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Abstract 

Pancreatic ductal adenocarcinoma (PDA) is a notoriously deadly disease having 

the lowest 5-year survival rate of any major cancer, owing to a lack of effective 

therapeutic options. A growing body of evidence demonstrates that PDAs reprogram 

their metabolism to support growth and survival in response to a harsh metabolic tumor 

environment. This work studies the hypothesis that metabolism can reveal novel 

therapeutic targets. Uncovering novel nutrient vulnerabilities could provide new ways to 

target PDA selectively.  

The goals of this work were two-fold. First, we developed analytical methods to 

identify metabolic changes in PDA and other biological samples. Employing mass 

spectrometry metabolomics, we profiled over two hundred metabolites in a single 

experiment across heterogeneous biological samples and experimental conditions. A 

meta-analysis of these metabolomics studies revealed insights into metabolite 

reproducibility, providing analytical benchmarks for quality control. Moreover, through 

systematic analysis we identified stable and dynamic metabolites, where dynamic 

metabolites play numerous roles in modulating gene expression and signaling. 

Together, this work provides benchmarks for metabolomics method development and 

robust analytical frameworks. 

Second, we examined nutrient vulnerabilities in PDA to identify novel therapeutic 

opportunities.  We found that pancreatic cancer cells were highly sensitive to cystine 

deprivation. Cystine was required for the biosynthesis of two versatile redox co-factors, 

glutathione and coenzyme-A. Starving pancreatic cancer cells and tumors from cysteine 

triggered ferroptosis: an oxidative, iron-dependent, non-apoptotic form of cell death. 

Inhibiting cystine metabolism was well tolerated in mice and showed substantial anti-

tumor activity, suggesting a new therapeutic strategy for PDA.  

In addition to identifying cystine as a metabolic vulnerability, we previously 

described that pancreatic cancers depend on a cytosolic aspartate aminotransaminase 
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(GOT1)-dependent pathway for redox balance. Inhibiting GOT1 slowed the growth of 

PDA cells and tumors. We sought to identify metabolic dependencies induced by GOT1 

inhibition as a strategy to kill PDAs selectively. We found cystine, glutathione, and lipid 

antioxidant function were metabolic susceptibilities following GOT1 suppression. 

Targeting these metabolic nodes triggered ferroptosis in synergy with GOT1 and 

delayed tumor growth. This effect was due to labile iron release, which augments 

ferroptosis sensitivity.  Together, this work describes the development of mass 

spectrometry metabolomics tools and reveals how metabolism and ferroptosis are 

linked.  

This work presents new methods to study ferroptosis in diverse model systems, 

reconciling long-standing limitations in the field. We identify several metabolic nodes 

governing ferroptosis susceptibility, building upon the notion that ferroptosis is a 

metabolically-coupled form of cell death. Finally, we discuss several strategies to 

harness ferroptosis for therapy that could lead to novel treatments for PDA.
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Chapter 1. Pancreatic Cancer: An Unmet Need and Opportunity for Metabolic 

Intervention 

1.1 Disease Overview 

As of 2020, the National Cancer Institute estimates that roughly 1.8 million 

people are diagnosed with cancer in the United States1. The most common cancer 

diagnosis is breast cancer, followed by lung cancer and prostate cancer. Overall, 

600,000 people are estimated to die from cancer in the United States this year. Lung 

cancer is projected to account for most deaths, followed by colorectal and pancreatic 

cancer 1.  

Despite a relatively rare diagnosis, pancreatic ductal adenocarcinoma (PDA) is 

one of the deadliest solid malignancies. PDA is the third leading cause of cancer-related 

death and has the lowest 5-year survival rate among the major cancer types. PDA is the 

most common cancer of the pancreas, accounting for 90% of all pancreatic 

malignancies2. Around 60-70% of PDAs are located in the head of the pancreas, while 

20-25% are located in the body and tail2. PDA patients are often asymptomatic until 

late-stage disease, where abdominal pain, weight loss, asthenia, and anorexia are 

common symptoms2. Tumors in the head of the pancreas can cause jaundice, and PDA 

can induce type 3c diabetes mellitus, which is observed in 50% of patients2. PDA is the 

most lethal major cancer.   

The 5-year overall survival of patients with PDA has improved slowly from 2.5% 

in 1970-1977 to 10% in 20191. 70% of PDA deaths are due to metastatic disease, 

where the liver, abdomen, and lungs are primary metastatic sites. The remaining 30% of 

deaths are ascribed to bulky tumors, which impair proper digestive function. Screening, 

early detection, and novel therapies have enabled significant improvements in overall    

survival in several major cancers. By contrast, the slow increase in PDA survival rates 

has been hampered by late-stage diagnosis and therapeutic resistance.  
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1.2 Risk Factors 

PDA is associated with several environmental risk factors. Age is a significant 

risk factor, as most patients are diagnosed at >50 years of age, with a disease 

incidence peaking around 70 years of age3. Other environmental risk factors include 

tobacco use and diet. Smokers have a two- to three-fold higher risk for developing PDA 

over non-smokers, where a higher number of cigarettes correlates with higher risk4. 

Smoking is a source of DNA damaging mutagens in pancreatic cells that increase the 

probability of gaining an oncogenic mutation. Some dietary patterns are associated with 

PDA risk. Meta-analysis have associated a “Western Diet” with PDA risk while a 

“healthy diet” was associated with decreased PDA risk5. Obesity and heavy alcohol 

consumption are also positive dietary risk factors3. However, the alcohol association 

may be confounded by chronic pancreatitis6. Chronic pancreatitis increases the risk of 

PDA by more than ten-fold3. Type 2 diabetes mellitus is a risk factor for PDA, where 

chronic diabetes mellitus doubles the risk for PDA3. Diabetes mellitus is also a 

consequence of early-stage pancreatic cancer. Type 3c diabetes mellitus, the sporadic 

onset of diabetes mellitus, can provide opportunities for the early diagnosis of PDA. 

Age, tobacco use, chronic pancreatitis, and type 2 diabetes mellitus are significant 

environmental risk factors for PDA.   

Along with environmental risk factors, several genetic syndromes are associated 

with PDA risk. About 10% of PDA cases have a familial basis: 3% of these cases 

possess a causative germline mutation. The remaining 7% of cases lack a germline 

mutation, but maintain a family history of disease3. Hereditary conditions that increase 

the risk for PDA are linked to mutations in tumor suppressor or DNA damage response 

genes. Examples of germline mutations in DNA damage response genes include, 

BRCA1, BRCA2, and localizer of BRCA2 (PALB2), the Fanconi anemia genes FANCC 

and FANCG, and ataxia telangiectasia mutated (ATM)3. Mutations in these genes 

increase genomic instability during DNA replication and increase the chance for 

subsequent mutations7. Germline mutations in cyclin-dependent kinase (CDK) inhibitor 

2A (CDKN2A, which encodes p16INK4A and p19ARF), is responsible for familial atypical 

multiple mole melanoma (FAMMM) syndrome, which increases risk for PDA by 13-fold8. 
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CDKN2A is a tumor suppressor gene that regulates the G1/S checkpoint of the cell 

cycle. Somatic mutations in CDKN2A contribute to PDA progression, in addition to 

germline mutations7. Patients with inherited mutations in these genes are considered 

high-risk and are monitored by screening. 

Together, these risk factors highlight both environmental and genetic 

contributions to PDA and suggest potential in-roads for PDA prevention. Screening 

involves identifying patients with a family history of PDA or identifying patients 

possessing germline mutations associated with PDA. Periodic screening for high-risk 

patient groups is being implemented and has improved survival. A recent study 

demonstrated that early detection of localized cancer can boost 5-year survival to 

31.5% from a 10% baseline8. Identifying patients who are predisposed to PDA is an 

attractive strategy. Still, PDA has a low incidence and a lifetime risk of 1.5% in the 

general population, making disease screening only feasible for high-risk patient groups. 

90% of PDA cases lack a familial basis3,8. Thus, along with patient screening, research 

has focused on engineering early detection methods and developing novel therapies. 

1.3 Early Detection 

Late-stage diagnosis is a major contributing factor to PDA lethality. Often patients 

are asymptomatic until late-stage disease, and the field lacks sensitive and specific 

methods to detect early-stage tumors. PDA can take >10 years to generate metastases, 

which could provide a window for early detection and intervention3. Robust PDA 

markers are needed for early detection, monitoring disease progression, and response 

to therapy.  

The most utilized biomarker is serum cancer antigen 19-9 (CA19-9), a sialylated 

Lewis-A antigen. CA19-9 is used to monitor PDA progression and therapy response. 

CA19-9 lacks the sensitivity and specificity required for early PDA detection or 

screening3, and 10–15% of the population lack the enzyme necessary to synthesize 

CA19-9, making CA19-9 a sub-optimal marker9,10. By contrast, circulating tumor DNA 

can be detected in 50% of patients with localized disease and 85% of patients with 

metastatic disease. Circulating tumor DNA harboring mutant KRAS can be detected in 

43% of patients with localized disease. KRAS is a small GTPase that functions as a 
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growth switch and harbors activating mutations in >90% of PDA patients. Identifying 

KRAS mutations in circulating tumor DNA is a promising alternative to CA19-9 for early 

PDA detection. Other blood-based markers include protein panels, exosomes, 

microRNAs, and the elevation of branched-chained amino acids3,11. While these tools 

could complement current PDA detection approaches in the future, they are currently 

experimental and have not exhibited clinical utility. 

1.4 The PDA Therapeutic Landscape 

The lack of effective therapies is a significant barrier to improving overall survival 

for PDA patients. In 2020 the 5-year overall survival of patients with PDA increased 

from 2.5% to 10%1. Still, PDA has lagged behind advances made in the treatments of 

other cancers. Early detection of pre-invasive PDA and surgery remains the only 

chance for a cure, however the majority of patients are diagnosed in later stages or are 

ineligible for surgery. Surgical resection is associated with a 5-year survival of 15-25%3. 

A Whipple Procedure removes the pancreatic head, while a distal pancreatectomy 

removes tumors in the pancreatic tail. 10-20% of patients have a resectable disease, 

and 30-40% of patients present with borderline resectable PDA. A majority (50-60%) of 

patients are ineligible for surgery and present with locally advanced/unresectable 

pancreatic cancer3. Among these patients eligible for surgery, 20% of patients will 

survive five years following surgical resection and adjuvant therapy3. Surgery is a mildly 

effective, but risky therapeutic option, for patients with localized disease.  

Cytotoxic chemotherapies are the primary treatment option for patients with 

advanced or refractory disease. These therapies provide little survival benefit, as PDA is 

highly resistant to chemotherapy. The current standard of care is a chemotherapy 

cocktail consisting of 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin 

(FOLFIRINOX) or combinations lacking 5-fluorouracil (mFOLFIRINOX)12. Therapeutic 

limitations include a low prevalence of tractable mutations3, the lack of predictive 

biomarkers12, a desmoplastic stroma that can impede drug delivery13, and an immune 

suppressive tumor microenvironment14. Thus, novel therapies that overcome these 

limitations are desperately needed. Both pre-clinical and clinical research in targeted 
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therapy, immune therapy, and metabolic therapy offer novel therapeutic strategies for 

improving PDA treatment. 

Targeted Therapy 

The genomic landscape of PDA has been known for decades, but the translation 

of this information into novel therapies has recently emerged. Several studies have 

profiled the whole genomes of PDA patient cohorts to classify tumor subtypes to 

facilitate treatment and provide biomarkers for patient stratification15–17. These studies 

have revealed a small number (<14%) of clinically actionable mutations in DNA 

maintenance genes (BRCA1, BRCA2 or PALB2) representing a “genomically unstable 

subtype.”15 Importantly, this molecular subtype predicted responsiveness to platinum-

based chemotherapy.  

Loss-of-function mutations in BRCA1/2 or PALB2, which are essential for DNA 

damage repair, are potential markers for the application of poly (ADP-ribose) 

polymerase (PARP) inhibitors. PARP is a critical DNA damage repair enzyme that 

recognizes and repairs single-strand DNA breaks. PARP enzymes repair DNA damage 

in parallel with BRCA1/2 and PALB2. PARP inhibition combined with BRCA1/2 or 

PALB2 loss-of-function mutations results in cell death from a defective DNA damage 

response. Several clinical trials are investigating PARP inhibitors in patients with a 

germline or somatic BRCA1/2 or PALB2 mutations12. Only around 14% of PDA patients 

have these genetic alterations, and more broadly, up to 24% of patients have mutations 

in other genes that encode for DNA damage response proteins. PARP inhibitors as a 

single agent or in combination in patients harboring these genetic alterations are 

ongoing12. PARP inhibitors are promising, albeit limited, application of targeted therapy 

in PDA. 

By contrast, oncogenic mutations in KRAS mutations are found in >90% and is 

the driver mutation in of PDA. Mutant KRAS isoforms have been notoriously difficult to 

target owing to their high affinity for GTP and GDP substrates18. Recently, allele-specific 

inhibitors against KRASG12C have shown promise in both pre-clinical models and early 

phase trials19. These KRASG12C inhibitors disrupt cancer cell growth and promote the 

infiltration of CD8+ T cells into the immune microenvironment. For example, the 

KRASG12C inhibitor AMG-510 combined, with a PD-1 inhibitor led to durable cures in 
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mice and protected mice against subsequent tumor challenge19,20. This observation was 

consistent with studies demonstrating that oncogenic KRAS signaling promotes an 

immune-suppressive tumor microenvironment. Despite these promising results, there 

are several limitations. The KRASG12C mutation accounts for only ~1% of PDA 

patients12. Several groups are exploring the possibility of pan-RAS inhibitors, offering a 

promising alternative20. Tumor resistance is another caveat to RAS inhibition, and 

several mechanisms of resistance have been established in PDA and other cancers. 

Thus, combination therapy is likely needed to improve the anti-tumor efficacy of KRAS 

or RAS inhibitors19–23. Overall, the translation of targeted therapies against the genomic 

landscape of PDA is emerging. 

Immune Therapy 

Cancer is characterized by the expression of signals that distinguish them from 

normal cells24. Cancer neoantigens can be presented by MHC class I molecules on the 

surface of cancer cells, enabling recognition and activation of anti-tumor immunity25. 

Anti-tumor immunity is a highly regulated process requiring the coordination between 

innate and adaptive immune and cells in the tumor microenvironment25. The goal of 

cancer immune therapy is to direct the processes of anti-tumor immune regulation for 

therapeutic benefit.  

Here, we refer to immune therapy as immune checkpoint inhibitors, which block 

negative regulators of a CD8+ T cell anti-tumor response, although other immune 

therapy modalities exist. Established immune checkpoint inhibitors include anti-CTLA4, 

anti-PD1, and anti-PD-L1 blocking antibodies that have shown efficacy in specific tumor 

types but have been ineffective in PDA12.  

PDAs have been resistant to immunotherapy owing to a relatively low tumor 

mutational burden, a dense desmoplastic stroma, and an immune-suppressive tumor 

microenvironment. PDA has a low tumor mutational burden compared with tumors that 

respond to immune checkpoint inhibitors, where tumor mutational burden is associated 

with responsiveness to these therapies26,27. A high mutation burden can promote the 

formation of cancer neoantigens that facilitate tumor-specific killing by CD8+ T cells24. 

The dense fibrotic stroma in PDA poses a physical barrier to cytotoxic T cells28 and 

stromal cells release factors that inhibit CD8+ T cell survival and function. For example, 
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inhibitory cell populations within the stroma, such as myeloid cells and Tregs, restrict 

anti-tumor immunity. Low mutational burden and an immune suppressive tumor 

microenvironment also hinder immunotherapy for PDA. Immune therapies would likely 

need to be harnessed in combination to achieve anti-tumor immunity.   

Current efforts aim to identify combination therapies that block immune-

suppressive components and augment immune checkpoint inhibitors. Example 

combinations harness targeted therapy, metabolic therapy, or other immune therapy 

strategies to improve immune checkpoint inhibitor safety and efficacy. Indeed, several 

clinical trials are evaluating this concept12,32. While immune therapy has emerged as a 

new treatment option for immunogenic tumor types, PDA has been refractory. Many 

clinical and pre-clinical studies are aiming to overcome immune suppression in PDA 

through combinations with immune checkpoint therapy.    

Metabolic Therapy 

Metabolic alterations accompany the onset of PDA and offer many therapeutic in-roads. 

Vascular collapse, impaired perfusion, and hypoxia follow the signature desmoplastic 

reaction. These collective insults promote a nutrient-deprived and harsh tumor 

microenvironment28,29. PDA cells adapt their metabolism to support survival and growth 

under these harsh conditions (Figure 1)30. These metabolic changes occur in PDA cells 

and the tumor microenvironment. Metabolic reprogramming of the tumor 

microenvironment contribute to therapeutic resistance. Importantly, cancer-specific 

metabolic reprogramming may provide a therapeutic window and reveal new 

therapeutic targets31,32.Metabolic reprogramming in PDA cells is a result of oncogene 

activation. Two primary carbon sources include glucose and glutamine that provide 

biosynthetic and bioenergetic substrates31. Oncogenic KRAS promotes the upregulation 

of glycolysis and shunting of glucose carbon into biosynthetic pathways. Two of these 

upregulated pathways include the hexosamine biosynthetic pathway, which supports 

glycosylation, and the non-oxidative pentose phosphate pathway, which provides a 

carbon source for DNA and RNA synthesis (Figure 1)33.  Oncogenic KRAS reprograms 

glutamine metabolism to support NADPH production and redox homeostasis34. 

Oncogenic KRAS enables nutrient scavenging through macropinocytosis (Figure 1), a 

process involving the bulk engulfment of extracellular fluid. 
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Macropinocytosis is a mechanism by which PDA cells scavenge proteins,35,36  lipids,37 

and necrotic cells38 from the surrounding environment. Interestingly, oncogenic KRAS 

ablation promotes a population of resistant cells sensitive to inhibition of Oxidative 

Phosphorylation (OxPhos)22,23. Overall, oncogenic KRAS reprograms several metabolic 

pathways in PDA to support biosynthesis, redox balance, and nutrient acquisition. 

PDA cells are highly influenced by the local nutrient environment, in addition to 

KRAS-mediated metabolic reprogramming. The metabolism of PDA is highly plastic and 

alters metabolic programs in response to nutrient availability39. Mayers et al. 

demonstrated differences in branched-chain amino acid catabolism in PDA versus 

cancers harboring KRAS11. PDAs have elevated autophagy (Figure 1), a nutrient 

scavenging process that is regulated by nutrient access and energetic balance. Under 

conditions of metabolic stress, autophagy degrades cellular organelles and 

macromolecules to support metabolic homeostasis. Autophagy provides amino acids 

that facilitates PDA growth under nutrient deprevation40,41,42. PDAs are highly sensitive 

Figure 1. Metabolic reprogramming in PDA. 

Glucose and glutamine are primary inputs to PDA metabolism. Major biosynthetic outputs include DNA/RNA, UDP-
GlcNAc, amino acids, lipids, and reduced glutathione (GSH). Key enzymes in intermediary metabolism are in red. 
Glutamine metabolism is in blue. Adapted from reference #29. 
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to autophagy inhibition as genetic or pharmacological inhibition of autophagy machinery 

is sufficient to stunt tumor growth in PDA mouse models40,42. KRAS suppression or ERK 

inhibition enhances autophagy dependence. Inhibition of autophagy and ERK signaling 

synergizes in vivo, demonstrating a promising combination strategy43. Early phase 

clinical trials are targeting autophagy in combination with chemotherapy 

(NCT01506973) or ERK inhibition (NCT03825289). Overall, PDA exhibits extensive cell-

autonomous metabolic reprogramming to support growth and survival.  

Fibroblasts and immune cells outnumber cancer cells in PDA tumors and play a 

significant role in the metabolic reprogramming of PDA tumors. New data demonstrate 

that fibroblasts and immune cells share a dynamic metabolic relationship with PDA by 

engaging in reciprocal nutrient exchange44. PDAs are proficient in capturing metabolites 

through metabolite cross-talk with neighboring cells. PDA signal to cancer-associated 

fibroblasts (CAFs) to release alanine to support OxPhos in PDA cells41 and CAFs can 

support PDA through metabolites released from exosomes45.  

PDA cells can also participate in metabolite transfer with the immune system. 

Tumor-educated macrophages (TEMs) release deoxycytidine that inhibits gemcitabine 

treatment in PDA46. At the same time, tumor-derived lactate promotes macrophage 

polarization toward the TEM state47. Lactate mediates the expression Ariginase1 (Arg1), 

which is a molecular marker for TEMs47. Arg1 degrades arginine, which promotes an 

immune suppressive environment. Arginine is unique among the amino acids because it 

mediates CD8+ T cell survival, anti-tumor immunity, and memory48. The combination of 

Arg1 inhibitors and immune checkpoint inhibitors are undergoing clinical investigation in 

advanced-stage solid tumors (NCT02903914). These brief examples illustrate the 

complex metabolic interactions within the PDA tumor environment that provide novel 

opportunities for therapeutic harnessing.  

Systemic metabolic reprogramming contributes to the onset of PDA. Conditions 

such as obesity and Type 2 diabetes mellitus are risk factors for PDA3. Obesity 

increases PDA risk by 20-50% and shows an increase in risk proportional to body mass 

index49 and an increased number of PanIN lesions in patients50. Obesity may influence 

the onset of PDA through multiple and cooperative mechanisms. A high-fat diet, for 

example, is associated with the activation of inflammatory pathways and can contribute 
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to early-stage lesions55,56 . A high-fat diet cooperates with oncogenic KRAS to promote 

tumorigenesis and is correlated with decreased survival in KRAS-Cre mice57. Thus, 

systemic metabolism can influence the onset of PDA.  

PDA can influence systemic metabolism. PDA promotes cachexia, which is 

associated with more aggressive tumors and poor prognosis30. PDA can promote 

adipose tissue loss, which could be linked to declining exocrine pancreas function58. 

Tissue and muscle atrophy occur early in PDA development. Mayers et al. reported that 

elevated circulating branched chained amino acids (BCAAs) are present 2-5 years 

before tumor diagnosis. Elevated BCAA levels were associated with a 2-fold risk of 

developing PDA. A greater understanding of the reciprocal relationship between PDA 

and systemic metabolism could yield novel biomarkers and therapeutic opportunities. 

New studies are harnessing dietary intervention for therapy. Diet can influence 

the local nutrient environment in tumors51,52 and modulate therapeutic response53,54. In 

mice, a high-fat diet can promote tumor growth, while caloric restriction can inhibit tumor 

growth52. Recent studies are examining the possibility of combining dietary intervention 

with targeted therapy. For example, Hopkins et al. demonstrated that dietary 

manipulation of insulin improves the anti-tumor effect of PI3K inhibitors54. 

Understanding the mechanisms by which dietary intervention can influence therapy 

response is an attractive application of metabolic therapy. 

PDA adapt their metabolism to facilitate survival and immune suppression. The 

metabolic reprogramming occurring in tumors has a far-reaching impact on systemic 

metabolism. Understanding the mechanisms of metabolic reprogramming in PDA is 

revealing novel therapeutic strategies.  

1.5 Dissertation Summary 

Better therapeutic strategies and early detection are needed to improve PDA 

outcomes. Targeted therapies, immune therapies, and metabolic therapies provide 

novel opportunities to combat PDA. This work studies the hypothesis that metabolism 

can reveal novel therapeutic targets, given that metabolism is heavily altered in this 

disease. Uncovering novel nutrient vulnerabilities could provide new ways to target PDA 

selectively.  



 11 

Here, we developed a targeted mass spectrometry metabolomics platform to 

study the metabolism PDA (Chapter 2). We then used this method to identify cysteine 

(Chapter 3), redox, and iron metabolism (Chapter 4) as novel metabolic vulnerabilities. 

While these therapeutic opportunities are still in the early stages, the discoveries made 

here could lead to innovative therapeutic strategies (Conclusions and Future 

Directions). 
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Chapter 2. A Large-Scale Analysis of Targeted Metabolomics Data from 

Heterogeneous Biological Samples Provides Insights into Metabolite Dynamics1 

2.1 Abstract 

We developed a tandem mass spectrometry-based label-free targeted 

metabolomics analysis framework employing two distinct chromatographic methods, 

reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid 

chromatography (HILIC), coupled with dynamic multiple reaction monitoring (dMRM), to 

detect over 200 metabolites in core metabolic pathways. We sought to establish a 

systematic framework to access measurement quality in biological replicate groups and 

to investigate metabolite abundance changes and patterns across different biological 

conditions. We applied our metabolomics instrument platform and analysis framework 

across wide-range of experimental systems including cancer cell lines, tumors, 

extracellular media, primary cells, immune cells, organoids, organs (e.g. pancreata), 

tissues, and sera from human and mice. We generated a compendium of 42 

heterogeneous deidentified datasets with 635 samples using both RPLC and HILIC 

methods. Our method revealed metabolite signatures that correspond to various 

phenotypes of the heterogeneous datasets and involve several metabolic pathways. 

Moreover, we found the RPLC method shows overall better reproducibility than the 

HILIC method for most metabolites including polar amino acids. Correlation analysis 

reveals high confidence metabolites irrespective of experimental systems such 

asmethionine, phenylalanine, and taurine. We also identify homocystine, reduced 

glutathione, and phosphoenolpyruvic acid as highly dynamic metabolites across all 

                                                 

 

1The content of this chapter were adapted and reproduced from a published co-first authored article: 

Lee, H.-J., Kremer, D. M.*, Sajjakulnukit, P.*, Zhang, L. & Lyssiotis, C. A. A large-scale analysis of targeted 

metabolomics data from heterogeneous biological samples provides insights into metabolite dynamics. Metabolomics 
15, 103 (2019). 
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case-control paired samples. Overall, our study may serve as a reference point for a 

systematic analysis of label-free LC–MS/MS targeted metabolomics data in both RPLC 

and HILIC methods with dMRM. 

2.2 Introduction 

Mass spectrometry (MS) is a popular and powerful platform for metabolomics 

studies99–101. Although nuclear magnetic resonance (NMR)-based metabolomics is also 

widely used, MS is more easily coupled to various chromatographic columns to 

separate analytes prior to analysis, thereby reducing the complexity of a biological 

sample and increasing sensitivity for simultaneous detection of a large number of 

metabolites102,103 

MS-based metabolomics is performed predominantly by subjecting samples to 

chromatographic separation before MS analysis. Chromatographic columns make it 

possible to separate complex analyte mixtures based on physicochemical properties of 

a wide range of compounds, including isomers. Liquid chromatography (LC) is most 

frequently used, while gas chromatography (GC) is preferred for measuring volatile 

compounds. LC methods include reversed-phase liquid chromatography (RPLC) and 

hydrophilic interaction liquid chromatography (HILIC). RPLC is typically used for a broad 

range of metabolites, especially nonpolar and weakly polar metabolites, whereas HILIC 

has a complementary usage for hydrophilic, polar, and ionic metabolites such as 

sugars, amino acids, and nucleic acids104–109, where a recent study performed a 

systematic evaluation of chromatographic methods in LC–MS metabolomics110. 

We previously developed a tandem mass spectrometry-based targeted 

metabolomics system that profiles abundance of more than 200 metabolites as a 

steady-state snapshot of global metabolism. It utilizes both RPLC and HILIC methods 

with dynamic MRM (dMRM) as a means to maximize the coverage and sensitivity of 

target metabolites. Together with our customized computational and statistical analysis 

pipelines, this system has been recently applied in several biological contexts39,50,111,112. 

Herein, we report heterogeneous data sets generated from a wide-range of experiments 

and sample types using our LC–MS/MS targeted metabolomics platforms over a period 

of about 1 year from 2017 to 2018. The data were collected with no specific criteria to 
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both be unbiased and include as much data as possible. Using these, we carried out 

comprehensive global meta-analysis in which we systematically evaluated data quality 

of both RPLC and HILIC methods by statistical measures and characterized global 

patterns of metabolite changes and variability in case versus control groups. 

