss to minimize the loss between the synthetic object crop and the real object crop (refered as

BboxLoss):

To generate realistic images, we have adversarial losses for the global discriminators and the

local discriminator. For DISglobalX , the adversarial loss is LGAN(GX , DISglobalX) as in Eqn. 4.4.

LGAN(GY , DISglobalY) and LGAN(GX , DISlocalX) are similar.

67

LGAN(GX , DISglobalX) = Ey∼pdata(Y)[logDISglobalX(y)]

+Ex∼pdata(X)[log(1−DISglobalX(GX(x)))]

(4.4)

In addition, we use cycle consistency losses and identity losses to help preserve information

from the whole image.

Here GX and GY aim to fool the discriminators while the discriminators aim to discriminate

between fake and real images. The generator and discriminators thus optimize

minGX ,GY
maxDISglobalX ,DISlocalX ,DISglobalY

[LGAN(GX , DISglobalX)

+LGAN(GY , DISglobalY) + LGAN(GX , DISlocalX)]

(4.5)

We update the weights of the detector DET by minimizing the detection losses for both real

images and synthetic images: it minimizes Eqn. 4.1 and Eqn. 4.2.

Training. In summary, when updating the discriminators, the goal is to maximize the discrimi-

nator losses on generated images and minimize the losses on real nodule images. When updating

the detector, the goal is to minimize the detection losses for both real and generated nodule images.

When updating the generator, the goal is to: (1) minimize the discriminator losses on generated im-

ages; (2) minimize detection loss on real object images, (3) maximize detection loss on generated

images.

We use a history of synthetic images (Shrivastava et al., 2017b), and for faster convergence we

pretrain the discriminator-generator pair and the detector separately and then train them jointly.

When we have a labelled image without bounding box annotations, we still update the discrimina-

tor DISglobalX to improve global realism.

68

Bbox MaskClean Image CycleGANDetectorGAN Bbox MaskClean Image CycleGANDetectorGAN

Figure 4.3: Example generated images from CycleGAN and DetectorGAN for NIH. The details
are high-lighted in green boxes (added for visualization). Both methods generate synthetic images
from clean images and bounding box masks. DetectorGAN generates nodule inserted images with
better local and global quality.

PS-GAN PS-GANNoise BoxReal Image DetectorGAN Noise BoxReal Image DetectorGAN

Figure 4.4: Examples of generated synthetic images from PS-GAN and DetectorGAN. The details
are high-lighted in green boxes (added for visualization). We see qualitative improvement for
pedestrian task as well.

4.4 Experiments

In this section we demonstrate the effectiveness of DetectorGAN on two tasks: nodule detec-

tion task with the NIH Chest X-ray dataset and pedestrian detection with the Cityscapes dataset.

69

Table 4.3: Localization accuracy with different TIOBB on the “old annotations” test set on NIH.

TIOBB 0.1 0.25 0.5 0.75 Avg
Wang et al. (Wang et al., 2017a) 0.15 0.05 0.00 0.00 0.04
Zhe et al. (Li et al., 2018) 0.40 0.25 0.11 0.07 0.18
RetinaNet: real 0.15 0.15 0.08 0.08 0.09
RetinaNet: real + syn from CycleGAN + BboxLoss 0.31 0.31 0.00 0.00 0.12
RetinaNet: real + syn from DetectorGAN 0.31 0.31 0.23 0.23 0.22

Table 4.4: User study on the NIH Chest X-ray dataset.

Method
Prefer [%] ↑ Mean Likert ↑ Std Likert

Object Whole Object Whole Object Whole

CycleGAN + BboxLoss 20 4 1.31 1.18 0.68 0.53
DetectorGAN 80 96 2.69 3.88 0.85 0.73

DetectorGANBaseline DetectorGANBaseline DetectorGANBaseline

Figure 4.5: Comparison showing that adding synthetic images can help detect nodules in NIH
Chest X-ray more accurately. Here, green boxes are ground truth and red are predictions.

We obtain significant improvements over baselines and achieve state of the art results on the nodule

detection task.

70

4.4.1 Disease Localization

4.4.1.1 Dataset

We use the NIH Chest X-ray dataset (Wang et al., 2017a) and focus on the nodule detection

task. The NIH Chest X-ray dataset contains 112,120 X-ray images – 60,412 clean images and

51,708 disease images, 880 of which have bounding boxes. For the nodule class, there are 6,323

nodule images, 78 of which have bounding boxes.

Improved and Extended Annotations. The bounding box annotation for this dataset is however

not satisfying due to the following issues: (1) In the original paper and previous work (Wang

et al., 2017a; Li et al., 2018), there is no standard train/test/validation split. (2) The bounding box

annotations are not complete; that is, for each image there is only at most one bounding box for

each class annotated, while there are actually many nodules present in the image. (3) Even with

a standard train/test/validation split, the test and validation sets are too small to obtain stable and

meaningful results.

To address these problems, we make the following efforts to make the disease detection task

more standard and easy to conduct research on: (1) Generating a no-patient-overlap train/test/validation

split with 0.7/0.2/0.1 portion of the data, yielding 57/13/9 images with 57/13/9 object instances. (2)

Asking radiologists to re-annotate the current validation and test images using additional images

from labeled images in the test/validation sets. These efforts result in 36 images and 80 images

in validation and test sets accordingly, with 159 and 309 object instances. These splits and ex-

tended annotations will be published online to facilitate future research into this topic. We did not

re-annotate or expand the training set as we want to demonstrate the effectiveness of the proposed

method in learning small-data object detection tasks.

We refer to the 9/13 validation/test settings as “old annotations” and the 36/80 validation/test

settings as the “new annotations”. We obtain the detection AP on the “new annotations” and local-

ization accuracy on the “old annotations” for fair comparison with previously published results.

71

Baselines and Previous Work. The baselines are: training with only real images, with addi-

tional synthetic images generated from CycleGAN and BboxLoss, and with additional synthetic

images generated from ACGAN-like losses. The ACGAN-like losses refers to that in addition

to discriminator losses, we also minimize the detection loss on synthetic images, similar to what

ACGAN does for a classifier. We compare these methods on the new high quality annotations. In

addition, we compare to two previously published best-performing works (Wang et al., 2017a; Li

et al., 2018) using their evaluation split and their annotations (the “old annotations”).

Evaluation Metrics. We use the standard object detection metric, average precision (AP), as the

evaluation measure for the detection task. For comparisons to previous work, we also use their

metric: localization accuracy, which is defined as the percentage of images that obtain correct pre-

dictions. An image is considered having correct predictions if the intersection over union (IOU)

ratio between the predicted regions (can be non-rectangle) and the ground truth box is above thresh-

old TIOU . Another metric that is used by these works is to replace the IOU with intersection over

bounding boxes IOBB. However, we encourage researchers to use the proposed new annotations

and evaluation metric in the future for standard comparisons.

4.4.1.2 Quantitative Comparison

New Annotation with Average Precision. In Table 4.1, we compare the results of using only

real data, using synthetic data from the proposed method as well as from other baseline GAN

models. We observe that DetectorGAN significantly improves the average precision. Compared

to training on real data only, the AP nearly doubles from 0.124 to 0.236, and recall over triples

from 0.184 to 0.649. Compared to ACGAN-like losses and CycleGAN + BboxLoss, we obtain

relatively 50% and 20% improvement.

We notice that ACGAN-like losses performs more poorly than using discriminator losses only,

even though it has an additional loss to improve the detection performance on synthetic images.

One explanation is that the generator and the detector learn only to detect synthetic objects, which

72

is different from the goal of detecting real objects, leading to poor performance.

To further demonstrate the benefits of using the unrolling step to bridge the gap between the

generator and the detection performance on real images, we also experiment with a ‘DetectorGAN

- unrolling’ network without unrolling. We observe a significant boost for adding the unrolling

step, from 0.203 to 0.236 AP.

Old Annotation with Localization Accuracy. For comparison with previous work, we evaluate

detection results using the localization accuracy metric with different IOU and IOBB thresholds.

Results are shown in Table 4.2 and Table 4.3. We significantly outperform competing methods by

relative 50% and 22%.

4.4.1.3 Qualitative Analysis

Generated Image Quality. We show DetectorGAN’s generated images, along with CycleGAN-

generated images in Fig. 4.3. We observe that images are much better in terms of realism and

blend-in.

