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“I believe there are techniques of the human mind whereby, in its dark 
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sometimes concern facets a man does not know he has. How often one 
goes to sleep troubled and full of pain, not knowing what causes the travail, 

and in the morning a whole new direction and a clearness is there…”  
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Abstract 
 
 
 Research in animal and human subjects has found that sleep loss profoundly 

disrupts the consolidation of hippocampus-dependent memories. One leading hypothesis 

regarding how sleep consolidates memories is by increasing protein synthesis, thereby 

translating any synaptic plasticity transcripts expressed during wakefulness. Still it 

remains unclear how translational processes or differences in hippocampal activity are 

modulated during sleep or which transcripts are necessary for memory consolidation. The 

studies outlined in this dissertation aim to address this question in the context of a well-

studied form of sleep-dependent memory consolidation in mice, contextual fear memory 

(CFM). CFM is disrupted by sleep loss in the first few hours following CFM. 

 

To describe the contributions of sleep and learning on hippocampal protein 

translation, we modified existing translating ribosome affinity purification (TRAP) 

techniques to immunoprecipitate ribosome-bound mRNAs from multiple hippocampal cell 

populations in the same tissue and isolate transcripts from different subcellular fractions. 

Our protocol allowed us to quantify differences in ribosome-bound mRNAs from excitatory 

and ‘activated’ neurons, as well mRNA from whole hippocampal homogenate from the 

same mice. To further characterize differences in translation based on ribosomes 

intracellular localization, we separated free-floating from membrane-bound (MB) 



  x 

ribosomes and analyzed them separately. Our results identified divergent effects of SD 

and learning on cytosolic and MB ribosomes, respectively. At cytosolic ribosomes, SD 

increased the expression of synaptic plasticity genes and occluded the sparse expression 

of CFC-related genes in excitatory hippocampal neurons. In MB ribosomes, CFC induced 

overlapping cellular pathways in both sleep permitted and SD mice. However we also 

detected ribosome-associated enrichments of transcripts for components of bioenergetic 

pathways not observed in sleeping mice. These results reveal how SD differentially 

impairs CFC-related protein translation in two distinct subcellular compartments. 

 

 Since sleep deprivation impairs protein synthesis and hippocampus-dependent 

memory tasks, we analyzed the phosphorylation of the ribosomal S6 protein (pS6) in mice 

following CFC and subsequent sleep or SD. S6 is phosphorylated in response to 

increased neuronal activity, and pS6 is correlated with elevated translational regulation. 

We characterized expression of pS6 the major subregions of the hippocampus (DG, CA1, 

& CA3) using immunohistochemistry. We found that 3 h of SD alone reduced S6 

phosphorylation across all subregions whereas prior learning (CFC) increased pS6 

expression in the DG. Furthermore, depriving mice of sleep following CFC selectively 

impaired pS6 expression in the DG and CA1, suggesting that memory processing during 

sleep invokes cellular circuits distinct from experimentally naïve mice. To characterize cell 

populations affected by SD, we used translating ribosome affinity purification (TRAP) to 

isolate cell type-specific transcripts associated with pS6-ribosomes in active neurons. Our 

results identified DG hilar somatostatin (SST+) interneurons to be highly enriched with 

pS6 during SD and express intracellular markers of plasticity and activity. Increasing 
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SST+ interneuron activity during post-CFC sleep using pharmacogenetics reduced the 

number of activated neurons in the DG and impaired memory consolidation, suggesting 

that this interneuron population dampens network activity and potentially intracellular 

signaling events. To determine the aspect of sleep influencing SST activity, we tested 

reducing cholinergic input to the hippocampus following CFC and observed increased DG  

cFos+ neurons as well as improved memory retention 24 h later. Our research has 

identified a hippocampal SST microcircuit that serves to dampen hippocampal activity 

during SD and may contribute to disruptions in memory consolidation extended 

wakefulness.
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Introduction 
 
 

1.1 The neurobiology of sleep 

 Every night as we lay down for bed, we close our eyes and drop out of 

consciousness. Defenseless against predators, and unable to forage for food or find a 

mate, sleep has survived evolutionary pressures across diverse animal species [1]. The 

defining behavioral features of sleep include behavioral inactivity, increased sensory 

thresholds, and homeostatic regulation. Homeostatic regulation refers to the increased 

drive to sleep following extended bouts of wakefulness. Considering sleep has been 

conserved across multiple phyla coupled with its homeostatic regulation (or drive to sleep) 

suggests that sleep serves critical biological functions [2, 3]. 

With the advent of the electroencephalogram (EEG) in the 1920s, researchers 

were surprised to observe dramatically altered brain rhythms present during sleep [4]. 

Brain rhythms measured in the EEG reflect synchronized neuronal activity. Recordings 

from the human scalp found unsynchronized low-voltage, high frequency signals 

dominated the EEG during wakefulness but as participants fell asleep, highly 

synchronous and large-amplitude EEG oscillations emerged (in a state now referred to 

as Slow-Wave Sleep or NREM) [5]. After a few hours, NREM oscillations gave way to 

low-voltage, fast-oscillating activity reminiscent of rhythms observed during wake, while 

subjects experienced muscular atonia and rapid eye movements (which give the state of 
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REM sleep its name). During REM sleep dreams allow us to imagine ourselves flying or 

moving about the world while lower brainstem pathways tonically inactivate motor 

neurons in the spine, preventing us from acting out their dreams [6]. Over the course of 

the night, an average young adult enters NREM sleep and begins cycling transitions into 

REM once every 90 minutes [2]. 

Transitioning into and out of NREM and REM sleep is a nightly occurrence and 

reflects shifts in brain states. Changes in neural firing patterns are often preceded by key 

changes in the activity of neuromodulatory pathways, responsible for coordinating 

network-level transitions. For example, during wake, forebrain projecting cholinergic, 

monoamine (norepinephrine, serotonin, histamine, and dopamine), and hypocretin-

releasing neurons in the brainstem and hypothalamus fire actively but become completely 

quiescent during NREM sleep. Interestingly, in the dreaming REM state, cholinergic 

neurons’ activity increases while monoamine and hypocretin-releasing neurons’ activity 

remains low [7]. 

 

1.2 Sleep-dependent memory consolidation 

 Scientists have long agreed that sleep supports memory functions in the brain, but 

to date, there has been much debate on sleep-dependent mechanisms for this. Memory 

functions comprise three major subprocesses (encoding, consolidation, and retrieval). 

During encoding, incoming information is stored in the brain as a labile memory trace 

susceptible to interference or decay (forgetting). During consolidation, the memory trace 

is gradually stabilized, enabling long-term storage of the memory. During retrieval, the 

stored memory can be accessed and utilized in context-specific forms [8]. A general 
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consensus in the field is that the encoding of new information occurs during wakefulness 

while sleep acts to integrate and consolidate the resulting memory trace [9]. 

 Behavioral data has been instrumental in demonstrating the necessity of sleep for 

memory consolidation. This seems to be particularly true for spatial and episodic 

memories, which are dependent on the hippocampus. For example, after training human 

subjects to learn a specific route on a computer maze, participants allowed subsequent 

sleep showed improved recall when tested 24 h later. Measuring cerebral blood flow 

(CBF) as an indicator of neuronal activity, participants trained on the maze displayed 

elevated activity in their hippocampi during subsequent NREM sleep - this increased brain 

activity correlated with their performance on the task [10]. Subsequent investigations have 

shown that boosting NREM slow-wave oscillations by transcranial stimulation improves 

consolidation of hippocampus-dependent declarative memories in human subjects, while 

failing to improve non-declarative, non-hippocampus-dependent memories [11] .  

 

1.3 Hippocampal mechanisms of long-term memory consolidation 

Human lesion studies have found that hippocampal damage results in anterograde 

and temporally graded retrograde amnesia. Because patients are unable to form new 

memories and have difficulty recalling recent memories, the hippocampus has come to 

be viewed as a processing station for newly acquired information [12]. Researchers have 

come to view the standard two-stage model of consolidation as the basis to conceptualize 

the role sleep plays in memory stabilization. The model proposes that there are two 

modes of memory storage driving memory consolidation. The first occurs during 

wakefulness and allows learning to proceed quick rate but only holding information 
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temporarily. The second proceeds at a slower rate (hours to years) and serves to 

selectively store memories for long-term storage [13]. 

At the level of neural circuits and cells, wakefulness permits rapid learning through 

the selective strengthening or weakening of synapses (“synaptic consolidation”). Events 

experienced during wakefulness are encoded in parallel in the hippocampus and 

neocortex. During subsequent periods of sleep, recently acquired memory traces are 

repeatedly reactivated and gradually transferred to the cortex [14]. As time goes on, 

recalling memories becomes less reliant on the hippocampus as it is stored in the 

neocortex. The process of reallocating memories to extra-hippocampal circuits for 

permanent storage is referred to generally as “systems consolidation” [15] (Figure 1.1). 

Despite general agreement over the mechanisms governing learning and consolidation, 

there is still significant debate over the interactions between systems and synaptic 

consolidation.  

 

 

Figure 1.1 Active system consolidation during sleep [14] 
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Research in rodents has been critical in elucidating the underlying systems- and 

cellular- level events necessary for sleep-dependent memory consolidation [16]. The 

hippocampus is comprised of three major subregions including in the dentate gyrus (DG), 

CA1, and CA3. Recordings from the rat hippocampus (CA1) have found that neurons 

which were sequentially activated while mice traversed a maze were sequentially 

reactivated or ‘replayed’ during NREM sleep [17]. Researchers later clarified that 

reactivation occurs preferentially during sharp-wave ripples (SWRs). SWRs are short 

bursts (40-120ms) of high frequency (140-200 Hz) oscillations that occur in CA1, driven 

by activity in CA3 [18]. Reactivations have been observed in other brain regions such as 

the striatum and neocortex but are believed to originate in the hippocampus [14]. 

Inhibiting SWRs consistently leads to slower learning on hippocampus-dependent spatial 

memory tasks [19] and impaired recall of previously learned fear memory [20]. Research 

from our lab has shown that CA1 parvalbumin-expressing (PV+) interneurons are 

necessary for propagating SWRs and orchestrating synchronous firing activities during 

sleep. Furthermore, inhibiting PV+ interneurons during sleep impairs consolidation of the 

contextual fear conditioning (CFC) [21]. Together these findings highlight the importance 

of hippocampal network-level activities involved in memory consolidation during sleep. 

Contextual fear conditioning (CFC) is one of best studied behavioral paradigms for 

memory formation and storage in rodents. CFC is initiated by placing an animal in a novel 

chamber and allowing the animal to freely explore the unique spatial, olfactory, and visual 

details of the new context. After a period of free exploration, the animal is delivered a mild 

foot shock through the grid floor of the chamber, then returned to its homecage. The 

pairing of the foot shock (unconditioned stimulus) and novel environment (conditioned 
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stimulus) reflects the initial encoding stage of contextual fear memory (CFM). Once the 

animal returns to its home-cage, the memory of CFM continues stabilize over-time 

(consolidation). To test the animal’s ability to recall the shock/context association, the 

animal is placed back into the same context and assessed for the time it spends ‘freezing’ 

(recall). Freezing refers to a state of alert immobility and the percent time an animal 

spends freezing is used as a metric of CFM. Early studies established the importance of 

the hippocampus in processing contextual fear memory, demonstrating that hippocampal 

lesions impaired CFC encoding while leaving other forms of memory intact (cued fear 

conditioning)[22]. Similarly, pharmacologically inhibiting the dorsal hippocampus in the 

hours following CFC disrupts CFM consolidation [23]. Later experiments found that 

depriving mice of sleep over the first five hours following CFC similarly impaired recall 24-

hrs later while leaving non-hippocampus dependent tasks intact [24]. Importantly, 

depriving mice of sleep 5-10hrs following CFC failed to impair recall, suggesting an early 

post-training window where hippocampus-dependent tasks are susceptible to sleep 

deprivation. Together these data suggest a critical window (within the first few hours 

following learning) for sleep-associated hippocampal activity for consolidating CFM. 

 

1.4 Cellular consequences of sleep-deprivation 

 Scientists generally agree that memories are formed through changes in the 

connectivity between neurons. Therefore, to enable persistent, long-lasting memories, 

neurons must adjust their intracellular gene expression to produce proteins to support 

changes in synaptic connections. Research into the neural correlates of learning and 

memory have used long-term potentiation (LTP) as a model to study the gene and protein 

changes neurons undergo as their synapses ‘strengthen’ or increase in efficacy in 
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response to activity. Like memory, LTP exhibits a transient early phase (E-LTP) followed 

by a late (L-LTP) – with the latter dependent on transcription of new mRNAs and 

translation of new proteins [25]. Through coordinated waves of gene transcription and 

translation, neurons are capable of strengthening or weakening their connectivity. Less 

well understood is how memory traces genetic programs are modified during sleep and 

wake.   

 Early studies measuring genes differentially transcribed during sleep and wake 

found that ~5% of all genes were altered by sleep. Transcripts upregulated during 

wakefulness support high energy demand, elevated transcriptional activity, and synaptic 

potentiation. Meanwhile, transcripts associated with sleep increased expression of genes 

coding for regulators of protein synthesis [26]. These findings combined with similar 

results observed in the hippocampus [27] has led to the hypothesis that learning while 

awake induces de novo gene transcripts which are later translated into proteins during 

sleep [9]. Converging lines of evidence support this hypothesis finding that only five hours 

of sleep deprivation (SD) is sufficient to reduce total protein synthesis in the hippocampus 

and the activity of key regulators of protein translation [28]. Still it is unclear how SD 

impairs translation or which transcripts are preferentially translated during sleep  

 

1.5 Outline 

The aim of this thesis is to explore the system and cellular mechanisms of sleep-

dependent hippocampal memory consolidation. Using a combination of behavioral 

assays, molecular biology techniques, RNA-sequencing, computational analyses, and 
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pharmacogenetic manipulations, we have discovered new circuit- and cell-level 

mechanisms that facilitate memory consolidation during sleep.  

In Chapter 2, we investigate the differences in Arc mRNA expression measured 

by quantitative PCR (qPCR) and in situ hybridization. Following 3 h of SD, Arc mRNA 

increased in whole hippocampus as anticipated from previous reports. In contrast, newly 

transcribed Arc pre-mRNA was not affected by SD. Using in situ hybridization for Arc 

mRNA and immunohistochemistry for Arc protein in dorsal hippocampus, we 

unexpectedly observed more Arc+ neurons in the DG of mice permitted to sleep. This 

work was published in Neurobiology of Learning and Memory in 2019 [29]. 

In Chapter 3 we aimed to identify differences in learning-related ribosome-

associated mRNAs in sleep permitted or SD mice. We assessed gene expression across 

three cell populations by developing a translating ribosome affinity purification (TRAP) 

technique to profile transcripts from hippocampal excitatory neurons (Camk2a+), highly-

active neurons expressing phosphorylated ribosomal subunit S6 (pS6+), and total 

hippocampal mRNA (Input). To profile any putative differences in translation based on a 

ribosomes subcellular localization in the neuron, we collected samples from both 

supernatant and pellet fractions from each cell population. Our sequencing results 

revealed that separating supernatant and pellet fractions reliably enriched for cytosolic-

enriched genes (ex: transcription factors, kinases) whereas pellet fractions enriched for 

trafficked and secretory pathway genes (e.g., transmembrane receptor, endoplasmic 

reticulum, and synaptic genes). Comparing the effects of sleep-deprivation and learning 

(single-trial contextual fear conditioning [CFC]), we find that CFC elevates a few sparsely 

expressed transcript isoforms (e.g., ΔFosb and Homer1a) which are detectable in 
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cytosolic fractions of activated neurons (pS6+) and total hippocampal mRNA (Input). 

Interestingly, CFC-driven transcript changes at ribosomes in excitatory neurons were 

occluded by 3 h or 5 h of subsequent SD. This suggests that activity-dependent 

transcripts expressed on ribosomes during wakefulness occlude CFC-related gene 

expression. Furthermore, our data show that mRNAs associated with membrane-bound 

ribosomes – but not cytosolic ribosomes - are dramatically affected by CFC. Moreover, 

mRNAs representing different biochemical pathways are induced when CFC is followed 

by sleep vs. SD. Because SD during this time window profoundly disrupts hippocampus-

dependent consolidation of contextual fear memory (CFM), these findings are currently 

in submission for publication, suggest new cellular mechanisms for sleep facilitation of 

memory consolidation. These findings have recently been submitted for peer review. 

In Chapter 4, we further characterized differences in hippocampal activity 

measured by pS6. Compared to three hours of SD, rodents allowed to sleep displayed 

increased S6 phosphorylation in the major subregions of the dorsal hippocampus. To 

measure transcripts differentially associated with phosphorylated ribosomes, we 

immunoprecipitated pS6 ribosomes and performed RNA-seq after a period of sleep or 

SD. Unexpectedly, SD increased pS6 ribosomes with transcripts enriched in 

neuromodulatory (cholinergic/hypocretin) and interneuron (somatostatin) cell populations 

among pS6+ neurons.  Profiling ribosome-associated mRNAs in somatostatin-expressing 

(SST) interneurons, we discovered that activity-dependent transcripts were elevated 

following 3 h of SD. Together our data suggest that SD selectively activated this 

hippocampal interneuron population, which gates activity in the remaining hippocampal 

circuit. Pharmacogenetically elevating activity in this cell population in freely-sleeping 
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mice following CFC impaired fear recall the next day. This suggests that reduced SST 

activity during sleep is a necessary component for CFM consolidation. These finding are 

in preparation for a forthcoming publication.  
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Expression in Dentate Gyrus Neurons 

 
This chapter includes the manuscript: Delorme J, Kodoth V, & Aton SJ. (2019) Sleep loss 
disrupts Arc expression in dentate gyrus neurons. Neurobiol Learn Mem. 2019; 160: 73-
82. doi:10.1016/j.nlm.2018.04.006 
 

2.1 Abstract 

Sleep loss affects many aspects of cognition, and memory consolidation 

processes occurring in the hippocampus seem particularly vulnerable to sleep loss. The 

immediate-early gene Arc plays an essential role in both synaptic plasticity and memory 

formation, and its expression is altered by sleep. Here, using a variety of techniques, we 

have characterized the effects of brief (3-h) periods of sleep vs. sleep deprivation (SD) 

on the expression of Arc mRNA and Arc protein in the mouse hippocampus and cortex. 

By comparing the relative abundance of mature Arc mRNA with unspliced pre-mRNA, we 

see evidence that during SD, increases in Arc across the cortex, but not hippocampus, 

reflect de novo transcription. Arc increases in the hippocampus during SD are not 

accompanied by changes in pre-mRNA levels, suggesting that increases in mRNA 

stability, not transcription, drives this change. Using in situ hybridization (together with 

behavioral observation to quantify sleep amounts), we find that in the dorsal 

hippocampus, SD minimally affects Arc mRNA expression, and decreases the number of 

dentate gyrus (DG) granule cells expressing Arc. This is in contrast to neighboring cortical 

areas, which show large increases in neuronal Arc expression after SD. Using 

immunohistochemistry, we find that Arc protein expression is also differentially affected 
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in the cortex and DG with SD - while larger numbers of cortical neurons are Arc+, fewer 

DG granule cells are Arc+, relative to the same regions in sleeping mice. These data 

suggest that with regard to expression of plasticity-regulating genes, sleep (and SD) can 

have differential effects in hippocampal and cortical areas. This may provide a clue 

regarding the susceptibility of performance on hippocampus-dependent tasks to deficits 

following even brief periods of sleep loss. 

2.2 Introduction 

Over the past century, numerous studies have shown that following memory 

encoding, sleep promotes information storage in the brain. This has led to numerous 

theories of how sleep could facilitate plasticity of synapses between neurons involved in 

memory formation (Puentes-Mestril et al, 2017). Memory processes relying on neural 

circuits in the hippocampus (e.g., the formation of new episodic and spatial memories) 

seem particularly susceptible to disruption by post-encoding sleep loss (Prince and Abel, 

2013).  

One strategy for understanding sleep’s role in brain function has been to determine 

how sleep and sleep loss affect gene expression in the brain. Expression of the 

immediate-early gene Arc is consistently increased in various mammalian brain structures 

following a period of sustained wake, relative to a similar period of ad lib sleep (Cirelli et 

al., 2004; Mackiewicz et al., 2007; Vecsey et al., 2012). Arc protein function is linked to 

various types synaptic plasticity, with loss of Arc leading to deficits in long term depression 

(LTD) (Waung et al., 2008), late phase long term potentiation (LTP) (Messaoudi et al., 

2007; Plath et al., 2006), and homeostatic plasticity (Gao et al., 2010; Shepherd et al., 

2006). Arc mRNA and Arc protein expression are induced in specific brain circuits in vivo 
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by increased neuronal activity (Miyashita et al., J Neurosci 2009) or by prior learning 

(Carter et al., 2015; Czerniawski et al., 2011; Fellini and Morellini, 2013; Guzowski et al., 

2001). Arc mutants also show deficits in both hippocampus-dependent long-term memory 

consolidation (Plath et al., 2006) and experience-dependent plasticity in sensory cortex 

(McCurry et al., 2010). The level of expression of Arc mRNA in the hippocampus 

immediately following training on a hippocampus-dependent task is a predictor of 

subsequent memory performance (Guzowski et al., 2001).  

Together the available data suggest a causal role for Arc in both synaptic plasticity 

and long-term memory formation. Thus a parsimonious interpretation of prior gene 

expression studies, showing sleep-dependent decreases in Arc expression (Cirelli et al., 

2004; Mackiewicz et al., 2007; Vecsey et al., 2012), is that synaptic plasticity is generally 

decreased during sleep vs. wake. However, recent data have suggested that both 

functional and structural plasticity in the dorsal hippocampus are disrupted by sleep 

deprivation (Havekes et al., 2016; Vecsey et al., 2009). Other studies have shown that 

expression of various immediate early genes can actually be augmented (rather than 

reduced) in the hippocampus during post-learning sleep (Calais et al., 2015; Ribeiro et 

al., 1999; Ulloor and Datta, 2005). Furthermore, dorsal hippocampal network activity 

patterns (e.g. oscillations) associated with sleep promote both changes in functional 

connectivity following learning, and long-term memory formation (Ognjanovski et al., 

2014; Ognjanovski et al., 2017). It is unclear whether these changes are unique to the 

hippocampus, the dorsal hippocampus, or perhaps to specific areas within the dorsal 

hippocampal circuit. To further clarify this issue, we assessed the effects of sleep and 
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sleep loss on Arc mRNA expression and Arc protein levels in the hippocampus and 

cortex, using multiple techniques. 

2.3 Materials & Methods 

Mouse handling and husbandry: All animal husbandry and surgical/experimental 

procedures were approved by the University of Michigan Institutional Animal Care and 

Use Committee (PHS Animal Welfare Assurance number D16-00072 [A3114-01]). All 

mice were individually housed in standard caging with beneficial environmental 

enrichment (nesting material and/or manipulanda) throughout all procedures. Lights were 

maintained on a 12 h:12 h light: dark cycle (lights on at 8 AM), and food and water were 

provided ad lib. At age 3 months, C57BL/6J mice (IMSR_JAX:000664, Jackson) were 

habituated to handling over 5 days, for 4 min each day. Following habituation, and 

beginning at lights-on (ZT0), mice either were allowed ad lib sleep in their home cage 

(Sleep) or were sleep deprived by gentle handling (SD). In the Sleep group, sleep 

behavior was scored based on visual observation, at 5-min intervals, throughout the 3-h 

ad lib sleep period. Criteria for sleep were immobility and a stereotyped sleep posture. 

Such criteria have been used (and validated against EEG-based sleep assessments) in 

previous studies to quantify sleep behavior in mice (Fisher et al., 2012; Pack et al., 2007). 

Sleep amounts across the ad lib sleep period are shown for individual mice in Figure 2.2. 