2.3 Results 

Global Visualization of LC-MS/MS Data across Heterogeneous Datasets 

A flowchart overview of our approach in this study is depicted in (Figure 2). We 

compiled 42 datasets of LC–MS/MS-based targeted metabolomics with both RPLC-

Pos-dMRM and HILIC-Neg-dMRM methods. There are a total of 638 samples analyzed, 

which include cancer cell lines, tumors, extracellular media, primary cells, immune cells, 

organoids, organs (e.g. pancreata), tissues, sera, and shRNA/drug treatments in human 

and mice. A total of 448 measurements were made in both methods for 285 unique 

compound entities (due to multiple detection). We retained measurements for those  

 

metabolites detected in both RPLC-Pos-dMRM and HILIC-Neg-dMRM methods as 

independent measurements. From this compendium we constructed a 448 by 638 data 

matrix for global characterization. 36.7% of the values in this data matrix were missing, 

and we removed 11 samples where no compound was measured. We find that this is a 

Figure 2. A flowchart and a summary of our LC-MS/MS analytical pipeline. 

Produced in collaboration with Dr. Ho-Joon Lee. 
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generic problem associated with generating metabolomics data in a large number of 

heterogeneous samples, especially with the HILIC method. It relates to several factors 

including general metabolite stability (e.g. succinate and fumarate), poor ionization 

efficiency of some metabolites such as carbohydrates, large dynamic ranges of certain 

metabolites in different cell/tissue types (e.g. GABA and certain carbohydrates), and 

complex matrix effects. 

  Figure 3a depicts a correlation heat map and a hierarchical clustering of all 

metabolites in both RPLC-Pos-dMRM and HILIC-Neg-dMRM methods. Figure 3b 

shows a correlation heat map and a hierarchical clustering of all samples. We find that 

there are a few groups of highly correlated metabolites. For example, at the height of 6 

in the dendrogram tree, the 31 metabolites in Cluster #1 are enriched in purine, 

pyrimidine, glycine/serine, and glutathione metabolism, and the 88 metabolites in 

Cluster #2 include metabolites in the TCA cycle, glycolysis, pyruvate, and 

phenylalanine/tyrosine/tryptophan metabolism (Figure 3c). This suggests that those 

metabolites tend to change their abundance in the same direction across different 

conditions, which suggests that they are subject to pathway-level metabolic regulation. 

The lack of clustering among samples reflects the heterogeneous nature of all datasets 

and indicates that experimental bias is not driving clustering and influencing 

downstream analysis. In fact, the most highly correlated 25 samples (Cluster #3, Figure 

3c) do not exhibit common phenotypes, and this cluster includes cell lines, murine 

tumors and several experimentally distinct variables. Therefore, it suggests the 

existence of general metabolic phenotypes that can arise from various perturbations, 

independent of cell/tissue types. 

Analysis of Normalized Relative Abundance 

Raw data from the LC–MS/MS analysis are peak areas of ion counts for each 

identified metabolite. These raw data do not reflect absolute abundance and cannot be 

compared directly between experiments run at different times. Instead we normalized 

each sample by the total ion counts of all metabolites to approximately correct equal 

sample loading. Then, each metabolite abundance value was divided by the mean of all 

abundance values across all samples in each experiment, defined as normalized 

relative abundance, i.e., A∗ij (see Materials and Methods).  
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We first examined normalized relative abundance distributions of all metabolites 

across all datasets using medians in replicate-group measurements. Figure 4a shows 

the number of median measurements for each metabolite across all 183 replicate 

groups. There are a total of 13,026 measurements for 448 metabolites in both RPLC-

Pos-dMRM and HILIC-Neg-dMRM methods in the 42 experiments. 71 metabolites were 

measured in all 183 replicate groups (Figure 4a). All of these came from the RPLC-

Pos-dMRM method. This may indicate that the RPLC-Pos-dMRM method is more 

robust in detecting those metabolites than the HILIC-Neg-dMRM method. Those most 

A B 

C 

Figure 3. Global metabolite and sample profile. 
A-C) Global metabolite and sample profile. B) Correlation heatmap of 448 metabolite measurements of relative 

normalized abundance from both RPLC-Pos-dMRM and HILIC-Neg-dMRM methods along with unsupervised 
hierarchical clustering. The color key is based on Pearson correlation coefficients. C) Pearson correlation heatmap of 
627 samples along with unsupervised hierarchical clustering. D) Dendrogram trees of “Cluster #1 and #2” 

metabolites. Figures produced by Dr. Ho-Joon Lee.  
Experiments were completed in collaboration with Peter Sajjakulnukit and Dr. Li Zhang.  
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frequently detected metabolites across different conditions are enriched in metabolism 

of amino acids, nitrogen, glutathione, and purine (MetaboAnalyst; FDR < 0.01). The 

remaining metabolites show a monotonic decrease in the number of measured replicate 

groups. It is unclear what is the generating function or mechanism of this linearly 

decreasing distribution.  

We next calculated the average of all abundance values for each metabolite. 

Figure 4b shows a histogram of the average abundance values for all 448 metabolites 

and Figure 4c shows a distribution of the ordered average abundance values. Three of 

the top 20 metabolites are involved in cysteine/methionine metabolism (cystine, acetyl-

serine, and glutathione) and others in glycolysis, hexosamine, amino acids, mevalonate, 

energy, and redox metabolism. We also find that one of the top 20 metabolites, 

phenylalanine, is among the most reproducible metabolites by both RPLC-Pos-dMRM 

and HILIC-Neg-dMRM methods, along with methionine and taurine, as discussed 

below. On the other hand, the bottom 20 metabolites include GDP-glucose, NADP+, 

fumaric acid, glycerol, dihydrofolate, leucine, docosahexaenoic acid, homocystine, TMP, 

sucrose, and deoxyadenosine. These metabolites are involved in many different 

metabolic pathways with no significant enrichment (MetaboAnalyst), suggesting that low 

abundance is not a pathway-specific or pathway-level feature. Figure 4d is a scatter 

plot of the average abundance and the number of replicate groups with measurements. 

The top five metabolites are highly abundant in 56–183 distinct groups on average, 

indicating the tendency of more frequent detection of more abundant metabolites. This 

analysis offers insight into the importance of those relatively high abundant metabolites 

in diverse conditions with potential effects on phenotypic differences.  
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Variability Analysis of RPLC-Pos-dMRM and HILIC-Neg-dMRM Data 

The coefficient of variation or CV (= SD/mean) is a standard quantitative measure 

of statistical dispersion or variability113. We use CV to assess variability or consistency 

of replicate measurements in each replicate group for quality assessment. We 

calculated biological replicate-group CVs for both the RPLC-Pos-dMRM and HILIC-Neg-

dMRM methods and examined their quality or reliability differences. Figure 5a shows a 

comparison of replicate-group CV distributions of the two methods. There are 28,765  

 

 

A B 

C D 

Figure 4. Relative abundance analysis. 
A) Distribution of median measurements for 448 metabolites across all 183 biological replicate groups. There are 71 

metabolites with measurements in the maximum 183 replicate groups as listed and as indicated in red circles. B) A 

histogram distribution of the average normalized abundance values for all 448 metabolites. C) Metabolite ranking of 

B. D) A scatter plot of the average normalized abundance of B or C and the numbers of replicate groups with 

measurements. The top 5 highly abundant metabolites are shown in red. Figures produced by Dr. Ho-Joon Lee. 

Experiments were completed in collaboration with Peter Sajjakulnukit and Dr. Li Zhang. 
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CV values in RPLC-Pos-dMRM and 22,069 CV values in HILIC-Neg-dMRM from all 183 

replicate groups for 220 and 228 metabolites, respectively. RPLC-Pos-dMRM 

measurements show more CVs < 0.2 than HILIC-Neg-dMRM measurements by about 

A B 

C D 

Figure 5. Analysis of CV across replicate groups. 
A) Distribution of replicate-group CVs of the RPLC-Pos-dMRM and HILIC-Neg-dMRM methods. There are 28,765 CV 

values in RPLC-Pos-dMRM and 22,069 CV values in HILIC-Neg-dMRM from all 183 replicate groups for 220 and 228 
metabolites, respectively. Summary statistics of all replicate-group CVs from the two methods are shown in the inset. 

B) Ordered distribution of CV    k for individual metabolites from the RPLC-Pos-dMRM and HILIC-Neg-dMRM 
methods. C) Heatmap and hierarchical clustering of replicate-group CVs for 145 metabolites with missing values less 
than 30% across all replicate groups in the RPLC-Pos-dMRM method. D) Heatmap and hierarchical clustering of 

replicate-group CVs for 77 metabolites with missing values less than 30% across all replicate groups in the HILIC-
Neg-dMRM method. Figures produced by Dr. Ho-Joon Lee. Experiments were completed in collaboration with Peter 
Sajjakulnukit and Dr. Li Zhang. 
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two-fold. The summary statistics also show overall better quality of RPLC-Pos-dMRM 

measurements than HILIC-Neg-dMRM.  

The reliability of each metabolite measurement was assessed by the average CV 

in all replicate groups. Figure 5b shows an overview of average measurement reliability 

of all metabolites in each method. We then calculated the 𝐶𝑉    𝑘 where k is a specific 

metabolite normalized to the number of replicate groups with measurements. We 

calculated 𝐶𝑉    𝑘 only for metabolites that were measured in at least 20 replicate groups, 

which yielded 215 and 210 metabolites from RPLC-Pos-dMRM and HILIC-Neg-dMRM, 

respectively, 154 which were common. The reliability difference between the two 

methods is very clear, although Pearson’s correlation of CVs from the two methods for 

the 154 common metabolites shows a significant positive relationship 

(r = 0.37; p < 2.4e−6). This suggests greater chromatographic regularity or compound 

stability in RPLC-Pos-dMRM than HILIC-Neg-dMRM, which is consistent with previous 

studies on HILIC114,115. It also suggests that most metabolites show a similar tendency 

of reliability in each method. The 𝐶𝑉    𝑘 measurements across our heterogeneous dataset 

could be used as a reliability index or a guidance in each method for other similar 

applications of LC–MS/MS targeted metabolomics. Among the 50 most reliable 

metabolites from each method, there are 20 overlapping metabolites including 

leucine/isoleucine, methionine, hydroxyproline, valine, nicotinamide, glutamate, 

phenylalanine, serine, glycine, and NAD, which are likely to exhibit high stability and 

efficient ionizations in both methods. Among the 50 least reliable metabolites from each 

method, there are 14 overlapping metabolites including GDP-glucose, uridine 5′-

diphosphate, cytidine 5′-diphosphate, sucrose, malate, guanosine 5′-diphosphate, 

lactate, and glyceraldehyde, which would require more careful measurements and 

interpretations. 

To examine the reliability in more detail, we further restricted our focus to those 

metabolites with measurements in at least 70% of the 183 replicate groups (i.e., CV 

missing values less than 30% or m ≥ 183 × 0.7 = 128m ≥ 183 × 0.7 = 128) for statistical 

robustness. There are 145 such metabolites for RPLC-Pos-dMRM and 77 such 

metabolites for HILIC-Neg-dMRM. The heat maps and hierarchical clustering in (Figure 

5c-d) show groups of metabolites with low CVs (i.e., better reliability; rows in blue) in  
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each method. While we visually notice overall better reliability in RPLC-Pos-dMRM from 

the heat maps, there are metabolites with low CVs across all replicate groups in HILIC  

measurements such as taurine, thymine, phenylalanine, hypotaurine, pyridoxate, 

methionine, and tryptophan.  

A pathway analysis of most reliable metabolites with 𝐶𝑉    𝑘 < 0.4 (125 and 54 

metabolites in RPLC-Pos-dMRM and HILIC-Neg-dMRM, respectively) shows that each 

method does not favor any unique pathway. Both methods tend to have reliable 

measurements for amino acids and nucleotides biosynthesis pathways, the main 

difference being the number of reliable metabolites given a threshold of 𝐶𝑉    𝑘. This 

pathway analysis supports the aforementioned positive correlation of 𝐶𝑉    𝑘 between the 

two methods. On the other hand, by focusing on 19 amino acids from both methods, we 

find that four amino acids show lower 𝐶𝑉    𝑘 in HILIC-Neg-dMRM than in RPLC-Pos-

dMRM: phenylalanine, tryptophan, proline, and asparagine, the first three of which show 

similarly good measurement reproducibility as hydrophobic in both methods with 𝐶𝑉    𝑘 

(Figure 6). This suggests that those three amino acids may be used as most reliable 

reference metabolites in abundance measurements as well as in LC–MS/MS method 

development in both chromatographic column conditions. It is also observed that 

Figure 6. Scatter plot of (CV) k̅. 

19 amino acids show a reproducibility trend and patterns as color coded as a guidance for 3 groups. Figures 
produced by Dr. Ho-Joon Lee. Experiments were completed in collaboration with Peter Sajjakulnukit and Dr. Li 
Zhang. 
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asparagine, aspartate, and cysteine are less reliable in both methods (Figure 6). We 

note that phenylalanine and tryptophan are often used as quality control standards in  

metabolomics laboratories on an empirical basis, corroborating our findings (Dr. 

Maureen Kachman, personal communication). We point out that all polar amino acids 

except asparagine show better reproducibility 𝐶𝑉    𝑘 in RPLC-Pos-dMRM than HILIC-

Neg-dMRM (Figure 6). 

Correlation Analysis RPLC-Pos-dMRM and HILIC-Neg-dMRM Data 

We continued to examine differences between RPLC-Pos-dMRM and HILIC-

Neg-dMRM from a correlation point of view by focusing on those metabolites that were 

measured in at least 70% of all 42 experiments with both methods. We asked if 

abundance profiles of each metabolite from the two methods were well correlated in 

individual experiments as they were conducted on different days. A total of 3601 

measurements were made for 237 metabolites in the 42 experiments. There were 221 

metabolites that were measured in at least two experiments with both methods. 47 of 

them were measured in at least 70% of all 42 experiments.  

For each metabolite in each experiment, we calculated the Pearson correlation 

coefficient between two abundance profiles measured by the two methods. Figure 7a 

shows a heat map of all RPLC-HILIC correlation coefficients, where the metabolites 

were sorted by the average correlation across all the experiments and the columns 

were sorted by the average correlation across all the metabolites. Larger circles in 

darker blues indicate good correlation between the two methods. The top metabolites 

with reliable measurements across most of the experiments include guanosine, 5-

methlythio-adenosine, phosphocreatine, xanthine, proline, taurine, NAD+, and 

methionine, among others. On the other hand, linoleate, glucuronic acid, 4-hydroxy-L-

proline, dehydro-L-ascorbic acid, and acetylcholine, among others show inconsistent 

measurements between the two methods, indicating that their retention mechanisms or 

ionization efficiency may greatly differ between the two methods from experiment to 

experiment on different days. 

To further examine the 47 metabolites measured by the two methods, we next 

analyzed 𝐶𝑉    𝑘 correlations across all data sets as in the previous section. Figure 7b 

shows a distribution of 𝐶𝑉    𝑘 correlations where those metabolites on the left with  
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smaller 𝐶𝑉    𝑘 are more reproducible and hence reliable across the 42 datasets by both 

methods on average. The top seven metabolites are methionine, 4-hydroxy-L-proline, 

phenylalanine, taurine, glutamic acid, hypotaurine, and NAD+ with 𝐶𝑉    𝑘 0.3. We also  

calculated the average of 𝐶𝑉    𝑘 correlation in each of the two methods. The scatter plot in 

(Figure 7c) shows a distribution of 𝐶𝑉    𝑘 correlations from the two methods for all 47 

metabolites. Given our reference value of 𝐶𝑉    𝑘 = 0.4, there are 15 metabolites with 𝐶𝑉    𝑘 

0.4 in both methods that we deem reproducible across diverse conditions. The three 

most reproducible metabolites from both methods are methionine, phenylalanine, and 

taurine. Phenylalanine was among the top 20 metabolites of high average abundance 

as discussed above. There are several metabolites which are reliable in either method 

alone based on a threshed of 𝐶𝑉    𝑘 =0.4. The RPLC-Pos-dMRM measurements are 

 more reliable for 35 metabolites, whereas the HILIC-Neg-dMRM measurements are 

more reliable for 17 metabolites. 

A B 

C 

Figure 7. Correlation analysis across methods. 
A-C) RPLC-HILIC correlation analysis. A) Heatmap of all RPLC-HILIC Pearson correlation coefficients for 47 

metabolites that were measured in at least 70% of all 42 experiments. The size of the circles is proportional to 
absolute values of correlation coefficients. Larger circles in darker blues indicate good correlation between the RPLC-
Pos-dMRM and HILIC-Neg-dMRM measurements. B) Distribution of (CV) k̅ across the 42 datasets in both RPLC-
Pos-dMRM and HILIC-Neg-dMRM methods. C) A scatter plot of (CV) k̅ from the RPLC-Pos-dMRM and HILIC-Neg-

dMRM measurements for all 47 metabolites. The three most reproducible metabolites by both methods are shown in 
red. Figures produced by Dr. Ho-Joon Lee. Experiments were completed in collaboration with Peter Sajjakulnukit and 
Dr. Li Zhang. 
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Analysis of Abundance Fold Changes for Effect Size and Variability 

We then studied the direction and magnitude of metabolite changes following 

experimental perturbation. We analyzed fold changes (FC) of metabolite abundances  

across all case-control condition group pairs. For each pair and each metabolite, we 

calculated the median (𝑚̃) of normalized abundance values in each group of replicates 

and the fold change of medians (𝐹̃) of the medians, defined 𝐹̃ = 𝑚̃𝑐𝑎𝑠𝑒/𝑚̃𝑐𝑜𝑛𝑡𝑟𝑜𝑙. We 

then calculated the average of absolute values of 𝑙𝑜𝑔2(𝐹̃) for all case-control pairs for 

each metabolite, mean (|𝑙𝑜𝑔2(𝐹̃)|), which represents the average magnitude of the fold 

change in the case group for each metabolite. The magnitude or absolute value of 

mean (|𝑙𝑜𝑔2(𝐹̃)|) is also the effect size. 

We analyzed a total of 448 metabolites in 176 case-control pairs from both 

RPLC-Pos-dMRM and HILIC-Neg-dMRM methods. 62.7% of the data were intact. A 

missing value occurs when no measurement was made in either a case or control 

condition. For a hierarchical clustering of the full data, we removed those metabolites 

and case–control pairs that have more than 50% missing values across all case–control 

pairs and all metabolites, respectively.  

Figure 8a shows a heat map of the 294 by 161 data matrix of 𝑙𝑜𝑔2(𝐹̃) values 

along with hierarchical clustering dendrograms on both axes. The full 448 by 176 data 

matrix of fold changes gives us a histogram of all average fold-change magnitudes 

defined by mean (|𝑙𝑜𝑔2(𝐹̃)|) and their ordered distribution in (Figure 8c). The average 

fold-change magnitudes for most metabolites are less than 2 (the peak of the 

histogram) and the top 20 metabolites with the highest average effect sizes are mostly 

involved in glycolysis, redox, pyrimidine, and methionine/cysteine/folate metabolism. 

Homocystine shows the largest average FC magnitude of more than 20, and 

lactate/glyceraldehyde the second largest of more than 9. We note that lactate and 

glyceraldehyde were not distinguishable in our HILIC-Neg-dMRM method with identical 

data. Most of the top 20 metabolites were measured in more than 70 case–control pairs, 

except homocystine in nine pairs in the HILIC method and NADP in 12 pairs in the 

HILIC method (Figure 8c). In addition, we calculated the standard deviation (SD) of the 

effect sizes for each metabolite to examine the effect-size variability in all          case-

control pairs for that metabolite. 
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Figure 8d shows a histogram of the SDs and an ordered SD distribution. The 

SDs for most metabolites are less than 1 and there are seven metabolites with SD > 3 

including lactate/glyceraldehyde and orotate. We also performed an analysis of median 

absolute deviation (MAD) to complement the SD analysis. Figure 8e shows a MAD 

histogram and an ordered MAD distribution. The top 20 most variable metabolites with 

A 
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Figure 8. Metabolite abundance analysis. 

A) Heatmap of log2(F̃) for all 294 metabolites and 161 case-control sample pairs. B) Histogram of all average effect 
sizes and an ordered distribution of all average magnitudes. C) Scatter plot of the average fold change magitudes 
and the numbers of tested case-control pairs. D) Standard deviation of the effect size. E) Median absolute deviation 

(MAD) of effect sizes. Figures produced by Dr. Ho-Joon Lee. Experiments were completed in collaboration with Peter 
Sajjakulnukit and Dr. Li Zhang. 



 30 

the highest MADs are involved in glycolysis, redox, pyrimidine, energy, and 

methionine/cysteine/folate metabolism. Figure 9a-b show good positive correlations 

between the average effect sizes and the SD and MAD variability, respectively. 

Homocystine, lactate/glyceraldehyde, orotate, GSH, and dihydrofolate have both the 

highest average effect size and the largest variability by both SD and MAD among the 

top 20, which suggests that they are most dynamic and responsive metabolites across 

this diverse array of conditions.  

We note that we have not performed analysis of batch effects in this study 

because it is challenging to analyze and model batch effects in all 42 datasets in a 

reasonable way. Any attempt to correct batch effects globally may introduce 

mathematical artifacts into certain data points locally, making biological interpretations 

more complex or unreasonable across all datasets. We consider the analysis of batch 

effects an independent topic for a future study. Therefore, our analysis and results 

should be interpreted within the constraints of this limitation. 

2.4 Discussion 

Here we performed LC-MS/MS targeted metabolomics to generate 42 data sets 

in a wide range of experimental perturbations and divers sample types using the same 

platform. We conducted a meta-analysis to systematically assess data quality of both 

methods in biological replicate groups to quantify the reliability of measurements for 

both RPLC-Pos-dMRM and HILIC-Neg-dMRM methods. We find that the RPLC-Pos-

dMRM method tends to generate more reproducible measurements compared with the 

A B 

Figure 9. Scatter plot of variability metrics. 
A-B) Scatter plots of variability metrics. A) Average effect size versus the SD per metabolite. B) Average effect size 

versus MAD. Figures produced by Dr. Ho-Joon Lee. Experiments were completed in collaboration with Peter 
Sajjakulnukit and Dr. Li Zhang. 
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HILIC-Neg-dMRM method. Several metabolites are reliably measured in both methods, 

including methionine, phenylalanine, and taurine. Phenylalanine is among the most 

abundant metabolites profiled across our heterogeneous sample set along with 

acetylcarnitine, cystine, arginine, lactate/glyceraldehyde, UDP-GlcNAc, AMP, GSH, and 

acetyl-CoA.  

Comparing the changes in metabolite abundance and variability in case-control 

groups revealed dynamic and variable metabolites across heterogeneous conditions. 

These highly dynamic metabolites include homocystine, lactate/glyceraldehyde, and 

GSH and metabolite involved in cysteine metabolism (taurine, cystine, homocystine), 

and glycolysis (glyceraldehyde, lactate), hexosamine biosynthesis (UDP-GlcNAc), redox 

balance (GSH), fatty acid metabolism (acetylcarnitine, acetyl-CoA). The dynamic nature 

of these metabolites may reflect regulatory or signaling roles outside of intermediary 

metabolism. For example, the abundances of lactate, taurine, methionine, and 

acetylcarnitine frequently differ in tumors compared with normal tissues39,50,111,112,116. 

Overall, our study provides a systematic approach for targeted metabolomics analysis 

for RPLC-Pos-dMRM or HILIC-Neg-dMRM methods and provides a reference for 

accessing the reliability of metabolite measures using LC-MS/MS targeted 

metabolomics.  

2.5 Materials and Methods 

Sample Preparation 

Samples were prepared and published previously13–16,21. Each experimental condition 

possesses a minimum of three biological replicate samples prepared from distinct cell 

culture plates, preparations, or animals.  

Primary and Cultured cells  

Biological replicates with n ≥ 3 were seeded at equivalent density and harvested in log 

phase by media aspiration. Aqueous metabolites of adherent primary or cultured cells 

on 6-well or 10 cm2 plates were extracted by adding 1 mL or 4 mL of 80% cold (− 80 °C) 

methanol, respectively, followed by incubation at − 80 °C for 10 min. Cells were 

scrapped and all material were collected and subjected to centrifugation at 14,000 rpm 

at 4 °C for 10 min to pellet the insoluble material. Suspension cells were gently 
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centrifuged to pellet and media was completely aspirated. The procedure is done on a 

bucket of dry ice and as quickly as possible in order to stop metabolism immediately. 

Samples were normalized by the volume corresponding to protein concentration 

measured from parallel prepared lysates (typically, 1–2 million cells at 70–80% 

confluence). Then, samples were dried under vacuum and suspended in a 1:1 

H2O/methanol solution for LC–MS analysis. 

Tissues, organs, and tumors 

Samples of 50–200 mg (n ≥ 3) were placed in a tube containing 1 mL of 80% cold 

(− 80 °C) methanol and then homogenized using steel beads and a Qiagen Tissue 

Lyser by multiple rounds of 45-second shaking at room temperature before 

centrifugation at 14,000 rpm at 4 °C for 10 min. Samples were normalized by taking the 

volume corresponding to 10 mg of the tumor weight and further processed as above for 

LC–MS analysis. 

Cultured media and sera 

Metabolites from equivalent volumes of media or sera (n ≥ 3; typically, ~ 200 µL) were 

extracted by adding 100% cold (− 80 °C) methanol with a 1:4 ratio of the sample to 

methanol (i.e., 80% methanol final) and further processed as above for LC–MS 

analysis. 

LC–MS/MS metabolomics analysis 

Our LC–MS/MS metabolomics analysis was performed as described previously13–15. In 

brief, an Agilent 1290 UHPLC and 6490 Triple Quadrupole (QqQ) mass spectrometer 

(LC–MS/MS) were used for label-free targeted metabolomics analysis. Agilent 

MassHunter Optimizer and Workstation Software LC–MS Data Acquisition for 6400 

Series Triple Quadrupole B.08.00 was used for standard optimization and data 

acquisition. Agilent MassHunter Workstation Software Quantitative Analysis Version 

B.0700 for QqQ was used for initial raw data extraction and analysis. Each MRM 

transition and its retention time of left delta and right delta of 1 min. Additional 

parameters include mass extraction window of 0.05 Da right and left from the extract 

m/z, Agile2 integrator algorithm, peak filter of 100 counts, noise algorithm RMS, noise 

SD multiplier of 5 min, S/N 3, Accuracy Max 20% max %Dev, and Quadratic/Cubic 
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Savitzky-Golay smoothing algorithm with smoothing function width of 14 and Gaussian 

width of 5. For RPLC, a Waters Acquity UPLC BEH TSS C18 column (2.1 × 100 mm, 

1.7 µm) was used in the positive ionization mode with mobile phase (A) consisting of 

0.5 mM NH4F and 0.1% formic acid in water; mobile phase (B) consisting of 0.1% formic 

acid in acetonitrile. Gradient program: mobile phase (B) was held at 1% for 1.5 min, 

increased to 80% at 15 min, then to 99% at 17 min and held for 2 min before going to 

initial condition and held for 10 min. For HILIC, a Waters Acquity UPLC BEH amide 

column (2.1 × 100 mm, 1.7 µm) was used in the negative ionization mode with mobile 

phase (A) consisting of 20 mM ammonium acetate (NH4OAc) in water at pH 9.6; mobile 

phase (B) consisting of acetonitrile (ACN). Gradient program: mobile phase (B) was 

held at 85% for 1 min, decreased to 65% at 12 min, then to 40% at 15 min and held for 

5 min before going to the initial condition and held for 10 min. Both columns were at 

40 ̊C and 3 µL of each sample was injected into the LC–MS with a flow rate of 

0.2 mL/min. Calibration was achieved through Agilent ESI-Low Concentration Tuning 

Mix. Optimization was performed on the 6490 QqQ in the RPLC-positive or HILIC-

negative mode for each of 245 standard compounds (215 and 217 compounds for 

RPLC-positive and HILIC-negative, respectively) to obtain the best fragment ion and MS 

parameters such as fragmentation energy for each standard. Retention time (RT) for 

each standard was measured from a pure standard solution or a mixture standard 

solution. The LC–MS/MS methods were created with dynamic MRM (dMRM) with RTs, 

RT windows, and transitions of all 245 standard compounds. Key parameters of 

electrospray ionization (ESI) in both the positive and the negative acquisition modes 

are: Gas temp 275 ̊C, Gas Flow 14 l/min, Nebulizer at 20 psi, Sheath Gas Heater 

250 ̊C, Sheath Gas Flow 11 L/min, and Capillary 3000 V. For MS: Delta EMV 200 V or 

350 V for the positive or negative acquisition mode respectively and Cycle Time 500 ms 

and Cell Acc 4 V for both modes. In this study we denote the dMRM method with RPLC 

in the positive ionization mode by RPLC-Pos-dMRM and the dMRM method with HILIC 

in the negative ionization mode by HILIC-Neg-dMRM. We note that our methods do not 

distinguish stereoisomers, hence care should be taken in interpretation of such data. 