Detected Nodules. We show that the detector helps to detect undetectable nodules in Fig. 4.5. We

observe that every nodule captured by the baseline (trained on real images only) is also captured by

the model trained using synthetic images. Meanwhile, adding synthetic images helps capture more

nodules that baseline cannot capture. Moreover, the box locations are generally more accurate.

4.4.1.4 User Study

We also conduct user study with a radiologist to evaluate the quality of the generated images.

We ask the radiologists to rate the realism of the inserted nodule and the global image on a Likert

scale (scale 1–5, with 5 indicating highest quality). As shown in Table 4.4, the images from

DetectorGAN are better than those from CycleGAN + BboxLoss in 96% of cases, with generated

objects (nodules) better in 80% of cases. Moreover, the average Likert scores are significantly

73

Table 4.5: Pedestrian detection AP trained with real data, synthetic data generated by PS-GAN,
pix2pix and DetectorGAN.

Data Real +DetectorGAN +PS-GAN +pix2pix
AP 0.593 0.613 0.602 0.574

higher: 2.69 vs 1.31 for the objects, and 3.88 vs 1.18 for the whole image, demonstrating the

benefits of our method.

4.4.2 Pedestrian Detection

As a demonstration of the applicability of DetectorGAN to other datasets and problems, we

apply it to pedestrian detection with a different base architecture. We follow PS-GAN (Ouyang

et al., 2018) to synthesize images with pedestrians inserted and improve pedestrian detection. We

demonstrate a quantitative and qualitative improvement in the generated images by adding the

detector into the loop.

Dataset. We use the Cityscapes dataset, which contains 5,000 urban scene images with high-

quality annotations. We follow the instructions in the PS-GAN paper to filter images with small or

occluded pedestrians obtain about 2,000 images with about 9,000 labeled instances.

Baseline and Architecture. We use PS-GAN (Ouyang et al., 2018) as the backbone architecture

and add the detector into the model. The PS-GAN uses the standard pix2pix framework with local

discriminators. This also shows that the DetectorGAN idea is versatile — it can be integrated with

different GAN models. We fine-tune the model from the pretrained PS-GAN model.

Quantitative Results. Table 4.5 shows that we improve the detection performance for pedestrian

detection as well. We observe that DetectorGAN further improves the performance over PS-GAN.

All models here are trained using the same setting. The real-images-only baseline performance

is slightly different from what is reported in the PS-GAN paper because we do not have access to

the exact details of the detector setting used in the PS-GAN paper.

74

Qualitative Results. Qualitative results are shown in Fig. 4.4. We observe that DetectorGAN

can generate qualitatively better images with less artifacts.

4.5 Conclusion

In this chapter we learn to generate new images with associated bounding boxes to explore the

object detection problem in the small data regime. We have shown that simply training an existing

generative model does not yield satisfactory performance due to it optimizing for image realism

instead of object detection accuracy. To this end we developed a new model with a novel unrolling

step that jointly optimizes a generative model and a detector such that the generated images im-

prove the performance of the detector. We show that this method significantly outperforms the

state of the art on two challenging datasets.

75

CHAPTER 5

Architecture Search for GANs 1

5.1 Introduction

In this chapter, we explore architecture search for Generative Adversarial Networks (GANs).

Neural Architecture Search (NAS) (Zoph et al., 2018; Zoph and Le, 2017) aims to reduce the hu-

man intervention by automating network design. Researchers use Reinforcement Learning (Zoph

et al., 2018; Zoph and Le, 2017; Pham et al., 2018), Evolutionary Algorithm (Real et al., 2019),

gradient based (Luo et al., 2018; Liu et al., 2019b), Random Search (Xie et al., 2019) and progres-

sive search (Liu et al., 2018) for image classification task. In addition, there are also recent works

applying NAS on segmentation (Liu et al., 2019a; Chen et al., 2018), machine translation (So et al.,

2019), and transfer learning (Wong et al., 2018).

There is however little effective effort has been made for GANs, especially considering the

difficulties and instabilities (Arjovsky et al., 2017; Heusel et al., 2017) to train large-scale GANs—

as a two-player game, generator or discriminator could easily dominate the training and cause the

training signal to vanish or explode. With bigger networks and higher resolutions, this issue gets

worse with more complex network parameter space.

Recent work introduced the progressive growing of GANs (Karras et al., 2018) to ease the

training for large GANs. It starts with generating low-resolution images with a small network

and then progressively adds new layers to the network to generate higher-resolution images. As

demonstrated by (Karras et al., 2018), it makes training large GANs easier and more stable and

1This chapter is based on a joint work with Yuting Zhang, Jia Deng and Stefano Soatto

76

improve the quality of generated images in high resolutions.

However, in this progressive-growing process for architectures, the layers and growing sched-

ules are predefined by researchers. There is a large space of the growing strategy that still remains

under-explored. For example, are symmetric generator and discriminator optimal? Are the layer

choices optimal?

In this chapter, we propose an automatic method to combine the architecture search idea with

the progressive-growing strategy. We explore this rich architecture space by dynamically growing

a GAN during training, optimizing the growing strategy together with its network parameters.

Our Dynamically Grown GAN (DGGAN) method embeds architecture search techniques as

an interleaving step with gradient-based training to periodically seek the optimal regarding the

balancing between the generator and discriminator, choice of network units, and growing strategy.

That is, we alternate between optimizing the generator and discriminator architecture and training

the new architecture. More specifically, when optimizing the generator and discriminator archi-

tecture, our method grows layer(s) from previous architecture, with where to grow (generator or

discriminator or both) and how to grow in the automatic framework. The new architecture is then

trained with weight inheritance from the previous architecture.

Our method enjoys the benefits of both easing the optimization by progressively growing the

architecture and exploring more architecture design space by architecture search. This combination

is beneficial to discover well-performing GANs, especially with high-resolution images.

Compared to progressively growing GANs (Karras et al., 2018) with a manually-designed

growing strategy, our dynamic growing method explores much richer architecture space and grow-

ing strategies. More specifically, our method allows the generator and the discriminator to grow

alone or together dynamically in the process, creating diverse and unconventional balance between

them.

Compared to prior work AutoGAN (Gong et al., 2019) and AGAN (Wang and Huan, 2019),

which combine architecture search with GANs, we complement progressive growing with archi-

tecture search to eases the training of GANs with complicated architectures and high resolutions.

77

This novel perspective enables our method to work on higher resolutions while these prior works

only worked on at most 48×48.

Our experiments show that we achieve the new state-of-the-art on CIFAR-10 and the best

performance among non part-based GANs on LSUN for image generation. With further analysis

of the thousands of models in our search procedure, we observe several practical conclusions on

the GAN model design such as generator-discriminator balance and convolutional layer choices.

Our main contributions are:

• We propose a method to dynamically grow GANs, easing the training of GANs as well as

exploring unconventional network architecture space;

• We present the first automatic GAN that works on high-resolution images;

• We provide constructive conclusions of generator and discriminator design choices using

thousands of searched models;

• We achieve new state-of-the-art image generation performance.

5.2 Related Work

5.2.1 Improving GANs

Since the proposal of GANs (Goodfellow et al., 2014), there have been several lines of work

to improve GANs, including improving loss functions (Arjovsky et al., 2017; Deshpande et al.,

2018; Berthelot et al., 2017), regularization techniques (Miyato et al., 2018; Gulrajani et al., 2017;

Zhang et al., 2020), generation strategy (Lin et al., 2019), and architecture designs (Li et al., 2019;

Nguyen et al., 2017; Zhang et al., 2019; Radford et al., 2016; Karras et al., 2018). Improved

loss functions and regularization techniques are orthogonal to our work. Our work belongs to the

architecture design line of work. While these works improve GAN training, they use manually-

designed architectures.

78

Progressive GAN (ProgGAN) (Karras et al., 2018) shows that progressively growing and train-

ing GAN from a smaller scale eases the training difficulties and improves the generation quality.

Motivated by this observation, the search strategy in our DGGAN is in a progressive way.

Despite this inspiration, our method is different from ProgGAN because ProgGAN is pre-

designed and always grows both generator and discriminator symmetrically and simultaneously.

Ours automatically searches how and what to grow, and generator and discriminator may not be

symmetric. This difference allows us to explore a much richer architecture space than ProgGAN,

resulting in better performance. We also provide a thorough analysis in this rich space.

