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ABSTRACT

The first part of this thesis considers the problem of reconstructing a rational

function f from one of its orbits, {a, f(a), f(f(a)), f(f(f(a))), . . .}. Conjecturally,

two complex rational functions of degree> 1 possess orbits with infinite intersection if

and only if they have a common iterate. This conjecture has been recently verified in

the polynomial case, however the rational function case is vastly more difficult. Our

first main theorem verifies this conjecture for rational functions of coprime degree,

and is the first to address intersections of orbits of rational functions which are not

polynomials.

The second part of this thesis considers the problem of characterizing polynomial

functions s using only their values on natural numbers, (s(0), s(1), s(2), . . .). Our

second main theorem proves that if the mth divided difference δms of an arbitrary

sequence s of rational numbers is integer-valued, then s(n) is given by a polynomial

in n if and only if there is a positive number θ with s(n)� θn and 1+θ < e1+
1
2

+···+ 1
m .

v



CHAPTER I

Introduction

This thesis presents the results of two directions of the author’s graduate research

conducted at the University of Michigan. We begin with some background which will

provide supporting context for Chapter II. The reader who would like to get quickly

to the main results can skip to §1.2.2 for the statement of the Orbit Intersection

Problem, §1.2.3 for the statements of our results in Chapter II, and §1.3 for our main

results in Chapter III.

1.1 Historical Background

The purpose of this section is to explain the statement of an outstanding question

in arithmetic dynamics, the Dynamical Mordell–Lang Problem. The Orbit Intersec-

tion Problem is a special case of the Dynamical Mordell–Lang Problem. To properly

motivate the statement, we first explain the series of antecedent diophantine results

from the 20th century which led to its formulation.

1.1.1 Diophantine Geometry

We recall some fundamental constructions. Let n be a non-negative integer. We

define complex affine space An to be Cn. We define complex projective space Pn to

be the equivalence classes of An+1\{0} under the relation x ∼ y if y = rx for some

1
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nonzero number r ∈ C.

An affine algebraic set X is the solution set in complex affine space of a family of

equations given by polynomials fi : Cn → C, 1 ≤ i ≤ m,

X = {x ∈ An : fi(x) = 0 for all 1 ≤ i ≤ m}.

A projective algebraic set X is the solution set in complex projective space of a family

of homogeneous polynomials gi : Cn+1 → C, 1 ≤ i ≤ m,

X = {[x] ∈ Pn : gi(x) = 0 for all 1 ≤ i ≤ m}.

We equip affine (resp. projective) space with the weakest topology for which every

affine (resp. projective) algebraic subset is closed, and we equip algebraic sets with

the corresponding subspace topologies. A topological space X is irreducible if it

cannot be expressed as a union of two nonempty proper closed subsets. For us,

a variety will be any open and irreducible subset X of a projective algebraic set.1

Concretely, X is the subset of Pn where one family of homogeneous polynomials is

zero, another finite family of homogeneous polynomials is nonzero, and X cannot

be decomposed into two smaller such subsets. We say that a variety X is defined

over a field K if there exist defining polynomials for X which have coefficients in K.

A variety X is affine (resp. projective) if it is an affine (resp. projective) algebraic

set. From here on out we assume some fundamental notions from algebraic geometry

such as dimension, (geometric) genus, smoothness, birationality, and morphisms of

varieties. For definitions, see [Har77, §1].

It is very interesting — and very classical — to ask for a description of the subset

of points whose coordinates belong to a subring R of C such as Z or Q. Precisely, let

us write Pn(R) for the subset of points [x] ∈ Pn for which there exists a representative
1Strictly speaking, this is the definition of a quasi-projective (irreducible) variety over C.
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(x0, . . . , xn) ∈ [x] with all coordinates x0, . . . , xn in R. We define

X(R) = Pn(R) ∩X.

For a finitely-generated subfield K ⊂ C, the subset X(K) is often called the K-

rational points of X, and often Q-rational points are simply referred to as rational

points. The study of the K-rational points of a variety X for a finitely-generated

subfield K ⊂ C is the subject of diophantine geometry. All of the results we will

discuss in this section remain true when Q is replaced with a finitely-generated

subfield of C, so to simplify the exposition and some of the history we will usually

restrict the discussion to K = Q unless otherwise stated.

Group varieties are of particular interest in diophantine geometry. These are the

analogue of Lie groups in algebraic geometry. A group variety is a variety G (defined

over K, say) equipped with a composition morphism G×G→ G : (P,Q) 7→ P ·Q, an

inverse morphism G→ G : P 7→ P−1, and a distinguished identity element e ∈ G, all

defined over K and satisfying the usual axioms. Group varieties play a special role

in diophantine geometry for the simple reason that when P and Q are K-rational

points, P · Q and P−1 are also K-rational, i.e., G(K) is a subgroup of G(C). Thus

even a single K-rational point generally leads to a multiplicity of them. Furthermore,

even when a variety is not itself a group variety there is often a natural action of a

group variety by symmetries which helps to produce more K-rational points from a

single one.

An abelian variety is a group variety whose underlying variety is projective, and an

elliptic curve is an abelian variety of dimension one. Abelian varieties play a special

role in the theory. A group variety is said to be linear if its underlying variety is

affine.2 Abelian varieties and linear group varieties are the most important examples
2It is known that every linear group variety arises as a closed subgroup of GLn for some n.
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of group varieties. For example, we mention a theorem of C. Chevalley3 which asserts

that every group variety G is canonically an extension of an abelian variety A by a

linear group variety H, i.e., there is a unique normal linear closed subgroup H ⊂ G

such that G/H is an abelian variety. Two other ubiquitous group varieties are the

additive group Ga, which denotes A1 with additive composition, and the multiplicative

group Gm, which denotes A1\{0} with multiplicative composition. An algebraic torus

is a group variety T which is isomorphic over C to a product of Gms.

The important role of group varieties in diophantine geometry can already be seen

in the one-dimensional setting. In 1922 L. Mordell made a conjecture [Mor22] which

in 1983 became a theorem due to G. Faltings [Fal83].

Theorem (Faltings). Let C be a projective algebraic curve defined over a finitely-

generated field K of characteristic zero. If the genus of C is ≥ 2 then C(K) is

finite.

Using Faltings’s theorem one can easily show that the projective curves C with

the property that C(K) is infinite for some finitely-generated field K may also be

characterized as those projective curves which contain a nontrivial group variety.

The point is that the projective curves which contain a nontrivial group variety are

precisely the projective curves of genus ≤ 1, and Faltings’s theorem implies that

the projective curves of genus ≤ 1 are also the projective curves such that C(K) is

infinite for some finitely-generated field K.

We mention in passing that this observation conjecturally generalizes to higher

dimensions. Let Sp(X) denote the Zariski closure of the union of all images of

non-constant rational maps

G 99K X
3For a proof in modern scheme-theoretic terminology see [Con02].
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over all group varieties G, and letW = X\Sp(X). ThenW is defined over a finitely-

generated field K0 containing Q. S. Lang has conjectured that W (K) is finite for

any finitely-generated field K containing K0 [Lan91, (3.2)]. In fact, by Chevalley’s

theorem any point of a group variety G meets a coset of a linear group variety

H. It is well-known that any linear group variety is birational to projective space

(possibly after extending the basefield), and so for the definition of Sp(X) it suffices

to consider the images of non-constant rational maps of the form Pn 99K X and

A 99K X. Projective space is rationally connected (any two points are joined by a

rational curve), and so it even suffices to consider rational maps P1 99K X, which

can then be replaced with E 99K X for an elliptic curve E. In sum, all but finitely

many rational points of an arbitrary variety X are conjectured to lie in the Zariski

closure of the images of non-constant rational maps A 99K X from an abelian variety

A. For more on the set Sp(X) and its relation to geometric properties of X we refer

to [Lan91, §I.3].