Computational data processing, quality control, and statistical analysis 
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Pre-processed data with Agilent Mass Hunter Workstation Software Quantitative 

Analysis were post-processed for further quality control in the programming language R. 

Let Aij be a data matrix of raw abundance with M metabolites and N samples, i.e., i = 1 

to M and j = 1 to N. First, we examined the distribution of sums of all metabolite 

abundance peak areas across individual samples, {𝑆𝑗 = ∑ 𝐴𝑖𝑗
𝑀
𝑖=1 ∶ 𝑗 = 1 𝑡𝑜 𝑁}, in a given 

experiment as a measure for equal sample loading into the instrument. Any outlier 

sample was removed, which is defined by a loading difference of greater than 70% 

compared to the average of the total abundance sums. The choice of 70% is based on 

our experience, rather than an optimization technique, and this has consistently yielded 

interpretable data and biologically relevant results in all experiments on our platform13–

16. Next, we calculated coefficients of variation (CVs) in all biological replicate groups 

(n ≥ 3) for each metabolite given a cut-off value of peak areas in each of the RPLC-Pos-

dMRM and the HILIC-Neg-dMRM methods. We then compared distributions of CVs for 

the whole dataset for a set of peak area cut-off values of 0, 1000, 5000, 10000, 15000, 

20000, 25000 and 30000 in each method. A noise cut-off value of peak areas in each 

method was chosen by manual inspection of the CV distributions. The noise-filtered 

data of individual samples were then normalized by the total intensity of all metabolites. 

We retained only those metabolites with at least two replicate measurements for a given 

experimental variable. The remaining missing value in each condition for each 

metabolite was filled with the median value of the other replicate measurements. Let 

𝐴𝑖𝑗
′ (

1

𝑁′
∑ 𝐴𝑖𝑘

′𝑁′

𝑘=1 )  (“normalized relative abundance” hereafter), for comparisons, statistical 

analyses, and visualizations among metabolites. This normalization and scaling method 

has been used in our previous studies with biologically meaningful results14–16. A 

comparison analysis with other alternative methods22–25 is beyond the scope of this 

study. Finally, we visually inspected a correlation heat map profile of the samples of the 

resultant data to identify and remove any further outlier samples based on hierarchical 

clustering and abnormal heat map patterns. Heat maps were generated with the 

function, heatmap.2, from the Bioconductor package, gplots, and hierarchical clustering 

was performed with default parameters in heatmap.2. Pathway analysis was done using 

the web tool, MetaboAnalyst26. 
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Chapter 3. Cysteine Depletion Induces Pancreatic Tumor Ferroptosis in Mice2 

3.1 Abstract 

Ferroptosis is a form of cell death that results from the catastrophic accumulation 

of lipid reactive oxygen species (ROS). Oncogenic signaling elevates lipid ROS 

production in many tumor types and is counteracted by metabolites that are derived 

from the amino acid cysteine. In this work, we show that the import of oxidized cysteine 

(cystine) via system xC
– is a critical dependency of pancreatic ductal adenocarcinoma 

(PDA), which is a leading cause of cancer mortality. PDA cells used cysteine to 

synthesize glutathione and coenzyme A, which, together, down-regulated ferroptosis. 

Studying genetically engineered mice, we found that the deletion of a system 

xC
– subunit, Slc7a11, induced tumor-selective ferroptosis and inhibited PDA growth. 

This was replicated through the administration of cyst(e)inase, a drug that depletes 

cysteine and cystine, demonstrating a translatable means to induce ferroptosis in PDA. 

3.2 Introduction 

Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer that is resistant to 

traditional therapies. More than 90% of PDAC cases harbor mutations in KRAS that 

both promote proliferation and alter cellular metabolism. A by-product of mutant-KRAS 

signaling is the increased production of reactive oxygen species (ROS), which can 

damage cellular components. To compensate, PDAC cells up-regulate metabolic 

programs that detoxify ROS using cysteine-derived metabolites such as glutathione 

(GSH)1. Most cellular cysteine is acquired through the system xC
– antiporter, which 

                                                 

 

2 The Contents of this chapter were adapted and reproduced from a published co-first authored article: 

Badgley, M. A., Kremer, D. M.*, Maurer, H.C.* et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. 
Science 368, 85–89 (2020). 
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exchanges extracellular, oxidized cysteine (cystine) for intracellular glutamate. 

Yet, germline deletion of the system xC
– gene, SLC7A11, is well tolerated in unstressed 

mice2, which suggests that normal cells have low basal cystine import requirements. We 

hypothesized that cystine import is a critical dependency of PDA that may be selectively 

targeted as an anticancer therapy. 

3.3 Results 

Exogenous Cystine Starvation Induces Ferroptosis in Pancreatic Cancer Cells 
To investigate the role of cysteine metabolism in PDAC, we measured the 

viability of human PDAC cell lines cultured for 24 hours in media with varying 

concentrations of cystine or the system xC
– inhibitor imidazole ketone erastin (IKE) 

(Figures 10a-b)3. In four of five PDAC lines, cystine starvation reduced cell viability by 

>80%; this was largely prevented by addition of the lipophilic antioxidant Trolox. 

Cystine-starved cells underwent catastrophic destabilization of their plasma 

membranes, without visual evidence of nuclear fragmentation (online movie). IKE 

treatment mimicked the effects of cystine withdrawal, quickly killing most cells from the 

four sensitive PDAC lines in a manner that was visually identical to that of cystine 

starvation but distinct from staurosporine-induced apoptosis (Figure 11a and online 

movies 2 and 3). Neither cystine starvation nor system xc
– inhibition (collectively 

referred to as cysteine depletion) induced caspase 3 cleavage (Figure 11b), which 

indicates that the cell death was not apoptotic. Rather, the oxidative cell death 

resembled ferroptosis, a form of iron-dependent, non-apoptotic cell death previously 

associated with system xC
– inhibition4.  

We found that co-treatment of human PDAC cells with either deferoxamine 

(DFO, an iron chelator), ferrostatin-1 (Fer1, a ferroptosis inhibitor), or N-acetylcysteine 

(NAC, a cell-permeable analog of cysteine) markedly reduced cell death from cysteine 

depletion, whereas inhibitors of apoptosis or necroptosis had little impact on cell death, 

consistent with previous reports (Figures 10c)5. Autophagy inhibition had variable 

effects in different lines, likely reflecting the known effect of ferritinophagy on 

ferroptosis6. Using the fluorescent probe C11-BODIPY, we observed a large increase in  

 

https://science-sciencemag-org.proxy.lib.umich.edu/highwire/filestream/742096/field_highwire_adjunct_files/2/aaw9872s1.mov
https://science-sciencemag-org.proxy.lib.umich.edu/highwire/filestream/742096/field_highwire_adjunct_files/3/aaw9872s2.mov
https://science-sciencemag-org.proxy.lib.umich.edu/highwire/filestream/742096/field_highwire_adjunct_files/4/aaw9872s3.mov
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lipid oxidation (a hallmark of ferroptosis) prior to cell death in response to cysteine 

depletion; this was prevented by cotreatment with Trolox, Fer-1, NAC, and DFO 

(Figures 10d and 12a-b). By contrast, elevated total ROS levels induced by cysteine 

depletion were not prevented by these agents, which argues against a more general 

oxidative process (Figure 12c). We conclude from these experiments that most PDAC 

Figure 10. Pancreatic cancer cells require exogenous cystine to avert ferroptosis. 
(A-B) Viability of human PDAC lines after 24 hours culture in varying concentrations of cystine (A) 
or IKE (B), alone or in combination with 100 μM Trolox. Student’s t test was performed, comparing 
maximal cytotoxicity ± Trolox. (C) Viability of PANC-1 cells cultured for 24 hours in cystine-free 

media (left) or treated with 10 μM IKE (right), alone or in combination with 100 μM Trolox (Tro), 
500 nM ferrostatin-1 (Fer1), 100 μM deferoxamine (DFO), 1mM N-acetyl cysteine (NAC), 50 μM 
ZVAD-FMK, 1 nM Bafilomycin A1 (BA1), or 10 μM Necrostatin-1s (Nec1s). Tukey test was 
performed. (D) Flow cytometry of C11-BODIPY fluorescence in PANC-1, AsPC-1, BxPC-3, and S-
2013 cells after 6 to 8 hours of treatment with conditions from (C). Tukey test was performed. All 

data are means ± SEM of three independent experiments. *P < 0.05; x, no significant difference. 
Experiments were conducted in collaboration with Dr. Michael A. Badgley et al. Figures were 
produced by Drs. Michael A. Badgley and Ken Olive. 
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lines rely on cysteine to prevent ferroptotic cell death. An analysis 

of SLC7A11 expression across human datasets revealed a modest overexpression in 

PDAC versus normal tissues, enrichment in the malignant epithelial compartment of 

PDAC, and an association with signatures of redox stress (Figure 13). Across multiple 

human cancers, SLC7A11 was frequently overexpressed and associated with reduced 

survival (Figure 14).  
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Figure 11. Cystine deprevation or IKE induce ferroptosis in PDA cell lines. 
(A) High magnification image of PANC-1 cells cultured in the presence ofvehicle (0.1% DMSO), 5 μM IKE or 0.2 μM 
staurosporine (STN), a known inducer of apoptosis, after 16 hours. Bar = 15 μm. (B) Flowcytometric analysis of 

cleaved caspase 3 activation in cell lines stained with a FITC-based active caspase 3 antibody. Cells were treated 
with vehicle (0.1% DMSO, gray) and IKE (5 μM, red). In BxPC-3 cells, staurosoporine (STN) treatment is used as a 
positive control (0.2 μM, green). (C) Cell viability of a panel of human pancreatic cancer cells cultured in vehicle 

(0.1% DMSO and 1mM HCl veh, shown in gray), the absence of cystine (no cys, shown in red), and in the absence of 
cystine but in the presence of100 μM Trolox (Tro, shown in blue), 500 nM ferrostatin-1 (Fer-1, ferroptosis 
inhibitor),100 μM deferoxamine (DFO, iron chelator),1 mM NAC (NAC), 50 μM ZVAD-FMK (ZVAD, apoptosis 
inhibitor), 1 nM bafilomycin A1 (BA1, autophagy inhibitor), and 10μM Necrostatin 1s (Nec1s,necroptosis inhibitor). 
Viability was assessed after 24 hours of treatment. Error equals +/- SEM. n = 3 biological replicates. * = p < 0.05with 
Tukey's test. x = no statistically significant difference(D)Cell viability of a panel of human pancreatic cancer cells 
cultured in vehicle (0.2% DMSO, veh), 5 μM IKE, and the aforementioned compounds and the concentrations 
indicated in Fig. S1C. Viability was accessed at 24 hours after treatment. Error equals+/- SEM. n = 3 biological 
replicates. * = p < 0.05 with Tukey's test. x = no statistically significant difference. (E) Single treatment controls for all 

experiments figure 10 c-d and 11 c-d. Experiments were conducted in collaboration with Dr. Michael A. Badgley et al. 
Figures were produced by Drs. Michael A. Badgley and Ken Olive. 



 42 

  

Figure 12. Lipid oxidation in PDA cell lines following cysteine depletion. 
(A) Time-lapse fluorescent images of PANC-1 cells cultured in indicated conditions for indicated times. - cys indicates 

no cystine present in extracellular media. PE was present at 1 μM. Here, vehicle is 0.01% DMSO. Cells are stained 
with C-11 BODIPY, a lipid ROS indicator. Green staining highlights oxidized lipids and red staining shows reduced 
lipids. White bars indicate scale of 300 μm. (B) Flow cytometric analysis of AsPC-1 cells stained with C11-BODIPY, a 

marker of lipid oxidation; or H2-DCFDA, a marker of general oxidative stress, after 6-8 hours of treatment with vehicle 
or no cystine (left panel) or 5 μM IKE (right panel), alone or in combination with 100 μM Trolox.(C) Quantification of 

flow cytometric analysis of PDAC cells stained with general oxidation sensor when treated with indicated conditions 
(cystine depletion carried out for 8 hours, IKE treatment carried out for 6 hours). Data represented as fold change in 
number of positive cells, with error = ± SD, with n = 4 independent cell lines tested in triplicate. x = no significant 
difference by Tukey's test. Experiments were conducted in collaboration with Dr. Michael A. Badgley et al. Figures 
were produced by Drs. Michael A. Badgley and Ken Olive. 
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Figure 13. Expression and outcome associations of SLC7A11. 
(A) SLC7A11 is overexpressed in primary PDAC tumors (red) as compared to normal control (blue) tissue in multiple 

pancreatic cancer data sets. Effect size estimates of data are shown in the right half of the panel with their 95% 
confidence interval per study as well as meta-analytic summaries using random (RE) and fixed effect (FE) models. Q-
test and indicate measures of inter-study heterogeneity. (B-D) Correlation of SLC7A11 expression with curated gene 

sets. Panels show effect size estimates with their 95% confidence interval per study as well as meta-analytic 
summaries using random (RE) and fixed effect (FE) models. Q-test and indicate measures of inter-study 
heterogeneity. Experiments were conducted in collaboration with Dr. Michael A. Badgley et al. Figures were produced 
by Drs. Michael A. Badgley and Ken Olive. 
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Figure 14. Expression of SLC7A11 in PDAC. 
(A) Laser-captured, micro dissected (LCM) RNA-Seq from matched human PDAC epithelium and stroma shows 

enrichment of expression in epithelial tissue (distribution shown in red) when compared to neighboring stromal tissue, 
which is not malignant (distribution shown in blue). (B) Normalized expression of SLC7A11 across 31 tumor types 

from TCGA data showing high overall expression in pancreatic ductal adenocarcinoma (PAAD, blue), with generally 
low variance. (C) Analysis of SLC7A11 mRNA expression in TCGA data sets of tumors for which at least 6 normal 
samples were available shows overexpression of SLC7A11 in most tumor types (D) for which there is a difference in 

outcome between patients expressing varying levels of SLC7A11, high levels are consistently associated with a 
worse prognosis (log rank test p-values indicated, survival curves shown in red). Abbreviations used according to 
standard TCGA nomenclature. Experiments were conducted in collaboration with Dr. Michael A. Badgley et al. 
Figures were produced by Drs. Michael A. Badgley and Ken Olive. 
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SLC7A11 Deletion in KPC Mice Induces Tumor Ferroptosis and Extends Survival 

To learn whether pancreatic tumors in mice depend on system xc
– for survival, 

we employed a dual recombinase genetic engineering strategy based on the KPC 

mouse model7. 

KrasFSF.G12D/+; Tp53R172H/+; Pdx1FlpOtg/+; Slc7a11Fl/Fl; Rosa26CreERT2/+ (KPFSR) mice 

(Figure 15) spontaneously develop PDAC driven by FlpO-dependent activation of 

mutant Kras and germline expression of mutant Tp53. These tumors are identical in 

genotype and phenotype to the KPC model, but the administration of tamoxifen induces 

systemic deletion of SLC7A11 through the action of Cre recombinase expressed from 

the Rosa26 locus (Figure 15 and 16a-c).  

To test the effect of SLC7A11 deletion in established pancreatic tumors, We 

randomized KPFSR mice bearing 4 to 7 mm tumors to receive six daily doses of vehicle 

or tamoxifen and monitored tumor growth by ultrasound8. Deletion of SLC7A11 in 

established tumors of KPFSR mice nearly doubled median survival compared with 

vehicle treatment (Figure 17a). Most recombined tumors exhibited a period of stable 

disease or partial response—and one underwent a complete regression—but these 

responses were never observed in vehicle-treated mice (Figures 17b, 16d-f, and 18a). 

Critically, the addition of NAC to the drinking water of tamoxifen-treated mice restored 

baseline survival and eliminated tumor responses, supporting a link to cysteine 

metabolism (Figures 17, a-b). At necropsy, escaped tumors exhibited evidence of 

incomplete SLC7A11 recombination by polymerase chain reaction and restored protein 

expression by Western blotting, which suggests the outgrowth of un-recombined tumor 

cells (Figure 18b-c). 

The study of in vivo ferroptosis has been hindered by the lack of a validated, 

selective biomarker and the absence of a histopathological characterization of the 

phenomenon in tissues. Within tamoxifen-treated KPFSR tumors, we observed 

numerous lesions of ballooned epithelial cells with lipid droplet-like structures and 

intermittent mega-mitochondria, often juxtaposed to necrotic regions—a phenotype only 

occasionally observed in vehicle-treated KPFSR and untreated KPC tumors (Figures 

13c-d, and 18d). These lesions exhibited no alterations in apoptosis or proliferation 

markers (Figures 19a-b), but they did display accumulation of 4-hydroxynonenal (4HN) 
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(Figures 19c-e), a by-product of lipid peroxidation, making them candidates for in vivo 

ferroptosis. Critically, no pathologies were observed in non-pancreatic tissues of 

tamoxifen-treated KPFSR mice, indicating a tumor-selective phenotype.  

Transmission electron microscopy (TEM) and Oil Red O staining of tamoxifen-treated 

KPFSR tumors confirmed the presence of abnormally large lipid droplets (Figures 

17d and 19f). TEM also revealed structural aberrations in the mitochondria of malignant 

epithelial cells, including disrupted cristae and compromised membrane integrity 

(Figure 17), which is consistent with the results of prior in vitro studies9. Finally, we 

performed laser capture microdissection and RNA sequencing to isolate malignant 

epithelial cells from KPFSR tumors. We found that genes up-regulated in response 

to SLC7A11 deletion were enriched in a ferroptotic expression signature from erastin-

treated HT-1080 cells (Figure 17f)10. We conclude that the phenotype observed in 

tamoxifen-treated KPFSR tumors is a histologically identifiable, in vivo manifestation of 

ferroptosis. 
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Figure 15. Pdx1-FlpO allele design and validation. 
(A) Design of the Pdx1-FlpOallele (B and C) Pdx1-FlpO founders were crossed to alkaline phosphatase. Flp reporter 

mice (gift, Dr. Susan Dymecki, Harvard University) to visualize recombination in the pancreas. Frozen sections of 
pancreata from Rosa26hpAP/+ (B) or Pdx1-FlpO; Rosa26hpAP/+ (C). Mice were stained for alkaline phosphatase 

activity (dark blue). Founder lines exhibiting prominent alkaline phosphatase activity in the pancreas were used in 
further breeding. Bars = 200μm. (D-E) The Pdx1-FlpO strain was crossed with additional strains to generate 

KrasLSL.G12D/+;   p53R172H/+; Pdx1-FlpOtg/+; Slc7a11Fl/Fl (KPFS) mice. Histopathological examination of the 
pancreas of young KPFS mice revealed the spontaneous acinar-to-ductal metaplasia (ADM indicated with arrow, 
panel D) and pancreatic intraepithelial neoplasia (PanIN indicated with arrow, panel E), both precursors to tumor 
development. Bar = 50μm. (F) Table indicating effective genotypes of tissues in the KPFSR mouse. Experiments 

were conducted in collaboration with Dr. Michael A. Badgley et al. Figures were produced by Drs. Michael A. Badgley 
and Ken Olive. 
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Figure 16. Analyses of KPFSR tumors. 
(A) Representative KPFSR tumor stained with hematoxylin and eosin (H&E). Desmoplastic stroma is stained in pink 
while nuclei are stained in purple. Scale bar is 50 μm. Arrows indicate malignant epithelial structure (E) versus the 
stromal component (S). (B) Representative precursor lesions from KPFSR pancreas stained with H&E. Arrows 

highlight a normal acinus (Ac), acinar-to-ductal metaplasia (ADM), and an early pancreatic intraepithelial neoplasia 
(PanIN). Scale bar is 50 μm. (C) Left panel: Dilution series of mixtures of completely recombined DNA to 

unrecombined DNA, in the indicated ratios. Note preferential detection of recombined allele, with detection of only a 
faint unrecombined band in the 4:6 lane. Unrecombined, 1285bp; Recombined, 450bp. Middle panel: PCR analysis of 
DNA recombination in tissues (liver, Lvr; spleen, Spln; kidney, Kdny) from SR mice treated with tamoxifen. Right 
panel: recombination as detected by PCR in KPFSR tumors treated for 6 days with tamoxifen. (D) Analysis of tumor 

volumes at the time of enrollment on preclinical survival study. Data show mean± SD. x = Not statistically significant 
by Tukey's test. (E) Waterfall plots of tumor growth that shows either best regression relative today 0 or the % tumor 

volume increase at day 10 (interpolated value for all tumors lacking an ultrasound at day 10.) Mice that died prior to 
day 10 are indicated by an asterisk. (F) Tumor growth rates from tumors in the survival study. Data show mean ± SD, 

n = 9 for vehicle, n = 7 for tamoxifen, n = 4 for tamoxifen/NAC (only tumors with at least 4 volumes are utilized in 
analysis). * = p < 0.05, x = not significant. Analyzed by Student's t-test. Experiments were conducted in collaboration 

with Dr. Michael A. Badgley et al. Figures were produced by Drs. Michael A. Badgley and Ken Olive. 
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Figure 17. Deletion of Slc7a11 in KPC mice induces tumor ferroptosis.  
A) Survival of KPFSR mice treated with vehicle (Veh) (n = 11, median 15 days), tamoxifen (Tam) (n = 9, median 29 

days), or tamoxifen/NAC (n = 5, median 17 days). *P < 0.0295, log-rank. Inset shows the survival of KPC mice 
treated with NAC alone (n = 8, median 16 days) versus historical saline-treated controls (n = 10, median 11 days). B) 
Growth curves for each KPFSR tumor. C) Hematoxylin and eosin (H&E)–stained sections of tumor tissue from 

KPFSR mice treated with vehicle (left) or tamoxifen (right). L, lumen of malignant epithelium; N, necrosis; yellow 
arrowheads, lipid droplets; black arrowheads, megamitochondria; scale bars, 20 μm. D-E) TEM images from 
tamoxifen-treated KPFSR tumors. LD, lipid droplets; N, nucleus; arrowhead indicates damaged mitochondrion. Scale 
bar (D), 1μm; scale bar (E), 100 nm. F) Gene set enrichment analysis. Top panel depicts enrichment of a published 

ferroptosis expression signature (Dixon) among genes differentially expressed in tamoxifen-treated KPFSR epithelia 
(Badgley) (P < 0.001). Bottom panel depicts the reciprocal comparison (P < 0.006). NES, normalized enrichment 
score; DMSO, dimethyl sulfoxide. Experiments were conducted in collaboration with Dr. Michael A. Badgley et al. 
Figures were produced by Drs. Michael A. Badgley and Ken Olive. 
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Figure 18. Ultrasound, recombination, and histopathology of KPFSR tumors. 
(A) Ultrasounds from a tamoxifen-treated KPFSR mouse that underwent complete regression, on study days -1, 13, 
and 41 of treatment. Hashed yellow lines indicates tumor. Scale bar = 2 mm. (B) PCR analysis of recombination in 

endpoint tumors from randomized survival study. Results indicate > 60% recombination of SLC7A11 in endpoint 
samples (See Fig S6). (C) Western blot of SLC7A11 in endpoint tumor samples show limited changes in protein 

levels in control or tamoxifen treated groups. Controls are wildtype (WT) mouse embyronic fibroblasts (MEFs) and 
knockout (KO) MEFs generated from the conditional SLC7A11 allele. (D) High magnification image of ferroptoptic 

lesion, containing megamitochondria (M) and cytoplasmic vacuolization (V). Scale bar = 10μm. Experiments were 
conducted in collaboration with Dr. Michael A. Badgley et al. Figures were produced by Drs. Michael A. Badgley and 
Ken Olive. 
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Figure 19. Histopathological and immunohistochemical analyses of KPFSR tumors. 
(A) H&E, cleaved caspase 3 (CC3), and phospho-histone H3 (PH3) staining of KPFSR tumors from vehicle and 

tamoxifen treated mice. Tamoxifen treated sample shows an example of tissue damaged from SLC7A11 deletion. 
This region appears CC3 negative but does not exhibit notable changes in PH3 staining. Scale bar indicates 50μm. 
(B-C) Quantification of CC3,  Ki67,  PH3,  and  4-hydroxynonenal (4HN) staining from both treatment groups. Data 

are mean± SD. No statistically significant changes are detected by Student's t-test when comparing vehicle and 
tamoxifen groups for any stain save 4HN (C) where * p < 0.05. (D-E) Images of 4HN stained tumors showing the 

enrichment of 4HN lesions in samples from tamoxifen treated mice. Scale = 50μm. (F) Oil Red O staining of 
tamoxifen treated tumors showing lipid droplets (in red) of large size. Scale bar is 50μm. Experiments were 
conducted in collaboration with Dr. Michael A. Badgley et al. Figures were produced by Drs. Michael A. Badgley and 
Ken Olive. 
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Human PDA Cells Require GSH and CoA to Prevent Ferroptosis  

Prior studies have indicated that cysteine regulates ferroptosis primarily through 

the synthesis of GSH, a critical cofactor for the lipid peroxide–detoxifying enzyme 

GPX43. We found that cysteine depletion rapidly reduced GSH levels in two human 

PDAC cell lines (Figure 20a). Furthermore, co-treatment with the membrane-permeable 

GSH analog glutathione ethyl ester prevented lipid oxidation and ferroptosis (Figure 

20b-e). However, inhibition of GSH biosynthesis using buthionine sulfoximine (BSO) 

(Figure 20f) did not induce lipid ROS or reduce cell viability (Figures 21, a-b), which 

demonstrates that GSH loss is not sufficient to induce ferroptosis in PDAC cells11.  