5.2.2 Architecture Search with GANs

AGAN (Wang and Huan, 2019) and AutoGAN (Gong et al., 2019) explore architecture search

with GANs, which are closely related to our work. AGAN (Wang and Huan, 2019) learns one

RNN controller with the REINFORCE algorithm to search for the architecture of both generator

and discriminator simultaneously. Our DGGAN differs from AGAN because our dynamic growing

strategy is more flexible: it allows to grow G alone, or D alone, or both. Moreover, our method

alternate between growing an architecture and training its weight while AGAN does not have such

a training strategy.

AutoGAN (Gong et al., 2019) uses RNN controllers with REINFORCE to search for the gen-

erator architecture only. Their discriminator is not searched but constructed with a predefined

strategy. It is stated that when searching for both they observe “such two-way NAS will further

deteriorate the original unstable GAN training, leading to highly oscillating training curves and of-

ten failure of convergence.” Our DGGAN, however, deals with the difficulties in training unstable

GANs and successfully searches for both generator and discriminator together.

Beyond the methodology difference, both prior works demonstrate image generation with at

most 48×48 resolution. Our method, however, supports high-resolution (256×256).

79

5.2.3 Neural Architecture Search

Neural Architecture Search (NAS) (Zoph et al., 2018; Zoph and Le, 2017) aims to reduce

the human intervention by automating network design. Researchers use Reinforcement Learn-

ing (Zoph et al., 2018; Zoph and Le, 2017; Pham et al., 2018), Evolutionary Algorithm (Real et al.,

2019), gradient based (Luo et al., 2018; Liu et al., 2019b), Random Search (Xie et al., 2019) and

progressive search (Liu et al., 2018) for image classification task. In addition, there are also recent

works applying NAS on segmentation (Liu et al., 2019a; Chen et al., 2018), machine translation (So

et al., 2019), and transfer learning (Wong et al., 2018).

Our method differs from them because 1) we utilize the fact that GAN has two competing

components, which does not exist in the tasks above, by allowing each component to grow alone or

together; 2) we embed progressive training into architecture search, which is important to models

with unstable training, such as GANs. As shown in AutoGAN (Gong et al., 2019), a naive two-

way NAS will deteriorate the original unstable GAN training and sometimes lead to failure of

convergence.

One related work in this scope is progressive NAS (Liu et al., 2018). It does progressive search

inside a cell architecture and stacks the found cell to construct the full network for evaluation.

Despite the similarity of wording choice, their progressive search is layer by layer inside a cell but

our progressive growing involves growing from lower resolution to higher resolution. Also, we

directly construct the whole network(s) while (Liu et al., 2018) constructs a cell architecture and

stack it for final architecture. In addition, as a NAS method, it also has the differences described

in the last paragraph.

5.2.4 Hybrid Optimization

Our alternate optimization of the architecture and network weights shares a similar idea with

the long-existing jump-diffusion processes (Grenander and Miller, 1994) solving hybrid optimiza-

tion problems with a discrete component and a continuous component. Similar to jump-diffusion,

we alternate gradient steps in the continuous parameter space with discrete jumps in architecture

80

Grow G

Grow D

↑Resolution

↑Resolution

Grow G Grow G ↑Resolution

↑Resolution

G

D

Grow G with conv(3, 64)

↑Resolution G and D

Grow G with conv(7, 512)

Grow D with conv(3, 128)

...

...

Grow G with conv(3, 64)

↑Resolution G and D

Grow G with conv(7, 512)

Grow D with conv(3, 128)

...

...

Weight Inheritance for Old Layers

Grow Train Grow Train

Final Trained G
A

N

Grow Train Grow TrainGrow Train Grow Train

Weight Inheritance for Old Layers

Figure 5.1: Overview of the Dynamically Grown GAN. Bottom: The dynamic growing process.
We alternate between growing the architecture and training the weights of the new architectures.
Each growing step chooses among actions including growing the generator (G) with a certain
convolution layer, or growing discriminator (D) with a certain convolution layer, or growing both
G and D to a higher resolution. In each training step, the new architectures inherit the weights
from the old architectures. Top: Examples of growing steps.

space.

5.3 Dynamically Grown GAN

5.3.1 Dynamic Growing Overview

DGGAN embeds architecture search techniques with gradient-based training to periodically

seek the optimal regarding network architecture and network weights. We alternate between the

growing and training steps to grow a small-scale GAN to the full-scale GAN dynamically and au-

tomatically, as shown in Fig. 5.1. We use the Wasserstein distance loss with gradient penalty (Ar-

81

jovsky et al., 2017; Gulrajani et al., 2017).

The growing at each step is dynamic instead of static as in the conventional progressive GAN

method. At the growing step, our method determines which actions in the search space to take, i.e.,

where to grow what kind of layers as in Fig. 5.1(top). In contrast, in the conventional progressive

GAN method, the growing schedule is fixed and manually-designed. Given existing architectures,

noted as parent architectures, we expand parent architectures to new architectures by the growing

actions (e.g. add a layer with 256 filters and the filter size of 3). We note the new architectures as

child architectures.

At the training step, the child architectures are trained with weight inheritance from the parent

architectures. More specifically, a new child architecture contains all layers in the parent archi-

tecture as well as the new layer(s) grown. We inherit the weights of the common layers from its

parent architecture by initializing the weights of the child architecture with the trained weights of

the parent architecture. The newly grown layer(s) that only exist in child candidates are initialized

randomly. This weight inheritance method provides two benefits: it eases the optimization diffi-

culties for the child architectures. It also reduces the training time needed for each new candidate.

5.3.1.1 Generator and Discriminator Base Architecture

Following ProgGAN (Karras et al., 2018), the base architectures of generator and discriminator

are two small scale networks that operate on a low resolution with d0 × d0 pixels. The generator

takes a randomly-sampled vector as input and outputs an image with resolution d0 × d0. The

discriminator takes an image with resolution d0 × d0 and outputs a single score. More specifically

in our experiments, CIFAR-10 takes random vectors with size 128 and others take random vectors

with size 512. d0 is 8 in our experiments.

When growing a generator, we grow near the end of the network before the last convolution

layer. When growing a discriminator, we grow near the beginning of the network after the first

convolution layer. Growing heads are indicated as the orange layers in Fig. 5.1(top). The structures

of the base architectures thus can be maintained during growing. This choice is following prior

82

work (Karras et al., 2018) as in their study, growing in other locations does not lead to better

performance. Note that our method allows us to grow the generator or discriminator alone or both.

That is, they do not need to be grown symmetrically.

5.3.1.2 Action Search Space

The action search space includes:

• growing the generator with a convolution layer with filter sizes from {3, 7} and number

of filters from {32, 64, 128, 256, 512, 1024}, with padding so that the resolution does not

change;

• growing the discriminator with a convolution layer with filter sizes from {3, 7} and number

of filters from {32, 64, 128, 256, 512, 1024}, with padding so that the resolution does not

change;

• growing both generator and discriminator by adding a fade-in block (Karras et al., 2018) to

double the resolution.

The fade-in block, introduced in ProgGAN (Karras et al., 2018), can smoothly transit the network

from lower resolution to higher resolution and avoid sudden dramatic changes in well-trained low-

resolution networks. Sudden dramatic changes without the fade-in block may cause the training

to diverge. More specifically, to transit from lower resolution input/output to higher resolution

input/output, the fade-in block uses a weighted sum of both the lower resolution path and the

higher resolution path. During training, we gradually reduce the weight on the lower resolution

path from 1 to 0 and increases the weight of the higher resolution path from 0 to 1, so that it transits

softly.

This search space allows us to grow either or both of the generator and discriminator at each

step. We thus can explore various architecture combinations of the generator and discriminator

without symmetric constraint while ensuring the image resolution is consistent between both. An

example of such asymmetric GAN is shown in Fig. 5.1(bottom).

83

5.3.2 Search Algorithm

In the growing steps discussed above, the number of potential architecture candidates will grow

exponentially with respect to the search depth. Due to resource limits, it is infeasible to evaluate

all of the candidates. We thus use random sampling and greedy pruning to reduce the number of

candidates.

More specifically, at each growing step, we reduce the number of parent candidates by greedy

pruning and reduce the number of actions by random sampling. In particular, we keep the top K

parent candidates at each step and expand to child candidates only with these parents, similar to

beam search. With the T actions, we randomly sample actions with a probability p. The detailed

algorithm is in Algorithm 1.