Based on these scoring criteria, all Sleep mice slept > 50% of the 3-h sleep period (avg 

= 79%, SEM= 4%). At ZT3, mice were sacrificed by cervical dislocation under isoflurane 

anesthesia. 

 
Quantitative real-time PCR (qPCR): Whole hippocampi (and for comparison, whole 

cerebral cortices) from individual mice in Sleep (n = 5) and SD (n = 5) groups were 
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dissected in PBS, flash frozen in liquid nitrogen, and stored at -80 °C. RNA purification 

was performed using an RNeasy Mini Kit (Qiagen) and coupled with a DNAse digestion  
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Figure 2.2 Total sleep time in mice allowed ad lib sleep from ZT0-3. Amount of time during 
which Sleep mice were observed to be inactive and in stereotyped sleep posture across the 3-h 
ad lib sleep period. Values are expressed as a percentage of total time, in 30-min intervals. 
Data are shown for mice used for in situ hybridization studies in A and for mice used for 
immunohistochemistry studies in B. 
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step (Qiagen); RNA concentration and purity were quantified with spectrophotometry 

(Nanodrop Lite; ThermoFisher). 0.5 μg of RNA was used to synthesize cDNA using iScript 

cDNA Synthesis Kit (Bio-Rad) and cDNA was diluted 1:10 for mature Arc mRNA 

quantification and, due to the low expression of pre-mature Arc mRNA transcript, cDNA 

was diluted 1:5. qPCR reactions were measured using a CFX96 Real-Time System, in 

96-well reaction plates (Bio-Rad). Three technical replicates were used for each sample. 

Primer specificity was confirmed using NIH Primer Blast while primer efficiency was 

measured by calculating primer amplification efficiency (AE) and coefficient of correlation 

for a standard curve (R2) for each primer set (data and sequences shown in Table 1). All 

primers utilized had amplification efficiency values within 90-110%, R2 values greater than 

0.98, and standard deviations < 0.20 among 5 replicates. Expression data for Arc primer 

sets were normalized to gamma actin (Actg1). Expression of Actg1 itself was not affected 

by SD (raw CT values: Sleep = 23.91 ± 0.15 vs. SD = 23.89 ± 0.11, N.S., Student’s t-

test). Actg1 expression levels were also normalized to the housekeeping genes Tuba4a 

(Sleep = 1.00 ± 0.035 vs. SD = 1.05 ± 0.035, N.S., Student’s t-test) and Gapdh (Sleep = 

1.02 ± 0.093 vs. SD = 1.04 ± 0.096, N.S., Student’s t-test) and were similar between 

groups. For comparison with previous studies, values for SD mice were expressed as fold 

changes normalized to the mean values for mice in the Sleep group. Values were 

calculated using the delta delta Ct method. 

 
RNAScope in situ hybridization: In situ hybridization was performed on 12-µm sections 

taken from fresh-frozen brains containing dorsal hippocampus, from mice in Sleep (n = 

6) and SD (n = 5) groups. The RNAscope Multiplex Fluorescent Reagent Kit v2 (323100-

USM, Advanced Cell Diagnosis) was used to image Arc expression. Prior to probe 
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incubation, slices were pretreated with hydrogen peroxide (10 min, room temperature), 

Target Retrieval Reagent (5 min, 99°C), and RNAscope protease III (30 min, 40°C). Slices 

were incubated with 20 custom-synthesized Arc mRNA probes (316911-C3, Advanced 

Cell Diagnostics) targeting regions between bases 23 and 1066 within the open reading 

frame and hybridized to Opal 690 (PerkinElmer FP1497001KT) for visualization. Positive 

and negative control probes were used in parallel experiments to confirm specificity of 

hybridization. 

 
Immunohistochemistry:  For immunohistochemical quantification of Arc protein 

expression, mice in Sleep (n = 5) and SD (n = 5) groups were sacrificed and perfused 

with PBS followed by 4% paraformaldehyde. 40-μm brain sections were blocked with 

normal goat serum for 2-hours and incubated overnight with a polyclonal guinea pig Arc 

antibody (Synaptic Systems, 156 004, 1:500) at 4°C. The following day, sections were 

stained with goat anti-guinea pig IgG H&L, Alexa Fluor® 594 (Abcam, ab150188, 1:200). 

Stained sections were coverslipped in ProLong Gold Antifade Reagent (ThermoFisher, 

P36930). Fluorescence intensity was used to identify Arc protein-expressing (Arc+) cells 

in the dentate gyrus granule cell layer in sections containing either dorsal (-1.5 to -2.3 mm 

posterior to bregma) or intermediate (-2.9 to -3.2 mm posterior to bregma) hippocampus, 

and Arc+ neurons in posterior parietal and primary somatosensory cortical areas 

overlying dorsal hippocampus (1.5-3.0 mm lateral, -1.5 to -2.1 mm posterior to bregma), 

using the automated protocol described below. 

 
Imaging and Quantification. RNAscope probe fluorescence signals were captured 

using a 10x objective lens on a Leica 3D STED SP8 while immunohistochemical sections 
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were imaged on a Leica SP5 laser scanning confocal microscope. Settings were fixed for 

each imaging session. Fluorescence images were analyzed using MIPAR image analysis 

software in their raw grayscale format (Sosa et al., 2014). Mean fluorescence intensity 

values (0-255) were quantified within posterior parietal and primary somatosensory 

cortical areas overlying the dorsal hippocampus, across granule (dentate gyrus) or 

pyramidal (CA1, CA3) cell layers (layer borders were delineated using a freehand tool by 

a scorer blind to experimental condition). In addition to layer-specific mean intensity 

measures, in the case of the dentate gyrus and cortex (where cell bodies were sparsely 

labelled with intense fluorescence), Arc-immunopositive (Arc+) cell bodies were counted 

by a blind scorer using an automated protocol and normalized to the area of the DG or 

cortical area in each section (in mm2). Because the borders of the DG granule cell layer 

were difficult to distinguish in IHC sections, Arc+ cell numbers were normalized to linear 

distance, using a line drawn along the hilus bordering the DG. Briefly, a non-local means 

filter was used to reduce image noise, and an adaptive threshold was used to identify 

areas >30 µm whose mean pixel intensity was 200% of its surroundings. Four images per 

region (two per hemisphere) were quantified for each animal. 

2.4 Arc mRNA expression, but not Arc transcription rates, are increased in 
the hippocampus during brief sleep deprivation. 

To investigate how sleep and sleep deprivation affect Arc transcription in the 

hippocampus, we first quantified expression of both Arc pre-mRNA and mature mRNA in 

samples obtained from whole (dorsal + ventral) hippocampus using qPCR. Animals were 

habituated to daily handling, and starting at lights-on the day of tissue collection they were 

either were allowed 3 h of ad lib sleep (Sleep) or were sleep deprived for 3 h by gentle 

handling (SD). Consistent with previous findings from the mouse hippocampus following 
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longer (i.e., 5-h) sleep or SD intervals (Vecsey et al., 2012), qPCR results measuring the 

mature Arc transcript (Figure 2.1A, B) indicated that 3-h SD increased Arc mRNA 

expression ~1.5-fold in the hippocampus (Sleep = 1.02 ± 0.11  vs. SD = 1.56 ± 0.05, p < 

0.01, Student’s t-test). 

Because steady-state Arc mRNA levels are modulated by both transcription and 

degradation rates, the mechanism for Arc mRNA accumulation during SD is unknown. 

The mature Arc transcript is derived from a pre-mRNA containing two short introns within 

the 3’ UTR, which are removed during mRNA maturation (Rao et al., 2006; Saha et al., 

2011). The mature mRNA has a half-life of approximately 45 minutes in vivo (Rao et al., 

2006), and is thought to be degraded rapidly after translation, via translation-dependent 

decay (Farris et al., 2014; Ninomiya et al., 2016). To determine whether observed 

increases in Arc mRNA expression with SD were due to increased de novo synthesis or 

mature mRNA stabilization, we designed primers which spanned the first intron of the Arc 

pre-mRNA transcript. Previous in vitro studies using similar primers have demonstrated 

that Arc pre-mRNA expression increases 5-10 min prior to mature Arc mRNA (Saha et 

al., 2011). Using these primers (Figure 2.1A) we found no significant effect of SD on 

hippocampal Arc pre-mRNA levels (Figure 2.1B), which were nearly identical in Sleep 

and SD mice (Sleep = 1.07 ± 0.20 vs. SD = 1.10 ± 0.07, N.S., Student’s t-test). This 

suggests that increased expression of mature Arc mRNA after SD may not result from 

increased de novo Arc transcription during the wake state, as previously assumed. 

Rather, increased mature mRNA levels could be driven by reduced translation-dependent 

mRNA decay during SD. 
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Figure 2.1 Expression of mature and pre-mRNA Arc transcripts in hippocampus and 
cerebral cortex of sleep deprived animals. A. Arc transcript structure and quantitative 
polymerase chain reaction (qPCR) primer design. To quantify de novo Arc transcription, Arc 
primers were designed to target either the transcript’s open reading frame (green) or the first 
intron on its 3’ UTR (yellow). These primer sets were aimed at amplifying mature and pre-mRNA, 
respectively. B. Expression of Arc mRNA and pre-mRNA in samples of whole hippocampus or 
whole cerebral cortex, normalized to expression of gamma actin (Actg1). Gene expression data 
in samples taken from mice after 3 h of ad lib sleep (Sleep) and sleep deprivation (SD) were 
normalized as a fold change relative to mean values from the Sleep group. Values indicate mean 
± SEM; n = 5 mice/group; ** indicate p < 0.01, *** indicate p < .001, Student’s t-test.   
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For comparison with changes seen in the hippocampus, we also used qPCR to measure 

Arc pre-mRNA and mature mRNA in cerebral cortical samples taken from the same Sleep 

and SD mice (Figure 2.1B). Consistent with the findings of others (Cirelli et al., 2004; 

Mackiewicz et al., 2007; Vecsey et al., 2012), we found that mature Arc mRNA was 

increased approximately two-fold in the cortex following SD (Sleep = 1.02 ± 0.09 vs. SD 

= 2.08 ±  0.17, p < 0.001, Student’s t-test). In contrast to pre-mRNA levels in the 

hippocampus, which were identical in mice from SD and Sleep groups, pre-mRNA levels 

in cortex measured with both primer sets were elevated following SD (Sleep = 1.07 ± 0.21 

vs. SD = 1.98 ± 0.44). While this change did not reach statistical significance (p = 0.1), it 

was similar in magnitude (i.e., twofold) to the increase in mature mRNA seen in cortex 

with SD (Figure 2.1B). 

2.5 Sleep selectively increases Arc mRNA expression among neurons in 
the dentate gyrus 

To clarify where in the hippocampal circuit Arc mRNA expression is regulated, we 

used RNAscope fluorescence in situ hybridization (Wang et al., 2012) to visualize the 

mature Arc transcript. To do this, we utilized predesigned Arc RNAScope probes targeting 

the bases 23 to 1066 in the Arc ORF. To ensure their specificity, positive control probes 

targeting the housekeeping gene Hprt1 and negative control probes targeting DapB (a 

gene expressed in bacillus subtilis) were run alongside the Arc probes (Figure 2.3). Once 

the specificity of the probes were confirmed, multiple hippocampal subregions (dentate 

gyrus [DG], CA3, and CA1) were imaged from brain sections containing the dorsal 

hippocampus which were taken from mice in Sleep (n = 6) and SD (n = 5) groups. Across 

each area, mean fluorescence signal intensity was first quantified in pyramidal (or 

granule) cell body layers, and in adjacent molecular layers (i.e., in pyramidal/granule cell  
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Figure 2.3  Validation of Arc mRNA probes for RNAscope fluorescence in situ 
hybridization. A. RNAscope in situ hybridization of mouse dentate gyrus (DG) section. Violet 
color represents Arc mRNA probe hybridization. B. Positive control probes for in situ hybridization, 
targeting mRNA for the ubiquitously-expressed housekeeping gene Hprt1; images show 
representative signal in DG, CA1, and CA3. C. Negative control probes targeting mRNA for DapB, 
a gene expressed in bacillus subtilis, shown in the same regions. Scale bars indicate 100 µm.  
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dendritic fields). As shown in Figure 2.4, there were no significant changes in Arc 

expression with SD in either pyramidal cell or molecular layers, in either CA1, CA3, or 

DG. For comparison with hippocampal expression values, we measured Arc mRNA 

expression in cortical areas (i.e., posterior parietal/ primary somatosensory cortex) 

overlying dorsal hippocampus. As shown in Figure 2.4B, mean intensity (measured 

across all cortical layers) was slightly, but not significantly, higher following SD.  

In DG and in cortex, Arc+ neuronal labeling was sparse, allowing comparisons of 

Arc+ neuronal density in these regions between Sleep and SD. As shown in Figure 2.5A-

B, we observed twice as many Arc+ neurons in the DG granule cell layer of mice from 

the Sleep group than were seen in the DG of mice from the SD group (87.44 ±  3.70 vs. 

39.40 ± 7.59 cells/mm2, p < 0.001, Student’s t-test). No differences in the background 

mean fluorescence intensity (measured within the granule cell layer, with fluorescence 

intensity values of Arc+ cell bodies subtracted) were observed in DG between mice in 

Sleep and SD groups (data not shown, Sleep = 43.39 ± 5.32 vs. SD = 45.34  ±  4.69, 

N.S., Student’s t-test). This suggests that in contrast to areas CA1 and CA3 (where Arc 

mRNA expression levels are largely unchanged after SD), expression of Arc among DG 

granule cells is significantly greater following a period of ad lib sleep. However, DG Arc 

expression levels for individual animals were not correlated with sleep amounts across 

the 3-h ad lib sleep period prior to sacrifice (N.S., Pearson correlation, Figure 2.5C). 

In contrast to what was seen in DG (and consistent with qPCR data from whole 

cortical RNA samples), Arc+ labeling in the cortex indicated a ~3-fold increase in Arc+ 

neuronal density after SD (Figure 2.5D-E; Sleep = 43.17 ± 10.76 cells/mm2  vs. SD = 

149.9 ± 19.14 cells/mm2, p < 0.001, Student’s t-test). Among freely-sleeping mice, the  
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Figure 2.4  Mean fluorescence intensity values for in situ hybridization data for Arc 
mRNA in dorsal hippocampus and cortex.  A. Strategy for measuring mean fluorescence 
intensity in pyramidal cell and dendritic (Den) layers in dorsal hippocampal subregions. 
Selection of granule cell layer of the dentate gyrus and pyramidal cell layer of CA1/CA3 are 
shown in blue. Estimated dendritic regions adjacent to cell layers are shown in green. For Arc 
cellular quantification in the DG, an automated protocol (see Methods) detected Arc+ cells in the 
DG (yellow) and counted the number of Arc+ cells/mm2 within the granule cell layer (blue). B. 
Mean fluorescence values did not significantly differ between Sleep (n = 6 mice) and SD (n = 5 
mice) conditions in any area. Scale bars indicate 100 µm. 
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Figure 2.5 Sleep deprivation simultaneously decreases Arc+ cells in the DG, and increases 
Arc+ cells in the cortex.  A. Representative images showing Arc+ cells in the DG following 3 h 
of ad lib Sleep  (n = 6 mice) or SD (n = 5 mice). Scale bars indicate 100 µm. B. The number of 
Arc+ cells/mm2 was reduced in the DG of mice following SD mice relative to mice allowed ad lib 
Sleep. Values indicate means ± SEM for each condition; *** indicates p < 0.001, Student’s t-test. 
C. Pearson correlation coefficients for Arc+ cells/mm2 in DG vs. sleep time integrated over various 
intervals prior to sacrifice, based on sleep amounts from individual mice in the Sleep condition. 
D. Representative images from Sleep and SD mice, showing Arc+ cells in primary somatosensory 
cortex overlying dorsal hippocampus. Scale bars indicate 100 µm. E. The number of Arc+ 
cells/mm2 in the cortex was increased after SD. *** indicates p < 0.001, Student’s t-test. F. 
Pearson correlation coefficients for cortical Arc+ cells/mm2 vs. total sleep time, integrated over 
various intervals prior to sacrifice. Negative relationships between sleep time and Arc+ cell 
numbers were present over the final 45-minutes of the experiment (* indicates p < 0.05 after 
Bonferroni correction).  
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number of Arc+ neurons in the cortex of individual mice was predicted by the amount of 

time spent awake vs. asleep over the final fifteen minutes prior to sacrifice (Figure 2.5F; 

Pearson R = 0.94, Bonferroni corrected p value < 0.05).  

2.6 Sleep increases Arc protein expression in the dorsal and intermediate 
dentate gyrus 

 To determine whether brain region-specific changes in Arc mRNA expression were 

mirrored by changes Arc protein levels after SD, we used immunohistochemistry to 

measure differences in Arc translation. As observed in the in situ hybridization 

experiments, no significant changes in the mean fluorescence intensity were recorded 

following SD in hippocampal subregions CA1 and CA3 (Figure 2.6). In contrast, as shown 

in Figure 2.7A-B, in both dorsal (Sleep = 16.46 ± 1.84 cells/mm vs. SD = 10.96 ± 0.80 

cells/mm), p < 0.05, Student’s t-test) and intermediate (Sleep = 10.48 ± 0.69 cells/mm vs. 

SD = 3.22 ± 1.06 cells/mm, p < 0.001, Student’s t-test) DG, the number of granule cells 

expressing Arc protein was decreased in SD mice. Among mice in the Sleep group, in 

both dorsal and intermediate DG, the number of Arc+ cells tended to be highest in animals 

that had slept the most over the last 1.25 h prior to sacrifice (Pearson R = 0.86 and 0.93, 

respectively, Bonferroni-corrected p value N.S.) (Figure 2.7C). This suggests that 

appropriately-timed sleep may promote the translation of Arc protein among DG neurons. 

 For comparison, we also quantified expression of Arc protein in primary 

somatosensory and posterior parietal cortex. As was true for Arc mRNA, following SD, 

mice showed a ~5-fold increase in the number of Arc+ cells across all layers of the cortex 

(Sleep = 25.18 ± 17.49 cells/mm2  vs. SD = 122.90 ± 27.29 cells/mm2, p < 0.05, Student’s 

t-test). Similar to results observed in the cortex, among sleeping mice, Arc protein   
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Figure 2.6 Sleep deprivation does not significantly alter Arc protein levels in 
hippocampal areas CA3 or CA1. A. Strategy for measuring mean fluorescence intensity in 
pyramidal cell and dendritic (Den) layers in dorsal hippocampal subregions. Selection of the 
pyramidal cell layer in CA1/CA3 are shown in blue. Estimated dendritic regions adjacent to cell 
layers are shown in green. B. Mean fluorescence values did not significantly differ between 
Sleep (n = 5 mice) and SD (n = 5 mice) conditions in any area. Scale bars indicate 100 µm.  
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Figure 2.7  Sleep deprivation 
simultaneously decreases Arc 
protein expression among DG 
cells, and increases Arc expression 
among cortical cells. A. 
Representative images of 
immunohistochemical staining for Arc 
in dorsal and intermediate DG 
following 3 h of ad lib Sleep  (n = 5 
mice) or SD (n = 5 mice). B. Arc+ 
cells/mm were decreased in both 
dorsal and intermediate DG. Data 
indicate mean ± SEM for each 
condition; * indicates p < 0.05, *** 
indicates p < 0.001, Student’s t-test. 
C. Pearson correlation coefficients for 
cortical Arc+ cells/mm in dorsal (black 
bars) and intermediate (green bars) 
DG vs. sleep time integrated over 
various intervals prior to sacrifice. D. 
Representative images from Sleep 
and SD mice, showing Arc+ cells in 
primary somatosensory cortex 
overlying dorsal hippocampus. Scale 
bar indicates 100 µm. E. The number 
of Arc+ cells/mm2 in the cortex was 
increased after SD. * indicates p < 
0.05, Student’s t-test. F. Pearson 
correlation coefficients for cortical 
Arc+ cells/mm2 vs. sleep time 
integrated over various intervals prior 
to sacrifice. Negative relationships 
between total sleep time and Arc+ cell 
numbers were present over the final 
hour of the experiment.   
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expression showed a tendency to be reduced in animals sleeping more over the last hour 

prior to sacrifice (Pearson R = -0.84, Bonferroni-corrected p value N.S.). 

 

2.7 Discussion 

 Here, we show that sleep- and SD-associated Arc mRNA and protein expression 

patterns vary between the hippocampus and cortex. We find that expression levels 

measured in samples of whole hippocampus (or cortex) increase in a manner consistent 

with previous reports (Cirelli et al., 2004; Mackiewicz et al., 2007; Thompson et al., 2010; 

Vecsey et al., 2012). By comparing the relative levels of pre-mRNA and mature mRNA in 

Sleep and SD conditions, we find new (immature) Arc transcripts in the hippocampus are 

unchanged across SD, while in the cortex, increases in pre-mRNA parallel increases in 

mature Arc mRNA. This suggests that previously-reported increases in Arc mRNA in 

cortex following SD (Cirelli et al., 2004; Mackiewicz et al., 2007) reflect de novo 

transcription. 

Previous work has shown that in the hippocampus, stimulus-induced expression 

of mature Arc mRNA lags expression of its pre-mRNA by only 5-10 min (Saha et al., 

2011). Our surprising finding of an increase in mature Arc in the hippocampus without a 

corresponding increase in pre-mRNA suggests that a non-transcriptional mechanism 

must increase Arc levels across SD. One mechanism which could plausibly affect the 

ratio of pre-mRNA to mature RNA is an altered rate of pre-mRNA splicing. Here, we would 

expect an increase in the splicing rate in the hippocampus with SD. While splicing rates 

can be altered in vitro (for example, through phosphorylation of the C-terminal of RNA 

polymerase II (Millhouse and Manley, 2005), the rate of splicing in vivo is tightly coupled 
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with polymerase recruitment, and thus the rate of transcription (Saldi et al., 2016). 

Furthermore, expression of genes required for RNA splicing are reportedly downregulated 

in the hippocampus across a period of SD (Vecsey et al., 2012), making this an unlikely 

explanation for our results. In contrast, selective increases in levels of mature mRNA 

could be explained by increased mRNA stability. There is abundant evidence that 

following translation, mature Arc transcripts undergo rapid degradation; thus the half-life 

of new hippocampal Arc transcripts is ~45 min (Rao et al., 2006). One possibility is that 

during SD (and specifically in the hippocampus), the activity- and translation-dependent 

mechanisms which mediate Arc mRNA degradation (Farris et al., 2014; Ninomiya et al., 

2016) are suppressed. Prior data have suggested that translation rates are decreased 

throughout the brain during spontaneous wake relative to slow wave sleep (Ramm and 

Smith, 1990), and that SD suppresses protein synthesis in the hippocampus (Tudor et 

al., 2016; Vecsey et al., 2012). Further, sleep promotes, and SD reduces, the expression 

of genes involved in protein synthesis (Mackiewicz et al., 2007). Thus a parsimonious 

explanation of our current findings is that in the hippocampus, SD does not increase the 

rate of Arc transcription, but slows its translation and subsequent degradation. Our 

immunohistochemical results are consistent with this interpretation; expression of Arc 

protein in the DG is reduced after just 3 h of SD.  