To investigate whether additional cysteine-derived metabolites contribute to the 

regulation of ferroptosis, we traced the metabolism of exogenous cystine by using 13C-

labeled cystine and measuring labeled metabolites by mass spectrometry. In addition to 

exhibiting rapid flux into GSH pools, cystine was also converted to coenzyme A (CoA) 

over 24 hours (Figures 21c-d); no flux was observed into taurine, lactate, citrate, or 

glutamate (Figure 20f). CoA is synthesized from cysteine via the pantothenate pathway 

and plays a role in many metabolic pathways, particularly lipid metabolism. Both CoA 

and a potential downstream product coenzyme Q10 (CoQ10) have been shown to affect 

sensitivity to ferroptosis12,13 We found that system xC
– inhibition reduced CoA levels and 

increased levels of pantothenate (Figure 21e), a metabolite upstream of cysteine 

incorporation in CoA synthesis. Moreover, treatment of PDAC cells with exogenous 

CoA14 prevented IKE-induced ferroptosis (Figure 21f) whereas pantothenate kinase 

inhibition with PANKi sensitized cells to IKE (Figures 22a-c). Notably, PANKi combined 

synergistically with BSO to induce ferroptosis (Figures 21g and 22d). Co-treatment 

with idebenone (a membrane-permeable analog of CoQ10) or a monounsaturated fatty 

acid blocked BSO/PANKi-induced ferroptosis, whereas saturated or polyunsaturated 

fatty acids did not (Figure 22e), similar to prior observations with IKE15. Together, these 

experiments demonstrate that CoA and GSH cooperate to regulate ferroptosis in human 

PDAC cells (Figure 22f). 
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Figure 20. Metabolomics analysis of cysteine and GSH utilization.  
(A) Measurement of gamma glutamyl cysteine (gGC), GSH, and GSSG in two sensitive cell lines treated with 0.1% 

DMSO (Veh) or 5μM IKE for six hours. Data are mean±SD with n = 3 biological replicates. * p < 0.05, Student's t-test. 
(B) GSH-EE rescue of cystine withdrawal and system xC–inhibition in sensitive cell lines. Data are mean ± SEM with 
n = 3 independent experiments.* p < 0.05 by Tukey's test. (C-D) Flow cytometric analyses of sensitive cell lines 

grown without cystine (-cys) or with 5μM IKE and in the presence of GSH-EE for 6-8 hours. Cells were stained with 
C-11 BODIPY and DCFDA to mark lipidoxidative stress and general oxidative stress, respectively. Data are means ± 
SD with n = 4 independent cell lines tested in triplicate. * p < 0.05 by Tukey's test. x = not significant. (E) GSH levels 

as measured by mass spectrometry in PANC-1 cells treated with vehicle or 600μM BSO for listed time points. Data 
aremeans± SD with n = at least 2 biological replicates.* p < 0.05 by Student's t test. (F) Measurement of labeled and 

unlabeled levels of taurine, lactate, glutamate, and citrate in PANC-1 treated with vehicle (0.05% DMSO), 5μM IKE, 
or 600μM BSO for indicated times. (All comparisons not significant by Tukey's test). No labeled species for these 
metabolites were detected. Experiments were conducted in collaboration with Dr. Michael A. Badgley et al. Figures 
were produced by Drs. Michael A. Badgley and Ken Olive. 
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Figure 21. Combination GSH and CoA inhibition induces ferroptosis.  
A) Flow cytometry for C11-BODIPY fluorescence in four human PDAC lines treated for 6 hours with 150 μM BSO. 
Paired t test was performed. B) Viability of human PDAC cells treated for 24 hours with indicated concentrations of 
BSO. C) Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis of GSH in PANC-1 cells 
labeled for 6 hours with 13C-cystine combined with vehicle or 5μM IKE. Student’s t test was performed. D) LC-TOF-

MS analysis of CoA in PANC-1 cells labeled for 6 hours with 13C-cystine, after 6 or 24 hours. Student’s t test was 
performed. E) Liquid chromatography triple quadrupole tandem mass spectrometry measurements of CoA and 

pantothenate (Pant.) levels in Panc-1 cells treated with vehicle and IKE for 6 hours. Student’s t test was performed. 
F) Viability of human PDAC cell lines treated with IKE, alone or in combination with 200 μM CoA. Student’s t test 
comparing maximal cytotoxicity ± CoA was performed. G) PANC-1 cells treated for 24 hours with combinations of 300 

μM BSO and 5 μM PANKi along with Trolox, Fer-1, DFO, or CoA, as described in Fig. 1C. Tukey test was performed. 
In (A) to (G), *P < 0.05 and x indicates not significantly different. In (A), (B), (E), and (F), data are means ± SEM from 
three independent experiments. In (C) and (D) data are means ± SD from three biological replicates. In (E), *P < 0.05 
comparing maximal cytotoxicity in CoA-treated versus untreated conditions for each line, Student’s t test. In (F), *P < 

0.05, one-way ANOVA with posthoc Tukey test. Experiments were conducted in collaboration with Dr. Michael A. 
Badgley et al. Figures were produced by Drs. Michael A. Badgley and Ken Olive. 
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Figure 22. GSH and Coenzyme A synthesis in ferroptosis.  
(A) Cell based thermal shift assay confirms target engagement of PANK inhibitor. (B) Mass spectrometry 

measurements of pantothenic acid in given treatment  conditions:  vehicle  (0.1%  DMSO),  IKE  (5μM),  BSO  
(75μM),  PANKi  (5μM),  and  various combinations. (C) Dose response curves of PANKi in combination with different 
concentrations of IKE andthe inverse experiment. (D) Treatment of S-2013 PDAC cell line with combinations of BSO, 
PANKi, and ferroptosis rescue agents. (E) Treatment of PANC-1 and S-2013 PDAC cells with combinations of BSO, 

PANKi, palmitic acid (a saturated fatty acid), linoleic acid (a poly-unsaturated fatty acid), oleic acid (a mono-
unsaturated fatty acid) and idebenone. (F) Model of the roles of cysteine utilization in  suppressing ferroptosis. All 

data are means± SEM of three independent experiments. *p < 0.05 by Tukey's test. x = not significant. . Experiments 
were conducted in collaboration with Dr. Michael A. Badgley et al. Figures were produced by Drs. Michael A. Badgley 
and Ken Olive. 
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Cyst(e)inase Treatment Induces Tumor-Selective Ferroptosis in KPC Mice 

Finally, we sought a pharmacological means to target cysteine metabolism in 

pancreatic tumors. Drug delivery is compromised in PDAC because of the effects of 

fibrosis on tissue perfusion16. Although current system xC
– inhibitors are not optimized 

for the PDAC microenvironment, the engineered enzyme cyst(e)inase is well-tolerated 

in mammals, has a long half-life, and potently degrades both cystine and cysteine in 

circulation17. In vitro, cyst(e)inase treatment induced lipid oxidation and reduced the 

viability of IKE-sensitive PDAC lines; this was largely prevented by co-treatment with 

ferroptosis inhibitors (Figures 23a-c and 24a-b). To determine the effects of 

cyst(e)inase on pancreatic tumors in vivo, we treated tumor-bearing KPC mice for 10 

days with vehicle, low-dose cyst(e)inase, or high-dose cyst(e)inase (n = 2 for each 

treatment). Histopathological examination of cyst(e)inase-treated tumors revealed a 

severe ferroptosis phenotype, with extensive lipid droplet formation, stromal disruption, 

decompressed blood vessels, and necrosis (Figures 23d-e and 25a-b). TEM revealed 

enlarged lipid droplet formation, extracellular lipid droplets, and mitochondrial defects, 

preferentially in cyst(e)inase-treated KPC tumors (Figures 15f-i). Ferroptotic lesions 

were generally 4HN positive and cleaved caspase 3 negative (Figure 26). Finally, four 

additional KPC mice were treated with high-dose cyst(e)inase, and their tumor growth 

was monitored by ultrasound. Notably, all four tumors exhibited stabilizations or 

regressions, whereas historical vehicle-treated controls never stabilized (Figure 23j). 

Thus, we conclude that the therapeutic depletion of cysteine (cystine) can induce 

ferroptosis in Kras/p53 mutant pancreatic tumors in mice. 
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Figure 23. Cyst(e)inase treatment induces tumor-selective ferroptosis in KPC mice. 
A) Viability of human PDAC lines cultured with varying concentrations of cyst(e)inase for 48 hours (AsPC1) or 72 
hours (PANC-1, BxPC3, and S2-013). B) Viability of AsPC1 cells treated with 90 nM cyst(e)inase (C–ase) for 72 
hours, alone or in combination with indicated agents, under conditions described in Fig. 1C. C) C11-BODIPY 

fluorescence was measured by flow cytometry in AsPC-1 cells after 24 hours of treatment with 90 nM cyst(e)inase, 
alone or in combination with indicated agents, under conditions described in Fig. 1C. D-E) H&E-stained sections of 

pancreatic tumors from KPC mice treated with vehicle or cyst(e)inase. Yellow arrowheads indicate lipid droplets; 
black arrowhead indicates megamitochondrion; scale bars, 20 μm. F-I) TEM of pancreatic tumors from the KPC 
model treated with vehicle [(F) and (H)] or cyst(e)inase [(G) and (I)]. Red arrowheads indicate mitochondria; LD, lipid 
droplets; N, nucleus; scale bars, 1 μm. J) Tumor growth curves from KPC mice treated with saline (historical controls) 
or 100 mg/kg cyst(e)inase, every other day, intraperitoneally. For (A) and (B), data depict mean of three biological 
replicates. *P < 0.05; x, not significant. Experiments were conducted in collaboration with Dr. Michael A. Badgley et 
al. Figures were produced by Drs. Michael A. Badgley and Ken Olive. 
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Figure 24. Cyst(e)inase in vitro studies.  
(A) Viability of human PDAC cells treated with cyst(e)inase, alone or in combination with Trolox, Fer1, DFO, ZVAD-

FMK, Necrostatin-1S, or Bafilomycin A (see Fig. 1C for details on compounds. Data are mean±SEM with n = 3 
independent experiments. * p < 0.05 by Tukey's test. x = not significant. (B) C11-BODIPY fluorescence for human 

PDAC cells treated with cyst(e)inase alone or in combination with Trolox, DFO, or Fer-1. 
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Figure 25. Histopathology of cyst(e)inase treated KPC pancreatic tumors.  
(A-F) H&E stained microscopic images of pancreatic tumor tissues treated from KPC mice treated with cyst(e)inase. 

Arrowheads show lipid droplets. Images of well (A) and poorly (B) differentiated PDAC treated with cyst(e)inase and 
exhibiting lipid droplet formation. Bars = 20 μm. (C) Focal lesion (hashed line) exhibiting large numbers of lipid 
droplets. Bar = 50 μm. (D) In some cyst(e)inase tumors, decompressed blood vessels(arrows) were noted. Bar = 100 
μm. (E) Regional necrosis (hashed line) of varying degrees was noted inall cyst(e)inase treated KPC tumors. (Bar = 2 
mm). (F) Quantification of necrotic regions in various treatment samples. *p < 0.05 by unpaired Student's t-test. (G) 
TEM of KPC pancreatic tumor from cyst(e)inase treated mouse showing a larger lipid droplet (LD). Scale = 2 μm 
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Figure 26. Response of KPC tumors to cyst(e)inase.  
(A) Immunohistochemistry for 4-hydroxynonenal and cleaved caspase 3 from representative KPC pancreatic tumors 
treated with vehicle or cyst(e)inase in the 10-day short term response study. Red arrows indicate lipid droplets. 
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3.4 Discussion 

In summary, our data add to a growing body of evidence showing that certain 

cancers, including PDAC, rely on cysteine metabolism to avert ferroptosis. 

Previously, SLC7A11 deletion via CRISPR-Cas9 was shown to induce ferroptosis in 

cultured PDAC cells and slow xenograft engraftment and growth18, and system 

xC
– inhibition was shown to limit the growth of lymphoma xenografts, inducing a lipid 

oxidative signature and other indicators of ferroptosis15. However, cysteine depletion in 

a PDAC xenograft model had little effect on tumor growth, perhaps indicating that the 

nutrient-deprived, hypoxic microenvironment of autochthonous pancreatic tumors may 

contribute to the tumor-selective cysteine dependency we observed in genetically 

engineered mouse models of PDAC. Although it is not yet known whether human PDAC 

is also susceptible to ferroptosis from cysteine depletion, the clinical development of 

cyst(e)inase for treatment of the metabolic disorder cystinuria provides a pathway for 

future translation of this concept. 

3.5 Materials and Methods 

Cell culture 

All cell lines were obtained from ATCC and tested negatively for mycoplasma 

infection. Cells were maintained under standard conditions at 37ºC and 5% CO2. Cells 

were grown in DMEM (Life Technologies, 12430-054) supplemented with penicillin and 

streptomycin (Corning, 30-003-CI), 10% FBS (Life Technologies, 10438-034), and MEM 

NEAA (Life Technologies,11140-050), unless otherwise indicated. For cystine starvation 

experiments, cells were cultured in DMEM lacking glutamine, methionine, and cystine 

(Life Technologies, 21013-024), supplemented with 200 mM methionine (Sigma, 

M9625), 4 mM glutamine (Life Technologies,25030-081), 10% FBS, penicillin and 

streptomycin, and varying concentrations of cystine (Sigma, C8755), depending on the 

given experiment. For cysteine starvation and IKE related cell viability experiments, 

cells were plated in a 96-well plate format. PANC-1 and S2-013 cells were plated at 

4,000 cells per well; MIA PaCa-2, BxPC-3, and AsPC-1 cells were plated at 8000cells 

per well. Cells were allowed to seed overnight, and subsequently treated with 

compounds at indicated concentrations and for indicated lengths of time. Viability was 
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assessed using the Alama rBlue reagent (Thermofisher, 88952) according to the 

manufacturer’s instructions. In brief,10 μL of Alamar Blue reagent was added each well 

containing 100 μL of experimental media .Plates were gently agitated for 1 minute to 

promote adequate mixing. Once wells had reached uniform color, plates were incubated 

at standard culture conditions indicated above for 1-4hours. Plates were subsequently 

assessed for fluorescent readout on a Promega plate reader using the green filter. For 

viability assays testing PANK inhibition and combinatorial BSO treatment, cells were 

plated in a 96-well plate format at 1000 cells per well, allowed to seed overnight, and 

then treated with compounds at indicated concentrations and for indicated lengths of 

time. These viability assays utilized the Cell-Titer-Glo 2.0 reagent (Promega, G9243) 

according to the manufacturer’s instructions. Briefly, all wells from 96-well plates were 

aspirated followed by the addition of 100 μL of Cell-Titer-Glo 2.0 reagent to each 

experimental well. Plates were gently agitated for 10 minutes to promote adequate 

mixing. Luminescence was subsequently measured using a SpectraMax M3 plate 

reader.  

For cyst(e)inase experiments, cells were plated in a 96-well plate format as 

follows: PANC-1 and S2-013 cells were plated at 2000 cells per well; MIA PaCa-2, 

BxPC-3, and AsPC-1 cells were plated at 3000 cells per well. Cells were allowed to 

grow overnight, and subsequently treated with the indicated compounds for the 

indicated length of time.  After 48 hours of incubation, 10 μL of Alamar Blue reagent 

(Thermofisher, 88952) were added to each well containing 100 μL of experimental 

media. Plates were incubated at standard culture conditions for 4 hours before 

measuring fluorescent level on a Promega plate reader using the green filter. 

Cell Culture Reagents 

The following is a list of chemical compounds used in cell culture experiments: Trolox 

(Sigma, 238813), ZVAD-FMK (SelleckChem, S7023), Bafilomycin A1 (Sigma, B1793), 

Necrostatin-1s (BioVision, 2263-1), Ferrostatin-1 (Sigma, SML0583), N-acetyl-L-

cysteine (Sigma, A9615), buthionine sulfoxamine (Sigma, B2515), deferoxamine 

(Sigma, D9533), GSH-ethyl ester (Sigma, G1404), staurosporine (Sigma, S4400), PE 

and IKE (provided by Brent Stockwell), CoA (Sigma, C3144). Specifically for the in vitro 

cyst(e)inase experiments the following compounds were used: Cyst(e)inase (provided 
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by Everett Stone and George Georgiou), Trolox (Sigma, 238813), ZVAD-FMK 

(SelleckChem, S7023), Bafilomycin A1 (Sigma, B1793), Necrostatin-1s (BioVision, 

2263-1), Ferrostatin-1 (Sigma, SML0583), N-acetyl-L-cysteine (Sigma, A9615),  

deferoxamine (Sigma, D9533). 2 

For PANKi and BSO combination studies, the following compounds were used: 

Pantothenate kinase inhibitor (Calbiochem, 537983), L-Buthionine-(S,R)-Sulfoximine 

(Cayman,14484), Imidazole ketone erastin (Medchem express, HY-114481), 

Ferrostatin-1 (Cayman, 17729), Trolox (Cayman, 10011659), Deferoxamine (Cayman, 

14595), Coenzyme A (Cayman, 16147), Glutathione ethyl ester (Cayman, 14953), 

Palmitate (calcium salt) (Cayman, 10010279), Oleic Acid (Cayman, 90260), Linoleic 

Acid (Cayman, 90150), DMSO (Sigma, D2650), Ethanol (Decon labs, 2701), and 

Chloroform sterile filtered (Sigma, C2432).Compounds were formulated according to the 

manufacturer’s instructions. 

Light and Fluorescent Microscopy 

Still transmitted light images were captured on an Olympus CKX41. Time lapse 

images and fluorescent microscopy still images were captured on a Nikon A1RMP. For 

time lapse videos, one image was captured every minute for up to 24 hours post 

treatment initiation. Cells were plated in a 6-well plate format, (PANC-1: 250,000 cells 

per well). For fluorescent ROS detection, cells were stained with C-11 BODIPY 

(Invitrogen, C10445) at a concentration of 2μM for 30 minutes prior to time lapse 

imaging. Cells were washed with PBS three times and incubated in Live-Cell Imaging 

Solution (Life Technologies, A14291DJ) during the duration of live-cell imaging. To 

detect lipid ROS at static time points by fluorescence microscopy, cells were plated in 

1u-Slide 8 well ibiTreat dishes (ibidi, 80827). PANC-1 cells were plated at 30,000 cells 

per chamber. Cells were seeded overnight and subsequently subjected to indicated 

treatments for indicated times. Upon experiment completion, cells were visualized on a 

Nikon A1RMP in the red, green, and transmitted light channels. Images from all three 

channels were then overlaid to produce final images. 

Flow Cytometric Detection of ROS 

Cell lines were plated in quadruplicate at the cell numbers indicated previously 

for the 96-well plate format. Cells were allowed to seed overnight and were subjected to 
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various compound treatments for indicated times. Cells were then incubated for 30 

minutes in live-cell imaging solution containing the pertinent ROS dye at the following 

concentrations: C-11 BODIPY, 2 μM; and H2DCFDA, 10 μM (Invitrogen, C6827). Cells 

were then washed with PBS, trypsinized with .25% trypsin (Life Technologies, 25200-

056), and neutralized with 10% FBS in PBS at a 1:1 volume. Cells were strained 

through a 40μM strainer (BD Falcon, 08-771-1), and analyzed on a MACSQuant 

Analyzer 10, BD LSRII, or a BD Fortessa with high throughput attachment, depending 

on the application. A minimum of 4,000 cells were analyzed per condition. For both C-

11 BODIPY and H2DCFDA, signal was analyzed in the FITC channel. Software 

analysis and histogram generation was carried out using FlowJo v10. 

For flow cytometric detection of ROS upon cyst(e)inase treatment, cells were 

seeded in triplicates on 6-well plate format at the following density: 100,000 cells per 

well of PANC-1 and S2-013 cells; 250,000 cells per well of BxPC3 and AsPC-1. Cell 

were allowed to grow overnight before being treated with 90 nM cyst(e)inase treatment 

in the presence of the same rescuing agents and concentrations as described above for 

the cell viability assay. PANC-1, AsPC-1 cells were incubated in the presence of 

cyst(e)inase and agents for 24 hours; BxPC-3 and S2-013 for 48 hrs. 5μM IKE was 

added 6-8 hours before the end of the incubation time for each cell lines. After that cells 

were incubated for 30 minutes in live-cell imaging solution containing 2 μM C-11 

BODIPY (Invitrogen). Cells were then washed with PBS, trypsinized with phenol red 

free 0.25% trypsin (Life Technologies, 25200-056), and neutralized with 10% FBS in 

PBS at a 1:1 volume. Cells were strained through a 40μM strainer (BD Falcon, 08-771-

1), and analyzed a BD Fortessa. A minimum of 10,000 cells were analyzed per 

condition using FITC channel. Software analysis was carried out using FlowJo v10. 

Cell-based Thermal Shift Assay 

SKBR3 cells were seeded in 3 T-175 flasks, 10 million cells per flask, overnight, 

then treated with DMSO (vehicle), 20 μM PANKi, or 20 μM SGC-GAK-1 (Sigma, 

SML2202) for two hours, trypsinized, and washed with PBS. Cell pellets were 

resuspended with 230 μL of PBS + protease inhibitors (Roche) and split into ten 20 μL 

PCR tubes. Cells were heated to indicated temperatures for 3 minutes in two batches in 

a preheated thermocycler, then placed at room temperature for three minutes, then 



 65 

snap frozen in liquid nitrogen. Samples were placed into the PCR machine only when it 

reached the desired temp, and heated for three minutes, followed by three minutes at 

room temperature. Cells were lysed via two freeze-thaw cycles of liquid nitrogen/25°C, 

vortexed, and then spun at 20,000 rpm for 20 min at 4°C. Supernatant was removed, 

sample buffer added, and samples boiled heated to 70°C for 10 min, and then loaded 

for gel electrophoresis at 200V for 45min. Western blotting for PANK1 was performed 

according to standard protocols. 

Mass Spectrometry-Based Metabolomics 

Unlabeled targeted metabolomics (For IKE and PANK inhibitor PD markers) 

Cells were plated at 0.5 million cells per well in 6-well plates and treated with the 

indicated conditions. Following treatment, the medium was aspirated and cells were 

lysed using dry-ice cold 80% methanol and extracts were incubated in -80ºC for 10 min 

and centrifuged at 14,000 rpm for 10 min at 4°C. Protein concentration was determined 

by processing a parallel 6-well plate at equivalent cell density and used to normalize 

metabolite fractions across samples. Aliquots of the supernatants were then transferred 

to a fresh microcentrifuge tube and dried. Metabolite extracts were then re-suspended 

in 35 μl 50:50 MeOH: H2O mixture for LC–MS analysis. LC-MS analysis was performed 

using an Agilent Technologies Triple Quad 6470 system ran in negative ion acquisition 

modes. dMRM transitions and other parameters for each compound were determined 

empirically utilizing analytical standards. Separations were conducted utilizing an 

Agilent ZORBAX RRHD Extend-C18 column, 2.1 × 150 mm, 1.8 μm and ZORBAX 

Extend Fast Guards.  LC gradient profile is: at 0.25 ml/min, 0-  2.5 min, 100% A; 7.5 

min, 80% A and 20% C; 13 min 55% A and 45% C; 20 min, 1% A and 99% C; 24 min, 

1% A and 99% C; 24.05 min, 1% A and 99% D; 27 min, 1% A and 99% D; at 0.8 

ml/min, 27.5-31.35 min, 1% A and 99% D; at 0.6 ml/min, 31.50 min, 1% A and 99% D; 

at 0.4 ml/min, 32.25-39.9 min, 100% A; at 0.25 ml/min, 40 min, 100% A.  Column temp 

is kept at 35 ̊C, samples are at 4 ̊C, and injection volume is 2 μL.Mobile phase (A) 

consists of 97% water and 3% methanol 15 mM acetic acid and 10 mM tributylamine at 

pH of 5.  (C) consists of 15 mM acetic acid and 10 mM tributylamine in methanol.  

Washing Solvent (D) is acetonitrile.  LC system seal washing solvent 90% water and 

10% isopropanol, needle wash solvent 75% methanol, 25% water.Key mass 
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spectrometry parameters utilized were: Gas temp 150  ̊C, Gas flow 10 l/min, Nebulizer 

45 psi, Sheath gas temp 325  ̊C, Sheath gas flow 12 L/min, Capillary -2000 V, Delta 

EMV -200 V.  Dynamic MRM scan type is used with 0.07 min peak width, acquisition 

time is 24 min.  Delta retention time of plus and minus 1 min, fragmentor of 40 eV and 

cell accelerator of 5 eV are incorporated in the method. 

Metabolomics Data Analysis (For IKE and PANK inhibitor pharmacodynamic markers) 

Raw data were pre-processed with Agilent MassHunter Workstation Software 

Quantitative QqQ Analysis Software (B.07.00). Metabolite counts were then normalized 

by the total intensity of all metabolites to reflect equal sample loading. Finally, each 

metabolite abundance in each sample was divided by the median of all abundance 

levels across all samples for proper comparisons, statistical analyses, and visualizations 

among metabolites. 

Remaining Metabolomics Data Acquisition and AnalysisFor steady state, an 

Agilent 1290 UHPLC-6490 Triple Quandruple MS system as above was used.  For 

negative ion acquisition, a Waters Acquity UPLC BEH amide column (2.1 x 100mm, 

1.7μm) column with the mobile phase (A) consisted of 20 mM ammonium acetate, pH 

9.6 in water, and mobile phase (B) was used.  Gradient program: mobile phase (B) was 

held at 85% for 1 min, increased to 65% in 12 min, then to 40% in 15 min and held for 5 

min before going to initial condition and held for 10 min.  For positive ion acquisition, a 

Waters Acquity UPLC BEH TSS C18 column (2.1 x 100mm, 1.7μm) column was used 

with mobile phase A) consisting of 0.5 mM NH4F and 0.1% formic acid in water; mobile 

phase (B) consisting of 0.1% formic acid in acetonitrile.  Gradient program: mobile 

phase (B) was held at 1% for 1.5 min, increased to 80% in 15 min, then to 99% in 17 

min and held for 2 min before going to initial condition and held for 10 min.  The column 

was kept at 40  ̊C    and 3 μl of sample was injected into the LC-MS/MS with a flow rate 

of 0.2 ml/min.  Tuning and calibration of QqQ MS was achieved through Agilent ESI-  

Low Concentration Tuning Mix.Optimization was performed on the 6490 QqQ in 

negative or positive mode individually for each of 220 standard compounds to get the 

best fragment ion and other MS parameters for each standard.  Retention time for each 

standard of the 220 standards was measured from pure standard solution or a mix 

standard solution.  The LC-MS/MS method was created with dynamic dMRMs with RTs, 
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RT windows and MRMs of all the 220 standard compounds. In both acquisition modes, 

key parameters of AJS ESI were: Gas temp 275  ̊C, Gas Flow 14 l/min, Nebulizer at 20 

psi, Sheath Gas Heater 250 ̊C, Sheath Gas Flow 11 L/min, Capillary 3000 V.  For 

negative mode MS: Delta EMV was 350 V, Cycle Time 500 ms and Cell accelerator 

voltage was 4 V, whereas for positive acquisition mode MS: Delta EMV was set at 200 

V with no change in cycle time and cell accelerator voltage.The QqQ data pre-

processed with Agilent MassHunter Workstation Software Quantitative QqQ Analysis 

Software (B0700).  Additional analyses were post-processed for further quality control in 

the programming language R. We calculated coefficient of variation (CV) across 

replicate samples for each metabolite given a cut-off value of peak areas in both the 

positive and the negative modes. We then compared distributions of CVs for the whole 

dataset for a set of peak area cut-off values of 0, 1000, 5000, 10000, 15000, 20000, 

25000 and 30000 in each mode. A noise cut-off value of peak areas in each mode was 

chosen by manual inspection of the CV distributions. Each sample is then normalized 

by the total intensity of all metabolites to reflect the same protein content as a 

normalization factor. We then retained only those metabolites with at least 2 replicate 

measurements. The remaining missing value in each condition for each metabolite was 

filled with the mean value of the other replicate measurements. Finally, each metabolite 

abundance level in each sample was divided by the median of all abundance levels 

across all samples for proper comparisons, statistical analyses, and visualizations 

among metabolites. The statistical significance test was done by a two-tailed t- test with 

a significance threshold level of 0.05. The p-values were not adjusted in favor of more 

flexible biological interpretation. For the 13C–cystine/methionine label incorporation 

studies, an Agilent 1260 UHPLC combined with a 6520 Accurate-Mass Q-TOF LC/MS 

was utilized. Agilent Mass Hunter Workstation Software LC/MS Data Acquisition for 

6200 series TOF/6500 series QTOF (B.06.01) was used for calibration and data 

acquisition. A Waters Acquity UPLC BEH amide column (2.1 x 100mm, 1.7μm) column 

was used with mobile phase (A) consisting of 20 mM NH4OAc in water pH 9.6, and 

mobile phase (B) consisting of ACN. Gradient program: mobile phase (B) was held at 

85% for 1 min, increased to 65% in 12 min, then to 40% in 15 min and held for 5 min 

before going to initial condition and held for 10 min.  The column was at 40 ̊C and 3 μl of 
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sample was injected into the LC-MS with a flow rate of 0.2 ml/min.  Calibration of TOF 

MS was achieved through Agilent ESI-Low Concentration Tuning Mix. Key parameters 

for both acquisition modes were: mass range 100-1200 da, Gas temp 5 

350  ̊C    , Fragmentor 150 V, Skimmer 65 v, Drying Gas 10  L/min, Nebulizer at 

20 psi and Vcap 3500 V, Ref Nebulizer at 20 psi. For negative mode the reference ions 

were at 119.0363 and 980.01637 m/z whereas for positive acquisition mode, reference 

ions at 121.050873 and 959.9657 m/zFor 13C-   labeling data analysis, we used Agilent 

MassHunter Workstation Software Profinder B.08.00 with Batch Targeted Feature 

Extraction and Batch Isotopologue Extraction and Qualitative Analysis B.07.00. Various 

parameter combinations, e.g. mass and RT tolerance, were used to find best peaks and 

signals by manual inspection. Key parameters were: mass tolerance = 20 or 10 ppm 

and RT tolerance = 1 or 0.5 min. Isotopologue ion thresholds, the anchor ion height 

threshold was set to 250 counts and the threshold of the sum of ion heights to 500 

counts. Coelution correlation threshold was set to 0.3.All other bioinformatics analyses 

including graphs and plots were done using R/Bioconductor. 