This pruning algorithm reduces the number of candidates from exponential to linear, with re-

spect to search depth. Larger p or K leads to a better exploration of the search space but also

greater computational cost. We will further discuss the computational efficiency in Sec. 5.5.4.

5.4 Experimental Results

We evaluate DGGAN against manually designed ProgGAN and other recent GAN models on

CIFAR-10 and LSUN. We use the most popular PyTorch implementation (Facebook) of ProgGAN

Algorithm 1: Top-K Greedy Pruning Algorithm
A = {actions};
P = {initial candidates};
Train and evaluate each candidate in P;
while not reaching maximum number of layers do
C = {};
for each (Pi, Aj) ∈ P ×A do

Add Pi + Aj into C with probability p;
end
Train and evaluate each candidate in C;
C ′ = keep top-K candidates of C ′;
P = C;

end

84

to obtain comprehensive ProgGAN results and to implement our DGGAN. Ablative analysis is

performed on CIFAR-10.

5.4.1 Datasets and Evaluation Metrics

CIFAR-10 (Krizhevsky and Hinton, 2009) contains 50k 32×32 training images in 10 cate-

gories. It is a small but effective testbed for GANs, including recent automatic GAN works (Gong

et al., 2019; Wang and Huan, 2019). LSUN (Yu et al., 2015) has over a million 256×256 bedroom

images for training.

We use Frechet Inception Distance (FID) (Heusel et al., 2017) as the main evaluation metric

as well as the feedback criterion in the searching process. FID is a widely-used evaluation metric

for the image generation task. It measures the distance between the Inception-net activations of

generated images and real images. It is computed as following: FID2 = ||mr−mg||22+Tr(Cr+

Cg−2(CrCg)
1/2), where (mr,Cr), (mg,Cg) denote the mean and covariance of the real and gen-

erated image feature distributions respectively. Both are modeled as multi-dimensional Gaussians.

As shown in empirical studies (Xu et al., 2018; Heusel et al., 2017), FID evaluates the generation

quality more effectively compared to other metrics such as Inception Score.

Following some prior works, we also report Inception Score (Salimans et al., 2016) on CIFAR-

10 and the Sliced Wasserstein Distance (SWD) (Karras et al., 2018) on LSUN. The Inception

Score IS = exp(Ex∼pg [DKL(p(y|x)||p(y))]), however, only uses the synthetic examples and does

not compare them to real-world samples. SWD is an approximation of Wasserstein distance. It

computes 7×7 patch similarity at multiple scales, capturing large-scale image structures at the

coarser scales and pixel-level attributes such as sharpness at the finer scales. The average across

all scales indicates the overall similarity between the synthetic and real images.

85

Table 5.1: Quantitative evaluation on CIFAR-10, compared with ProgGAN at each resolution.

Resolution 8×8 16×16 32×32

ProgGAN 4.02 11.68 18.33
Ours 1.96 6.40 12.10
Improvement 51% 45% 34%

Table 5.2: Quantitative evaluation on CIFAR-10, compared to prior state-of-the-art works. Top:
manually-designed GANs. Bottom: automatic GANs. Lower FID and higher Inception Score
indicate better generation quality.

Model FID Inception Score

CR-GAN (Zhang et al., 2020) 14.56 -
Improving MMD-GAN (Wang et al., 2019) 16.21 8.29
DistGAN (Tran et al., 2018) 17.61 -
ProgGAN (Karras et al., 2018) 18.332 8.80 ± 0.05
WGAN-GP (Gulrajani et al., 2017) 29.3 7.86 ± 0.07
DCGAN (Radford et al., 2016) 37.7 6.64 ± 0.14

AutoGAN (Gong et al., 2019) 12.42 8.55 ± 0.10
AGAN (Wang and Huan, 2019) 23.80 8.82 ± 0.09
Ours 12.10 8.64 ± 0.06

5.4.2 CIFAR-10

5.4.2.1 Implementation Details

We train initial candidates for 100k iterations and train each new candidate with 100k iterations

after weight inheritance. We gradually increase the resolution from d0 = 8 to 32. After reaching

the final resolution, following (Karras et al., 2018), we further train the fixed architecture longer

to achieve convergence. We follow the same training schedule as ProgGAN.

2All numbers with prior works are from original papers except this FID score is not reported in the original paper.
It is obtained by the PyTorch ProgGAN implementation (Facebook).

86

5.4.2.2 Comparison with ProgGAN

As in Table 5.1, we improve the final resolution FID from 18.33 to 12.10 and also improve the

FID on other resolutions significantly as shown in Table 5.1, by 51%, 45%, and 34% respectively.

FID at each resolution is computed with resized images, thus not comparable.

5.4.2.3 Comparison with Automatic GANs

The bottom rows in Table 5.3 are prior works on automatic GANs, such as AGAN (Wang and

Huan, 2019) and AutoGAN (Gong et al., 2019). Our DGGAN outperforms both and achieves the

new state-of-the-art on FID.

5.4.2.4 Comparison with State-of-the-art

The prior state-of-the-art methods in the top rows in Table 5.2 are manually-designed GANs

that may have improved loss functions (Wang et al., 2019; Tran et al., 2018) or regularization (Zhang

et al., 2020). These sophisticated losses and regularization techniques show superiority over the

basic WGAN-GP loss. Even though that our models are trained with this basic WGAN-GP loss,

our method still outperforms all of these methods on FID.

Note that our contribution on the architecture is orthogonal to these sophisticated losses and

regularization techniques. Utilizing them, DGGAN may achieve even better performance.

5.4.2.5 Inception Score and Visualization

Even though it is shown (Xu et al., 2018; Heusel et al., 2017) that Inception Score fails to

capture the distance between generated images and real images, we still evaluate with Inception

Score for a thorough comparison with prior works on CIFAR-10. We show that with the large

variety on FID, the Inception Scores are similar across well-performing GANs. We show randomly

selected generated examples from our DGGAN, ProgGAN, and AutoGAN as in Fig. 5.3.

87

P
ro
gG

A
N

D
G
G
A
N

Figure 5.2: Examples of generated LSUN Images by ProgGAN and our DGGAN at 256×256
resolution. Top: ProgGAN, obtained from their paper. It is not stated whether it is randomly
generated; Bottom: Our DGGAN, randomly generated.

ProgGAN AutoGAN DGGAN

Figure 5.3: Examples of generated CIFAR-10 Images by ProgGAN, AutoGAN and our DGGAN,
from left to right. ProgGAN and our DGGAN are randomly generated. AutoGAN images are
obtained from their paper, which is also randomly generated.

88

Table 5.3: Quantitative evaluation on LSUN, compared with ProgGAN at each scale.

Resolution 8×8 16×16 32×32 64×64 128×128 256×256

ProgGAN 29.07 23.75 27.9 19.67 29.35 10.76
Ours 24.29 21.49 19.01 8.25 13.29 8.22
Improvement 16% 10% 32% 58% 46% 24%

Table 5.4: Quantitative evaluation on LSUN, compared to prior state-of-the-art works. SWD av-
erages over multiple feature scales from 256 to 16. Lower FID and smaller SWD indicate better
generation quality. All methods except COCO-GAN are non part-based GANs that learns to gen-
erate the whole images. COCO-GAN learns to generate parts of images instead.

Model Resolution FID
SWD ×103

256 128 64 32 16 Avg

DCGAN 64×64 70.4 - - - - - -
WGAN-GP 64×64 20.5 - - - - - -
Improving MMD-GAN 64×64 12.52 - - - - - -
TTUR 64×64 9.5 - - - - - -
Ours 64×64 8.25 - - - - - -

ProgGAN (reported) 256×256 8.34 2.72 2.45 2.34 2.90 9.08 3.90
ProgGAN (Pytorch) 256×256 10.76 3.74 3.78 3.53 4.04 1.58 3.33
Ours 256×256 8.22 3.01 2.15 3.03 4.56 1.40 2.83

COCO-GAN (Part-based method) 256×256 5.99 - - - - - -

5.4.3 LSUN

We follow the same strategy as in CIFAR-10 except that the resolution is 256.

5.4.3.1 Comparison with ProgGAN

We demonstrate significant improvement against ProgGAN baseline at each resolution—by

16%, 10%, 32%, 58%, 46%, 24% respectively, in Table 5.3.

