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ABSTRACT 

 The relation between mathematical achievement in early childhood and future academic 

success is well established. However, the effect of instruction on mathematical performance is 

less well-documented and often reliant upon self-report instruction measures and standardized 

achievement measures. Therefore, this study seeks to use observational data to examine the role 

of classroom mathematics instruction in the growth of adaptive early mathematical skills across 

the kindergarten school year. The first research aim identified the relation between children’s 

math skills at school entry and the rate at which their math skills grew during kindergarten. The 

second research aim determined whether student characteristics, such as age or sex of the child, 

predicted different mathematical skills. The third research aim examined the effect of observed 

classroom mathematics instruction on the growth of children’s early mathematical skills. 

           Four schools, fourteen classrooms, and 98 children were recruited to investigate these 

research aims. Children completed counting and addition measures three times during the school 

year from an individualized assessment novel to the United States, called Math Garden. Teachers 

recorded an entire school day using an audio recorder in the middle of the school year. First, 

longitudinal multilevel models were used to identify the relation between school-entry skills and 

the rate of growth on counting and addition capabilities. Second, multilevel models determined 

whether student characteristics predicted counting or addition abilities at the beginning of the 

school year, or growth across the kindergarten year. Last, multilevel models assessed whether 

content, quantity, and quality of kindergarten classroom mathematics instruction predicted the 

growth of children’s counting and addition skills. 
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           In this sample, children grew significantly in both counting and addition skills across the 

kindergarten year. However, the rate of growth for addition capabilities was four times that of 

counting skills. Children with low entry skills showed a larger rate of growth in both skills across 

the school year. Children’s age in the beginning of school and sex of the child did not predict 

entry or growth in counting abilities, however, boys performed better than girls on addition in the 

beginning of the school year. The quantity, quality, and content of classroom mathematics 

instruction did not predict growth in counting or addition abilities across the kindergarten year. 

This study was one of the first to use audio recordings to investigate kindergarten 

classroom mathematics instruction and its contribution to early mathematical growth. Children 

with the lowest levels of math skills grew the most across the kindergarten year, suggesting a 

focus on basic skills continues to consume early grades. Inconsistencies in sex differences on 

early mathematical tasks highlight the need for future work to address skill proficiency as an 

essential context. The results suggesting classroom mathematics instruction did not contribute to 

children’s growth in early mathematical skills highlighted important methodological differences 

between previous research, as well as a need for more robust measurement in assessing 

classroom mathematics instruction for future work. 
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CHAPTER I 

Introduction 

 

For the last few decades, scientifically robust research has shown the importance of early 

schooling in cognitive and achievement outcomes for children (Claessens, Duncan, Engel, 2009; 

Clements et al., 2013; Siegler et al., 2012; Weiland & Yoshikawa, 2013). Children in the United 

States spend a large portion of their early years in school, beginning around five-years of age. 

This early age of schooling is based on compulsory education laws that are intended to maximize 

children’s rapid skill development, regardless of socioeconomic status, race, or age (Coffield et 

al., 2008; Stephens, Yang, 2014). In this way, formal education serves as a basic form of 

cognitive and achievement intervention across the country. However, schools are responsible for 

developing more than just achievement-related skills, such as socio-emotional skills that help 

them control their behavior inside and outside of the classroom, as well as foster positive 

relationships with other children and adults. Thus, the challenge for any district, school, or class 

is to consider emphatic placement on various skills, whether academic or socioemotional. 

Therefore, the early experiences of formal schooling helps children to lay a foundation for their 

overall future success across a comprehensive set of essential skills that lead to success in 

adulthood. More recently due to strong federal policy emphasis on achievement, academic skills 

such as literacy and numeracy, generally receive the strongest curricular emphasis. 
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Two Foundational Skills: Literacy and Mathematics 

Today, the strongest emphasis in educational policy has focused on literacy development 

(Pew Research Center, OECD, PISA, 2015). The emphasis on literacy interventions are not new 

in the United States with some experts finding reference to it as far back as the 19th-century 

(Scammacca et al., 2016). More recently, states have been enacting laws that are intended to 

keep children who are considered below grade level in literacy from advancing to the next grade 

until they are proficient in the skill. For example, in the state of Michigan, a new law demands, 

“the department shall do all to help ensure that more pupils will achieve a score of at least 

proficient in English language arts on the grade 3 state assessment” (Read by Grade Three Act 

of 2016). Thus, by third grade children must demonstrate proficiency at their appropriate grade 

reading level. Otherwise, in the state of Michigan, children will repeat third grade if they are 

more than one grade level behind in reading. 

Even prior to these new laws being enacted regarding literacy, teachers tended to spend a 

significant amount of time in their classrooms focusing on literacy instruction (Engel, Claessens, 

& Finch, 2013). Thus, it will not be surprising if the push for children to reach certain literacy 

levels in school creates a situation where teachers are more focused on subject areas that relate to 

literacy and focus less on other areas, such as mathematics instruction. Unlike literacy, there are 

no similar benchmarks for student mathematical achievement levels and no laws that dictate 

what level of proficiency must be achieved in mathematics in order to transition to the next grade 

level. Indeed, even though there are many literacy interventions that are targeted at children with 

reading difficulties in the early elementary school, there is no comparable federal, state, or local 
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interventions that target mathematics. Thus, children with poor mathematical abilities will 

advance to the next grade level, even when they are having difficulty in mathematical concepts 

and applications.  

Although children in the U.S. continue to struggle in many areas of achievement (Lee, 

Grigg, & Donahue, 2007), the lack of attention to mathematics may be of particular concern. 

More specifically, individual performance in mathematics is a well-established predictor of 

future success in schooling and on the job market beyond that of literacy achievement (Duncan 

et al., 2007; Watts et al., 2014). Research shows that children’s early mathematical skills predict 

high school mathematic course attainment (Claessens et al., 2009; Davis-Kean et al., under 

review). For example, Siegler et al. (2012) use a longitudinal dataset to demonstrate children 

grouped by third-grade mathematical skill proficiencies predicted high school algebra 

attainment. Moreover, research has also shown that the mathematic courses children take in high 

school predict college matriculation and graduation (Murnane, Willett, & Levy, 1995; National 

Mathematics Advisory Panel, 2008). Interestingly, even beyond college, longitudinal studies 

have shown that early mathematical abilities are also related to future income and employment 

(Parsons, Bynner, & Brewer, 2005; Rose & Betts, 2004). Hence, above and beyond literacy 

achievement, children who develop stronger mathematical skills early on experience higher 

academic achievement overall than do their peers with weaker numeracy skills. 

Furthermore, children better equipped with a basic understanding of mathematical 

knowledge (e.g., counting and number recognition) when they enter school are also more 

prepared to learn advanced skills (e.g., arithmetic and other numerical operations). Similar to 
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literacy, proficiency in early mathematical skills provide children with a solid foundation to 

continue building on their abilities in school when compared to children not equipped with basic 

numerical knowledge (Claessens, Engel, & Curran, 2014; Griffin & Case, 1996). Thus, these 

early differences in mathematical skills from as early as three years of age consistently show a 

contribution to the existing achievement gap in schools (Case, Griffin, & Kelly, 1999; Davis-

Kean et al., under review; Lee & Burkam, 2002). 

Dissertation Study Overview 

Accordingly, the goal of this dissertation was to examine the initial level of mathematical 

skills that may capture what children were exposed to in their environment prior to formal 

schooling and assess the overall growth of early mathematical skills across kindergarten, 

children’s first formal year of school. Further, this dissertation will also examine how schooling 

contributes to the growth of those skills.  

These goals are essential to further the field and provide a better understanding of the 

mechanisms through which schooling, or classroom instruction, promotes the development of 

children’s early mathematical skills above those they had at prior to school entry. As mentioned 

above, early mathematical skills play a crucial role in later school success, and robust research 

suggests that children who enter school with low skills usually also remain low throughout 

education (Bodovski & Farks, 2007; Jordan et al., 2009). Thus, this dissertation will examine 

whether certain aspects of classroom instruction related to more robust growth across the school 
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year. Consequently, results from this dissertation could inform teachers, researchers, and 

policymakers of this pivotal time in a child’s academic career. 

Moreover, this dissertation uses a unique methodological approach to examine both the 

general development of mathematical skills, as well as different aspects of kindergarten 

classroom instruction. In the past, many studies did not include individualized methods for 

mathematical skills or naturalistic methods for classroom instruction. For example, previous 

research focusing on the development of early mathematical skills tend to focus on standardized 

measures that tell very little about dynamic, complex individual differences. Similarly, research 

focusing on classroom instruction often rely on teacher-report questionnaires and very rarely use 

observational methods in kindergarten. Thus, this dissertation will provide empirical evidence 

through a novel perspective regarding the role of formal schooling and teaching for the 

foundational development of early mathematical skills. 

Thus, there are three aims of this dissertation. The first aim investigates the relation 

between foundational mathematical skills at school entry and the growth of these number skills. 

Then, the second aim examines whether student characteristics predict the growth of these early 

number skills. Finally, the third aim explores the role of school instruction in the growth of these 

early number skills. In this dissertation I will be using novel methodologies for collecting data on 

children’s early mathematical skills across kindergarten, as well as collecting teacher data using 

a non-intrusive digital audio recorder that allows for intensive data on teacher-child interactions 

without an interviewer being in the classroom. The dissertation, then, will provide important 
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information on how mathematical skills in kindergarten develop and are potentially enhanced by 

classroom instruction in the first formal year of schooling.   

Mathematical Achievement in the United States 

Even after decades of interventions targeted at reducing the achievement gap, significant 

achievement gaps still exist in the United States (Bryk & Raudenbush, 1989; Lee & Burkam, 

2002; Reardon, 2003). A more global achievement gap becomes even starker when comparing 

the average achievement of students in the United States to those in other countries (PISA, 

Program for International Student Assessment; OECD, 2001; TIMSS, Trends in International 

Mathematics Science Study; Mullis et al., 2000). According to the 2015 PISA, children in the 

United States are slightly above the global average on science and reading but are significantly 

below in mathematics (Pew Research Center, OECD, PISA, 2015). Nationally, the proficiency in 

mathematical skills remains consistently low, demonstrating no significant change from 2015 to 

2017 in the NAEP average mathematics scores for 4th or 8th graders (NAEP, National 

Assessment of Educational Progress; NCES, 2018). Thus, issues of achievement in United States 

schools, especially related to performance in mathematics, remains a severe challenge that 

emphasizes the need for research to continue to understand the role of learning and education. 

The Development of Mathematical Achievement 

Similar to literacy, research on mathematical development suggests skills develop 

linearly. Later skills are built on earlier skills, creating a sort of staircase in achievement. 

Unfortunately, children display differential mathematics abilities from a very young age at the 
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lower steps of this staircase. These gaps in early skills cast a long shadow over children’s 

educational experiences (Claessens et al., 2009; Duncan et al., 2007; Watts et al., 2014). 

Furthermore, analyses on a wide range of populations using multiple measurement strategies 

consistently indicate that preschoolers’ facility in knowing numbers, counting, and using 

arithmetic relates closely with students’ mathematical achievement throughout their school 

careers (Claessens & Engel, 2013; Duncan et al., 2007; Geary, 2013; Jordan et al., 2009; 

Stevenson & Newman, 1986; Watts et al., 2014; Watts et al., 2017). For example, in a 

longitudinal dataset, Davis-Kean et al. (under review), use a classification technique to group 

children by mathematical skills at 4.5 years old. Results suggested four groups of children 

emerged from this study: children with no mastery, children who count, children who can count 

and add, and children who can count, add, and subtract. These early childhood mathematical 

mastery groups also predicted entry to college such that 76% of children who could count, add, 

and subtract at 4.5 years old enrolled in a four-year college. This number is stark when compared 

to only 26% of the young adults from the group who had not mastered any skills in preschool 

attended a four-year college (Davis-Kean et al., under review). Thus, findings from multiple 

studies suggest a pivotal point in time to examine indicators of long-term schooling success is 

before school entry. 

It is not surprising then that several studies suggest stimulation and support from 

caregivers in the home are some of the most substantial factors related to children’s developing 

cognitive skills (LeFevre et al., 2009; Roberts, Jurgens, & Burchinal, 2005). The home 

environment provides a significant influence on children’s early mathematical development that 



 

 

 

 

 

 

8 

can explain the heterogeneity of skills children bring to school. Parents engage in a variety of 

mathematical activities with their children at home, sometimes not recognizing that they are 

mathematic specific. For example, when asked, parents reported spending time on counting 

objects and sorting things by size or color at home (LeFevre et al., 2009), fostering and 

mastering early mathematical skills, such as counting, with their children. However, research has 

shown that these activities vary in amount. A study by Levine et al. (2010) used behavioral 

observations to examine the number of words and number of elicitations parents use with their 

children. Families in their study ranged from a total of four to 257 number words across five 90-

minute visits. These findings suggest large variability in a child’s environment, which is essential 

for development. Establishing variability was the first step to understanding the complex home 

environment, and building on that, research also suggests early exposure to more instances of 

mathematical talk is related to children’s mathematical performance a year later, even after 

controlling for maternal education (Susperreguy & Davis-Kean, 2015). Thus, the number of 

mathematical words in the home environment varies, and this diversity can set children’s 

mathematical learning trajectories at different levels before schooling has even started. 

 Another factor related to mathematical learning trajectories is the sex of the child. 

Research focusing on sex differences in mathematical competencies in areas such as adding and 

subtracting is mixed and often leans toward a sex equality hypothesis (Hutchison, Lyons, Ansari, 

2019). However, a sex difference in attitudes towards mathematics remains prominent such that 

girls report negative feelings toward mathematics and perceive it as more of a “male subject” 

(Nosek, Banaji, & Greenwald, 2002; Nosek & Smyth, 2011).  
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It is important to note, however, that sex-related genetic and physiological factors may 

contribute to these differential preferences and attitudes towards mathematics. For example, 

studies focusing on the influence of sex hormones have found considerable differences between 

male and female spatial abilities (Hampson, 2007; Maki & Sundermann, 2009). Spatial skills 

serve as an important early indicator of later mathematical abilities (Shea, Lubinski, & Benbow, 

2001).  Research examining sex-related factors have suggested individuals with high levels of 

early sex-related hormones (androgens, often seen in males) would be more likely than typical 

females to express more interest in their spatial world (Berenbaum, Bryk, & Beltz, 2012). Thus, 

there is an interaction between the individual child’s hormones and their social environment. 

Hormones may facilitate the learning of spatial skills and, thus, influence the toys or activities 

that children gravitate towards, influencing their interest in mathematical skills early on. 

Therefore, aspects of the individual’s sex may also contribute to differences in mathematical 

achievement and attitudes toward mathematics.  

Overall, previous studies have generally found that different mathematical practices 

before schooling, both individual and environmental, are related to the skills children bring to 

school. Thus, this is in line with previous research that shows children come to school with 

diverse levels of expertise (Chiatovich & Stipek, 2016; Engel, Claessens, & Finch, 2013). 

However, the growth trajectory for mathematical skill-building remains unclear. Unlike reading, 

there is no clear consensus of a hierarchy for children’s mathematical skill development. Many 

researchers have attempted to layout possible learning trajectories for mathematical development 
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(Rittle-Johnson et al., 2016; Sarama & Clements, 2004; Siegler, 2016), but unfortunately, there 

remains no clear consensus and no framework for educators and policymakers. 

Theoretical Framework 

Given the importance of the development of mathematical skills, it is important to 

understand what skills children have at the entry to schooling as well as what foundational skills 

may lead to development of more advanced skills for later mathematical achievement success. In 

the past, the field has approached this holistic understanding in multiple ways. In some cases, 

researchers conduct theory-based interventions focused on building a solid mathematical 

foundation for children (Clements & Sarama, 2007, Bryant et al., 2008; Bryant et al., 2011; 

Fuchs et al., 2006). With the use of interventions, scholars attempt to determine causal predictors 

of mathematical achievement. Other researchers have tried to unravel the cognitive processes 

responsible for the development of early mathematical skills (Merkley & Ansari, 2016; Siegler & 

Lortie-Forgues, 2014). For example, many researchers examine the role of nonsymbolic and 

symbolic magnitude comparison skills to understand the order in which skills underlie other 

abilities in the development of mathematical achievement (De Smedt, Noël, Gilmore, & Ansari, 

2013; Xenidou-Dervou et al., 2017). Finally, research that indicates children’s skills emerge 

early in development has inspired researchers to hone in on understanding the role of the home 

context and parent attributes as essential mechanisms for developing mathematical skills before 

schooling (LeFevre et al., 2010; Levine et al., 2010; Susperreguy & Davis-Kean, 2015). Thus, 

prior research has approached the development of mathematical achievement from multiple 
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angles. However, little research focuses on the relation between the mathematical skills children 

bring to school and the role of schooling factors in the development of these early skills. 

Beyond foundational mathematical skill theory, several diverse systems contribute to 

differences in children’s mathematical achievement levels, including community, family, and 

individual characteristics (Berch & Mazzocco, 2007; Bronfenbrenner & Morris, 2006). These 

systems are responsible for the skills children present early in life. As reviewed above, research 

also suggests that these sources provide children with individual differences in number skills at 

an early age creating differing foundational mathematical skills at the onset of schooling 

(Duncan et al., 2007; Jordan, Kaplan, Ramineni, & Locuniak, 2009; Watts, Duncan, Siegler, & 

Davis-Kean, 2014). Thus, the complex interaction between an individual and their environment 

contributes to their developmental trajectory. Although this dissertation does not capture all 

possible sources contributing to mathematical skill development, it hones in on one, the school 

environment. 

The school environment provides children with a uniformed system that can aid in the 

growth of early skills. However, these individual differences that exist before schooling are 

significant for implications in the school. Based on Vygotsky’s Zone of Proximal Development 

(ZPD) theory, children who receive instruction above or below their skill level will not be as 

successful when compared to children who receive education within their range of skills 

(Vygotsky, 1978). Thus, content and level of instruction should play an essential role in fostering 

early skills in the classroom. 
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Two main mathematical theories ground the understanding of early mathematical skill 

development in young children. First, the learning trajectory theory posits that sequence matters 

(Clements & Sarama, 2004; Clements & Sarama, 2007). Similar to how children learn to crawl, 

then walk, then skip, children follow a developmental progression when learning mathematics. 

There are specific skills in mathematics that children must first master before they can move 

forward. The second theory proposes that an understanding of numerical magnitudes is what 

underlies this developmental progression (Siegler & Lortie-Forgues, 2014). Thus, the sequence 

in which children learn mathematical skills is essential, and an understanding of magnitudes is an 

underlying theme in which children can progress through the learning trajectory. Therefore, it is 

not that teachers can instruct children through each stage, but it is also imperative for children to 

have a strong foundational understanding of magnitude as they move through each step. 

The hypothesis of this dissertation is grounded in the idea that certain aspects of 

instruction influence a child’s skill levels. Thus, it is not surprising that the theoretical basis of 

this dissertation aligns closely with that of theory and research in reading. Recent research in 

literacy has discovered that the effectiveness of instruction relies heavily on a child’s skill level 

(Connor, Morrison, Katch, 2004). Students benefit the most from education that matches their 

entering skill level, thus referred to as the “child x instruction interaction” or CXI for short 

(Connor et al., 2004). Taken with the previous theory on mathematical learning, the instruction 

that children receive underlies the key to the most substantial gains in mathematics. Therefore, 

this dissertation is grounded in the combination of instructional and developmental theories 

intertwining within every day, business as usual, schooling environment. 
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Assessing Individual Mathematical Skills 

Historically, researchers have relied upon a variety of methodologies to examine specific 

mathematical skills and their development. Most commonly used in the literature of 

mathematical achievement is a range of broad, validated mathematical measures that often 

consist of behavioral assessments providing researchers with an overall mathematics score 

(Clements, Sarama, & Liu, 2008; Ginsburg & Baroody, 2003; Woodcock, McGrew, & Mather, 

2001). In such measures, questions are arranged in a ranked format, starting with simple 

questions and ending more complex. Children’s responses to those questions then rank children 

on their overall mathematical abilities. These measures are typically intended to reflect 

children’s general mathematical ability and are essential for measuring children’s relative 

performance. However, an overall mathematical ability score in tasks such as the Woodcock-

Johnson III Tests of Achievement does not examine the heterogeneity of children’s mathematical 

skills individually. 

Conversely, with a shift in focus on the importance of early mathematics achievement, 

other mathematical assessments seek to examine more specific components of mathematical 

abilities (Purpura & Lonigan, 2015). For example, in Purpura, Schmitt, & Ganley (2016), 

children’s early numeracy skills were measured and assessed through 12 different tasks. These 

tasks examined specific early numeracy skills such as subitizing, verbal counting, numeral 

identification, number order, and many others. The specificity in skills and concepts is essential 

for teachers and researchers to identify and understand the mechanisms of success in 

mathematical achievement. This newer approach to assessing mathematical skills allow for 
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evaluations of the mathematical learning trajectory. However, research on specific components 

of mathematical abilities still does not capture the heterogeneity of individual differences that 

exist within these early skills. 

Item Response Theory 

Interestingly, one approach to assessing the heterogeneity of individual differences in 

mathematical skill development is the use of item response theory (IRT) methodologies. Based 

on statistical models, IRT relates responses to the abilities that the items measure (Lord & Novik, 

1968). These responses are then modeled and can be used to create computer-adaptive tests 

(CAT; Van der Linden & Hambelton, 1997). The purpose of using CAT is to understand and 

determine the ability level of a person dynamically. CAT techniques administer items dependent 

on the child’s previous response; if the child answered the question quickly and correctly, the 

next question is more complicated than the former. Thus, IRT presents children with a test 

specifically tailored to their ability level, and CAT techniques are of high quality and high-

frequency measurements that can provide rich information required to examine individual 

development in detail and answer fundamental questions about cognitive development and 

learning.  

Just as previous research has focused on diving deeper into subcomponents of overall 

mathematical achievement, it is also essential to use methods of measurement that can hone in on 

a child’s global capability. Thus, methods like a paper and pencil test do not provide an 

individualized description as accurately as methods that take into account varying aspects of the 
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question posed. For example, previous studies that have used IRT to examine children’s dynamic 

mathematical skills capture two more aspects about the underlying ability of the child beyond 

that of a standardized assessment. Individualized assessments using include questions based on 

the accuracy of the question, IRT similar to standardized or paper pencil assessments as 

mentioned above. However, beyond accuracy, individualized assessments also include, response 

time, and difficulty of the previous problem answered. Thus, the use of dynamic methods, like 

IRT, provide researchers with a more nuanced approach for understanding and examining not 

only subcomponents of mathematical achievement, but also the development of children’s early 

mathematical learning trajectories. 

Mathematical Skill Growth 

Although the measurement of mathematical skills varies across the United States, there is 

an overall consensus on the importance of fostering and developing these early skills. As 

mentioned previously, poor achievement in mathematics is a significant concern in the United 

States. Overwhelming amounts of research has supported the idea that mathematical 

competencies are cumulative and follow a developmental progression (Baroody, 2003; Clements, 

2007; Clements & Sarama, 2007; Gersten & Chard, 1999). That is, many mathematical 

difficulties later in life can be traced back to weaknesses in essential whole number competencies 

(Gersten, Jordan, & Flojo, 2005; Malofeeva, Day, Saco, Young, & Ciancio, 2004; National 

Mathematics Advisory Panel, 2008). Mastery of fundamental and efficient counting skills early 

on aids children’s learning of number relations, which then leads to more robust mathematical 
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competencies in the future (Siegler & Shrager, 1984). Thus, focusing on foundational 

mathematical skills is promising, and number sense (broadly defined as understanding numbers 

and operations; Siegler & Jenkins, 2014) in kindergarten is a core marker for persistent learning 

disabilities in mathematics (Mazzocco, Feigenson, & Halberda, 2011). 

Specifically, children’s growth of early mathematical skills can provide an accurate and 

thorough estimation of the development of these first processes. The mechanisms that influence 

the growth of early mathematical skills and the sources of individual differences are still 

relatively unknown (Geary, 1994). However, research has shown that children who begin school 

behind their peers in necessary mathematical skills such as counting and arithmetic are more 

likely to stay behind throughout schooling (Duncan et al., 2007). Similarly, one nationally 

representative study found students who begin kindergarten with low mathematical achievement 

also show the least growth through grade three (Bodovski & Farkas, 2007). Considering school 

serves as an intervention on these early skills, the idea that children who start with little expertise 

in mathematical skills might not benefit from an intervention comes as a surprise. 