1.1.2 The Mordell–Weil theorem

Abelian varieties play a central role in the study of rational points in general so

it is worthwhile to consider the structure of their rational points in more detail. The

subset of K-rational points A(K) of an abelian variety A defined over K is called

the Mordell–Weil group of A. The fundamental statement about A(K) is known as

the Mordell–Weil theorem.

Theorem (Mordell–Weil). Let A be an abelian variety defined over a number field

K. Then the abelian group A(K) is finitely generated.

The Mordell–Weil theorem can be used to study rational points on curves by

means of the jacobian variety. The situation can be described a priori. Let C be a
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projective algebraic curve defined over a finitely-generated field K. We may assume

that C is smooth. (If C is singular then there is another projective algebraic curve C ′

defined over K which is smooth and birational to C and such that C ′(K) is infinite if

and only if C(K) is infinite. Hence for finiteness statements we may as well assume

that C is smooth.) The key is to realize C as a subvariety of an abelian variety, as it

turns out this can be done in an essentially canonical way. For curves of genus zero

the construction turns out to be trivial, but their rational points are parameterized

by a rational map so their rational points are easily understood anyway. Hence we

may assume that the genus g of C is ≥ 1.

We explain the classical construction of the jacobian variety of C. By smoothness,

C inherits the structure of a complex manifold from its embedding into complex

projective space. Let ω1, . . . , ωg be a basis of Ω1(C), the vector space of holomorphic

one-forms on C. Choose a point P0 ∈ C. The map

C 3 P 7→
∫ P

P0

ω1 ∈ C

is multi-valued on account of monodromy, i.e., the integral depends on the path

chosen between P0 and P . However, the form ω1 is closed as Ω2(C) = 0, and so the

ambiguity in the integral
∫ P
P0
ω1 due to choice of path is only up to homotopy, hence

up to a finitely-generated additive subgroup of C, namely {
∫
γ
ω1 : γ ∈ π1(C,P0)}.

In this way we obtain the Abel–Jacobi map,

C → Cg/Λ

P 7→
(∫ P

P0

ω1, . . . ,

∫ P

P0

ωg

)
,

where Λ := {
∫
γ
ωi : γ ∈ π1(C,P0), 1 ≤ i ≤ g}. It can be shown that Λ is an abelian

group of rank 2g so that JC := Cg/Λ is a compact complex manifold of dimension g.

One can show that the lattice Λ satisfies the “Riemann period relations”, whence JC
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can be given the structure of a complex projective algebraic variety with the help of

theta functions, and furthermore that the map C → JC so obtained is an embedding

of complex varieties defined over the field of definition of the chosen point P0. This

shows that JC is an abelian variety, the jacobian variety of C. For more details see

[Mum07].

1.1.3 Classical Mordell–Lang

With the Abel–Jacobi embedding C ⊂ JC in mind it is only natural to look

for a generalization of Mordell’s conjecture by making use of the ambient jacobian

variety. Moreover there is no reason to restrict to abelian varieties arising as the

jacobian variety of some algebraic curve.4 The two important data are the curve

C, considered as a subvariety of JC , and the finitely-generated subgroup JC(K) of

K-rational points (we assume that the chosen point P0 defining the embedding is

defined over K). In the context of the abelian variety JC , Mordell’s conjecture is that

C(K) = C ∩ (JC(K)) is finite if the genus of C is ≥ 2. Equivalently, C ∩ (JC(K))

is infinite only when C is genus one, in which case C is a translate of an abelian

subvariety of JC (of dimension one). As early as 1960 Lang considered the following

replacements:

JC  any abelian variety A,

JC(K) any finitely-generated subgroup Γ of A,

C  any closed subvariety Y of A.

This led S. Lang to make the following generalization of Mordell’s conjecture in 1960

which was proven by G. Faltings in 1994.
4The question of which abelian varieties arise as the jacobian of an algebraic curve is known as the Schottky

problem, after F. Schottky. For a nice survey see [Gru12]. It was only fairly recently shown that there exists an
abelian variety over Q which is not isogeneous to a jacobian, [Tsi12].
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Theorem 1.1.1 (Classical Mordell–Lang conjecture for abelian varieties, [Lan60],

[Fal91], [Fal94]). Let A be an abelian variety defined over a field K that is finitely

generated over Q. Let Y ⊂ A be a closed subvariety. Then Y (K) is a finite union

of cosets of subgroups of A(K).

The above statement holds verbatim for an algebraic torus T in place of the

abelian variety. This being known at the time (at least in the case Y is of dimension

1), Lang conjectured that for G either an abelian variety or a torus, Y ⊂ G a closed5

subvariety, and Γ a finitely generated subgroup of G, the intersection Γ∩ Y is equal

to a finite union of cosets of subgroups of Γ.6 Lang also asked whether his conjecture

would hold for a group variety S fitting into a short exact sequence of group varieties

1 → T → S → A → 1 for an abelian variety A; such group varieties are known as

semiabelian varieties. In 1996 this became a theorem of P. Vojta.7

Theorem 1.1.2 (Classical Mordell–Lang conjecture for semiabelian varieties, [Voj96]).

Let S be a semiabelian variety over a number field K. Let Y ⊂ S be a closed subva-

riety and let Γ ⊂ S be a finitely generated subgroup. Then Γ ∩ Y is a finite union of

cosets of subgroups of Γ.

There exists another variant of the classical Mordell–Lang conjecture in connection
5While Lang does not explicitly state that the subvariety Y is closed this hypothesis is necessary and it is included

in [Fal91], [Fal94], and [Voj96]. (For example, let z 6= 0, 1, let Y be the twice-punctured plane C\{0, z} inside Gm,
and let Γ be any infinite finitely-generated subgroup contained in Y . Then Y ∩ Γ = Γ but the only cosets of group
subvarieties of Gm contained in Y are singletons. A similar idea shows the hypothesis is also necessary for abelian
varieties.) For [BGT16] a subvariety is assumed to be closed by convention, cf. (3.1.1).

6 This formulation is more suitable for our dynamical interpretation, which is why we follow [BGT16] in stating
Lang’s conjecture this way, but it’s worth pointing out that Lang actually states his conjecture differently in [Lan60,
p29]. The assertion there is that the intersection Γ ∩ Y is contained in a finite union of cosets of group subvarieties
of G contained in Y .
The two formulations are seen to be equivalent as follows. If Γ ∩ Y is equal to a finite union ∪iγiΓi of cosets

of subgroups Γi ⊂ Γ then the Zariski closure Hi of Γi is a subgroup variety of G (cf. [Mil17, (1.40)]). Each coset
γiHi = γiΓi is contained in Y since Y is closed. This proves the original formulation. Conversely, suppose Γ ∩ Y
is contained in a finite union ∪igiHi of cosets giHi ⊂ Y of subgroup varieties Hi of G. We may suppose that each
intersection (giHi) ∩ Γ is nonempty. Fix γi ∈ (giHi) ∩ Γ for every i, and set Γi := Γ ∩ Hi. Let γ ∈ Γ ∩ Y . By
assumption, γ ∈ giHi for some i. Then γγ−1

i ∈ Γ∩Hi = Γi. In particular, γ ∈ γiΓi. This shows that Γ∩Y ⊂ ∪iγiΓi.
However, γiΓi ⊂ giHi ⊂ Y , and also γiΓi ⊂ Γ, showing that ∪iγiΓi ⊂ Γ ∩ Y . This shows that Γ ∩ Y = ∪iγiΓi,
thereby proving the second formulation.