89

5.4.3.2 Comparison with Automatic GANs

We are the first automatic GAN work demonstrated with this high-resolution of 256 × 256.

There is no prior automatic GAN work that uses a higher resolution than 48 × 48, potentially be-

cause of the instability of GANs and further the difficulties of searching architectures for unstable

GANs, as discussed in (Gong et al., 2019).

5.4.3.3 Comparison with State-of-the-art

Recent works (Wang et al., 2019; Heusel et al., 2017) on manually-designed GANs innovate

on loss function and training strategy. These methods show superiority over the basic WGAN-GP

loss (Gulrajani et al., 2017; Karras et al., 2018) With the disadvantage of loss, our method achieves

the best on both resolutions among these methods as in Table 5.4.

Different from the above models that generates the full images, COCO-GAN (Lin et al., 2019)

is a part-based method. It is trained with image parts instead of the full image, conditioned on the

spatial coordinates. It achieves the new state-of-the-art, better than other non-part based methods

including ours. Combining with part-based method can be our future work with dynamic growing.

5.4.3.4 Visualization

We show examples of generated bedroom images in Fig. 5.2. Our example images are ran-

domly generated. We see that our generated images are diverse, sharp and have good layouts most

of the time. Compared to ProgGAN, it also shows better details such as wall decorations and furni-

ture other than beds. However, we also see failure cases such as non-straight lines and occasionally

completely-failed images.

5.5 Analysis

We conduct a thorough analysis of thousands of models produced by our search. Several prac-

tical conclusions and discussions are provided. More analysis can be found in the supplementary

90

material.

5.5.1 How does the capacity of the generator (G) and the discriminator (D) affect

training?

We use the number of trainable parameters as an approximated indicator of the network capac-

ity. More specifically, we use the number of parameters in G over the number of parameters in

D, noted as G2D #parameters ratio, as the G-D capacity indicator and use FID normalized by the

per-scale ProgGAN baseline as the generation quality indicator.

We show how the candidates perform with the G-D ratio in Fig. 5.4(left). The X-axis is on

a log scale. The extremely large normalized FIDs are the cases where the training diverges. We

observe that diverged cases are rare with our algorithm.

From the zoomed-in figure in Fig. 5.4(right), we observe that G and D do not have to be sym-

metric to gain good performance. To have a better performance than the baseline, i.e. normalized

FID<1, the G2D ratio can be in a wide range [1/64, 64]. This observation suggests that the long-

existing strategy of designing symmetric G and D may miss many potentially good architecture

candidates. Our DGGAN fills in this gap and explores those candidates.

To further analyze the growing process, we visualize the best performing GAN’s growing route

as red arrows in the plot. The flexibility to have asymmetric G-D architecture turns out to be

essential for getting the best growing route.

5.5.2 How does each action affect training?

We investigate how each action, i.e. how to grow layers, affects training. We compute the

improvement of normalized FID over parent architectures after each action to explore how each

action affects training, as in Fig. 5.5. The normalized FID improvement is calculated by normalized

FID of a child candidate over normalized FID of its parent candidate.

We compute the percentage of candidates with positive improvement after each action, and

the mean and variance of the normalized FID improvement of all child candidates generated by

91

Figure 5.4: G-to-D number of parameters ratio and normalized FID for candidates on CIFAR-10.
Left: all the candidates. Right: zoom-in to candidates with normalized FID smaller than 1.2. The
red arrows show the growing process of the best performing GAN.

Figure 5.5: How each action affects training, i.e. how much is the improvement of normalized
FID over parent. Actions include “Upscale”, which means increasing the resolution of both G and
D by 2, “G, a, b”, which means growing a layer in G with a as filter size and b as number of
filters, “D, a, b”, which means growing a layer in D with a as filter size and b as number of filters.
Top: Percentage of candidates with positive improvement over parent after each action. Bottom:
Average and standard deviation of the improvement for each action.

performing an action as shown in Fig. 5.5.

We observe several interesting tendencies. In discriminators, larger filter size performs much

92

Figure 5.6: Left: How likely good/sub-optimal parent candidates result in good child candidates
with different normalized FID thresholds. The good candidates given a threshold are defined as
candidates with normalized FID larger than the threshold and the sub-optimal ones are lower than
the threshold. Each threshold holds for both parent candidates and child candidates. Right Simu-
lation with different hyper-parameters p and K.

worse than smaller filter size while different filter sizes perform similarly in generators. It sug-

gests that when designing a discriminator, a small filter size should be adopted; when designing a

generator, different filter sizes are worth to explore.

We also observe that in both discriminator and generator, more filters do not always lead to

better performance. Generator is especially more sensitive to over-complicated convolution layers.

5.5.3 How does greedy pruning affect searching?

Our greedy pruning method prunes most of the sub-optimal parent candidates and only expand

child candidates from the top-performing parent candidates. It accelerates the search significantly,

from exponential to linear. However, this greedy pruning method bares the risk to miss a good

search path: a sub-optimal parent candidate that is pruned may be able to develop well-performing

children models in the future.

To quantify such risks, we show how likely the sub-optimal parent candidates could generate

good children. We compute the ratio of good children over all children for each good or sub-

93

optimal parent candidate using 2K+ models we trained during an extensive search process. The

good candidates given a threshold are defined as candidates with normalized FID to be above

the threshold and the sub-optimal ones are below the threshold. Note that the sub-optimal parent

candidates used here are not too bad because the worst candidates have been pruned out during the

search.

We vary the normalized FID threshold in the range [0.5, 1] and show how likely good/sub-

optimal parent candidates result in good child candidates in Fig. 5.6(left). It shows that good

parent candidates are much more likely to have good child candidates, regardless of the threshold

to decide good candidates. This indicates that pruning the sub-optimal parent candidates does not

introduce much risk of missing good growing routes in practice.

5.5.4 Discussion on Efficiency

We use hyper-parameters K (top-K) and p (random sampling ratio) to budget the computation

cost. Larger K or p leads to a better exploration of the search space but also greater cost. In

our experiments, we choose K = 20 and p = 0.4 to maximally use our computation budget to

explore a larger space and more candidates to analyze the behavior of GAN’s dynamic growing.

The resulting computational cost is 580 GPU days for 2k+ CIFAR-10 models and 1720 GPU days

for 1k+ LSUN models.

For the optimal time cost to achieve good performance, K can be as small as 8 to achieve the

same performance, and p can be as small as 0.2, as shown in our simulation in Fig. 5.6(right).

We simulate to use smaller K or p in our algorithm: if a simulated candidate is not among the

candidates that we have reached during our real search, we ignore it. Note that this simulation

explores fewer candidates than a real run with different K and p, which means that the actual

computation cost can be less to achieve the same performance.

Note that our main contribution is to propose the dynamic growing method that bridges the gap

between high-resolution GAN and architecture search. We aim for high generation quality instead

of good search efficiency. Upon our simple strategy such as random sampling and pruning, further

94

work such as using learning-based methods (Liu et al., 2019b; Pham et al., 2018) can be used to

improve efficiency.

5.6 Conclusions

In this chapter, we propose the Dynamically Grown GAN, growing the network architecture

and optimizing its parameters together automatically. In the growing process, our method deter-

mines which component, generator or discriminator or both, to grow and how to grow. The new

architecture is then trained with weight inheritance from the parent architecture. Experimental

results on two datasets demonstrate competitive performance in image generation. In addition,

we are the first automatic GAN method that works with high resolution images. With a thorough

analysis, we provide several constructive insights on GAN architecture designs, including network

balance and layer settings.

5.7 Appendix

5.7.1 Additional Analysis

We provide additional analysis of our 1k+ models on LSUN (Yu et al., 2015).

5.7.1.1 How does the capacity of the generator (G) and the discriminator (D) affect train-

ing?

We use the number of parameters in G over the number of parameters in D, noted as G2D

#parameters ratio, as the G-D capacity indicator and use FID normalized by the per-scale ProgGAN

baseline as the generation quality indicator.

We show how the candidates perform with the G-D ratio in Fig. 5.7(left). We observe that

diverged cases are also rare with our algorithm in LSUN. From Fig. 5.7(right), to have a better

performance than the baseline, the G2D ratio can be in a range of [1/4, 4].

95

Figure 5.7: Left: G-to-D number of parameters ratio and normalized FID for all the candidates in
LSUN. Right: zoom-in to candidates with normalized FID smaller than 1.2.