Arc is an immediate early gene which is rapidly transcribed in the hippocampus 

response to increasing neural activity (Rao et al., 2006) and learning (Guzowski et al., 

2001). SD in the hours following learning is known to disrupt memory consolidation for 

tasks that are selectively dependent on the dorsal hippocampus (Graves et al., 2003; 

Vecsey et al., 2009). Thus we assessed how SD affected Arc mRNA expression among 
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neurons in specific subregions of the dorsal hippocampus and in overlying neocortex, 

using fluorescence in situ hybridization. Surprisingly, we found that no significant changes 

in overall expression levels with SD in any of these regions. Mean intensity values were 

nearly identical in Sleep and SD conditions in CA1, CA3, and DG, and while expression 

tended to be higher in the cortex following SD, intensity differences between Sleep and 

SD were not statistically significant. We attribute the lack of statistical significance for 

changes in overall in situ fluorescence (when changes were detected using qPCR) to two 

plausible issues. First, the quantified areas were necessarily subsampled for in situ 

hybridization, while qPCR quantified expression in whole brain structures. Second, the 

differential outcomes may be the result of differences in the sensitivity of detection using 

the two techniques. In contrast, by counting the density of Arc+ neurons in DG and cortex, 

we found substantial differences in expression between Sleep and SD conditions. In 

cortex, these changes mirrored changes in cortical Arc mRNA expression levels 

measured using qPCR - with higher numbers of neurons labeled with Arc probes after 

SD. Arc protein expression follows the same pattern in the cortex, with significantly higher 

expression following SD, and a negative relationship between sleep time and the number 

of Arc-expressing neurons. In stark contrast, significantly fewer DG granule cells were 

Arc+ in the SD condition. Together these data suggest that sleep, but not extended wake, 

supports Arc expression in the DG; further, this relationship between sleep and Arc 

expression may be unique to DG granule cells. Our immunohistochemical quantification 

of Arc protein in the DG supports this idea - we find that Arc protein-expressing granule 

cells are also more numerous following a 3-h interval of ad lib sleep that following SD, 
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and that expression levels showed a strong tendency to be higher in animals that had 

spent more time sleeping. 

Ours is not the first study to link DG Arc expression to sleep. Recently, Renouard 

et al. demonstrated that following a prolonged (multi-day) period of REM sleep 

deprivation, Arc expression is reduced in the hippocampus (and increased in the cortex); 

during subsequent recovery sleep (which contains relatively high amounts of REM) Arc 

levels increase and decrease, respectively, in hippocampus and cortex. The same study 

demonstrated immunohistochemically that the number of Arc+ neurons in DG decreased 

with REM sleep deprivation, and increased with recovery sleep (Renouard et al., 2015). 

The authors attributed these changes to differing amounts of REM in the various 

experimental conditions. However, another possibility is that these changes were related 

to differences in the amount of non-REM (NREM) sleep and wake, which were 

significantly decreased and increased, respectively, as a result of REM sleep deprivation 

(Renouard et al., 2015). While mice in our present study were not instrumented for 

polysomnographic quantification of REM and NREM sleep, we would expect (based on 

prior studies of ad lib sleep in instrumented C57Bl6/J mice) that REM constitutes roughly 

5-10% of total recording time at ZT0-3, while NREM constitutes 50-70% of the same time 

period (Huber et al., 2000; Koehl et al., 2006; Meerlo et al., 2001; Wimmer et al., 2013). 

The limited REM sleep time expected for mice in our current study (which we estimate 

would amount to 9-18 minutes, total, prior to sacrifice) suggest that either REM sleep can 

induce expression of Arc in the DG very efficiently and quickly, or that NREM sleep may 

also be important for Arc expression. While future studies will be required to address this 
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issue, it is clear from our present findings that even brief periods of sleep loss disrupt DG 

Arc expression. 

 How might increased DG expression of Arc during sleep impact hippocampal 

function? In the absence of Arc expression, various forms of synaptic plasticity are 

disrupted, including homeostatic plasticity, LTD, and LTP (Gao et al., 2010; Messaoudi 

et al., 2007; Plath et al., 2006; Shepherd et al., 2006; Waung et al., 2008). In the DG, Arc 

plays a role in synaptic structure as well as function. Disruption of Arc in the DG leads to 

reduced phosphorylation of the actin depolymerization factor cofilin, and reduced synaptic 

filamentous actin (F-actin) (Messaoudi et al., 2007). Since SD appears to disrupt Arc 

transcription and translation among granule cells in a similar manner, one might expect 

reduced synaptic spine density in DG after SD. Indeed, in this same issue, Raven et al. 

show that spine density in DG granule cells is reduced after 5 h of SD (Raven et al., In 

press). Prior work has shown that SD also reduces cofilin phosphorylation, leading to 

reduced spine numbers (Havekes et al., 2016). Taken together, the available data 

suggest that SD disrupts Arc-dependent regulation of the actin cytoskeleton in the DG, 

and that this leads to reduced dendritic spine numbers among granule cells. Because DG 

granule cells play a critical role in the recall of spatial, episodic, and contextual memories 

(Bernier et al., 2017; Liu et al., 2012; Morris et al., 2013; Niewoehner et al., 2007; 

Yokoyama and Matsuo, 2016), it is plausible that deficits in hippocampally-mediated 

cognitive functions after SD are mediated in part by effects on Arc expression in DG. 

 A final unresolved question is why Arc expression is reduced in DG, while 

simultaneously being increased in cortex, following brief SD. Previous studies, using 

longer periods of SD (up to 24 h), have shown differential effects on dendritic spines in 
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other areas of hippocampus (e.g., CA1) vs. cortex (Acosta-Pena et al., 2015; Havekes et 

al., 2016). We have proposed previously that sleep may have differing effects on 

intracellular pathways required for synaptic plasticity, either downregulating or 

upregulating their activity, depending on prior experience during wake (Puentes-Mestril 

and Aton, 2017). This idea is based on experimental findings from studies carried out 

using animal models over the past two decades. For example, following a learning 

experience, immediate early genes Egr1, Fos, and Arc (Calais et al., 2015; Ribeiro et al., 

1999) and Arc protein (Ulloor and Datta, 2005) expression are increased in the 

hippocampus during subsequent sleep. Data from our own lab suggest that both sleep-

associated network activity patterns (Aton et al., 2013; Aton et al., 2014; Durkin et al., 

2017; Durkin and Aton, 2016; Ognjanovski et al., 2014; Ognjanovski et al., 2017) and 

sleep-associated activation of cellular signaling pathways involved in synaptic plasticity 

(Aton et al., 2009) vary as a function of prior learning experience.  

Multiple lines of evidence suggest that DG synaptic plasticity, in particular, may be 

augmented preferentially during sleep. It has long been known that following spatial task 

performance, DG place cell reactivation occurs selectively during NREM sleep (Shen et 

al., 1998). Since the DG appears to play a continuous role in encoding and storing spatial, 

temporal, and contextual aspects of the animal’s environment (Kesner, In Press), it seems 

likely that mechanisms underlying synaptic- and systems-level memory consolidation 

(including those mediated by Arc) would be active in this structure during sleep, even 

under “baseline” conditions. DG granule cells integrate inputs from cortical, hippocampal, 

and septal structures  (Kesner, In Press), all of which show sleep-associated changes in 

activity (Puentes-Mestril and Aton, 2017). Recent studies support the idea that cortical 
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input to the DG is altered, and possibly augmented, during sleep. For example, spikes of 

highly synchronous DG activity occur frequently during NREM sleep, and that these 

spikes are temporally associated with inter-regional cortical up-states (Headley et al., 

2017). Theta (7-12 Hz) and slow oscillatory (~1 Hz) activity patterns (associated with REM 

and NREM, respectively) differentially modulate input to the DG via the lateral and medial 

perforant pathway (Schall and Dickson, 2010). Finally, during NREM sleep, DG evoked 

firing rate responses to input are higher than during wake (Winson and Abzug, 1978). 

Based on our present data and these prior findings, we hypothesize that the unique 

network connectivity of the DG leads to activity-driven plastic changes - mediated, at least 

in part, by Arc - in this structure during sleep. 
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Chapter III. Learning and Sleep Have Divergent Effects on 
Cytosolic and Membrane-Associated Ribosomal mRNA 

Profiles in Hippocampal Neurons 
 

3.1 Abstract 

The hippocampus plays an essential role in consolidating transient experiences 

into long-lasting memories. Memory consolidation can be facilitated by post-learning 

sleep, although the underlying cellular mechanisms are undefined. Here, we addressed 

this question using a mouse model of hippocampally-mediated, sleep-dependent memory 

consolidation (contextual fear memory; CFM), which is known to be disrupted by post-

learning sleep loss. We used translating ribosome affinity purification (TRAP) to quantify 

ribosome-associated RNAs in different subcellular compartments (cytosol and 

membrane) and in different hippocampal cell populations (either whole hippocampus, 

Camk2a+ excitatory neurons, or highly active neurons expressing phosphorylated 

ribosomal subunit S6 [pS6+]). Using RNA-seq, we examined how these transcript profiles 

change as a function of sleep vs. sleep deprivation (SD), and as a function of prior 

learning (contextual fear conditioning; CFC). To our surprise, we found that while many 

mRNAs on cytosolic ribosomes were altered by sleep loss, almost none were altered by 

learning. Of the few changes in cytosolic ribosomal transcript abundance following CFC, 

almost all were occluded by subsequent SD. This effect was particularly pronounced in 

pS6+ neurons with the highest level of neuronal activity following CFC, suggesting SD-

induced disruption of post-learning transcript changes in putative “engram” neurons. In 
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striking contrast, far fewer transcripts on membrane-bound (MB) ribosomes were altered 

by SD, and many more mRNAs (and lncRNAs) were altered MB ribosomes as a function 

of prior learning. For hippocampal neurons, cellular pathways most significantly affected 

by CFC were involved in structural remodeling. Comparisons of post-CFC transcript 

profiles between freely-sleeping and SD mice implicated changes in cellular metabolism 

in Camk2a+ neurons, and increased protein synthesis capacity in pS6+ neurons, as 

biological processes disrupted by post-learning sleep loss.   

 

3.2 Introduction 

The role of sleep in promoting synaptic plasticity and memory storage 

(consolidation) in the brain is an enduring mystery (Puentes-Mestril and Aton, 2017). For 

the past two decades, transcriptomic (Cirelli et al., 2004; Mackiewicz et al., 2007; Vecsey 

et al., 2012) and proteomic (Cirelli et al., 2009; Noya et al., 2019; Poirrier et al., 2008; 

Ren et al., 2016) profiling of the mammalian brain after sleep vs. experimental sleep 

deprivation (SD) have provided insights regarding the general functions of sleep for the 

brain. For example, observed increases in the abundance of transcripts for immediate 

early genes and some synaptic proteins after SD were the initial basis for the synaptic 

homeostasis hypothesis for sleep function (Cirelli et al., 2004). The hypothesis proposes 

that synapses are broadly “downscaled” during sleep. However, the function of such a 

process in memory consolidation, and it’s occurrence during post-learning sleep, are a 

matter of debate (Havekes and Aton, 2020). On the other hand, observations from in vivo 

electrophysiology in the sleeping brain has led to conclusion that specific patterns of 

activity present during learning experiences may be replayed during subsequent sleep. 

Such a mechanism would be instructive with regard to memory storage (i.e., selectively 
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affecting only highly active “engram neurons” engaged during prior experience and their 

postsynaptic partners). However, determining whether replay is necessary for memory 

consolidation has been difficult (Puentes-Mestril and Aton, 2017; Puentes-Mestril et al., 

2019), and it is unknown how this process (and other features of brain physiology 

associated with sleep) would affect intracellular pathways (e.g. those involved in synaptic 

plasticity).  

More recently, transcriptomic and proteomic profiling of synaptic or axonal 

organelles has been used to better understand the effects of learning (Ostroff et al., 2019) 

or of sleep vs. wake (Noya et al., 2019) on synaptic function. However, to date, there has 

been no experimental work aimed at characterizing cellular changes during sleep-

dependent memory consolidation - i.e.  those occurring as a function of post-learning 

sleep. Here, we use a well-established mouse model of sleep-dependent memory 

consolidation - contextual fear memory (CFM) - to study this process. CFM can be 

encoded in a single learning trial (contextual fear conditioning; CFC), and is consolidated 

via hippocampus-dependent mechanisms over the next few hours. Critically, CFM 

consolidation can be disrupted by sleep deprivation (SD) within the first 5-6 h following 

CFC (Graves et al., 2003; Ognjanovski et al., 2018). Over this same post-CFC time 

interval, disruption of either neuronal activity (Daumas et al., 2005), transcription (Igaz et 

al., 2002; Pereira et al., 2019), or translation (Gafford et al., 2011; Tudor et al., 2016) in 

the dorsal hippocampus can likewise disrupt consolidation. This suggests that an activity- 

and sleep-dependent mechanism, impinging on biosynthetic pathways in the 

hippocampus, is essential for consolidation. 
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To shed light on this putative mechanism, we characterized changes to ribosome-

associated mRNAs from different hippocampal cell populations (including Camk2a+ 

excitatory neurons and highly active neurons expressing phosphorylated S6 [pS6+]) as a 

function of both sleep vs. SD and prior CFC. By quantifying mRNA profiles on ribosomes 

differentially localized to the cytosol and cellular membranes, we find that while the 

majority of changes to transcripts on cytosolic ribosomes vary as a function of sleep vs. 

wake, the majority of transcript changes on membrane-bound (MB) ribosomes vary as a 

function of learning. Our findings reveal new subcellular functions for post-learning sleep, 

and suggest new cellular mechanisms by which sleep could selectively promote memory 

storage. 

 

3.3 Materials & Methods 

Mouse Husbandry, Handling, and Behavioral Procedures 

 All animal husbandry and experimental procedures were approved by the 

University of Michigan Institutional Animal Care and Use Committee (PHS Animal Welfare 

Assurance number D16-00072 [A3114-01]). For all studies, mice were maintained on a 

12:12h light/dark cycle (lights on at 8 AM) with food and water provided ad lib. B6.Cg-

Tg(Camk2a-cre)T29-1Stl/J mice (Jackson) were crossed to B6N.129-Rpl22tm1.1Psam/J 

mice (Jackson) to express HA-tagged Rpl22 protein in Camk2a+ neurons. 

Mice were individually housed with beneficial enrichment for one week prior to 

experiments, and were habituated to handling (5 min/day) for five days prior to 

experiments. Mice were randomly assigned to one of four groups: HC + Sleep (n = 8), 

HC + SD (n = 7), CFC + Sleep (n = 8), CFC + SD (n = 7). Beginning at lights-on (8 AM), 
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half of the mice underwent single-trial contextual fear conditioning (CFC) as described 

previously (Ognjanovski et al., 2018; Ognjanovski et al., 2014; Ognjanovski et al., 2017). 

Briefly, mice were placed in a novel conditioning chamber (Med Associates), and were 

allowed 2.5 min of free exploration time prior to delivery a 2-s, 0.75 mA foot shock through 

the chamber’s grid floor. After 3 min total in the chamber, mice were returned to their 

home cage (HC). As a control for the effects of learning, HC controls remained in their 

home cage during this time.  HC + SD or CFC + SD mice were then kept awake 

continuously by gentle handling (SD; consisting of cage tapping, nest disturbance, and if 

necessary, stroking with a cotton-tipped applicator) over the next 3 h (for all RNA seq 

studies) or 5 h (for all qPCR experiments). HC + Sleep and CFC + Sleep mice were 

permitted ad lib sleep in their home cage for the same time interval. 

 

Translating Ribosome Affinity Purification (TRAP) 

RiboTag TRAP was performed as previously described (Sanz et al., 2009) by 

indirect conjugation (Jiang et al., 2015), separating membrane-bound and free-floating 

ribosomes (Kratz et al., 2014). Briefly, following 3 h ad lib sleep or SD, mice were 

sacrificed with an overdose of pentobarbital (Euthasol). Brains were extracted and 

hippocampi dissected in ice cold dissection buffer (1x HBSS, 2.5 mM HEPES [pH 7.4], 4 

mM NaHCO3, 35 mM glucose, 100ug/ml cycloheximide). Tissue was then transferred to 

glass dounce column containing 1 ml homogenization buffer (10 mM HEPES [pH 7.4], 

150 mM KCl, 10 mM MgCl2, 2 mM DTT, 0.1 cOmplete™ Protease Inhibitor Cocktail 

[Sigma-Aldrich, 11836170001], 100 U/mL RNasin® Ribonuclease Inhibitors [Promega, 

N2111], and 100 μg/mL cycloheximide) and manually homogenized on ice. Homogenate 



 49 

was transferred to 1.5 ml LoBind tubes (Eppendorf) and centrifuged at 4°C at 1000 g for 

10 min. The resulting supernatant (cytosolic fraction) was transferred to a new LoBind 

tube while the pellet (MB fraction) was resuspended in homogenization buffer. 10% NP40 

was then added to the samples and incubated 5 min on ice, after which both MB and 

cytosolic fractions were centrifuged at 4°C at maximum speed for 10 min. The resulting 

supernatant from both MB and cytosolic fractions was then separated into Input (~50μL), 

Camk2a+ (~400μL), and pS6+ fractions (~500μL). For isolating ribosomes from Camk2a+ 

populations, fractions were incubated with 1:40 anti-HA antibody (Abcam, 

ab9110)(Shigeoka et al., 2018). To isolate ribosomes from highly active (pS6+) neurons 

fractions were incubated with 1:25  anti-pS6 244-247 (ThermoFisher 44-923G)(Knight et 

al., 2012). Antibody binding of the homogenate-antibody solution occurred over 1.5 h at 

4°C with constant rotation.  

For affinity purification, 200 μl/sample of Protein G Dynabeads (ThermoFisher, 

10009D) were washed 3 times in 0.15M KCl IP buffer (10 mM HEPES [pH 7.4], 150 mM 

KCl, 10 mM MgCl2, 1% NP-40) and incubated in supplemented homogenization buffer 

(+10% NP-40). Following this step, supplemented buffer was removed, homogenate-

antibody solution was added directly to the Dynabeads, and the solution was incubated 

for 1 h at 4°C with constant rotation. After incubation, the RNA-bound beads were washed 

four times in 900μL of 0.35M KCl (10mM HEPES [pH 7.4], 350 mM KCl, 10 mM MgCl2, 

1% NP40, 2 mM DTT, 100 U/mL RNasin® Ribonuclease Inhibitors [Promega, N2111], 

and 100 μg/mL cycloheximide). During the final wash, beads were placed onto the 

magnet and moved to room temperature. After removing the supernatant, RNA was 
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eluted by vortexing the beads vigorously in 350 μl RLT (Qiagen, 79216). Eluted RNA was 

purified using RNeasy Micro kit (Qiagen). 

 

Quantitative Real-Time PCR (qPCR) 

 For qPCR, RNA from each sample was converted into cDNA using the SuperScript 

IV Vilo Master Mix (Invitrogen 11756050). qPCR was performed on diluted cDNA that 

employed either Power SYBR Green PCR Mix (Invitrogen 4367659) or TaqMan Fast 

Advanced Master Mix (Invitrogen 4444557). For TRAP enrichment values, each sample 

was normalized to the geometric mean of Pgk1 and Gapdh housekeeping transcripts and 

then normalized to the corresponding Input sample (TRAP Enrichment = 2^(ΔCt_target - 

ΔCt_housekeeping). Effects of SD were assessed by normalizing all groups’ expression 

to the HC + Sleep group. Effects of CFC were quantified by normalizing CFC + Sleep to 

HC + Sleep and normalizing CFC + SD to HC + SD. Primers for mRNAs quantified are 

listed below. 

 

  Forward Primer Reverse Primer 

Gapdh GTGTTTCCTCGTCCCGTAGA AATCCGTTCACACCGACCTT 

Pgk1 TCGTGATGAGGGTGGACTTC ACAGCAGCCTTGATCCTTTG 

Arc CCAGATCCAGAACCACATGA

A 

GAGAGTGTACCCTCACTGTATTG 

cFos GAAGAGGAAGAGAAACGGAG

AAT 

CTTGGAGTGTATCTGTCAGCTC 
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Homer1a GCATTGCCATTTCCACATAG

G 

ATGAACTTCCATATTTATCCACCT

TACTT 

Glua1 AGTGACGCTCGGGACCACAC CTCTGGAAGGCCTCCGCCAT 

Bdnf GGTCACAGCGGCAGATAAA TCAGTTGGCCTTTGGATACC 

Hspa5 CCGAGAACACGGTCTTCGAT ATTCCAAGTGCGTCCGATGA 

Grin2a CGTAGAGGATGCCTTGGTCA CCATAGCCTGTGGTGGCAAA 

Grin2b CGGCCTGAGTGACAAGAAGT TCCTCTCTGTGCTGCCATTG 

Vglut1 CCAGCATCTCTGAGGAGGAG GGCTGAGAGATGAGGAGCAG 

Parv GTCGATGACAGACGTGCTCA TTGTGGTCGAAGGAGTCTGC 

Sst CTCGGACCCCAGACTCCGTC CTCGGGCTCCAGGGCATCAT 

Mbp CCTTGACTCCATCGGGCGCT CTTCTGGGGCAGGGAGCCAT 

Gfap TCCTGGAACAGCAAAACAAG CAGCCTCAGGTTGGTTTCAT 

      

  Catalog # for ThermoFisher 

Taqman Probes 

  

Gapdh Mm99999915_g1   

Pgk1 Mm00435617_m1   

FosB Mm00500401_m1   

FosB Custom-AP47Y2V   
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Homer1 Mm01282664_m1   

Homer1a Custom-APT2DGG   

Atf3 Mm00476033_m1   

Egr3 Mm00516979_m1   

1700016P03

Rik 

Mm01253067_m1   

 

RNA-Seq and Expression Analysis 

RNA-Seq was carried out at the University of Michigan’s DNA Sequencing Core. 

Amplified cDNA libraries were prepared using Takara’s SMART-seq v4 Ultra Low Input 

RNA Kit (Takara 634888) and sequenced on Illumina’s NovaSeq 6000 platform. 

Sequencing reads (50 bp, paired end) were mapped to Mus musculus using Star v2.6.1a 

and quality checked with Multiqc (v1.6a0). Reads mapped to unique transcripts were 

counted with featureCounts (Liao et al., 2013). 

Differential expression analyses were run with Deseq2 (Love et al., 2014). 

Analyses were run with an initial filtering step (removing rows with < 10 counts) and with 

betaPrior = False. To test differences between subcellular fractions within their respective 

cell population, the design of the GLM was set to compare differences between 

supernatant and pellet-enriched transcripts. Camk2a+, pS6+, and Input samples were 

analyzed separately (e.g., Camk2a+[supernatant/pellet]). To quantify effects of SD and 

CFC on expression, the design was switched and each cell population and subcellular 

fraction was analyzed separately. The same two-factor design was used to analyze the 

effects of an animal's state (Sleep or SD) and learning (CFC or HC) on RNA expression. 
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The design compared the effects of SD alone by combining HC and CFC animals. In 

contrast, the effect of learning (CFC) was assessed separately in CFC + Sleep and CFC 

+ SD mice.  

 To characterize the differences between the effects of SD and CFC, significantly 

altered transcripts were analyzed using Ingenuity’s Pathway Analysis (IPA). GO analyses 

were performed in IPA and DAVID’s Functional Annotation tool. For subcellular fraction  

comparisons, 2000 of the top cytosolic (Log2FC > 0) and MB (Log2FC < 0) enriched 

transcripts (ranked by adjusted p values) were run through IPA's Canonical Pathways 

analysis. To characterize differences in common metabolic pathways between cytosolic 

and MB fractions, hierarchical clustering was used to visualize the most differentially-

expressed transcripts. Since signaling pathways were less overlapping between the MB 

and cytosolic fraction, they were ranked by enrichment p values. Those transcripts were 

then run through DAVID’s Functional Annotation tool, selecting for cellular composition to 

describe the cellular compartment the corresponding protein relates to. Data  were plotted 

in Fragments Per Million (FPM) and their correlation value (R) calculated in the ViDger  R 

package (McDermaid et al., 2019). 

 

Immunohistochemistry 

 To characterize HA and pS6 expression in the hippocampus, experimentally naive 

animals were sacrificed and perfused with 1xPBS followed by 4% paraformaldehyde. 