Laser Capture Microdissection and RNA Sequencing  

Cryosections of OCT–embedded tissue blocks from KPFSR mice treated with 

corn oil and tamoxifen, respectively, were transferred to PEN membrane glass slides 

and stained with cresyl violet acetate. Adjacent sections were H&E stained for 

pathology review. Laser capture microdissection was performed on a PALM MicroBeam 

microscope (Zeiss), collecting at least 10000 cells per sample. Total RNA was extracted 

using the RNeasy Micro Kit (Qiagen) and amplified using the Clontech SMART-seq v4 

Ultra Low Input RNA Kit to create cDNA. Next, the Illumina Nextera XT kit was used to 

prepare libraries which were then sequenced to a depth of 30 million, 100bp, single-end 

reads on the Illumina HiSeq4000 platform. Reads were mapped to the UCSC mm10 

reference genome and quantified per gene, respectively, using the STAR (v 2.5.2b) and 

feature Counts (v 1.5.0-p3) software. 

Ferroptosis Signature Bioinformatics Analyses 

First, gene expression data were retrieved from the supplement of Dixon et al. (3)  

as FPKM per gene. Differential gene expression (DEG) analysis was carried out 

between samples treated with DMSO and erastin, respectively, after log2 transformation 
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using the limma R package. Genes significantly upregulated upon erastin treatment at 

an FDR <= 0.05 (n = 45) represented the in vitro ferroptosis signature. Next, DEG 

analysis was carried out between LCM-RNA-Seq samples retrieved from epithelia of 

KPFSR tumors whose animals had been treated with corn oil and tamoxifen, 

respectively, using the DESeq2 R(20) with raw counts as input. Genes significantly 

upregulated upon tamoxifen treatment at an FDR <= 0.005 (n = 44) represented the in 

vivo ferroptosis signature. Gene set enrichment of the aforementioned signatures on the 

entire in vitro and in vivo differential gene expression signature, respectively, was 

carried out as described previously. 

Microarray Data  

Gene expression data from studies comparing pancreatic ductal adenocarcinoma 

specimen with normal pancreas parenchyma were downloaded from the Gene 

Expression Omnibus (GEO) using the GEOquery R package and the following 

accession numbers: GSE32676, GSE19650, GSE16515, GSE62452 and GSE71729. 

U133A-CEL files from were obtained from Array Express under accession number E-

MEXP-950 and normalized using GCRMA. The following samples were excluded 

because of outlier behavior during exploratory data analysis: NPD15, T55, TPK9, 

NPK13. For all studies, probes were collapsed at the gene level using their mean 

normalized expression. 

TCGA Data 

RNA-Seq V2 expression, clinical and mutation data were downloaded for all 

available TCGA tumor types using the RTCGAToolbox R package.  The run date was 

set to “2016-601-28”.  

ICGC PDA expression data  

RNA-Seq expression data and clinical annotation for 96 cases were retrieved 

from the supplementary data of Bailey et al. Illumina HumanHT-12 v4.0 microarray 

expression data were downloaded from the ICGC data portal for 269 cases. Only those 

cases were retained for further analyses that were annotated in Bailey et al. and did not 

have an RNA-Seq expression profile, leaving 142 unique cases. Differential gene 

expression analysis Genome-wide differential gene expression analysis normal tissue of 

origin and tumor tissue were calculated using the limma R package using (gc)rma-
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normalized expression data for microarray studies and log2-transformed normalized 

count data for the TCGA cohorts. If normal and tumor samples were matched, i.e. from 

the same patient, a paired design was specified in the design formula. 

Differential Gene Expression Analysis 

Genome-wide differential gene expression analysis normal tissue of origin and 

tumor tissue were calculated using the limma R package using (gc)rma-normalized 

expression data for microarray studies and log2-transformed normalized count data for 

the TCGA cohorts. If normal and tumor samples were matched, i.e. from the same 

patient, a paired design was specified in the design formula.  

Gene Set Enrichment Analysis  

In order to examine the relationship of pathway activity and SLC7A11expression, 

we used the R implementation of single sample Gene Set Enrichment analysis: GSVA 

(gene set variation analysis) with default parameters after pre-filtering each expression 

matrix for genes with an interquartile range > 0.5. PDA tumors from the following 

cohorts were examined: TCGA, ICGC RNA-Seq, ICGC microarray, NIH, UNC and 

Collisson their enrichment score per sample was calculated for the following gene sets 

from the MSigDB (v.6.0): HALLMARK_REACTIVE_OXIGEN_SPECIES, 

SINGH_NFELE2_TARGETS and GO_CELL_REDOX_HOMEOSTASIS. 

Effect Size Meta-Analysis for SLC7a11 Expression Data 

Log2 fold change 

The effect size (i.e. log2 fold change) and its standard error for SLC7A11were extracted 

from the respective genome-wide differential expression analysis of 6 studies where 

global expression in normal pancreatic tissue was compared to PDA. 

Pearson Correlation 

Pearson correlation and its standard error were calculated for each study and 

gene set, respectively, between the gene set enrichment scores per sample and the 

median-centered SLC7A11expression per sample using the cor.test function from the 

stats R package. Meta-analysis for each metric was carried out using the metafor R 

package. Both random and fixed effect models were fit using the rma function (method 

= “REML” and method = “FE”, respectively). Survival analysisThe association of 

SLC7A11 expression status with disease outcome was evaluated using a log-rank test 
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as implemented in the survdiff function from the survival R package. Patients were 

grouped into tertiles according to normalized SLC7A11expression and differences in 

outcome were assessed between the upper and lower tertile. 

Animal Breeding and Genotyping 

All studies were carried out in accordance with the relevant institutional 

guidelines of Columbia University. All procedures were approved by the Columbia 

University Institutional Animal Care and Use Committee (IACUC) and were conducted 

in keeping with the NIH “Guide for the Care and Use of Laboratory Animals.” 

Generation of Pdx1-FlpO Mice 

The proximal 6kb promoter of the Pdx1-Cre transgene (38)  was fused to the 

start codon of mammalian codon-optimized, thermostable Flp recombinase (FlpO), with 

subsequent fusion of the 5’ end of the FlpO open reading frame to the hGH 

polyadenylation signal sequence using the In-Fusion cloning system (Clontech) 

according to the manufacturer’s instructions. The Pdx1-FlpO cassette was excised from 

a large-scale plasmid preparation, gel-purified, and microinjected into the pronuclei of 

fertilized FVB oocytes at the Gladstone Transgenic Mouse Core. Following implantation, 

birth, and weaning, transgene-bearing founder mice were identified via PCR and 

maintained on an FVB background.Pdx1-FlpO founders were crossed to homozygous 

FVB alkaline phosphatase Flp reporter mice (gift, Dr. Susan Dymecki, Harvard 

University), Pdx1-FlpO-harboring progeny sacrificed at 2 months of age, and skin, brain, 

liver, pancreas, kidney, lung, stomach, duodenum, small intestine, colon collected and 

flash frozen in liquid nitrogen. Frozen sections of each were cut, alkaline phosphatase 

histochemistry performed (Vector Laboratories), and sections examined 

microscopically. Founder lines exhibiting prominent alkaline phosphatase activity in the 

pancreas were backcrossed an additional five generations and this process was 

repeated to identify founder lines exhibiting stable transgene expression. 

Generation of Slc7a11 Conditional Knockout Mice 

Mice bearing an Slc7a11 conditional null allele (EMMA ID: 10001, strain 

designation Slc7a11tm1a(EUCOMM)Wtsi, referred to here as Slc7a11Fl) were imported 

from the IMPC repository. These mice were crossed to homozygous ACTB: FLPe mice 

(Jackson Laboratory, Stock no. 003800) to create Slc7a11conditional mice in which 
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loxP sites surround exon three of the Slc7a11gene. Using a combination of the Pdx1-

Flpo, KRASFSFG12D (Jackson Laboratory, Stock no. 008653), p53R172H (Jackson 

Laboratory, Stock no. 008652, modified by crossing to Cre-deleter strain), 

Rosa26CreERT2 (Jackson Laboratory, Stock no. 008463), and our newly made 

Slc7a11Fl/Fl mice, we were able to generate a new strain of genetically engineered 

mouse model akin to the KRASLSL-G12D/+;p53LSL-R172H;Pdx1-Cre (KPC) mouse, 

but in which we have temporal control of the deletion of Slc7a11 using tamoxifen. We 

term these mice KRASFSF-G12D/+; p53R172H; Pdx1-Flpotg/+; Slc7a11Fl/Fl; 

Rosa26CreERT2/+, KPFSR mice. 

Genotyping 

Genotyping was carried out using protocols provided by Jackson Laboratory for 

all strains obtained from this vendor. Slc7a11Fl/Fl genotyping was carried out as 

follows:Forward primer: 5’-tgggttggtctctggtgatc-3’; Reverse primer: 5’-

cctgtgaagatccgcctact-3’ Cycling conditions: 1. 94ºC 3 minutes; 2. 94ºC 1 minute; 3. 

60ºC 2 minutes; 4. 72ºC 1 minute; Cycle to step 2, 29 times.; 5. 72ºC 5 minutes; 6. 4ºC 

forever. Expected amplicons: Slc7a11Fl/Flmice: 386 bp; WT mice: no amplicon. 

RecombinatorialSlc7a11genotyping was custom designed as follows: Forward primer: 

5’-tgg gtt ggt ctc tgg tga tc-3’; Reverse primer: 5’-ctt aac ccc agc acc att cg-3’ Cycling 

conditions: 1. 95ºC 2 min; 2. 95ºC 1 min; 3. 56ºC 30 seconds; 4. 72ºC 1 min; Cycle to 

step 2, 34 times; 5. 72ºC 5 min; 6. 4ºC forever. Expected amplicons:  Slc7a11Fl/Fl 

unrecombined  = 1285 bp; Slc7a11Fl/Fl recombined = 450 bp; WT mouse = 1240 bp. 

Western Blot 

Western blot for Slc7a11 was carried out using standard protocols. Tumor 

samples were ground and lysed in Flag lysis buffer, and proteins were quantified with 

Bradford assay. Proteins were run on an SDS PAGE gel under denaturing conditions, 

transferred to a membrane, and probed with primary antibody (Cell Signaling, s12691) 

overnight at 4ºC. Blot was probed with an appropriate secondary and developed using a 

standard ECL kit. 

KPFSR Survival Study 

At approximately 42 days of age, KPSFR mice were treated with cerulein (Sigma, 

C9026) at 250 μg/kg by intraperitoneal injection for 5 consecutive days to induce 
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chronic pancreatitis and accelerate tumor formation, as per previous reports. Tumor 

formation was monitored initially by once weekly palpation and upon positive palpation, 

by twice-weekly ultrasound. Once the average diameter of tumors of the pancreas was 

4-7 mm in size, mice were randomly enrolled into the survival study. Mice were treated 

with either corn oil (Sigma, C8267) or tamoxifen (Sigma, T5648) at 200 mg/kg by oral 

gavage for 6 consecutive days. Afterward the initial survival study, a small cohort of 

mice was enrolled on a tamoxifen and NAC combination treatment. These mice were 

administered tamoxifen in the aforementioned fashion and administered NAC in their 

drinking water at 1 g/L. Subsequently, small cohorts of KPC mice were enrolled on a 

NAC only treatment arm, as controls. For the vehicle arm data, we used historical 

controls from the same colony of mice that were treated with saline. Mice were 

euthanized once they reached endpoint criteria consisting of a combined physical and 

behavioral metric designed in consultation with Columbia IACUC. Tumor samples were 

either fixed in formalin overnight at 4ºC, fixed in PFA at 4ºC overnight followed by 

sucrose-mediated water displacement for 24 hours at 4ºC, frozen in OCT, or flash 

frozen in liquid nitrogen. 

In vivo Cyst(e)inase Studies 

The short-term histology study involved treatment with vehicle or a high dose 

(100 mg/kg, every two days by intraperitoneal injection) or a low dose (50 mg/kg, every 

three days by intraperitoneal injection) of cyst(e)inase for 10 days (n = 2 animals per 

group, one low dose animal presented with two independent tumors). Animals were 

then euthanized and tumors were acquired for histological analyses (necrosis 

quantification, other IHC, and TEM). Thetumor growth study was carried out in n = 4 

KPC mice treated with high dose cyst(e)inase (see above). Tumors were allowed to 

reach enrollment criteria (4-7mm diameter) and then treated with drug. Tumor volumes 

were monitored by 3d ultrasound until animals reached endpoint criteria (morbidity). 

Ultrasound 

Tumor ultrasonography and volume quantification was carried out as previously 

described. 
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Pathology and Immunohistochemistry 

Samples that had been fixed in formalin were washed in 70% ethanol and 

subjected to standard dehydration processing to prepare them for mounting in paraffin 

wax blocks. Paraffin blocks were sectioned on a Leica RM 2235 at 5 μM thickness. The 

sections were mounted on charged slides and heated to 60ºC to melt wax and ensure 

tissue adherence to the slide. Slides were then subjected to standard rehydration and 

antigen retrieval was carried out for five minutes in boiling 10 mM sodium citrate buffer 

pH 6, .05% Tween-20 using a pressure cooker. Slides were brought to room 

temperature in an ice-cold water bath. Slides were then incubated in 3% hydrogen 

peroxide for 20 minutes at room temperature to block endogenous peroxidases. Slides 

were blocked in 1.5% horse serum and 2% animal free blocker (Vector Laboratories, 

SP-5030) for 1 hour at room temperature. Slides were then stained with the appropriate 

antibody: Cleaved caspase-3 (Cell Signaling, 9664S), 1:1000 dilution; Ki67 (Cell 

Signaling, 12202S), 1:100 dilution; phosphohistone-H3 (Cell Signaling, 9701S), 1:200 

dilution; 4-hydroxynonenal (Abcam, 46545), 1:200. Primary antibody incubation was 

carried out overnight at 4ºC. Slides were then washed 3x with PBS-T and incubated 

with the appropriate secondary antibody for 30 minutes at room temperature. Staining 

was developed using the DAB reagent (Vector Labs, VV-93951085). Quantification for 

CC3, Ki67, and pHH3 was done in a blinded fashion, counting 9 positive cells per 40x 

field for 10 fields per sample. Quantification for 4HN staining was done by first 

deconvolving hematoxylin and DAB staining using Fiji. The DAB image component was 

then adjusted for a threshold of 175 to identify positive staining. Finally, Fiji was used to 

analyze particle number using a circularity of 0-1 and a size above 200 pixels, yielding a 

total particle count per low powered (1.25X) field per sample.Histological staining on 

paraffin sections (hematoxylin and eosin, Oil Red O) were carried out using standard 

protocols. Following digital capture on Olympus BX51, histology images were 

processed using Affinity Photo software, using three filters/adjustments applied evenly 

across the entire image: unsharp mask, white balance, and levels adjustment. 

Transmission Electron Microscopy 

Tissues were fixed in a solution of 2% paraformaldehyde, 2.5% glutaraldehyde, 

and 2mM CaCl2 in 0.15 M sodium cacodylate buffer (pH 7.4) for 2 hours at room 
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temperature.  They were then post-fixed in 1% osmium tetroxide for 40 minutes and 

1.5% potassium ferricyanide in sodium cacodylate buffer for 1 hour at room temperature 

in the dark.   Tissues were stained en bloc in 1% aqueous uranyl acetate (4 ̊C in the 

dark) for 1 hour, dehydrated in a series of graded acetones, and embedded in 

Eponate12 resin (Ted Pella). Ultra-thin sections (70 nm) were obtained using a diamond 

knife (Diatome) in an ultramicrotome (Leica EM UC7) and placed on copper grids (300 

mesh). Sections were imaged on a Zeiss Libra 120 TEM operated at 120 kV using 

Zeemasacquisition system with 2K of resolution. 

Statistical Analyses 

All statistical analyses, unless otherwise indicated, were performed using 

GraphPad Prism. Tukey’s test was performed as a post-hoc test after one-way ANOVA, 

comparing all pairwise permutations, with alpha = 0.05. Only relevant pairwise 

comparisons are highlighted in the figures.  Student’s t-test was performed when 

indicated in the manuscript, for comparing two experimental conditions. The paired t-

test was used when data was in the form of matched pairs. All t-tests were two tailed 

and set with a significance threshold of p < 0.05.10 
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Chapter 4. GOT1 Inhibition Primes Pancreatic Cancer Cells for Ferroptosis 

through Labile Iron Release3 

4.1 Abstract 

Cancers have unique metabolic adaptations in response to cell-intrinsic and 

environmental stressors, where identifying new strategies to target these adaptions is 

an area of active research. We previously described a dependency on a cytosolic 

aspartate aminotransaminase (GOT1)-dependent pathway for NADPH generation in 

pancreatic cancer. Here, we sought to identify metabolic dependencies following GOT1 

inhibition to provide insight into the regulation of redox metabolism. Using 

pharmacological methods, we identified cysteine, glutathione, and lipid antioxidant 

function as metabolic vulnerabilities following GOT1 withdrawal. Targeting any of these 

pathways triggered ferroptosis, an oxidative, non-apoptotic, iron-dependent form of cell 

death in GOT1 knockdown cells. Mechanistically, GOT1 inhibition promoted a catabolic 

state and enhanced the availability of labile iron through autophagy and iron uptake. 

Overall, our study identifies a novel biochemical connection between GOT1, iron 

regulation, and ferroptosis.

                                                 

 

3 The Contents of this chapter were adapted and reproduced from a first authored article in revision for consideration 

at Nature Chemical Biology: Kremer, D. M. et al. bioRxiv 2020.02.28.970228 (2020) doi:10.1101/2020.02.28.970228. 
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4.2 Introduction 

Pancreatic ductal adenocarcinoma (PDA) cells exhibit extensive metabolic 

reprogramming to support survival and growth under metabolically harsh conditions1,2 

Our previous work demonstrated that PDA rewire the malate-aspartate shuttle to 

generate reduced nicotinamide adenine dinucleotide phosphate (NADPH), a major 

currency for biosynthesis and redox balance (Figure 27a)3. The canonical function of 

the malate-aspartate shuttle is to transfer reducing equivalents in the form of NADH 

from the cytosol into the mitochondria to facilitate oxidative phosphorylation (OxPHOS).  

In PDA, we found the mitochondrial aspartate aminotransaminase (GOT2) is the 

primary anaplerotic source for alpha-ketoglutarate (αKG) and generates aspartate. 

Aspartate is then transferred to the cytosol and transaminated to produce oxaloacetate 

(OAA) by the cytosolic aspartate aminotransaminase (GOT1). OAA is reduced to malate 

by cytosolic Malate Dehydrogenase (MDH1) and is then oxidized by Malic Enzyme 1 

(ME1) to generate NADPH, which is utilized to support redox balance and proliferation 

in PDA3. Furthermore, we demonstrated that this non-canonical pathway was 

orchestrated by mutant KRAS, the signature oncogenic driver of PDA. Thus, in an effort 

to target this rewired metabolic pathway and to understand its biological role with 

greater depth, we have placed our focus on GOT1. We and others recently identified 

scaffolds that may serve as leads in the development more potent GOT1 inhibitors4–7. 

Here, we analyzed GOT1 dependence across a large panel of PDA cell lines and 

specimens. We show that GOT1 sensitivity varies among the cultures in this panel, is 

dispensable in non-transformed human lines, and that GOT1 inhibition stunted growth in 

tumor models. GOT1 inhibition blocked progression through the cell cycle, leading to 

cytostasis, in GOT1-dependent cells. Thus, we then sought to characterize metabolic 

dependencies following GOT1 withdrawal that could be exploited to selectively kill 

PDA8. Examination of a targeted metabolic inhibitor library in GOT1 knockdown cells led 

to the discovery that exogenous cystine was essential for viability following chronic 

GOT1 suppression. Cystine is used for reduced glutathione (GSH) biosynthesis, which 

mediates protection against lipid oxidation. GOT1 knockdown in combination with 

inhibitors of glutathione synthesis or lipid antioxidant machinery led to cell death.
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We characterized this as ferroptosis: an oxidative, non-apoptotic, and iron-

dependent form of cell death9,10. We then determined that GOT1 withdrawal promoted a 

catabolic cell state resulting in labile iron release through autophagy, ferritinophagy, and 

iron uptake11–13. Overall, our study demonstrates that GOT1 inhibition promotes 

ferroptosis sensitivity by promoting labile iron and illustrates how GOT1 and labile iron 

influences ferroptosis susceptibility.  

4.3 Results 

PDAs Require GOT1 for Growth and Proliferation  

To examine GOT1 dependence in a large panel of PDA cell lines and primary 

specimens with temporal control, we developed doxycycline (dox)-inducible short 

hairpin (sh)RNA reagents (iDox-sh) that target the coding and 3’UTR regions of GOT1 

(sh1 and sh3), or scramble (shNT). shRNA activity was examined phenotypically by 

assessing colony formation and protein levels following dox treatment (Figures 27b-c 

and 28a-b). We also measured aspartate levels as a biochemical readout for GOT1 

inhibition (Figure 28c). We then used these iDox-shRNA constructs to examine GOT1 

sensitivity across a large panel of PDA lines and primary specimens (indicated with the 

UM# designation)14 (Figure 27d). GOT1 knockdown significantly impaired colony 

formation in 12 of 18 cell lines in the panel (Figure 27d). The response to GOT1 

knockdown did not depend on the expression status of malate-aspartate shuttle 

enzymes (Figure 28d), and could arise from differences in glutamine flux. Indeed, in 

PL45, Capan-1, and Pa-Tu-8902 colony formation was severely diminished following 

GOT1 knockdown with both hairpins, and this was independent of dox-effects (Figure 

27d and 28a-b). Thus, a majority of PDA cell lines respond to GOT1 inhibition. 

To test the specificity of GOT1 against PDA, we extended our cell panel to non-

transformed human lines. We found human pancreatic stellate cells (hPSC), human 

lung fibroblasts (IMR-90), and human non-transformed pancreatic exocrine cells (hPNE) 

were minimally affected upon GOT1 knockdown, in agreement with previous results, 

suggesting that this pathway may be dispensable in non-transformed cells (Figures 

28e-f)3,6. Together, these data demonstrate many PDA cell lines require GOT1 for 
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growth while non-transformed cell lines do not, highlighting a potential therapeutic 

window.  

We then examined the effect of GOT1 inhibition on established PDA tumors. 

PDA cells were implanted subcutaneously into the flanks or orthotopically into the 

pancreas of immunocompromised mice and allowed to establish for 7 days prior to 

GOT1 inhibition. GOT1 sensitive cell lines exhibited profound growth inhibition upon 

induction of GOT1 knockdown with dox (Figures 27e-f), results that were consistent 

with previous studies3,15. Parallel studies with shNT tumors indicated that the effect was 

independent of dox exposure (Figure 29a). GOT1 knockdown was demonstrated by 

immunoblot analysis on homogenized tumor tissue (Figures 27g and 29b) and 

biochemically via the induction of aspartate (Figure 29c). Immunohistochemistry for 

GOT1 indicate potent knockdown in the PDA cell compartment (Figure 29d). Tumor 

growth suppression was confirmed at the molecular level by a decrease in Ki-67, a 

marker for proliferation (Figure 29d). GOT1 knockdown tumors exhibited minimal 

staining for cleaved caspase 3 (CC3), a marker for apoptosis. Thus, these proliferative 

defects were independent of apoptosis, indicating GOT1 inhibits tumor proliferation, 

rather than, inducing cell death (Figure 29d). 

To test the hypothesis that GOT1 inhibition is cytostatic, we examined the effect 

of GOT1 knockdown on cell cycle progression. Knockdown led to a higher distribution of 

cells in G1 phase versus the S and G2 phases, indicating that the majority of cells are in 

G1 cell cycle arrest following five days of dox treatment (Figures 27h and 29e). 

Moreover, the effect of GOT1 knockdown was reversible, as cells regained proliferative 

capacity upon removal of genetic inhibition (Figures 27i and 29f). Overall, PDA display 

a spectrum of sensitivity to GOT1 where GOT1 inhibition arrests proliferation. 
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Figure 27. PDA requires GOT1 for growth and cell cycle progression. 
A) Malate-aspartate shuttle model. B-C) Colony formation and immunoblot analysis of Pa-Tu-8902 cells stably 

expressing iDox-shRNA constructs following 10 days GOT1 knockdown. shRNAs target the coding region of GOT1 
(sh1), or the 3’UTR region of GOT1 (sh3). Parental (parent) and scramble (shNT) conditions are also displayed (n=3). 
Vinculin (VCL) was used as a loading control. D) Relative colony number across a panel of PDA cell lines (n=3). E) 

Subcutaneous xenograft tumors from 3 PDA cell lines. Treatment with dox (red) or vehicle (black) (BxPC-3 n= 8, MIA 
PaCa-2 n=6, Pa-Tu-8902 n=6 per arm). F) Orthotopic xenograft tumor growth from Pa-Tu-8902 iDox-shGOT1 stable 

cell lines co-expressing firefly luciferase (FLuc) n=5 and n=6 mice were used for vehicle and dox cohorts respectively. 
G) Immunoblot analysis on tumors from (E). H) Cell cycle distribution of Pa-Tu-8902 iDox-GOT1 sh1 upon 1,3, or 5 
days of dox treatment. Significance values are in relation to iDox-shGOT1 mock (n=3). I) Proliferation kinetics 

following GOT1 knockdown. Cells were untreated (black), dox was added to untreated cells (blue), pre-treated with 
dox and chronically exposed to dox (grey), or released from dox pretreated cells (red). Relative cell number at day 5 
normalized to day 1 is displayed, (n=3).Error bars represent mean ± SD. Two-tailed unpaired T-testor 1-way ANOVA: 
Non-significant P > 0.05 (n.s. or # as noted), P≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤ 0.0001 (****).  
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Figure 28. GOT1 is dispensable in non-transformed cell lines. 
A-B) Colony formation assays and GOT1 immunoblots (B) from 1d. C) LC-MS/MS measurements of aspartate 

following five days of knockdown, n=3. D) mRNA expression of malate-aspartate shuttle components  in PDA cell 

lines from the Cancer Cell Line Encyclopedia. E-F) Proliferation of immortalized non-transformed human cell lines 

normalized to day 1, n=3. Error bars represent mean ± SD. Two-tailed unpaired T-testor 1-way ANOVA: Non-

significant P > 0.05 (n.s. or # as noted), P≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤ 0.0001 (****).  
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Figure 29. GOT1 inhibition is cytostatic. 
A) Growth of subcutaneous xenograft tumors containing non-targeting 862(NT) vectors treated with dox (red) or 
vehicle (black) (n= 6), corresponding to Figure 1F. B) Immunoblots for GOT1 from tumors in 1F. C) LC-MS/MS 
measurements of aspartates taken from homogenized Pa-Tu-8902 iDox-shGOT1 tumors, n=6. D) Histology of BxPC-

3 iDox-shGOT1 subcutaneous xenograft tumors from vehicle-or dox-treated mice. H&E, Hematoxylin and Eosin, 
CC3, cleaved caspase 3. Scale bars represent 50μm. E) Cell cycle upon 1,3, or 5 days of dox treatment. Significance 
values are in relation to iDox-shGOT1 mock (n=3). F) Proliferation kinetics following GOT1 knockdown. Cells were 

untreated (black), dox was added to untreated cells (blue), pre-treated with dox and chronically exposed to dox 
(grey), or released from dox pretreated cells (red). Relative cell number at day 5 normalized to day 1 is displayed, 
(n=3).Error bars represent mean ± SD. Two-tailed unpaired T-testor 1-way ANOVA: Non-significant P > 0.05 (n.s. or 
# as noted), P≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤ 0.0001 (****).  
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Limiting Exogenous Cystine Potentiates GOT1 Inhibition  

Because GOT1 inhibition is cytostatic, we sought to identify metabolic 

dependencies induced by knockdown that could be targeted to selectively kill PDA8. To 

test this, we examined the sensitivity of PDA cells in response to panel of metabolism-

targeted small molecules. Cells were subjected to five days of dox treatment to ensure 

GOT1 knockdown followed by three days of drug treatment (Figure 30a). 