5.7.1.2 How does each action affect training?

We compute the percentage of candidates with positive improvement after each action, and

the mean and variance of the normalized FID improvement of all child candidates generated by

performing an action as shown in Fig. 5.8.

Similar with our analysis to CIFAR-10, we observe that: In discriminators, smaller filter size

performs better than larger filter size while different filter sizes perform similarly in generators.

We also see that in both discriminator and generator, more filters do not always have better perfor-

mance.

5.7.1.3 How does greedy pruning affect searching?

In Fig. 5.9(left), it shows that good parent candidates are much more likely to have good child

candidates, regardless of the threshold to decide good candidates. This result also supports the ef-

fective of our pruning strategy—that pruning the sub-optimal parent candidates does not introduce

much risk of missing good growing routes in practice.

96

Figure 5.8: How each action affects training, i.e. how much is the improvement of normalized
FID over parent. Top: Percentage of candidates with positive improvement over parent after each
action. Bottom: Average and standard deviation of the improvement for each action.

Figure 5.9: Left: How likely good/sub-optimal parent candidates result in good child candidates
with different normalized FID thresholds. Right: Simulation with different hyper-parameters p
and K.

97

5.7.1.4 Discussion on Efficiency

We again simulate to use smaller K or p in our algorithm. Note that this simulation explores

fewer candidates than a real run with different K and p, which means that the actual computation

cost can be less to achieve the same performance. For the optimal time cost to achieve a good

performance, K can be as small as 12, and p can be as small as 0.2, as shown in our simulation in

Fig. 5.9(right).

98

CHAPTER 6

Limitations and Future Work

Towards the ultimate goal of full automation to design a DNN, we have made efforts in four

components in the automated designs of DNNs in this thesis. We propose to automate the dynamic

inference with a new flexible framework. To automate the loss design with various tasks, we pro-

pose a unified framework that reduces human efforts. We also developed new solutions to synthetic

data generation for small-data object detection and architecture search for generative adversarial

networks. There are however some potential limitations that may limit the direct application of

our methods in the practical scenarios. Below are some discussions on these limitations and also

potential future directions.

6.1 Integration of Multiple Automated Techniques

Integrating multiple automated techniques is also an important future direction. Research to-

wards automated techniques for an isolated component is often insufficient. For example, pure

architecture search techniques may lead to incomplete conclusions due to the lack of extensive ex-

ploration of hyper-parameter tuning and data augmentation. We have seen architectures performing

significantly better with some changes on data augmentation and hyper-parameter choices. To find

an truly outperforming architecture, we may have to combine automated hyper-parameter tuning,

automated data augmentation together with the architecture search.

99

6.2 Unified Loss

In the automated loss design topic, we have developed a unified framework to generate sur-

rogate losses for various tasks. We achieve this by re-facorizing and decomposing the evaluation

process into four steps where the non-differentiable steps can be approximated by some differ-

entiable functions: sigmoid and differentiable interpolation. Given this general framework, one

limitation is that the exploration of the approximation methods is limited. We adopt the most

straightforward approximations, such as the sigmoid function and IDW interpolation. But there

are other sophisticated choices for the interpolation methods, and for the sampling strategy for

anchors to explore.

Another limitation is that the loss design process is not fully automated. More specifically,

the refactorization step needs to be automated. Despite the amount of effort is much less than

manual design from scratch, it still requires some effort to analyze the given code of the decoder

and the evaluator for the refactorization. Combining automatic code analysis with our framework

can further reduce human efforts in the loss design.

6.3 Architecture Search

In the architecture search topic, the evaluation of GAN architectures is difficult because there

is no performance metric in image generation that is proven to be aligned perfectly with human

evaluation. More research may be conducted on the evaluation side to find out a better signal to

give to the search process. An example could be using multiple evaluation metrics as a tuple with

certain importance rankings among each metric element.

6.4 Complete Automated System

Furthermore, to have a complete automated DNN system that can be used by users that are not

familiar with DNNs, current automated techniques in all three design spaces need to be combined

into a full pipeline. This pipeline requires not only the engineering work that flawlessly connects

100

all components together, but also research towards how to define and formulate the system goal.

101

BIBLIOGRAPHY

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach

for margin classifiers. In ICML, 2000.

A. Almahairi, N. Ballas, T. Cooijmans, Y. Zheng, H. Larochelle, and A. C. Courville. Dynamic

capacity networks. In ICML, 2016.

J. M. Alvarez and M. Salzmann. Learning the number of neurons in deep networks. In NeurIPS,

2016.

M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose estimation: New benchmark

and state of the art analysis. In CVPR, 2014.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In ICML,

2017.

J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition with visual attention. arXiv

preprint arXiv:1412.7755, 2014.

R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter tuning. In ICML,

2013.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal

of the American Statistical Association, 101(473):138–156, 2006.

S. Bazrafkan and P. Corcoran. Versatile auxiliary classifier with generative adversarial network

(vac+ gan), multi class scenarios. arXiv preprint arXiv:1806.07751, 2018.

102

E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup. Conditional computation in neural networks for

faster models. arXiv preprint arXiv:1511.06297, 2015.

S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In

NeurIPS, 2010.

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization.

In NeurIPS, 2011.

D. Berthelot, T. Schumm, and L. Metz. BEGAN: Boundary equilibrium generative adversarial

networks. arXiv preprint arXiv:1703.10717, 2017.

K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsupervised pixel-level

domain adaptation with generative adversarial networks. In CVPR, 2017.

J. C. Caicedo and S. Lazebnik. Active object localization with deep reinforcement learning. In

ICCV, 2015.

L.-C. Chen, M. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H. Adam, and J. Shlens.

Searching for efficient multi-scale architectures for dense image prediction. In NeurIPS, 2018.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, et al. Dadiannao:

A machine-learning supercomputer. In MICRO, Annual IEEE/ACM International Symposium

on, 2014.

Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap, M. Botvinick, and N. de Fre-

itas. Learning to learn without gradient descent by gradient descent. In ICML, 2017.

J.-T. Chien, C.-J. Chou, D.-J. Chen, and H.-T. Chen. Detecting nonexistent pedestrians. In ICCV

Workshops, 2017.

103

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and

B. Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector

machines. In ICML, 2001.

A. Dash, J. C. B. Gamboa, S. Ahmed, M. Liwicki, and M. Z. Afzal. Tac-gan-text conditioned

auxiliary classifier generative adversarial network. arXiv preprint arXiv:1703.06412, 2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical

image database. In CVPR, 2009.

J. Deng, S. Satheesh, A. C. Berg, and F. Li. Fast and balanced: Efficient label tree learning for

large scale object recognition. In NeurIPS, 2011.

J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei. Hedging your bets: Optimizing accuracy-specificity

trade-offs in large scale visual recognition. In CVPR, 2012.

M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas. Learning where to attend with deep

architectures for image tracking. Neural computation, 24(8):2151–2184, 2012.

L. Denoyer and P. Gallinari. Deep sequential neural network. arXiv preprint arXiv:1410.0510,

2014.

E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within

convolutional networks for efficient evaluation. In NeurIPS, 2014.

I. Deshpande, Z. Zhang, and A. G. Schwing. Generative modeling using the sliced wasserstein

distance. In CVPR, 2018.

T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyperparameter optimization

of deep neural networks by extrapolation of learning curves. In AAAI, 2015.

104

D. Eigen, M. Ranzato, and I. Sutskever. Learning factored representations in a deep mixture of

experts. arXiv preprint arXiv:1312.4314, 2013.

Facebook. Pytorch progressive GAN implementation. https://github.com/

facebookresearch/pytorch_GAN_zoo.

P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Cascade object detection with deformable

part models. In CVPR, 2010.

S.-W. Fu, T.-W. Wang, Y. Tsao, X. Lu, and H. Kawai. End-to-end waveform utterance enhancement

for direct evaluation metrics optimization by fully convolutional neural networks. IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 26(9):1570–1584, 2018.

X. Gong, S. Chang, Y. Jiang, and Z. Wang. AutoGAN: Neural architecture search for generative

adversarial networks. In ICCV, 2019.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and

Y. Bengio. Generative adversarial nets. In NeurIPS, 2014.

J. Grabocka, R. Scholz, and L. Schmidt-Thieme. Learning surrogate losses. arXiv preprint

arXiv:1905.10108, 2019.