50μM coronal sections containing dorsal hippocampus were blocked in normal goat 

serum for 2 h and incubated overnight using a biotin conjugated anti-HA (Biolegend 

901505, 1:500), anti-pS6 244-247 (ThermoFisher 44-923G, 1:500), and anti-parvalbumin 
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(Synaptic Systems 195 004, 1:500) antibodies. Sections were then incubated with 

secondary antibodies - Streptavidin-Alexa Fluor® 647 (Biolegend 405237), Fluorescein 

(FITC) Goat Anti-Rabbit IgG (H+L) (Jackson 111-095-003), and Alexa Fluor® 555 Goat 

Anti-Guinea pig IgG H&L (Abcam ab150186). Immunostained sections were coverslipped 

in ProLong Gold Antifade Reagent (ThermoFisher, P36930) for imaging with a Leica SP5 

laser scanning confocal microscope. 

 

3.4 TRAP-Mediated Isolation of mRNAs From Hippocampal Neuron 

Subpopulations. 

To quantify the effects of sleep and learning on hippocampal mRNA translation, 

we employed two translating ribosome affinity purification (TRAP) techniques. First, to 

quantify ribosome-associated mRNAs in excitatory neurons, B6.Cg-Tg(Camk2a-cre)T29-

1Stl/J mice were crossed to the B6N.129-Rpl22tm1.1Psam/J mouse line (Sanz et al., 2019; 

Sanz et al., 2009). Offspring from this cross express hemmatagluttin (HA)-tagged 

ribosomal protein 22 (HA-Rpl22) in excitatory (Camk2a+) neurons (Figure 3.1A, left). 

Second, to quantify mRNAs associated with ribosomes in active hippocampal neurons, 

we used an antibody targeting the terminal phosphorylation sites (Ser244/247) of 

ribosomal protein S6 (pS6) (Knight et al., 2012) (Figure 3.1A, left). These sites are 

phosphorylated in neurons as the result of high neuronal activity, by mTOR-dependent 

kinase S6K1/2 (Biever et al., 2015). This strategy allowed us to compare mRNAs 

expressed in the whole hippocampus (Input) with those associated with ribosomes in 

either Camk2a+ or highly active (pS6+) neuronal populations from the same hippocampal 

tissue. To further test how mRNA translation varies as a function of ribosomes’ subcellular 
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localization, we centrifuged our homogenized hippocampal tissue into supernatant 

(presumptive cytosolic) and pellet (presumptive membrane-containing) fractions (Kratz et 

al., 2014). From both fractions, we compared whole-hippocampus (Input) transcripts with  
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Figure 3.1 TRAP-based profiling of hippocampal cell populations and isolation of 
subcellular fractions. (A) Left: Confocal images showing expression of hemagglutinin (HA, 
Camk2a), phosphorylated S6 (pS6), and parvalbumin in area CA1 of dorsal hippocampus. 
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Highlighted neurons are parvalbumin+, pS6+, and HA-. Scale bar = 100 μm. Right: Schematic of 
protocol for isolating mRNAs from subcellular fractions and different cell populations using TRAP. 
(B) Camk2a+ (cyan) and pS6+ (orange) TRAP mRNA enrichment values were calculated (vs. 
Input) for activity-dependent (Arc, Cfos, Homer1a), excitatory neuron (Glua1, Vglut1), inhibitory 
neuron (Parv, Sst), and glial (Mbp, Gfap) transcripts. *** indicates p < 0.001 for enrichment value 
differences between Camk2a+ and pS6+ neuronal populations (Student’s t-test, n = 7/group). (C) 
Camk2a+ and pS6+ TRAP enrichment in supernatant (solid bars) and pellet (hatched bars) 
fractions (vs. Input) for transcripts encoding secreted (Bdnf), transmembrane (Grin2a, Grin2b), 
endoplasmic reticulum (Hspa5), and cytosolic (Cfos, Homer1a) proteins. (Student’s t-test, n = 
9/group, * , ** , and *** indicate p < 0.05, p < 0.01, and p < 0.001, respectively). (D) PCA plot 
(VST, Deseq2) for RNAseq data (from n = 30 hippocampal samples) from the three cell 
populations (Input, Camk2a+ neurons, and pS6+ neurons) and two fractions (supernatant and 
pellet). 
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transcripts isolated by TRAP from excitatory (Camk2a+) and highly active (pS6+) neuron 

populations (Figure 3.1A). 

Using quantitative PCR (qPCR), we validated cell type-specific gene expression 

from the Camk2a+ and pS6+ populations. Relative to Input mRNA, Camk2a+ mRNA 

displayed similar levels of Arc, Cfos, Homer1a, Glua1, and Vglut1, with reduced 

expression of interneuron and glial cell markers. Compared to Input, highly activated 

pS6+ neurons’ mRNA profiles displayed significant enrichment in activity-dependent 

transcripts (Arc, Cfos, Homer1a) and interneuron-specific transcripts (Pvalb, Sst), and 

comparable levels of excitatory neuron-specific mRNAs (Glua1, Vglut1) (Figure 3.1A,B). 

We next used qPCR for preliminary validation of sub-cellular enrichment of mRNAs 

expressed in supernatant and pellet fractions. Previous reports have found that isolating 

pellet ribosomes enriches for endoplasmic reticulum (ER) and dendritic localized 

ribosomes) (Kratz et al., 2014). To test whether fractions differently enriched genes 

trafficked to the ER and dendrites we first analyzed Hspa5. Encoding the resident ER 

chaperone BIP, Hspa5 was significantly more enriched in the pellet fractions than the 

cytosolic fractions of both Camk2a+ and pS6+ neurons (Figure 3.1C; Camk2a+: 

supernatant - 1.03 × Input,  pellet - 7.38 × Input, p < 0.001, Student’s t-test; pS6+: 

supernatant - 1.17 × Input, pellet - 10.33 × Input, p < 0.001). Similarly, Bdnf, Grin2a, and 

Grin2b mRNAs (encoding the secreted growth factor and glutamatergic receptor 

subunits) were more enriched on ribosomes isolated from the pellet fraction compared to 

the supernatant fraction. In contrast, Homer1a (encoding the truncated version of the 

synaptic scaffolding protein Homer1, present in cytosol) was more abundant on 

supernatant ribosomes in both neuron populations, and Cfos was equally abundant in 
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both fractions. These results suggest that ribosome-associated transcripts observed in 

pellet and supernatant fractions encode proteins with predicted enrichment on cell 

membranes and in cytosol, respectively. We further characterized mRNAs taken from 

different cell populations (Camk2a+, pS6+, Input) and subcellular fractions (supernatant, 

pellet) using a non-biased approach - RNA-seq. PCA analysis of the full RNA-seq data 

set revealed six discrete clusters of mRNA expression profiles, based on the origin of the 

samples (Figure 3.1D). 

 

3.5 Supernatant and Pellet Fractions Distinguish Transcripts Localized to 

Cytosolic and Membrane-Bound (MB) Ribosomes 

To characterize transcripts that are differentially localized to the supernatant or 

pellet fraction, we next calculated the relative mRNA abundance in the two fractions from 

Camk2a+ neurons (Figure 3.2A), pS6+ neurons (Figure 3.3A), and Input (i.e., whole 

hippocampus, Figure S3.1A) using Deseq2 (Love et al., 2014). The top 2000 most 

differentially expressed transcripts between the two fractions (based on adjusted p value) 

were characterized using DAVID’s cellular component annotation (Dennis Jr. et al., 2003). 

Confirming our initial validation (Figure 3.1B), supernatant-enriched transcripts from both 

neuron populations (and Input) encoded proteins with functions localized to the cytoplasm 

and nucleus. Pellet-enriched transcripts encoded proteins with functions localized to the 

plasma membrane, endoplasmic reticulum, Golgi apparatus, and synapses (Figure 3.2B, 

Figure 3.3B, Figure S3.1B). Thus for subsequent analyses, we refer to supernatant and 

pellet fractions as cytosolic and membrane-bound (MB), respectively. Signaling and 

metabolic pathways enriched among cytosolic ribosome-associated  
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Figure 3.2  Cytosolic and membrane protein-
encoding transcripts in Camk2a+ neurons 
are preferentially enriched in supernatant 
and pellet ribosomal fractions respectively. 
(A) Volcano plot of transcripts significantly 
enriched in pellet (red) and supernatant (blue) 
cell fractions of Camk2a+ neurons. Of the 
28,071 transcripts detected, 7,651 (27%) were 
significantly (padj < 0.1) enriched in the 
supernatant (cytosolic) fraction, and 10,911 
(39%) were significantly enriched in the pellet 
(MB) fraction. (B) Top 10 cellular component 
localizations (from DAVID) of the 2000 
transcripts most significantly enriched (based on 
adjusted p value) in either pellet (MB) or 
supernatant (cytosolic) fractions. (C) Top 20 
most-enriched signaling and metabolic 
pathways represented by the 2000 most-
enriched transcripts in Camk2a+ cytosolic or MB 
fractions. (D) Illustration of the synaptogenesis 
signaling pathway (IPA) with proteins shaded by 
their respective transcripts’ preferential 
localization in cytosolic (red) and MB (blue) 
fractions. 
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Figure 3.3 Differential expression of mRNAs 
encoding intracellular signaling pathway 
components in cytosolic vs. MB ribosomal 
fractions from highly active (pS6+) neurons. (A) 
Volcano plot of transcripts significantly enriched in 
pellet (red) and supernatant (blue) cell fractions. Of 
the 34,657 transcripts detected, 8,030 (23%) were 
significantly (padj < 0.1) enriched in the supernatant 
(cytosolic) fraction, and 14,244 (41%) were 
significantly enriched in the pellet (MB)  fraction. 
(B) Top 10 cellular component localizations (from 
DAVID) of the 2000 transcripts which were most 
significantly enriched (based on adjusted p value) 
in either pellet (MB) or supernatant (cytosolic) 
fractions of pS6+ neurons. (C) Top 20 most-
enriched signaling and metabolic pathways 
represented by the 2000 most-enriched transcripts 
in pS6+ cytosolic or MB fractions. (D) Log2FC 
values indicating enrichment of transcripts from the 
Creb1 signaling pathway in the cytosolic (red) or 
MB (blue) fractions (subcategorized by encoded 
protein type). 
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Supplemental Figure S3.1 Transcripts 
enriched in cytosolic and MB fractions 
from Input (whole hippocampus). (A) 
Volcano plot of transcripts significantly 
enriched in pellet (red) and supernatant (blue) 
cell fractions. Of the 27,773 transcripts 
detected, and 8310 (30%) showed significant 
enrichment in the supernatant (cytosolic) 
fraction, 9,285 (33%) showed enrichment in 
the pellet (MB) fraction. (B) Top 10 cellular 
component localizations (from DAVID) of the 
2000 transcripts which were most significantly 
enriched (based on padj value) in either pellet 
(MB) or supernatant (cytosolic) fractions. (C) 
Top 20 most-enriched signaling and metabolic 
pathways represented by the 2000 most-
enriched transcripts in Input cytosolic or MB 
fractions. (D) Log2FC values indicating 
enrichment of transcripts from the ubiquitin 
signaling pathway in the cytosolic (red) or MB 
(blue) fractions. 
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mRNAs were assessed using Ingenuity Pathway Analysis [IPA] canonical pathways 

(Figure 3.2C-D, Figure 3.3C-D). Here, we identified cytosol-localized cellular pathways 

including ubiquitination, nucleotide excision repair, hypoxia signaling, and sumoylation 

pathways. In contrast, MB fraction-enriched transcripts represented signaling pathways 

involved in synaptic (GABAergic receptor, glutamatergic receptor, and endocannabinoid 

signaling) and endoplasmic reticulum (e.g., unfolded protein response) functions (Figure 

3.2C-D, Figure 3.3C-D). 

To further investigate subcellular localization of transcripts representing cellular 

pathways critically involved in hippocampal function, we examined signaling pathways 

enriched in both cytosolic and MB fractions. Because both learning and sleep affect 

synaptic structure and function (Bruning et al., 2019; Noya et al., 2019; Raven et al., 2019; 

Spano et al., 2019), we first focused on the synaptogenesis signaling pathway. In 

Camk2a+ neurons, MB-enriched transcripts encoded secreted proteins (e.g., Bdnf), 

transmembrane proteins including AMPA, NMDA, and ephrin receptors (e.g., Gria1, 

Gria2, Gria3, Grin2a, Grin2b, Grin2c, Epha1, Epha2) and membrane-associated 

enzymes (Plcγ) (Figure 3.2D). Cytosol-enriched mRNAs encoded intracellular 

complexes including adaptor proteins (Crk, Shc) and kinases (Cdk5, Lmk1, Gsk3b, 

Mapk1, Mapk2, P70S6K) in the synaptogenesis pathway (Figure 3.2D). Components of 

the CREB signaling pathway (another known target of both learning and sleep) (Abel et 

al., 1997; Kandel, 2012; Luo et al., 2013; Vecsey et al., 2009; Vecsey et al., 2007) was 

also differentially enriched on cytosolic vs. MB ribosomes, in both Camk2a+ and pS6+ 

neuronal populations (Figure 3.2C, Figure 3.3C). mRNAs encoding enzymes in the 

CREB pathway were selectively localized to ribosomes in either compartment of neuronal 
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populations (e.g., Polr2c, encoding the RNA polymerase subunit, in the cytosolic fraction; 

Adcy1, encoding adenylate cyclase, in the MB fraction). mRNAs encoding G-protein 

coupled receptors and ion channels (metabotropic glutamate receptors, endoplasmic 

reticulum IP3 receptors, calcium channel subunits, AMPA and NMDA receptor subunits) 

localized exclusively to the MB fraction, while those encoding transcription factors and 

kinases localized primarily to the cytosolic fraction (Figure 3.3D). In contrast to Camk2a+ 

and pS6+ neuron populations, the CREB signaling pathway was not represented among 

mRNAs differentially localized to subcellular fractions of Input (i.e., whole hippocampus; 

Figure S3.1), suggesting that differential localization of mRNAs encoding CREB signaling 

components are more pronounced in neurons than other hippocampal cell types. 

 Overall, functional categories represented in the two subcellular fractions in Input 

RNA followed a pattern similar to that seen in Camk2a+ and pS6+ neuronal populations. 

However, in contrast to ribosome-associated transcript profiles from neuronal 

populations, the signaling pathway category that was most represented by mRNAs 

differentially localized between the two Input fractions was the protein ubiquitination 

pathway (Figure S3.1). This may indicate more dramatic subcellular segregation of 

mRNAs encoding ubiquitin pathway components in non-neuronal hippocampal cell types 

(i.e., glial cells). 

 

3.6 Learning and Sleep Loss Have Divergent Effects on Cytosolic and MB 

Ribosome-Associated mRNA Profiles. 

Because both learning and sleep alter hippocampal activity, intracellular signaling, 

and function (Havekes et al., 2016; Ognjanovski et al., 2018; Ognjanovski et al., 2014; 
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Vecsey et al., 2009), we next tested how cytosolic and MB ribosome-associated 

transcripts in different neuron types were affected by prior training on a hippocampus-

dependent memory task (contextual fear conditioning [CFC]). We also tested how these 

transcript profiles were affected by a brief (3-h) period of subsequent sleep or sleep 

deprivation (which is sufficient to disrupt contextual fear memory (CFM) consolidation) 

(Graves et al., 2003; Ognjanovski et al., 2018; Vecsey et al., 2009). At lights on (i.e., the 

beginning of the rest phase), mice were either left in their home cage (HC) or underwent 

single-trial CFC (placement in a novel chamber followed by delivery of a foot shock). Over 

the next 3 h, mice in CFC and HC control groups were either permitted ad lib sleep (Sleep) 

or were sleep deprived (SD) in their home cage by gentle handling (Figure 3.4A). These 

manipulations were followed by RNA isolation and sequencing as described above. 

Effects of learning and sleep loss on mRNA abundance were quantified for each cell 

population (Camk2a+, pS6+, or Input) and subcellular fraction (cytosolic or MB; e.g., pS6+ 

MB) to preserve gene-level inferences made by the Deseq2 model.  

We first assessed the specific effects of sleep deprivation alone (comparing SD 

and Sleep conditions) by combining data sets from naive (HC) and recently trained (CFC) 

mice (Figure 3.4A, Yellow). We then quantified the effects of learning (comparing CFC 

and HC conditions) separately in Sleeping and SD mice (Figure 3.4A, Red[SD], 

Blue[Sleep]). Venn diagrams (shown in Figure 3.4B) show the proportional changes in 

mRNAs resulting from these comparisons. SD had a relatively large effect on cytosolic 

ribosomal mRNAs (Camk2a+: 567 transcripts, pS6+: 913 transcripts, Input: 297 

transcripts) compared to the effect of learning, which had extremely modest effects on 

cytosolic ribosomal transcripts. Conversely, MB ribosomal mRNAs were dramatically  
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Figure 3.4 Cytosolic ribosomal 
transcripts are altered primarily by 
SD, while MB ribosomal 
transcripts are altered primarily by 
learning. (A)  Left: Experimental 
paradigm for RNA-seq experiments. 
At lights on, mice were either left in 
their home cage (HC) or underwent 
single-trial CFC. All mice were then 
either permitted ad lib sleep or were 
sleep deprived (SD) over the 
following 3 h. Right: Transcript 
comparisons for quantifying effects 
of SD (yellow) included both HC and 
CFC animals. To quantify effects of 
CFC, CFC + Sleep (Blue) and CFC + 
SD (Red) mice were analyzed 
separately. Following behavioral 
manipulations, cytosolic and MB 
fractions for different cell populations 
were isolated as described in Figure 
3.1. (B) Proportional Venn diagrams 
reflect the number of significantly 
altered transcripts in each cell 
populations and subcellular fractions 
(i.e., Camk2a+/Membrane-Bound), 
based on comparisons shown in A. 
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altered by learning in both SD (CFC + SD - Camk2a+: 2,396 transcripts, pS6+: 1,908 

transcripts, Input: 840 transcripts) and Sleep groups (CFC + Sleep - Camk2a+: 795 

transcripts, pS6+: 2,211 transcripts, Input: 208 transcripts). In contrast, relatively few MB 

ribosomal mRNAs were altered by SD (Camk2a+: 233 transcripts, pS6+: 164 transcripts, 

Input: 95 transcripts). These results suggest that SD and learning differentially affect 

ribosomal mRNA profiles based on their subcellular localization - with SD (vs. Sleep) 

having more pronounced effects in the cytosol, and learning having more pronounced 

effects on MB ribosomes. 

 

3.7 SD Primarily Affects Cytosolic Ribosomal mRNAs Involved in 

Transcription Regulation. 

Significantly more cytosolic ribosome-associated mRNAs were altered as a 

function of Sleep vs. SD alone (compared with relatively few changes driven by CFC) in 

Camk2a+ neurons (SD: 567 transcripts, CFC: 20 transcripts), pS6+ neurons (SD: 913 

transcripts, CFC: 43 transcripts), and to a lesser extent, Input (whole hippocampus) 

mRNA (SD: 297 transcripts, CFC: 37 transcripts) (Figure 3.4B). Therefore, we next 

sought to characterize the molecular and cellular pathways altered by SD-induced 

changes to cytosolic ribosome transcripts (Figure 3.5A). Molecular functions most 

affected by SD alone (based on adjusted p values < 0.1 for transcripts using IPA 

annotation) overwhelmingly favored transcriptional regulation and RNA processing in 

both Camk2a+ and pS6+ neurons, as well as in Input (Figure 3.5B, Top). Previous 

transcriptome analysis has shown that mRNAs encoding transcription regulators are 

more abundant following brief SD in the hippocampus (Fos, Elk1, Nr4a1, Creb, Crem1)  
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Figure 3.5 mRNAs altered by SD on cytosolic ribosomes encode transcriptional regulators. 
(A)  Left: Proportional and overlapping Venn diagrams of transcripts significantly altered by SD, 
CFC + Sleep, and CFC + SD in cytosolic fractions from Camk2a+ neurons, pS6+ neurons, and 
Input.  Right:   Volcano plots of Deseq2 results for transcripts measured in each condition. (B) 
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Top: The 7 most-enriched molecular and cellular function categories (ranked by padj value) for 
transcripts altered by SD alone in Camk2a+ neurons, pS6+ neurons, and Input. Bottom: The 10 
most-enriched canonical pathways of SD-affected transcripts are listed in order padj value 
(indicated by circle diameter), with z-scores indicating direction of pathway regulation (indicated 
by hue). There were no significant canonical pathways present in the Input fraction. (C)  Left: The 
10 transcripts most significantly affected in CFC + Sleep (blue) and CFC + SD (red) conditions 
for Camk2a+ (top) and pS6+ (bottom) neurons, ranked by padj value. Transcripts that were also 
significantly altered as a function of SD alone are highlighted in yellow. Right: Results of 
transcript-level analysis (Yi et al., 2018), show transcripts for transcript isoforms altered in 
Camk2a+ (top) and pS6+ (bottom) neurons following CFC. Transcript isoforms that were 
significantly altered as a function of SD are highlighted in yellow. 
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(Vecsey et al., 2012) and cortex (Per2, Egr1, Nr4a1) (Cirelli et al., 2004). 

Consistent with those findings, SD increased the abundance of multiple mRNAs encoding 

transcription factors and upstream regulators in all cell populations, including E2f6, Elk1, 

Erf, Fosl1, Fosl2, Fos, Fosb, Lmo4, Taf12, Xbp1, Atf7, Artnl2, Atoh8, Bhlhe40(Dec1), 

Crebl2, Crem, Egr2, Nfil3, and Ubp1. Transcripts affected in Camk2a+ and pS6+ neurons 

overlapped partially with those reported in previous SD experiments, including 

components of pathways for AMPK, PDGF, ERK/MAPK, IGF-1 and endoplasmic 

reticulum stress signaling (Figure 3.5B, Bottom) (Naidoo et al., 2005; Tudor et al., 2016; 

Vecsey et al., 2012). However, only a small fraction (12-16%) of the 511 mRNAs 

previously reported to be altered by SD in whole hippocampus (Vecsey et al., 2012) 

overlapped with SD-affected mRNAs in cytosolic fractions of any cell population (Figure 

S3.2). In pS6+ neurons only, mRNAs encoding components of the PI3K/AKT and TGF-B 

signaling pathways were downregulated in the cytosolic fraction after SD (Figure 3.5B, 

Bottom), suggesting that activity in these pathways may be higher during sleep.  

We next performed upstream regulator analysis to characterize transcript changes 

due to SD-associated transcriptional regulation. Results of this analysis provide both a p-

value for the significance of mRNAs’ regulation by a specific common upstream regulator, 

and a z-score indicating the direction of the regulated mRNAs’ fold change (i.e., 

transcriptional activation or suppression). Taken together these values predict the 

activation state of specific gene regulator complexes during SD (Kramer et al., 2014). In 

line with prior meta-analysis of SD-induced transcripts (Wang et al., 2010), Creb1 was 

identified as the transcriptional regulator whose downstream targets’ were most 

consistently affected across all cytosolic (Figure 3.6A). Creb1 transcript itself was not  
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Supplemental Figure S3.2 Overlap of SD-altered transcripts with previously-characterized 
SD-altered mRNAs. Venn diagrams indicate degree of overlap for transcripts altered by SD in 
the present study and those previously reported for whole hippocampus following SD (Vecsey et 
al., 2012).  
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Figure 3.6 Creb1 target transcripts are upregulated on cytosolic ribosomes after SD. (A) Z-
scores for the 5 upstream transcriptional regulators whose target transcripts were most 
significantly affected by SD, ranked by padj values. (B) Networks of Creb1 transcriptional targets 
altered by SD in Camk2a+ (top) and pS6+ (bottom) neurons. Color of arrows from Creb1 to 
transcripts indicates the predicted direction of transcriptional regulation - orange (with red 
transcript symbols) denotes transcripts predicted to be upregulated by Creb1 which are 
upregulated following SD; blue (with green transcript symbols) indicates transcripts predicted to 
be repressed by Creb1 which are repressed by SD; yellow indicates SD-related changes that do 
not match predicted regulation by Creb1; grey indicates undermined effects of Creb1 on transcript 
levels. (C)  Relative Creb1 network regulation padj values and z-scores are plotted for transcripts 
altered on cytosolic ribosomes by SD, CFC + Sleep, and CFC + SD in Camk2a+ and pS6+ cell 
populations.   
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increased following SD, although Crebl2 and Crem mRNAs were both increased, and 

multiple Creb1 transcriptional targets (e.g., Fos, Arc, FosB, Egr2, Nfil3, Nr4a2, Bag3, Irs2) 

were upregulated in the cytosolic fraction of both Camk2a+ and pS6+ neuronal 

populations (Figure 3.6B) after SD. 