7We have stated Vojta’s theorem following [BGT16, (3.4.2.1)], hence in terms of the reformulation of Lang’s
conjecture (cf. footnote 6), though Vojta’s theorem was originally stated in terms of Lang’s original formulation.
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with a generalization of the conjecture in [Lan60] again due to Lang. In [Lan65] Lang

formulated a conjecture which encompassed the earlier conjecture in [Lan60] as well

as the Manin-Mumford conjecture. The idea is to replace the finitely generated

subgroup Γ with its division hull, i.e., the group Γ′ of all a ∈ S such that an ∈ Γ

for some positive integer n. (The Manin-Mumford conjecture is obtained by taking

Γ = 1, in which case Γ′ is the group of torsion points of S.) This general form of

the Mordell–Lang conjecture was proven by M. McQuillan [McQ95] following the

earlier works of Faltings and Vojta mentioned above, as well as earlier works of M.

Hindry, M. Laurent, and M. Raynaud. This is sometimes called the full form of

the Mordell–Lang conjecture while the form of the Mordell–Lang conjecture proven

by Faltings and Vojta is sometimes called the Mordellic part of the Mordell–Lang

conjecture. There has not been a dynamical form of Mordell–Lang proposed for the

full form of the Mordell–Lang conjecture, so we will focus on the Mordellic part in

what follows.

1.2 Dynamical Mordell–Lang

The classical Mordell–Lang conjecture gives much more than a condition for finite-

ness of Γ ∩ Y . To illustrate, we consider a reformulation of this theorem “in coordi-

nates”. Let e be the identity element of S. Write Γ = 〈γ1, . . . , γr〉, and assume that

the generators have been chosen so that every element g of Γ is of the form γn1
1 · · · γnrr

for some non-negative integers n1, . . . , nr.

Now we make the first conceptual shift from diophantine geometry to algebraic
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dynamics. Define the endomorphisms8

fi : S → S(1.1)

a 7→ aγi.

The semiabelian variety S is commutative (cf. [Iit77, Lemma 4]) so the endomor-

phisms f1, . . . , fr commute under composition. Let f ◦n = f ◦· · ·◦f denote the n-fold

iterate of an endomorphism f under function composition. As (f ◦n1
1 ◦ · · · ◦f ◦nrr )(e) =

γn1
1 · · · γnrr , the finitely generated subgroup Γ is simply the forward orbit of e under

the endomorphisms f1, . . . , fr, i.e.,

O := Of1,...,fr(e) := {(f ◦n1
1 ◦ · · · ◦ f ◦nrr )(e) : (n1, . . . , nr) ∈ Nr)} = Γ.

With this shift in emphasis, we change focus from the finitely generated subgroups Γ

of S to the (forward) orbits O of a commuting family of endomorphisms.

To keep track of the relationship between the orbit O and the subvariety Y we

can consider the set of indices which iterate the initial point into Y , i.e.,

Z(Y,O) := {(n1, . . . , nr) ∈ Nr : (f ◦n1
1 ◦ · · · ◦ f ◦nrr )(e) ∈ Y }.

We can now state a dynamical reformulation of the classical Mordell–Lang conjecture.

Theorem 1.2.1 (Dynamical form of [Voj96]). Let S be a semiabelian variety, Y ⊂ S

a closed subvariety, and O = Of1,...,fr(e) the forward orbit of a family of commut-

ing endomorphisms f1, . . . , fr of S of the form (1.1). Then there exist subgroups

G1, . . . , Gs of Zr and elements ni ∈ Nr such that

Z(Y,O) =
s⋃
i=1

(
ni + (Gi ∩ Nr)

)
.

8These are not endomorphisms in the group sense but as self-maps of A as an algebraic variety.
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Why shift emphasis from subgroups to orbits? One motivation is to generalize

Vojta’s theorem. As it turns out, there are many other settings where the dynamical

reformulation is true which are unrelated to semiabelian varieties.

Example 1. Consider the endomorphism

Φ: A1 → A1

y 7→ y3.

Let O be the orbit of a = i under Φ. Then Φ◦n(a) = i3
n and Z({i},O) is the set of

n such that i3n = i. As 3n ≡ (−1)n (mod 4), this shows that

Z({i},O) = 2N.

However, the following examples show that Z is not always of this form, even

when the ambient variety is a semiabelian variety. Both examples are from [BGT16],

§3.6.

Example 2. Consider the commuting endomorphisms

Φ1 : A2 → A2

(x, y) 7→ (x+ 1, y)

and

Φ2 : A2 → A2

(x, y) 7→ (x, y2).

Let ∆ be the diagonal subvariety of A2 and let O be the orbit of a = (1, 2) under

Φ1,Φ2. Then Φ◦m1 Φ◦n2 (a) = (m + 1, 22n) and Z(∆,O) consists of the set of (m,n)

such that m+ 1 = 22n . This shows that

Z(∆,O) = {(22m − 1,m) : m ∈ N}.
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Example 3. Consider the commuting endomorphisms

Φ1 : G3
m → G3

m

(x, y, z) 7→ (x2y−1, y2z−2, z2)

and

Φ2 : G3
m → G3

m

(x, y, z) 7→ (x2y2, y2z4, z2).

Let Y be the subvariety of G3
m defined by x = 1, and let O be the orbit of (1, 1/3, 9)

under Φ1,Φ2. Then

Z(∆,O) = {(12m2 ± 6m, 6m2) : m ∈ N}.

1.2.1 The Dynamical Mordell–Lang Problem

Now we make the second conceptual shift from diophantine geometry to alge-

braic dynamics: The semiabelian variety S and its commuting set of endomorphisms

are replaced with a general commutative dynamical system. We may now state the

Dynamical Mordell–Lang Problem.

1.2.1 (Dynamical Mordell–Lang Problem). Let X be a variety and let f1, . . . , fr

be a commuting family of endomorphisms of X. Let Y be a closed subvariety of

X, and choose an initial point a ∈ X. Let O be the forward orbit of a under the

endomorphisms f1, . . . , fr. Under what conditions — on X, Y ⊂ X, f1, . . . , fr,

and the initial point a — do there exist subgroups G1, . . . , Gs of Zr and elements

n1, . . . , ns ∈ Nr such that

Z(Y,O) =
s⋃
i=1

(
ni + (Gi ∩ Nr)

)
?
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In this generality, this problem first appeared in a paper of D. Ghioca, T. Tucker,

and M. Zieve, [GTZ12]. In the case of a single endomorphism, the Dynamical

Mordell–Lang Problem asks for conditions ensuring that

Z(Y,O) = {n ∈ N : f ◦n(a) ∈ Y }

is a finite union of arithmetic progressions. This special case is sometimes called the

cyclic case of the Dynamical Mordell–Lang Problem, or also the Dynamical Mordell–

Lang Conjecture. It is conjectured by Ghioca-Tucker [GT09] to hold without any

further assumptions on X, Y, f, or a.

1.2.2 The Orbit Intersection Problem

We are interested in a natural specialization of the Dynamical Mordell–Lang Prob-

lem. For the ambient variety previously denoted with X we will take the product

variety Xr. This has the natural subvariety given by the diagonal,

∆ ⊂ Xr.