GOT1 inhibition was protective when combined with some inhibitors 

demonstrated by increased area under the curve values (AUC), a measure of drug 

sensitivity (Figures 30b and 31a). Three of the five top desensitizing agents were 

chemotherapies, in agreement with previous observations15. Since these 

chemotherapies work through disrupting DNA replication of rapidly dividing cells, we 

speculate that the decreased sensitivity may occur due to the GOT1 growth-

suppressive phenotype. By contrast, GOT1 knockdown sensitized PDA cells to erastin 

(Figure 30b-c). Erastin is an inhibitor of the system xc
— cystine/glutamate antiporter 

which transports cystine into cells in exchange for glutamate9. Cystine, the oxidized 

dimer of cysteine, is reduced to cysteine upon entering the cell where it can contribute 

to the synthesis of GSH and proteins, among numerous other biochemical fates. 

GOT1 knockdown promoted a similar sensitization effect across additional PDA 

cell lines (Figure 30d and 31b) and was independent of dox interference (Figure 31c). 

This sensitization effect was photocopied by imidazole ketone erastin (IKE) (Figure 

31d) and promoted cell death (Figure 31e). Furthermore, treating GOT1 knockdown 

cells with nano-molar doses of erastin or IKE drastically reduced cell numbers 

compared with single treatment arms (Figures 30e and 31f). Supplementation with the 

exogenous cysteine or GSH sources, N-acetyl cysteine (NAC), β-mercapto ethanol 

(BME), or cell permeable GSH ethyl-ester (GSH-EE), prevented the combinatorial effect 

on cell viability (Figures 30f and 31g), consistent with the concept that cystine import 

through system xc
— is essential to maintain GSH levels16. 

Previous studies have found cystine levels were limiting in PDA tumors17,18. 

Based on these observations, we sought to test the effect of GOT1 knockdown under 

physiological concentrations of cystine. Culturing cells in tumor-relevant cystine 

potentiated GOT1 knockdown in a time- and dose-dependent manner (Figures 30g 
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and S32a-b), in agreement with our pharmacological studies. These results indicate 

PDA require exogenous cystine for growth and cell viability following GOT1 inhibition to 

aid cells in coping with redox stress3,15. In line with this observation, GOT1 inhibition 

lead to increased intracellular cysteine (Figure S32c) in both cell lines, where xCT 

protein levels were unchanged (Figure S32d), suggesting higher cystine uptake. 

To test this concept in vivo, we engrafted Pa-Tu-8902 iDox-shGOT1 cells 

engineered to express firefly luciferase (FLuc) into the pancreas, as in Figure 27f. 

Tumors were allowed to establish for 7 days, and treatment arms were initiated by 

providing dox-containing food formulated with or without the non-essential amino acid 

cysteine. While tumors in the animals fed a cysteine-free diet grew at comparable rates 

to tumors in animals fed a control diet, dox treated tumors grew substantially slower 

(Figures 30h-i and 32e). Mice fed with a cysteine-free diet had lower cysteine in tumors 

compared to the control diet (Figure 32f), indicating dietary inputs can influence tumor 

metabolism, but had no influence on tumor growth or burden. By contrast, cysteine was 

not significantly altered in tumors comparing dox-single or double treatment arms 

(Figure 32f). The differences in tumor growth or tumor burden for animals on the dox or 

combination diet trended smaller, but did not reach statistical significance (Figures 30h 

and 32e). We speculate that PDA tumors may acquire cysteine through alternative 

mechanisms when challenged by chronic cysteine deprivation. Overall, these data 

indicate that PDA cultures require exogenous cystine following GOT1 inhibition.  
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Figure 30. PDA requires cystine for viability and growth following GOT1 inhibition. 
A) Screening strategy to identify metabolic dependencies following GOT1 suppression. B) Log2 fold change in area 
under the curve (AUC) from cell viability dose response curves corresponding to each point, n=3. C) Cell viability 
dose response to erastin comparing mock (black) and GOT1 knockdown (red). D) GOT1 sensitization represented as 
the fold change in the erastin EC50, n=3. E) Proliferation in response to the listed conditions, n=3. 5 days of GOT1 

knockdown with the indicated media conditions for 24 hours. 750nM of Erastin was administered on day 1 and 
conditions are normalized to day 1 (n=3). F) Cell viability of Pa-Tu-8902 iDox-shGOT1 after 5 days of GOT1 

knockdown then 24 hours of 750nM IKE combined with the indicated conditions. 250μM of N-acetyl-cysteine (NAC), 
250μM GSH-ethyl ester (GSH-EE), and 50μM of beta-mercaptoethanol (BME) were used (n=3). G) Proliferation 
following GOT1 knockdown and the indicated media conditions (n=3). H-I) Orthotopic xenograft tumor growth from 

Pa-Tu-8902 iDox-shGOT1 stable cell lines co-expressing firefly luciferase (FLuc) treated with vehicle (black, n=6), 
dox containing food (red, n=6), cysteine-free diet (grey, n=5), or dox containing, cysteine-free food (blue, n=6). GOT1 
immunoblot (I) taken from endpoint tumors. Error bars represent mean ±SD in B-G or mean ±SEM in H. Two-tailed 
unpaired T-test or 1-way ANOVA: Non-significant P> 0.05 (n.s. or # as noted), P≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤ 
0.0001 (****). See also supplemental figures 3 and 4.  
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Figure 31. GOT1 Inhibition sensitizes PDA to xc- inhibitors. 
A) Area under the curve (AUC) in cell viability for each compound treated for 72 hours,  (n=3). B) Cell viability dose 
response curves for erastin after 24 hours in iDox-shGOT1 expressing cell lines. C) AUC fold-change for shNT 
expressing cell lines, n=3. D) Imidazole ketone erastin (IKE) cell viability dose curves, n=3. E) Bright field images of 
Pa-Tu08982 iDox-shGOT1 cells treated with IKE. F) Proliferation after 5 days of dox treatment with the indicated 

conditions. 750nM of IKE was administered on day 1 and each condition is normalized to day 1 (n=3). G) Cell viability 
of Mia PaCa-2 iDox-883shGOT1 after 5 days of dox culture then 750nM IKE co-cultured with the indicated conditions 
(n=3). Error bars represent mean ± SD. Two-tailed unpaired T-test or 1-way ANOVA: Non-significant P> 0.05 (n.s. or 
# as 892noted), P≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤0.0001 (****).  
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Figure 32. PDA cultures require exogenous cystine for proliferation and viability. 
A) Mia PaCa-2 iDox-shGOT1 proliferation following 5 days of GOT1 knockdown and the indicated media conditions 

(n=3). I) Cell viability of Pa-Tu-8902 iDox-shGOT1 (red) and Mia PaCa-2 iDox-shGOT1 (blue) following 5 days of dox 
pre-treatment and 24 hours of the indicated cystine concentrations (n=4). C) LC-MS/MS measures of intracellular 
cysteine upon GOT1 knockdown, n=4. D) xCT levels are unchanged with GOT1 knockdown. E) Total post-treatment 
tumor burden (mock, n=5), (-Cys, 4), (dox, n=4), and (dox, -Cys, n=5). F) Cysteine levels in tumors at endpoint 

(mock, n=5), (-Cys, 4), (dox, n=4), and (dox, -Cys, n=6). Error bars represent mean ± SD (Figures A-C) or mean ± 
S.E.M (Figures E-F). Two-tailed unpaired T-test or 1-way ANOVA: Non-significant P> 0.05 (n.s. or # as noted), P≤ 
0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤0.0001 (****).  
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Figure 33.  GOT1 inhibition promotes redox stress. 
A-B) LC-MS/MS measures of redox co-factors, n=4. Two-tailed unpaired T-test: 

Non-significant P> 0.05 (n.s. or # as noted), P≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 
(***), ≤0.0001 (****).  
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Inhibiting GSH Biosynthesis Potentiates the Growth Inhibitory Effects of GOT1 

Knockdown 

Our data show that PDA cultures are heavily reliant on exogenous cystine 

following GOT1 inhibition and that PDA upregulate cysteine acquisition (Figure 32c) 

responding to GOT1 knockdown. Along these lines, GOT1 inhibition led to increased 

GSSG and NADP+ while the changes in GSH and NADPH varied (Figure 33a-b), 

suggesting cystine import could be required for cells to cope under redox stress. 

Because a major fate of cysteine is GSH, and since GSH-EE supplementation was 

blocked the GOT1-IKE combinatorial effect (Figure 30f and 31g), we hypothesized 

GOT1 knockdown would, likewise, sensitize PDA to inhibition of de novo GSH synthesis 

(Figure 34a).  

The rate-limiting step in GSH synthesis is catalyzed by glutamate-cysteine ligase 

(GCL), which forms gamma glutamyl-cysteine through the condensation of glutamate 

and cysteine19. GCL is a holoenzyme which consists of a catalytic subunit (GCLC) and 

a modifier subunit (GCLM), and the GCLC subunit is targeted by the inhibitor buthionine 

sulfoximine (BSO), resulting in decreased GSH production (Figure 34a). We observed 

that GOT1 knockdown enhanced sensitivity to BSO after 24 hours of drug treatment, 

contrasting an absent single agent response (Figure 35a). Exposure to BSO for 72 

hours further augmented the sensitizing effect (Figures 34b and 35b-c). In some 

cases, the change in EC50 was nearly 100-fold (Figure 34c and 35d), indicating potent 

sensitization.  

Recent studies have suggested that a majority of cancer cell lines survive upon 

72 hours of BSO treatment despite potent inhibition of GSH levels at this time point20. 

Moreover, these studies have demonstrated that chronic BSO treatment, up to 9 days, 

is required in induce effects on proliferation or cell death 20. In our models, 6 hours of 

BSO treatment was sufficient to diminish GSH levels (Figure 35e), in line with previous 

kinetic data20. By contrast, co-treatment of GOT1 knockdown with BSO substantially 

reduced cell proliferation at 72 hours, while the effect of BSO alone was modest (Figure 

34d and 35f). 120 hours of treatment potentiated the effect in the GOT1 knockdown 

condition, whereas cells regained proliferative capacity under the BSO single treatment 

condition (Figure 34d and 35f). The combinatorial effects on cell viability were rescued 
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by supplementing exogenous GSH-EE or NAC (Figures 34e and 35g), in line with the 

model that GOT1 perturbs redox balance.  

We then sought to determine whether this combination shows efficacy in vivo by 

examining the effect of GOT1 and BSO in established xenograft tumors. Mice were 

engrafted with Pa-Tu-8902 iDox-shGOT1 cells and given dox via chow after 7 days. 

BSO was administered via drinking water on day 14. While no tumor regressions were 

observed, the combination of GOT1 and BSO significantly slowed tumor progression 

compared with single treatment arms (Figure 34f) and led to complete stasis in one 

instance (Figure 35h). Knockdown was confirmed immunoblot analysis (Figure 35i) 

and immunohistochemistry (Figure 35j). 

We then measured glutathione species in tumor metabolite fractions to 

demonstrate the pharmacodynamics of BSO. We found BSO to significantly reduce 

levels of gamma glutamyl-cysteine, a product of GCL, which is directly inhibited by 

BSO19 (Figure 34g). Concomitantly, we observed a significant reduction in GSH, 

GSSG, and the GSH/GSSG ratio upon BSO treatment (Figure 34g), demonstrating 

BSO has on-target activity in established tumors, and the tumors are under redox 

stress. Together, our data reveal that PDA require glutathione synthesis under GOT1 

deficient conditions. 
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Figure 34. PDA require GSH synthesis for growth upon GOT1 suppression.  
A) Scheme depicting GSH synthesis and metabolic changes following GOT1 inhibition. B-D) Cell viability dose 

response (B), EC
50

  fold change across multiple PDA cell lines, and proliferation (D), following 5 days of GOT1 

knockdown and BSO treatment, n=3. E) ell viability following 72 hours of 40uM BSO or co-treatment with 0.5mM N-

acetyl cysteine (NAC) or 0.5mM GSH-Ethyl Ester (GSH-EE) following 5 days of GOT1 knockdown (n=3). F) 
Subcutaneous xenograft growth of Pa-Tu-8902 iDox-shGOT1 cells treated with vehicle (black), 20 mg/kg BSO via 
drinking water (grey), doxycycline administered in the food (red), or the combination (blue). G) Relative abundance of 

gamma-glutamyl cysteine (γGC), GSH, GSSG, and the GSH/GSSG ratio from tumors in (F) (n=8). Error bars 
represent mean ± SD. Two-tailed unpaired T-test or 1-way ANOVA: Non-significant P> 0.05 (n.s. or # as noted), P≤ 
0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤0.0001 (****). See also supplemental figure 6. 
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Figure 35. PDA require GSH synthesis under GOT1 deficient conditions. 
 A-B) Cell viability dose response at 24 (A) and 72 hours (B), n=3. C) AUC fold change in shNT matched cell lines, 

n=3. D) Raw EC
50

 measures from (B). E) GSH-glo measures, n=3. F) Proliferation after 5 days of GOT1 knockdown. 

BSO 40μM treatment was initiated on day 1 and curves are normalized to day 1, n=3. G) Relative viability after 5 

days of GOT1 knockdown and treatment with 40μM BSO or co-treatment with 0.5mM N-acetyl cysteine (NAC) 0.5mM 
GSH-ethyl ester (GSH-EE, n=3). H) Individual tumor volume measurements corresponding to Figure 3F (n=8).I) 
Immunoblot analysis of GOT1 from tumors in Figure 3F (n=8). J) Immunohistochemical staining of GOT1, n=8. Error 

bars represent mean ± SD. Two-tailed unpaired T-test or 1-way ANOVA: Non-significant P> 0.05 (n.s. or # as noted), 
P≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤0.0001 (****).  
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GOT1 Suppression Augments Ferroptosis Sensitivity 

Previous work has demonstrated that some cell types are sensitive to erastin and 

BSO as single agents, and that these drugs can kill cells by depleting GSH. The 

proximal effects of GSH depletion are mediated through loss of GPX4 activity, which 

utilizes GSH as a co-factor to detoxify lipid peroxides (Figure 36a). This can lead to the 

lethal accumulation of lipid peroxides, and ferroptosis21. Ferroptosis is a form of 

oxidative, non-apoptotic, iron-dependent, cell death that is triggered by excessive lipid 

peroxide levels (Figure 36a)9,10. While GOT1 inhibition does not induce ferroptosis, our 

data suggest it may predispose PDA cells to ferroptosis. 

To investigate whether GOT1 can sensitize PDA to ferroptosis, we first examined 

the combinatorial effect of GOT1 knockdown together with RSL3, a covalent inhibitor of 

GPX4 and direct inducer of ferroptosis21. RSL3 in combination with GOT1 knockdown 

was substantially more potent than as a single agent (Figure 36b), and this effect was 

evident across a panel of PDA lines (Figures 36c and 37a) where the effect was 

cytotoxic (Figure 37b) and independent of dox effects (Figure 37c). Moreover, the 

combination reduced proliferation (Figures 36d and 37d).  

We then employed the C11-BODIPY lipid peroxidation sensor to investigate how 

inhibition of GPX4 and GOT1 affected lipid peroxidation. While the effect of GOT1 

inhibition on lipid ROS induction was modest (Figures 36e and 37e), GOT1 inhibition 

substantially upregulated lipid ROS combined with RSL3 or erastin (Figures 36e and 

37e-f). The effect could be reversed through co-treatment with the lipophilic antioxidant 

ferrostatin-1 (Fer-1) (Figure 37e). Next, we examined whether cell death could be 

prevented by co-treatment with agents that relieve lipid peroxidation or chelate iron9,10.  

Co-treatments with Fer-1 prevented the GOT1 sensitization effect uniformly across 

multiple ferroptosis inducers (Figure 36f) and over a time course (Figure 37g). 

Moreover, treatment with the lipophilic antioxidant, Trolox, or iron chelator deferoxamine 

(DFO), provided substantial protection (Figure 36f). To rule out the possibility that 

GOT1 was sensitizing PDA to alternative mechanisms of cell death, namely apoptotic, 

necrotic, or autophagic cell death, we co-treated GOT1 knockdown with well-

characterized inhibitors of these cell death pathways. Co-treatment with the pan-

caspase inhibitor (Z-VAD-FMK), RIPK-1 inhibitor (Necrostatin-1), or lysosomal 
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acidification inhibitor (Bafilomycin A1) offered limited protection compared with lipophilic 

antioxidants or iron chelation (Figures 36g and 37h), suggesting ferroptosis is the 

predominant mechanism of cell death. Finally, we explored triggering ferroptosis by 

FINO2 which causes iron oxidation and indirectly inhibits GPX4 activity22. GOT1 

suppression also sensitized PDA to ferroptosis (Figures 37i-j). Overall, our data 

demonstrate GOT1 inhibition primes PDA for ferroptosis in cell culture.  

  



 96 

  

Figure 36. GOT1 inhibition sensitizes PDA to ferroptosis. 

A) Scheme of the GPX4 arm of ferroptosis. B-D) Cell viability dose response curve at 24 hours (A), EC
50 

fold 

changes in dose response (C), and proliferation (D). E) Relative lipid ROS in Pa-Tu-8902 iDox-shGOT1 treated 
with 32nM RSL3 or750nM Erastin -/+ 1μM Ferrostatin-1(Fer-1) for 6hours (n=3). F) Cell viability Cell viability of 

Pa-Tu-8902 iDox-shGOT1 cultured in vehicle (0.1% DMSO) -/+ dox (black and light grey), drug (32nM RSL-3, 
750nM Erastin, 40μM BSO) -/+ dox (grey and red), or drug and dox (blue) in the presence of lipophilic 
antioxidants 1μM Fer-1 and 100μM Trolox, or an iron chelator 10μM DFO (deferoxamine). Viability was 
assessed after 24 hours of treatment for RSL-3 and Erastin conditions and 72 hours for BSO treatment 
conditions. GOT1 was knocked down for 5 days prior to treatment. Data are normalized to the –dox and vehicle 
treated control (n=3). G) Cell viability flowing the procedure in (F) but in the presence of 10μM Necrostatin-1 

(Nec-s, apoptosis inhibitor), 50 μM ZVAD-FMK (Z-Vad, apoptosis inhibitor), or 1 nM bafilomycin A1 (BA-1, 
lysosomal acidification inhibitor), n=3.  
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Figure 37. GOT1 inhibition augments ferroptosis in PDA. 
A) Cell viability dose response curves at 24 hours, n=3. B) Bright field images of Pa-Tu-8902 iDox-shGOT1 cells 
treated with RSL3. C) Fold change in cell viability AUC in shNT cells. D) Proliferation following 5 days of knockdown 

and treatment with the indicated conditions. 32nM of RSL-3 was administered on day 1. Cell numbers are normalized 
to day 1 for each condition (n=3). E) Distribution of Pa-Tu-8902 iDox-shGOT1 cells positive for C11-BODIPY 
corresponding to (4E). F) Fold change in viable MIA PaCa-2 iDox-shGOT1 cells positive for C-11 BODIPY, following 

5 days of GOT1 knockdown. Cells were treated with the indicated conditions for 6 hours prior to measurements:  
vehicle (0.1% DMSO) -/+ dox (black and grey), 1μM RSL3.Data are normalized to the –dox and vehicle-treated 
condition (n=2). G) Proliferation of Pa-Tu-8902 iDox-shGOT1 following 5 days of knockdown and treatment with the 

indicated conditions (n=3). 32nM RSL-3, 750nM Erastin, or 40μM BSO -/+ 1μM Ferrostatin-1 (Fer-1) were used. Cell 
numbers are normalized to day 1 for each condition (n=3).  H) Single agent viability controls for 4F-G, n=3. I-J) Cell 

viability dose-response curves and bright field image (J) upon 24 hours of FINO
2
 treatment following 5 days of GOT1 

knockdown (n=3). Error bars represent mean ± SD. Two-tailed unpaired T-test or 1-way ANOVA: Non-significant P> 
0.05 (n.s. or # as noted), P≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤0.0001 (****). 
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GOT1 Inhibition Primes PDA for Ferroptosis by Promoting Labile Iron 

Ferroptosis is coupled to the cell’s metabolic state where increasing intracellular 

free iron levels can augment ferroptosis12,13. We tested the possibility that GOT1 

inhibition was leading to labile iron release first by measuring Calcein-AM fluorescence 

via flow cytometry. Calcein-AM is a fluorescein-derived probe that is quenched when 

bound to ferrous iron (Fe2+)23. Calcein-AM staining of GOT1 proficient cells defined 

basal fluorescence. GOT1 knockdown cells shifted fluorescence distribution to lower 

intensity, indicating labile iron pools were increased following GOT1 knockdown 

(Figures 38a-b and 39a). This observation was corroborated by orthogonal 

measurements employing the RhoNox-124 iron probe (Figure 38c-d). The effect of 

labile iron was evident phenotypically where higher DFO concentrations were required 

to rescue cell viability upon ferroptosis inhibitor treatment (Figures 38e and and 39e).  

  Iron levels can be altered by downregulating iron efflux, upregulating iron 

uptake, or promoting the degradation of intracellular iron carriers—ferritin or heme25 

(Figure 39b). GOT1 knockdown did not upregulate expression of iron transport proteins 

(SLC40A1 and TFRC) (Figures 39c-d). Moreover, expression of heme oxygenase 1 

(HMOX1), which releases labile iron through the degradation of heme was unaltered in 

Pa-Tu-8902. It was however modestly upregulated in Mia PaCa-2 (Figure 39d). 

Moreover, GOT1 inhibition reduced ferritin protein levels (Figure 38f), while additional 

iron regulating proteins were unchanged, suggesting iron could be liberated through 

released via NCOA4-dependent autophagy, in a process termed ferritinophagy11. 

NCOA4 is autophagosome cargo receptor that binds to the ferritin heavy chain 

sequestering ferritin for degradation by the autolysosome to release labile iron. By 

contrast Mia PaCA-2 downregulated NCOA4 and IRP2 and upregulated TFR1 (Figure 

38f), in line with the iron starvation response12. Both mechanisms of labile iron release 

employ vacuolar (V-)ATPases to drive the acidification of the lysosome and endosome 

to degrade iron carriers11,26,27. Indeed, blocking V-ATPases prevented GOT1-mediated 

ferroptosis (Figures 38g and 39f). More broadly, ferric ammonium citrate 

supplementation enhanced sensitivity to ferroptosis inducing compounds (Figure 39f). 

In parallel we conducted whole-transcriptome profiling and found the catabolic 

pathways “Lysosome” (Figure 40a) and “Autophagy-Lysosome” (Figure 38h) 
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signatures were enriched in Pa-Tu-8902 by gene set enrichment analysis28. Autophagy 

is a catabolic process that protects cells from metabolic stress induced by nutrient 

deprivation29. Indeed, GOT1 knockdown upregulated autophagic flux in Pa-Tu-8902, 

indicated by the difference in LC3-B in vehicle and inhibitors of autophagic flux 

hydroxychloroquine (HCQ) and BafA1 (Figures 38i and 40b). Moreover, GOT1 

inhibition led to decreased p62, which is selectively degraded during autophagy (Figure 

38i). Importantly, blocking autophagic flux restored ferritin protein levels (Figure 38i) 

and NCOA4 knockdown prevented GOT1-mediated ferroptosis in Pa-Tu-8902 (Figures 

38J and 40c-e), supporting the model that GOT1 promotes labile iron through 

ferritinophagy. Together our data suggest GOT1 inhibition primes PDA for ferroptosis by 

promoting labile iron.  
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Figure 38. GOT1 inhibition promotes labile iron release. 
A-B) Calcein-AM histogram (A) and mean fluorescence intensity (MFI) upon five days of GOT1 knockdown (B), n=3. 
C-D) Visualization (C) and quantification (D) of GOT1 knockdown cells treated with the iron probe RhoNox-1, n=3. F) 
Immunoblots of iron regulatory proteins. E-G) Cell viability dose response rescues of cells co-treated with the 
indicated concentration of RSL3 and increasing doses of DFO (E) or Baf-A1 (G), n=2. H) Enrichment of autophagy-
lysosome transcripts in Pa-Tu-8902 iDox-shGOT1 cells following GOT1 knockdown. I) Western of autophagy markers 
and ferritin following GOT1 knockdown. J) Cell viability in cells co-treated with RSL3 and siNCOA4 following GOT1 

knockdown, n=3. Error bars represent mean ± SD. Two-tailed unpaired T-test or 1-way ANOVA: Non-significant P> 
0.05 (n.s. or # as noted), P≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤0.0001 (****).  
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Figure 39. Labile iron sensitizes PDA to ferroptosis inducers. 
A) Calcein-AM MFI in Mia PaCa-2 iDox-shGOT1 following GOT1 knockdown, n=3. B) Scheme of iron release 
mechanisms. C-D) Expression of SLC40A1, TFRC, and HMOX1 in Pa-Tu08902 (red) or Mia PaCa-2 iDox-shGOT1 
cells (blue). E-G) Cell viability dose response curves of various ferroptosis inducers treated with DFO (n=3), Baf-A1 

(n=2), or 200µM of ferric ammonium citrate (FAC). All assays were readout after 24 hours. Error bars represent mean 
± SD. Two-tailed unpaired T-test or 1-way ANOVA: Non-significant P> 0.05 (n.s. or # as noted), P≤ 0.05 (*), ≤ 0.01 
(**), ≤ 0.001 (***), ≤0.0001 (****). 



 102 

 

4.4 Discussion 

Here, we report that inhibition of GOT1 suppresses the growth of numerous PDA 

cell lines, primary culture models, and xenograft tumors, while rendering cells 

susceptible to ferroptosis. Ferroptosis could be triggered by inhibiting cystine import, 

glutathione synthesis, or GPX4 in synergy with GOT1, which we ascribe to the 

Figure 40. GOT1 silencing induces ferritinophagy.  
A) Enrichment of lysosomal transcripts following GOT1 silencing in Pa-Tu-8902 iDox-shGOT1, n=3. B-C) Western 
blot analysis of autophagic flux (B) and autophagy markers in response to GOT1 over expression (C). D) Knockdown 
of NCOA4 rescues GOT1-mediated ferroptosis, n=3. E) Western blot for NCOA4. F) GOT1 inhibition primes PDA for 

ferroptosis by promoting labile iron release. Error bars represent mean ± SD. Two-tailed unpaired T-test or 1-way 
ANOVA: Non-significant P> 0.05 (n.s. or # as noted), P≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤0.0001 (****). 
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promotion of intracellular iron levels through upregulating iron import and the autophagic 

degradation of ferritin. 

The role of GOT1 in ferroptosis has been the subject of previous study in several 

other tumor types. Our data lie in contrast to some previous work, which have 

suggested that GOT1 inhibition protects cells from ferroptosis by blocking mitochondrial 

metabolism36–39. Our data reveal the downstream effects of GOT1 inhibition are iron 

release this metabolic adaption can sensitize PDA cells to ferroptosis, in line with 

previous studies suggesting labile iron can sensitize cells to ferroptosis12,13. The 

differences emerging from these studies likely reflect the incomplete understanding of 

regarding GOT1, iron regulation, and ferroptosis in cancer cells arising from different 

tissues.   