 

3.8 CFC-Induced Changes in Cytosolic Ribosome-Associated mRNAs Are 

Occluded by Subsequent SD. 

 Hippocampal fear memory consolidation in the hours following CFC relies on both 

sleep  (Graves et al., 2003; Ognjanovski et al., 2018; Vecsey et al., 2009)  and CREB-

mediated transcription (Katche et al., 2010; Rao-Ruiz et al., 2019). With Creb1 activity 

high during SD, we were curious what effect SD would have on the abundance of 

ribosome-associated transcripts involved in memory consolidation. As discussed above, 

few cytosolic ribosome-associated mRNAs were altered by CFC (Figure 3.4, 3.5). In 

Camk2a+ neurons, 19 cytosolic ribosome-associated transcripts were altered (compared 

to HC controls) in CFC + Sleep mice, whereas only 2 transcripts were altered in CFC + 

SD mice. Of those, most (13/19 from CFC + Sleep, 2/2 from CFC + SD) were also 

increased by SD alone (Figure 3.5A). Ribosome-associated mRNAs affected by both SD 

and CFC in Camk2a+ neurons included activity-dependent transcripts such as Fosb, 

Arhgap39(Vilse), and Errfi1 (Figure 3.5C, Yellow). For comparison, for Input (i.e., whole 

hippocampus), slightly more cytosolic ribosome-associated mRNAs were altered after 

CFC + SD (27 transcripts) vs. CFC + Sleep (14 transcripts). Of these, 6/27 and 9/14, 

respectively, were similarly affected by SD alone (Figure 3.5A).  
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These initial data suggested that changes in cytosolic ribosome-associated 

transcripts after SD alone could occlude transcript changes triggered by CFC. To better 

characterize how this might affect the neurons that are most activated by CFC (which 

could represent CFC “engram neurons”), we compared cytosolic transcripts affected by 

CFC vs. SD alone in pS6+ neurons. While similar numbers of transcripts were altered by 

CFC followed by sleep or SD (23 vs. 22), only two transcripts (Fosb and Egr3) were 

similarly affected in both CFC + Sleep and CFC + SD mice (Figure 3.5A, C). Of the 

transcripts altered on cytosolic ribosomes after CFC in pS6+ neurons, several (12/23 of 

those affected in freely sleeping mice, 6/22 of those affected in SD mice) were also 

regulated by SD (Figure 3.5A), including Fosb, Egr3, Arghap39(Vilse), Gpr3, Ssh2, 

Inhba, Rnf19a, and Cdkn1a (Figure 3.5C, Yellow). Because SD alters a significant 

number of transcripts involved in RNA splicing/processing (Figure 3.5B), and splice 

isoforms play critical roles in synaptic plasticity and memory storage (Poplawski et al., 

2016), we next assessed effects of SD and CFC on differentially-spliced mRNA isoforms 

using transcript-level analysis (Yi et al., 2018) (Figure 3.5C). On cytosolic ribosomes from 

pS6+ neurons, both the activity-dependent splice isoform of Homer1 scaffolding protein 

(Homer1a) and the highly-stable activity-dependent splice isoform of FosB (ΔFosb) were 

increased after CFC followed by ad lib sleep, but not after CFC in SD mice (Figure 3.5C). 

These isoforms were also increased as a function of SD alone, suggesting another 

mechanism by which SD could occlude changes to pS6+ neurons initiated by learning 

(Figure 3.5C, Yellow).  

To validate and extend these findings, we harvested hippocampi from CFC and 

HC mice following 5 h of SD or ad lib sleep (i.e., a later time point with respect to learning).  
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Figure 3.7 CFC-induced 
alterations in Fosb and 
Homer1 splice variants 
are occluded by post-CFC 
SD in Camk2a+ neurons. 
(A) Fosb and ΔFosb 
expression for CFC and HC 
mice after 5 h of subsequent 
sleep or SD is shown for 
cytosolic fractions of the 3 
cell populations. Top, left: 
Expression in the 4 
conditions relative to values 
from HC + Sleep mice 
(Two-way ANOVA, 
CFC/SD, df = 18, *** p-
value < 0.001). Top, right: 
Relative enrichment/de-
enrichment for Fosb and 
ΔFosb in Camk2a+ and 
pS6+ neurons, relative to 
Input, for the 4 conditions. 
Bottom: Expression of 
Fosb and ΔFosb following 
CFC conditions relative to 
same-state (SD or Sleep) 
home-cage (HC) conditions 
(t-test, n = 5/group[HC], n = 
6/group[CFC]) #, * , ** , and 
*** indicate p < 0.1, p < 0.05, 
p < 0.01, and p < 0.001, 
respectively. (B) Homer1 
and Homer1a expression in 
cytosolic fractions in the 4 
conditions, normalized as 
described in (A).  
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Using qPCR, we first quantified mRNA levels for splice isoforms of Fosb and 

Homer1 in the cytosolic fraction of whole hippocampus (Input), Camk2a+ neurons, and 

pS6+ neurons. Similar to what was observed after 3 h of SD, 5 h of SD increased 

expression of both Fosb and its long-lasting splice isoform ΔFosb, regardless of prior CFC 

(Figure 3.7A, left). Compared with Input, Fosb and ΔFosb transcripts were relatively de-

enriched in Camk2a+ neurons, but  highly enriched in pS6+ neurons (consistent with 

neural activity regulating both S6 phosphorylation and Fosb and ΔFosb transcript 

abundance) (Figure 3.7A, right). To measure CFC-driven changes in these transcripts, 

we normalized Fosb and ΔFosb transcripts in CFC + Sleep or CFC + SD mice to that of 

the corresponding HC control group. In both pS6+ neurons and Input, ΔFosb increased 

following CFC, regardless of subsequent sleep or SD. In Camk2a+ neurons, however, 

both Fosb and ΔFosb transcripts increased in CFC + Sleep mice, but this increase was 

occluded in CFC + SD mice (Figure 3.7A, bottom).  

We also used qPCR to quantify the relative expression Homer1 and its splice 

variant Homer1a in cytosolic fractions after CFC and 5 h subsequent sleep or SD. Homer1 

itself was modestly affected by 5 h of SD, whereas the Homer1a transcript was 

dramatically elevated, consistent with earlier findings (Mackiewicz et al., 2008; Maret et 

al., 2008) (Figure 3.7B, left). Homer1 was de-enriched in both Camk2a+ and pS6+ 

neurons relative to Input, while Homer1a was enriched only in pS6+ neurons (consistent 

with regulation by neuronal activity) (Figure 3.7B, right). Similar to ΔFosb, CFC 

increased Homer1a across all cell populations in mice allowed ad lib sleep, but this 

increase was occluded in Camk2a+ neurons by SD (Figure 3.7C, bottom). 
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We quantified additional cytosol-enriched transcripts for proteins with known 

functions in hippocampal plasticity and memory, to test the effects of CFC and 5 h 

subsequent sleep or SD (Figure S3.3). These included transcripts increased in our Desq2 

analysis following SD alone, and either unaffected by CFC (Cfos, Arc), altered only in 

CFC + SD mice (Atf3), or altered only in CFC + Sleep mice (1700016P03Rik). We also 

visualized Egr3 which was unaffected by SD but increased by CFC in both CFC + SD and 

CFC + Sleep groups. All transcripts except Egr3 were altered by 5 h SD in Camk2a+ and 

pS6+ neuron populations. In pS6+ neurons, Cfos and the lncRNA transcript 

1700016P03Rik (Aten et al., 2016; Aten et al., 2018) remained significantly elevated as 

a function of learning 5 h following CFC; SD either fully or partially occluded these 

learning-associated changes (Figure S3.3). No significant CFC-induced changes in 

these transcripts were detectable on cytosolic ribosomes from Camk2a+ neurons at 5 h 

post-CFC. 

Taken together, these data support the hypothesis that CFC-associated changes 

in activity-regulated transcripts at cytosolic ribosomes are likely occluded by subsequent 

SD. This effect, which is most pronounced for highly-active (putative engram) 

hippocampal neurons, constitutes a plausible mechanism for memory consolidation 

disruption by SD. 

 

3.9 SD Affects MB Ribosomal Transcripts Involved in Receptor-Mediated 

Signaling, Endoplasmic Reticulum Function, and Protein Synthesis. 

Fewer mRNAs were altered as a function of SD alone on MB ribosomes compared 

with cytosolic ribosomes (where most observed changes were driven by SD, rather than  
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Supplemental Figure S3.3 CFC-induced alterations in activity-dependent transcripts in 
Sleep and SD mice. Expression of activity-regulated transcripts Cfos, Atf3, Arc, and Erg1) and 
lncRNA 1700016P03Rik for CFC and HC mice after 5 h of subsequent sleep or SD is shown for 
cytosolic fractions of Camk2a+ and pS6+ neurons. Top: Expression in the 4 conditions relative 
to values from HC + Sleep mice (Two-way ANOVA, CFC/SD, df = 18) #, * , ** , and *** indicate p 
< .10, p < 0.05, p < 0.01, and p < 0.001, respectively. Bottom: Expression for the CFC conditions 
relative to same-state (SD of Sleep) HC conditions.  
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CFC) (Figure 3.4, Figure 3.8A). Changes in MB ribosomal transcripts due to SD were 

also dwarfed by more numerous changes to MB ribosome-associated transcripts 

following CFC. These changes differed substantially between Camk2a+ neurons, pS6+ 

neurons, and Input, thus canonical pathways represented by transcripts altered in the 

three populations by SD also differed. Critically, no canonical pathways were significantly 

enriched by SD-induced transcript changes in either Camk2a+ neurons or Input. On MB 

ribosomes from both Input and Camk2a+ cell populations, SD-altered transcripts included 

components of cellular pathways that were significantly affected in SD-regulated 

transcripts on cytosolic ribosomes (see Figure 3.5B), and with transcripts affected by SD 

in prior whole hippocampus transcriptome studies (Naidoo et al., 2005; Tudor et al., 2016; 

Vecsey et al., 2012). These included components of the AMPK (Chrm5, Irs2, Pfkfb3, 

Ppm1f, Prkab2, Prkag2, Smarcd2), IGF-1 (Elk1, Rasd1), IL-3 (Crkl, Foxo1), relaxin 

(Gnaz, Pde4b, Smpdl3a), and neuregulin (Errfi1) signaling pathways in Camk2+ neurons, 

and components of glucocorticoid receptor signaling (Elk1, Gtf2e2, Prkab2, Prkag2, 

Rasd1, Smarcd2, Taf12, Fos, Krt77, Ptgs2, Tsc22d3), unfolded protein response (Hspa5, 

Pdia6), and endoplasmic reticulum stress (Calr, Xbp1) pathways in both Camk2a+ 

neurons and Input. Critically, however, only 30 (6%) of the 511 mRNAs previously 

reported to be altered by SD in whole hippocampus (Vecsey et al., 2012) overlapped with 

SD-affected mRNAs in the MB fraction of whole hippocampus (i.e., Input; Figure S3.2). 

This suggests that even within these common identified cellular pathways, individual 

transcripts altered by SD in on MB ribosomes may differ substantially from those reported 

previously.  
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Figure 3.8 Transcripts altered by CFC on MB ribosomes encode regulators of neuronal 
morphology, intracellular trafficking, and lncRNAs. (A)  Left: Proportional and overlapping 
Venn diagrams of transcripts significantly altered by SD, CFC + Sleep, and CFC + SD in MB 
fractions from Camk2a+ neurons, pS6+ neurons, and Input.  Right:  Volcano plots of Deseq2 
results for transcripts measured in each condition. (B) The 7 most-significant molecular functions 
(ranked by padj value) for transcripts altered by CFC + Sleep (top) and CFC + SD (bottom) in 
Camk2a+ neurons, pS6+ neurons, and Input. (C)The 10 transcripts most significantly affected in 
CFC + Sleep (blue) and CFC + SD (red) conditions for Camk2a+ and pS6+ neurons, ranked by 
padj value. Transcripts that were also significantly altered as a function of SD alone are highlighted 
in yellow. 
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In contrast to SD-driven changes in Camk2a+ neurons and Input, SD-altered 

transcripts from pS6+ neurons’ MB ribosomes significantly enriched for several canonical 

pathways. These included the neurotrophin/TRK (Atf4, Bdnf, Fos, Ngf, Plcg1, Spry2), 

corticotropin releasing hormone (Crh, Vegfa), ERK5 (Il6st, Rasd1), and EIF2 (Eif2b3, 

Hspa5, Ptbp1, Rpl37a) signalling pathways and the human embryonic stem cell 

pluripotency pathway (Bmp2, Inhba, Wnt2). Thus the major pathways affected by SD 

among MB ribosome-associated transcripts comprise receptor signalling pathways, 

protein synthesis regulation, and endoplasmic reticulum function. 

  

3.10 Learning-Related Changes in MB Ribosomal Transcripts Diverge 

Based on Subsequent Sleep or SD. 

  In contrast to the sparsely expressed CFC-driven transcript changes observed on 

cytosolic ribosomes, the majority of transcript changes on MB ribosomes were driven by 

CFC (Figure 3.4, Figure 3.8A). Critically, learning-induced changes in MB-fraction 

transcripts diverged in all cell populations, depending on whether CFC was followed by 3 

h of ad lib sleep or 3 h of SD. In contrast to the high degree of overlap between SD-driven 

and CFC-driven transcript changes in the cytosol, on MB ribosomes, mRNAs affected by 

SD showed significantly less proportional overlap (2-10%) with CFC-induced changes 

(Figure 3.8A). These data suggest that translational profiles of MB ribosomes are most 

selectively affected by prior learning, but that the specific mRNAs associated with MB 

ribosomes also vary dramatically as a function of post-learning sleep or SD.  

We first characterized the cellular and molecular functions of MB ribosomal 

mRNAs altered as a function of CFC and subsequent sleep or SD. For Camk2a+ and 
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pS6+ neurons, the most enriched functional categories largely overlapped, and 

represented similar molecular categories in CFC + Sleep and CFC + SD mice - including 

organization of cytoplasm, organization of cytoskeleton, microtubule dynamics, cell-cell 

contact, and formation of protrusions (Figure 3.8B). In contrast, few of these categories 

were enriched in Input MB fractions. There, the most enriched functional categories for 

transcripts altered by CFC + Sleep included excretion of sodium and potassium, formation 

of cilia, organization of cellular protrusions, desensitization of phagocytes, and abnormal 

quantity of phospholipid. Alterations in Input mRNAs following CFC + SD also enriched 

for functional categories not represented in neuronal MB fractions, including cell 

degeneration, metabolism of membrane lipid derivative, metabolism of sphingolipid, 

endoplasmic reticulum stress response. Together, these data suggest that CFC may alter 

similar membrane-associated cellular functions in Camk2a+ and pS6+ neuronal 

populations, regardless of subsequent sleep or SD. In contrast, CFC may have distinct 

and pronounced effects on membrane-associated functions in other hippocampal cell 

types (e.g., glia), and that these effects may diverge based on the animal’s sleep state. 

To further characterize changes in MB-associated ribosomal transcripts following 

learning, we first compared the most significantly altered mRNAs (based on adjusted p 

value) in Camk2a+ and pS6+ neurons following CFC in sleeping and SD conditions 

(Figure 3.8C). At Camk2a+ neurons’ MB ribosomes, CFC + Sleep led to increased 

abundance for mRNAs encoding transmembrane receptors (Chrm5, Htr1a) and 

dramatically decreased abundance for multiple lncRNAs including Kcnq1ot1, Meg3, 

Mir99ahg and unannotated transcripts (e.g., Gm37899, Gm26917) (Figure 3.8C). Many 

other lncRNAs showed reduced abundance on MB ribosomes following CFC (including 
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Neat1, Malat1, Mirg, and Ftx). With the exception of Mirg and Ftx, these lncRNAs were 

also significantly reduced following CFC + SD. CFC + SD led to the most significant 

transcript increases on MB ribosomes for Lrrc8c (encoding an acid sensing, volume-

regulated anion channel), and anti-adhesive extracellular molecules (Sparcl1/Hevin), 

adhesion molecules (F3/Contactin1), transmembrane receptors (Paqr8), potassium 

modifiers (Kcng4), endoplasmic reticulum-tethered lipid synthesis molecules (Hacd2), 

and actin regulators (Fam107a). 

In highly active (pS6+) neurons, Dync1h1 was the most significantly altered 

transcript following CFC, and was dramatically reduced in both freely-sleeping and SD 

mice (Figure 3.8C). Dync1h1 encodes the main retrograde motor protein in eukaryotic 

cells, supporting retrograde transport in axons and dendrites (Schiavo et al., 2013). To a 

lesser extent, its abundance was also significantly reduced on MB ribosomes from 

Camk2a+ neurons. Dync1h1 was not reduced as a function of SD itself in either neuron 

population, suggesting that decreases in Dync1h1 are specific to the post-learning 

condition. 

We next constructed canonical pathway networks affected by CFC + Sleep or CFC 

+ SD, to visualize the signaling and metabolic pathways differently altered in the two 

conditions. Canonical pathways are represented as hubs and connected through 

commonly transcript components. Here, hub sizes were weighted by their corresponding 

p value and shaded to indicate their z-score (blue indicating a decrease in the pathway 

following CFC, whereas red indicates an increase) (Figure 3.9). Network comparisons of 

MB ribosome-associated transcript changes in Camk2a+ neurons revealed overlapping 

hubs significant in both CFC + Sleep (Figure 3.9, Top Left) and CFC + SD conditions  
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Figure 3.9 MB ribosomal transcript networks affected by CFC vary as a function of 
subsequent sleep or SD. Canonical pathway network analysis of transcripts altered on MB 
ribosomes from Camk2a+ (top) or pS6+ (bottom) neurons following CFC + Sleep (left) or CFC 
+ SD (right). Hub size and color denote padj value and z-score, respectively, in each condition, 
while connecting lines indicate commonly expressed genes between hubs. 
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(Figure 3.9, Top Right). These hubs represented chondroitin sulfate degradation, 

unfolded protein response, notch signaling, phagosome maturation, sertoli cell junction 

signaling, and epithelial adherens signaling canonical pathways. However, the 

significance values for these pathway hubs (like the number of transcripts altered in 

Camk2a+ neurons after CFC) were markedly higher in SD mice relative to sleeping mice. 

For example, the overlap and centrality of sertoli cell junction signaling, phagosome 

maturation, and epithelial adherens junction signaling pathways suggest common 

transcripts altered in both freely-sleeping and SD mice after CFC. Upon closer inspection, 

while some tubulin transcripts were decreased following CFC in both Sleep and SD 

groups (Tuba1a, Tuba1b), a large number of tubulin-encoding mRNAs were decreased 

only after SD (Tuba4a, Tubb5, Tubb2a, Tubb3, Tubb4a, Tubb4b, Tubg1). Similarly, while 

unfolded protein response-related transcripts were moderately elevated following CFC + 

Sleep (Calr, Mbtps1, P4hb, Sel1l, Syvn1), substantially more mRNAs associated with the 

unfolded protein response were increased after CFC + SD (Amfr, Calr, Canx, Cd82, 

Cebpz, Dnajc3, Edem1, Eif2ak3, Hsp90b1, Hspa5, Mapk8, Mbtps1, Nfe2l2, Os9, P4hb, 

Sel1l, Syvn1, Ubxn4, and Xbp1). 

In Camk2a+ neurons, CFC + SD also altered the expression of MB ribosome-

associated mRNAs linked to metabolic pathways that were unaffected in the CFC + Sleep 

group (Figure 3.9A). For example, CFC + SD increased abundance of transcripts related 

to lipid (triacylglycerol, phosphatidylglycerol, cdp-diacylglycerol) biosynthesis, including 

mRNAs encoding 1-acylglycerol-3-phosphate O-acyltransferases (Agpat2, Agpat3, 

Agpat4), ELOVL fatty acid elongases (Elvol1, Elovl2, Elovl6), and phospholipid 

phosphatases (Plpp3). CFC + SD also decreased the abundance of transcripts related to 
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glucose metabolic pathways (glycolysis, gluconeogenesis, and TCA Cycle), including  

Aldoa, Adloc, Eno1, Eno2, Gapdh, Gpi1, Pfkl, and Pkm. Taken together with results 

shown in Figure 3.8, these data indicate that Sleep and SD lead to divergent changes in 

the bioenergetic responses of Camk2a+ neurons following learning.  

We performed a similar canonical pathway network analysis on transcripts altered 

on MB ribosomes from pS6+ neurons following CFC (Figure 3.9, Bottom). Many of the 

same pathways altered by CFC in Camk2a+ neurons (in both Sleep and SD conditions) 

were also observed in pS6+ neurons - including sertoli cell junction signaling, epithelial 

adherens signaling, and phagosome maturation - suggesting some overlap. Pathways 

affected in the CFC + SD condition in Camk2a+ neurons included lipid and carbohydrate 

pathways affected in pS6+ neurons. Interestingly, in the CFC + Sleep condition (where 

CFM is being consolidated), there was an increased abundance of MB ribosome-

associated transcripts representing protein translation regulatory pathways (eIF2, 

regulation of eIF4 & p70S6K, and mTOR signaling pathways). This change, critically, was 

not present in CFC + SD mice. In both sleeping and SD mice, MB ribosomal transcripts 

which decreased in abundance after CFC included eukaryotic initiation factors (Eif3a, 

Eif3c, Eif3l, Eif4a1, Eif4g1, Eif4g3), mTOR, and Tsc1. However, in mice allowed post-

CFC sleep, transcripts related to the small ribosomal subunit were elevated in pS6+ 

neurons, including Rps12, Rps14, Rps17, Rps19, Rps20, Rps21, Rps23, Rps24, Rps26, 

Rps28, Rps29, Rps6. This suggests that following CFC, sleep may promote an increase 

in overall protein synthesis capacity, which occurs in the most active hippocampal 

neurons. The fact that these changes occur selectively on MB ribosomes suggest that 

this increased synthetic capacity may be cell compartment-specific. 
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3.11 Discussion 

Our present RNAseq results demonstrate not only that ribosome-associated 

transcripts are altered in the hippocampus as a function of 1) learning and/or 2) sleep vs. 

sleep loss, but also as a function of 3) the cell population being profiled, and 4) the 

subcellular location of the ribosomes. We find that the latter aspect (i.e., location of 

ribosomes within the cell) is a major contributor to the observed effects of learning and 

subsequent sleep or SD on hippocampal ribosome transcript profiles. Neuronal 

ribosomes have long been known to segregate by cell compartment, present either as 

“free-floating” (i.e., cytosolic) or MB complexes which are easily separated by 

centrifugation (Andrews and Tata, 1971). These populations are known to engage in 

compartmentalized translation of mRNAs. The advent of TRAP has yielded new insights 

into the specialized functions of ribosomes in different cellular compartments. Cytosolic 

ribosomes are known to process mRNAs encoding proteins with functions in the cytosolic 

compartment, including transcription factors and kinases. MB ribosomes translate 

mRNAs encoding secreted or integral membrane proteins. Available data, from non-

neural cell types, suggest that the two translational environments are biochemically 

distinct and can be differentially regulated (for example, by cellular stress) (Reid and 

Nicchitta, 2015). Where ribosomes have been isolated from subcellular compartments in 

neurons (e.g. in Purkinje neurons) (Kratz et al., 2014), MB ribosome fractions have been 

shown to enrich for endoplasmic reticulum-associated ribosomes and for ribosomes in 

the dendritic compartment engaged in local translation. Our present findings reflect this, 

demonstrating that the transcript profiles of MB and cytosolic ribosomes among 

hippocampal neurons are highly distinctive (Figure 3.1-3.3, Figure S3.1). 
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Many forms of hippocampus-dependent memory are disrupted (in human subjects 

and animal models) by either pre- or post-learning sleep loss (Havekes and Abel, 2017; 

Krause et al., 2017; Puentes-Mestril and Aton, 2017; Rasch and Born, 2013). Indeed, 

sleep loss seems to disrupt plasticity mechanisms within the hippocampus more 

dramatically than in other brain areas (Delorme et al., 2019; Raven et al., 2019). The 

underlying mechanisms by which sleep loss leads to these changes (and disrupts 

memory mechanisms) have remained elusive. Transcriptome profiling of the effects of 

sleep loss alone on the hippocampus has indicated that SD increases expression of 

genes involved in transcriptional activation, and downregulates expression of genes 

involved in transcriptional repression, ubiquitination, and translation (Vecsey et al., 2012). 