For this special case of the Dynamical Mordell–Lang Problem it is easy to construct

commuting families of endomorphisms. We take endomorphisms F1, . . . , Fr ∈ EndX

(which do not necessarily commute), and use the commuting endomorphisms

fi = (idX , idX , . . . , Fi, . . . , idX) ∈ End(Xr).

This situation leads to the Orbit Intersection Problem. The reason for the terminol-

ogy is that

Z(Xr,∆) = {(n1, . . . , nr) ∈ Nr : F ◦n1
1 (a) = F ◦n2

2 (a) = · · · = F ◦nrr (a)}.

The Dynamical Mordell–Lang Problem now takes the following form.
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1.2.1 (Orbit Intersection Problem, split case of the Dynamical Mordell–Lang Prob-

lem). Let X be a variety, let F1, . . . , Fr be (not necessarily commuting) endomor-

phisms of X, and choose an initial point a ∈ X. Under what conditions — on X,

F1, . . . , Fr, and the initial point a — do there exist subgroups G1, . . . , Gs of Zr and

elements n1, . . . , ns ∈ Nr such that

{(n1, . . . , nr) ∈ Nr : F ◦n1
1 (a) = · · · = F ◦nrr (a)} =

s⋃
i=1

(
ni + (Gi ∩ Nr)

)
?

1.2.3 Statements of Main Results in Chapter II

In Chapter II we study the Orbit Intersection Problem for curves. The results in

this chapter are joint work with Michael Zieve [OZ]. Our main result concerns the

intersection of orbits of endomorphisms of P1.

Theorem 1.2.1. Let F and G be endomorphisms of P1 whose degrees are greater

than one. Let OF (resp. OG) be any orbit of F (resp. G). If the degrees of F1 and

F2 are coprime then OF ∩ OG is finite.

This has the following corollary for the Orbit Intersection Problem for X = P1.

Corollary 1.2.2. Let F1, . . . , Fr be endomorphisms of P1 whose degrees are greater

than one. Let a be a point of P1. If the degrees of the endomorphisms are pairwise

coprime then

{(n1, . . . , nr) ∈ Nr : F ◦n1
1 (a) = · · · = F ◦nrr (a)}

is a finite union of arithmetic progressions.

For curves of positive genus we obtain a characterization for when two endomor-

phisms have a common iterate.
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Theorem 1.2.3. Let Φ and Ψ be non-invertible endomorphisms of an algebraic curve

X of positive genus over a field of characteristic zero. Then there exist orbits of Φ

and Ψ with infinite intersection if and only if Φ and Ψ have a common iterate.

Putting these theorems together, we obtain a solution to the Orbit Intersection

Problem for curves which is complete for positive genus.

Corollary. Let F1, . . . , Fr be endomorphisms of a curve X whose degrees are greater

than one. Let a be a point of P1. If the genus of X is zero then further assume that

the degrees of the endomorphisms are pairwise coprime. Then

{(n1, . . . , nr) ∈ Nr : F ◦n1
1 (a) = · · · = F ◦nrr (a)}

is a finite union of arithmetic progressions.
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1.3 Polynomials with Integral Divided Differences

The second part of this thesis is in the field of number theory. We are interested in

a classical problem of interpolation. Let s(0), s(1), s(2), . . . be a sequence of rational

numbers. Under what conditions on s does there exist a polynomial f ∈ Q[x] such

that f(n) = s(n) for n = 0, 1, 2, . . .?

We approach this general problem by means of the divided differences of s. Di-

vided differences are a fundamental construction of interpolation theory and non-

Archimedean analysis. They are of great utility for numerical applications and ap-

plied mathematics, but their theoretical applications are much less explored. Let

us recall their definition for the unacquainted reader. For more we refer the reader

to [MT51] for their use in interpolation theory, and [Sch06] for their use in non-

Archimedean analysis.

The mth divided difference δms of s is the function of distinct nonnegative integers

n0, . . . , nm given by

δms(n0, . . . , nm) :=
m∑
i=0

{∏
j 6=i

(ni − nj)−1
}
s(ni).

It is a symmetric function on the complement of the union of the diagonal hyper-

planes {ni = nj} in Nm+1. Let {n0, n1, . . .} ⊂ N be any infinite subset. Newton’s

interpolation formula gives a formal interpolation series for s in terms of its divided

differences:9

(1.2) s(x) = s(n0) +
∞∑
k=1

δks(n0, n1, . . . , nk)
k−1∏
j=0

(x− nj) for all x ∈ {n0, n1, . . .}.

This formula should be viewed as a kind of formal Taylor series for the sequence s.

In this chapter we prove the following result which uses the integrality of divided

differences to give a criterion for s to be polynomial. Let K be an algebraic number
9This equality is to be interpreted in the following formal sense: for each x ∈ N, the right-hand side of (1.2) is a

finite sum that is equal to s(x). For more on Newton’s interpolation formula we refer the reader to [MT51, §1].
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field of degree d with ring of integers O. We write rn � qn to mean there is a positive

constant C such that |rn| ≤ C|qn| for all n ≥ 0.

Theorem 1.3.1. Let s : N→ K. Suppose that

(i) δms is O-valued, and

(ii) for each embedding σ : K → C, |σs(n)| � θnσ for some positive number θσ and

∏
σ:K→C

(1 + θσ) < ed
(

1+
1
2

+···+ 1
m

)
.

Then s(n) is a polynomial in n.

In §3.3 we will prove Theorem 1.3.1 as a very special case of Theorem 3.3.2. The

special case of Theorem 1.3.1 when m = 1 and K = Q was discovered independently

in 1971 by R. Hall and I. Ruzsa, [Hal71], [Ruz71].

The integrality of divided differences has interesting arithmetic consequences. For

simplicity suppose s is valued in Q. The integrality of the zero-th divided difference,

δ0s(n) = s(n), simply requires that s itself is integer-valued. The first divided

difference of s is equal to

δ1s(m,n) :=
s(m)− s(n)

m− n
(m 6= n).

The integrality of δ1s(m,n) for all distinct pairs of nonnegative integers m,n is

equivalent to requiring that m − n divides s(m) − s(n) for all nonnegative integers

m,n, which simply means that s preserves all congruences between nonnegative

integers. The integrality of higher divided differences can be interpreted using the

subspace topology on the natural numbers N inherited from its inclusion into the

adele ring A (see §1.3.3).

For the interested reader, we mention that when K = Q and m = 1, Ruzsa

conjectured that the second condition could be improved by replacing e with e + 1
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so that the inequality becomes θ < e. Ruzsa’s conjecture remains open, though

there has been some partial progress, [Zan82], [PZ84], [Zan96]; also see [BN19] for

a function field analogue. It is interesting to consider how our inequality might be

likewise improved, though we do not venture any guesses here.

1.3.1 Outline of the Proof of Theorem 1.3.1

Our approach to Theorem 1.3.1 uses two new results, one local and one global. The

local result concerns the special values of higher divided differences at consecutive

integers. Recall that the finite differences c of s are defined by

c(n) = δn(0, 1, . . . , n)n!.

We will show that the hypotheses of Theorem 1.3.1 imply that c(n) is eventually

zero, thus proving that s is polynomial by Newton’s interpolation formula (1.2). To

state our results in the local part, we assume some familiarity with non-Archimedean

analysis. We refer the reader to the standard text [Sch06] for definitions and termi-

nology.