Labile iron through the iron starvation response or NCOA4-dependent autophagy 

have been implicated in supporting mitochondrial metabolism by supplying iron. These 

mechanisms are believed to support iron sulfur cluster synthesis, among other 

fates12,32,40. Several groups have shown in mammalian cells and yeast that lysosomal 

acidification supports mitochondrial metabolism by serving as an iron source41–43. 

Based on the data presented here, and that of other groups, we posit that the labile iron 

is released following GOT1 inhibition could be an adaptive response to support 

mitochondrial metabolism.  

More broadly, ferrous iron is required for ferroptosis where it contribute to the 

oxidation of membrane PUFAs, either as free iron or as a co-factor for lipoxygenase 

enzymes10,23,24. We show that iron alone can influence sensitivity to ferroptosis inducing 

small molecules. Along these lines, several groups are engaged in developing iron-

activated pro-drugs to selectively exploit the oxidative environment promoted by labile 

iron44–46.  Iron metabolism is altered in several cancers31, whether these cell types are 

sensitive to ferroptosis triggering agents, or how labile iron pools are altered in these 

contexts are open questions. Overall, data reveal GOT1 inhibition and subsequent labile 

iron release augment ferroptosis sensitivity in PDA cell lines and suggest labile iron 

could be a targetable vulnerability in PDA.  
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4.5 Materials and Methods 

Cell Culture  

PL45, Capan-1, BxPC-3, MIA PaCa-2, Panc10.05, Panc03.27, PANC-1, Capan-2, 

HPNE (V), IMR-90 were obtained from ATCC. Pa-Tu-8902, Pa-Tu-8988T, YAPC, and 

Hup T3 were obtained from DSMZ. Human pancreatic pancreatic stellate cells (hPSC) 

were a generous gift form Rosa Hwang (Hwang et al., 2008). The UM PDA primary cell 

cultures (UM147, UM5, UM90, and UM19) were obtained from surgically-resected 

samples and established through murine xenograft (Li et al., 2007). KPC-MT3 murine 

PDA cell lines were a generous gift from Dr. David Tuveson. All commercial cell lines 

and UM PDA primary cultures were validated by STR profiling and tested negative for 

mycoplasma infection (Lonza, LT07-701). Cells were maintained under standard 

conditions at 37ºC and 5% CO2. Cells were grown either in regular DMEM (GIBCO, 

#11965) or RPMI (GIBCO, #11875), or in DMEM without cystine (GIBCO, #21013024) 

or RPMI (GIBCO, A1049101) supplemented with 10% FBS (Corning, 35-010-CV) 

unless otherwise indicated. Cultures involving inducible short-hairpin mediated 

knockdown were supplemented with doxycycline-hyclate (Dox) at 1µM/mL (Sigma, 

D9891) for 5 days prior to experiments.  

Lentiviral-mediated shRNA Transduction 

Parental PDA cell lines were transduced with lentivirus containing short hairpin RNA 

plasmids at optimized viral titers. Stable cell lines were established post-puromycin or 

blasticidin or selection. 

Clonogenic Assays  

Cells were plated in a 6-well plate in biological triplicates at 300-600 cells per well in 

2mL of media. Dox-media were changed every 2 days. Assays were concluded after 

10-15 days by fixing in -20oC cold 100% methanol 10 min and staining with 0.5% crystal 

violet 20% methanol solution for 15 min. Colonies were quantified using ImageJ or 

manually counted. 

Cell Proliferation Assays 

Cells were seeded in a 96-well plate at 1,000 cells per well in 0.1mL of media. Indicated 

treatments were applied the subsequent day. Media was changed every 2 days. At the 

indicated time points, media was aspirated and frozen. 100 µL of CyQUANT (Invitrogen, 
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C7026) to each well for measurements. 10µL of WST-1 reagent directly to the culture 

media (Sigma, #11644807001). Relative proliferation was determined by the 

fluorescence intensity at 530nm for CyQuant or 450nm for WST-1 using a SpectraMax 

M3 plate reader. 

Cell Viability Assays 

Cells were plated in a 96- or 384-well plate format at 1,000 cells per well Cells were 

allowed to seed overnight, then treated with compounds at indicated concentrations and 

for indicated lengths of time. All viability assays utilized the Cell-Titer-Glo 2.0 reagent 

(Promega, G9243) according to the manufacturer’s instructions. Media was aspirated 

followed by the addition of 100 µL of Cell-Titer-Glo 2.0 reagent to each experimental 

well. Plates were gently agitated for 10 minutes to promote adequate mixing. 

Luminescence was subsequently measured using a SpectraMax M3 plate reader. 

RNAi 

On-TARGET siRNAs smart pools targeting NCOA4 were ordered from Dharmacon. 

siRNAswere transfected into Pa-Tu-8902 or Mia PaCa-2 iDox-shGOT1 cells previously 

seeded in 96-well plates using Lipofectamine RNAiMAX (ThermoFisher) per the 

manufacturer’s instructions. MEM-media (ThermoFisher)  was used as a mock 

treatment.  

Quantitative RT-PCR 

Total RNA was extracted using the RNeasy Mini Kit (Qiagen, 74104) and reverse 

transcription was performed from 2 µg of total RNA using the iScript cDNA synthesis 

kit (BioRad,1708890) according to the manufacturer’s instructions. Quantitative RT–

PCR was performed with Power SYBR Green dye (Thermo, 4367659) using a 

QuantStudio 3 System (Thermo). PCR reactions were performed in triplicate and the 

relative amount of cDNA was calculated by the comparative CT method using an 

RPS21 as an endogenous control. RT-PCR was performed in a least 3 biological 

replicates. 

Detection of Reactive Oxygen and Labile Iron by Flow cytometry 

Cells were plated in 6-well plates two days before incubation with indicated treatments. 

Cells were then washed twice with 1x PBS, and stained for 20-30 (Invitrogen, C1430) 

minutes with 2µM C11-BODIPY (Invitrogen, D3861) or for 10 minutes with 0.2µM 
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Calcein-AM (Invitrogen, C1430) in phenol red-free DMEM. Cells were co-stained with 

Sytox-blue (Invitrogen, S34857) to account for cell viability. Following staining, cells 

were washed twice with PBS, trypsinized (0.25%, Life Technologies, 25200-056), and 

naturalized with pure FBS at a 1:1 volume. Cells were then collected in 500uL PBS, and 

moved to round bottom 96-well plates, on ice, for measurements. A minimum of 8000 

cells were analyzed per condition. C11-BODIPY and Calcein-AM signals were analyzed 

in the FITC channel, while Sytox-blue was analyzed in the DAPI channel on a ZE5 Cell 

analyzer (Bio-Rad). Analysis of data was performed using FlowJo v.10 software. 

Relative labile iron levels were calculated based on the ratio of Calcein-AM mean 

fluorescence intensity (MFI) of control vs. dox-treated samples. 

Image-Based Detection of Labile Iron  

GOT1 was knocked down for 5 days in Pa-Tu-8902 iDox-shGOT1 and seeded at 

10,000 cells per well. Cells were treated the following day with Hoechst (1 μg/ml final 

concentration) and RhoNox-1 (Goryo, GC901) at 500nM for 6 hours then imaged using 

a Cytation5 Cell Imaging Multi-Mode Reader (BioTek, VT, USA). Hoechst was imaged 

using a 365 nm LED in combination with an EX 377/50 EM 447/60 filter cube. RhoNox-1 

was imaged using a 523 nm LED in combination with an EX 531/40 EM 593/40 filter 

cube. Image analysis was completed using Gen5 software (BioTek).  

Xenograft Studies 

Animal experiments were conducted in accordance with the Office of Laboratory Animal 

Welfare and approved by the Institutional Animal Care and Use Committees of the 

University of Michigan. NOD scid gamma (NSG) mice (Jackson Laboratory, 005557), 6-

8 or 8-10 weeks old of both sexes, were maintained in the facilities of the Unit for 

Laboratory Animal Medicine (ULAM) under specific pathogen-free conditions. Stable 

PDA cell lines containing a dox- inducible shRNA against GOT1 were trypsinzied and 

suspended at 1:1 ratio of DMEM (Gibco, 11965-092) cell suspension to Matrigel 

(Corning, 354234). 150-200 μL were used per injection. For subcutaneous xenograft 

studies, 0.5x106 cells were implanted into the lower flanks. Doxycylin (dox) chow 

(BioServ, F3949) was fed to the +dox groups. Orthotopic tumors were established by 

injecting 5x104 Pa-Tu-8902 iDox-shGOT1 #1 pFUGW-Firefly Luciferase into 8-10 week 

old NSG mice. Cysteine-free chow (LabDiet) was customized from Baker Amino Acid 



 107 

(LabDiet, 5CC7) to remove cysteine and balance protein levels with increased valine 

and aspartic acid. BSO was delivered in the drinking water at 20 mM. All treatments 

began on day 7 after implantation.  

Subcutaneous tumor size was measured with digital calipers at the indicated endpoints. 

Tumor volume (V) was calculated as V = 1/2(length x width2). Bioluminescence (BLI) of 

orthotopic tumors were measured via IVIS SpectrumCT (PerkinElmer) following an 

intraperitoneal injection of 100 μL beetle luciferine (40 mg/mL in PBS stock) (Promega, 

E1605). BLI was analyzed with Living Image software (PerkinElmer). At endpoint, final 

tumor volume and mass were measured prior to processing. Tissue was either fixed in 

zinc formalin fixative (Z-fix, Anatech LTD, #174) for >24 hours for histological and/or 

histochemical analysis, or snap-frozen in liquid nitrogen then stored at -80°C until 

metabolite or protein analysis. 

Western blot analysis 

Stable shNT and shGOT1 cells were cultured with or without dox media and protein 

lysates were collected after five days using RIPA buffer (Sigma, R0278) containing 

protease inhibitor cocktail (Sigma/Roche, 04 693 132 001). Samples were quantified 

with Pierce BCA Protein Assay Kit (ThermoFisher, 23225). 10 to 40 µg of protein per 

sample were resolved on NuPAGE Bis-Tris Gels (Invitrogen, NP0336) and transferred 

to a Immobilon-FL PVDF membrane (Millipore, IPVH00010). Membranes were blocked 

in 5% non-fat dry milk in distilled H2O prior to incubation with the primary antibody. The 

membranes were washed with TBS-Tween followed by a 1h exposure to the 

appropriate horseradish peroxidase-conjugated secondary antibody. The membranes 

were washed in de-ionized water for 15-30 minutes then visualized using a Bio-Rad 

ChemiDox MP Imaging System (Bio-Rad, 17001402). The following antibodies were 

used: anti-aspartate aminotransferase (anti-GOT1) at a 1:1,000 dilution (Abcam, 

ab171939), 1:1,000 dilution Anti-Rabbit LC3 A/B (CST, 12741), 1:1,000 dilution Anti-

Rabbit NCOA4 (Bethyl Laboratories, A302-272A), 1:1,000 dilution Anti-Rabbit IRP-2 

(Cell Signaling, D6E6W), and loading control vinculin at a 1:1,000 dilution (Cell 

Signaling, 13901), HSP-90 (Cell Signaling, 4877S), Anti-Rabbit β-Actin (Cell Signaling, 

4970L) or GAPDH (Cell Signaling, 2118). Anti-rabbit IgG, HRP-linked (Cell Signaling 

Technology, 7074) secondary antibody was used at a 1:10,000 dilution. 
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Histology  

Mice were sacrificed by CO2 asphyxiation followed by tissue harvesting and fixation 

overnight at room temperature with Z-fix solution (Z-fix, Anatech LTD, #174). Tissues 

were the processed by using a Leica ASP300S Tissue Processor, paraffin embedded, 

and cut into 5-μm sections. Immunohistochemistry was performed on Discovery Ultra 

XT autostainer (Ventana Medical Systems Inc.) and counterstained with hematoxylin. 

IHC slides were scanned on a Panoramic SCANslide scanner (Perkin Elmer), and then 

annotation regions encompassing greater than 1mm of tissue were processed using 

Halo software (Indica Labs).The following antibodies were used for IHC: GOT1 

(AbCam, ab171939), Ki-67 (Cell Signaling, 9027), Cleaved Caspase-3 (Cell Signaling, 

9664). 

Metabolomics 

Targeted metabolomics: Cells were plated at 500,000 cells per well in 6-well plates or 

~1.5 million cells per 10 cm dish. At the endpoint, cells were lysed with dry-ice cold 80% 

methanol and extracts were then centrifuged at 10,000 g for 10 min at 4°C and the 

supernatant was stored at -80°C until further analyses. Protein concentration was 

determined by processing a parallel well/dish for each sample and used to normalize 

metabolite fractions across samples. Based on protein concentrations, aliquots of the 

supernatants were transferred to a fresh micro centrifuge tube and lyophilized using a 

SpeedVac concentrator. Dried metabolite pellets were re-suspended in 45 μL 50:50 

methanol:water mixture for LC–MS analysis. Data was collected using previously 

published parameters (Yuan et al. 2012) (Lee et al. 2019). 

The QqQ data were pre-processed with Agilent MassHunter Workstation Quantitative 

Analysis Software (B0700). Additional analyses were post-processed for further quality 

control in the programming language R. Each sample was normalized by the total 

intensity of all metabolites to scale for loading. Finally, each metabolite abundance level 

in each sample was divided by the median of all abundance levels across all samples 

for proper comparisons, statistical analyses, and visualizations among metabolites. The 

statistical significance test was done by a two-tailed t-test with a significance threshold 

level of 0.05. 
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Seahorse Mito Stress Test 

MiaPaCa-2 cells were seeded at 2x104 cells/well in 80 μl/well of normal growth media 

(DMEM with 25 mM Glucose and 2 mM Glutamine) in an Agilent XF96 V3 PS Cell 

Culture Microplate (#101085-004). To achieve an even distribution of cells within wells, 

plates were incubated on the bench top at room temperature for 1 hour before 

incubating at 37ºC, 5% CO2 overnight. To hydrate the XF96 FluxPak (#102416-100), 

200 μL/well of sterile water was added and the entire cartridge was incubated at 37’C, 

no CO2 overnight. The following day, one hour prior to running the assay, 60 μL/well of 

growth media was removed from the cell culture plate and cells were washed twice with 

200 μL/well of assay medium (XF DMEM Base Medium, pH 7.4 (#103575-100) 

containing 25 mM Glucose (#103577-100) and 2 mM Glutamine (#103579-100)). After 

washing, 160 μL/well of assay medium was added to the cell culture plate for a final 

volume of 180 μL/well. Cells were then incubated at 37’C, no CO2 until analysis. Also 

one hour prior to the assay, water from the FluxPak hydration was exchanged for 200 

μL/well of XF Calibrant (#100840-000) and the cartridge was returned to 37’C, no CO2 

until analysis. Oligomycin (100 μM), FCCP (100 μM), and Rotenone/Antimycin (50 μM) 

from the XF Cell Mito Stress Test Kit (#103015-100) were re-constituted in assay 

medium to make the indicated stock concentrations. 20 μL of Oligomycin was loaded 

into Port A for each well of the FluxPak, 22 μL of FCCP into Port B, and 25 μL of 

Rotenone/Antimycin into Port C. Port D was left empty. The final FCCP concentration 

was optimized to achieve maximal respiration in each condition. 

The Mito Stress Test was conducted on an XF96 Extracellular Flux Analyzer and OCR 

was analyzed using Wave 2.6 software. Following the assay, OCR was normalized to 

cell number with the CyQUANT NF Cell Proliferation Assay (C35006) from Thermo 

Fisher according to manufacturer’s instructions. 

RNA-seq 

Pa-Tu-8902 and Mia PaCa-2 iDox-shGOT1 cells were collected in lysis buffer following 

5 days of GOT1 knockdown. RNA was isolated using the (QIAGEN) AllPrep 

DNA/RNA/miRNA Universal Kit according to the manufacturer’s instructions. PolyA+, 

non-strand-specific libraries were prepared by the University of Michigan Sequencing 

Core, and all samples were sequenced on an Illumina HiSeq 4000. 
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Statistical Analysis 

Statistics were performed using GraphPad Prism 7 (Graph Pad Software Inc). Groups 

of 2 were analyzed using the unpaired two-tailed Student’s t test and comparisons 

across more than 2 groups were conducted using one-way ANOVA Tukey post-hoc 

test. All error bars represent mean with standard deviation, unless noted otherwise. A P 

value of less than 0.05 was considered statistically significant. All group numbers and 

explanation of significant values are presented within the figure legends. 
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Chapter 5. Conclusions and Future Directions 

5.1 Conclusions and Future Directions 

The work presented here contributes to the growing fields of mass spectrometry 

metabolomics, ferroptosis, and pancreatic cancer metabolism. Our meta-analysis 

provides insight into metabolite stability and metabolite dynamics. These results are a 

valuable reference for ongoing metabolomics method development efforts.  

We identified several metabolic dependencies in pancreatic cancer by applying 

metabolomics and chemical biology methods. Our work revealed pancreatic cancers 

are vulnerable to ferroptosis- a non-apoptotic, oxidative, iron-dependent form of cell 

death. Our work provides new mechanistic insights into the metabolic regulation of 

ferroptosis and establishes new methods to characterize ferroptosis in vivo. These 

findings answer several long-standing questions within the field of ferroptosis, and 

provide new tools to study ferroptosis in animal development and physiology.  

Traditional apoptosis-inducing drugs have been ineffective in pancreatic cancer. 

By contrast, our work suggests triggering ferroptosis could be an effective alternative 

therapeutic strategy. Our work reveals several therapeutic strategies harnessing 

ferroptosis for therapeutic benefit.  

Identification of Stable and Dynamic Metabolites 

In chapter 2, we conducted a meta-analysis using 42 data sets originating from 

diverse experimental conditions. Our systematic analysis revealed insights into 

reproducibility and metabolite dynamics, while nominating methionine, phenylalanine, 

and taurine as high confidence metabolites. These metabolites should be used as 

quality control references for future metabolomics experiments.  

Our abundance and variability analysis revealed several highly dynamic 

metabolites. Metabolomics campaigns have traditionally sought to identify biochemical 

changes in response to experimental perturbations or identifying disease biomarkers. 
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Researchers are now beginning to study the roles that individual metabolites play 

beyond intermediary metabolism. A new field of “activity metabolomics” aims to 

characterize the interplay between metabolism, gene expression, and disease1. In line 

with this idea, our studies found that highly dynamic metabolites serve signaling roles in 

addition to biosynthesis and bioenergetics.   

We characterized amino acids, nucleotides, and glycolytic intermediates as 

highly dynamic. These metabolite pools are considered dynamic, reflecting their 

universal role in the biosynthesis cellular building blocks2. These metabolites participate 

in signaling through post-translational modification (PTM) or allosteric regulation1. For 

example, we found that hexosamine biosynthesis (HBP) metabolites were highly 

dynamic. The HBP is a branch of glycolysis that produces uridine diphosphate N-acetyl 

glucosamine (UDP-GlcNAc), which is used for glycosylation, a post-translational 

modification. UDP-GlcNAc is considered a marker of cellular nutrient status, by 

integrating carbon from nucleotide, glucose, and acetyl-CoA and glutamine nitrogen3. 

The O-GlcNAcylation (PTM) regulates several transcription factors, thus serving as one 

mechanism by which cells integrate nutrient status with gene expression3.  

TCA cycle metabolites were highly dynamic in our analysis. Over the last 

decade, published reports have implicated TCA cycle metabolites in modulating 

signaling, cell fate, and cancer phenotypes, in addition to biosynthetic and bioenergetic 

contrabutions4,5. For example, Somatic mutations in metabolic enzymes such as IDH1or 

IDH2 promote the accumulation (D)-2-hydroxyglutarate (2HG) that inhibits α-

ketoglutarate-dependent enzymes to regulate gene expression5. High levels of fumarate 

and succinate can inhibit the activity of histone lysine demethylases and dramatically 

reprogram gene expression4. Loss-of-function mutations affecting succinate 

dehydrogenase (SDH) complex subunits and fumarate hydratase (FH) have been 

identified in cancers. Thus, highly dynamic metabolites engage in post-translational 

modification, signaling, and regulate gene expression. 

Our systematic identification of dynamic metabolites raises three considerations 

for future metabolomics studies. First, metabolomics experiments should consider how 

metabolite dynamics could impact the experimental readout, as the dynamic 

metabolites we describe here will be highly variable. Caution should be taken when 
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interpreting the metabolite levels within the dynamic metabolite class, and orthogonal 

methods of detection should be used as secondary confirmation. Second, future 

metabolomics experiments should control for the signaling effects of dynamic 

metabolites. One way to achieve this is to integrate metabolite signaling and gene-

modulatory activities to future data analysis pipelines. Incorporating these suggestions 

could lead to a more robust interpretation of metabolomics data and reveal novel 

metabolic signaling paradigms. Overall, future metabolomics methods should include 

our growing understanding of metabolite signaling.  

Insights into the Metabolic Regulation of Ferroptosis 

Metabolism and ferroptosis are intertwined. Seminal work by Dixon et al. 

established the relationship between cystine, iron, and lipid peroxidation6. Building upon 

this finding, Yang et al. proposed the ultimate fate of exogenous cystine was reduced 

glutathione (GSH), which serves as an essential co-factor for the lipid ROS detoxifying 

enzyme GPX4 (Figure 41)7. Building off of these observations, we hypothesized that 

the fate exogenous cystine in PDA was also GSH8. To our surprise, we found that 

inhibiting GSH synthesis was insufficient to induce ferroptosis, agreeing with previous 

data9.  

Employing [U-13C]-cystine to study its fate, we found that it rapidly labeled 

Coenzyme-A (CoA). Inhibiting CoA synthesis sensitized PDA to BSO-mediated 

ferroptosis. Previous studies have demonstrated that GSH synthesis inhibition can 

prevent tumor initiation in multiple genetically engineered mouse models10, but has little 

effect on established cancer cells and tumors9,10. It should be noted that the thioredoxin 

(Trx) pathway has been shown to support the survival of cells upon GSH depletion. 

Combined inhibition of these pathways also induces cell death10,11. Recent reports 

suggest that thioredoxin inhibition induces ferroptosis in breast cancer cells12. Thus 

glutathione, thioredoxin, and CoA are three redox nodes that protect cancer cells 

against ferroptosis (Figure 41).  

While our data suggest mono-unsaturated fatty acids are potential fates of CoA, 

future work is needed to identify the metabolic contribution of CoA to ferroptosis 

sensitivity. Metabolites derived from CoA such as Coenzyme Q10 (CoQ10)13–15, mono-

unsaturated fatty acids (MUFAs)16, and poly-unsaturated fatty acids (PUFAs)17,18,  
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dictate sensitivity to ferroptosis (Figure 41).The fate of CoA in PDA cells could be 

tested by radioactive isotope tracing methods. Employing a [U]-14C-pantothenate 

analog, we would expect to see radiolabeling of CoA and acetyl-CoA. CoA is required 

for the activation and incorporation of dietary-derived fatty acids into cell membranes. 

Acetyl-CoA is a significant intermediate for the mevalonate pathway and fatty acid 

synthesis. Acyl-coenzyme synthetase long-chain 3 (ACSL3) converts dietary MUFAs to 

fatty acyl-CoAs. Fatty acyl-CoAs are incorporated into glycerophospholipids, which are 

significant components in the cell membrane. Dietary MUFAs have been shown to 

incorporate into cell membranes and prevent ferroptosis16. 14C-labeling of MUFAs would 

demonstrate that this is a direct fate of CoA. By contrast, the enzyme ACSL4 

preferentially activates scavenged PUFAs for incorporation into cell membrane 

phospholipids (Figure 41). Deletion of ACSL4 can prevent ferroptosis17. 14C-label 

incorporated into PUFAS and MUFAs would argue against the preferential activation of 

MUFAs by CoA. Instead, this potential observation would suggest that CoA could 

Figure 41. Metabolic regulation of ferroptosis in pancreatic cancer. 

Key regulatory enzymes are depicted in red, while key metabolic co-factors are 
labeled in purple. 
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contribute to alternative ferroptosis suppressing pathways. The availability of MUFAs 

versus PUFAs would dictate sensitivity to ferroptosis. 

Previous data indicate that oncogenic KRAS regulates the transcription of 

steroids and glycerolipids (Figure 42)19. Steroids are downstream products of the 

mevalonate pathway. The mevalonate pathway also contributes to CoQ10
 synthesis, 

which suppresses ferroptosis. Previous data have shown cerivastatin, which inhibits the 

rate-limiting enzyme of the mevalonate pathway, augments ferroptosis sensitivity15. 

Conversely, supplementing cells with mevalonate pathway intermediates blunts 

ferroptosis sensitivity, suggesting a relationship between the mevalonate pathway and 

ferroptosis15.  KRAS also regulates the transcription of glycerolipids19. Two forms of 

glycerolipids include glycerophospholipids and triacylglycerols. Glycerophospholipids 

are building blocks for cell membranes, while triacylglycerols are used for fatty acid 

storage and lipid droplets (Figure 42). Hypoxic and RAS transformed cells bypass de 

novo lipid synthesis and actively scavenge serum lysophospholipids20, suggesting PDA 

may engage in phospholipid scavenging. KRAS may regulate two pathways that 

influence ferroptosis susceptibility.  

Overall, we show that CoA coordinates with GSH, and potentially, Trx to prevent 

ferroptosis. The fate of CoA could be directly addressed via radioactivity labeling. Based 

on our previous data, we expect the incorporation of the radiolabel into intermediates of 

the mevalonate pathway, mono-unsaturated fatty acids, and glycerophospholipids. The 

mevalonate pathway and glycerolipid metabolism are transcriptionally regulated by 

KRAS, suggesting ferroptosis could be a KRAS vulnerability.  
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A Potential Role for Sulfur Metabolism in PDA Redox and Energetics 

Alternative methods of cysteine production exist in addition to system xc
—

 and 

may contribute to ferroptosis, redox balance, and energetics. Cells can synthesize 

cysteine de novo from serine and methionine using the transsulfuration pathway 

(Figure 43). The transsulfuration pathway is active in several tissues, including the liver, 

brain, and pancreas21.  Zhu et al. recently showed that some cancer cells require this 

pathway for viability under cysteine-limited conditions, where transsulfuration activity 

was dependent on homocysteine22. Using 13C-labeled methionine and LC-MS, we 

traced the fate of methionine into the transsulfuration pathway intermediates in two PDA 

cell lines (Figure 43). The cysteine is formed from cystathionine through the enzyme γ-

cystathionase (CSE), where alpha-ketobutyrate is a byproduct. We would expect to see 

an [M+4] alpha-ketobutyrate if this pathway was active. We observed no [M+4] alpha-

ketobutyrate labeling, contrasting labeled homocysteine and cystathionine. Moreover, 

the co-inhibition of Xc— and the transsulfuration inhibitor propargylglycine (PPD) was 

not synergistic (Figure 44). An orthogonal approach to measuring transsulfuration 

activity is to measure the incorporation of 14C-labeled carbon from methionine into GSH. 

Figure 42. Regulation of ferroptosis sensitivity by KRAS and NRF2. 
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Radiolabeling would be a more sensitive method to detect transsulfuration activity than 

our previous LC-MS based approach.   

Select tissues and certain cancer cell lines can utilize the transsulfuration 

pathway, but our preliminary data suggests PDA cell cultures do not. Still, this analysis 

was conducted using a single PDA cell line, MIA PaCa-2. Future work would need to 

examine transsulfuration activity using isotope tracing methods across a broader panel 

of cell lines and primary patient specimens. These studies are of interest since the 

transsulfuration pathway can support cancer growth22. 

Cysteine and methionine participate in diverse biochemical reactions to produce 

metabolites and enzymatic co-factors. Cysteine metabolism produces Fe-S clusters, 

taurine, and hydrogen sulfide (H2S), in addition to CoA and GSH. Fe-S clusters are 

essential redox metabolic co-factors, while H2S is a gas with signaling and redox 

properties. Methionine metabolism yields S-adenosylmethionine (SAM), which is used  

in methylation reactions and polyamine synthesis. One could employ 35S-labeled 

methionine/cysteine to map the contribution of these metabolites to sulfur metabolism in 

PDA. A time-course experiment could also be taken to measure the metabolic flux of 

sulfur labeling. Differences in flux would indicate metabolic utilization and identify 

metabolic enzymes for further interrogation. This analysis would be limited to: taurine,  

 

Figure 43. Methionine tracing through the transsulfuration pathway. 