While neither our cytosolic, MB, or Input hippocampal fractions showed a large degree of 

overlap with transcripts affected in prior studies (Figure S3.2), we do find that the same 

cellular pathways are affected in the cytosolic fraction (Figure 3.5B). Our present data 

add to this by demonstrating that in both whole hippocampus, and in either Camk2a+ or 

pS6+ hippocampal neurons, the majority of purely SD-induced changes to transcripts are 

present in the cytosolic fraction, and on cytosolic ribosomes (Figure 3.4B, Figure 3.5). 

While SD-driven mRNA changes also occur on MB ribosomes, these changes, in 

comparison, are relatively few in number (Figure 3.4B, Figure 3.8). Pathways affected 

by SD - across neuronal populations and both subcellular compartments - were those 

linked to regulation of transcription (consistent with prior findings) (Vecsey et al., 2012) 

and the AMPK, IL-3, IGF-1, and PDGF signaling pathways. Critically, AMPK (Chikahisa 

et al., 2009) and IGF-1 signaling (Chennaoui et al., 2014) have been implicated in 

homeostatic sleep responses (changes in sleep architecture of brain oscillations) 
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following SD. Thus it is tempting to speculate that sleep loss could lead to subsequent 

changes in sleep brain dynamics through changes in intracellular signaling in neurons. 

However, two unanswered questions are 1) which SD-associated changes in 

specific transcripts’ synthesis or translation provide a plausible mechanism to disrupt 

hippocampal memory consolidation, and 2) what cell types within the hippocampus are 

critically affected by SD following learning. This study aimed to address this in the context 

of a form of hippocampus-dependent memory consolidation (contextual fear memory; 

CFM) which is critically dependent on post-learning sleep. Work from our lab and others 

has shown that disruption of sleep within the first few hours following CFC is sufficient to 

disrupt CFM consolidation (Graves et al., 2003; Ognjanovski et al., 2018). While some of 

systems-level mechanisms occurring during post-CFC sleep have been implicated in the 

consolidation process (Boyce et al., 2016; Ognjanovski et al., 2018; Ognjanovski et al., 

2014; Ognjanovski et al., 2017; Xia et al., 2017)), almost nothing is known about the 

cellular mechanisms mediating sleep (or SD) effects on CFM consolidation. We were 

surprised that very few transcript changes were induced on cytosolic ribosomes by CFC, 

in comparison with the large number of cytosolic ribosomal mRNAs affected by SD alone. 

However, of those transcripts altered by CFC, almost all 1) were similarly affected in either 

CFC + Sleep or CFC + SD conditions, and 2) were similarly altered by SD (Figure 3.5C). 

This makes sense in light of the fact that many cytosolic ribosomal mRNAs altered after 

CFC are transcribed or translated in an activity-dependent manner. We found that CFC 

increased the expression of activity-dependent genes in both total hippocampal mRNA 

(Input) and in the most activated neurons (pS6+) in both Sleep and SD mice. Importantly, 

post-CFC SD occluded learning-induced changes in cytosolic ribosomal transcripts 
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present in excitatory Camk2a+ hippocampal neurons. These included increases in Fosb 

(and its highly stable isoform ΔFosb) and Homer1 (and its short isoform Homer1a) 

(Figure 3.7, Figure S3.3). These transcript isoforms encode proteins that are critically 

linked to synaptic plasticity and memory (Clifton et al., 2019; Eagle et al., 2015). The 

timing with which SD occludes changes in their abundance (3-5 h following CFC) 

coincides a critical window for post-CFC sleep, essential for CFM consolidation (Graves 

et al., 2003; Ognjanovski et al., 2018). Thus this could represent a plausible mechanism 

for memory disruption by sleep loss. 

In contrast to the relative paucity of transcripts altered on cytosolic ribosomes by 

prior learning, CFC affected a surprisingly large number of mRNAs on MB ribosomes 

(Figure 3.4B, Figure 3.8A). In general, CFC induced changes in MB ribosome-

associated transcripts encoding proteins associated with neuronal structural remodeling 

- from cellular pathways involved in cytoskeletal remodeling, intracellular transport, and 

cell-cell interactions (Figure 3.8B). Some changes were also highly surprising and 

unexpected - for example, the significant reduction in ribosome-associated lncRNAs on 

MB ribosomes in Camk2a+ neurons after CFC (Figure 3.8C). Critically, the precise 

transcripts and (in some cases) the cellular pathways altered after CFC diverged 

dramatically based on whether learning was followed by sleep or SD (Figures 3.8-3.9). 

These differences provide a wealth of information with regard to potential mechanisms 

for SD-related disruption of CFM. For example, our present findings suggest that in non-

neuronal cell types in the hippocampus, CFC induces a unique set of transcript changes 

(which are present in the MB fraction of Input, but are absent from MB fractions of 

neuronal ribosomes. Increased abundance of transcripts related to energy metabolism, 
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particularly those encoding mitochondrial proteins, glucose transporters, and proteins 

related to glycogen metabolism are commonly observed following SD (Cirelli et al., 2004; 

Mackiewicz et al., 2007; Vecsey et al., 2012) . Unlike previous reports, our data suggest 

that in Camk2a+ neurons, cellular metabolic/energetic pathways may be selectively 

disrupted when CFC is followed by SD, but not when CFC is followed by sleep (Figures 

3.8-3.9). Thus, it may be that SD disrupts CFM consolidation by increasing  the metabolic 

demands on the hippocampus.  

In the most active (pS6+) neurons, CFC + Sleep leads to regulation of numerous 

pathways linked to protein synthesis regulation, including a widespread increase in MB 

ribosomal mRNAs encoding the translational machinery itself. This change is not seen 

when sleep is followed by SD. Thus it is tempting to speculate that in the neurons most 

active following memory encoding (putative “engram neurons”), long lasting changes to 

membrane associated protein synthesis may play a critical role in subsequent 

consolidation. Neuropharmacological studies have suggested that disruption of either 

cAMP signaling and protein synthesis in the hippocampus by SD may prevent memory 

consolidation (Abel et al., 1997; Bourtchouladze et al., 1998; Tudor et al., 2016; Vecsey 

et al., 2009). Our present data demonstrate that CFC may initiate changes to these 

pathways in specific hippocampal cell types, which are facilitated long-term by 

subsequent sleep. 

Recently, TRAP has been used to characterize compartment-specific ribosomal 

transcripts of amygdala-projecting cortical axons during cued fear memory consolidation 

(Ostroff et al., 2019). However, the methods used in this study (as is true for most 

transcriptome and TRAP studies) would primarily report transcript changes associated 
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with cytosolic, rather than MB ribosomes. Here we show that the vast majority of changes 

due to learning itself are expressed at MB ribosomes (Figure 3.4B, Figure 3.8) - with 

surprisingly few CFC-induced changes to cytosolic ribosome-associated mRNAs (Figure 

3.5). Recent comparisons of hippocampal ribosome-associated and total mRNA 

abundance suggests that cytosolic and MB ribosome-associated mRNAs are distinctly 

regulated with regard to translation efficiency (Cho et al., 2015). Thus understanding the 

effects of both learning and subsequent sleep on structures like the hippocampus will 

require further investigation into their effects on translation happening at the membrane.  

How universal are these sleep-dependent mechanisms for memory consolidation? While 

this question is presently unanswered, consolidation of various types of memory, across 

species, share common cellular substrates (Kandel et al., 2014), with post-learning 

mRNA translation being a vital element. Changes in the activity patterns of neurons and 

the activation of particular intracellular pathways during post-learning sleep share 

common features, across brain structures and species (Puentes-Mestril and Aton, 2017; 

Puentes-Mestril et al., 2019). Our present findings have illustrated a number of sleep-

dependent post-learning cellular processes which affect pathways vital for learning and 

memory. Future studies will determine whether these processes underlie sleep-

dependent memory consolidation events in the other brain circuits, following diverse 

forms of learning. 
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Chapter IV. Sleep Loss Disrupts Hippocampal Memory 
Consolidation via an Acetylcholine- and Somatostatin 

Interneuron-Mediated Inhibitory Gate 
 

4.1 Abstract 

Sleep loss profoundly disrupt consolidation of hippocampus-dependent memory, 

in both human subjects and animal models. To better characterize the effects of sleep 

loss on the hippocampal circuit, we quantified activity-dependent phosphorylation of 

ribosomal subunit S6 (pS6) across the dorsal hippocampus. We find that pS6 expression 

in enhanced in the dentate gyrus (DG) in the hours following learning a hippocampus-

dependent task (single-trial contextual fear conditioning; CFC). pS6 expression 

throughout the hippocampus is disrupted by brief sleep deprivation (SD) – a manipulation 

which disrupts contextual fear memory (CFM). This suggests that network activity is 

reduced during SD relative to sleep. To characterize cell populations affected by SD, we 

used translating ribosome affinity purification (TRAP) to isolate cell type-specific 

transcripts associated with pS6-ribosomes in active neurons. TRAP-seq was used to 

profile pS6-associated transcripts enriched after SD vs. sleep. Cell type-specific 

enrichment analysis (CSEA) of these transcripts revealed that somatostatin-expressing 

(SST+) interneurons, and cholinergic and orexinergic inputs to hippocampus, are 

selectively activated after SD. We used TRAP of ribosome-associated transcripts in 

hippocampal SST+ interneurons (SST-TRAP) to verify this result and identify 

mechanisms mediating SST+ interneuron activation during SD. We next used 
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pharmacogenetics to mimic the effects of SD, selectively activating hippocampal SST+ 

interneurons while mice slept in the hours following CFC. We find that activation of SST 

interneurons is sufficient to disrupt CFM consolidation, by gating activity in surrounding 

neurons. Pharmacogenetic inhibition of cholinergic input to the hippocampus from the 

medial septum (MS) promoted CFM consolidation and disinhibited neurons in the DG, 

increasing pS6 expression. This suggests that state-dependent gating of SST 

interneurons activity is mediated by cholinergic input. Together these data provide 

evidence for an inhibitory gate on hippocampal information processing, which is activated 

by sleep loss. 

 

4.2 Introduction 

Hippocampal plasticity and memory storage are gated by vigilance states. In both 

human subjects and animal models, sleep loss disrupts consolidation of multiple types of 

hippocampus-dependent memories (Abel et al., 2013; Havekes and Abel, 2017). This 

effect has been extensively studied in mice, where as little as a few hours of experimental 

sleep deprivation (SD) can disrupt hippocampally-mediated consolidation of object-place 

memory (Havekes et al., 2016; Prince et al., 2014; Vecsey et al., 2009) and contextual 

fear memory (CFM) (Graves et al., 2003; Ognjanovski et al., 2018). Recent work has 

characterized biochemical pathways involved in memory consolidation which are 

disrupted in the hippocampus by SD (Aton et al., 2009b; Havekes et al., 2016; Tudor et 

al., 2016; Vecsey et al., 2009). However, much less is known about how SD affects the 

hippocampal microcircuit, or its function.  
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SD disrupts patterns of hippocampal network activity which are associated with 

memory consolidation. For example, SD interferes with the increases in the occurrence 

of hippocampal network oscillations, increased stability of spike timing relationships 

between CA1 neurons, and increase neuronal firing rates within CA1 during CFM 

consolidation (Ognjanovski et al., 2018). However, the reason that these learning-induced 

network activity changes are disrupted by post-learning SD is unknown. Recent work has 

demonstrated that activity-dependent regulation of protein translation machinery within 

the dorsal hippocampus is essential for sleep-dependent memory consolidation (Tudor et 

al., 2016). SD interferes with biochemical pathways which drive increased protein 

synthesis following learning (Tudor et al., 2016; Vecsey et al., 2012).  

To better characterize the link between neuronal activity and protein synthesis in 

the hippocampus during CFM consolidation, we characterized the activity-dependent 

phosphorylation of ribosomal subunit S6 (pS6). We find that CFC increases pS6 

phosphorylation at a terminal serine residue (pS6 Ser242-244), and that SD reduces pS6 

Ser242-244 throughout the dorsal hippocampus. To identify the cell populations 

expressing pS6 after sleep vs. SD, we used a pSer242-244 as an affinity tag for 

translating ribosome affinity purification (pS6 TRAP). We then identified modules of cell-

type specific transcripts with expression correlated to wake time in sleeping and SD mice, 

and verified these findings with qPCR. These analyses indicate that SD selectively 

activates (i.e., leads to increased pS6 expression in) hippocampal SST+ interneurons, 

and orexinergic (lateral hypothalamic) and cholinergic (MS) neurons which send input to 

the hippocampus. We used TRAP in SST+ interneurons (SST-TRAP) to verify that 

activity-dependent transcripts are increased in these neurons with SD. To assess how 
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increased activity in the hippocampus SST+ interneuron population during SD affects 

memory consolidation, we used pharmacogenetics to selectively activate these neurons 

in the hours following CFC. We find the mimicking the effects of SD on SST+ interneuron 

activity is sufficient for disruption of CFM consolidation in freely-sleeping mice. Lastly, we 

tested the hypothesis that state-dependent regulation of the dorsal hippocampal network 

is mediated by changes in activity of MS cholinergic neurons. We find that 

pharmacogenetic inhibition of cholinergic input to hippocampus following CFC promotes 

CFM consolidation, and increases pS6 expression in dorsal hippocampus. Together, 

these data provide evidence for a state-dependent gate on network activity in the 

hippocampus, regulated by SST+ interneurons and MS cholinergic input, which causes 

SD-induced disruption of memory consolidation. 

 

4.3 Materials & Methods 

Mouse husbandry, handling, and behavioral procedures 

 All animal husbandry and experimental procedures were approved by the 

University of Michigan Institutional Animal Care and Use Committee (PHS Animal Welfare 

Assurance number D16-00072 [A3114-01]). Mice were maintained on a 12 h:12 h 

light:dark cycle with ad lib access to food.  

 For behavioral experiments, 3-4 month old C57Bl6/J mice (Jackson) or transgenic 

mice on a C57Bl6/J background (see below) were individually housed with beneficial 

enrichment one week prior to experimental procedures, and were habituated to 

experimenter handling (5 min/day) for five days prior to experimental procedures. At lights 

on (ZT0), animals were either left in their home cage (HC) or underwent single-trial 



 103 

contextual fear conditioning (CFC). During CFC, mice were place in a novel conditioning 

chamber (Med Associates), and were allowed to explore the chamber freely for 2.5 min, 

after which they received a 2-s, 0.75 mA foot shock through the chamber’s grid floor. Mice 

remained in their conditioning chamber for an additional 28 s, after which they were then 

returned to their home cage. Mice were then either were permitted ad lib sleep (Sleep) or 

were sleep-deprived (SD) by gentle handling (Durkin et al., 2017; Ognjanovski et al., 

2018) over the next 3-5 h.  

 

Translating Ribosome Affinity Purification (TRAP) 

 For pS6 RNA-sequencing (TRAP-seq) experiments, 3-4 month old C57Bl/6J mice 

were randomly assigned to one of four groups: HC + Sleep (n = 8), HC + SD  (n = 7), 

CFC + Sleep  (n = 8), CFC + SD  (n = 8). Beginning at ZT3, animals were euthanized with 

an i.p injection of pentobarbital (Euthasol) and hippocampi were dissected in cold 

dissection buffer (1x HBSS, 2.5 mM HEPES [pH 7.4], 4 mM NaHCO3, 35 mM glucose, 

100g/ml cycloheximide). Hippocampal tissue was then transferred to a glass dounce 

homogenizer containing homogenization buffer (10 mM HEPES [pH 7.4], 150 mM KCl, 

10 mM MgCl2, 2 mM DTT, cOmplete™ Protease Inhibitor Cocktail [Sigma-Aldrich, 

11836170001], 100 U/mL RNasin® Ribonuclease Inhibitors [Promega, N2111], and 100 

μg/mL cycloheximide) and manually homogenized on ice. Homogenate was transferred 

to 1.5 ml LoBind tubes (Eppendorf) and centrifuged at 4°C at 1000 g for 10 min. The 

resulting supernatant was transferred to a new tube, and 10% NP40 was added to the 

samples (90μL), and incubated 5 min on ice. Samples were centrifuged at 4°C at 

maximum speed for 10 min, 500μL supernatant transferred to a new LoBind tube, and 
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incubated with anti-pS6 244-247 (ThermoFisher 44-923G; Knight et al., 2012). Antibody 

binding of the homogenate-antibody solution occurred over 1.5 h at 4°C with constant 

rotation. For affinity purification, 200 μl of Protein G Dynabeads (ThermoFisher, 10009D) 

were washed 3 times in 0.15M KCl IP buffer (10 mM HEPES [pH 7.4], 150 mM KCl, 10 

mM MgCl 2 , 1% NP-40) and incubated in supplemented homogenization buffer (+10% 

NP-40). Following this step, supplemented buffer was removed, homogenate-antibody 

solution was added directly to the Dynabeads, and the solution was incubated for 1 h at 

4°C with constant rotation. During the final wash, beads were placed onto the magnet 

and moved to room temperature. After removing the supernatant, RNA was eluted by 

vortexing the beads vigorously in 350 μl RLT (Qiagen, 79216). Eluted RNA was purified 

using RNeasy Micro kit (Qiagen). 

SST-Ribo mice were generated by crossing SST-IRES-CRE (B6N.Cg-Ssttm2.1(SST-

cre)Zjh; Jackson) mice to the RiboTagfl/fl (B6N.129-Rpl22tm1.1Psam/J; Jackson) mouse line to 

generate mice expressing HA-tagged Rpl22 protein in SST interneurons. For SST-TRAP, 

ribosomes and associated transcripts were affinity purified by incubating homogenate 

with 1/40 (10 μl) anti-HA antibody (Abcam, ab9110) (Shigeoka et al., 2018). 

 

RNA sequencing and data analysis 

RNA-Seq was carried out at the University of Michigan’s DNA sequencing core. 

cDNA libraries were prepared by the core using Takara’s SMART-seq v4 Ultra Low Input 

RNA Kit (Takara 634888) and sequenced on Illumina’s NovaSeq 6000 platform. 

Sequencing reads (50 bp, paired end) were mapped to Mus musculus using Star v2.6.1a 

and quality checked with Multiqc(v1.6a0). Reads mapped to unique transcripts were 
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counted with featureCounts (Liao et al., 2014). For weighted gene co-expression network 

analysis (WGCNA) analysis, raw counts for pS6 data was filtered to keep genes with at 

least 30 total reads across the 30 samples. The filtered reads were normalized using the 

DESeq2 variance stabilizing transformation (vst) function (Love et al., 2014) and filtered 

to keep genes with a variance larger than 0.03 among the 30 samples. The 1662 genes 

were retained and used for the network analysis in WGCNA (Langfelder and Horvath, 

2008).  

 For cell type-specific expression analysis (CSEA), genes from the Brown and 

Magenta clusters were combined and uploaded into the CSEA Tool 

(http://genetics.wustl.edu/jdlab/csea-tool-2/), selecting Candidate Gene List from: Mice 

(Xu et al., 2014). Results for cell-types enriched in our pS6 clusters were analyzed at the 

most stringent specificity index (pSI < 0.0001). Observing significant values in cholinergic 

(+Chat), orexinergic (Hcrt+), and GABAergic (Pnoc+, Cort+) neurons, we plotted genes 

from the highest and second highest specificity index. To analyze how SD promotes pS6 

enrichment of these cell type-specific transcripts, we calculated the Log2FC values of 

combined CFC and HC mice and assessed the effect of SD over sleep control mice (Love 

et al., 2014).  

 

Quantitative PCR (qPCR) 

 RNA from TRAP experiments was quantified by spectrophotometry (Nanodrop 

Lite, ThermoFisher). 50ng of RNA was reverse transcribed using iScript cDNA Synthesis 

(Bio-Rad, Catalog: 1708890) or SuperScript IV Vilo Master Mix (Invitrogen, Catalog: 

11756060). qPCR was performed on diluted cDNA that employed either Power SYBR 
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Green PCR Mix (Invitrogen 4367659) or TaqMan Fast Advanced Master Mix (Invitrogen, 

Catalog: 4444557). Primers were designed using Primer3(v. 0.4.0) and confirmed with 

NCBI primer Basic Local Alignment Search Tool (BLAST). qPCR reactions were 

measured using a CFX96 Real-Time System, in 96-well reaction plates (Bio-Rad). For 

pS6- and SST-TRAP experiments, housekeeping genes for data normalization were 

determined by assessing the stability values prior to analysis (Andersen et al., 2004). 

Analyses compared Pgk1, Gapdh, Actg1, Tuba4a, Tbp, and Hprt. Results from both 

analyses independently found Gapdh and Pgk1 to be the most stable and least altered 

housekeeping transcripts following SD or CFC. Therefore expression was normalized to 

the geometric mean of Gapdh and Pgk1. To assess differences in transcript abundance 

between groups, values were expressed as fold changes normalized to the mean values 

for mice in the HC + Sleep group. To measure relative enrichment of mRNA in pS6-TRAP 

or SST-TRAP experiments, each sample was normalized to the geometric mean of Pgk1 

and Gapdh housekeeping transcripts and then normalized to the corresponding Input 

sample (TRAP Enrichment = 2^(ΔCt_target - ΔCt_housekeeping). 

 

Immunohistochemistry and protein expression analysis 

 Mice were injected with euthasol and perfused with cold 1xPBS followed by 4% 

paraformaldehyde. Brains were extracted and submerged in ice-cold fixative for 24hrs 

and transferred to 30% sucrose solubilized in 1xPBS. 50μm-thick coronal sections were 

cut on a cryostat. Tissue was blocked for 2-hours in 1% NGS and 0.3% Triton X-100 

followed by 2-3 days of 4C° incubation in 1xPBS (5% NGS, 0.3% Triton X-100) with 

primary antibody(ies): pS6 S235-236 (Cell Signaling, Catalog: 4858, 1:500), pS6 S244-



 107 

247(ThermoFisher, Catalog: 44-923G, 1:500), SST (Millipore, MAB354, 1:200), Pvalb 

(Synaptic Systems, Catalog: 195004, 1:500), cFos (Abcam, Catalog: 190289, 1:500), Arc 

(Synaptic Systems, 156004, 1:500) by constant rotation. Sections were then washed 3x 

in 1xPBS (1% NGS, 0.2% Triton X-100) and incubated for 1hr in 1xPBS (5% NGS, 0.3% 

TX-100) and secondary antibody: Fluorescein (FITC) AffiniPure Goat Anti-Rabbit IgG 

(Jackson, Catalog: 111-095-003, 1:200), Donkey anti-Rat IgG Alexa Fluor 488 

(ThermoFisher, A-21208), Goat Anti-Guinea Pig IgG Alexa Fluor 555 (Abcam, Catalog: 

ab150186, 1:200), Goat anti-Rabbit IgG Alexa Fluor 633 (ThermoFisher, Catalog: A-

21070, 1:200). Tissue was then washed 3x in 1xPBS (1% NGS, 0.2% Triton X-100), 3x 

in 1xPBS, and then mounted on coverslips and embedded in ProLong Gold Antifade 

Mountant (ThermoFisher, Catalog: P10144). 