Beyond children’s school entry mathematical skills, previous research has also examined 

the relation between children’s rate of mathematical growth during a school year, and their later 

mathematical achievement. For example, Jordan, Kaplan, Ramineni, & Locuniak (2007) 

examined children’s new number competencies in kindergarten and found that the actual rate of 

growth of these early skills predicted mathematical performance level in 3rd grade. Accordingly, 

children who started with low number sense abilities and made moderate gains by the middle of 

kindergarten had higher mathematical performance in 3rd grade than the children who started 
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with similar number sense abilities but no increases by the middle of kindergarten. This finding 

would suggest that both overall growth and rate of growth during kindergarten contribute to 

overall mathematical achievement. Thus, information regarding which specific activities and 

instruction type best foster growth of mathematical skills in young children is a question that still 

requires more research before adequately addressed. 

Mathematics Instruction 

Relatively few studies have investigated whether and to what extent classroom and 

school-level factors contribute to early mathematical achievement. More specifically, very few 

studies have examined the role of specific instruction on subcomponents of early mathematical 

skills (Desimone & Long, 2010; Palardy & Rumberger, 2008). One reason this may be the case 

could be due to the difficulty of collecting instructional data in schools. Research in education 

incorporates both the voices of researchers and teachers. Too often, teacher-researcher 

collaborations produce benefits for researchers exclusively. Establishing and maintaining a 

bidirectional relation in these collaborations are imperative for instructional data collection 

(Mitchell, Reilly, & Logue, 2009; Ulichny & Schoener, 1996). 

Further, previous research that has examined the aspects of instruction have used 

assessment methods that do not adequately capture the complexity of teacher-child interactions. 

For example, studies that have examined the “business as usual” curriculum often assess 

classroom mathematics instruction using teacher reports (Engel, Claessens, Finch, 2013; 

Morgan, Farkas, Maczuga, 2015). There are certain advantages to using teacher reports to assess 
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instructional practices. First, teacher reports provide researchers with a generalizable 

characterization of overall instructional training from the teacher perspective who has the most 

experience with the topics of interest. Relatedly, teacher reports are an efficient, low-cost option 

for researchers interested in assessing instruction. However, despite these advantages, methods 

of self-report show bias based on what teachers plan to practice, rather than what their day 

allows. Thus, a more efficient measurement tool that can capture and analyze a variety of aspects 

in the classroom environment would provide researchers with a more accurate method of 

assessment. 

One approach previously used to capture the mathematics instruction environment 

accurately is that of video observations. Multiple studies have used videotapes to code content 

for literacy activities (Connor et al., 2009; Connor et al., 2014; Connor et al., 2019). However, 

much less work has included full-day observations of mathematical activities in elementary 

school. For example, Connor et al. (2018) videotaped mathematic lessons in second-grade 

classrooms to examine the fidelity of instruction for a CXI mathematical intervention. These 

videos, however, did not capture an entire day of education, and thus, lack the possibility of 

obtaining mathematics instruction outside of a mathematics block (integrated mathematics 

instruction). 

Further, Jenkins et al. (2015), used kindergarten classroom live coder observations to 

explore reasons for preschool program fade-out. However, in this case, the content of classroom 

instruction was not examined; rather the focus of this study assessed the quality of mathematical 

pedagogy (Jenkins et al., 2015). Connor et al. (2019), on the other hand, used live coders to 
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develop a coding system that examines the multiple learning experiences of individual children 

within classrooms. Thus, although researchers coded the content of mathematics instruction (e.g., 

numbers, operations, geometry) in this case, the purpose of this study focused on the learning 

opportunities present for a child in 30 minute observation windows. Therefore, an entire day of 

classroom instruction was still not examined. In contrast to literacy research, very little research 

has focused on the content of mathematics instruction in elementary school, and many rely on 

live coder observation systems.  

Mathematics Instruction Measurement 

There have been several attempts to operationalize effective instruction. For example, 

effective teaching may include careful planning, motivational phrases, use of appropriate 

materials, or providing helpful feedback (Cohen et al., 2003; Shouse, 2001). Further, studies 

demonstrate that language interactions are particularly important for children’s development 

(Clifford, Yazejian, Cryer, & Harms, 2020). Although effective instruction is not clearly defined, 

an essential aspect of understanding children’s mathematical skill development comes from the 

knowledge that components of education are related to learning (Hausken & Rathbun, 2004). 

This study focuses on three elements of kindergarten instruction based upon previous literature 

reviews: content, quantity, and quality. 

The importance of the classroom environment and variation in teacher effectiveness in 

fostering early skills has been well-established (Hanushek, Kain, O’Brien, & Rivkin, 2005; 

Harris & Sass, 2008; Rockoff, 2004). This relation remains across autoregressive and multi-level 
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growth modeling approaches (Bodovski & Farkas, 2007; D’Agostino, 2000). However, the 

necessity to examine instruction from multiple facets comes from a large existing mixed 

literature. The heterogeneity in methodologies being used for studying classroom instruction 

merits further exploration as to whether one domain (e.g., quantity, quality, content) is better 

than another in aiding the growth of early mathematical skills. 

Quantity 

Many studies that examine the amount of time teachers spend in mathematics instruction 

are based on the theory that in order for mathematics learning to occur, a significant amount of 

time must be devoted to mathematics (Wang, 2010). One obvious inference of this theory is that 

teachers spend a reasonable amount of time in mathematics. However, previous literature 

suggests kindergarten students are engaged in mathematics instruction for a small proportion of 

their day (Hausken & Rathbun, 2004). Thus, many studies do not assess the contribution of 

kindergarten business as usual mathematics instruction. 

More often in literature, articles assess early mathematical interventions to examine more 

diversity in the amount of mathematical instruction time in kindergarten. For example, one meta-

analysis reviewed articles on the effectiveness of early mathematical interventions (Wang, 

Firmender, Power, & Byrnes, 2016). This article assessed multiple questions, among which were 

questions about the quantity and content of instruction. Wang and colleagues (2016) evaluated 

whether the programs that devoted more significant amounts of time in mathematics instruction 

produced larger effect sizes than programs that devoted less time. Although the results suggested 
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that there was a tendency for more substantial effects in classrooms that spent more time in 

mathematics, there was no statistically significant difference in the contrasts between three 

groups (23-60 min, 63-90 min, 120-150 min in mathematics instruction). The authors suggested 

multiple explanations for this finding, one of which was that ideal mathematics instruction 

includes more aspects that just the amount of time, perhaps higher quality and more diverse 

content as well. 

Content  

Based on prior literacy research, the main effect of instruction is not what should 

theoretically provide growth in early skills, alternatively the content of instruction is important 

for growth. More specifically, it is important to personalize, or individualize instruction (Connor, 

Morrison, Fishman, Schatschenider, & Underwood, 2007; Connor et al., 2011) such that the 

content of the instruction children receive is optimally aligned with their achievement level. 

These child-by-instruction interactions are well established in literacy research, but not as widely 

examined in mathematics.  

In one study, Connor et al. (2017) created an intervention for second grade children in 

which individualized mathematics instruction was created to examine whether there were similar 

results to prior reading research. In their intervention, results suggested that the focus on 

individualizing mathematics instruction, rather than overall mathematics instruction, 

demonstrated significant improvements on children’s individual mathematics achievement. Thus, 

ideally focusing on meeting the child at their individual mathematical skill level is best for 
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growth in their achievement. Further, theoretically, these results may also translate to an idea 

such that classrooms that cover a more diverse array of content areas should teach to more ability 

levels. Therefore, perhaps classrooms that simply include more content areas in mathematics 

may provide a similar outcome as personalizing instruction. 

Previous research has further examined intervention programs and the content of 

mathematics instruction present. For example, Wang and colleagues (2016) assessed whether 

more substantial effects of mathematical intervention programs were associated with targeting 

multiple content strands or targeting a single content strand. Although the results from the meta-

analysis suggested that there was a tendency for more substantial effects for programs that 

targeted individual content strands, there was no significant difference between the two. 

However, an area of consideration in this case, was that the outcome variables in which the study 

used focused on the specific content strand it was training. Thus, if an outcome variable assesses 

a single content strand of mathematics instruction, then it would presumably be better for the 

program to focus on only one content strand as well. 

Other studies have used nationally representative data to examine the content of 

mathematics instruction that was not part of an intervention. Bodovski & Farkas (2007) using the 

Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K) examined the contribution 

of the content in kindergarten mathematics instruction on achievement. The study collected data 

from 3,151 classrooms across the United States, and teachers responded to questionnaires 

regarding elements of their mathematical curriculum and instruction practices. Results showed 

teachers spent time in eight dimensions of content in kindergarten classrooms (e.g., basic 
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numbers and shapes, advanced counting, practical mathematics, advanced practical mathematics, 

writing numbers, single-digit operations, two-digit operations, and data/approximations). Of 

these content codes, time spent on advanced counting, practical mathematics, and single-digit 

operations showed significant positive associations with achievement growth in kindergarten. 

Instructional time addressing numbers and shapes showed negative associations with 

achievement. Thus, instruction based on rudimentary content in kindergarten may have served as 

review for many children, thus resulting in lower achievement. 

Interestingly, rudimentary content may only be detrimental for kindergarten mathematical 

achievement, but not the following school years. Ribner (2020) also used the ECLS-K to 

examine mathematics instruction from kindergarten to third grade. Results replicated previous 

findings that advanced content instruction was related to the development of mathematical skills 

in kindergarten, whereas basic content instruction was unrelated. However, Ribner (2020) also 

compared the contribution of basic and advanced instruction to first and second-grade growth in 

mathematics, and kindergarten was the only grade that showed a relation between advanced 

instruction and mathematical skill development. In first grade, neither advanced nor basic 

instruction related to children’s mathematical skill development across the years. In second 

grade, the opposite result from kindergarten was true such that only basic, not advanced content 

instruction related to growth across the year. Thus, findings suggest that advanced content, 

specifically, is beneficial for kindergarten mathematical achievement. 
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Quality  

Previous literature examining mathematical development has often relied on findings 

from literacy literature to serve as a foundation for policy initiatives. Suggestions to encourage 

parents and teachers to spend more time on mathematical concepts, first came from research 

suggesting more exposure to vocabulary words by teachers or mothers resulted in faster growth 

in children’s vocabulary (Huttenlocher et al., 1991). However, language researchers have been 

arguing about this finding and suggest that it is not the quantity that matters, but the quality 

(Rowe, 2012). 

Thus, the assessment of the quality of mathematics instruction is a relatively novel 

concept. Some studies have examined the quality of the classroom by assessing access and use to 

specific resources (Baird, 2012). However, the quality of mathematics instruction is once again 

grounded in language theory. 

Recent evidence has suggested the quality of the classroom language environment likely 

contributes to children’s development. For example, some studies have used transcriptions 

methods to better assess the quality a child’s learning environment (Cabell et al., 2015; Justice et 

al., 2018). Cabell et al. (2015) used transcriptions of interactions between teachers and children 

and found open-ended questions was associated with positive vocabulary growth for preschool 

children. However, many of these studies only examine brief sections of the school day.  

Language researchers have assessed the quality of the home environment for an entire 

day using the Language ENvironment Analysis (LENA) system. The LENA is a digital language 

processor (DLP) developed to monitor the language and audio environment of young children. It 
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records up to sixteen hours of the sound environment at a time and then processes the data into 

three adult-child variables. One variable, in particular, conversational turn count (CTC), has been 

shown to predict cognitive outcomes later in life (Gilkerson et al., 2018, Romeo et al., 2018). 

Thus, although based in the theory of language development, the LENA system may be a useful 

tool to characterize a classroom’s productive learning environment beyond brief segments of 

transcribed instruction.  

Further, the advantage of using of a non-intrusive method in the classroom, the LENA 

device, is crucial to develop an understanding of the mechanisms behind instruction domains for 

kindergarteners. Examining aspects of everyday classroom instruction through naturalistic 

observations will provide a more nuanced approach for understanding the classroom factors and 

processes related to mathematical achievement. Moreover, this approach could provide the 

information necessary to formulate recommendations for teachers, schools, and policymakers on 

how to improve early mathematical success best. 

Research Questions and Hypotheses 

The goal of this dissertation is to understand the growth and development of early 

mathematical skills during the first formal year of schooling, kindergarten. This school-based 

investigation brings together methods of examining individualized mathematical skills from 

educational and psychological theory. The study included behavioral assessments to identify the 

growth of specific mathematical skills, and an examination of the variability of mathematics 
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instruction input in kindergarten classrooms, and whether the two were associated. There are 

three specific research questions in this dissertation. 

Research Question 1 

Do children start school with various early mathematical skills, and do their skills 

grow throughout the school year? Based on previous literature examining the home 

environment and the importance of early number skills for future achievement, I hypothesize 

children will enter kindergarten with a variety of early mathematical skills, and I expect those 

skill levels to differ. The first research question focuses on examining the intraindividual 

differences of the students by examining the relation between the mathematical skills children 

bring to school and how those mathematical skills grow throughout the school year. Children's 

early mathematical skills were assessed by both an individualized, item-response theory based 

assessment, as well as a standardized mathematical assessment in this dissertation. The 

individualized assessment uses higher quality and higher frequency measurements than 

standardized mathematical assessments. Thus, I will use the individualized assessment to 

examine growth in children’s kindergarten mathematical skills. Based on previous literature, I 

expect children to show growth on both counting and addition assessments. Moreover, based on 

previous research, I hypothesize a positive relation between the skill children bring to school and 

their rate of growth, such that children who start school with higher mathematical skills show 

more growth than the children who start school with lower mathematical skills. 
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Research Question 2 

Do individual characteristics predict children's skills at the beginning of 

kindergarten and growth in mathematics during the kindergarten year? Substantial 

variations in children's early individual experiences relate to their rapid mathematical skill 

development.  Thus, to examine these interindividual differences, I will explore the functional 

form of early mathematical skills across time, and consider how individual characteristics relate 

to that growth across the kindergarten year. Based on previous literature, I expect children's 

skills at school entry and rate of growth across kindergarten to reflect individual differences in 

early number skills. Moreover, I expect children’s age at testing to predict changes in 

mathematics skills at the beginning of kindergarten, but not growth across kindergarten (Johnson 

& Kuhfeld, 2020). On the other hand, based on the previous literature, I do not expect sex of the 

child to predict mathematics skills at school entry or growth across kindergarten (Hutchison, 

Lyons, & Ansari, 2019). 

Research Question 3  

Do different aspects of mathematics instruction contribute to children's growth in 

mathematical skills? Building on the second research question, multiple studies have examined 

the contribution of education to early mathematical skills (Bodovski & Farkas 2007; Engel et al., 

2013; Ribner, 2019). However, very few studies have used observational data to examine 

classroom mathematics instruction. Thus, the third research question in this dissertation will 

examine classroom mathematics instruction through observational measures, and assess whether 
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quality, quantity, or content of mathematics instruction predict growth in children's mathematical 

skills across kindergarten. Based on prior research, I hypothesize all domains of teacher 

instruction will play a role in the growth of early number skills. However, based on the child by 

instruction interaction theory, I believe the content of mathematics instruction will drive this 

relation.  
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Chapter II 

Method 

Participants 

Kindergarten children (N = 98, M(age) = 5.55 years, 53% male, see Table 1) were 

recruited from four local elementary schools across 14 kindergarten classrooms in the greater 

southeast area of Michigan. These four schools participated in previous research collaborations 

with the University of Michigan in the years before this study. Thus, recruitment consisted of a 

brief email to the principal asking if they would be interested in continuing a research-school 

collaboration for a new research study. The schools serve children with a range of 

socioeconomic backgrounds based on percentages of free and reduced-price lunch (FRPL; 3%, 

32%, 45%, and 66% respectively).  

Participant recruitment was accomplished by sending invitation letters and consent forms 

home in children's backpacks. Every child in the 14 classrooms took home invitation letters. 

Parents were informed that all aspects of participation would take place in the school, and they 

could also complete a family questionnaire for monetary compensation. Of 311 children in all 14 

classrooms, 98 children returned signed parent consent forms for participation in the study. 

Parent consent forms were returned for students from all classrooms. All children who brought 

back signed consent forms were invited to participate. Children received small gifts for their 

participation each time they were taken out of the classroom, such as a small stuffed animal or 

slinky. Attrition was low throughout the kindergarten school year. Only 5.1% of children did not 

participate in the second round of data collection. In the final round of data collection in the 
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schools, attrition percentages increased to 7.1%. Thus, overall attrition in the sample of children 

was low, however, those who did leave the study also left the school and in some cases moved to 

another state. 

Teachers in each classroom were also invited to participate in one aspect of the study 

focusing on school mathematics instruction. They were asked to record one entire school day in 

the middle of the school year (February) using the LENA audio recorder and to complete two 

questionnaires, one at the beginning of the year and one at the end of the year. Of the 14 

teachers, all agreed to complete the survey, and 11 participated in the use of the LENA audio 

recorder for one day during the school year. Some teachers who had participated in research 

studies prior to this one had been videotaped for classroom observations and would prefer to not 

be recorded. All teachers were reassured that this would not be videotaping, but rather audio 

recording for research purposes and the focus was on understanding the growth of children’s 

early mathematical skills. However, three teachers, who had also refused observations in 

previous years, opted out of the audio recordings. All teachers received monetary compensation 

for completing the questionnaires and recording one school day. This study was reviewed and 

approved by the University of Michigan Institutional Review Board. 

Ten percent (n = 10) of the children in this sample were attending the school that 

qualified for 66% FRPL (school 1). Thirty-five percent (n = 34) of the children were attending 

the school that qualified for 45% FRPL (school 2). Twenty-four percent (n = 24) of the children 

were attending the school that qualified for 32% FRPL (school 3). Finally, thirty-one percent 

(n = 30) of the children were attending the school that qualified for 3% FRPL (school 4). The 
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unequal participant percentage distribution may be because the number of kindergarten 

classrooms varied across schools. For more information, see Table 2. 

Eleven of the teachers (78.6%) participated in the LENA portion of the study in which 

they recorded one full day of instruction. However, all fourteen teachers (100%) participated in 

both study questionnaires. On average, teachers in the sample taught for 14.14 years and taught 

kindergarten for 7.43 years. A majority of the teachers held a master's degree (78%). For more 

information, see descriptive statistics from the teacher questionnaires in Table 3. 

Less parents than originally planned (58%) completed the family questionnaire portion of 

the study. Thus, any questions regarding the home environment were not able to be included for 

further analyses. Of those participants whose parents completed the questionnaire, 56.14% were 

White, 8.77% were Black, 7.02% were Hispanic, 15.79% were Asian, and 12.28% were multi-

racial. Most of the children attended preschools (98%), such as in-home daycare or center-based 

preschool. The average household income of the sample that completed the survey was 

approximately $107,517, and 38.46% of the parents held a postgraduate or professional degree. 

More questionnaires were completed by parents whose children attended schools with lower 

FRPL percentages. For more information from the parent questionnaire, see Table 4. 

Due to the low percentage of parents that completed the survey, future analyses included 

school FRPL percentages as a socioeconomic status proxy. Although research has shown FRPL 

is not the best measure for educational disadvantages, (Domina et al., 2018), the lack of 

information on socioeconomic status of the parent does not allow for a robust analyses using the 

parent data. In the sample, FRPL and income were (r(57) = -.34, p < .05). Though the relation is 
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moderate, it provides some broad information on the financial condition of the families in this 

study, thus, FRPL percentages were used in all further analyses. 

Procedure 

 At the time of recruitment, invitation letters sent home to the parents informed parents 

that their child would be participating in a study of different mathematical activities throughout 

their kindergarten year. The participation was voluntary, and each time children were taken out 

of class, they were told that they could withdraw their assent at any time in the study without 

penalty.  

Data were collected through direct child assessments, teacher questionnaires, parent 

questionnaires, and teacher recordings. Child assessments took place five times throughout the 

school year, teachers were asked to fill out questionnaires twice, parents were asked to fill out a 

survey once, and teacher recordings were collected one day during the middle of the school year. 

For more information, see Figure 1. 

During the child assessments, the researchers visited classrooms and asked teachers if it 

would be okay to take participants out of class for our research study. If the teachers said it was 

not a good time, researchers would return at a later time and visit another classroom. When 

teachers said it was okay, researchers walked participants to a designated research area in the 

school. Three times throughout the school year, these same procedures were used to take 

children from classes in groups of three or four for the group behavioral task with two trained 

research assistants. Twice throughout the school year, the child was escorted independently from 
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the classroom for one-on-one behavioral assessment sessions with a trained research assistant. 

All assessments took place in the school setting in an unoccupied area such as a classroom, 

library, or quiet hallway.  

The teacher recordings took place during the middle of the nine-month school year, in 

approximately February. On the day of the recording, researchers would bring the teacher a 

coffee or tea and orient the teacher to the LENA device. Teachers were assured that the LENA 

device could record for up to sixteen hours, so they were told not to turn it on or off the entire 

day. A few teachers asked if they could leave the LENA in the classroom if they had to use the 

bathroom, and researchers assured them that they could. However, teachers were asked to wear 

the device during all instructional periods. Teachers wore a pocket lanyard around their necks, 

similar to an ID holder that was purchased off of Amazon, in which they put the LENA 

recorders. Due to the lightweight, simplicity of the LENA, teachers often forgot about wearing a 

recorder after a couple of minutes. Thus, the device allowed the study and the research team to 

avoid the intrusiveness of other observational methods (e.g., videotaping the classroom). 

Teachers wore the LENA at the beginning of the day while children were arriving and took it off 

at the end of the day when the researcher came and turned the LENA off and log it back in at the 

University of Michigan. The researcher administered a brief three-question survey at pick-up 

regarding the content they covered at school that day and the typicality of the day. For more 

information, see Table 3. 
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Child Measures 

 Children's early mathematical skills were collectively assessed six times throughout the 

school year. Thus, their individual, dynamic skills were evaluated three times, their basic 

mathematical achievement skills were evaluated twice, and their magnitude knowledge was 

evaluated once. Midway through the study, it was also recommended to assess children's early 

self-regulation skills, as research has emphasized the link between the two (Morgan et al., 2019; 

Nguyen & Duncan, 2019). Thus, children's executive function skills were assessed at one point 

at the end of the school year. 

Individual Mathematics Measures 

Applied Problems. At two time points during the year, children completed the 

Woodcock-Johnson III Tests of Achievement, Applied Problems subtest (WJ-AP; Woodcock, 

McGrew, & Mather, 2001). The WJ-III Tests of Achievement are standardized administrative 

tasks that were designed to provide information about a child's abilities in comparison to the 

national average. The WJ-AP subtest is a task in which children are presented with a set of 

questions to assess overall, broad mathematics abilities. This task is brief and can determine a 

wide range of mathematics abilities. It is also widely used in many nationally representative 

databases. 

Number Line Estimation. Children's numerical magnitude ability was measured using a 

number line estimation task (Thompson & Siegler, 2010). Participants received a 20 cm long 

paper number line labeled 0 and 20 at the left and right ends, respectively. Their task was to draw 
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a vertical line indicating where a given random integer between 1-20 fell on the number line. The 

administrator held a flipbook that presented the child with the number they were to place on the 

line. The books contained 10 randomly chosen integers (16, 4, 1, 13, 17, 9, 8, 19, 6, 10). A new 

number line was used in each trial so that only one number was placed on each line. Participants 

completed 10 test trials on the 20 cm line without feedback. Children's performance was scored 

as the absolute value of the difference (in centimeters) between the correct placement and the 

participants' placement of the number. These ten scores were then averaged to give an average 

error.  

Group Mathematics Measure 

Math Garden. Three times during the year, the children completed Math Garden in 

groups of two-four. Math Garden is an IRT web-based CAT technique and monitoring system 

that introduces a challenging environment for children to practice arithmetic (Klinkenberg, 

Straatemeier, van der Maas, 2011). The web-based monitoring system includes each mathematic 

operation presented as a different game in which children are working to grow a garden. The 

game offers a learning platform for children in which each domain (counting or addition) has a 

plant, and the plant grows as mathematical ability increases. For example, in the game assessing 

addition, children work to keep their cattail plants alive by answering questions quickly and 

correctly. Counting, on the other hand, is represented by the growth of blue and orange daisies. 

Variables measured by the task are response time, the given answer, the correctness (0, 1), and a 

timestamp at administration. This assessment can help investigate the existence of distinct 
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mathematical skills and help categorize early individual differences. Each domain is comprised 

of a block that has ten questions presented for a maximum of 20 seconds per question. 

Math Garden was created at the University of Amsterdam to accurately measure 

children's early mathematical knowledge (Klinkenberg, Straatemeier, van der Maas, 2011). This 

web-based visual format allows children to remain motivated and interested in a task that 

provides a more nuanced measurement of mathematical skill and is essential for educational 

approaches, based explicitly on specialized learning. 