Figure adapted from Dr. Mike Badgley. 

CBS 

CSE 
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CoA, GSH, SAM, polyamines, and N-formyl methionine since these metabolites could 

be isolated and quantified by liquid chromatography. This analysis could reveal new 

metabolic dependencies in PDA since sulfur-containing compounds facilitate diverse 

biochemical functions.   

Commonly used sulfur-containing antioxidants can have broad effects. For 

example, n-acetyl cysteine (NAC) is typically used as a cytoprotective agent to blunt 

ROS. The current mechanism of action posits that NAC is converted to GSH, where it is 

then used as an antioxidant. We show that NAC or GSH supplementation prevents 

ferroptosis following Xc— inhibition and rescues proliferation and colony formation in 

PDA cell lines23. We also show that NAC, GSH, and the reducing agent β-mercapto 

Figure 44. Utilization of the transsulfuration pathway in PDA cells. 

Data collected in collaboration with Dr. Li Zhang, Zach Tolstyka, and Mike Badgley. Figure adapted from Dr. 
Mike Badgley.  
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ethanol prevent GOT1-mediated ferroptosis. A recent study proposed an alternative 

mechanism where NAC is converted to H2S through cysteine catabolism (Figure 45). 

Subsequent mitochondrial oxidation of H2S leads to sulfane sulfur, which has 

antioxidant activity24.  

GOT1 and GOT2 contribute to H2S generation through transamination of 

cysteine to form 3-mercapto pyruvate (3MP) (Figure 45). The enzyme 3-mercapto 

pyruvate sulfurtransferase (MST) produces H2S from 3MP. This mechanism seems 

operative in humans, as a genetic deficiency in MST leads to β-mercaptolactate 

cysteine disulfiduria (OMIM: 249650), a rare metabolic disorder. The mitochondrial 

enzyme sulfide: quinone reductase (SQR) can then react with GSH and H2S to produce 

GSSH and, ultimately, sulfane sulfur24,25. SQR reduces mitochondrial CoQ10, which can 

support mitochondrial metabolism and ferroptosis protection. Moreover, it has been 

shown that reducing agents, such β-mercapto ethanol, can release from sulfane 

sulfur25. Thus, there are several non-canonical effects of commonly used antioxidants, 

and these areas of study represent new avenues of redox biology.  

According to this model, Cysteine, NAC, GSH, and reducing agents can 

contribute to the production of sulfane sulfur and support mitochondrial metabolism. 

Future studies can determine if H2S generation essential for PDA growth and viability by 

depriving cells of cystine and testing if 3MP or Na2S, an H2S source, can prevent 

ferroptosis. If H2S derived from GOT1 or GOT2 contribute to PDA proliferation and 

growth, then 3MP or Na2S should rescue the anti-proliferative effects of GOT1 or GOT2 

knockdown. To determine the extent to which this mechanism contributes to 

mitochondrial metabolism, 3MP or Na2S can be supplemented to GOT1 knockdown 

cells. Because GOT1 knockdown decreases basal oxygen consumption rate (OCR), 

restoring OCR using 3MP or Na2S would indicate that the conversion of cysteine to H2S 

Figure 45. Production and fate of H2S derived from cysteine. 
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by the GOT enzymes are additional factors regulating mitochondrial metabolism. 

Cysteine and the GOT1 could play roles in PDA sulfur metabolism.  

The Role of GOT1 in PDA and Ferroptosis 

Our data reveal one of the downstream effects of GOT1 inhibition is iron release 

and mitochondrial inhibition, where these metabolic adaptions can sensitize PDA cells 

to ferroptosis. MDH1 or ME1 inhibition failed to phenocopy the GOT1 effect (Figure 46). 

General anti-proliferative conditions did not uniformly impact ferroptosis sensitivity 

(Figure 47). By contrast, iron and, to a lesser extent, mitochondrial inhibitors 

augmented ferroptosis sensitivity (Figure 48). GOT1 inhibition modulates ferroptosis 

sensitivity in PDA by promoting labile iron release and inhibiting the mitochondria. 

Labile iron release could occur following mitochondrial inhibition. While future 

work is needed to show this is the case in PDA, several groups have shown iron 

released by lysosomes and endosomes support mitochondrial function53–56. Loss of 

these activities is implicated in age-related disorders and neurodegenerative disease57. 

Organelle proximity and communication might be a critical mediator of this process, 

where Hamdi et al. demonstrated direct contact between the endosome and 

mitochondria of eythroid cells58. While we and others suggest labile iron can be 

Figure 46. Inhibiting enzymes downstream of GOT1 do not augment ferroptosis. 
A-B) Effect of MDH1 (A) or ME1 (B) knockdown on ferroptosis sensitivity. 

A 

B 
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harnessed therapeutically59–61, the mechanisms of iron release and physiological roles 

of labile iron in cancer remain open questions.  

 

The links between mitochondria and ferroptosis remain open questions26,27. 

Patients with mitochondrial disease have elevated levels of toxic byproducts of lipid 

ROS, such as malondialdehyde and 4-hydroxynonenal, which potentiate ferroptosis49.  

Moreover, GPX4 is induced during the PGC-1α transcriptional program for 

mitochondrial biogenesis50, suggesting a potential relationship where OXPHOS activity 

is met with an increased need for GPX427,51. GPX4 deletion or pharmacological 

inhibition is synthetic lethal with oligomycin. Mitochondrial GPX4 expression rescues 

this effect, suggesting that the mitochondria are a vital lipid peroxidation site51. This 

relationship seems operative in humans, as patients harboring mitochondrial defects 

Figure 48. Growth suppressing conditions do not uniformly augment ferroptosis. 

Figure 48. Mitochondrial inhibition augments ferroptosis in an 
additive manner. 
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showed higher GPX4 protein levels52. Our data show GOT1 inhibition suppresses 

mitochondrial metabolism and that inhibiting mitochondrial complex I and V augments 

RSL3 sensitivity. Mitochondrial inhibition is an additional factor by which GOT1 loss 

promotes ferroptosis sensitivity in PDA.  

The role of GOT1 in ferroptosis has been the subject of previous studies. Our 

data lie in contrast to some previous work, which have suggested that GOT1 inhibition 

protects cells from ferroptosis by blocking mitochondrial metabolism26–28. The 

differences in these studies likely reflect how tissue of origin influences metabolism and 

ferroptosis sensitivity. Our studies utilized pancreatic cancer cell lines, were conflicting 

studies used sarcoma cell lines. Thus, tissue of origin effects could explain these 

differences. Moreover, these conflicting studies rely on the cell line HT-1080, known to 

harbor IDH1 mutations26–28. As previously discussed, IDH mutations can alter gene 

expression by inhibiting demethylase enzymes. It is unclear how these mutations 

influence gene expression, the metabolic utility of GOT1, or labile iron release.  

GOT1 Pathway Dependence 

Not all KRAS mutant cell lines are dependent on GOT1. We found that colorectal 

cancer and some PDA cell lines are highly resistant to GOT1 inhibition and seemingly 

bypass GOT1 for redox balance29. Resistant CRC and PDA cell lines could bypass 

GOT1 through the Citrate Shuttle and reductive carboxylation (Figure 49). Reductive 

carboxylation has been shown to support cancer cell growth in cells with defective 

mitochondria30,31 and support redox homeostasis in lung cancer cells32.  

 Here, citrate is released from the mitochondria to the cytosol and converted to 

oxaloacetate and acetyl-CoA via ATP-Citrate Lyase (ACL). Oxaloacetate is then 

oxidized to malate by malate dehydrogenase (MDH1), and malate is oxidized by malic 

enzyme 1 (ME1) to form pyruvate and NADPH. This hypothesis could be tested 

pharmacologically using the ACL inhibitor, NDI-091143. If this pathway is compensating 

for GOT1, we would expect GOT1 and ACL inhibition to synergize. The relative 

contribution of reductive carboxylation in GOT1-resistant cell lines can be measured via 

[U]-13C glutamine stable isotope tracing (Figure 49). Our previous data show GOT1-

resistant CRC cell lines have higher glutamine-derived M+3 citrate and malate, 

suggesting more reductive carboxylation under basal conditions29. Moreover, GOT1 
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knockdown led to lower M+3 malate suggesting a compensatory response. Additional 

controls should incorporate the same [U]-13C glutamine tracing strategy following ME1 

knockdown. Here we would expect higher glutamine-derived M+3 malate following ME1 

inhibition. Reductive carboxylation may bypass GOT1 dependence.  

Role of GOT1 in PDA Progression and Normal Physiology 

The role of GOT1 in cancer cells is to contribute to redox balance20,29, 

mitochondrial metabolism, and aspartate synthesis31,33. Which of these metabolic 

products is required for cancer progression or growth is unknown. Our lab has 

generated an adult conditional knockout mouse model (UBC-CreERT2+; GOT1f/f). To 

study the role of GOT1 in PDA progression, GOT1 conditional mice can be crossed with 

conditional KRAS gain of function mice with a pancreas-specific promoter (FSF-

Ptf1aFlp/+; LSL-KRASG12D). Acinar cells in the pancreas expressing mutant KRAS form 

tumors after 12-15 months unless challenged with pancreatitis. Thus, this long latency 

period offers a window to identify if GOT1 accelerates PDA progression. Conversely, 

GOT1 inhibition in the context of pancreatitis would test if GOT1 blunts PDA 

progression. Thus, crossing the GOT1 adult conditional mouse with a pancreas-specific 

KRAS adult conditional mouse would allow one to study the contribution of GOT1 to 

PDA progression.  

The activation of immune cells following antigen recognition is characterized by 

the rapid proliferation of helper and effector T cells, where metabolism supports these 

processes34. GOT1 is an essential aspartate generating enzyme where aspartate 

contributes to numerous metabolic pathways in addition to protein synthesis. Aspartate 

is vital for rapidly proliferating cancer cells33,33, and rapidly proliferating T cells could 

Figure 49. Reductive and oxidative fates of glutamine metabolism. 
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require aspartate. The carbon backbone of aspartate is needed for nucleotide synthesis, 

asparagine synthesis, and the malate-aspartate shuttle (Figure 49). The malate-

aspartate shuttle is required for CD4 T cell activation and differentiation, where the 

deletion of any of these enzymes suppresses IFNγ cytokine production in activated Th1 

cells35.  Targeting either mitochondrial or the cytosolic isoform of MDH1 in CD4 T cells 

inhibited mitochondrial respiration, similar to what we had observed in cultured PDA 

cells. Likewise, CD8 T cells could require GOT1 for activation and differentiation. To test 

this hypothesis we could cross our GOT1f/f mice with CD8-Cre mice. The resulting 

mouse model would allow us to knockout GOT1 in CD8 T cells. Based on previous 

studies, we expect GOT1 to blunt a CD8 T cell response to proliferative stimuli, e.g., 

anti-CD3 coated beads. How metabolism regulates the function of effector T cells is a 

major focus of the growing immunometabolism field. 

GOT1 Inhibitors 

We and others have identified several molecules that can serve as leads for 

more potent GOT1 inhibitors36–39, still, identifying a potent and selective GOT1 inhibitor 

has been challenging. These inhibitors target the transaminase active site, which is 

highly conserved, thus preventing GOT1 selectivity. The active site is highly charged, 

polar, and specially constrained by a pyridoxal phosphate co-factor37. Thus, the nature 

of the active site prevents the binding of cell-permeable ligands36.   

 One potential strategy to overcome these limitations is to identify allosteric 

inhibitors. Allosteric sites are chemically and functionally distinct from the enzyme active 

sites. Active sites tend to be small, polar, and include metal ions such that small 

molecules targeting these sites will mirror these chemical properties40. By contrast, 

allosteric sites tend to contain more hydrophobic residues than catalytic sites, making 

these sites amenable to drug-like molecules. Inhibition of conserved active sites can 

lead to off-target toxicity. Allosteric sites have evolved to adapt to their environment and 

are specific to the protein of interest. Hence, targeting allosteric sites would minimize 

the potential for off-target engagement and improve drug safety40. Allosteric targeting 

has also revealed strategies to enhance the tractability of traditionally “undruggable” 

targets41–43. While targeting allosteric sites is an attractive strategy, an allosteric pocket 

is not known for GOT1.   
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 Identifying covalent ligands is an orthogonal approach to active site or allosteric 

inhibition. Several groups have reported fragment libraries targeting electrophilic 

residues on the surface of proteins44, thus enabling a reactivity-based method for 

identifying ligandable hot spots on GOT1. Probe libraries have been developed against 

cysteine, methionine, lysine, and tyrosine45–48. The application of these probes has 

revealed novel targets and ligands through proteome-wide screens, where cysteine has 

been the most studied target. GOT1 contains three cysteine residues, offering potential 

opportunities for covalent attachment. While identifying potent and selective inhibitors of 

GOT1 has been challenging, synthetic allostery and covalent ligation are promising 

orthogonal strategies to meet this goal.   

In vivo Characterization of Ferroptosis 

Ferroptosis is a nascent and exciting field for which discoveries into the 

mechanistic details and roles in physiology and pathophysiology are being described 

near daily. Regulated forms of cell death involve the activation and assembly of 

molecular machinery that relays death signals. Regulated cell death include apoptosis, 

necroptosis, and pyroptosis. Regulated cell death pathways play a physiological role in 

development, tissue repair, and immune regulation. Ferroptosis plays roles in 

pathological situations including, ischemia-reperfusion injury62 and glutamate-induced 

excitotoxicity in the brain6. Still, a role for ferroptosis in development has not been 

proposed.  

Detailed methods to characterize ferroptosis in vivo has been lacking. Early 

studies have implicated ferroptosis in pathological conditions by employing conditional 

mouse models of GPX4 deletion and ferroptosis inhibitors63. Ferroptosis is described 

through lipophilic antioxidant and iron chelation, the accumulation of lipid ROS, and 

ruling out other forms of cell death, instead of a definitive molecular marker. A 

significant innovation of the work in chapter three are methods describing the 

histological features and gene expression patterns occurring during in vivo ferroptosis. 

The methods described here remedy a long-standing limitation in the field by providing 

a means to characterize ferroptosis in vivo. These methods provide tools to identify 

physiological and developmental roles for ferroptosis.  
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Triggering Ferroptosis in vivo 

Harnessing ferroptosis in vivo has led to modest results, while its application in 

cultured cells universally leads to cell death. At current, our work harnessing ferroptosis 

via SLC7A11 deletion or cyst(e)inase treatment is the first data demonstrating tumor 

regression and cell death in a genetically engineered cancer model. Previous reports 

showed SLC7A11 deletion delayed PDA tumor engraftment and growth, and 

cystine/cysteine depletion in established tumors had little effect on tumor growth64,65. 

Corroborating with these studies, dietary dropout of cysteine also had little impact on 

tumor growth but was modestly enhanced by redox challenge through GOT1 inhibition. 

Moreover, we and others show that inhibiting glutathione synthesis only slows tumor 

growth9. Mixed results have also been observed for targeting GPX4 in vivo7,14,66–68. 

Overall, targeting GPX4 in vivo has been more robust in suppressing tumor growth 

compared with SLC7A11. The relative success of this strategy could stem from 

targeting ferroptosis-sensitive cell states66–69. Overall, SLC7A11 or GPX4 inhibition has 

led to mixed results in vivo. 

Several mechanisms could explain the discrepancy between in vitro and in vivo 

ferroptosis, including cell-cell contact, the nutrient status of cultured cells versus tumors, 

and immune competency of the mouse model.  A recent report demonstrated that 

epithelial cancer cells suppress ferroptosis through cellular attachment70. High cell 

density activated Hippo signaling pathway and suppressed the expression of ACSL4 

and TFRC, which contribute to ferroptosis sensitivity. Antagonizing this signaling axis 

restored the expression of these pro-ferroptotic genes and restored ferroptosis 

sensitivity in vitro and, to a lesser extent, in vitro. Thus, the high cell density of tumor 

models is one factor that contributes to ferroptosis resistance in vivo. 

The differences in cell culture media and dietary composition could also account 

for the in vitro and in vivo discordance. The levels of cystine in standard DMEM culture 

media are four times higher than in PDA tumors71. Moreover, cystine levels dictate the 

extent to which glutamine is taken into the cell and used for glutathione synthesis72, 

which would influence ferroptosis sensitivity. A significant effort in the cancer 

metabolism field is developing medias that better mimic in vivo conditions72–74.  
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The levels of antioxidants and trace elements in standard rodent diets could 

influence ferroptosis sensitivity in vivo. Vitamin E and butylated hydroxyltoluene (BHT) 

are supplemented as preservatives for rodent formulations. These lipophilic antioxidants 

block ferroptosis in cultured cells and would blunt ferroptosis in vivo. Moreover, levels of 

iron, selenium75, and fatty acids16,17,76 in food could influence sensitivity to ferroptosis 

based data from cell culture. While it is established that diet can affect metabolite levels 

in tumors77,78 and interstitial space71, no study has examined how the presence of 

antioxidants in rodent formulations or dietary components directly influences in vivo 

ferroptosis.  

Still, cell contact mechanisms are active, and a standard rodent diet was used in 

our autochthonous PDA tumors, where we demonstrate ferroptosis in vivo and tumor 

regression. One potential explanation for the efficacy of ferroptosis in autochthonous 

PDA mouse models could be the harsh metabolic environment of PDA tumors8. To test 

this, we compared the effectiveness of cyst(e)inase on established subcutaneous PDA 

tumors versus established tumors orthotopically implanted into the pancreas. Both 

models utilized immune-compromised mice. Cyst(e)inase treatment did not affect tumor 

growth (Figure 50), suggesting the PDA metabolic environment made little difference 

for cyst(e)inase treatment. Moreover, cysteine free and cysteine free/low methionine 

diets had no impact on tumor growth (Figure 50), indicating dietary restriction alone 

cannot induce in vivo ferroptosis. Immune competence may play a more critical role 

than diet in influencing ferroptosis in vivo. 

Figure 50. Cyst(e)ine deprevaion fails to initiate ferroptosis in implant  models. 
A-B) Cyst(e)inease treatment in subcutaneous (A) and orthotopiclly (B) implanted tumors. 
C-D) Dietary modulation of cysteine (C) and cysteine with methionine (D) in orthopically implanted tumors. 
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Recent reports suggest ferroptosis that a competent immune system influences 

ferroptosis. Experiments utilizing a whole-body conditional GPX4 knockout mouse 

model (GPX4fl,fl-Rosa-CreERT2) demonstrated a strong infiltration of macrophages into 

damaged kidney tissues79. The expression of pro-inflammatory cytokines and infiltration 

of neutrophils into damaged kidney tissue could be reversed by lipophilic antioxidant 

treatment in a pharmacological model of acute kidney injury62. In cancer models, 

immune therapy-associated cytokines such as TNFα and IFNγ influence ferroptosis 

sensitivity69,80. SLC7A11 suppression can induce tumor regressions in combination with 

CTLA-4 blocking antibodies81, suggesting a potential role of the immune system in 

regulating ferroptosis in vivo.  

Uncovering the mechanism by which the immune system regulates ferroptosis is 

an exciting avenue with implications for cancer immune therapy. Immune competency 

likely plays a significant role in regulating ferroptosis in vivo.  

Harnessing Ferroptosis for Therapy 

Ferroptosis and targeted therapy could be harnessed in combination. Recent 

studies are revealing certain cell states are susceptible to ferroptosis. A panel of 

cancers resistant to receptor tyrosine kinase (RTK) inhibitors expressing mesenchymal 

markers were highly sensitive to GPX4 inhibition67,68. Given that cancer-associated 

fibroblasts (CAF) are a significant population contributing to pancreatic cancer survival 

and immune suppression, it is tempting to speculate that ferroptosis triggering strategies 

could ablate the CAF population while simultaneously targeting the PDA cells. 

Moreover, RTK and mitogen-activated protein kinase (MAPK) inhibition-resistant 

melanoma also susceptible to SLC7A11 or GPX4 inhibition69. MAPK inhibitor 

combinations are being evaluated in several clinical trials82. Future studies should 

determine if PDA cells can become resistant to MAPK inhibitors and if these drug-

tolerant cells are susceptible to ferroptosis. Moreover, Bryant et al. recently 

demonstrated that MAPK inhibition induces autophagy in PDA83. Based on our work, 

MAPK inhibition could induce labile iron release, increase lipid ROS, and render PDA 

cells susceptible to ferroptosis. Thus, there are several opportunities to explore 

combinations of ferroptosis with targeted therapies. 
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Triggering ferroptosis could augment immune checkpoint therapy in PDA. Recent 

studies have shown that targeting SLC7A11 can augment immune checkpoint 

therapies81 and, conversely, lipophilic antioxidant treatment blunts response to immune 

checkpoint therapies80. The pro-inflammatory cytokines TNFα and IFNγ regulate the 

expression of GPX4 and SLC7A11, respectively69,80. These observations raise the 

exciting possibility that cyst(e)ine deprivation may sensitize PDA with immune 

checkpoint therapies, which have been ineffective in PDA. Still, these studies were 

conducted using highly immunogenic mouse cell lines, and it unknown whether the 

synergy observed would carry over to PDA, which exhibits moderate immunogenicity84.   

It is also tempting to speculate that ferroptosis may render PDA cells more 

immunogenic. ROS and endoplasmic reticulum (ER) stress mediates the cell surface 

exposure of calreticulin. Calreticulin is a hallmark of immunogenic cell death, which is a 

process that primes immune cells to identify cancers85. Dying cells communicate with 

the immune system by releasing ‘find me’ and ‘eat me’ signals, suggesting ferroptosis 

could release signature immunomodulatory signals. For example, cells undergoing 

ferroptosis release oxidized lipid species, where arachidonate 15-lipoxygenase 

(ALOX15)-derived lipids regulate dendritic cell maturation and modulate adaptive 

immune response86. Other mechanisms by which ferroptosis modulates the immune 

system have been reviewed previously87. Identifying the mechanisms of ferroptosis-

immune cross-talk will be critical for harnessing ferroptosis for cancer immune therapy.  

Identifying molecular markers predictive of ferroptosis sensitivity is crucial for 

therapeutic application in PDA and other cancers. KRAS status could predict ferroptosis 

sensitivity in PDA. Ferroptosis inducing compounds were first discovered through 

synthetic lethal screens in mutant RAS cell lines88. Many cancer cells have high levels 

of reactive oxygen species and adapt through the activation of antioxidant genes 

through the NRF2 transcriptional program (Figure 42)89. Oncogenic KRAS has been 

shown to increase the transcription of the NRF2 antioxidant response in pancreatic 

cancer cells and mouse models. The deletion of NRF2 slowed pancreatic cancer 

progression90. Which NRF2 transcriptional target, and how it contributes to PDA, 

progression are open questions. SLC7A11, iron, and glutathione biosynthetic genes are 

regulated by NRF2 (Figure 42)89, and would thus influence ferroptosis susceptibility. 



 133 

SLC7A11 is highly expressed in human tumors8,80, suggesting the KRAS, NRF2, and 

SLC7A11 regulatory axis could operate in humans. The unique dependence of cancer 

cells on SLC7A11 contrasts its dispensability in normal tissue and may be linked to 

redox stress associated with tumorigenesis.  

Given that PDA cells and autochthonous PDA tumors succumb to cystine 

deprivation, it is tempting to speculate that ferroptosis may be a KRAS dependency. 

This hypothesis can be tested in cell culture employing doxycycline-inducible KRAS cell 

lines19,91. If KRAS status is predictive of ferroptosis sensitivity, we expect KRAS to 

augment sensitivity to ferroptosis inducing perturbations. If this effect is due to 

upregulating SLC7A11 through NRF2, then KRAS should increase the expression of 

SLC7A11 and NRF2. Silencing NRF2 should decrease SLC7A11 expression and inhibit 

cystine uptake. We also expect PDA tumors in iKRAS mice to have higher levels of 

SLC7A11 through NRF2, measured by immunohistochemistry. Determining if 

ferroptosis is a KRAS vulnerability and mechanisms by which this occurs is of great 

interest, given that 90% of PDA patients harbor KRAS mutations.  

Future studies should test the possibility that ferroptosis, e.g., cyst(e)inase, can 

be harnessed with targeted and immune therapies. Further, KRAS and SLC7A11 are 

highly expressed in human PDA and could serve as potential biomarkers for this 

therapeutic strategy. Overall, these concepts represent potential translational 

opportunities for PDA.  

5.2 Future Perspective 

The multi-disciplinary work presented here provides new resources for the 

growing fields of mass spectrometry metabolomics and ferroptosis. We propose new 

therapeutic strategies for pancreatic cancer, a disease where new therapeutic options 

are desperately needed.  

We uncovered new tools to study ferroptosis, which can be used to dissect the 

role of ferroptosis in physiology, development, and cancer. We identified new nodes in 

the metabolic regulation of ferroptosis. These discoveries contribute to the growing body 

of literature, indicating ferroptosis is a metabolically coupled form of necrosis.  

Currently, the best modality to trigger ferroptosis is cyst(e)inase, which is in 

clinical development for the metabolic disorder cystinuria. Future work aims to 
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determine how metabolism and signaling regulate ferroptosis. These studies could 

identify therapeutically tractable targets that could expand the arsenal of ferroptosis 

therapeutics. These studies are critical for determining proper therapeutic context (e.g. 

molecular markers) to apply ferroptosis inducing agents, such as cyst(e)inase. Future 

studies should also examine if ferroptosis can be harnessed in combination with 

targeted therapies or immune checkpoint inhibitors.  
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Data Appendix 

HIF1α is a key transcriptional regulator that allows cancer cells to adapt to low-

oxygen conditions. HIF1α stabilization by hypoxia has profound effects on cellular 

metabolism. HIF1α increased anaerobic glycolysis and glutamine-mediated reductive 

carboxylation to support cell proliferation1. Pervious data have suggested that Hypoxia-

inducible factor-1α (HIF1α) can suppress GOT1 expression in VHL-deficient human 

Figure 51. Influence of atmospheric oxygen on GOT1 inhibition and ferroptosis. 
A-B) Hif-1 induction and effect on cell viability (B) following GOT1 and oxygen modulation.  
C) Effect of atmospheric oxygen levels on ferroptosis sensitivity in Pa-Tu-8902 iDox-shGOT1 cells.  
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renal carcinoma (RCC)2. We thus wondered how hypoxia would regulate GOT1 

expression and if hypoxia would affect cell viability, given that PDA tumors are highly 

hypoxic. To test this we cultured GOT1 proficient and knockdown PDA cell lines under 

normoxia (21% O2) and hypoxia (1% O2). Hypoxia stabilized HIF1α, but did not alter 

GOT1 expression (Figure 51a), as in RCC cell lines2. Hypoxia did not affect cell viability 

(Figure 51b). Hypoxia modulates all enzymes that utilize O2, an alternative experiment 

to test if HIF stabilization would directly modulate GOT1 expression would be to inhibit 

negative regulators of HIFs, using the PHD inhibitor FG-4592. 

Because ferroptosis is an oxidative form of cell death, we wondered how hypoxic 

conditions would influence ferroptosis sensitivity. Previous data indicate that hypoxia 

had no effect on ferroptosis in HT-1080 and DU-1453. To test this in pancreatic cancer 

we treated GOT1 proficient and knockdown Pa-Tu-8902 iDox-shGOT1 cells with 

erastin, BSO, and RSL3 for 24 hours and assessed the effect on cell viability. To our 

surprise, we found that hypoxia uniformly blunted the response to ferroptosis inducers 

(Figure 51c). Oxygen is a substrate for lipoxygenase enzymes which execute lipid 

peroxidation4, thus hypoxia could suppress ferroptosis in some cell types. GOT1 

inhibition restored ferroptosis sensitivity, which could be attributed to labile iron release, 

however future studies would need to demonstrate labile iron release under hypoxic 

conditions.  
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