 For optical density (OD) calculations, 4 fluorescent microscope images were taken 

from each brain and analyzed in Fiji. A scorer blind to experimental condition collected 

optical density values from CA1 and CA3 pyramidal cell layers as well as background. 

For analysis, equally sized regions of interest (ROIs) were obtained for each image. OD 

values were background subtracted and normalized to HC + Sleep control groups. For 

DG cell counts, pS6 co-localization, and SST/PVALB quantification, images were 

captured using a 20x objective lens on a Leica SP5 laser scanning confocal microscope. 

Z-projected images were analyzed in MIPAR image analysis software in their raw 

grayscale format (Sosa et al., 2014) For DG cell counts, a non-local means filter was used 

to reduce image noise and an adaptive threshold applied to identify cell counts whose 

mean intensity values were 200% its surroundings. Colocalization and mean fluorescence 

intensity were determined by adaptive thresholding of fluorescent signals, quantifying 
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percentage overlap of ROI obtained from both signals and mean fluorescent intensity 

values of underlying fluorescent signals.  

 

AAV virus injections, pharmacogenetic manipulations, and CFM testing 

 At age 3-4 months, male SST-IRES-CRE (B6N.Cg-Ssttm2.1(SST-cre)Zjh) or Chat-CRE 

(B6.FVB(Cg)-Tg(Chat-cre)GM53Gsat/Mmucd, MMRRC) mice underwent bilateral dorsal 

hippocampus or MS viral transduction. SST-IRES-CRE mice were transduced with either 

hM3dq-mCherry (pAAV-hSyn-DIO-hM3D(Gq)-mCherry, University of Pennsylvania 

Vector Core, Lot: V55836) or (as a control) an mCherry reporter (EF1A-DIO-mCherry, 

University of Pennsylvania Vector Core, Lot: PBK273-9). For both vectors, 1 μl of virus 

was injected using a 33-gauge beveled syringe needle into the dorsal hippocampus each 

hemisphere at a rate of 4 nL/s (2.1 mm posterior, 1.6 mm lateral, 2.1 mm ventral to 

Bregma). Chat-CRE mice were injected with hM4Di-mCitrine (AAV8 hSyn-DIO-HA-

hM4D(Gi)-P2a-Citrine, University of Pennsylvania Vector Core, Lot: PBK399-9). 1 μl  of 

virus was injected into the medial septum (0.75 mm anterior, 0.0 mm lateral, 4.0 mm 

ventral to Bregma).  

 After 2-4 weeks of postoperative recovery and daily handling as described above, 

mice underwent single-trial CFC at ZT0. Immediately after CFC, mice were injected i.p. 

with either 0.3 mg/kg clozapine N-oxide (CNO; Tocris, Catalog: 4936, Lot: 13D/233085) 

in 0.5% DMSO and saline, or 0.5% DMSO vehicle (VEH). All mice were then returned to 

their home cage for ad lib sleep, and were returned to the CFC context for CFM testing. 

Mice were video monitored and context-specific freezing behavior was quantified by a 

scorer blinded to experimental conditions as described previously (Ognjanovski et al., 
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2018; Ognjanovski et al., 2014; Ognjanovski et al., 2017). To verify effects of 

pharmacogenetic manipulations on the hippocampal network, 2 weeks following CFM 

tests, mice were administered CNO (or VEH) at lights on, and were allowed 3 h ad lib 

sleep prior to perfusion for immunohistochemical analysis of activity-dependent cFos or 

pS6 expression. 

 

4.4 Learning increases and sleep loss decreases phosphorylation of S6 in the 

hippocampus  

Since brief sleep deprivation (SD) of only a few hours is sufficient to disrupt many 

forms of hippocampus-dependent memory consolidation in mice (Graves et al., 2003; 

Havekes et al., 2016; Ognjanovski et al., 2018; Prince et al., 2014; Vecsey et al., 2009), 

we first characterized the effects of 3-h SD on S6 phosphorylation. Following 5 days of 

habituation to handling, beginning at lights on (ZT0), mice either had continuous SD by 

gentle handling or were allowed ad lib sleep (Sleep) prior to sacrifice at ZT3 (Figure 

4.1A). Because S6 is sequentially phosphorylated at five serine residues, we first 

quantified phosphorylation using an antibody recognizing the initial Ser235-236 

phosphorylation sites (pS6 235-236). Consistent with previous reports (Tudor et al., 

2016), 3-h SD did not alter either the number of pS6(Ser235-236)+ neurons in the dentate 

gyrus (DG) or the intensity of pS6 235-236 staining in the pyramidal cell body layers of 

CA1 or CA3 (Figure 4.1C). We then quantified phosphorylation at the terminal S6 sites 

(Ser244-247; hereafter referred to simply as pS6). in SD mice, we observed a significant 

decrease in the number of pS6+ neurons in the dentate gyrus, and reduced intensity of 

pS6+ staining in pyramidal cell body layers of CA1 and CA3 (Figure 4.1B, C). In contrast, 
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neocortical regions adjacent the dorsal hippocampus (i.e., primary somatosensory cortex) 

showed increased numbers of pS6+ neurons at both sites after 3-h SD (Figure S4.2).  

Because S6 phosphorylation is neuronal activity-driven (Pirbhoy et al., 2016) we also 

tested whether pS6+ neurons co-expressed the activity-regulated protein Arc. Consistent 

with our previous findings (Delorme et al., 2019), 3-h SD reduced numbers of both Arc+ 

and pS6+ neurons in the DG. Arc and pS6 were co-localized to a similar extent in DG of 

both Sleep and SD mice (Figure 4.1D), with 80% of Arc+ DG neurons, on average, being 

pS6+, and 60% of pS6+ DG neurons being Arc+. 

    We next tested whether hippocampal S6 phosphorylation was affected by learning 

a hippocampus-dependent memory task. Mice underwent single-trial contextual fear 

conditioning (CFC; in which exploration of a novel chamber is paired with a foot shock) 

or, for comparison, were left in their home cage (HC) at lights on. After this, both CFC 

and HC mice were either allowed ad lib sleep, or had SD by gentle handling in their home 

cage. In freely-sleeping mice, CFC increased the number of pS6+ DG neurons at both 30 

min and 3 h post-CFC, relative to HC controls (two-way ANOVA: main effect of time, F = 

50.63, p < 0.001; main effect of learning, F = 33.59, p < 0.001; time × learning interaction, 

F = 2.22, p = 0.16) (Figure S4.1). In contrast, CFC did not alter pS6 expression CA1 or 

CA3 of freely-sleeping mice, relative to HC controls. Consistent with greater pS6 

expression in the hippocampus after periods rich in sleep, pS6+ neurons increased 

between the two timepoints (ZT0 vs. ZT3) in both HC + Sleep and CFC + Sleep mice 

(Figure S4.1). 3-h SD disrupted pS6 expression in the hippocampus following CFC, with 

fewer pS6+ neurons in the DG and reduced pS6+ expression in CA1 (Figure 4.1C). 
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Taken together, these data suggest that learning increases and SD reduces S6 

phosphorylation in the hippocampus. 
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Figure 4.1 Hippocampal S6 phosphorylation increases after learning and is reduced by 
sleep deprivation (SD). A) Experimental paradigm. Mice underwent single-trial contextual fear 
conditioning (CFC) at ZT0, or were left in their home cage (HC). Over the next 3 h, mice in CFC 
and HC groups were then permitted ad lib sleep (Sleep) or were sleep-deprived (SD) by gentle 
handling. B) Fluorescent images of pS6 (S244-247) staining in the hippocampus in HC + Sleep 
and HC + SD mice. C) Left: pS6+ neurons in DG were counted with S6 phosphorylation at either 
S235-236 or S244-247 sites. SD selectively reduced S244-247 pS6+ neurons in both HC (n = 
5/group) and CFC (n = 5/group) mice. CFC increased the number of pS6+ neurons (two-way 
ANOVA: main effect of CFC, F = 87.09, p < 0.001; main effect of SD, F = 38.94, p < 0.001; CFC 
× SD interaction, N.S.). Right: pS6 expression in pyramidal cell layers CA1/CA3 was quantified 
as background subtracted optical density. SD values were calculated as the fold change relative 
to the Sleep condition HC + Sleep  or CFC + Sleep , respectively. pS6 (S244-247) OD was 
reduced in both CA1 (p < 0.001, Student’s t-test) and CA3 (p < 0.001) after SD in HC mice. After 
CFC, SD reduced pS6 expression in CA1 neurons (p < 0.001) following SD. D pS6 and Arc 
colocalization in HC + Sleep  and HC + SD  mice (n = 5/group). 3-h SD reduced both Arc+ (p < 
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0.05, Student’s t-test) and pS6+ (p < 0.05) neurons in DG. ~80% of Arc+ DG neurons expressed 
pS6+; ~60% of pS6+ neurons expressed Arc.  
Supplemental Figure 4.1 CFC-driven increases in hippocampal pS6 expression. Top: CFC 
(at ZT0) increased the number of pS6+ (S244-247) DG neurons at ZT0.5 h (p < 0.05, Holm-Sidak 
post hoc test) and ZT3 (p < 0.001, Holm-Sidak post hoc test). Both HC and CFC mice had greater 
numbers of pS6+ neurons at ZT3 (two-way ANOVA: main effect of time, F = 50.63, p < 0.001; 
main effect of CFC, F = 33.59, p < 0.001   ; time × CFC interaction, N.S.), likely reflecting the 
effect of sleep time between the time points. Bottom: pS6 expression was unchanged by CFC in 
CA1 and CA3 pyramidal regions. 
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Supplemental Figure S4.2 SD increases S6 phosphorylation in the neocortex. pS6 (S235-
236 and S244-247) expression in neocortical regions dorsal hippocampus (i.e., primary 
somatosensory cortex). SD increased the numbers of pS6+ neurons using antibodies targeting 
pS6 S235-236 (p < 0.0001, Student’s t-test) and S244-247 (p < 0.01). 
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4.5 Identification of hippocampal cell types with altered S6 phosphorylation 
during SD 

 
We next used an unbiased RNA-seq approach to identify cells in which pS6 

expression differs between Sleep and SD. Using pS6 as an affinity tag to isolate 

ribosomes and associated transcripts in active cells, we performed pS6 translating 

ribosome affinity purification (pS6-TRAP) (Knight et al., 2012). Hippocampi were collected 

from CFC and HC mice after 3 h ad lib sleep or SD. Ribosome-associated transcripts 

were then isolated by pS6-TRAP for RNA-seq. To identify clusters of co-regulated 

transcripts in our RNA-seq data (such as might be expected for genetically-defined cell 

types), we used weighted gene correlation network analysis (WGCNA) (Langfelder and 

Horvath, 2008) on transcripts with a variance greater than 0.03 (n = 1662 transcripts). 

WCGNA yielded 10 clusters (modules) of highly correlated transcripts in our data, and a 

separate (Gray) cluster representing unassigned (uncorrelated) transcripts (Figure 4.2A). 

To determine which modules’ expression varied as a function of Sleep vs. SD, we 

correlated the level of expression of module eigengenes with the percent of time mice 

spent awake over the 3 h prior to sacrifice  (Sleep = 25.6 ± 2.2%, SD = 100 ± 0.0% [mean 

± SEM]). Results from the analysis revealed two significantly correlated eigengene 

clusters (Brown, Magenta) whose expression negatively correlated with sleep time 

(Figure 4.2A). Since these represented sub-clusters of the same module, we combined 

them for further analysis (Brown/Magenta cluster).  

Since our data suggested that the population of pS6+ neurons in the hippocampus 

may differ in freely-sleeping and SD mice (Figure 4.1), we used cell type-specific 

expression analysis (CSEA) (Xu et al., 2014) to quantify cell type-specifying transcripts  
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Figure 4.2 Phosphorylated ribosome capture following SD enriches transcripts specific to 
GABAergic, cholinergic, and orexinergic neurons. A) Left: Weighted gene co-expression 
analysis (WGCNA) identified modules of similarly correlated pS6 transcripts. Each module is 
identified with a color name, Grey represents transcripts not assigned to a co-expression module. 
Right: Correlation between eigengene expression in each module and total sleep time prior to 
sacrifice (R- and p-values for Pearson correlation in parentheses for each module). B) Transcripts 
in the Brown/Magenta module with expression correlated to sleep time were used for cell type-
specific expression analysis (CSEA). The Brown/Magenta transcripts showed significant overlap 
with mRNAs enriched most selectively (pSI < 0.0001) in cholinergic (Epi.ChAT, padj  = 0.036), 
orexinergic (Hyp.Hcrt, padj  = 0.047), and GABAergic (Ctx.Pnoc, padj  = 0.045; Ctx.Cort, padj = 
0.045) neuron populations. C) Deseq2 Log2FC (SD/Sleep) values from Brown/Magenta 
transcripts identified by CSEA. All genes are statistically significant (padj < 0.1) unless otherwise 
indicated (# indicates padj  > 0.1). 
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represented in the Brown/Magenta cluster, which were significantly affected by SD. 

CSEA was used to generate a padj value for overlap between transcripts in 

Brown/Magenta cluster and known cell type-specific enriched transcripts of a particular 

specificity index p value (pSI) (based on a multiple comparisons-corrected Fisher’s exact 

test). Using the most stringent CSEA (pSI < 0.0001), we identified Brown/Magenta cluster 

transcripts as mRNAs expressed most selectively in cholinergic (Chat+) neurons (padj = 

0.036), orexinergic (Hcrt+) neurons (padj = 0.047), and Pnoc+ and Cort+ interneurons (padj 

= 0.045) (Figure 4.2B,C). This suggests that after SD, pS6 is associated with more 

transcripts from hippocampal neurons similar to these neuron types, despite the fact that 

overall pS6 expression is reduced after SD. The former likely reflects transcripts present 

in orexinergic inputs to the hippocampus from lateral hypothalamus and cholinergic input 

from the medial septum, respectively - both of which are more active during active wake 

vs. sleep (Kiyashchenko et al., 2002; Teles-Grilo Ruivo et al., 2017). With respect to the 

latter finding, overlap between the Brown/Magenta cluster and transcripts expressed 

selectively in Cort+ and Pnoc+ interneurons (Doyle et al., 2008; Taniguchi et al., 2011) 

included transcripts encoding interneuron-specific transcription factors (Dlx1) and 

secreted neuropeptides somatostatin (Sst), neuropeptide Y (Npy), and corticotrophin-

releasing hormone (Crh).  

 

4.6 Hippocampal somatostatin interneurons and cholinergic inputs show 
increased activity during brief SD  

SST and NPY neuropeptides are co-expressed in dendritic-targeting interneurons 

in DG, CA3, and CA1, which play a role in gating neighboring neuronal activity (Kosaka 

et al., 1998; Pelkey et al., 2017; Stefanelli et al., 2016). To confirm enrichment of Sst, 
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Npy, and other CSEA-identified transcripts in the pS6+ cell population after SD, we 

carried out a second experiment in which CFC and HC mice either were allowed 5 h of 

ad lib sleep or underwent 5-h SD. pS6-TRAP was followed by quantitative PCR (qPCR) 

to measure cell type-specific transcripts from the hippocampus. We found that 

independent of prior training (CFC or HC), SD caused similar enrichment for transcripts 

present in GABAergic neurons in pS6-TRAP. While Gad67 and Pvalb transcripts were 

only moderately increased following 5-h SD, Sst and Npy showed large increases (Figure 

4.3A). SD also increased Cht expression in both CFC and HC mice. These data support 

our unbiased CSEA-based finding of increased abundance of SST-expressing (SST+) 

interneuron and cholinergic neuron markers in the SD pS6+ population.  

Because these data suggest that despite reduced total activation of hippocampal 

neurons during SD, SST+ interneurons in the hippocampus are more activated, we next 

quantified expression of activity markers in SST+ interneurons directly. We used TRAP 

to isolate mRNAs associated with translating ribosomes in this cell population using SST-

IRES-CRE transgenic mice expressing hemagglutinin (HA)-tagged Rpl-22 (RiboTag) in a 

Cre-dependent manner (Sanz et al., 2019). Ribosome-associated transcripts from the 

hippocampus of these mice, isolated following a 3-h period of sleep or SD, were quantified 

with qPCR. We first verified enrichment of cell type-specific (i.e., SST+ interneuron-

specific) mRNAs, by comparing transcript levels from TRAP vs. Input (whole 

hippocampus) mRNA. SST TRAP significantly de-enriched glial (Gfap, Mbp) and 

excitatory neuron (Vlugt1, Vglut2) selective transcripts, and significantly enriched for 

SST+ interneuron-expressed transcripts Gad1, Vgat, Sst, Npy, and Crhbp (Figure 4.3B). 

We then tested whether 3-h SD increased the expression of activity-regulated transcripts  
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Figure 4.3 SD increases activity in SST+ interneurons. A) qPCR data for pS6-associated 
transcripts from CFC (n = 6/group) or HC (n = 5/group) mice with 5 h subsequent ad lib sleep or 
SD (two-way ANOVA: main effect of SD, p < 0.001; main effect of CFC, N.S.; CFC × SD 
interaction, N.S.). B) Expression of cell type-specific markers in mRNA from SST-TRAP vs. Input. 
SST de-enriched transcripts expressed in glial cells, and preferentially enriched transcripts 
expressed in SST (GABAergic) interneurons. These enrichment values did not differ between 
HC+ Sleep (n = 5)  and HC + SD (n = 4) mice. C) Changes in expression of activity-regulated, 
interneuron-specific , and CSEA-predicted transcripts associated with SST+ ribosomes following 
3-h of ad lib sleep or SD. Sleep vs. SD, ***, **, and * indicate p < 0.001, p < 0.01, and p < 0.05, 
respectively, Student’s t-test. 
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in SST+ interneurons, and found that Cfos (but not Npas4 or Arc), was significantly 

elevated at SST+ interneurons’ ribosomes after SD (Figure 4.3C). We also tested 

whether SD-driven increases in Sst, Npy, and Crhbp in pS6+ TRAP were due to increased 

expression levels within SST+ interneurons. Using qPCR for these neuropeptide 

transcripts in mRNA isolated using SST TRAP pulldown, we found that following 3-h SD, 

Sst, Npy, and Crhbp transcripts were all less abundant, rather than more abundant 

(Figure 4.3C). The same change was not present in Input (whole hippocampus) mRNA, 

where expression of Sst, Npy, and Crhbp mRNAs were all unchanged by SD (Figure 

S4.3). We also used qPCR to quantify expression of other cell type-specific transcripts 

identified in pS6+ TRAP by WCGNA/CSEA. Of the transcripts tested, we found that SD 

increased expression of Kcnf1, encoding the voltage-gated potassium channel subunit 

Kv2.1 in SST+ interneurons (Figure 4.3C). Critically, greater expression of Kcnf1 is 

correlated with reduced action potential threshold and increased neuronal firing rate 

(Bomkamp et al., 2019). Taken together, these data support the conclusion that SD-

induced increases in Sst, Npy, and Crhbp transcripts in pS6-TRAP reflect increases in 

the activity, and thus pS6 expression, within SST+ interneurons. 

 To further validate increases in SST+ interneuron activity after SD, we examined 

SD-driven changes in pS6 expression in SST+ and parvalbumin-expressing (PV+) 

interneurons in the dorsal hippocampus using immunohistochemistry (Figure 4.4A). As 

observed previously (Figure 4.1), 3-h SD reduced the total number pS6+ neurons in the 

DG (Figure 4.4B). However, at the same time, 3-h SD increased pS6 expression among 

SST+ interneurons in the DG, and showed a strong trend for increased expression in CA3 

SST+ interneurons (Figure 4.4C). Overall numbers of SST+ interneurons were similar 
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between Sleep and SD mice, and consistent with qPCR results from SST TRAP, the 

intensity of SST staining among SST+ interneurons was decreased after SD (Figure 

S4.4). 
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Supplemental Figure 4.3 Whole hippocampus gene expression following 3 h SD or ad lib 

sleep. qPCR data for activity-dependent, GABAergic, and CSEA-predicted transcripts in 
whole hippocampus (Input) following 3h of SD (n = 4) or Sleep (n = 5). Sleep vs SD, ***, 
**, and * indicated p < 0.001, p < 0.01, and p < 0.05, respectively, Student’s t-test. 
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Figure 4.4 DG SST+ interneurons show increased pS6 expression following SD.  A) 
Representative images showing expression of SST, PV, and pS6 in DG (scale bar = 100 μm). 
B) DG pS6+ neurons decreased following 3-h SD (p < 0.01, Student’s t-test, n = 5 mice/group) 
C) pS6 colocalization in SST+ and PV+ DG interneurons was compared for HC mice after 3-h 
SD or ad lib sleep. SD elevated pS6 expression in SST interneurons in the DG hilus (p < 0.05, 
Student’s t-test) and trended in CA3 (p < 0.1). pS6 expression in PV+ interneurons was 
unaffected by SD. Sleep vs SD, ***, **, * , and # indicated p < 0.001, p < 0.01, p < 0.05, and p < 
0.1 respectively, Student’s t-test. 

  



 124 

Supplemental Figure 4.4 Mean fluorescence intensity values for somatostatin (SST) and 
paravalbumin (PV). Mean fluorescence intensity values for SST and PV following 3 h of ad lib 
sleep (n = 5) or SD (n = 5). 3 h SD reduced SST staining intensity in DG neurons (Student’s t-
test, p < 0.01). Values listed indicate the average number (and intensity) of SST+ or PV+ neurons 
counted per region. 
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4.7 Mimicking SD-driven increases in SST+ interneuron activity in the 
hippocampus disrupts sleep-dependent memory consolidation  

 

Because the SD-associated increase in SST+ interneuron activity has the potential 

to profoundly suppress surrounding hippocampal network activity (Raza et al., 2017; 

Stefanelli et al., 2016), we next tested how this process affects sleep-dependent memory 

consolidation. To test this, we transduced the dorsal hippocampus of SST-IRES-CRE 

mice with an AAV vector to express either the activating DREADD hM3Dq-mCherry or 

mCherry alone in a Cre-dependent manner (Figure 4.5A). To test how activating SST+ 

interneurons affects memory consolidation, hM3Dq-mCherry- and mCherry-expressing 

mice (n = 5 and 4, respectively) underwent single-trial CFC at lights on, after which they 

were immediately injected with clozapine-N-oxide (CNO; 3 mg/kg), and returned to their 

home cage for ad lib sleep. 24 h later, at lights on, mice were returned to the CFC context 

to assess CFM. Mice expressing hM3Dq showed significant decreases in context-specific 

freezing compared to mCherry-expressing control mice (p < 0.001, Student’s t-test). 