Counting. In the counting condition of the Math Garden task, children were presented 

with a screen that had fish on the left-hand side and symbolic numbers on the right-hand side. 

Children were then directed to push the number that shows how many fish are on the screen. If 

they were correct, the symbolic number would turn green, and another question would be 

presented. If their responses were wrong, the number would turn red, and the correct answer 

would turn green. Children completed four blocks of the counting condition three times during 

the year. 

Addition. The addition condition of the Math Garden task, children were presented with a 

symbolic addition problem at the top of the screen and were presented with six possible answers. 

Children were directed to push the number that shows the solution to the question displayed. 

Similar to counting, if the responses were correct, it would turn green, and if they were incorrect, 

it would turn red, and the correct answer would turn green. Children completed three blocks of 

the addition condition three times throughout the year. 



 

 

 

 

 

 

37 

Self-Regulation 

Working Memory. Children completed the Digit Span subtest of the Wechsler IQ test 

(Wechsler, 1991) toward the end of the school year. This task was composed of two sections: 

first, the administrator says a list of numbers at a slow rate, and the participant was asked to 

recite the numbers back to the administrator. In the second section, the administrator says a list 

of numbers at a slow rate, and the participant is then asked to recite the numbers back to the 

administrator backward. The list of numbers increases by one item for every correct response. If 

the participant answered incorrectly twice in a row, the administrator moved onto the next 

section (Nesbitt et al., 2013). A score was assigned based upon the largest set at which the child 

successfully reported. 

Teacher Measures 

Teacher Questionnaire 

Teachers completed two questionnaires designed and used for this study. The first survey 

asked teachers questions specific to mathematical skills and instruction in the classroom. For 

example, teachers were asked on a typical day, “how long do you spend on mathematics 

instruction?” Teachers also ranked children’s mathematical skills on a scale of 1-10 in the 

beginning and at the end of the year. The second survey asked teachers to assess children’s self-

regulation in the spring of the academic year. Teachers completed the approaches to learning 

(ATL) scale which consisted of seven items related to children’s learning approaches in the 

classroom. Items included questions such as children’s ability to keep belonging organized, work 
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independently, adapt to changes in routine, etc. Items were adapted from the Social Skills Rating 

System (Gresham & Elliot, 1990).  Responses to the ATL scale were rated on a 1-4 scale (e.g., 

Never, Sometimes, Often, Very Often). Teachers provided emails on their consent forms for the 

questionnaires. Teachers received both verbal and email reminders if they had not filled out the 

surveys.  

Classroom Instruction Measures 

Teachers wore the LENA recording system for one day in the middle of the school year 

in February. This recording provided a means to measure aspects of the classroom and the 

teacher mathematics instruction. Three aspects of the classroom instruction were examined. In 

essence, the quality of the classroom environment, the quantity of time spent teaching 

mathematics, and the content of mathematics instruction were used to investigate the role of 

education in the development of children’s mathematical skills during the school year. 

Quality. Many researchers have attempted to measure the quality of interactions and 

classroom environments. In this study, the LENA devices include software that automatically 

processes the audio recordings to provide specific variables. The software exports variables such 

as adult word exposure, child vocalizations, and turn-taking interactions throughout the day 

based on algorithmic analysis (Xu, Yapanel, Gray, Gilkerson, Richards, & Hansen, 2008). 

Studies have found that turn-taking interactions relate to better language outcomes, brain 

structure, and long-term outcomes such as IQ (Gilkerson et al., 2018; Romeo et al., 2018). Thus, 

for this study, the quality of the classroom environment was captured using the LENA’s turn-
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taking variable called the conversational turn count (CTC). The CTC is often used to quantify 

adult-child vocal initiations with responses that occur within 5 seconds. Both intentional spoken 

replies and accidental vocal responses can be included in the final CTC (Romeo et al., 2018). 

The reliability and validity of the CTC measure have been extensively reported (Oller et al., 

2010; Xu, Yapanel, Gray & Baer, 2008; Xu et al., 2014; Zimmerman et al., 2009). In theory, the 

CTC variable captures interactive talk, providing students with a deeper understanding and 

higher quality of instruction beyond time or topic. To assess the overall quality of the classroom, 

the CTC will cover the entire recording, rather than specifically during any mathematics 

instruction time. 

Quantity. In addition to examining the quality of the classroom, the amount of 

mathematics instruction in classrooms was also considered. Quantity of the classroom 

mathematics instruction was measured by the amount of time (in minutes) teachers spent in the 

classroom instructing mathematic-related topics. Trained research assistants listened to the entire 

voice recording and tracked the time teachers spent in mathematic topics, according to a coding 

scheme (described below in Content). Reliability of the amount of time research assistants used 

the coding scheme described below was exported from the Noldus Observer XT software and 

was adequate (𝛋 = .99).  

To account for integrated mathematics instruction, the research assistants coded the entire 

day of recording. Thus, they were able to distinguish certain times during the day when teachers 

would instruct mathematic topics during a specific mathematic lesson, and when teachers would 

teach mathematic topics outside of a formal mathematic lesson. Frequent periods outside of a 
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mathematic lesson where a teacher may integrate mathematics instruction in kindergarten 

include morning meetings (e.g., calendar time, counting money), or discussing the daily schedule 

(e.g., Gym time is at 11:30 am, Lunchtime is at 12:30 pm). Therefore, if teachers were not able 

to instruct a full lesson on mathematics on the day of the recording, it was still possible for 

students to receive some amount of mathematics instruction on that day. 

Content. Finally, in addition to the quality and quantity of mathematics instruction, the 

content of mathematics instruction was also examined. Content of mathematics instruction was 

coded through trained research assistants using a well-established coding system to label the 

topics covered during instruction. The coding scheme used in this study was based on an 

Individualized Student Instruction (ISI) coding system, originally designed to assess literacy 

instruction (Connor et al., 2009). The ISI coding system was developed to examine the 

relationship between the skill level of the individual child and the amount of time they spend in 

specific types of instructional activities. Thus, focusing on a child X instruction (CXI) interaction 

(Connor et al., 2009). Therefore, although the original coding system concentrates on literacy, it 

has been adapted to include other instructional activities (e.g., mathematics) and noninstructional 

activities (e.g., transitions, planning, off-task behavior). In this dissertation, research assistants 

were only trained on the updated mathematical content codes from the ISI system, and thus, 

those were the only content codes used.  

The content of mathematics instruction was also examined using the Noldus Observer XT 

13 software (Noldus Information Technology, 2013). The Noldus software requires a .wav file to 

be uploaded to use the coding system. Rather than using videotapes like most of the other ISI 
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studies, this dissertation used audio recordings from the LENA devices in the Noldus software. 

Thus, some codes that required visualization (e.g., number line) were estimated based on audio.  

Mathematical Content Coding Categories. The ISI coding scheme codes both the duration 

of time the children in the classroom experienced a specific type of mathematics instructional 

activity and the content of the particular mathematics instruction. Each code in the ISI coding 

scheme was only recorded if it lasted at least 15 seconds. The instruction was divided into six 

general headings of categories, which included 37 subheadings of possible codes: 

1. Number sense, concepts, and operations (14 subheadings) 

a. Number Writing and Recognition 

b. Oral Counting  

c. Number Line 

d. Patterns (#s) 

e. Counting Sets 

f. Number Relations 

g. Estimating (#s) 

h. Addition 

i. Subtraction 

j. Multiplication 

k. Division 

l. Place Value 

m. Fractions 

n. Decimals 

2. Geometry (5 subheadings) 

a. Shapes 

b. Lines 

c. Transformations 

d. Coordinate Geometry 

e. Spatial Geometry 

3. Algebra (3 subheadings) 

a. Patterns (not #s) 

b. Expressions and Equations 

c. Inequalities 

4. Measurement (8 subheadings) 

a. Time 
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b. Temperature 

c. Money 

d. Length 

e. Circumference, Perimeter, Area 

f. Weight 

g. Capacity 

h. Quantity 

5. Data Analysis (3 subheadings) 

a. Data Collection 

b. Data Representation 

c. Data Analyzing 

6. Probability (4 subheadings) 

a. Certain, Likely, Impossible 

b. Likelihood 

c. Predict an Outcome 

d. Conduct an Experiment 

 

Examples and a detailed description of the coding system can be found in Appendix B. This 

Appendix also contains specific instructions for how research assistants used Noldus, as well as 

how and where the final coded files were saved. 

           The original ISI coding system based on Connor et al. (2009) also included an extra 

subheading underneath each broader mathematics instructional heading that was titled “Multiple 

Components.” This code was usually used when a variety of combined subheadings occurred 

within a 15 second instruction period. For example, if a teacher asked students to locate the 

number 20 on a hundred’s chart (e.g., number writing and recognition), then count aloud from 0 

to 20 (e.g., oral counting), and then count to 20 by 2’s (e.g., patterns) all within 15 seconds. 

Thus, this code was categorized separately from the other six subheadings as each content topic 

were discussed briefly. 
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Mathematical Content Coding Reliability. All coders were trained before coding the 

audio recordings from the actual classrooms to ensure coders were using the same criterion while 

coding the content of the mathematics instruction in classrooms. Coders watched two videotaped 

recordings from classes recorded from a previous study to have examples of the different codes, 

and practice their knowledge of the coding scheme. After students were familiar with the coding 

system, 30% of the audio recordings for the present study were independently coded by two 

trained research assistants, and Kappas were computed for all subheadings from the coding 

system (e.g., subtraction, patterns, measurement, etc.). The average Kappa across these 

recordings, across all categories of the ISI coding scheme, was adequate (𝛋 = .93; 𝛋 range = .88 

- .97). Once coders reached reliability, they continued to code the rest of the recordings, and 

questions or disagreements were discussed among the group until resolved. 

Family Variables 

Parent Questionnaire 

The demographic aspects of the families and parenting variables were assessed with one 

emailed questionnaire. Parents completed a set of general questions pertaining to the background 

information of children and their families (e.g., maternal education, preschool experiences, 

income). The questionnaire also included specific questions about mathematical activities in the 

home, based on LeFevre et al. (2009). These questions were focused around home numeracy 

experiences that are related to children’s early competence in school. Some examples included 

the frequency of which the family does mathematical activities (e.g., mathematic workbooks, 
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puzzles, connect-the-dots) or plays number games (e.g., “This Old Man” or “1, 2, Buckle My 

Shoe”). Responses to these questions were Likert-type that ranged from (1) almost never to (5) 

daily. For more information about the parent questionnaire see Appendix C. Parents provided 

emails on their consent forms for the questionnaires. Parents received email reminders to 

complete the survey throughout the school year until the end of June.  

Data Analysis Plan 

In order to address the questions in this dissertation, a framework for examining change 

over time was used (Singer & Willett, 2003). Due to the clustered nature of the data (children 

within classrooms), multilevel modeling was chosen as the best method to address the lack of 

independent in the data. Timepoints were nested within 98 students, and students were nested 

within 14 classrooms.  

A three step process of testing models was used in order to answer the hypothesized 

changes in the data (Singer & Willett, 2003). In the first step unconditional means and growth 

models were used to address the first research question: do children start school with various 

early mathematical skills and are their skills in the fall related to their growth overall? 

Unconditional multilevel growth models examine whether the intercept and rate of slope for the 

counting and addition tasks significantly differ from zero. In this case, the models can also 

determine whether the data fit a model that allows for fixed slopes or random slopes, which is 

especially useful for determining whether children’s mathematical skill growth in kindergarten 

varies by child. Unconditional means models determine whether the skills children bring to 
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school are significantly different from zero, thus testing the hypothesis that children enter school 

with mathematical skills. 

The second research question examined whether individual characteristics predicted 

children’s mathematical skills at the beginning of kindergarten or growth in mathematical skills 

across the kindergarten year. Thus, conditional means and growth models were used to examine 

whether child-level characteristics (e.g., age at testing and sex) were significant predictors of 

skills in the fall and growth over the year. These models were compared to the models in the first 

research question to assess their explanation of variance and fit of the data. 

Finally, the third research question examined whether aspects of mathematics instruction 

predicted children’s growth in mathematical skills. Thus, conditional growth models built on the 

previous models from the second research question to examine whether teacher-level instruction 

characteristics (quantity, quality, or content) and school free and reduced-price lunch (FRPL) 

percentages were significant predictors of skill in the fall or growth in mathematical skills. These 

final models were also compared to the previous models to assess variance explanation and fit of 

the data. 

These three questions resulted in a series of multilevel models in which counting, and 

addition skills were modeled as a function of an intercept, and a slope (time).  First, 

unconditional means models were estimated to partition the variance present in the outcomes 

across levels. Then, a series of two-level multilevel models were estimated in which classroom 

instruction variables were treated as time-invariant characteristic predictors (TIC) of counting 

and addition skills. A sample two-level model is presented here: 
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LEVEL 1 (within-person level):   

𝐶𝑜𝑢𝑛𝑡𝑖𝑛𝑔/𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗(TIME) + 𝑟𝑖𝑗 

 

LEVEL 2 (between-person level):   

𝛽0𝑗  =  γ00 + γ0𝑛 (AGE/SEX/FPRL/QUAL/QUANT/CONT) + 𝑢0𝑗 

𝛽1𝑗  =  γ11 +  γ1𝑛 (AGE/SEX/FPRL/QUAL/QUANT/CONT) + 𝑢1𝑗 

 

After sex of the child was dummy-coded and FRPL % was rank-ordered, data were 

imported from Microsoft Excel into RStudio and analyzed. Two-level multilevel models were 

estimated using the NLME package (version 3.1.140) in RStudio (version 1.1.456). Little’s 

Missing Completely at Random test (MCAR) was not significant, suggesting data were missing 

at random (χ2 = 27.97, p = .12). 

Models were estimated using restricted maximum likelihood estimation methods 

(REML). REML is more accurate at predicting random effects when the number of Level 2 

groups is less than 50 (Snijders & Bosker, 2011). The NLME function in RStudio estimated the 

fixed and random effects as well as the fit statistics, reliability, and correlation coefficients. 
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CHAPTER III 

Results Research Question 1 

Math Garden Growth 

Counting 

 Children’s counting skills were assessed at three timepoints. Children’s skills grew across 

each timepoint during the school year. At the first timepoint, on average the children in the 

sample scored M(SD) = 3.41 (1.03) on the Math Garden counting scale. At the second timepoint 

midway through the school year, the average counting score was M(SD) = 3.78 (.94). Finally, at 

the third timepoint in the spring, the average counting score was M(SD) = 3.85 (.96). To see the 

variability in individual counting trajectories, see Figure 2. 

Addition 

Children’s addition skills were also assessed at three timepoints. Children’s addition 

skills also progressively grew throughout the school year. At the first timepoint, on average the 

children in the sample scored M(SD) = -1.34 (2.23) on the Math Garden counting scale. The 

negative score meant that children were not yet considered proficient in addition skills. At the 

second timepoint midway through the school year, the average addition score was M(SD) = -.49 

(2.17). Finally, at the third timepoint in the spring, the average addition score was M(SD) = .43 

(1.98), which was reached the criteria for some proficiency in addition. Variability in individual 

addition trajectories can be seen in Figure 3. 
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Relation Between Mathematical Measures 

Before addressing the first research question in this dissertation, it is important to ensure 

that the novel mathematical measure (Math Garden) is related to other mathematical measures 

used in the study. As mentioned above, Math Garden is an adaptive dynamic test designed to 

examine mathematical skill level as individualized as possible. Thus, although different, Math 

Garden was expected to moderately correlate with all other mathematical measures in the study. 

In Table 5, the correlations between all child measures are reported.  

Math Garden and Applied Problems 

 The standardized mathematical measure used, WJ-AP, was measured at the beginning of 

the school year, and at the end of the school year. Math Garden was also measured at the 

beginning and the end of the school year. In the beginning of kindergarten, children who 

performed better on the WJ-AP task also performed better on the Math Garden counting (r(98) 

= .52*** p < .001). and addition tasks (r(98) = .53***, p < .001). Similarly, in the spring, 

children who performed better on the WJ-AP task also performed better on the Math Garden 

counting (r(91) = .59***, p < .001) and addition tasks (r(91) = .76***, p < .001). Not 

surprisingly, the tasks in the beginning of the school year also correlated with tasks in the end of 

the school year (WJAP2 & MGCount1: r(92) = .62***, p < .001), (WJAP2 & MGAdd1: r(91) 

= .64***, p < .001), (MGCount3 & WJAP1: r(91) = .42***, p < .001), (MGAdd3 & WJAP1: 

r(91) = .66***, p < .001). 
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 Although these assessments related strongly, they were not collinear, thus the 

individualized assessment provided a more qualitative examination of mathematical skills. See 

Figures 2-4 to compare variability in mathematical measures. Although the Math Garden 

counting task used IRT based methodology, it looks similar to the WJAP graph in that most kids 

do not change much from the first timepoint to the last timepoint. However, the variability in 

children’s addition scores is shows in Figure 3.  

Math Garden and Number Line Estimation 

 Similar to the WJ-AP, the Number Line Estimation (NLE) task is also a well-established 

measure. NLE was only measured at the third and final timepoint of the study, however, the 

relation between these tasks at all three timepoints of the Math Garden were examined. At all 

timepoints, better (lower) scores on the NLE tasks had small to moderate associations with 

higher scores on the Math Garden counting (r(92) = -.43***, p < .001, r(91) = -.44***, p < .001, 

r(91) = -.34**, p < .01) and addition tasks (r(92) = -.27**, p < .01, r(91) = -.41***, p < .001, 

r(91) = -.36***, p < .001). 

Research Question 1 

Do children start school with various early mathematical skills, and do their skills 

grow throughout the school year? Now that it has been established that the measures relate to 

each other across time but are assessing different skills, the primary questions of the study can be 

answered. In order to address the question of variability in early mathematical skills, 

unconditional means and slope models for both the counting and addition conditions were 
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examined. Unconditional means models determine whether children’s skills significantly 

differed from zero, and unconditional growth models ascertain whether children’s skills grew 

across the school year. No predictor variables were included in these models, as RQ1 focused on 

the types of early mathematical skills that children started school with whether these skills grew 

across time.  

Unconditional Means Models  

Unconditional means models were estimated to partition the variance in counting and 

addition skill outcomes across both levels of analysis. Intraclass correlations (ICC) indicated that 

54% of the variance in the counting skills model and 65% of the variance in the addition skills 

model occurred within participants. Given the substantial variance accounted for at each level, 

full level 1 and level 2 models were then tested. Although ICCs in educational research with 

cross-sectional designs ranges anywhere from .05 to .20 (Snijder & Bosker, 1999), the relatively 

high ICCs in this study are probably due to the longitudinal nature of the data given that the same 

measure was assessed repeatedly from the same student over time. These ICCs mimic those of 

previous longitudinal MLMs with academic achievement such as (Galla et al., 2014). Model fit 

for the unconditional means models are reported as the null models in Table 6 for counting and 

Table 7 for addition. 

Using the NLME function using REML in RStudio, an unconditional means model was 

estimated for both the addition and counting skills. The resulting models (Model 0a and 0b) 

served as a baseline fit for any further statistical approaches. The unconditional means model for 
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counting indicated that, on average, at Time = 0 in the fall, the mean of the entire sample was 

significantly different from zero (β (SE) = 3.67 (.08), t = 43.45, p <.05). Scores on the addition 

condition also significantly differed from zero (β (SE) = -.54 (.20), t = -2.69, p <.05). 

Unconditional Growth Models 

Also, in the NLME function using REML in RStudio, unconditional slope models were 

estimated for counting and addition tasks. Unconditional slope models were examined as both a 

random and fixed slope model to determine which best fit the data. Model fit indices were used 

to determine whether the slope should be fixed or vary randomly. Thus, Model 1 and 2 were 

compared to Model 0 in each condition. When using REML estimation procedures, the deviance 

statistics for determining whether there is a statistically significant improvement in model fit are 

only meaningful when comparing random-effects models that share the same fixed effects. 

Therefore, deviance statistics for model change were only used when comparing the addition of 

random slopes to the fixed effects models. 

Based on previous literature, in both cases, it was expected that the random slope would 

fit the data better, as children’s skills grow at different rates. In both cases, results indicated that 

Model 2, the random slope model, suited the counting and the addition conditions best. Thus, 

only random slope models are reported below. In all future models, confidence intervals around 

the standard deviation for the variance component were used to infer significance. Confidence 

intervals that do not include zero indicate that an effect is significantly different from zero (Field, 

Field, & Miles, 2013). 
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Counting. The average child’s counting score significantly increased at each timepoint (β 

(SE) = .21 (.05), t = 4.16, p <.05, see Model 2a). Further, children’s starting points varied almost 

one point on the counting scale (β (SE) = .85 (.56), p <.05), and children’s slopes also varied 

(Random Slope (SD) = .30). The correlation between children’s random intercept and slope for 

the counting task was significant such that children that started with higher counting scores 

improved less, and children who started with lower counting scores improved more across the 

school year (r(98) = -.46, [95% CI: -.70 to -.12]).  

Addition. Similar to the unconditional counting model, results suggested that the average 

child’s score significantly increased at each timepoint (β (SE) = .85 (.09), t = 9.71, p <.05, see 

Model 2b). However, this average value was much larger than the average child’s counting 

value. Further, children’s kindergarten starting points in the addition condition varied more than 

their counting scores, over two points on the addition scale (β (SE) = 2.07 (.86), p <.05), and 

their slopes also varied more (Random Slope (SD) = .59, [95% CI: .42 to .83]). The correlation 

between children’s random intercept and slope for the addition task mimicked the counting 

condition such that the relation was also significant and negative (r(98) = -.47, [95% CI: -.67 to 

-.20]). Thus, children who started school with higher addition scores improved less, and children 

who started school with lower addition scores grew more. 
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CHAPTER IV 

Results Research Question 2 

Research Question 2 

Are there individual characteristics that contribute to children's starting point and 

rate of growth during the kindergarten year? Due to the two significant random-effect slope 

standard deviations from the first research questions for Model 2a and Model 2b, it is plausible 

to examine further potential individual-related predictors that may account for the variation in 

mathematical skill intercepts and growth rates. Thus, the second research question focuses on 

individual characteristic variables related to mathematical achievement. Conditional means and 

growth models were estimated using time-invariant characteristics (TICs) collected in the study. 

Individual variables are TICs because the values of these variables stay the same across the 

study. TICs in this study included children's age at testing and children's sex. Conditional means 

models were estimated to determine the effect of TICs on children's entry skill levels, and 

conditional growth models were estimated to assess the effect of TICs on children's rate of 

growth in counting and addition skills. 

Conditional Growth Models: Student-Level Characteristics 

           Using the NLME function with REML in RStudio, two conditional means models were 

examined: Model 3a included age and sex of the child as predictors of children's starting point in 

counting skills, and Model 3b used the same TICs for addition capabilities. Based on previous 

literature, age was expected to predict children's starting point for both tasks. Although the 
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research reviewing sex differences is mixed, sex of the child was not hypothesized to predict 

differences in children's counting and addition starting points. See Tables 6 and 7 for model 

coefficients and model fit information. 

           Counting. One average, children’s entry counting score (β (SE) = .96 (1.69), t = 0.57, 

p > .05), and rate of change in counting (β (SE) = .62 (.87), t = 0.7, p > .05) no longer remained 

significantly different from zero (see Model 3a). Thus, the inclusion of the student characteristics 

explained the changes in counting skills across the kindergarten year. Differing from the 

previous literature, age at entry was not a significant predictor of children’s counting skills at 

Time = 0, the fall of kindergarten (β (SE) = .47 (.30), t = 1.54, p > .05). Further, consistent with 

our hypotheses, sex of the child was not a significant predictor of entry counting skills (β (SE) = 

-.18 (.20), t = -0.89, p > .05, see Figure 5). Moreover, age at testing and sex of the child did not 

significantly predict children’s growth in counting skills across the kindergarten year (Ageβ 

(SE) = .47 (.30), p > .05., Sexβ (SE) = -.18 (.20), p > .05). However, children’s slopes and 

mathematical skills at school still significantly varied from child to child.  

The correlation between children’s random intercept and slopes was also significant and 

negative (r(98) = -.47, [95% CI: -.71 to -.13]). Thus, children with higher counting skills at the 

first timepoint grew less than children with lower counting skills. The random intercept showed 

that children's starting points varied almost one point on the counting scale (β (SE) = .84 (.56), 

[95% CI: .69 to 1.03]).  