K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. Draw: A recurrent neural

network for image generation. In ICML. JMLR Workshop and Conference Proceedings, 2015.

U. Grenander and M. I. Miller. Representations of knowledge in complex systems. Journal of the

Royal Statistical Society: Series B (Methodological), 56(4):549–581, 1994.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of

Wasserstein GANs. In NeurIPS, 2017.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited numerical

precision. In ICML, 2015.

105

https://github.com/facebookresearch/pytorch_GAN_zoo
https://github.com/facebookresearch/pytorch_GAN_zoo

S. Gurumurthy, R. Kiran Sarvadevabhatla, and R. Venkatesh Babu. Deligan: Generative adversarial

networks for diverse and limited data. In CVPR, 2017.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural

network. In NeurIPS, 2015.

T. Hazan, J. Keshet, and D. A. McAllester. Direct loss minimization for structured prediction. In

NeurIPS, 2010.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,

2016.

P. Henderson and V. Ferrari. End-to-end training of object class detectors for mean average preci-

sion. In ACCV, 2016.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two

time-scale update rule converge to a local nash equilibrium. In NeurIPS, 2017.

G. Hinton, N. Srivastava, and K. Swersky. Lecture 6a overview of mini–batch gradient descent.

Coursera Lecture slides https://class. coursera. org/neuralnets-2012-001/lecture,[Online, 2012.

J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell. Cycada:

Cycle-consistent adversarial domain adaptation. In ICML, 2018.

S. Hong, X. Yan, T. Huang, and H. Lee. Learning hierarchical semantic image manipulation

through structured representations. In NIPS, 2018.

C. Huang, S. Zhai, W. Talbott, M. A. Bautista, S.-Y. Sun, C. Guestrin, and J. Susskind. Addressing

the loss-metric mismatch with adaptive loss alignment. In ICML, 2019.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional

networks. In CVPR, 2017.

106

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for

studying face recognition in unconstrained environments. Technical Report 07-49, University

of Massachusetts, Amherst, October 2007.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adver-

sarial networks. In CVPR, 2017.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.

Neural computation, 3(1):79–87, 1991.

J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-

resolution. In ECCV, 2016.

M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural

computation, 6(2):181–214, 1994.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for improved quality,

stability, and variation. In ICLR, 2018.

T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. Learning to discover cross-domain relations with

generative adversarial networks. In ICML, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images, 2009.

G. B. H. E. Learned-Miller. Labeled faces in the wild: Updates and new reporting procedures.

Technical Report UM-CS-2014-003, University of Massachusetts, Amherst, May 2014.

D. Lee, S. Liu, J. Gu, M.-Y. Liu, M.-H. Yang, and J. Kautz. Context-aware synthesis and placement

of object instances. In NIPS, 2018a.

D. Lee, S. Yun, S. Choi, H. Yoo, M.-H. Yang, and S. Oh. Unsupervised holistic image generation

from key local patches. In ECCV, 2018b.

107

D. Lee, T. Pfister, and M.-H. Yang. Inserting videos into videos. In CVPR, 2019.

D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng. MAD-GAN: Multivariate anomaly detection

for time series data with generative adversarial networks. In ICANN, 2019.

H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolutional neural network cascade for face

detection. In CVPR, 2015.

J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, and S. Yan. Perceptual generative adversarial networks for

small object detection. In CVPR, 2017a.

K. Li and J. Malik. Learning to optimize. In ICLR, 2017.

Y. Li, S. Liu, J. Yang, and M.-H. Yang. Generative face completion. In CVPR, 2017b.

Z. Li, C. Wang, M. Han, Y. Xue, W. Wei, L.-J. Li, and F.-F. Li. Thoracic disease identification and

localization with limited supervision. In CVPR, 2018.

X. Liang, Z. Hu, H. Zhang, C. Gan, and E. P. Xing. Recurrent topic-transition gan for visual

paragraph generation. In ICCV, 2017.

C.-H. Lin, E. Yumer, O. Wang, E. Shechtman, and S. Lucey. St-gan: Spatial transformer generative

adversarial networks for image compositing. In CVPR, 2018a.

C. H. Lin, C.-C. Chang, Y.-S. Chen, D.-C. Juan, W. Wei, and H.-T. Chen. Coco-gan: generation

by parts via conditional coordinating. In ICCV, 2019.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.

Microsoft coco: Common objects in context. In ECCV, 2014.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. PAMI,

2018b.

L. V. Lita, M. Rogati, and A. Lavie. Blanc: Learning evaluation metrics for mt. In Human

Language Technology and Empirical Methods in Natural Language Processing, 2005.

108

B. Liu, F. Sadeghi, M. Tappen, O. Shamir, and C. Liu. Probabilistic label trees for efficient large

scale image classification. In CVPR, 2013.

C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and

K. Murphy. Progressive neural architecture search. In ECCV, 2018.

C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and L. Fei-Fei. Auto-deeplab:

Hierarchical neural architecture search for semantic image segmentation. In CVPR, 2019a.

H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. In ICLR, 2019b.

L. Liu and J. Deng. Dynamic deep neural networks: Optimizing accuracy-efficiency trade-offs by

selective execution. In AAAI, 2018.

L. Liu, M. Muelly, J. Deng, T. Pfister, and L.-J. Li. Generative modeling for small-data object

detection. In ICCV, 2019c.

L. Liu, M. Wang, and J. Deng. A unified framework of surrogate loss by refactorization and

interpolation. In Under review, 2020a.

L. Liu, Y. Zhang, J. Deng, and S. Soatto. Dynamically grown generative adversarial networks. In

Under review, 2020b.

M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. In NIPS,

2017a.

S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy. Improved image captioning via policy

gradient optimization of spider. In ICCV, 2017b.

W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax loss for convolutional neural networks.

In ICML, 2016.

I. Loshchilov and F. Hutter. Online batch selection for faster training of neural networks. arXiv

preprint arXiv:1511.06343, 2015.

109

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In ICLR, 2019.

R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu. Neural architecture optimization. In NeurIPS,

2018.

J. Ma and D. Yarats. Quasi-hyperbolic momentum and adam for deep learning. In ICLR, 2019.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adver-

sarial networks. In ICLR, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.

Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

V. Mnih, N. Heess, A. Graves, et al. Recurrent models of visual attention. In NeurIPS, 2014.

V. N. Murthy, S. Maji, and R. Manmatha. Automatic image annotation using deep learning repre-

sentations. In ICMR, 2015.

A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. In

ECCV, 2016.

T. Nguyen and S. Sanner. Algorithms for direct 0–1 loss optimization in binary classification. In

ICML, 2013.

T. Nguyen, T. Le, H. Vu, and D. Phung. Dual discriminator generative adversarial nets. In NeurIPS,

2017.

A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier gans. In

ICML, 2017.

X. Ouyang, Y. Cheng, Y. Jiang, C.-L. Li, and P. Zhou. Pedestrian-synthesis-gan: Generating

pedestrian data in real scene and beyond. arXiv preprint arXiv:1804.02047, 2018.

L. Perez and J. Wang. The effectiveness of data augmentation in image classification using deep

learning. arXiv preprint arXiv:1712.04621, 2017.

110

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture search via parameter

sharing. In ICML, 2018.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolu-

tional generative adversarial networks. In ICLR, 2016.

H. G. Ramaswamy, S. Agarwal, and A. Tewari. Convex calibrated surrogates for low-rank loss

matrices with applications to subset ranking losses. In NeurIPS, 2013.

H. G. Ramaswamy, B. S. Babu, S. Agarwal, and R. C. Williamson. On the consistency of output

code based learning algorithms for multiclass learning problems. In Conference on Learning

Theory, 2014.

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence level training with recurrent neural

networks. In ICLR, 2016.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier archi-

tecture search. In AAAI, 2019.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In ICLR, 2018.

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with

region proposal networks. In NIPS, 2015.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved tech-

niques for training GANs. In NeurIPS, 2016.

S. Sankaranarayanan, Y. Balaji, A. Jain, S. Nam Lim, and R. Chellappa. Learning from synthetic

data: Addressing domain shift for semantic segmentation. In CVPR, 2018.

C. N. d. Santos, K. Wadhawan, and B. Zhou. Learning loss functions for semi-supervised learning

via discriminative adversarial networks. arXiv preprint arXiv:1707.02198, 2017.