The local part uses tools from non-Archimedean analysis to show that p-adic

integrality of δms implies p-adic decay of c(n). Let | · |p denote the usual p-adic

norm on Q and let ‖δms‖p denote the supremum of |δms(n0, . . . , nm)|p over all sets

{n0, . . . , nm} of nonnegative integers. We will prove the following new result.

(1.3) ‖δms‖p = sup
n≥m
|c(n)|ppτm,p(n)

where τm,p(n) is the largest possible p-adic valuation of a product of m distinct

positive integers ≤ n, i.e.

τm,p(n) := max
S⊂{1,...,n},

#S=m

wp
{∏
s∈S

s
}
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where wp denotes the normalized p-adic valuation. Formula (1.3) shows that p-

integrality of δms is equivalent to sufficiently rapid p-adic decay of finite differences,

and so integrality of δms implies local decay of c(n) at all finite primes.

The global part of the argument uses the product formula to obtain an Archimedean

growth condition. We recall that the product formula says that for any nonzero ele-

ment x of K, ∏
v∈MK

|x|nvv = 1

where nv is the local degree of the place v. If s is not polynomial, there exists a

subsequence c(ni) such that c(ni) 6= 0 for every i ≥ 0 (this follows from Newton’s

interpolation formula). Applying the product formula to such a non-vanishing sub-

sequence c(ni) allows us to combine local decay at all primes to obtain Archimedean

growth for c as a necessary condition for the integrality of δms and non-polynomiality

of s. In order to combine local decay rates over all primes it is necessary to study

the asymptotic behavior of
∏

p prime p
τm,p(n). Our second new result is that

(1.4)
∏

p prime

pτm,p(n) = e

(
1+

1
2

+···+ 1
m

)
n+O(n exp{−α(logn)1/2} logn)

for some positive constant α. Combining (1.3) with (1.4) forms the basis for Theo-

rem 1.3.1.

1.3.2 Further Discussion and Background

We proceed to discuss the proofs of (1.3) and (1.4) in greater detail and provide

some contextual background. Let Cp be the metric completion of an algebraic closure

of the p-adic field Qp. The use of finite differences in non-Archimedean analysis goes

back to a classical result of Mahler [Mah58]. He proved that s : N → Cp is the

restriction of a continuous function f : Zp → Cp if and only if the finite differences

of s converge to zero p-adically. He also showed that when this is the case, the
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supremum of f (or s) is equal to the supremum of the finite differences:

(1.5) ‖s‖p = ‖c‖p .

It is well-known that there are many other Mahler-type characterizations (cf. e.g.,

[Sch06], §53). For instance, s is the restriction of a Lipschitz continuous func-

tion f : Zp → Cp if and only if |c(n)|pp[logp n] is bounded,10 and the supremum of

|c(n)|pp[logp n] is equal to the optimal p-adic Lipschitz constant of s (loc. cit.):

(1.6) ‖δ1s‖p = sup
n≥1
|c(n)|pp[logp n].

Our formula (1.3) is an extension of (1.6) to all higher divided differences. In §3.1

we work out the precise Mahler-type criterion obtained from the integrality of higher

divided differences (Proposition 3.1.3): If δm+1s is p-integral, then s extends to

an element of Cm(Zp,Cp), the Banach space of m-times continuously differentiable

functions, and f (m) is Lipschitz continuous with constant |m!|p.

For the proof of (1.3) we make use of the Mahler series formula for δms due to

Schikhof. Before we may use this formula, however, we must resolve a technical

difficulty which is the fact that δms (after a minor change of variables to avoid the

diagonal hyperplanes) inhabits the larger of the two Banach spaces

C(Zm+1
p ,Cp) ⊂ `∞p (Nm+1).

Schikhof stated this formula as a convergent Mahler series for δms under the assump-

tion that δms is continuous, and while it still gives a sensible expression when δms is

only bounded, it is a divergent series for the topology of `∞p (Nm+1). Computing the

norm of this divergent series requires some care. A related difficulty is the fact that

there is no canonical orthonormal basis of `∞p (Nm+1), not even when m = 0.
10This is typically stated in terms of the boundedness of |c(n)|pn, however the exact formula for the optimal

Lipschitz constant justifies the use of the semi-norm s 7→ sup
n≥1
|c(n)|pp[logp n] over s 7→ sup

n≥1
|c(n)|pn.
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Let (Cj)j∈Nm+1 be a bounded Cp-valued function. The divergent series we will

consider are of the form

(1.7)
∑

j∈Nm+1

Cj

(
x

j

)
(x ∈ Zm+1

p ).

We can formally interpret any such series as a definition for the function F : Nm+1 →

Cp whose value at n is given by
∑
Cj
(
n
j

)
as this reduces to a finite sum. We will

show that in fact any element of `∞p (Nm+1) can be uniquely expressed as a divergent

series of the form (1.7). Furthermore, the mapping

`∞p (Nm+1)→ `∞p (Nm+1)(1.8)

F 7→ (Cj)j∈Nm+1

so obtained is an isometry (Proposition ??). Taken together, these two statements

may be regarded as a generalization of the second part of Mahler’s classical result

(1.5) to p-adically bounded functions. The fact that (1.8) is an isometry means that

the norm of bounded functions F : Nm+1 → Cp given by divergent series of the form

(1.7) can be calculated as though the multivariate binomial polynomials did form an

orthonormal basis of `∞p (Nm+1) despite the fact that they do not. This work-around

lets us circumvent the absence of a canonical orthonormal basis and prove (1.3) using

Schikhof’s formula.

In §3.3 we return to the global setting by combining the local decay of the finite

differences over all primes. For this discussion we will consider a function s valued in

Q rather than K for simplicity. If δms is integral then δms is p-integral for all primes

p, so using (1.3) shows that

∏
p prime

|c(n)|p ≤
∏

p prime

p−τm,p(n) (n ∈ N).
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Note that both products have only a finite number of terms that differ from unity.

By using the product formula we obtain an Archimedean growth condition for non-

vanishing finite differences c(n):

(1.9) |c(n)| ≥
∏

p prime

pτm,p(n) (c(n) 6= 0).

It is well-known that s is polynomial if and only if c is eventually zero. It follows

that s is not polynomial if and only if there exists a subsequence ni such that c(ni)

is non-vanishing, in which case we may apply (1.9) to see that

(1.10) lim sup
n→∞

|c(n)|1/n ≥ sup
i<∞
|c(ni)|1/ni ≥ lim

n→∞

∏
p prime

p
τm,p(n)

n

whenever δms is integer-valued but s is not polynomial.

In §3.2 we calculate the asymptotic behavior of
∏

p p
τm,p(n) (cf. (1.4), Proposi-

tion ??). We find that

(1.11) lim
n→∞

∏
p prime

p
τm,p(n)

n = e1+
1
2

+···+ 1
m .

The proof uses the Chebyshev function ϑ(x) =
∑

p≤n log x. It is well-known that

ϑ(x) = x+o(x) but we will require a smaller error term. For this purpose we employ

a useful result of Rosser and Schoenfeld [RS62] (cf. (3.13)). In the final section, §3.3,

we use the inequality (1.10) to obtain a growth condition on s which together with

(1.11) leads to the two conditions of Theorem 1.3.1.

1.3.3 Interpreting the Integrality of Divided Differences

Divided differences and the Hall–Ruzsa theorem are connected because the con-

dition of congruence-preserving is equivalent to the integrality of δ1s. This interpre-

tation generalizes to the integrality of higher divided differences as we now explain.