Addition. On average, children’s addition score significantly differed from zero (β (SE) = 

-7.61 (3.60), t = -2.11, p < .05, see Model 3b). However, similar to counting, the average child’s 
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rate of growth no longer remained significantly different from zero (β (SE) = .42 (1.50), t = 0.28, 

p > .05). Inconsistent with the hypotheses, age at testing was not a significant predictor of 

children's counting skills at Time = 0, (β (SE) = 1.23 (.65), t = 1.91, p > .05). Also inconsistent 

with the hypotheses, though related to the mixed literature, sex of the child was a significant 

predictor of children's addition skills at the beginning of kindergarten, such that males scored 

higher than females on addition skills at the first timepoint (β (SE) = -1.23 (.43), t = -2.89, 

p < .05, see Figure 6). Neither age at testing, nor sex of the child, were significant predictors of 

children’s growth in early addition skills (Ageβ (SE) = .07 (.27), t = 0.27, p > .05., Sexβ 

(SE) = .08 (.18), t = 0.42, p > .05).  

The correlation between children’s random intercept and slope was also significant and 

negative (r(98) = -.49, [95% CI: -.69 to -.23]). Thus, children with higher addition skills at the 

first timepoint grew less than children with lower addition skills. Similar to counting, the random 

intercept coefficient showed that children's starting points varied almost two points on the 

addition scale (β (SE) = 1.95 (.86), [95% CI: 1.65 to 2.30]). Children's slope also varied from 

child to child at a higher rate than their counting slopes (Random Slope (SD) = .61, [95% CI: .44 

to .85]). 
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CHAPTER V 

Results Research Question 3 

Research Question 3 

Do different aspects of mathematics instruction contribute to a student's 

mathematical skill growth rate? Now that the individual growth of mathematical skills in 

counting and addition have been established, MLM was used to explore the contribution of 

different domains of instruction (quantity, quality, and content) and school to early mathematical 

skill development. Two MLMs were conducted with level-1 variables, including measurement of 

children's early mathematical skills, and rather than merely using a teacher code at level-2, the 

quantity, content, and quality of the teacher's mathematics instruction were assessed for their 

classroom.  

Teacher Report Classroom Instruction 

           For a summary of the teacher questionnaire, see Table 3. Eighty percent of teachers in this 

sample reported obtaining a master's degree or higher. On average, the teachers in this sample 

taught for 8.33 years, and 7.43 of those years were spent teaching kindergarten. Teachers, on 

average, reported spending 50 minutes a day on mathematical topics. In comparison, they 

reported spending 115 minutes on average on literacy. These results are consistent with the 

previous literature that shows teachers spend much less time in the mathematics domain than in 

literacy (Engel et al., 2013).  
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           On average, teachers wore the LENA recorder for 6 hours and 54 minutes on the 

recording day. All teachers wore the recorder before school started in the morning, and took it 

off at the end of the day. On average, 407 conversational turns, 25,158 adult words, and 735 

child vocalizations were analyzed by the LENA device. A range of two to 42 minutes of 

television was observed in individual classrooms, but an average of 15 minutes of TV was 

recorded. Most of the minutes captured by the TV variable in the school included YouTube 

videos that the children would watch for brain breaks. Out of the total recorded time, proportions 

of self-report and observed variables were calculated. On average, teachers reported spending 

13% of their day in mathematics activities, and 29% of their day in literacy activities. However, 

after coding mathematics instruction using the LENA recorders, the teachers on average only 

spent 6% of their day in mathematical activities. Consistent with previous literature, and serving 

as a robustness check, teacher report of time spent on literacy was used as a control in the 

following MLMs. 

Quantity of Mathematics Instruction in the Classroom 

           The total quantity of mathematics instruction in the classroom was calculated by trained 

research assistants listening to the entire classroom day recording, and coding periods where the 

teachers engaged in any mathematics lesson. For example, some teachers would present a math 

check as part of their morning routine. Although this may only consist of a brief (5 minutes) 

period in the classroom, those 5 minutes were then added to any other mathematics instruction 

times the teacher presented that day. Thus, total mathematics instruction time was not just during 
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an organized mathematics block. Mathematics instruction was also included when teachers 

referenced mathematical concepts throughout the day for longer than 15 seconds. The total time 

spent in mathematical activities was then exported from Noldus Observer XT (Noldus 

Information Technology, 2013) by seconds and divided by 60 to report time in minutes. As 

shown in Table 3, on average, teachers spend approximately 25 minutes on mathematics 

instruction on an average day (M(SD) = 26.16 (13.85)).  

           When compared to the amount of time teachers reported they spent on mathematics 

instruction, this number was smaller than expected. Table 3 also shows the amount of time that 

teachers reported spending in mathematics instruction compared to the amount of time captured 

on the recording that was spent on mathematics instruction. Figure 7 also shows the comparison 

of reported versus observed. Although this was only one day of recording, these numbers 

suggests that having teachers self-report on the amount of instruction they are providing during 

the day may overrepresent the actual amount of instruction in the classroom.  

Quality of the Classroom 

As mentioned above in the methods, each teacher that participated in the LENA 

recordings had individual CTC measures from their day. These values are also presented in 

Table 3. On average, teachers used about 407 conversational turns during the school day 

(M(SD) = 407.09 (173.98)). However, some classrooms used a minimum of 191 conversational 

turns, and some classrooms used a maximum of 731 conversational turns. Thus, the standard 

deviation was large. Table 3 also includes descriptive statistics of all LENA software variables 
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available, including adult word count (AWC) and child vocalization count (CVC). Recent 

research suggests CTC is associated with children's language abilities more robustly than AWC, 

even when examining within-classroom variability (Duncan et al., in press). Thus, although 

AWC showed a more uniformed relation between quantity (r (77) = .53, p < .05) and content 

(r (77) = .55, p < .05), the CTC remained the quality variable of interest for this dissertation. 

Content of the Classroom 

           The content of the mathematics instruction was also coded using the ISI coding system 

(Connor et al., 2009). This coding system included a range of topics that could be covered in a 

classroom. Of the possible 36 content codes, only 21 were used in the kindergarten classrooms 

represented in this study. The most common content topics included addition, time, and counting 

sets. The codes that did not occur in any classes included multiplication, division, decimals, 

lines, transformations, coordinate geometry, expressions and equations, length, circumference, 

capacity, quantity, data collection, identifying, and describing events. These codes may not have 

occurred in kindergarten as the ISI coding system was created to code a variety of grade levels, 

up to second grade, so many of the codes not observed were above grade-level. Table 8 includes 

descriptive statistics of all content codes that were coded in the kindergarten classrooms. 

The Relation Between Classroom Instruction Categories 

           Once all coding was complete, relations between the classroom instruction subcategories 

were explored. In Table 5, the correlations between the quantity, quality, and content of teacher 

mathematics instruction are reported. The relation between quality and quantity was small and 
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negative (r(77) = -.03, p > .05). The relation between quality and content was also moderate and 

negative (r(77) = -.22,  p > .05). The relation between quantity and content, was significant and 

strong, suggesting teachers who spent more time in mathematics, also covered more content 

topics (r(77) = .90, p < .05). Multicollinearity, was therefore an issue for quantity and content of 

the mathematics instruction variables, as indicated by the correlations between predictors (see 

Table 5). Thus, in all further models, content and quality were examined, and quantity and 

quality were examined. However, quantity and content were not examined in the same models. 

Conditional Growth Models: Classroom-Level Characteristics 

The third research question focused on the contribution of mathematics instruction to the 

growth of children's counting and addition skills. The NLME function with REML in RStudio 

was used to assess this question using a multilevel model. All models below examined the effects 

of instruction, age and sex of child, and FRPL % on counting and addition skills over time. 

Model 4a and 4b examined the contribution of quality and quantity predicting mathematical 

skills, and Model 5a and 5b examined the contribution of quality and content predicting 

mathematical skills. Similar to previous models, age was expected to predict mathematical skills 

at school entry in both abilities, and the sex of child was not. FRPL% and instruction were also 

expected to predict growth in both skills. More specifically, mathematics instruction variables 

were expected to predict growth in skills. Frequency of literacy instruction was included to 

ensure mathematics instruction was uniquely related to mathematical skill development. 
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Counting. A longitudinal multilevel model was used to examine the within-person effect 

of quality and quantity of instruction and school-level variables on counting performance. 

Results of the multilevel model are presented in Table 6 (see Model 4a). Consistent with 

previous models, sex of the child and child’s age did not predict entry, or growth in counting 

skills (Intercept: Sexβ (SE) = -.21 (.21), t = -0.98, p > .05, Ageβ (SE) = .47 (.30), t = 1.54, 

p > .05; Slope: Sexβ (SE) = -.02 (.11), t = -0.18, p > .05, Ageβ (SE) = -.19 (.15), t = -1.21, 

p > .05). Consistent with the hypotheses, children who attended schools with lower percentages 

of FRPL showed stronger counting skills in the beginning of kindergarten (β (SE) = -.02 (.01), t 

= -3.86 p < .05, see Figure 8). However, FRPL percentages did not predict growth in counting 

skills (β (SE) = -.00 (.00), t = 1.88, p > .05).  

Interestingly, quality and quantity of mathematics instruction did not significantly predict 

mathematical skills at the first timepoint, or growth on children’s early counting skills (Intercept: 

Qualityβ (SE) = -.00 (.00), t = -0.14, p > .05, Quantityβ (SE) = .01 (.01), t = 0.85, p > .05; Slope: 

Qualityβ (SE) = .00 (.00), t = 0.91, p > .05, Quantityβ (SE) = -.00 (.00), t = -0.89, p > .05). 

Similarly, the frequency of literacy content instruction was not related to mathematical scores at 

the initial timepoint, or growth in counting skills (Intercept: Literacyβ (SE) = .00 (.00), t = 0.41, 

p > .05; Slope: Literacyβ (SE) = -.00 (.00), t = -1.22, p > .05).  

At the between-person level, children’s starting points still varied by almost one point on 

the counting scale (β (SE) = .73 (.58), [95% CI: .56 to .95]). Children’s slopes also significantly 

varied from one another, which was present across all previous models (Random Slope 

(SD) = .18, [95% CI: .05 to .69]).  
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Further, the within-person effect of quality and content of instruction and school-level 

variables on counting performance was examined. Results of the multilevel model are presented 

in Table 6 (see Model 5a). Consistent with Model 4a reported above, results remained similar 

across all individual characteristics. However, similar to quantity, the content of mathematics 

instruction also did not predict scores at the initial timepoint, or growth in counting skills 

(Intercept: Contentβ (SE) = .03 (.04), t = 0.68, p > .05; Slope: Contentβ (SE) = -.01 (.02), t = -

0.29, p > .05).  

Addition. A longitudinal multilevel model was used to examine the within-person effect 

of quality and quantity of instruction and school-level variables on addition performance. The 

results of the multilevel model are presented in Table 7 (see Model 4b). Consistent with previous 

models, sex of the child remained a significant predictor of children’s addition skills at the initial 

timepoint, such that males scored higher (β (SE) = -1.29 (.35), t = -3.29, p < .05). However, 

consistent with Model 3b, age of child at testing did not predict children’s addition scores at the 

initial timepoint, and neither sex of the child, nor age of the child predicted children’s growth in 

addition skills (Intercept: Ageβ (SE) = .72 (.57), t = 1.27, p > .05.; Slope: Ageβ (SE) = .19 (.30), t 

= 0.63, p > .05., Sexβ (SE) = -.07 (.21), t = -0.31, p > .05). Consistent with the hypotheses, 

children who attended schools with lower percentages of FRPL showed stronger addition skills 

at the first timepoint (β (SE) = -.06 (.01), t = -5.07, p < .05, see Figure 9). FRPL percentages, 

however, did not significantly predict growth in addition skills (β (SE) = .01 (.01), t = 1.09, 

p > .05).  
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Similar to counting skills, at the within-person level, quality and quantity of the 

mathematics instruction variables did not significantly predict scores at the initial timepoint, or 

growth on early addition skills (Intercept: Qualityβ (SE) = -.00 (.00), t = -1.71, p > .05, 

Quantityβ (SE) = .03 (.02), t = 1.58, p > .05; Slope: Qualityβ (SE) =.00 (.00), t = 1.00, p > .05, 

Quantityβ (SE) = -.00 (.01), t =-0.43, p > .05). The frequency of literacy content instruction was 

also not related to mathematical skills at school entry or growth in addition skills (Intercept: 

Literacyβ (SE) = -.00 (.01), t = -0.49, p > .05; Slope: Literacyβ (SE) = .00 (.00), t = 0.31, 

p > .05).  

At the between-person level, children's starting points still varied by one and a half points 

on the addition scale (β (SE) = 1.53 (.78), [95% CI: 1.24 to 1.87]). Children’s slopes also still 

significantly varied from one another, which was present across all previous models (Random 

Slope (SD) = .67, [95% CI: .48 to .93]).  

Further, the within-person effect of quality and content of instruction and school-level 

variables on addition performance was examined. The results of the multilevel model are 

presented in Table 7 (see Model 5b). Consistent with Model 4b reported above, results showed 

similar trends across all characteristics. However, similar to the quantity and quality variables, 

the content of mathematics instruction also did not predict scores in the beginning of 

kindergarten, or growth in addition skills (Intercept: Contentβ (SE) = .15 (.08), t = 1.88, p > .05; 

Slope: Contentβ (SE) = -.01 (.04), t = -0.15, p > .05).  
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CHAPTER VI 

Post-Hoc Analyses 

 

Instruction and Standardized Mathematical Achievement 

In both previous models, quality, quantity, and content instruction did not predict growth 

in counting or addition skills. What is less clear, however, is whether these aspects of instruction 

predict changes on a standardized mathematical achievement test. For example, Math Garden 

examines very specific subcomponents of abilities including speed and question difficulty. Thus, 

the question remains whether aspects of instruction predict changes in overall mathematics. 

Assessing the contribution of mathematics instruction on a standardized achievement test may 

provide further clarification. Thus, two post-hoc regression analyses were performed to examine 

the classroom instruction variables, student characteristics, and school FRPL percentages 

predicting changes on the Woodcock-Johnson, Applied-Problems subtest. 

Standardized Mathematical Achievement 

Interestingly, age at testing, sex of the child, and FRPL % were not significant predictors 

of changes in children's Woodcock-Johnson Applied Problems score across the year (see Table 

9). Further, no classroom instruction variables predicted change in the test either. Quality, 

however, showed a larger effect size, though negative and not significant (β (SE) = -.22/-.24 

(.00)). Thus, perhaps with larger sample sizes, quality of instruction would significantly predict 

the change in the standardized achievement test. 



 

 

 

 

 

 

65 

Self-Regulation and Mathematical Achievement 

Previous research emphasizes the relation between self-regulation and mathematical 

achievement (Bull & Lee, 2014; Jacob & Parkinson, 2015; Ribner, 2020). Thus, two self-

regulation measures were included in later data collection for this dissertation. However, as self-

regulation shows change throughout the kindergarten year, these measures could not be included 

in multilevel models unless they were included as time-varying characteristics with multiple 

timepoints. Thus, as a post-hoc approach to assessing whether self-regulation explains more 

variance at the end of year mathematical achievement that is not already explained by prior 

mathematical achievement, a regression analysis was performed. These results could inform 

future study designs examining growth in early mathematical skills. 

Self-Regulation and Counting 

 Children’s counting skills in the middle of the school year predicted counting at the end 

of the school year. Thus, children's scores at the beginning of the school year no longer predicted 

counting at the end of the year (see Table 10, Model 1). The two self-regulation measures 

showed different results such that children's working memory skills, or cognitive self-regulation, 

did not predict counting skills at the end of the year after accounting for previous counting skills. 

However, children's scores on the approaches to learning scale, or behavioral self-regulation, did 

predict their counting scores at the end of school after accounting for prior achievement. 
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Self-Regulation and Addition 

Similar to counting skills, addition skills in the middle of the school year were most 

predictive of addition capabilities at the end of the year (see Table 10, Model 2). Also similar to 

counting skills, the approaches to learning scale, or behavioral self-regulation, predicted addition 

scores at the end of the school year above and beyond prior achievement. The cognitive self-

regulation task, backward digit span, showed a similar effect size as the approaches to learning 

scale, although it was not significant. Thus, perhaps in a larger sample, cognitive self-regulation 

would also predict addition skills at the end of the year. 
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CHAPTER VII 

 Discussion 

 

Children in the United States perform slightly above the global average on science and 

reading but are significantly below the global average in mathematics (Pew Research Center, 

OECD, PISA, 2015). Nationally, the proficiency in mathematical skills remains consistently low, 

showing no significant change from 2015 to 2017 (NAEP, National Assessment of Educational 

Progress; NCES, 2018). Many point to poor instruction in the schools as a source of this 

disparity. Thus, using novel assessment methods, this dissertation explored the role of 

mathematics instruction in developing mathematical skills of children as they transition into their 

first formal year of schooling, kindergarten. Examining the transition into kindergarten allows 

for the testing of skills that were developed in the home and preschool environment prior to that 

transition into schooling and then examine how these skills grow across the school year. In this 

way, we can understand what children are gaining in school and if the instructional environment 

is promoting that gain. 

The results from the set of studies in this dissertation indicate that there are some 

interesting differences in the development of early mathematical skills across the kindergarten 

year. In the first study, for example, it was found that children’s mathematical skills grew across 

the school year, and children’s skills varied both at the beginning of the kindergarten school 

year, and how much they grew. That is, on average, children who started school with lower 

mathematical skills grew more than children who started with higher mathematical skills across 
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the kindergarten year. In the second study, results suggested boys performed better on addition 

skills in the beginning of the kindergarten school year, but grew at a similar rate as girls. In the 

third study, school free and reduced-price lunch percentages predicted children’s mathematical 

skills at the beginning of the kindergarten school year, such that children attending schools with 

lower percentages showed higher mathematical skills. After accounting for other important 

demographic variables and earlier achievement, mathematics instruction showed no unique 

prediction of children’s mathematical skills in kindergarten. Further, no school, classroom, or 

individual characteristics predicted growth in children’s mathematical skills. 

 Growth of Children's Early Mathematical Skills 

           Previous studies that have examined the growth of children's early mathematical skills 

found that children who entered school with higher mathematical skills showed increased growth 

during the kindergarten school year (Jordan et al., 2006). Based on this research, it was 

hypothesized children would not only show growth in early mathematical skills, but also their 

starting mathematical skills would relate to the amount of growth in their mathematical skills 

throughout kindergarten. Using a novel adaptive assessment software that is based on an item 

response theory framework for examining early mathematical skills, the results showed 

children's mathematical skills did grow, and the subdomains of mathematics grew at different 

rates. 

This individualized, adaptive assessment approach allows for the understanding of how 

individual students are acquiring mathematical skills across the school year and the findings 
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highlight the variability in children’s mathematical skill levels. When examining the change in 

mathematical skills as assessed by a standardized achievement test, less variability can be seen. 

Thus, an individualized assessment approach allowed children's mathematical scores to reflect: 

the difficulty of the question, rate of response, as well as the accuracy of the answer. The 

standardized assessment, on the other hand, mainly focuses on the latter. In this context, the use 

of an individualized assessment helps to shed more light on the specific skill levels of children in 

many different ways, such that diverse methods are essential for further unpacking the 

development of early mathematical skills. 

In addition to the variability in children's mathematical skills assessed by individualized 

assessments, it was also essential to consider the relation between the mathematical skills 

children bring to school and how much they grow. Contrary to previous literature, children's 

mathematical skills at school entry related negatively to their rate of growth. One explanation for 

this result could be that children who start school with higher mathematical skills have less 

content to gain, and less room to grow across the kindergarten year. For example, children who 

enter school with the ability to count cannot necessarily improve as much as children who do not 

know how to count. In this case, children with lower skills would benefit more from instruction 

in basic mathematics, such as counting, which other research has suggested is one of the primary 

skills taught in kindergarten (Engel et al., 2013). Thus, although the achievement gap persists, 

the growth seen in these specific kindergarten mathematical skills suggests an upward trend in 

addressing the gap for children in these schools, albeit focused on basic counting and addition 

abilities. 
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One question that remains, then, is whether a positive relation between mathematical 

skills children bring to school and the growth of those mathematical skills exists for more 

advanced mathematical skills, beyond counting and addition. Based on previous literature, the 

home environment serves as a potential factor in children’s mastery of basic mathematical skills 

prior to the onset of formal schooling (Susperreguy & Davis-Kean, 2015). This would suggest 

that while schooling serves as a time for children with lower mathematical skills to catch up, the 

children who enter school with proficiency in these mathematical skills will build on these and 

acquire more advanced skills (e.g. subtraction and rudimentary multiplication). Thus, it may be 

possible that had some of these more advanced mathematical domains been assessed, children 

from the high skill groups may have shown growth in those domains. Thus, although the results 

from this study showed a negative relation between children’s mathematical skills at school entry 

and growth across the kindergarten year, the positive relation represented in the literature may 

have been replicated if more advanced skills had been assessed. 

           In line with previous research, the development of children's mathematical skills in 

kindergarten showed substantial growth (Burchinal et al., 2002). However, findings from the first 

research question that examined children’s variability in mathematical skills suggested counting 

and addition skills vary considerably in the amount of growth they exhibit throughout the 

kindergarten year. That is, children’s counting scores in the beginning of the school year were 

higher than their addition scores. Thus, children on average showed a lower rate of growth across 

the kindergarten school year for counting skills than addition skills. This result is consistent with 

literature suggesting that many children have already mastered counting before kindergarten 
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(Engel et al., 2013), and, the kindergarten time period may be more important for the 

development of advanced skills, such as addition (Le et al., 2019).  

Although children showed significant growth in both counting and addition skills across 

the kindergarten year, one explanation for why children did not grow as much on counting skills 

as addition skills could be that children, on average, began school proficient in counting and not 

proficient in addition. Children’s counting scores in the beginning of the kindergarten school 

year did grow, but did not differ much from their counting scores at the end of kindergarten for 

the average child. It could be that children improved on one aspect of the individualized 

mathematical counting assessment, rather than the underlying counting skill itself. The result that 

children showed proficient counting abilities prior to kindergarten provides additional support to 

the literature suggesting the home numeracy environment offers the groundwork for the 

development of basic mathematical skills (LeFevre et al., 2009; Napoli & Purpura, 2018). Thus, 

children’s addition skills provided more room for growth at the beginning of kindergarten. 

Regardless, by the end of the kindergarten school year, the average child ended kindergarten 

above the proficiency level in counting and addition abilities, though only slightly above 

proficiency in addition. 

Growth in Children's Early Mathematical Skills Accounting for Demographic Variables 

           The use of an individualized mathematical assessment allowed for a strong 

methodological approach in observing how diverse child characteristics contribute to the growth 

of children's counting and addition skills. Based on previous literature, it was hypothesized that 
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children would vary on a variety of individual characteristics before schooling, and during the 

kindergarten year. For example, children’s age at the beginning of school was hypothesized to 

contribute to children's early mathematical skills such that younger children would start school 

with lower mathematical skills. Further, it was also hypothesized that girls and boys would not 

differ either at the beginning of school or throughout schooling on their mathematical skill 

abilities. Moreover, at the school-level, free and reduced-price lunch percentages were 

hypothesized to relate to children's kindergarten entry skills and rate of growth in both counting 

and addition skills. Including both individual and school-level characteristics, allowed for a more 

holistic picture of children's mathematical development during the kindergarten school year. 

Sex Differences in Mathematical Achievement 

           Contrary to my hypotheses, boys performed better than girls on addition skills at the 

beginning of the kindergarten school year. Previous literature showed conflicting findings for the 

existence of sex differences in early mathematical skills (Lachance & Mazzocco, 2006). 

However, more recent, literature has suggested that sex of the child does not play a role in early 

numerical competencies (Bakker et al., 2018; Hutchinson et al., 2017). For example, Bakker et 

al. (2018) examined 4-5-year-old children in Belgium on a variety of numerical competence 

subtests. They found support for the gender equality hypothesis for seven of eight mathematical 

tasks. Thus, although the majority of early skills supported gender equality, in this study, some 

mathematical tasks still favored boys. 
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Further, it is important to emphasize that many studies find that the sex of the child does 

not matter for a majority of early mathematical skills, however, sex of the child does matter in 

some cases. Thus, sex differences are the exception, not the rule for mathematical development. 

For example, some key studies find sex differences at the beginning of kindergarten in early 

mathematical skills (Jordan et al., 2006; Ribner, 2020). Jordan et al. (2006) found sex differences 

at the end of kindergarten favoring boys for overall number sense and counting skills, but no 

other skills. However, Ribner (2020) found sex differences in children's school entry level 

mathematical skills. Thus, one explanation for the finding that boys outperformed girls in 

addition skills could reflect an adjustment to children’s first formal year of schooling. 