(Figure 4.5B). To confirm effects of CNO administration on SST+ interneuron and 

surrounding neuronal activity, hM3Dq- and mCherry-expressing mice were injected with 

CNO at lights on and allowed 3 h ad lib sleep in their home cage prior to sacrifice. hM3Dq-

mCherry-expressing DG neurons showed a significantly higher level of cFos expression 

at this time point (hM3Dq: 68.0 ± 15.9% vs. mCherry: 2.0 ± 1.4%; p < 0.01 Student’s t-

test) (Figure 4.5C). To assess effects of CNO on SST+ interneuron-mediated inhibition 

in the DG, we quantified cFos expression in surrounding non-transduced neurons. hM3Dq 

expression significantly reduced numbers of cFos+ neurons in the surrounding DG 

relative to mCherry-expressing control mice (p < .05, Student’s t-test) (Figure 4.5C).  
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Figure 4.5 Mimicking SD effects on activity in SST+ interneurons impairs sleep-dependent 
memory consolidation. A) Top: Experimental design: SST-IRES-CRE mice expressing either 
mCherry (n = 4) or hM3Dq-mCherry (n = 5) in dorsal hippocampus underwent single-trial CFC at 
lights on, and then were immediately administered CNO (0.3 mg/kg, i.p.) and allowed ad lib sleep 
in their home cage. 24 h later, all mice were returned to the CFC context for assessment of 
contextual fear memory (CFM). Two-weeks following CFM tests, mice were again injected with 
CNO at lights on and allowed 3 h ad lib sleep prior to sacrifice for immunohistochemistry. Bottom: 
Confocal images of mCherry and cFos expression in the DG granule cell layer (white outlines) 
and hilar SST+ interneurons. B) hM3Dq- expressing mice showed significant reductions in CFM 
(measured as % time freezing, compared with mCherry control mice (p < 0.001, Student’s t-test). 
C) Expression of cFos in mCherry+ SST interneurons was significantly higher in the hilus of 
hM3Dq-expressing mice than in mCherry control mice (p < 0.01, Student’s t-test). D) Expression 
of Cfos+ in surrounding DG neurons was reduced in hM3Dq-expressing mice (p < 0.05, Student’s 
t-test). 

  



 127 

Together, these data show that sleep-dependent consolidation of CFM can be 

disrupted via activation of SST+ interneurons, which have strong inhibitory effects on the 

surrounding hippocampal network.  

 

4.8 Reducing cholinergic input to hippocampus improves sleep-dependent 
memory consolidation and increases hippocampal pS6 expression 

 

 Cholinergic input from MS selectively increases activity and structural plasticity in 

SST+ interneurons, via muscarinic receptor activation (Gais and Born, 2004; Hajos et al., 

1998; Lovett-Barron et al., 2014; Rasch et al., 2006; Raza et al., 2017; Schmid et al., 

2016). Because acetylcholine release in the hippocampus is higher overall during wake 

vs. sleep (Teles-Grilo Ruivo et al., 2017), a reasonable assumption is that this drives 

higher SST+ interneuron activity during SD. We tested whether altering medial septum 

(MS) cholinergic input to the hippocampus following CFC affected CFM consolidation. To 

do this, we transduced the MS of Chat-CRE mice with an AAV vector to express the 

inhibitory DREADD hM4Di in a Cre-dependent manner. Immunohistochemistry confirmed 

hM4Di-mCherry labeling of ChAT+ terminals in the DG (Figure 4.6A), consistent with 

previous reports (Raza et al., 2017). Transduced mice underwent single-trial CFC at lights 

on, after which they were immediately injected with either CNO or vehicle (VEH) (n = 10 

mice/group), and were returned to their home cages for ad lib sleep. 24 h later, at lights 

on, mice were returned to the CFC context to assess CFM. Mice administered CNO 

showed significant increases in context-specific freezing compared to vehicle-treated 

mice (p < 0.05, Student’s t-test) (Figure 4.6B). To characterize the effects of reduced MS 

cholinergic input on network activity in the hippocampus, hM4Di-expressing mice were  
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Figure 4.6 Reduced cholinergic input to the hippocampus increases DG network activity 
and improves sleep-associated memory consolidation. A) Top: Experimental design: Chat-
CRE mice expressing hM4Di-expressing mice underwent single-trial CFC at lights on, after which 
they were immediately administered CNO (0.3 mg/kg, i.p.) or vehicle (VEH) (n = 10/group), and 
allowed ad lib sleep in their home cage. 24 h later, mice were returned to the CFC context for a 
CFM test. Two weeks later, at lights on, mice again received CNO or VEH (n = 5/group) and were 
allowed 3 h ad lib sleep prior to sacrifice. Bottom: Representative images of transgene 
expressing cholinergic terminals in DG and pS6+ expression in the DG granule cell layer (GCL, 
white lines) and hilus. B) CFM performance 24 h post-CFC was better in CNO-treated, relative to 
VEH-treated  mice (p-value < 0.05, Student’s t-test). C) CNO-treated mice had higher numbers 
of pS6+ DG neurons after 3 h of ad lib sleep (p-value < 0.05, Student’s t-test). 
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treated with CNO or VEH at lights on, and allowed 3 h ad lib sleep. Inhibition of cholinergic 

MS neurons in CNO-treated mice increased numbers of pS6+ neurons in DG relative to 

VEH-injected mice (n = 5 mice/group, p < 0.05, Student’s t-test) (Figure 4.6C). These 

data suggest that MS cholinergic input to the hippocampus may mediate the state-

dependent gating of hippocampal network activity in the same way that somatostatin 

does, thus acting a brake on memory consolidation mechanism. 

 

4.9 Discussion 

Here we present converging lines of evidence that indicate SD disrupts activity in 

the dorsal hippocampus, and disrupts memory consolidation, via a SST+ interneuron-

mediated inhibitory gate. First, we find that, similar to Arc mRNA and Arc protein (Delorme 

et al., 2019), activity-dependent expression of pS6 in dorsal hippocampus increases 

across a brief period of sleep (Figure S4.1), but is reduced by a period of SD (Figure 

4.1). This effect of SD is enhanced by prior learning (Figure 4.1, Figure S4.1), and seems 

to occur selectively in the hippocampus - it is not seen in the neocortex (Figure S4.2). 

We find that under SD conditions, pS6 expression in SST+ interneurons (but not other 

cell types) is increased, rather than decreased (Figure 4.4). Using pS6 itself as an affinity 

tag, we took an unbiased TRAP-seq approach to characterize cell types active in the 

hippocampus during sleep vs. SD. We found that transcripts upregulated on pS6+ 

ribosomes after SD included those with expression unique to specific interneuron 

subtypes (e.g., Sst, Npy, and Crhbp), and markers of cholinergic and orexinergic neurons 

(e.g., Cht) (Figure 4.2, Figure 4.3). Hippocampal SST+ interneurons are enriched in the 

same interneuron-specific markers identified as increasing in abundance after SD with 
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pS6 TRAP-seq (Figure 4.3B). SD-driven changes in their expression appear to be 

caused by greater activity in these neurons as a function of SD (Figure 4.3, Figure S4.3).  

Previous reports have shown that SST+ interneurons gate DG network activity 

during memory acquisition, and that their activation likewise gates initial learning (Raza 

et al., 2017; Stefanelli et al., 2016). Considering we observe fewer activated DG neurons 

expressing either Arc or pS6 after SD (Figure 4.1), one possibility is that by driving higher 

firing activity in SST+ interneurons, SD may disrupt memory consolidation by acting as 

an inhibitory gate – i.e., limiting activity in the surrounding network. Within the 

hippocampus, SST+ interneurons target both neighboring pyramidal cells and other 

interneuron types (such as PV+ interneurons) for inhibition (Bloss et al., 2016; Harris et 

al., 2018; Katona et al., 1999; Katona et al., 2014; Pelkey et al., 2017; Somogyi et al., 

2013). Our present data demonstrate that activation of SST+ interneurons is sufficient to 

disrupt activity-regulated gene expression in neighboring neurons, and CFM 

consolidation (Figure 4.5). Because selective activation of SST+ interneurons in the 

hippocampus is characteristic of SD, we conclude that this mechanism may explain the 

sleep-dependence of CFM consolidation (Graves et al., 2003; Ognjanovski et al., 2018; 

Vecsey et al., 2009). It may also explain other effects of SD on the dorsal hippocampal 

network, including disruption of long-term potentiation (LTP) (Havekes et al., 2016; 

Vecsey et al., 2009), reduction of plasticity-associated gene expression (Delorme et al., 

2019), and decreases in dendritic spine density on pyramidal neurons (Havekes et al., 

2016; Raven et al., 2019). CFM consolidation itself relies on intact network activity in 

dorsal hippocampus (Daumas et al., 2005), and is associated with increased network 

activity in structures such as CA1 (Ognjanovski et al., 2018; Ognjanovski et al., 2014), 
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and regularization of spike-timing relationships during post-CFC sleep (Ognjanovski et 

al., 2018; Ognjanovski et al., 2014; Ognjanovski et al., 2017). Thus disruption of network 

activation via activation of an inhibitory circuit element during SD is likely to interfere with 

consolidation mechanisms. Critically, SST+ interneurons may act as a gate on the 

hippocampal network, inhibiting sharp-wave ripple oscillations (Katona et al., 2014; 

Klausberger and Somogyi, 2008) and hippocampal-cortical communication (Abbas et al., 

2018; Haam et al., 2018). Both of these features correlate with sleep-dependent 

consolidation of CFM (Ognjanovski et al., 2017; Xia et al., 2017). 

 Increased representation of cholinergic and orexinergic cell type-specific 

transcripts with SD using pS6-TRAP (Figure 4.2) is consistent with increased activity in 

lateral hypothalamic (orexinergic) and MS (cholinergic) inputs to dorsal hippocampus 

during wake (Kiyashchenko et al., 2002; Teles-Grilo Ruivo et al., 2017).  Does activation 

of cholinergic or orexinergic inputs to the hippocampus likewise contribute to disruption 

of CFM consolidation? And do these modulators drive selective activation of hippocampal 

SST+ interneurons during SD?   

Behavioral data from both human subjects (Gais and Born, 2004; Rasch et al., 

2006) and animal models (Inayat et al., 2020) demonstrate that reduced acetylcholine 

signaling is essential for the benefits of sleep for memory consolidation (Gais and Born, 

2004; Rasch et al., 2006; Schmid et al., 2016). Our present data (Figure 4.6) are 

consistent with reductions in MS cholinergic input to the hippocampus being vital for 

sleep-dependent CFM consolidation. Available data suggest that these effects could be 

mediated by cholinergic regulation of SST+ interneurons. Our present data demonstrate 

that pS6 expression in the hippocampus is augmented when MS cholinergic input is 
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reduced (Figure 4.6), consistent with disinhibition. Others have found that stimulation of 

septohippocampal cholinergic neurons causes GABAergic inhibition of DG granule cells, 

mediated by cholinergic receptors on hilar (SST- and NPY-expressing) interneurons 

(Pabst et al., 2016). In contrast, while less is known about the role of orexinergic signaling 

in memory consolidation, available data suggests that orexin can promote, rather than 

inhibit, consolidation (Mavanji et al., 2017). Moreover, orexinergic input to the 

hippocampus appears to activate glutamatergic neurons to a greater extent that 

GABAergic neurons (Stanley and Fadel, 2011).  

An outstanding question is whether SD-associated, selective activation of SST+ 

interneurons is driven mainly by network interactions (e.g., input from MS cholinergic 

interneurons) or cell-autonomous mechanisms (e.g. cell-type specific changes in 

expression of proteins that alter intrinsic excitability and neuronal firing). Our present data 

do not discriminate between these two mechanisms, but provide circumstantial evidence 

of both (Figure 4.3 and Figure 4.6, respectively). A second outstanding question is 

whether these mechanisms are unique to the hippocampus, or whether similar selective 

activation of SST+ interneurons is associated with SD in other structures, such as the 

neocortex. Recent findings from calcium imaging studies of mouse neocortex have 

demonstrated higher activity of SST+ interneurons in superficial cortical layers during 

wake vs. NREM sleep (Niethard et al., 2017; Niethard et al., 2016). This effect (which 

would lead to reductions in dendrite-targeted inhibition during sleep) may be related to 

the recent finding of dendritic calcium spikes in these cortical layers during NREM 

oscillations (Seibt et al., 2017). Critically, activation of SST+ interneurons in neocortex 

during active wake is driven by cholinergic signaling (Munoz et al., 2017). While this 
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mechanism serves effective circuit-level information processing during brief periods of 

arousal, one possibility is that extended wake may act as a gate, preventing information 

processing altogether - as we see evidence for here. Together, these findings suggest 

that a similar mechanism may underlie SD-induced disruption of memory consolidation 

mechanisms outside of the hippocampus (Puentes-Mestril and Aton, 2017), as well. Prior 

work has identified a number of intracellular pathways as being critical targets for SD-

mediated disruption of memory in the hippocampus (Havekes et al., 2016; Tudor et al., 

2016; Vecsey et al., 2009) and neocortex (Aton et al., 2009a; Dumoulin et al., 2015; Seibt 

et al., 2012). Our present data indicate that microcircuit regulation of brain activity is 

another SD-driven mechanism underlying the disruption of memory consolidation by 

sleep loss. 
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Chapter V. Discussion 
 

5.1 Summary & Future Directions 

Sleep is known to play a critical role in multiple forms of learning and memory. 

Less understood are the cellular and circuit level mechanisms supporting consolidation 

during sleep. The present work addresses these questions within the context of a well-

studied form of hippocampus-mediated memory consolidation (CFC/CFM), using genetic 

tools developed for use in mice. 

 Previous work has suggested that sleep preferentially drives protein translation [1, 

2] thereby supporting hippocampal memory consolidation [3].  In Chapter 2, we provided 

the first demonstration that SD may have differential effects on translation of plasticity-

associated mRNAs in the hippocampus vs. cortex. Specifically, we found that expression 

of Arc, which is necessary for many forms of synaptic plasticity, is reduced in DG of the 

dorsal hippocampus after SD, while its abundance simultaneously increases in neocortex 

[4]. 

 In Chapter 3, we identified differences in hippocampal ribosome-associated 

mRNAs in Sleep or SD mice following CFC. To capture which mRNAs are selectively 

translated following CFC, we used translating ribosome affinity purification (TRAP) to 

immunoprecipitate cytosolic and membrane-bound (MB) ribosomes from both excitatory 

(Camk2a+) and activated (pS6+) neurons (Figure 3.1). Our sequencing results revealed 

that cytosolic ribosomes encoded mainly cytosol-localized transcripts (e.g., transcription 

factors, kinases, RNA polymerase-related genes) whereas MB ribosomal transcripts 
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enriched for subcellularly trafficked mRNAs (e.g. transmembrane receptors, secreted 

molecules, endoplasmic reticulum genes) (Figure 3.2, 3.3). This confirmed previous 

reports that have shown MB-ribosomes preferentially immunoprecipitate endoplasmic 

reticulum-bound ribosomes and enrich in secretory-pathway associated mRNAs [5]. 

Using this strategy, we quantified mRNAs associated with two differentially localized 

ribosome pools (cytosolic, MB) in hippocampal excitatory (Camk2a+) and activated 

(pS6+) neurons.  

Results from our sequencing experiments found that SD strongly increased the 

expression of cytosolic mRNAs involved in synaptic plasticity but were mostly unaffected 

by CFC (Figure 3.4, Figure 3.5). MB ribosomes, in contrast, displayed significant 

differences in bound transcripts following CFC but were relatively unaltered by SD 

(Figure 3.8). Interestingly, differences in transcripts bound to MB ribosomes was 

influenced by an animals behavioral state if learning preceded it. In hippocampal 

excitatory (Camk2a+) neurons, 2,396 MB ribosome-associated transcripts were altered 

in SD mice whereas only 840 were changed mice permitted sleep (Figure 3.4). Although 

CFC altered similar MB transcripts following CFC, SD displayed unique alterations in 

transcripts coding for lipid biosynthesis and carbohydrate metabolism (Figure 3.8, 3.9). 

Our data suggests that CFC may induce a metabolic burden that is exacerbated by SD. 

Moreover, this difference was only observed in MB ribosomes, suggesting that the 

metabolic demand may occur in a trafficked region of the neuron (e.g., axon or dendrites). 

Recent reports have shown that ~67% of forebrain-derived synaptoneurosome mRNAs 

are regulated by the circadian clock while their translation is dependent on subsequent 
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sleep [6]. Future directions will need to address how mRNAs are trafficked during sleep 

and through what mode of regulation impaired.  

 There has been significant debate regarding the contributions of sleep to the 

synaptic consolidation of previously learned memories [7]. Previous microarray studies 

have found that sleep-deprivation promotes the expression of activity-dependent 

plasticity genes both in the neocortex [8] and hippocampus [9] (Figure 2.1). Similarly, we 

also observed increased expression of plasticity genes in whole hippocampus, excitatory 

neurons, and activated neurons, particularly in the cytosolic fraction (Figure 3.4, Figure 

3.5). Consistent with waking being associated with changes in synaptic plasticity, the 

most consistently altered upstream regulator present across all cell populations was 

CREB (Figure 3.6). CREB (cAMP-response element binding protein) is a transcription 

factor activated by neuronal activity and subsequent second messenger signals. CREB 

plays a critical role in coordinating waves of gene transcription to increase both the 

intrinsic excitability and synaptic strength of CREB-expressing neurons. Furthermore, 

CREB has been shown to be involved in multiple forms of hippocampus-dependent 

memories including contextual fear conditioning, inhibitory avoidance training, and 

different forms of spatial memory [21]. 

 Thus during SD, CREB-mediated transcription promotes the expression of 

synaptic plasticity genes which are also involved in memory encoding. Less understood 

are the transcripts that persist late into the consolidation phase and may be preferentially 

translated during sleep. To identify such transcripts, we assessed the impact of CFC in 

Sleep and SD rodents separately. At cytosolic Camk2a+ ribosomes, we observed 21 

genes altered by CFC in rodents allowed to sleep whereas only 2 transcripts were 
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different in SD mice (Figure 3.5). Indeed, 70% of the transcripts altered by CFC were 

also altered by SD. Our analysis identified two activity-dependent splice isoforms (ΔFosB 

and Homer1a), whose expression remained elevated at 3- and 5-h following CFC in both 

Sleep and SD rodents. Results demonstrated that ΔFosb and Homer1a were detectable 

in both activated (pS6+) neurons and whole hippocampal mRNA (Input+) Figure 3.7). 

Critically, in excitatory hippocampal neurons (Camk2a+), expression of ΔFosb and 

Homer1a was readily observable in mice permitted to sleep and completely occluded in 

SD mice (Figure 3.7). Our data supports the idea that the allocation of memories to neural 

circuits is supported by reduced expression of plasticity genes during subsequent sleep. 

Experiments testing the role of ΔFosb in CFC have found that both blocking and over-

expression of ΔFosb in the dorsal hippocampus is sufficient to impair recall [10]. It may 

be that 5-h SD is sufficient to impair to the sparse allocation of plasticity genes necessary 

for accurate memory retrieval. 

 

 In Chapter 4, we used data from our TRAP experiment to profile cells differentially 

activated by SD. WGCNA-derived clusters of pS6-TRAPed transcripts revealed an 

enrichment of GABAergic genes (Gad1, Dlx1, Nxhp1) as well as co-expressed 

neuropeptide transcripts (Sst, Crhbp, Crh, Npy) in SD mice (Figure 4.2). These results 

led us to hypothesize that hippocampal somatostatin (SST) interneurons are activated by 

SD. SST neurons are a subgroup of dendrite-projecting GABAergic neurons and include 

oriens-lacunosum/moleculare (O-LM) cells, bistratified cells, and long-range projecting 

cells [11]. Previous experiments in the mouse hippocampus have shown that SST S6 

phosphorylation is positively correlated with increased activity and memory formation [12]. 
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To assess the influence of SD on SST activity, we performed qPCR on SST-derived 

ribosomes. We observed significant elevations in the activity-dependent gene cFos and 

the potassium voltage-gated channel member (Kcnf1), linking intracellular activity to SD 

(Figure 4.3). Since intracellular activity was elevated in SST interneurons and elevated 

expression of cFos is linked to increased CREB transcription, we decided to look at other 

CREB targets including the neuropeptides Sst, Npy, and Crhbp [13]. Surprisingly, we 

observed reduced levels of Sst, Npy, and Crhbp at SST-ribosomes (Figure 4.3). Results 

from SST interneurons mirror SD effects observed in pyramidal neurons of the 

hippocampus. Sequencing results consistently reveal CREB-based transcriptional 

programs are heightened during wake while intracellular levels of the cAMP are higher in 

sleep [14] and phosphorylated CREB is higher during REM sleep [15]. 

 

To test the location of elevated SST activity during SD, we performed pS6+/SST 

co-localization experiments and observed elevated pS6+ SST interneurons in the hilus of 

the hippocampus (Figure 4.4). Hilar somatostatin interneurons have been studied 

extensively and are referred to as hilar perforant path associated neurons (HIPP cells) 

[16]. HIPP cells project to the distal dendrites of granule neurons and can inhibit activity 

through both GABA and SST release [17]. Previous research has demonstrated that HIPP 

cells control the size of DG memory ensembles. Chemogenetically increasing activity in 

this population decreases cFos+ neurons in the DG, similar to what we observed following 

3 h of SD in Arc+ (Figure 2.3, Figure 2.4), and pS6+ (Figure 4.1, Figure 4.4) DG 

neurons. Experiments have found that manipulating SST during CFC training was 

sufficient to impair memory encoding whereas reducing activity improved learning [18, 
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19]. To test whether reduced SST activity is necessary for sleep-dependent memory 

consolidation, we injected CNO immediately following CFC to maintain constitutive SST 

activity through the sleep period (mimicking the effects of SD). We found that mice with 

increased SST activity (hM3Dq) displayed reduced freezing than mCherry controls 

(Figure 4.5). Validating our manipulation two weeks following the experiment, 3hrs 

following injection with CNO, SST-hM3Dq mice displayed increased cFos+ SST neurons 

and reduced cFos+ DG neurons (Figure 4.5). These experiments strongly suggest that 

SST-HIPP cells reduce their activity during sleep to support memory consolidation. HIPP 

cells may serve as a gate by constitutively limiting plasticity during wake, acting to filter 

out irrelevant information. Indeed, SST activity in CA1 has been shown to filter out 

unconditioned stimulus (US) to selectively process the conditioned stimulus (CS) while 

encoding conditioned suppression of water licking [20]. Thus during sleep, reduced SST 

activity may permit sharp-wave ripple oscillations [22] and hippocampal-cortical 

communication [23] necessary for sleep-dependent consolidation of CFM. 

In sum my thesis has investigated the cellular and circuit level mechanisms 

involved in sleep-dependent memory consolidation. At the cellular level, RNA-sequencing 

analyses of ribosome-bound transcripts found that sleep and learning alter distinct pools 

of ribosomes in hippocampal neurons. SD strongly influenced the expression of cytosolic 

synaptic plasticity genes and occluded subsequent gene expression following CFC. 

Future studies will need to identify the specific compartments of hippocampal circuits 

where ΔFosB and Homer1a are allocated and confirm the loss of signal-to-noise following 

extended wakefulness. In MB-transcripts, we find that CFC promulgated similar gene 

expression profiles in both Sleep and SD mice. Interestingly, SD mice also displayed 
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altered levels of biochemical genes bound to MB-ribosomes following CFC. Future 

studies are needed to determine which biological process are driving changes in these 

pathways to better understand how SD-may interfere with translation at the endoplasmic 

reticulum, dendrites, or axons. At the circuit level, pS6 cell type analysis revealed that 

hippocampal somatostatin interneurons are activated by SD. Confirming elevated activity 

through IHC, SST-TRAP, and pS6-profiling at 5h, hilar SST interneurons appear to be 

constitutively activated during wake. Increasing SST activity during sleep impaired both 

network activity in the dentate gyrus and CFM consolidation whereas reducing 

hippocampal cholinergic input increased DG network activity and improved memory 

retention. Thus our data suggests that cholinergic activity may serve as a brake on 

plasticity in the hippocampus during wake. We believe that cholinergic neuromodulation 

may work through SST interneurons although we were unable to provide a direct link 

between the two. Future studies are needed to further clarify the relationship between 

reduced SST activity during sleep to understand the unique systems consolidation events 

it supports.  
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