Roughly speaking, a function whose mth divided difference is integral is “locally”

approximated to mth order by polynomials. “Locally” is in reference to the topology
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on N inherited from the ring of adeles, N ⊂ A. In this topology the neighborhoods

are infinite arithmetic progressions and small neighborhoods are infinite arithmetic

progressions with highly divisible periods.

Suppose that s : N → Q is a function whose mth divided difference is integral.

Then there is a positive integer N such that Nδis is integral for every i = 0, . . . ,m

(this is not obvious but it follows from Proposition ??, cf. Remark 1). We again make

use of the Newton interpolation formula (1.2). Let {x0, x1, . . .} ⊂ Q be a denumerable

subset and let s : {x0, x1, . . .} → Q be a function. For all x ∈ {x0, x1, . . .} we have

that

(1.12) s(x) = s(x0) +
∞∑
k=1

δks(x0, x1, . . . , xk)
k−1∏
j=0

(x− xj).

We consider the restriction of s to a small neighborhood U = n0 + Nε, where ε

is a nonzero integer and n0 is arbitrary. Let x0, . . . , xm be chosen from U , where we

consider x0, . . . , xm−1 as fixed and x := xm as variable. From (1.12) we obtain that11

(1.13) s(x) = P (x) +O(εm) for all x ∈ U

where P (x) is a polynomial in x of degree< m whose coefficients are rational numbers

with denominators dividing N . When δms contains arbitrarily large denominators

in its values, the implied constant in the asymptotic notation cannot generally be

chosen independently of x.

We can interpret the integrality of δ1s in light of the above discussion as follows.

On any neighborhood U ⊂ N of order ε the function s is approximated to first order

in ε by the constant polynomial P (x) = s(x0). Moreover, the implied constant in the

asymptotic notation may be chosen to be unity. We see that s(x)− s(x0) is divisible

by ε for any x, x0 ∈ U .
11The asymptotic notation is to be interpreted in the following sense: there exists a positive integer M such that

for any x in U , M(s(x) − P (x)) is integral and divisible by εm. If δms is integer-valued then M may be chosen to
be unity.
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In §3.1 we will prove a second interpretation of the integrality of δms: If a function

s : N→ Q has Z-valued mth divided difference, then for every prime p the function

s extends to a p-adic m-times continuously differentiable function fp : Zp → Qp and

f
(m)
p is Lipschitz continuous with constant |m!|p.



CHAPTER II

Orbits of Rational Functions

This chapter studies pairs of rational functions which possess forward orbits with

infinite intersection. This hypothesis suggests that we may use tools from dynam-

ical systems related to orbits, such as equilibrium measures, or recent results on

equidistribution in orbits — however this is not the case. The real object of study

in this chapter is the monodromy of rational functions. Under what circumstances

can two rational functions have “compatible” ramification? This is a subtle question,

and its ramifications will lead us to the well-known special classes of dynamically

affine rational functions: power maps, Chebyshev polynomials, and Lattès rational

functions. The results in this chapter are joint work with Michael Zieve [OZ].

2.1 Algebraic Curves

In this chapter we work over an algebraically closed field K of characteristic zero,

although no essential generality will be lost if the reader takes K to be the field

of complex numbers. Recall that a variety is an open and irreducible subset of a

projective algebraic set (always over K; see §1.1.1). We define a curve to be a variety

of dimension one. Let K(t) be the field of rational functions in one variable. We fix,

once and for all, an algebraic closure K(t)a of K(t). For fundamental notions about

varieties and curves, such as morphisms of varieties, ramification degree, degree, and

25
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(geometric) genus, we refer to the standard text [Har77]. Morphisms are always over

the field K.

We will frequently switch between the geometric and algebraic pictures according

to suitability and convenience. On the level of curves, this equivalence takes the

following form.

Theorem 2.1.1 ([Har77], (I.6.12)). The following two categories are equivalent:

1. field extensions of K of transcendence degree 1, and K-homomorphisms;

2. nonsingular projective curves, and dominant1 morphisms.

Recall that the function field KC of a smooth curve C is the set of morphisms

C → P1 which are not identically equal to ∞. This set naturally forms a field

extension of K of transcendence degree 1. The functor from the second category

to the first category is given by mapping a nonsingular projective curve C to its

function field KC , and a dominant morphism f : D → C of nonsingular projective

curves D and C is mapped to the K-homomorphism KC → KD : ϕ 7→ ϕ◦f . Defining

the functor in the other direction takes a bit more work (see [Har77, §I.6.12]).

It often happens that a function field L of dimension 1 over K is presented as a

finite extension of K(t). The field of rational functions K(t) is the function field of

the projective line P1. In this case the function field L gives us a curve CL and a

nonconstant morphism CL → P1.

It is worth keeping in mind that Theorem 2.1.1 is only an equivalence of categories

and not an isomorphism of categories. If f : D → C is a nonconstant morphism of

curves, then it corresponds by Theorem 2.1.1 to two function fields KD and KC with

a K-homomorphism KC → KD. Passing back through the equivalence produces

nonsingular projective curves C ′ and D′, a morphism f ′ : C ′ → D′, and isomorphisms
1Note that for curves, a morphism f : D → C is dominant if and only if f is nonconstant.
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C
∼−→ C ′ and D ∼−→ D′ such that the diagram,

C C ′

D D′,

∼

f f ′

∼

commutes.2 This ambiguity manifests in both the geometric and field-theoretic pic-

tures. Geometrically, we may use the bottom isomorphism to identify D and D′,

however this does not identify the morphisms f and f ′. We obtain an isomorphism

ρ : C → C such that f = f ′ ◦ ρ. When we want to emphasize this ambiguity, we will

say that the curve DL and morphism f : DL → C associated to a finite extension

L/KC is defined up to an isomorphism over C.

Field-theoretically, if we use the bottom isomorphism to identify KD′ with KD,

and KD
a is a given algebraic closure of KD, then the subfields of KD

a corresponding

to the morphisms f and f ′ are not necessarily the same, they are only conjugate

subfields in general. Note however that if the field extension corresponding to f is

Galois then there is a unique subfield in any algebraic closure corresponding to f .

This brings us to our next definition.

Definition 2.1.2. A nonconstant morphism of curves π : D → C is (generically)

Galois if KD/KC is a Galois extension of fields.

The usual notion of a Galois morphism from the theory of schemes requires that

the morphism π is étale (cf. [Mil80, §1.5]), however this is too restrictive for our

purposes since we will generally want to allow for ramification. As we have no need

for the stronger notion, we will simply say that π is Galois.
2Strictly speaking, these isomorphisms are not part of the statement of Theorem 2.1.1, which only asserts that

natural isomorphisms of these functors exists, but there is an “obvious” choice for the isomorphisms C ∼−→ C′, namely
the bijection between a curve C and the set of valuations corresponding to its points.
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Galois morphisms arise naturally when taking quotients by a finite group of au-

tomorphisms.

Definition 2.1.3. Let C be a curve and let G be a finite subgroup of AutC. The

quotient of C by G is the nonsingular projective curve C/G associated (by Theo-

rem 2.1.1) to the field (KC)G.

The quotient comes equipped with a natural morphism π : C → C/G coming from

the inclusion (KC)G ⊂ KC . By Artin’s criterion, [Lan02, VI.1.8], π is Galois with

group G.