Kindergarten may present a particular period of transition in which sex differences in 

mathematical achievement are present, whereas, in future grades, gender equality becomes more 

stable.  

The inconsistency of sex differences in early mathematical skills was replicated in the 

results of the second research question that examined how demographic variables related to 

children’s early mathematical skills, such that the sex of the child was not a significant predictor 

of children’s counting skills, but was a significant predictor of their addition skills. There are 

many possible explanations for this finding, but one mentioned above could be that all children 

enter school with some mastery in counting skills (Engel et al., 2013). This possible explanation 

is also supported by the first research question examining variability in children’s mathematical 

skills, in which the results show children entered school with counting skills above a threshold of 

proficiency, whereas, children’s addition scores on average were below zero, suggesting addition 
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was a skill children had not mastered yet. Thus, one explanation for the inconsistency of sex 

differences in the early mathematical skill literature could be at the core of understanding 

children’s proficiency levels. Perhaps future research should work to unpack proficiency levels 

in early mathematical subcomponents and the role of children’s sex in the development of these 

proficiencies. 

Another possible explanation worth noting of the role of sex differences in children’s 

addition skills could be the use of the individualized mathematical assessment. Previous studies 

that have assessed sex differences on basic numerical tasks have mostly focused on standardized 

or uniform measures, rather than item-response theory based methods. Thus, once accounting for 

features beyond correct or incorrect responses, more differences in child characteristics may 

emerge. This explanation is consistent with the literature that suggests there is an effect of sex on 

speed due to individual differences in response styles (Carr & Jessup, 1997). For example, some 

studies have found that girls use finger counting and overt strategies more so than boys when 

solving mathematics problems, thus, impacting the speed to submitting a correct answer (Geary 

et al., 2000). This can be assessed directly with the individualized assessment, as speed of 

response is one of the factor that constitutes a child’s overall score. However, further research 

should unpack whether males consistently perform better on addition skills across kindergarten, 

or if this is an artifact of the assessment methodology.  
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Age Differences in Mathematical Achievement 

Contrary to previous literature, children’s age at the beginning of kindergarten did not 

relate to children's mathematical skills at the beginning of kindergarten, or the growth of their 

mathematical skills across kindergarten. In past studies, children’s age at testing was positively 

associated with higher addition skills (Jordan et al., 2006; Ribner, 2020), and it remained 

positively associated with the growth of those early addition skills. Previous research has 

suggested when older children start school, they show higher initial achievement and 

kindergarten growth rates, but normative growth rates in later grades (Johnson & Kuhfeld, 2020). 

Perhaps one reason children’s age at the beginning of kindergarten did not predict their addition 

skills could be that the sample size in the current studies was too small. The previous studies 

mentioned above included large-scale, nationally representative samples of participants in their 

analyses and thus, had more statistical power to find a significant difference. Some support for 

the lack of statistical power in the current study, is supported by examining the moderate effect 

sizes that suggest that a larger sample may have found the relation between children’s age when 

they were tested and children’s addition skills to be statistically significant. 

Further, although this study had a small sample size, one result to note was that of the 

contribution of age on counting and addition skill growth once instruction was accounted for. 

Although nonsignificant in this study, the effect size of the results suggested that younger 

children may have grown more on counting skills with instruction, whereas older children may 

have grown more on addition skills with instruction. Thus, suggesting a tendency for younger 

children to develop more counting skills from the instruction in kindergarten, and older children 
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developing more of the advanced, addition skills in kindergarten. Therefore, although 

statistically nonsignificant, perhaps with a larger sample the difference between the growth of 

children’s counting and addition skills by instruction may have been observed. 

School Differences in Mathematical Achievement 

           As hypothesized, the percentage of those receiving free and reduced-price lunch in a 

school predicted children's counting and addition skills at the beginning of kindergarten. In other 

words, the children that attended schools with a lower percentage of children receiving free and 

reduced-price lunch showed higher counting and addition scores at the beginning of the 

kindergarten year when compared to children from higher free and reduced-price lunch 

percentage schools. However, the percentage of free and reduced-price lunch children in the 

school did not relate to the growth of children’s mathematical skills over the kindergarten year. 

Thus, these findings reinforce the achievement gap literature such that, children from schools 

with higher free and reduced-price lunch percentages begin kindergarten with lower skills and 

schooling did not close these early mathematical achievement gap across the kindergarten school 

year (Reardon, 2011). Although all children’s counting and addition skills grew, children from 

lower socioeconomic status schools started school with lower mathematical skills compared to 

that of children in higher socioeconomic schools. Although it is the hope that schools serve as an 

intervention on these early skills, school socioeconomic status showed no unique prediction to 

the growth of children’s counting and addition skills across the kindergarten school year.  
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The results suggesting that the percentage of children receiving free and reduced lunch, 

which served as a proxy for socioeconomic status, predicted children’s mathematical skills in the 

beginning of the kindergarten school year, but not growth over the year, may have important 

implications for children's development of early mathematical skills in school. In order to close 

the achievement gap, the schools with more children receiving free and reduced-price lunch 

would ideally improve children’s growth rate in mathematical skills such that children attending 

those schools would then make up the gap present prior to transitioning into kindergarten. 

Interestingly, the study findings regarding the contribution of school instruction, show that 

growth coefficients are positive, suggesting a step in the right direction. Further, the effect sizes 

suggest that perhaps with a larger sample, results that children at schools with higher percentage 

of free and reduced lunch might improve growth in children’s early counting skills across the 

kindergarten year, but not addition. Thus, it would be important to try and replicate these results 

in a larger sample to see if these effect sizes stay the same. In this context, it was imperative for 

the sample to include school of various backgrounds because, without the variety, results may 

have sharply differed. Thus, moving forward, in order to learn more information about the 

children’s mathematical trajectories it is essential for future research to continue to examine 

diverse samples. To examine mechanisms in which these specific skill differences are associated 

with the economic background of the children and schools, a diverse sample is necessary. 
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Mathematics Instruction and Growth in Children's Early Mathematical Skills 

           The role of mathematics instruction in assisting the growth and development of children's 

early mathematical skills is a crucial aspect of understanding how children acquire mathematical 

education. Previous research has explored how mathematics instruction contributes to children's 

early mathematical skills, and found that classrooms that spend more time on math activities in 

more advanced contexts show better mathematical achievement (Engel et al., 2013; Connor et 

al., 2019; Ribner, 2020). In study three examining classroom instruction contributions, an 

approach different from previous studies was used to examine the measurement of classroom 

mathematics instruction. Results from this naturalistic, more representative methodological 

approach using audio digital recorders provide insight into diverse aspects of mathematics 

instruction and whether they contribute to the development of children's early mathematical 

skills across the kindergarten year. In particular, contrary previous studies, results suggested the 

quality, quantity, and content of mathematics instruction did not predict skills in the beginning of 

kindergarten, or growth in counting or addition capabilities as measured 

Classroom Instruction Sampling 

Although mathematics instruction did not predict growth in counting or addition skills as 

measured, it should be noted that the takeaway is not that teaching does not matter. Studies 

examining education have the difficulty of capturing many aspects of input with limited 

methods. For example, teachers interact with students for nine months, and researchers only 

accumulate a few days of data. One possibility as to why mathematics instruction did not predict 
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counting or addition skills could be that they did not accurately capture the typical variety of 

mathematical activities present in kindergarten classrooms. Audio recordings only took place 

over one school day, and thus, it is important to remember that almost nine months of instruction 

were not captured.  

Building on the fact that teachers were only observed for one day, the mathematics 

instruction used in this study assumed that teachers delivered instruction exactly the same across 

the kindergarten school year. This was another limitation to only recording one day. Thus, 

perhaps in future studies, study designs should assess whether kindergarten mathematics 

instruction remains stable across the kindergarten school year. For example, following the 

common core curriculum, one could imagine that content of mathematics instruction should 

change throughout the school year (National Governors Association, 2010). Although there 

remain certain staples, such as addition, across the school year, it could be that content in the fall 

of kindergarten focuses more on counting, whereas the content in the spring of kindergarten 

introduces more advanced concepts, such as subtraction. Hence, future studies examining the 

contribution of mathematics instruction on early mathematical skills should assess whether 

mathematics instruction is a time-varying characteristic.  

Content of Mathematics Instruction and Mathematical Achievement 

Contrary to the study hypotheses, variety in the content of mathematics instruction did 

not predict children’s growth in early addition or counting skills across the kindergarten year. 

The content measure was intended to capture the diverse topics These results were inconsistent 
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with the individualized instruction theory suggesting children who receive literacy instruction 

close to their literacy skill level improve more (Connor et al., 2004). However, one important 

note was that this study examined the overall main effect of instruction on the growth of early 

mathematical skills. Thus, in some ways the results remain consistent with Connor et al. (2004) 

such that more information regarding the individualized aspects of instruction were needed. Put 

more simply, including the variety of total classroom instruction was not the same as assessing 

individualized instruction. 

One explanation for why total instruction did not accurately capture individualized 

instruction could be due to the assumption that the content of mathematics instruction remained 

the same across the kindergarten school year, such that, teachers who instructed three topics on 

the observed day continuously instructed little content throughout the year. Further, rather than 

simply counting the variability in content topics covered in the kindergarten classroom, an area 

for future research may be to examine the type of mathematical content being covered. Similar to 

the individualized instruction theory for literacy that focuses on code-focused versus meaning-

focused instruction (Connor et al., 2007), mathematics instruction, especially in kindergarten, 

should further examine the extent to which the interaction between advanced and basic 

instructional content and skill level matter for early mathematical growth. This is one of many 

limitations and an area for future research to focus on. 
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Quality of Mathematics Instruction and Mathematical Achievement 

The quality of mathematics instruction is one relatively understudied, however, based on 

previous language development literature, quality was hypothesized to relate to children’s 

counting and addition skills. Findings suggested that quality of mathematics instruction did not 

relate to children’s mathematical skills. One possible reason why the quality of the mathematics 

instruction did not predict mathematical skills could be that the teachers wore the audio recorder. 

Perhaps, had each child worn the recording device, more variability in the quality variable would 

be present, thus speaking more to the quality of that child's specific environment. Previous 

research suggests there is more variability in classroom conversational turn counts when the 

child is wearing the device (Duncan et al., in press). This approach also would have allowed for 

more power at the instruction level in the multilevel model. However, perhaps the best approach 

to capturing the classroom environment for the quantity of mathematics instruction might be to 

assess the quality of the time teachers spent on advanced content topics compared to basic 

content topics. Combining quality, quantity, and content of mathematics instruction in these 

ways are open questions that would benefit from future research that examines interactions 

between the different features of mathematics instruction. 

Classroom Mathematics Instruction: Reported vs. Observed 

In the beginning of the kindergarten school year, teachers were asked to report how long 

they spend in mathematics instruction on an average day, and this was compared to the observed 

amount of mathematics instruction from the recorded day. Previous research that has found 
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significant effects of the quantity of mathematics instruction on children’s mathematical 

achievement have relied solely on self-report measures (Bodovski & Farkas, 2007; Ribner, 

2019). However, findings from the third study suggests that teachers often overestimate the 

amount of time they spent in mathematics instruction on a typical school day. Thus, one possible 

explanation for why the quantity of mathematics instruction did not relate to children’s 

mathematical skills could be due to measurement error. This finding provides some evidence for 

caution surrounding self-report measures. Teachers plan their schedules based on blocks of time; 

however, it may not be possible to expect teachers to predict precisely how their days will play 

out. Thus, future researcher should consider approaching this methodological concern in two 

ways: first, if possible, observational methods should be used to assess instructional 

contributions. However, should observations not be an option, it may be beneficial for the field 

to interpret self-report measures with caution.  

Further, the findings on mathematics instruction, contrary to previous literature (e.g. 

Engel et al., 2013), suggests that kindergarten teachers are teaching more advanced mathematical 

content and not just basic content areas during mathematics instruction, such as counting and 

shapes. The content topics coded in these audio recordings included 22.6% that focused on 

addition concepts, whereas oral counting only accounted for 4.1%. Using the digital audio 

recorder allowed for the recording of an entire day in the classroom, which is uncommon in 

much of the educational research on classrooms due to the burden placed on teachers and 

students. Even though this was an improvement in measurement in the classroom setting, the 

results may have been even more robust if data was gathered at varying timepoints throughout 
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the kindergarten year to capture the depth and richness of the school environment, and 

potentially more mathematical concepts being taught. It would also assist with the often small 

sample sizes of classrooms obtained in education research by providing for multiple data points 

within a school year. 

Limitations 

 This study was a year-long, multiple time point design that included novel approaches to 

examining mathematics instruction and individualized assessments of mathematical skills. 

However, even with the attempt to improve on some of the quality and robustness of the 

research, there were several limitations that need to be considered in the interpretation of these 

results. Specifically, there were sample limitations, limitations in using audio recorders, and 

limitations in study design. These three broad categories are addressed below. 

Sample Limitations 

Although four diverse schools were included in this sample, they are not fully 

representative of public schools in the area. Thus, those who signed up to participate were not 

completely random. By examining four diverse schools, it became more apparent how important 

it is for future studies to include schools that are representative of the diversity of public school 

education. In this study, the percentage of children receiving free and reduced lunch was, 

predictive of children’s counting and addition skills at the beginning of kindergarten. Thus, to 

better understand individual trajectories in mathematical skill development, a more diverse 
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sample will allow for the understanding of how early child characteristics relate to achievement 

at the beginning of school and beyond for the breadth of students in schooling. 

Another limitation of the study was the absence of information from the home 

environment. Multiple studies have shown the importance of the home environment in the 

development of mathematical skills that could be contributing to the diverse mathematical skill 

levels children bring to school (Susperreguy & Davis-Kean, 2015). One limitation to collecting 

data in the school environment is the lack of communication and responses from parents. All 

parents in the study received the parenting questionnaire, but only half responded. Thus, 

questions about the home environment were not able to be used for these analyses. The findings 

suggest that many of the differences between children are occurring prior to schooling and may 

related to socioeconomic differences at school entry, thus, understanding the role of the home 

environment in the development of mathematical skills should be a focus of future research.  

Finally, the small sample of teachers that participated in data collection served as a 

limitation in analytic power. Of the four schools, there were a total of fourteen kindergarten 

classrooms. Thus, although the study was powered to assess the within-person level differences 

with 98 children, the sample was not equipped to evaluate the between-person level differences 

with only fourteen teachers. Regardless of the power issue at the between-person level, findings 

did show interesting differences across classroom variability, such as the variety in reported time 

and observed time in mathematics instruction. 
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Audio Recording Limitations 

Digital audio recorders were employed to observe the naturalistic instruction of teachers 

across an entire day of schooling. Prior research assessing and capturing mathematics instruction 

in the classroom have either videotaped their classrooms or used teacher report measures 

(Connor et al., 2018; Engel, Claessens, & Finch, 2013). Videotaping the class usually requires 

the researcher to be present for the length of the recording, which would not have allowed for the 

naturalistic instruction to occur. In situations where the researcher was not present, the video 

camera could only capture the instruction in the classroom. Thus, no instruction that may have 

taken place in other areas of the school such as on the playground, cafeteria, or computer lab 

could have been captured. Thus, the use of audio recorders to examine education in a non-

obtrusive approach allowed for the richness of naturalistic data to be present in this study 

throughout all areas of the school. 

Nevertheless, audio recorders were not without their challenges. One of the more obvious 

limitations to using audio recorders over videotapes was the inability to observe footage of the 

mathematics instruction taking place. For example, one teacher gave verbal instructions to put a 

monkey on the string, as part of mathematics instructions for a child participating in an "add-on" 

game. Trained research assistants felt they were able to assess that the teacher was focusing on 

addition skills quickly; however, this may have been easier with actual visualization of what the 

children were doing. Thus, although audio recordings provided enough information for the 

variables in this study, it may be helpful for future studies to combine audio and video recordings 

as a best practice approach. 
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Furthermore, in light of fostering teacher-researcher collaborations, only one day of 

mathematics instruction was recorded during the school year. Many teachers also participated in 

a previous study in which videotapes captured the classroom environment. In this previous study, 

videotaping only happened once during the year for a portion of the school day, thus, the 

previous layout design was mimicked in this study as to not surprise or overwhelm teachers. 

Upon completion of this study, teachers were able to experience the audio device recorders and 

they have reported back that they would be willing to wear the recorder multiple times 

throughout the school year. Thus, studies in the future would benefit from getting several 

recorded instruction days to assess a more holistic and representative picture of the classroom 

environment and instruction. 

Finally, the quality of mathematics instruction is complex and challenging to measure. 

One benefit to using the audio recorders over video observations was that the LENA device 

provided a pre-coded quantitative measure regarding the language environment. If quality were 

to be measured using video observation data, one would have to create a coding scheme and 

manually code those data. However, there are still multiple aspects of the classroom that may 

contribute to the quality of classroom mathematics instruction. For example, resources the 

children have access to, especially for mathematical activities, may differ by school or 

classroom. Thus, perhaps the quality of mathematics instruction would better be assessed by 

approaching both language and resource quality in the school that could be captured by using 

both audio recorders and videotapes. Future studies should work to use both methodological 
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approaches to compare and contrast the advantages and disadvantages for coding the quality of 

instruction in schools. 

Study Design Limitations 

Though the study design for data collection was carefully planned ahead of time, certain 

aspects served as limitations. To begin, assessing the growth of mathematical skills in one year 

may lead to biased results. Previous research has suggested that kindergarten presents a period of 

time that differs from other school years as it serves as the first year of formal schooling 

(Johnson & Kuhfeld, 2020; Jordan et al., 2006; Ribner, 2020). However, it is also important to 

emphasize that this study only focused on one school year, and children's mathematical skill 

growth continues through adulthood. Thus, only examining mathematical skill growth in 

kindergarten might show results that do not replicate across future grades, such as the findings 

suggesting sex differences in addition skills. Previous literature has also found small sex 

differences in kindergarten, but often these differences are no longer present later in school 

(Jordan et al., 2006; Ribner, 2020). Therefore, the results of this study should not be generalized 

to all years of schooling, or to the amount of growth in mathematical skills. 

           As the main research questions focused specifically on the development of early 

mathematical skills, no data were collected on other important skills, like the development of 

early literacy skills. This presents a significant limitation when assessing mathematics 

instruction. Ideally, this study would have been more beneficial and robust if a literacy outcome 

could also suggest that the mathematics instruction examined also did not predict children’s 
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growth in literacy abilities, as was done for mathematical development. Thus, for future research, 

it may be beneficial to include multiple academic measures, including literacy scores.  

On the other hand, two variables collected to assess self-regulatory skills in children 

included the approaches to learning scale and the digit span. Prior research has shown robust 

links between children's performance in mathematical and self-regulation skills (Jacob & 

Parkinson, 2015; Purpura, Schmitt, & Ganely, 2017). However, the cognitive and behavioral 

self-regulation measures were collected toward the end of the school year. Based on descriptive 

statistics in nationally representative datasets, both of these skills show change across the 

kindergarten school year (Ribner, 2020). Thus, using these self-regulation measures in a 

multilevel model as time-invariant variables would be theoretically implausible. Nevertheless, 

post-hoc analyses suggested both the cognitive and behavioral self-regulation measures provided 

information about later individualized mathematical achievement that earlier mathematics could 

not. This result would suggest that children’s self-regulation abilities potentially contribute to 

their development of early mathematics. Hence, to assess the contribution of these self-regulation 

abilities, future studies should work to include multiple measurements of these early skills or 

should be sure to include these assessments at the beginning of the study design. 

Finally, although this is a longitudinal study, causality cannot be inferred. These data are 

correlational, and it could be possible that results found no effects of mathematics instruction on 

children's growth in mathematical skills because mathematics instruction across kindergarten 

classrooms was not manipulated. Although one strength of the third research question is that it 

assesses mathematics instruction in a business as usual setting, one approach to establishing 
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more causal effects would be with the use of interventions. Without intervening, it is more 

challenging to determine which features of mathematics instruction individually contribute to 

differences in mathematical skills. Thus, if intervention groups were created, and they were 

designed to receive different types, amounts, and quality of mathematics instruction, it may be 

easier to infer causality in the association between education and skills. 

Future Directions 

 This dissertation considered how kindergarten mathematics instruction contributed to the 

growth of children's early mathematical skills. The set of studies presented provided further 

insight into kindergarten mathematics instruction and its role in mathematical development. With 

the use of novel methodological approaches in these studies, findings advanced the field of 

educational and psychological perspectives regarding classroom instruction. However, there are 

still many questions and avenues for future directions in research.  

           Future research should investigate mathematics instruction across numerous days of 

school throughout the year to better assess and compare many of the population datasets that 

include self-report measures. With more classroom instruction data across time, researchers 

could do a deeper dive into specific aspects and variability of mathematics instruction across the 

school year. For example, variability in mathematics instruction may fluctuate throughout the 

year. Thus, with multiple instruction timepoints, piecewise latent growth models could be used to 

examine whether there are certain times throughout the kindergarten year, where particular 

aspects of mathematics instruction matter more for mathematical skill growth. Moreover, future 
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studies should also aim to be powered at the teacher level to examine these between-person 

differences in instructional approaches and skill growth across different points of the school year.  

           Alternatively, future research should also examine how mathematics instruction variables 

are combined by teachers across classrooms. For example, a more productive approach to use 

observational classroom instruction data may be to include the intersection of all three 

instructional aspects. The combination of quality, quantity, and content may be essential to 

assess together such that children in classrooms that spend more time on advanced topics with 

higher conversational turn counts may grow more than children in classes with less time on 

advanced topics. Thus, future research should consider the significance of these intersecting 

variables as they are not mutually exclusive.  

           Future studies should also include measures beyond the focus of mathematics, such as 

literacy and self-regulation measures. Well-rounded assessments would allow the researcher to 

robustly focus on the development of mathematics in general, rather than mathematical 

development in isolation. Many cognitive skills develop concurrently, thus, should researchers 

examine the interaction of how language skills and self-regulation abilities foster mathematical 

learning, the field would have a better grasp of children’s mathematical development trajectory. 

For example, previous research suggesting children's executive functioning facilitates learning 

from mathematics instruction in kindergarten (Ribner, 2020) indicates that explicitly focusing on 

the co-development of mathematics and self-regulation is an essential next step. Thus, an 

appealing future study might examine the growth of children's mathematical skills and changes 

in their self-regulation skills, along with observed mathematics instruction across the 
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kindergarten year. This approach would likely lead to more precise estimates of the relation 

between education and cognitive skills. 

           Finally, the current study found that boys outperformed girls on addition skills, but not 

their early counting skills. Much of the previous literature found findings mixed concerning sex 

differences in early mathematical skills. However, recent research shows that a male advantage 

in foundational numerical skills is the exception rather than the rule (Hutchison, Lyons, & 

Ansari, 2018). Interestingly, these results capture that statement rather well and show how 

difficult it is to claim there are no significant sex differences in mathematical abilities. Boys and 

girls performed equally on the counting task, and also similarly grew in counting skills. 

However, all children reached proficiency on the counting assessment prior to entering 

kindergarten. Thus, a question becomes whether or not there were sex differences in the 

beginning of the kindergarten year for addition because children had not yet achieved 

proficiency in this skill. It could be that proficiency levels in specific mathematical skills such as 

counting, or addition drives the finding of sex differences favoring boys over girls—especially 

when using adaptive testing techniques that include reaction time in individualized results. 

Therefore, more research using multiple methodological approaches and robust statistical 

analyses are needed to focus on these varieties of sex differences in the early proficiencies of 

mathematical skills. 
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General Implications 

Results from this dissertation provide the educational research field with a variety of 

general implications that shed light on the relation between the growth of early mathematical 

skills and the role of formal education. First, findings show that children are exposed to even less 

mathematics instruction than found in self-report methods. Second, although most children had 

mastered counting prior to kindergarten, counting skills still showed growth across the 

kindergarten school year. Finally, the findings from this dissertation challenge the field’s 

understanding of the contribution of mathematics instruction to the growth of early mathematical 

skills. Moreover, these implications provides insight into educational and psychological 

perspectives of mathematical development. 

First, as noted in previous literature, mathematics is not a prominent domain in 

kindergarten instruction. For example, teachers reported spending, on average, 13% of their 

classroom time on mathematical activities and 29% of their time on literacy activities. This 

statistic is consistent with previous results that teachers do not spend an equal amount of time 

teaching both core domains (Engel, Claessens, & Finch, 2013). However, results suggest 

instructional time in mathematics might be even less prominent than initially discussed. Based on 

the recordings of instruction in the classroom, only 6% of the average recording day was spent in 

the mathematical domain. Thus, only half of the time that teachers reportedly spent in 

mathematics was observed in the recordings. 