111

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outrageously

large neural networks: The sparsely-gated mixture-of-experts layer. In ICLR, 2017.

D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In ACM Na-

tional Conference, 1968.

A. Shrivastava, A. Gupta, and R. Girshick. Training region-based object detectors with online hard

example mining. In CVPR, 2016.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning from simulated

and unsupervised images through adversarial training. In CVPR, 2017a.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning from simulated

and unsupervised images through adversarial training. In CVPR, 2017b.

J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat, and

R. Adams. Scalable bayesian optimization using deep neural networks. In ICML, 2015.

D. So, Q. Le, and C. Liang. The evolved transformer. In ICML, 2019.

Y. Song, A. Schwing, R. Urtasun, et al. Training deep neural networks via direct loss minimization.

In ICML, 2016.

M. F. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber. Deep networks with internal selective

attention through feedback connections. In NeurIPS, 2014.

Y. Sun, X. Wang, and X. Tang. Deep convolutional network cascade for facial point detection. In

CVPR, 2013.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for rein-

forcement learning with function approximation. In NeurIPS, 2000.

112

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.

M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: optimizing non-smooth rank metrics.

In WSDM, 2008.

A. Tewari and P. L. Bartlett. On the consistency of multiclass classification methods. In ICML,

2007.

J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a

graphical model for human pose estimation. In NeurIPS, 2014.

N.-T. Tran, T.-A. Bui, and N.-M. Cheung. Dist-GAN: An improved GAN using distance con-

straints. In ECCV, 2018.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured

and interdependent output variables. In ICML, 2005.

P. Viola and M. J. Jones. Robust real-time face detection. International journal of computer vision,

57(2):137–154, 2004.

H. Wang and J. Huan. AGAN: Towards automated design of generative adversarial networks.

arXiv preprint arXiv:1906.11080, 2019.

T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution image

synthesis and semantic manipulation with conditional gans. In CVPR, 2018.

W. Wang, Y. Sun, and S. Halgamuge. Improving MMD-GAN training with repulsive loss function.

In ICLR, 2019.

X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers. Chestx-ray8: Hospital-scale

chest x-ray database and benchmarks on weakly-supervised classification and localization of

common thorax diseases. In CVPR, 2017a.

113

X. Wang, A. Shrivastava, and A. Gupta. A-fast-rcnn: Hard positive generation via adversary for

object detection. In CVPR, 2017b.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural networks.

In NeurIPS, 2016.

C. Wong, N. Houlsby, Y. Lu, and A. Gesmundo. Transfer learning with neural automl. In NeurIPS,

2018.

L. Wu, F. Tian, Y. Xia, Y. Fan, T. Qin, L. Jian-Huang, and T.-Y. Liu. Learning to teach with

dynamic loss functions. In NeurIPS, 2018.

S. Xie, A. Kirillov, R. Girshick, and K. He. Exploring randomly wired neural networks for image

recognition. In ICCV, 2019.

Q. Xu, G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu, and K. Weinberger. An empirical study on

evaluation metrics of generative adversarial networks. arXiv preprint arXiv:1806.07755, 2018.

Y. Xu, R. Jia, L. Mou, G. Li, Y. Chen, Y. Lu, and Z. Jin. Improved relation classification by deep

recurrent neural networks with data augmentation. In COLING, 2016.

D. Yang and J. Deng. Shape from shading through shape evolution. In CVPR, 2018.

D. Yang and J. Deng. Learning to generate synthetic 3d training data through hybrid gradient. In

CVPR, 2020.

S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-to-end learning of action detection from

frame glimpses in videos. In CVPR, 2016.

F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. Lsun: Construction of a large-scale

image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365,

2015.

114

H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas. Stackgan: Text to

photo-realistic image synthesis with stacked generative adversarial networks. In ICCV, 2017.

H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention generative adversarial net-

works. In ICML, 2019.

H. Zhang, Z. Zhang, A. Odena, and H. Lee. Consistency regularization for generative adversarial

networks. In ICLR, 2020.

T. Zhang. Statistical behavior and consistency of classification methods based on convex risk

minimization. Annals of Statistics, 2004.

X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very deep convolutional networks for classifi-

cation and detection. PAMI, 2016.

Y. Zhou, C. Xiong, and R. Socher. Improving end-to-end speech recognition with policy learning.

In ICASSP, 2018.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In ICCV, 2017.

B. Zoph and Q. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable

image recognition. In CVPR, 2018.

115

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Background: Design in Deep Neural Networks
	Motivation
	Contributions
	Thesis Outline
	Automated Dynamic Inference (Chapter 2)
	Unified Loss Design (Chapter 3)
	Synthetic Data Generation for Small-data Object Detection (Chapter 4)
	Architecture Search for GANs (Chapter 5)

	Related Work
	Automated Data Design
	Automated Model Design
	Automated Loss Design

	Automated Dynamic Inference
	Introduction
	Related work
	Definition and Semantics of D2NNs
	D2NN definition
	D2NN Semantics

	D2NN Learning
	Learning a Single Control Node
	Mini-Bags for Set-Based Metrics

	Experiments
	High-Low Capacity D2NN
	Cascade D2NN
	Chain D2NN
	Hierarchical D2NN
	Comparison with Dynamic Capacity Networks
	Visualization of Examples in Different Paths
	CIFAR-10 Results

	Conclusion
	Appendix
	Implementation Details
	ILSVRC-10 Semantic Hierarchy
	Configurations

	Unified Loss Design
	Introduction
	Related Work
	Direct Loss Minimization
	Surrogate Losses

	UniLoss
	Overview
	Original Formulation
	Refactorized Formulation
	Differentiable Approximation

	Example: Multi-class Classification
	Refactorization
	Interpolation
	Scores to Binaries: h.
	Binaries to Performance: g.

	Experimental Results
	Tasks and Metrics
	Average Precision for Unbalanced Binary Classification
	PCKh for Single-Person Pose Estimation
	Accuracy for Multi-class Classification

	Average Precision for Unbalanced Binary Classification
	Dataset and Baseline
	Formulation and Refactorization
	Results

	PCKh for Single-Person Pose Estimation
	Dataset and Baseline
	Formulation and Refactorization
	Results

	Accuracy for Multi-class Classification
	Dataset and Baseline
	Formulation and Refactorization
	Results

	Discussion of Hyper-parameters
	Mini-batch Sizes
	Number of Anchors

	Conclusions
	Appendix
	Binary Classification
	Network Architecture
	Training Details

	Pose Estimation
	Network Architecture
	Training Details

	Classification
	Network Architecture
	Training Details

	Synthetic Data Generation for Small-data Object Detection
	Introduction
	Related Work
	Image-to-image Translation.
	Object Insertion with GANs.
	Integration of GANs and Classifiers.
	Data Augmentation for Object Detection

	DetectorGAN
	Model Architecture
	Train Generator with Detection Losses
	Overall Losses and Training

	Experiments
	Disease Localization
	Dataset
	Quantitative Comparison
	Qualitative Analysis
	User Study

	Pedestrian Detection

	Conclusion

	Architecture Search for GANs
	Introduction
	Related Work
	Improving GANs
	Architecture Search with GANs
	Neural Architecture Search
	Hybrid Optimization

	Dynamically Grown GAN
	Dynamic Growing Overview
	Generator and Discriminator Base Architecture
	Action Search Space

	Search Algorithm

	Experimental Results
	Datasets and Evaluation Metrics
	CIFAR-10
	Implementation Details
	Comparison with ProgGAN
	Comparison with Automatic GANs
	Comparison with State-of-the-art
	Inception Score and Visualization

	LSUN
	Comparison with ProgGAN
	Comparison with Automatic GANs
	Comparison with State-of-the-art
	Visualization

	Analysis
	How does the capacity of the generator (G) and the discriminator (D) affect training?
	How does each action affect training?
	How does greedy pruning affect searching?
	Discussion on Efficiency

	Conclusions
	Appendix
	Additional Analysis
	How does the capacity of the generator (G) and the discriminator (D) affect training?
	How does each action affect training?
	How does greedy pruning affect searching?
	Discussion on Efficiency

	Limitations and Future Work
	Integration of Multiple Automated Techniques
	Unified Loss
	Architecture Search
	Complete Automated System

	Bibliography