Definition 2.1.4. Let f : D → C be a nonconstant morphism of curves. The Galois

closure (N, p) of f is the data of the nonsingular projective curve N associated to the

Galois closure KN of KD/KC together with the morphism p : N → D associated to

the field inclusion KD ⊂ KN .

The Galois closure of a morphism f : D → C is only defined up to a isomorphism

over C.

The geometry of a variety and its projective embeddings is often studied by means

of its divisors. On the level of curves, the theory of divisors takes an especially simple

form.

Definition 2.1.5. A divisorD on a curve C is a finite subset of C with Z-multiplicities.

We write a divisor as a sum,

D =
∑
P∈C

nP [P ],

where nP ∈ Z and all but finitely many nP are equal to zero. The degree of D is

defined by

|D| =
∑
P∈C

nP .
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A nonconstant morphism of curves comes equipped with a few natural divisors.

To give their definitions we will need some notation. For a nonconstant morphism

f : X → Y of curves and any point P ∈ X, let ef (P ) denote the ramification index

of f at P . For any point Q ∈ Y we define the fiber of f over Q to be the subset

Ff (Q) = {P ∈ X : f(P ) = Q} (we occasionally also write f−1(Q) for Ff (Q)). We

define rf (Q) = #Ff (Q). The lcm-ramification index of f at Q is defined to be

εf (Q) := lcm{ef (P ) : P ∈ Ff (Q)}.

The ramification divisor of f is

Rf :=
∑
P∈X

(ef (P )− 1)[P ].

The branching divisor of f is

Bf :=
∑
Q∈Y

(deg f − rf (Q))[Q].

In general the ramification locus of a dominant morphism of varieties f : X → Y

is a (pure) codimension one closed subvariety of X. For curves this implies that the

ramification locus is a finite set of points (the points where ef (P ) > 1). Hence Rf

is a divisor. The next formula implies that f(Rf ) = Bf , and so Bf is also a divisor

(on Y ). For a proof of the proposition see [Har77, II.6.9].

Proposition 2.1.6. Let f : D → C be a nonconstant morphism of nonsingular pro-

jective curves. Let Ff (Q) be the fiber of f over a point Q of C. Then

∑
P∈Ff (Q)

ef (P ) = deg f.

Let us recall the well-known Riemann–Hurwitz formula, for which we will have

much use.
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Theorem 2.1.7 (Riemann–Hurwitz; [Har77], IV.2.4). Let f : D → C be a noncon-

stant morphism of nonsingular projective curves. Then

2gD − 2 = (deg f)(2gC − 2) + |Rf |.

The following useful result computes the ramification of points under the Galois

closure morphism.

Lemma 2.1.8. Let f : D → C be a nonconstant morphism of curves and let (N, p)

be the Galois closure of f . Let Q be any point of C and let Ff (Q) be the fiber of

f over Q. Then the ramification index ef◦p(P ) of the composite map f ◦ p at any

point P ∈ N such that (f ◦ p)(P ) = Q is equal to the least common multiple εQ of

{ef (R) : R ∈ Ff (Q)}.

Proof. We will utilize the equivalence between the categories of function fields of

dimension 1 over K and dominant morphisms of curves over K (Theorem 2.1.1) and

give a field-theoretic proof using Galois theory.

Let G be the Galois group ofKN/KC , and let H be the subgroup corresponding to

KN/KD. We make use of the double-coset description of primes in intermediate (not-

necessarily-Galois) extensions.3 Let DP = {s ∈ G : s(P ) = P} be the decomposition

subgroup at P . The primes (points) of D lying over Q are in bijection with the

double cosets in H\G/DP . Since K is algebraically closed and characteristic zero,

DP is cyclic and generated by a single element γ of order ef◦p(P ). There is a natural

bijection H\G/DP
∼= (H\G)/DP , and the action of γ on H\G decomposes this set

into cycles whose lengths are precisely the ramification indices of points in M lying

over Q. Therefore, if γ has order greater than the lcm εQ of these cycle lengths, then

DP cannot act faithfully on the set H/G (i.e., some nontrivial power of γ acts by the
3See [vdW35] or, for a proof in the number field setting, [Neu99, §I.9].
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identity). However, sinceKN is the Galois closure ofKD/KC , the subgroupH cannot

contain any nontrivial subgroups which are normal in G; in particular, ∩ggH = 1.

This subgroup is also the kernel of the (right-) action of G on H\G, which implies

that G acts faithfully, so DP must also. We see that γ has order which is ≤ εQ.

However, by multiplicativity of ramification, we also have that εQ ≤ ef◦p(P ). This

proves that εQ = ef◦p(P ).

The next formula computes the genus of the Galois closure of a nonconstant

rational function f considered as a morphism f : P1 → P1.

Lemma 2.1.9. Let f : P1 → P1 be a nonconstant rational function, and let (N, p)

be its Galois closure. Then

gN = 1 + (deg f)(deg p)
(
−1 + 1

2

∑
Q∈P1

(
1− 1

εf (Q)

))
.

Proof. Let us apply the Riemann–Hurwitz formula to the composite map f ◦p : N →

P1. For any point P ∈ N, the ramification index efp(P ) of the composite map f ◦ p

is equal to the lcm-ramification index εf (Q) of f over Q = (f ◦p)(P ) (Lemma 2.1.8).

We obtain that

2gN − 2 = −2 deg(f ◦ p) + |Rf◦p |

= −2(deg f)(deg p) +
∑
P∈N

(
efp(P )− 1

)
= −2(deg f)(deg p) +

∑
Q∈P1

∑
P∈Ffp(Q)

(
efp(P )− 1

)
= −2(deg f)(deg p) +

∑
Q∈P1

(
(deg f)(deg p)− rfp(Q)

)
.

Since f ◦ p is Galois, we have that

deg(f ◦ p) =
∑

P∈Ffp (Q)

efp(P ) =
∑

P∈Ffp (Q)

εf (Q) = εf (Q)rfp(Q).
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It follows that

2gN − 2 = (deg f)(deg p)
(
−2 +

∑
Q∈P1

(
1− 1

εf (Q)

))
.

By rearranging terms we obtain the claimed formula,

gN = 1 + (deg f)(deg p)
(
−1 + 1

2

∑
Q∈P1

(
1− 1

εf (Q)

))
.

The next definition introduces a fundamental construction which will play an

essential role in our results.

Definition-Proposition 2.1.10. Let f : C → E and g : D → E be nonconstant

morphisms of curves. The tensor product of fields

KC ⊗KE KD ' K1 × · · · ×Kt

is isomorphic to a direct product of function fields of dimension 1 over K. We define

the smooth fiber product C ×̃E D to be the finite disjoint union of smooth projec-

tive curves associated to the fields K1, . . . , Kt. The smooth fiber product possesses

canonical maps πC : C ×̃E D → C and πD : C ×̃E D → D whose restriction to every

connected component is nonconstant. The smooth fiber product C ×̃E D and the maps

πC, πD satisfy the following universal property: for any smooth projective curve T

and nonconstant morphisms a : T → C and b : T → D such that f ◦ a = g ◦ b, there

exists a unique morphism ξ : T → C ×̃E D such that the following diagram

T

C ×̃E D D

C E

b

a

ξ

πD

πC g

f

commutes.
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Proof. The extension KD/KE is finite and separable, so there is an element α ∈ KD

such that KD = KE(α). Let f(t) be the minimal polynomial of α over KE. Then

KD
∼= KE [t]

(f(t))
, so we have the isomorphism

KC ⊗KE KD
∼=
KC [t]

(f(t))
.