Consequently, this result suggested children are exposed to even less mathematics than 

initially reported, and perhaps that is why mathematics instruction did not have as meaningful of 
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a contribution to mathematical skills as initially hypothesized. Theoretically, if a more significant 

percentage of time was spent in mathematics, more content topics could be covered with better 

quality mathematics instruction. Thus, a more substantial impact of education may be seen in 

early mathematical growth. 

           Despite the small amount of time spent on mathematics instruction in kindergarten 

classrooms, results suggested children's mathematical skills still grew across the kindergarten 

school year. For example, children's addition skills increased significantly from the beginning of 

the kindergarten school year to the end of the school year. Children's counting skills, on the other 

hand, suggested many children had already become proficient in counting; however, there was 

still a significant increase in their scores on the counting task by the end of the kindergarten year. 

Thus, one crucial implication of these results would be that early mathematical skills continue 

growing, even after they may be considered proficient. Although it may not be essential to 

continue teaching children to count in kindergarten (Engel, Claessens, & Finch, 2013), these 

skills continue to enhance and build on top of the other topics teachers instruct. These findings 

are supported by the idea that early mathematical skills are like building blocks (Clements & 

Sarama, 2007), children's early counting skills provide a foundation for the development of their 

addition skills. Thus, one crucial implication of these results is that the emphasis or shift to more 

advanced content areas still fosters growth in basic mathematical skills. 

           Finally, inconsistent with previous work, no aspects of mathematics instruction 

contributed to children's mathematical growth (Claessens et al., 2013; Le et al., 2019; Ribner, 

2020). Thus, findings would suggest perhaps previous studies examining the amount of 
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mathematics instruction may be limited in their assessments of self-report measures. In general, 

the lack of relation between mathematics instruction and growth in mathematics in this sample 

could be due to the minimal amount of time teachers spent in mathematical activities. However, 

based on the limitations of this study, the results would also need to be replicated in a more 

robust and diverse sample. 

Conclusion 

The present study sought to examine the role of classroom mathematics instruction in the 

development of mathematical skills across the first year of formal schooling. The consequences 

of poor mathematical skills are well established in the field (Duncan et al., 2007; Siegler et al., 

2012), however, whether instruction serves as a potential protective factor for these skills is not 

as well researched (Alcock et al., 2016; Connor et al., 2018). Children’s growth in mathematical 

skills throughout the kindergarten year was related to the skills they brought to school with them. 

Student demographics predicted mathematical skills differently, supporting previous research 

suggesting there are inconsistencies in the literature (Hutchison et al., 2019). Further, as 

measured, no classroom instruction variables predicted children’s growth in mathematical skills 

across the kindergarten school year.  

Based on these results, although formal schooling is viewed as an intervention for 

improving one’s skills, no variables in this study related to children’s growth in early math skills. 

Thus, although children’s counting and addition skills both grew across the kindergarten year, 

school, sex of the child, age of the child, and classroom instruction did not predict the growth in 
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those skills. Further, children who came in with high mathematical skills did not grow at the 

same rate as children with lower mathematical skills. Thus, providing further evidence that the 

kindergarten school year serves as review for many children with early mathematical skills 

(Engel et al., 2013). Future research should further investigate the trajectories of students who 

improve most from the kindergarten school year and possible explanations for why these 

students do or do not respond to certain instructional practices. 

Further, this dissertation highlighted the limitations of previous classroom instruction 

measurement approaches. The amount of time in which kindergarten teachers spend in 

mathematics instruction was less than originally reported. Given the importance of classroom 

instruction for understanding schooling as an intervention on early academic skills, examining, 

and measuring the utility of diverse methodological approaches of education is of practical 

importance.  

More specifically, if educational practices in place for literacy use child by instruction 

theory to specialize instruction at the child’s level (Al Otaiba et al., 2011; Connor et al., 2013), 

and thus, show the best gains in early literacy skills, it is imperative to also consider the same 

concept for the second core foundational skill: mathematics. If differences in instructional 

practices are the key to improving children’s skill development, it is imperative to first assess the 

measurement mayhem of the methodological approaches surrounding classroom mathematics 

instruction, then enforce educational practices in place for mathematics.  
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Table 1 

Child Descriptive Statistics 

 

  

Variable N M (SD) Min Max

Age 98 5.55 (0.33) 4.92 6.67

Female 98 0.47 (0.50) 0 1

FRPL % 98 31.1 (20.92) 3 66

Counting 

   Fall 98 3.41 (1.03) -0.98 4.98

   Winter 93 3.78 (0.94) 1.23 5.8

   Spring 91 3.85 (0.96) 0.7 5.84

Adding

   Fall 98 -1.34 (2.23) -5.43 4.7

   Winter 93 -0.49 (2.17) -4.16 5.34

   Spring 91 0.43 (1.98) -3.75 5.08

Math Achievement

   Fall 98 18.7 (4.27) 2 28

   Spring 92 21.82 (4.11) 11 30

Number Line Estimation 92 2.71 (1.53) 0.72 9.26

Working Memory 92 2.89 (1.48) 0 6

Approaches To Learning 96 3.17 (0.69) 1.33 4
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Table 2 

School Descriptive Statistics 

 

 
  

n(students) n(teachers) FRPL %

School 1 30 4 2

School 2 24 3 61

School 3 34 5 68.5

School 4 10 2 71.9
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Table 3 

Teacher Recording and Questionnaire Descriptive Statistics 

 

 
  

Variable N M (SD) Min Max

Math Instruction

   Quality 11 407.09 (173.98) 191 731

   Quantity 11 26.16 (13.85) 3.48 47.45

   Content 11 5.73 (2.80) 1 10

Other Recording Variables

   Adult Word Count 11 25158 (5750.39) 18292 33378

   Child Vocalization Count 11 735.73(482.88) 238 1821

   Recording Length 11 411.36 (31.56) 350 442

Teacher Questionnaire

   Math Minutes 14 50 (15.19) 30 90

   Literacy Minutes 14 115 (44.81) 60 180

   Years Teaching 14 14.14 (9.09) 2 30

   Years Teaching Kindergarten 14 7.43 (5.68) 2 19

   Masters Degree 14 0.79 (0.43) 0 1
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Table 4 

Parent Questionnaire Descriptive Statistics (N = 57) 

 

 
 

 

 

Variable Proportion or Mean

Household Income M(SD) $107,517.04 (94,078.07)

Child Race

   % White 56.14

   % Black 8.77

   % Hispanic 7.02

   % Asian 15.79

   % Multiracial 12.28

Parent Education

   % Some High School 1.92

   % High School Diploma 3.85

   % Some College 11.54

   % 2 year college 17.31

   % 4 year college 26.92

   % Postgraduate or Professional 38.46

Parent Response Rate

   % School 1 63

   % School 2 75

   % School 3 53

   % School 4 20
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Table 5 

Correlations for Individual and Classroom Variables 

 

 
 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. Age 98 -

2. Female 98 -0.03 -

3. FRPL % 98 -0.06 0.11 -

Math Garden 

   4. Counting Fall 98 0.19 -0.06 -0.34 *** -

   5. Counting Winter 93 0.08 -0.2 -0.29 ** 0.61 *** -

   6. Counting Spring 91 0.16 -0.08 -0.29 ** 0.51 *** 0.65 *** -

   7. Adding Fall 98 0.2 * -0.28 ** -0.42 *** 0.47 *** 0.43 *** 0.46 *** -

   8. Adding Winter 93 0.18 -0.3 ** -0.33 ** 0.6 *** 0.61 *** 0.56 *** 0.78 *** -

   9. Adding Spring 91 0.25 * -0.29 ** -0.3 ** 0.59 *** 0.56 *** 0.58 *** 0.69 *** 0.83 *** -

Measures of Math Achievement

   10. WJ Applied Problems Fall 98 0.13 -0.24 * -0.22 * 0.52 *** 0.49 *** 0.42 *** 0.53 *** 0.7 *** 0.66 *** -

   11. WJ Applied Problems Spring 92 0.11 -0.15 -0.34 *** 0.62 *** 0.61 *** 0.59 *** 0.64 *** 0.78 *** 0.76 *** 0.77 *** -

   12. Number Line Estimation 92 -0.23 * -0.07 0.17 -0.43 *** -0.44 *** -0.34 *** -0.27 *** -0.42 *** -0.36 *** -0.51 *** -0.5 *** -

Measures of Self-Regulation

   13. Working Memory 92 0.11 -0.1 -0.27 * 0.52 *** 0.39 *** 0.37 *** 0.4 *** 0.49 *** 0.53 *** 0.5 *** 0.66 *** -0.39 *** -

   14. Approaches To Learning 96 0.24 * 0.24 * -0.22 * 0.42 *** 0.32 ** 0.39 *** 0.29 ** 0.39 *** 0.45 *** 0.36 *** 0.44 *** -0.31 ** 0.35 *** -

Classroom Math Instruction

   15. Quality 77 0.01 0.16 -0.02 -0.03 0.05 0.03 -0.23 * -0.2 -0.15 0.02 -0.15 -0.04 -0.06 0.02 -

   16. Quantity 77 -0.13 0.05 0.08 -0.02 0.13 -0.02 0.13 0.18 0.12 0.06 0.15 -0.09 0.11 0.09 -0.03 -

   17. Content 77 -0.2 -0.08 0.16 -0.08 0.14 -0.01 0.17 0.22 0.17 0.04 0.17 -0.04 0.11 -0.04 -0.22 0.9 ***

*p  <.05, **p  <.01, ***p  <.001

Note.  WJ = Woodcock-Johnson III Tests of Achievement.
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Table 6 

Multilevel Models for Math Garden Counting Task 

β (SE) t [95% CI] β (SE) t [95% CI] β (SE) t [95% CI] β (SE) t [95% CI] β (SE) t [95% CI] β (SE) t [95% CI]

Fixed Effects

Intercept 3.67 (.08) 43.45 [3.49 to 3.83] 3.46 (.10) 36.37 [3.27 to 3.65] 3.46 (.10) 34.48 [3.26 to 3.66] .96 (1.69) 0.57 [-2.36 to 4.29] 1.57 (1.83) 0.86 [-2.05 to  5.19] 1.51 (1.90) 0.79 [-2.24 to  5.26]

Student Level

   Age at Testing .47 (.30) 1.54 [-0.13 to 1.06] .47 (.30) 1.54 [-0.14 to  1.08] .48 (.31) 1.56 [-0.13 to  1.09]

   Sex -.18 (.20) -0.89 [-0.57 to 0.22] -.21 (.21) -0.98 [-0.62 to  0.21] -.19 (.21) -0.89 [-0.61 to  0.23]

Classroom Level

   Quality -.00 (.00) -0.14 [-0.00 to  0.00] .00 (.00) 0.04 [-0.00 to  0.00]

   Quantity .01 (.01) 0.85 [-0.01 to  0.03]

   Content .03 (.04) 0.68 [-0.06 to  0.12]

   Teacher Report Literacy .00 (.00) 0.41 [-0.00 to  0.01] .00 (.00) 0.26 [-0.01 to  0.01]

School Level

   FRPL % -.02 (.01) -3.86 [-0.04 to -0.01] -.03 (.01) -3.84 [-0.04 to -0.01]

Slope .21 (.05) 4.56 [0.12 to 0.31] .21 (.05) 4.16 [0.11 to 0.32] .62 (.87) 0.7 [-1.11 to 2.34] 1.19 (.92) 1.29 [-0.64 to  3.02] 1.08 (.96) 1.11 [-0.83 to  2.99]

Student Level

   Age at Testing -.07 (.16) -0.45 [-0.38 to 0.24] -.19 (.15) -1.21 [-0.49 to  0.12] -.19 (.16) -1.17 [-0.49 to  0.13]

   Sex -.03 (.10) -0.28 [-0.23 to 0.18] -.02 (.11) -0.18 [-0.23 to  0.19] -.02 (.11) -0.21 [-0.24 to  0.19]

Classroom Level

   Quality .00 (.00) 0.91 [-0.00 to  0.00] .00 (.00) 0.76 [-0.00 to  0.00]

   Quantity -.00 (.00) -0.89 [-0.01 to  0.01]

   Content -.01 (.02) -0.29 [-0.05 to  0.04]

   Teacher Report Literacy -.00 (.00) -1.22 [-0.00 to  0.00] -.00 (.00) -0.91 [-0.00 to  0.00]

School Level

   FRPL % .01 (.00) 1.88 [-0.00 to  0.01] .01 (.00) 1.82 [-0.00 to  0.01]

Random Effects

Slope (SD) 0.3 [0.19 to 0.48] 0.31 [0.19 to 0.49] 0.18 [0.05 to 0.69] 0.18 [0.05 to 0.67]

Intercept 0.73 [0.61 to 0.88] 0.74 [0.62 to 0.88] 0.85 [0.70 to 1.04] 0.84 [0.69 to 1.03] 0.73 [0.56 to 0.95] 0.73 [0.56 to 0.95]

Correlation -0.46 [-0.70 to -0.12] -0.47 [-0.71 to -0.13] -0.19 [-0.73 to 0.50] -0.2 [-0.73 to 0.48] 

Residual Error 0.67 [0.60 to 0.74] 0.63 [0.57 to 0.71] 0.56 [0.49 to 0.65] 0.56 [0.49 to 0.65] 0.58 [0.49 to 0.68] 0.58 [0.49 to 0.68]

Note.  Fixed effects parameters are unstandardized regression coefficients, and random effects parameters are estimates of variance. Missing data were handled using restricted  maximum likelihood.

Model 0a Model 1a Model 2a Model 3a Model 4a Model 5a

Null Unconditional Slope Conditional Slope: Individual and Classroom-Level Covariates

Mean Fixed Random Individual Covariates Quality & Quantity Quality & Content
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Table 7 

Multilevel Models for Math Garden Adding Task 

 

 

β (SE) t [95% CI] β (SE) t [95% CI] β (SE) t [95% CI] β (SE) t [95% CI] β (SE) t [95% CI] β (SE) t [95% CI]

Fixed Effects

Intercept -.54 (.20) -2.69 [-0.93 to -0.14] -1.35 (.21) -6.45 [-1.77 to  -0.94] -1.35 (.22) -6.03 [-1.79 to  -0.91] -7.61 (3.60) -2.11 [-14.71 to -0.50] -2.01 (3.42) -0.59 [-8.78 to  4.75] -2.96 (3.52) -0.84 [-9.92 to 3.99]

Student Level

   Age at Testing 1.23 (.65) 1.91 [-0.05 to 2.51] .72 (.57) 1.27 [-0.41 to 1.86] .83 (.57) 1.45 [-0.31 to 1.97]

   Sex -1.23 (.43) -2.89 [-2.08 to  -0.39] -1.29 (.39) -3.29 [-2.08 to -0.51] -1.22 (.39) -3.12 [-1.99 to -0.44]

Classroom Level

   Quality -.00 (.00) -1.71 [-0.01 to 0.00] -.00 (.00) -1.34 [-0.00 to 0.00]

   Quantity .03 (.02) 1.58 [-0.01 to 0.06]

   Content .15 (.08) 1.88 [-0.01 to 0.32]

   Teacher Report Literacy -.00 (.01) -0.49 [-0.01 to 0.01] -.00 (.00) -0.56 [-0.01 to 0.01]

School Level

   FRPL % -.06 (.01) -5.07 [-0.08 to -0.04] -.06 (.01) -5.21 [-0.08 to -0.04]

Slope .85 (.08) 11.11 [0.70  to  1.00] .85 (.09) 9.71 [0.68 to 1.03] .42 (1.50) 0.28 [ -2.54 to 3.38] -.67 (1.80) -0.37 [-4.22 to 2.88] -.79 (1.87) -0.42 [-4.49 to 2.90]

Student Level

   Age at Testing .07 (.27) 0.27 [-0.46 to 0.60] .19 (.30) 0.63 [-0.40 to 0.78] .20 (.30) 0.64 [-0.41 to 0.79]

   Sex .08 (.18) 0.42 [-0.28 to 0.43] -.07 (.21) -0.31 [-0.48 to 0.35] -.07 (.21) -0.33 [-0.48 to 0.34]

Classroom Level

   Quality .00 (.00) 1 [-0.00 to 0.00] .00 (.00) 0.93 [-0.00 to 0.00]

   Quantity -.00 (.01) -0.43 [-0.02 to 0.01]

   Content -.01 (.04) -0.15 [-0.09 to  0.08]

   Teacher Report Literacy .00 (.00) 0.31 [-0.01 to 0.01] .00 (.00) 0.51 [-0.00 to 0.01]

School Level

   FRPL % .01 (.01) 1.09 [-0.01 to 0.02] .01 (.01) 1.06 [-0.01 to 0.02]

Random Effects

Slope (SD) 0.59 [0.42 to 0.83] 0.61 [0.44 to 0.85] 0.67 [0.48 to 0.93] 0.67 [0.49 to 0.94]

Intercept 1.8 [1.52 to 2.14] 1.84 [1.58 to 2.16] 2.07 [1.76 to 2.44] 1.95 [1.65 to 2.31] 1.53 [1.24 to 1.87] 1.51 [1.23 to 1.86]

Correlation -0.47 [-0.67 to -0.20] -0.49 [-0.69 to -0.23] -0.34 [-0.61 to -0.01] -0.35 [-0.61 to -0.03]

Residual Error 1.33 [1.21  to 1.48] 1.04 [0.94 to 1.15] 0.86 [0.74 to 0.99] 0.86 [0.74 to 0.99] 0.78 [0.66 to 0.92] 0.78 [0.65 to 0.92]

Note.  Fixed effects parameters are unstandardized regression coefficients, and random effects parameters are estimates of variance. Missing data were handled using restricted  maximum likelihood.

Conditional Slope: Individual and Classroom-Level Covariates

Quality & Content

Model 5bModel 4b

Quality & Quantity

Model 3b

Individual Covariates

Null

Mean

Model 0b Model 1b

Fixed

Model 2b

Random

Unconditional Slope
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Table 8 

Math Instruction Individualized Student Instruction Code, Descriptive Statistics (N = 146) 

 

 
  

ISI Code Proportion of Total Coded

    1. Multiple Components 1.37

Number Sense, Concepts, & Operations 58.89

    2. Number Writing and Recognition 6.85

    3. Oral Counting 4.11

    4. Number Line 2.74

    5. Patterns (#s) 2.06

    6. Counting Sets 9.59

    7. Number Relations 3.42

    8. Estimating 0.68

    9. Addition 22.6

   10. Subtraction 5.48

   11. Multiplication -

   12. Division -

   13. Place Value 0.68

   14. Fractions 0.68

   15. Decimals -

Geometry 10.27

   16. Shapes 9.59

   17. Lines -

   18. Transformations -

   19. Coordinate Geometry -

   20. Spatial Geometry 0.68

Algebra 2.74

   21. Patterns (not #) -

   22. Expressions and Equations -

   23. Inequalities 2.74

Measurement 17.79

   24. Time 14.38

   25. Temperature 2.05

   26. Money 0.68

   27. Length -

   28. Circumfrence -

   29. Weight 0.68

   30. Capacity -

   31. Quantity -

Data Analysis 8.9

   32. Data Collection -

   33. Data Representations 4.79

   34. Analyzing Data 4.11

Probability 0

   35. Certain, Likely, Possible -

   36. Likelihood -

   37. Predict an Outcome -

   38. Conduct an Experiment -
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Table 9 

Post-Hoc Regression of Classroom Instruction Predicting Change in Standardized Math 

Achievement (N = 92) 

 
 

 

  

Model 1 Model 2

Variable β (SE) β (SE)

Age -.02 (1.02) -.00 (1.03)

Sex .20 (.72) † .21 (.72) †

FRPL % -.08 (.02) -.08 (.02)

Classroom Instruction

   Quality -.22 (.00) † -.24 (.00) †

   Content .03 (.15)

   Quantity .09 (.76)

Note. †p <.10
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Table 10 

Post-Hoc Analyses Self-Regulation Predicting Math Garden Spring Scores (N = 91) 

 
 

  

Counting Adding

Model 1 Model 2

Variable β (SE) β (SE)

Working Memory .07 (.06) .13 (.09) †

Approaches to Learning .18 (.13)* .13 (.19)*

Prior Math Garden

   Counting Time 1 .08 (.13)

   Counting Time 2 .52 (.10)***

   Adding Time 1 .09 (.08)

   Adding Time 2 .65 (.09)***

Note. †p <.10, *p <.05, **p <.01, ***p <.001
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Figure 1. 

Data Collection Schedule.  

WJAP = Woodcock-Johnson, Applied Problems. ATL = Approaches To Learning 

 

  

Time of Year 
Group 

Behavioral 

Individual 

Behavioral 
Classroom 

October 2018 Math Garden  Teacher Survey 

Nov/Dec 2018  WJAP  

February 2019 Math Garden  Teacher LENA 

April/May 2019  WJAP + NLE  

May 2019 Math Garden  Teacher ATL 
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Figure 2. Children’s Math Garden counting trajectories over the kindergarten school year 
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Figure 3. Children’s Math Garden addition trajectories over the kindergarten school year 
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Figure 4. Children’s standardized mathematical achievement change scores across the 

kindergarten year.  

(WJAP = Woodcock-Johnson Applied Problems) 
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Figure 5. Children’s Math Garden counting trajectories by sex across the kindergarten school 

year  

(0 = male, 1 = female) 
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Figure 6. Children’s Math Garden addition trajectories by sex across the kindergarten school 

year  

(0 = male, 1 = female). 
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Figure 7. Teacher reported and observed minutes spent in mathematics instruction 
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Figure 8. Children’s Math Garden counting trajectories by school across the kindergarten school 

year 

(school number corresponds to Table 2, and are rank-ordered based on free and reduced-price 

lunch percentage) 
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Figure 9. Children’s Math Garden addition trajectories by school across the kindergarten school 

year  

(school number corresponds to Table 2, and are rank-ordered based on free and reduced-price 

lunch percentage) 
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APPENDIX A 

Teacher Questionnaire 

 
 

Start of Block: Personal Questions 

 

Q1 What is your name? 

________________________________________________________________ 

 

 

 

Q2 Gender: 

o Male  (1)  

o Female  (2)  

 

 

 

Q3 Age: 

▼ 20 (1) ... 80 (61) 

 

 

 

Q4 Highest Level of Education: 

▼ Some High School (1) ... Postgraduate or Professional Degree (e.g., MA, MS, PhD, JD, MD) 

(7) 

 

 

 

Q5 Total number of years teaching: 

▼ .5 (1) ... 40 (41) 
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Q6 Number of years teaching Kindergarten: 

▼ .5 (1) ... 40 (41) 

 

End of Block: Personal Questions 
 

Start of Block: Block 3 

 

Q7 Total number students you have in class? 

o Total:  (1) ________________________________________________ 

o Male:  (2) ________________________________________________ 

o Female:  (3) ________________________________________________ 

 

 

 

Q8 Do you follow the common core for math K? 

o Yes  (1)  

o No  (2)  

 

 

Display This Question: 

If Q8 = No 

 

Q16 If not, what else do you use? 

________________________________________________________________ 

 

End of Block: Block 3 
 

Start of Block: Classroom Items 

 
 

Q11 In a typical day, how many minutes are devoted to math instruction? 

________________________________________________________________ 
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Q12 In a typical day, how many minutes are devoted to literacy instruction? 

________________________________________________________________ 

 

 

 

Q13 How do you think, if at all, the 3rd grade reading law (the department shall do all to help 

ensure that more pupils will achieve a score of at least proficient in English language arts on the 

grade 3 state assessment) in the state of Michigan has influenced your instruction time? Please 

explain. 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

 

 

 

Q15 How many students from your class are participating in this study? 

▼ 1 (1) ... 10 (10) 

 

End of Block: Classroom Items 
 

Start of Block: Ratings 
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Q36 For each child, how would you rank his/her math skills on a 1-10 scale? 

 Well 

Below 

Average 

Below 

Average 

Average Above 

Average 

Well 

Above 

Average 

 

 0 1 2 3 4 5 6 7 8 9 10 

 

Child #1 () 
 

Child #2 () 
 

Child #3 () 
 

Child #4 () 
 

Child#5 () 
 

Child #6 () 
 

Child #7 () 
 

Child #8 () 
 

Child #9 () 
 

Child #10 () 
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Q26 How would you predict each child's math performance by the end of the year? 

 Well 

Below 

Average 

Below 

Average 

Average Above 

Average 

Well 

Above 

Average 

 

 0 1 2 3 4 5 6 7 8 9 10 

 

Child #1 () 
 

Child #2 () 
 

Child #3 () 
 

Child #4 () 
 

Child#5 () 
 

Child #6 () 
 

Child #7 () 
 

Child #8 () 
 

Child #9 () 
 

Child #10 () 
 

 

 

 

 

Q37 Please rank these from 1 (greatest) to 5 (least) which you think will have the largest impact 

on your student's math performance? 

______ Your attitude toward math (1) 

______ The amount of math time in school (2) 

______ Genetics (3) 

______ How early they were exposed to mathematical concepts (4) 

______ The child's parent's attitude toward math (5) 

End of Block: Ratings 
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Teacher Approaches to Learning Scale 
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APPENDIX B 

Individualizing Student Instruction Classroom Observations Coding Manual - 

Mathematics 

 

 

 

 

Individualizing Student Instruction 

Classroom Observations Coding Manual – Mathematics 

Version 09.11.2019 

Alexa Ellis 

 

 

Adapted From: 

Version 6 07.02.2014 

Carol McDonald Connor 

Elizabeth Crowe 

Stephanie Glasney 

Florida State University and the Florida Center for Reading Research 

Sarah Ingebrand 

Arizona State University and the Learning Sciences Institute 
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1. Coding Protocol (Adapted from Pathways and Connor Code) 

1.1. Recordings will be captured and assigned prior to starting to code a new round of 

recordings.  

1.2. Coders should listen to recordings created for the observation of interest. Recordings 

need to be coded to capture all the activities in which children participate. It is 

recommended to listen to the recordings in real time in 10 minute increments to become 

familiar with the instruction.  

1.3. Observations should be coded using the Math_ISI_09_11_19 project. Click on the 

project once to open it.  Choose START OBSERVATION from the Observation pull-

down menu to open the Observation Module. 

1.4. A dialog box should open, where you can (a) select an observation which has already 

been (partially or fully) coded or (b) start a new observation.  If starting a new 

observation, choose the relevant video file (located in terastations) and name your 

observation using the following format: Teacher ID (4-digit #) (e.g., 6001); Coder’s 

initials. Coders should be consistent in the initials they use. After naming the observation 

file, click OK. You will be prompted with a Video Selection window to select the 

relevant file. 

1.5. A new dialog box will open which will allow you to input the Independent Variables.  

Code the Independent Variables as specified in section below. 

1.6. Once the Independent Variables have been defined, another dialog box will open and ask 

you to position the tape where you want to begin the observation.  You want to start at 

the beginning of the tape.   

1.7. The Initialize Channels dialog box will open.  All subjects should be “initialized” in the 

Instruction-Null, Dimension-Null, and Content Area-Null. As soon as you begin coding, 

however, you will need to indicate which subjects are active and in what activity they 

are involved (i.e., instruction code).  Channels should only need to be initialized when a 

new observation is started. 

1.8. Click the green button that says “Not Recording” to start Record mode.  The button 

should turn red when it is in record mode to begin coding.  To avoid errors later on, 

always make sure you are coding while in record mode. 

1.9. Instructional activities should last at least 15 seconds to be coded. The following 

guidelines should also be followed: 

1.9.1. If two Behavioral Instructions are equal lengths of time but neither are 15 seconds, 

the first occurring of the two parts should be coded for both Behavioral Instructions.  

1.9.2. If two separate Behavioral Instructions do not last for 15 seconds and they are not 

equal lengths, the longer of the two parts should be coded.  

1.10. Periodically save data in the Observation menu when coding. 

1.11. Any incomplete coded files need to be deleted. Only one coding file should exist for 

each recording. Do not keep multiple files for the same observation on multiple 

computers.  

1.12. Always code the activity/instruction the teachers are completing over the activity of the 

student. 

1.13. If a Behavioral Instruction is not covered in the coding manual then write a brief 

description of the activity/instruction that occurred and note the video file and time in 

the Code Book Suggestion Notebook and/or discuss at coding meetings. 
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1.14. If a code is added just before the video ends and does not last 15 seconds, here is what 

to do: if the code is less than 12 seconds, delete it; if the code is 12+ seconds and the 

previous code is more than 15 seconds, stretch it into the previous code; if the last code 

is 12+ seconds but the previous code is only 15 seconds (you have nowhere to stretch it), 

delete it. 

1.15. When you are finished coding, click on the observation menu select SAVE DATA and 

then click END OBSERVATION in the Observation menu. 

2. Coding With Noldus (Adapted from Pathways Code) 

2.1. Subjects, instruction/non-instruction behaviors, and type instruction modifiers are 

changed through instruction/non-instruction behavior (e.g., Geometry>Shapes, “gsh”). 

Each behavior/activity must last at least 15 seconds to be coded; behaviors/activities 

which are shorter than 15 seconds should either be ignored or coded following protocol 

(see section 1). Also any time you change an instruction behavior, you should be 

prompted to also enter a modifier for the instruction (even if the modifier has not 

changed).  

2.2. While coding, if a mistake is made by typing an incorrect code, you can use the 

CURSOR KEYS (i.e., up, down, left, right) to navigate to the field where the mistake 

was made. Once in the correct field replace the mistake by typing the correct code. The 

COMPUTER MOUSE can also be used to navigate for making corrections. “Point-and-

click” the mouse cursor/pointer on the desired field, once highlighted, the mistake can be 

replaced by typing the correct code. 

2.3. Comments are added by clicking on the comment field in the observation log. In “The 

Observer XT” comments should be limited to a maximum length of 256 characters. It is 

preferable to type only letters in the comment field and to avoid using punctuation. 

2.4. For troubleshooting, consult the Noldus reference manual first and if further help is 

needed e-mail tech support at tech@noldus.com.   

4. Independent Variables 

The independent variables should be entered prior to beginning coding. 

4.1. School ID 

The ID number for the school at which the observation is taking place should be retrieved 

from the database and entered in this field. 

4.2. Teacher ID  

The ID number for the particular teacher whose classroom is under observation should be 

retrieved from the database and entered in this field. 

4.3. Date Taped 

The date on which the observation was filmed should be entered in this field in the form 

MM/DD/YYYY. 

4.4. Date Coded 

The date on which the observation began being coded should be entered in this field in 

the form MM/DD/YYYY. 

4.5. Coder 

The name of the coder (first and last) should be entered in this field.  Names should be 

entered consistently (i.e., no nicknames). 

 

6. Instruction (Behavioral Class) 
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The codes within the Instruction behavioral class are used to indicate the content of 

activities/instruction including those which do not include actual academic content. This 

behavioral class is divided into various math-related behaviors, non-math literacy codes, and 

non-instructional behaviors. All activities/behaviors must last for at least 15 seconds to be coded; 

activities/behaviors which are shorter than 15 seconds are ignored and considered part of the 

prior or next activity/behavior to be coded. As behavioral classes are not mutually exclusive an 

Instruction code must be designated for each subject at all times.   

 

6.1. Math-Related Codes 

6.1.1. Instruction Null (Behavior)       inl 

Instruction Null should be coded as a means of “turning off” irrelevant instruction codes (i.e., 

student is absent, student left the class room). 

 

6.2. Number Sense, Concepts, and Operations 

6.2.1. Multiple Components (Behavior)      nsm 

Number Sense>Multiple Component should be coded when a variety of combined number sense, 

concepts, and operations occurred within at least the 15 second instruction minimum and/or for a 

longer duration. To be coded as Number Sense>Multiple Components all of the 

activities/instruction occurring together must be part of number sense, concepts, and operations. 

For example, the teacher may ask students to locate the number 20 on a hundred’s chart (i.e., 

number writing and recognition), then count aloud from 0 to 20 (i.e., oral counting), and then 

count to 20 by 2’s (i.e., patterns) all within 15 seconds. A brief description of the activity should 

be noted in the comment field.  

6.2.2. Number Writing and Recognition (Behavior)    nnw 

Number Sense>Number Writing and Recognition should be coded when students are involved 

with activities/instruction related to number writing and recognition including; recognition of 

verbal and/or written number names, numeral writing, ordinal numbers, ordinal position, 

identifying even and odd numbers, identifying and locating numbers on a hundred chart, reading 

and identifying numbers to 100, finding missing numbers on a hundreds chart, writing numbers 

to 100, 1000, 10,000, etc., and/or multiple components (number writing and recognition). For 

example, a hundred’s chart with numbers from 0 to 100 may be posted on the board/classroom 

wall, and the teacher requests students to identify and locate specific numbers on the hundred’s 

chart. Another example, can occur when the children are expected to write numbers from 0 to 

100 on a worksheet/notebook. 

6.2.3. Oral Counting (Behavior)       noc 

Number Sense>Oral Counting should be coded when students are involved with 

activities/instruction related to oral counting including; oral counting, counting backwards, 

and/or multiple components (oral counting). An example of this behavior occurs when students 

are asked to count “aloud” backwards from 100. During oral counting activities/instruction the 

students are counting aloud. 

6.2.4. Number Line (Behavior)       nnl 

Number Sense>Number Line should be coded when students are involved in 

activities/instruction related to number line including; counting with a number line, drawing a 

number line, locating points on a number line and/or multiple component (number line). For 

example, during instruction students are working together to locate points on a number line, as 
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well, as counting with aid of the number line. Important that during these behaviors a number 

line must be used.  

6.2.5. Patterns (Behavior)        nsp 

Number Sense>Patterns should be coded when students are involved in activities/instruction 

related to patterns including; counting in patterns (i.e., counting by 2’s, 3’s, 4’s 5’s, 10’s, 100’s). 

Also counting by 5’s using a clock, counting on from a given number and multiple components 

(patterns). For example, the teacher asks students to count from ten to one-hundred using several 

different patterns (i.e., counting by 2’s, 5’s, and 10’s). Even though students are counting aloud, 

in this case, since they are counting in patterns it is coded as Number Sense>Patterns. If they 

were only counting aloud, for example, zero to twenty 1-by-1 (i.e., 1, 2, 3, 4, 5, etc.), then this 

would be coded as Number Sense>Oral Counting. 

6.2.6. Counting Sets (Behavior)       ncs 

Number Sense>Counting Sets should be coded when students are involved in 

activities/instruction related to counting sets including; counting sets, ordering sets, combining 

sets, and/or multiple components (counting sets). An example of counting sets can be students 

combining multiple linking cubes into sets of 10, and then students are asked to calculate the 

total number of linking cubes by counting the number of sets (i.e., there are 5 sets of 10 linking 

cubes; 5 sets X 10 cubes = 50 cubes).   

6.2.7. Number Relations (Behavior)      nnr 

Number Sense>Number Relations should be coded when students are involved in 

activities/instruction related to number relations including; determining/understanding more and 

less, more and less (using number line), more and less (using spinner), ordering numbers, 

identifying one more and one less on a hundred chart, and/or multiple components (number 

relations). Number relations can be, for example, during activity/instruction students are working 

together to determine which numbers are more and/or less. The students would be doing this 

with the aid of a spinner and/or number line. In another example, students are asked to order 

number cards from 0 to 20 from smallest to largest. Then they are asked to point out specific 

numbers and identify the next number (i.e., point to the number after 7; “What number is it?” 

The answer is “8”). 

6.2.8. Estimating (Behavior)                                                                                        nse 

Number Sense>Estimating should be coded when students are involved in activities/instruction 

related to estimating including; estimating a collection, rounding a number to the nearest 10 (for 

computation), and/or multiple component (estimating). An example of estimating occurs when 

the teacher and students are working on an estimation of how many paper clips fit into a cup. 

Each student provides their estimate and then the teacher counts the paper clips to determine 

which estimate is most correct.  

6.2.9. Addition (Behavior)         nsa 

Number Sense>Addition should be coded when students are involved in activities/instruction 

related to addition including; 1+1 addition (with manipulative use), 1+1 addition (algorithm), 

addition (i.e., adding 0, 1, 2-9, 10), adding 10 to a single-digit/two-digit number, adding 10 to a 

multiple of 10, addition (doubles with sums to 18), addition (doubles plus one), adding 2 to an 

even/odd number, sums below 8, sums of 8 to 18, finding a sum by counting on, illustrating and 

writing addition number sentences, identifying the associative/commutative property of addition, 

adding three or more single-digit numbers, 2+2 addition (with or w/out regrouping) using coins, 

2+2 addition (w/regrouping) algorithm, doubling a number, adding two-digit numbers with sum 

greater than 100, adding 3 two-digit numbers (w/regrouping), adding 3 two-digit numbers with a 
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sum greater than 100, estimating sums, adding two and/or three-digit numbers and money 

amounts, adding objects or pictures, addition word problems, repeated addition with number 

sentences, using a calculator to add, and/or multiple components (addition). For example, the 

teacher guides students through an addition exercise by adding zero to a number, adding one to a 

number, and later practicing “doubles” addition using the Saxon “Learning Wrap-Ups” 

manipulative. In another example, the teacher explains the commutative property of addition; 

instructing students that changing the order of addends does not affect the sum. Also students 

may be asked to solve an addition word problem; for example, “Charlie had eight pencils and 

Mary gave him two more pencils. How many pencils does Charlie have now?”   

6.2.10. Subtraction (Behavior)        nss 

Number Sense>Subtraction should be coded when students are involved in activities/instruction 

related to subtraction including; 1-1 subtraction (with manipulative use), 1-1 subtraction 

(algorithm), subtraction – subtracting number from itself, subtraction (subtracting 0 to 10), 

subtracting a number from 10, subtraction word problems, subtracting half of a double, mental 

computation – subtract 10 from a two-digit number, subtraction – minuends greater than 10, 

subtracting 2 from an even/odd number, illustrating and writing subtraction number sentences, 2-

2 subtraction (w/out regrouping), 2-2 subtraction (with regrouping) using coins, 2-2 subtraction 

(w/regrouping) algorithm, subtracting three-digit numbers and money amounts, estimating 

differences, using a calculator to explore addition, subtraction, and skip counting, repeated 

subtraction (via word problems), using a calculator to subtract, and/or multiple components 

(subtraction). For example, the teacher writes the number 10 on the board and then students 

subtract numbers from 10 (i.e., 10-2=8, 10-5=5, 10-10=0, etc.). Also, students illustrate and write 

out a subtraction number sentence, for example, a word problem states “William has ten balloons 

and then gives five balloons to Sarah. How many balloons does William have now?” Students 

first illustrate the subtraction word problem and then write out the number sentence (i.e., 10-

5=5). In another example, the teacher guides students through a worksheet activity/instruction 

where they use a calculator to solve subtraction problems.  

6.2.11. Multiplication (Behavior)        nmt 

Number Sense>Multiplication should be coded when students are involved in 

activities/instruction related to multiplication including; multiplication (i.e., multiplying 0, 1-5, 

10, 100), making and labeling an array, writing number sentences for arrays, making and using a 

multiplication table, drawing pictures and writing multiplication sentences to show groups, 

identifying multiples of a number (i.e., multiples of 2, 3, 4, 5), using a calculator to multiply, 

and/or multiple components (multiplication). For example, the teacher guides students through 

multiplying numbers by zero, one, and five (i.e., 0x2=0, 1x2=2, and/or 5x2=10). Also, in order to 

better conceptualize multiplication the students create a rectangular array with four columns of 

five squares each column. Then a number sentence is derived from this array (i.e., 4x5=20). 

Continuing the array activity/instruction the teacher works with students to determine the product 

of three equal groups consisting of four items per group (i.e., 3x4=12). Another example of 

multiplication can be when students use a multiplication table to aid in their completion of a 

worksheet.  

6.2.12. Division (Behavior)         ndi 

Number Sense>Division should be coded when students are involved in activities/instruction 

related to division including; dividing a set of objects into equal parts, dividing a set of objects 

by sharing, repeated subtraction (via word problems), illustrating and writing number sentences 

for “equal-groups” story problems, division by 2, using a calculator to divide, and/or multiple 
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components (division). For example, students are given twenty blocks and asked to divide them 

into equal groups, so they divide the blocks into two groups of ten, then five groups of four, and 

then four groups of five. Also, students are asked to illustrate and write a number sentence for a 

story problem, for example, “The teacher has sixty cookies and needs to equally divide them 

between three groups of students. How many cookies will each group receive?” Students first 

illustrate the division problem and then write out a number sentence (i.e., 60÷3=20; each group 

receives 20 cookies). 

6.2.13. Place Value (Behavior)        npv 

Number Sense>Place Value should be coded when students are involved in activities/instruction 

related to place value including; understanding the place value of a number, illustrating the place 

value of a number, using concrete/pictorial models to represent numbers, expressing a number in 

expanded form (verbally), writing a number in expanded form, and/or multiple components 

(place value). For example, the teacher writes several numbers on the board (i.e., 22, 68, 155, 

and 2010), then students are asked to separate the digits in each number with a line and write the 

place value above each digit (i.e., ones, tens, hundreds, thousands). Also, students are completing 

a worksheet to write numbers in their expanded form (i.e., 155=100 + 50 + 5), and then follow 

up by reviewing their answers aloud.   

6.2.14. Fractions (Behavior)         nfr 

Number Sense>Fractions should be coded when students are involved in activities/instruction 

related to fractions including; dividing a shape into its fractional parts, dividing an object into 

halves, identifying one half of a whole, identifying numerator and denominator, comparing 

fractional parts of a whole, identifying if a fractional part of a whole is closer to 1, ½, or 1, 

writing a unit fraction using fraction notation (i.e., ½), identifying/naming/picturing a fractional 

part of a set, writing a fraction to show a part of a set, finding one half of a set with even/odd 

number of objects, representing and writing mixed numbers, and/or multiple components 

(fractions). For example, students are completing a worksheet where they are asked to divide 

shapes into fractional parts (i.e., dividing a square into equal halves). In another example, the 

teacher explains both proper and improper fractions to students. It is pointed out that fractions 

are made up of two numbers; a top number called the numerator and a bottom number called the 

denominator. Later the teacher and students go on to write proper fractions, as well as, change 

improper fractions into mixed numbers. 

6.2.15. Decimals (Behavior)         nde 

Number Sense>Decimals should be coded when students are involved in activities/instruction 

related to decimals including; the function of decimals within money, writing monetary amounts 

using the decimal, identifying decimal portions of shaded figures, converting fractions to 

decimals, and/or multiple components (decimals). For example, the teacher explains and 

demonstrates the function of decimals when used to separate dollars from cents for representing 

monetary amounts (i.e., $1.45, $10.50, and $100.75). Later students are asked to complete a 

worksheet where they use decimal points to separate dollars from cents in monetary amounts. 

The same activity/instruction can occur when explaining and demonstrating how to separate a 

whole number from the decimal part of a number. 

 

6.3. Geometry 

6.3.1. Multiple Components (Behavior)        gmc 

Geometry>Multiple Component should be coded when a variety of combined Geometry 

behaviors occur within at least the 15 second instruction minimum and/or for a longer duration. 
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To be coded as Geometry>Multiple Components all of the activities/instruction occurring 

together must be part of Geometry. For example, during an activity/instruction students first plot 

a set of ordered pairs onto a coordinate plane (i.e., coordinate geometry), then draw a shape from 

these plotted points (i.e., shapes), and finally do a rotation and reflection with the shape (i.e., 

transformations), all within 15 seconds.  A brief description of the activity should be noted in the 

comment field. 

6.3.2. Shapes (Behavior)         gsh 

Geometry>Shapes should be coded when students are involved in activities/instruction related to 

shapes including; identifying basic shapes, number of sides and angles of basic shapes, covering 

designs with pattern blocks/tangram pieces, identifying and creating overlapping geometric 

shapes, identifying and creating similar shapes and designs, identifying and making congruent 

shapes, drawing congruent shapes and designs, identifying and sorting common geometric 

shapes by attribute, identifying and drawing polygons, making polygons on a geo-board, 

identifying the angles of a polygon, identifying pentagons, describing and classifying plane 

figures, identifying geometric solids (i.e., cones, spheres, cubes, cylinders, rectangle prisms), 

identifying/describing/comparing geometric solids, identifying and drawing a line of symmetry, 

creating a symmetrical design, dividing a solid in half, cutting a geometric shape apart and 

making a new shape, combining shapes to create new shapes, and/or multiple components 

(shapes). For example, students are working independently to complete an activity/instruction 

using pattern blocks/tangram pieces to cover various shapes (i.e., rectangles, squares, and/or 

triangles). Also, during a center activity students use a geo-board to create a variety of polygon 

shapes; including making congruent shapes. In another example, the class is working together to 

divide a solid into a half and also to identify and draw a line of symmetry through several shapes.  

6.3.3. Lines (Behavior)         gli 

Geometry>Lines should be coded when students are involved in activities/instruction related to 

lines including; identifying parallel lines, line segments, intersecting lines, perpendicular lines, 

horizontal/vertical/oblique lines, right angles, acute/obtuse angles and/or multiple components 

(lines). For example, the teacher spends time explaining the differences between parallel and 

perpendicular lines including; drawing examples on the board. Also, the teacher and students 

discuss what makes a line horizontal, vertical, or oblique. In another example, students 

independently complete a worksheet where they are expected to determine types of angles (i.e., 

acute, obtuse, or right angle).   

6.3.4. Transformations (Behavior)        gtr 

Geometry>Transformations should be coded when students are involved in activities/instruction 

related to transformations including; exploring transformations (i.e., slides, turns, flips), 

identifying and showing transformations (i.e., translations, rotations, reflection), and/or multiple 

components (transformations). For example, in order for students to better understand the 

concept of geometric transformations the teacher is at the board using shapes to demonstrate a 

variety of transformations (i.e., flips, reflections, rotations, slides, translations, and/or turns). 

Often a geometric transformations activity/instruction involves the use of a coordinate plane (i.e., 

coordinate graph).   

6.3.5. Coordinate Geometry (Behavior)       gco 

Geometry>Coordinate Geometry should be coded when students are involved in 

activities/instruction related to coordinate geometry including; locating and graphing points on a 

coordinate graph, and/or multiple components (coordinate geometry). For example, the teacher 

prepares a coordinate plane (i.e., coordinate graph) on the board and then asks student volunteers 
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to locate points on the graph using specific ordered pairs (i.e., (x, y), (3, 5), etc.). After sufficient 

points have been correctly located, then the teacher demonstrates how students can graph line 

segments, angles, and/or shapes.  

6.3.6. Spatial Geometry (Behavior)        gsp 

Geometry>Spatial Geometry should be coded when students are involved in activities/instruction 

related to spatial geometry including; identifying right, left, between, middle, inside, outside, 

and/or multiple components (spatial geometry). For example, the teacher asks the students to 

raise their right or left hand to determine if students understand the concept of right and left. 

Also, during a worksheet activity/instruction students are asked to place a check mark “√” in 

specific locations as they relate to shapes on the page (i.e., place a check mark “√” next to the 

right side of the triangle; place a check mark “√” on the inside of the circle, etc.). 

 

6.4. Algebra 

6.4.1. Multiple Components (Behavior)       amc 

Algebra>Multiple Components should be coded when a variety of combined Algebra behaviors 

occur within at least the 15 second instruction minimum and/or for a longer duration. To be 

coded as Algebra>Multiple Components all of the activities/instruction occurring together must 

be part of Algebra. For example, the teacher and students are working to determine missing 

addends/subtrahends (i.e., expressions and equations) and then using comparison symbols (<, >, 

or =) to designate which equations and/or expressions are greater than, less than, or equal to 

others (i.e., inequalities) all within 15 seconds. A brief description of the activity should be noted 

in the comment field. 

6.4.2. Patterns (Behavior)         apa 

Algebra>Patterns should be coded when students are involved in activities/instruction related to  

patterns including; sorting common objects, identifying attributes of pattern blocks, sorting by 

one attribute, creating a color pattern (including shapes), continuing a repeated pattern, creating a 

repeated pattern, continuing a growing pattern, identifying a number between two numbers, 

and/or multiple components (patterns). For example, students complete a worksheet 

activity/instruction where they are expected to continue repeated patterns (i.e., 

circle/square/triangle/circle/square/triangle, etc.). Also, the teacher and students spend time 

identifying attributes of pattern blocks (i.e., shape, color, size), then sort the pattern blocks 

according to an attribute. After sorting the blocks they then create repeated patterns (i.e., 

blue/red/yellow, circle/square/triangle, etc.).     

6.4.3. Expressions and Equations (Behavior)      aee 

Algebra>Expressions and Equations should be coded when students are involved in 

activities/instruction related to expressions and equations including; identifying a missing addend 

identifying a missing subtrahend, and/or multiple components (expressions and equations). For 

example, the class is working together to determine the missing addends/subtrahends in several 

algebraic expressions and/or equations (i.e., 4 + x = 6; 10 + 5 = 5 + x). In order for students to 

better conceptualize this activity/instruction the teacher has written several expressions/equations 

on the board that lack either an addend or a subtrahend. Student volunteers come to the board 

and complete the expressions/equations with the correct addend or subtrahend. 

6.4.4. Inequalities (Behavior)        ain 

Algebra>Inequalities should be coded when students are involved in activities/instruction related 

to inequalities including; using comparison symbols (<, >, or =) with two single-digit 

numbers/with two-digit numbers or greater/with fractions/with two or more equations, 
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greater/less/and equal to, and/or multiple components (inequalities). For example, the teacher is 

guiding students through an activity/instruction in order for them to better understand the 

concept of using comparison symbols (i.e., <, >, or =). To do so, they review the relationship of 

greater than, less than, and/or equal to for several pairs of single-digit and two-digit numbers. In 

another example, students are working in small groups on an activity/instruction and they are 

expected to determine if a number is greater than (>), less than (<), or equal to (=) another 

number.  

 

6.5. Measurement 

6.5.1. Multiple Components (Behavior)       mmc 

Measurement>Multiple Components should be coded when a variety of combined Measurement 

behaviors occur within at least the 15 second instruction minimum and/or for a longer duration. 

To be coded as Measurement>Multiple Components all of the activities/instruction occurring 

together must be part of Measurement. For example, the teacher may ask the students to identify 

the days of the week/months of the year (i.e., time), identify the day as cold/cool/warm/hot (i.e., 

temperature), and identify various coins, such as, pennies/nickels/dimes/quarters (i.e., money) all 

within 15 seconds. A brief description of the activity should be noted in the comment field. 

6.5.2. Time (Behavior)         mti 

Measurement>Time should be coded when students are involved in activities/instruction related 

to time including; identifying month/date/year, writing the date using digits, identifying days of 

week/months of year, time in day terms, clock, numbering a clock face, telling/showing time to 

hour/half-hour/quarter-hour/minute/five-minute intervals, identifying a.m. and p.m./noon and 

midnight, elapsed time (i.e., one hour ago, one hour from now, one half hour ago), elapsed time 

word problems by hours, ordering events by time, identifying activities that take one hour/one 

minute/one second, and/or multiple components (time). For example, the class participates in the 

“beginning-of-the-day” math routine which is focused around a classroom meeting board. As 

part of this daily routine, the teacher and students, identify and recite the days of the week and 

the months of the year (i.e., Monday – Friday, January – December). Also, each day during their 

math routine students mark the date on a calendar and then write out the date (i.e., 10-25-2010; 

October 25, 2010). In another example, students are completing a worksheet where they are 

asked to show the time (i.e., show half past nine) by first writing it out using digits (i.e., 9:30) 

and then by numbering a clock face.   

6.5.3. Temperature (Behavior)        mte 

Measurement>Temperature should be coded when students are involved in activities/instruction 

related to temperature including; identifying cold/cool/warm/hot temperatures, reading a 

thermometer to 10 degrees, estimating temperature to the nearest 10 degrees, reading a 

thermometer to the nearest 2 degrees Fahrenheit, and/or multiple components (temperature). For 

example, the teacher introduces new vocabulary to students which relates to temperature; such 

as, thermometer, hot, warm, cool, and cold. After discussing the similarities/differences between 

various temperatures the class completes a worksheet marking various temperatures they have 

measured (i.e., the classroom’s air temperature and/or the water temperature from the cup of 

water, etc.) onto a “thermometer” illustration. Also, each day the students spend time estimating 

the temperature outdoors (i.e., cold, cool, warm, or hot). 

6.5.4. Money (Behavior)         mmo 

Measurement>Money should be coded when students are involved in activities/instruction 

related to money including; counting pennies/nickels/dimes/quarters/combined coins, trading 
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pennies for dimes, showing money amounts using coins, identifying similarities/differences 

among coins, paying for items using dimes and pennies/quarters-dimes-nickels-and pennies, 

writing money amounts using the Cent symbol, identifying one/five/ten/twenty dollar bills, using 

bills to pay for items to $20, writing money amounts using a dollar sign, showing/counting back 

change for $1.00, and/or multiple components (money). For example, the class participates in the 

“beginning-of-the-day” math routine which is focused around a classroom meeting board. As 

part of this daily routine, the teacher and students, identify and count money with the aid of 

“meeting board coins” (i.e., enlarged images of coins; e.g., pennies, nickels, dimes, quarters). In 

another example, students are asked to answer questions on a worksheet which requires them to 

count various stacks of coins to determine the total(s). Also, the teacher and students work 

together on a “General Store” activity/instruction where various priced items are listed on a 

worksheet and students must determine which coins are necessary to pay for the items (i.e., the 

toy costs $1.56; that is four quarters, five dimes and six pennies).  

6.5.5. Length (Behavior)          mle 

Measurement>Length should be coded when students are involved in activities/instruction 

related to length including; measuring length (nonstandard units), comparing nonstandard units, 

estimating length (nonstandard units), creating a measuring tool, measuring with one-inch color 

tiles, measuring to nearest standard unit (i.e., inches, feet, centimeters, etc.), measuring using feet 

and inches, measuring and drawing line segments to the nearest inch/half-inch, 

comparing/ordering objects by length/height/width, selecting an appropriate tool for measuring 

length, estimating/measuring distances using feet, identifying metric units of length, using a ruler 

to draw a line segment, measuring/drawing line segments to the nearest centimeter, and/or 

multiple components (length). For example, during a center activity student “walk the room” 

using a ruler to measure various objects (i.e., a book, desk, pencil, and/or table) in 

customary/standard units (i.e., feet and inches). Also, for a worksheet activity student uses the 

ruler to draw line segments to specified lengths (i.e., ½ inch, one inch, 50 centimeters, etc.). In 

another example, students use non-standard units (i.e., an unsharpened pencil) to measure the 

length of various objects and once complete order the objects by length (i.e., shortest to longest).    

6.5.6. Circumference, Perimeter & Area (Behavior)     mpa 

Measurement>Circumference, Perimeter, and Area should be coded when students are involved 

in activities/instruction related to circumference/perimeter/area including; finding area using 

one-inch color tiles, finding the area of shapes using pattern blocks, comparing/ordering objects 

by size (area), finding circumference/perimeter, and/or multiple components (circumference, 

perimeter, and area). For example, students are using non-standard units of measure (i.e., 

different sized pattern blocks) to find the area of a shape (i.e., a parallelogram). To complete this 

activity/instruction students determine how many of each differently sized pattern block is 

needed to cover the shape. In another example, students are asked to complete a worksheet 

where they find the area of various sized squares. To do so, they are using one-inch color tiles as 

a means of finding the area of each square.   

6.5.7. Weight (Behavior)         mwe 

Measurement>Weight should be coded when students are involved in activities/instruction 

related to weight including; identifying lighter/heavier, comparing/ordering objects by weight, 

estimating/weighing objects (nonstandard units), measuring weight using customary units, 

exploring standard units of mass, selecting the appropriate tool to measure mass, measuring 

weight using metric units, and/or multiple components (weight). For example, groups of students 

are working together to identify which in a group of objects is lightest/heaviest, as well as, 
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estimate the weight of the objects in non-standard units (i.e., pennies). First, students use a 

balance to determine which object; a crayon, an eraser, or a pencil, is the lightest, heaviest, etc. 

Next, after ordering the objects lightest to heaviest, the students estimate the weight of each 

object in non-standard units (i.e., pennies). Finally, again using a balance they determine the 

actual weight of the items in pennies.  

6.5.8. Capacity (Behavior)         mcp 

Measurement>Capacity should be coded when students are involved in activities/instruction 

related to capacity including; estimating the capacity of containers, ordering containers by 

capacity, identifying standard units of capacity, identifying gallon/half-gallon/quart/cup/liter 

containers, estimating and measuring the capacity of a container in cups, selecting the 

appropriate tool to measure capacity, identifying 1-cup and ½-cup measuring cups, identifying 

tablespoon/teaspoons/and ½ teaspoons, and/or multiple components (capacity). For example, the 

students are working on an exercise to estimate/order the capacity of containers. First, the teacher 

shows the class five containers and asks which container they believe to be the smallest/largest, 

etc. After ordering the containers by size; next, the teacher asks students to estimate the capacity 

(i.e., volume) of each container. Finally, the class measures the true capacity of each container by 

filling them with cups of water and learning if their estimates and the capacity order they decided 

upon are correct.        

6.5.9. Quantity (Behavior)         mqu 

Measurement>Quantity should be coded when students are involved in activities/instruction 

related to quantity including; dividing a set of objects into groups of two (pairs), identifying 

pairs/most and fewest/dozen and half dozen, and/or multiple components (quantity). For 

example, the class reviews the amount that makes up a dozen and a half dozen. Following this 

discussion, the teacher asks students to separate piles of pattern blocks into groups of two and 

then put three pairs of two together to make a half dozen and six pairs of two together to make a 

dozen. Focus is placed on dividing objects into pairs and identifying the quantity of a dozen and 

half dozen. 

 

6.6. Data Analysis 

6.6.1. Multiple Components (Behavior)       dmc 

Data Analysis>Multiple Components should be coded when a variety of combined Data 

Analysis behaviors occur within at least the 15 second instruction minimum and/or for a longer 

duration. To be coded as Data Analysis>Multiple Components all of the activities/instruction 

occurring together must be part of Data Analysis. For example, the class quickly reviews a few 

survey questions (i.e., data collection), next the teacher constructs a bar graph using students’ 

responses to a question (i.e., data representation), and then the students are asked to identify 

most/fewest on the graph (i.e., analyzing data) all within 15 seconds. A brief description of the 

activity should be noted in the comment field. 

6.6.2. Data Collection (Behavior)        dco 

Data Analysis>Data Collection should be coded when students are involved in 

activities/instruction related to data collection including; choosing a survey question/choices, 

collecting/sorting data, vocabulary/definitions, and/or multiple components (data collection). For 

example, the teacher reviews vocabulary related to graphing; such as, what are graphs, 

pictographs, and bar graphs. Also, the teacher and students brainstorm in order to come up with 

survey questions for an upcoming data collection activity. In another example the students take 
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big handfuls of blue or red pattern blocks out of a bag. The teacher asks them to sort the blocks 

by color; either blue or red in preparation for graphing. 

6.6.3. Data Representations (Behavior)       dre 

Data Analysis>Data Representations should be coded when students are involved in 

activities/instruction related to data representations including; tallying, properties of graphs, 

placing an object on a graph, graphing a picture on a pictograph, drawing a pictograph/with scale 

of 2, using data to construct a bar-type graph, creating a bar graph/with scale of 2, graphing data 

in a chart, creating a Venn diagram, representing data using a graph, recording information on a 

graph, and/or multiple components (data representations). For example, earlier in the day the 

teacher asked students; “What is your favorite ice cream flavor?”, and the teacher is now making 

tally marks on the board representing the students’ favorite ice cream flavors. After tallying is 

complete the teacher then creates a pictograph to represent the responses from students, for 

example, ten ice cream cones in the vanilla flavor column, twelve cones in the chocolate flavor 

column, and three cones in the strawberry flavor column.      

6.6.4. Analyzing Data (Behavior)        dan 

Data Analysis>Analyzing Data should be coded when students are involved in 

activities/instruction related to analyzing data including; identifying most/fewest on a graph, 

reading a pictograph/with scale of 2, reading a bar graph/with scale of 2, identifying how many 

more on a graph, reading a Venn diagram, writing observations about a graph, identifying the 

median of a set of numbers/mode and range of a set of data, using a calculator to compare data, 

and/or multiple components (analyzing data). For example, the class works together to analyze 

data from a bar graph. The teacher has created a bar graph which represents the number of AR 

books that former students read during the past school year. The teacher asks students to analyze 

the bar graph data, for example, identify the student who read the most/fewest AR books, and 

identify the mean/median/mode of the number of AR books read.   

 

6.7. Probability 

6.7.1. Multiple Components (Behavior)       pmc 

Probability>Multiple Components should be coded when a variety of combined Probability 

behaviors occur within at least the 15 second instruction minimum and/or for a longer duration. 

To be coded as Probability>Multiple Components all of the activities/instruction occurring 

together must be part of Probability. For example, students are involved in an activity/instruction 

that combines probability behaviors including; identifying events, describing likelihood of an 

event, and predicting the outcome of a probability experiment. The probability behaviors are 

happening rapidly and in concert, as a result, it is best to code the activity/instruction as 

Probability>Multiple Component. A brief description of the activity should be noted in the 

comment field. 

6.7.2. Identifying Events as Certain, Likely, or Impossible (Behavior)   pec 

Probability>Identifying Events as Certain, Likely, Impossible should be coded when students are 

involved in activities/instruction related to identifying events as certain, likely, or impossible. 

For example, the teacher places 10 blue cubes into a bag and asks students if it is certain a blue 

cube will be chosen from the bag. Next the teacher explains it is impossible to pull a red cube 

from the bag because there are no red cubes currently in the bag. Finally, the teacher puts five 

yellow cubes in the bag and students decide if it is more likely to pull a blue or a yellow cube 

from the bag.   

6.7.3. Describing the Likelihood of an Event (Behavior)     ple 
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Probability>Describing Likelihood of an Event should be coded when students are involved in 

activities/instruction related to describing the likelihood of an event. For example, the teacher 

and students spend time describing the likelihood of an event. This can occur prior to an 

activity/instruction where they will be identifying events as certain, likely, or impossible. As a 

result, there may be a review of the key words used to identify events (i.e., certain, likely, 

impossible). 

6.7.4. Predicting the Outcome of a Probability Experiment (Behavior)   poc 

Probability>Predicting the Outcome of a Probability Experiment should be coded when students 

are involved in activities/instruction related to predicting the outcome of a probability 

experiment. For example, before conducting a probability experiment (i.e., a coin flip) the 

teacher asks the students to make their predictions as to the outcome of the experiment. Also, 

students working in a small group are asked as part of their activity/instruction to make a 

prediction for the outcome of their probability experiment (i.e., spinning a spinner to either 

“blue” or “red”).  

6.7.5. Conducting a Probability Experiment (Behavior)     pex 

Probability>Conducting a Probability Experiment should be coded when students are involved in 

activities/instruction related to conducting a probability experiment. For example, the teacher 

conducts the experiment of flipping a coin to determine if the coin will land on heads or tails. 

The “coin flip” experiment is repeated several times in order to better understand the nature of 

probability. Also, students use a spinner to spin and determine if it lands on the blue color or red 

color. Again the experiment is conducted repeatedly to better understand the nature of 

probability. 

 

6.10. Multi-Component General 

6.10.1. Multi-component (Behavior)       mul 

Multi-Component General>Multi-Component should be coded when a variety of combined, yet 

different math-related behaviors occur within at least the 15 second instruction minimum and/or 

for a longer duration. This code is used when a variety of different behaviors (i.e., addition, 

geometry, measurement, data analysis, etc.) are occurring together and are not better coded using 

a more specific multi-component code (i.e., multi-component addition, multi-component 

measurement, etc.). Multi-Component General>Multi-Component should also be used as a 

default code when a specific math-related instruction code cannot be determined (i.e., math 

instruction is occurring, but it does not fit into any math-related behavior codes provided in the 

mathematics coding manual). In this case a brief description of the activity should be noted in the 

comment field.  
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APPENDIX C 

Primary Caregiver Questionnaire 

 
 

Start of Block: Child Information 

 

Q1 What is your child's name? 

________________________________________________________________ 

 

 

 

Q2 What is your child's gender? 

o Male  (1)  

o Female  (2)  

 

 

 

Q3 What is your child's race/ethnicity? 

________________________________________________________________ 

 

 

 

Q4 What is your child's native language? 

o English  (1)  

o Other (specify)  (2) ________________________________________________ 

 

 

 

Q5 What is your child's date of birth?  

________________________________________________________________ 
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Q6 Who is completing this questionnaire?  

o Biological Mother  (1)  

o Biological Father  (2)  

o Other (specify)  (3) ________________________________________________ 

 

End of Block: Child Information 
 

Start of Block: Family Information 

 

Q8 What is your Relationship Status? 

o Married  (1)  

o Single  (2)  

o Divorced  (3)  

o Other (Specify)  (4) ________________________________________________ 

 

 

 

Q9 On average, how many hours/day are you responsible for your child (i.e., in a normal 9am-

5pm job, you would be responsible for your child 16 hours/day)? 

▼ 1 (1) ... 24 (24) 

 

End of Block: Family Information 
 

Start of Block: Parent #1 

 

Q12 Parent #1 name: 

________________________________________________________________ 
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Q11 Relation to Child: 

________________________________________________________________ 

 

 

 

Q13 Age: 

________________________________________________________________ 

 

 

 

Q14 Native Language: 

o English  (1)  

o Other (specify)  (2) ________________________________________________ 

 

 

 

Q15 Ethnicity/Race:  

________________________________________________________________ 

 

 

 

Q16 What is your occupation? (Please be as specific as possible) 

________________________________________________________________ 

 

 

 

Q17 Are you currently employed? 

o Yes  (1)  

o No  (2)  

 

 

Display This Question: 

If Q17 = Yes 
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Q18 If “Yes” do you work part-time or full-time? 

o Part-time  (1)  

o Full-time  (2)  

 

 

Display This Question: 

If Q18 = Part-time 

 

Q19 If part-time, please specify how many hours per week: 

________________________________________________________________ 

 

 

 

Q20 From all sources of income, please tell me your total family income before taxes in 2017. 

________________________________________________________________ 
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Q21 IF LEFT BLANK, what would be your best guess? 

o $5000-$10,000  (1)  

o $10,000-$15,000  (2)  

o $15,000-$20,000  (3)  

o $20,000-$25,000  (4)  

o $25,000-$30,000  (5)  

o $30,000-$35,000  (6)  

o $35,000-$40,000  (7)  

o $40,000-$45,000  (8)  

o $45,000-$50,000  (9)  

o $50,000-$55,000  (10)  

o $55,000-$60,000  (11)  

o $60,000-$65,000  (12)  

o $65,000-$70,000  (13)  

o $70,000-$75,000  (14)  

o $75,000-$80,000  (15)  

o $80,000-$85,000  (16)  

o $85,000-$90,000  (17)  

o $90,000-$95,000  (18)  

o $95,000-$100,000  (19)  

o $100,000+  (20)  
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Q22 Birthdate: 

________________________________________________________________ 

 

 

 

Q23 What is the highest educational level you have attained?  

▼ Some High School (1) ... Postgraduate or Professional Degree (e.g. NA, MS, PhD, JD, MD) 

(7) 

 

 

 

Q24 Field of Study/Major 

________________________________________________________________ 

 

 

Display This Question: 

If Q23 = Postgraduate or Professional Degree (e.g. NA, MS, PhD, JD, MD) 

 

Q25 Graduate School 

▼ MA (1) ... JD (7) 

 

 

 

Q26 Name of the last school attended and/or received a degree: 

________________________________________________________________ 

 

End of Block: Parent #1 
 

Start of Block: Parent #2 

 

Q59 Parent #2 name: 

________________________________________________________________ 
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Q60 Relation to Child: 

________________________________________________________________ 

 

 

 

Q61 Age: 

________________________________________________________________ 

 

 

 

Q62 Native Language: 

o English  (1)  

o Other (specify):  (2) ________________________________________________ 

 

 

 

Q63 Ethnicity/Race:  

________________________________________________________________ 

 

 

 

Q64 What is your occupation? (Please be as specific as possible) 

________________________________________________________________ 

 

 

 

Q65 Is Parent #2 currently employed? 

o Yes  (1)  

o No  (2)  
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Display This Question: 

If Q65 = Yes 

 

Q66 If “Yes” does he/she work part-time or full-time? 

o Part-time  (1)  

o Full-time  (2)  

 

 

Display This Question: 

If Q66 = Part-time 

 

Q67 If part-time, please specify how many hours per week: 

________________________________________________________________ 

 

 

 

Q70 Birthdate: 

________________________________________________________________ 

 

 

 

Q71 What is the highest educational level he/she has attained?  

▼ Some High School (1) ... Postgraduate or Professional Degree (e.g. NA, MS, PhD, JD, MD) 

(7) 

 

 

 

Q72 Field of Study/Major 

________________________________________________________________ 
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Q73 Graduate School 

▼ MA (1) ... MBA (6) 

 

 

 

Q74 Name of the last school attended and/or received a degree: 

________________________________________________________________ 

 

End of Block: Parent #2 
 

Start of Block: Preschool/Child Care History 

 

Q43 Please list all forms of childcare and/or preschool experiences your child has had since 

birth: 

   

o Type (e.g. small group home, relative, day care, preschool, etc.)  (1) 

________________________________________________ 

o Dates attended (mm/yr)  (2) ________________________________________________ 

o Hours per week  (3) ________________________________________________ 

 

 

 

Q45   

o Type (e.g. small group home, relative, day care, preschool, etc.)  (1) 

________________________________________________ 

o Dates attended (mm/yr)  (2) ________________________________________________ 

o Hours per week  (3) ________________________________________________ 
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Q46   

o Type (e.g. small group home, relative, day care, preschool, etc.)  (1) 

________________________________________________ 

o Dates attended (mm/yr)  (2) ________________________________________________ 

o Hours per week  (3) ________________________________________________ 

 

Q48 Please answer how often you participate in these activities with your child: 
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Almost 

Never (1) 

Every so 

often (2) 

1 to 3 times 

a week (3) 

4 to 6 times 

per week 

(4) 

Daily (5) 

How often 

do you do 

math 

activities 

(i.e., 

workbooks 

or math 

problems) 

with your 

child? (1)  

o  o  o  o  o  

How often 

do you play 

number 

games such 

as “This 

Old Man” 

or “1, 2, 

Buckle My 

Shoe” with 

your child? 

(2)  

o  o  o  o  o  

How often 

do you do 

math-

related 

activities, 

such as 

“connect the 

number” 

pictures, 

mazes, and 

puzzles with 

your child? 

(3)  

o  o  o  o  o  
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How often 

do you play 

card games 

with your 

child (i.e., 

war, skip-

bo, Uno)? 

(4)  

o  o  o  o  o  

How often 

do you 

count 

objects with 

your child? 

(5)  

o  o  o  o  o  

How often 

do you sort 

things by 

size, color, 

or shape 

with your 

child? (6)  

o  o  o  o  o  

How often 

do you talk 

about 

money with 

your child 

(i.e., when 

shopping 

saying 

“which 

costs 

more?”)? 

(7)  

o  o  o  o  o  

How often 

do you 

measure 

ingredients 

with your 

child when 

cooking? 

(8)  

o  o  o  o  o  
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How often 

do you use 

calendars 

with your 

child? (9)  

o  o  o  o  o  

How often 

does your 

child wear a 

watch? (10)  
o  o  o  o  o  

How often 

do you 

engage with 

your child 

in 

identifying 

written 

numbers? 

(11)  

o  o  o  o  o  

How often 

do you 

engage with 

your child 

in printing 

numbers? 

(12)  

o  o  o  o  o  

How often 

do you use 

analog 

clocks with 

your child? 

(13)  

o  o  o  o  o  
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Q49 Please answer how much you identify with these statements: 

 
Not at all 

like me (1) 

Slightly like 

me (2) 

Somewhat 

like me (3) 

A lot like me 

(4) 

Very much 

like me (5) 

I find math 

activities 

enjoyable. (1)  
o  o  o  o  o  

I believe that 

literacy 

activities are 

more 

important 

than 

numeracy 

activities for 

young 

children. (2)  

o  o  o  o  o  

I believe that 

it is important 

for caregivers 

to focus on 

math skills in 

young 

children. (3)  

o  o  o  o  o  

I believe it is 

as much my 

responsibility 

as the 

school’s to 

help my child 

learn. (4)  

o  o  o  o  o  

 

 

End of Block: Math Specific Questions 
 

Start of Block: Math Specific Questions (cont.) 

 

Q50 How many puzzels do you have in the house? 

________________________________________________________________ 

 

 

 



 

 

 

 

 

 

151 

Q51 How many analog clocks do you have in the house? 

________________________________________________________________ 

 

 

 

Q52 How many board games do you have in the house? 

________________________________________________________________ 

 

 

 

Q56 How many decks of cards do you have in the house? 

________________________________________________________________ 

 

End of Block: Math Specific Questions (cont.) 
 

Start of Block: Block 7 

 

Q74 Please rank these from 1 (being most important) to 5 (least important) what you think will 

have the largest impact on your child's math performance? 

______ Your attitude toward math (1) 

______ The amount of time spent doing math at home (2) 

______ Genetics (3) 

______ How early they were exposed to math concepts (4) 

______ My child's teacher's attitudes towards math (5) 

 

End of Block: Block 7 
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