As f(t) is separable, this shows that the tensor product algebra KC ⊗KE KD is

a separable KE-algebra, hence isomorphic to a product of fields K1, . . . , Kt which

are finite extensions of KC . Each map KC → KC ⊗KE KD → Ki, 1 ≤ i ≤ t,

corresponds (by Theorem 2.1.1) to a nonconstant morphism Ci → C where Ci is the

curve corresponding to the function field Ki. By putting these maps together, we

obtain a canonical map πC : C ×̃E D → C which is nonconstant on every connected

component Ci of C ×̃E D. Similarly, there is such a map πD : C ×̃E D → D.

The universal property for (C ×̃E D, πC , πD) follows immediately from combining

the facts that the tensor product over KE is the coproduct in the category of com-

mutative KE-algebras, and the functors which realize an equivalence of categories

are full and faithful (i.e., they induce bijections on every set of morphisms between

two objects).

Remark. The smooth fiber product is not a fiber product in the category of schemes.

We will have use for the following form of Abhyankar’s lemma.

Lemma 2.1.11. Let f : B → D and g : C → D be nonconstant morphisms of smooth

projective curves. Let A be a component of the smooth fiber product B ×̃D C, and let

π : A → B and ψ : A → C be the morphisms associated to the K-homomorphisms

KB → B ×̃D C → KA and KC → B ×̃D C → KA. Let P be a point of A, and set

Q = π(P ) and R = ψ(P ). Then ef◦π(P ) = lcm(ef (Q), eg(R)).

For a proof see Theorem 3.9.1 of [Sti09].
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When the smooth fiber product is irreducible (⇔ connected), applying the Riemann–

Hurwitz formula results in a useful relation between the genus of the smooth fiber

product and the ramification data of f and g.

Lemma 2.1.12. Let f : C → E and g : D → E be nonconstant morphisms of curves.

Suppose that the smooth fiber product C ×̃E D is irreducible. Then

2gC ×̃E D − 2 = (2gD − 2) deg f +
∑

(P,Q)∈F

(
ef (P )− gcd(ef (P ), eg(Q))

)
,

where F = {(P,Q) ∈ C ×D : f(P ) = g(Q)}.

Proof. Let (P,Q) ∈ F and write T = C ×̃E D. We claim that there are exactly

gcd(ef (P ), eg(Q)) points R of T such that πC(R) = P and πD(R) = Q. Let KC,P

denote the completion ofKC for the valuation at a point P of C. ThenKC,P⊗KEKD,Q

is isomorphic to the product of the completions KT,R over all points R ∈ T such that

πC(R) = P and πD(R) = Q. Let R be such a point of T , and set a = ef (P ),

b = eg(Q). By Abhyankar’s lemma (Lemma 2.1.11), the ramification of R through

the composite map f ◦ πC is equal to lcm(a, b). The following diagram indicates the

ramification degrees:

R Q

P f(P ).

lcm(a,b)
b

lcm(a,b)
a

b

a

The dimension of KC,P ⊗KE KD,Q over KC,P is equal to the dimension of KD,Q over

KE,f(P ), so the sum over lcm(a, b)a−1 over all points R such that πC(R) = P and

πD(R) = Q is equal to the degree of KD,Q/KE,f(P ), and this is b since the extension

KD,Q/KE,f(P ) is totally ramified. Therefore the number of such points R is equal to

b(lcm(a, b)a−1)−1 = gcd(a, b), as claimed.
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Now we apply the Riemann–Hurwitz formula to the map πD : T → D to obtain

2gT − 2 = (2gD − 2) deg f +
∑
R∈T

(eπD(R)− 1).

We can break up the sum over F to obtain

2gT − 2 = (2gD − 2) deg f +
∑

(P,Q)∈F

∑
πC(R)=P,
πD(R)=Q

(eπD(R)− 1)

= (2gD − 2) deg f +
∑

(P,Q)∈F

gcd(ef (P ), eg(Q))
(

lcm(ef (P ),eg(Q))

eg(Q)
− 1
)

= (2gD − 2) deg f +
∑

(P,Q)∈F

(
ef (P )− gcd(ef (P ), eg(Q))

)
.

2.2 Dynamically Affine Rational Functions

In this section we study a special class of rational functions arising naturally

in the theory of algebraic dynamics and number theory. Let G be a commutative

group variety. An affine morphism of G is a functional composition of a nontrivial

endomorphism of G as a group variety with a translation.

Recall that the degree of a rational function f is the maximum of the degrees of

the numerator and denominator of f in reduced form. The degree is multiplicative

under composition and agrees with the usual geometric notion of degree when f is

considered as a morphism of curves f : P1 → P1.

Definition 2.2.1. A rational function f of degree > 1 is dynamically affine if there

exist a one-dimensional group variety G, an affine morphism A : G → G, and a

nonconstant morphism π : G→ P1 such that fπ = πA.

2.2.1 Power Maps, Chebyshev, and Lattès

In this subsection we introduce the standard families of dynamically affine rational

functions. For simplicity, we will only consider affine morphisms with trivial transla-

tion component. The only group varieties of dimension 1 over an algebraically closed
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G G

P1 P1.

A

π π

f

Figure 2.1: A dynamically affine rational function.

field are the additive group Ga, the multiplicative group Gm, and elliptic curves E.

The only affine maps of the additive group have degree 1, so they do not give rise to

dynamically affine maps. However the multiplicative group and elliptic curves give

rise to interesting families of dynamically affine rational functions.

2.2.1.1 The multiplicative group

The endomorphisms of the multiplicative group are of the form xn for n ∈ Z. By

taking π to be the inclusion map Gm ⊂ P1, we obtain our first family of dynamically

affine maps.

Gm Gm

P1 P1.

xn

⊂ ⊂

xn

Figure 2.2: Power maps.

The map xn is totally ramified at x = 0 and∞ with ramification index |n|. There

are no other critical points or critical values. The ramification divisor of xn is given

by

R = (|n| − 1)[0] + (|n| − 1)[∞].

A more interesting class of examples arises by taking the quotient map π to be

π : Gm → P1

x 7→ x+ x−1.

Let n be a positive integer.
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Definition-Proposition 2.2.1. The nth Chebyshev polynomial is the unique poly-

nomial Tn(x) ∈ Z[x] satisfying

(2.1) Tn(x+ x−1) = xn + x−n.

For all positive integers m and n the Chebyshev polynomials satisfy

� Tn(−x) = (−1)nTn(x),

� Tm(Tn(x)) = Tmn(x).

Gm Gm

P1 P1.

xn

x+x−1 x+x−1

Tn

Figure 2.3: Chebyshev polynomials.

For the proof see [Sil07, §6.2].

T1 = x

T2 = x2 − 2

T3 = x3 − 3x

T4 = x4 − 4x2 + 2

T5 = x5 − 5x3 + 5x

T6 = x6 − 6x4 + 9x2 − 2

T7 = x7 − 7x5 + 14x3 − 7x

T8 = x8 − 8x6 + 20x4 − 16x2 + 2

Figure 2.4: The first eight Chebyshev polynomials Tn(x).

From the defining relation (2.1) it is easy to find the critical points and critical

values of Tn(x). As Tn(x) is a polynomial of degree n, it is totally ramified at ∞

with ramification index n. The finite critical points of Tn(x) are given by the points

of the form

z + z−1, z ∈ µ2n\{±1}.
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The finite critical values are given by

∅ if n = 1,

{−2} if n = 2,

{±2} if n ≥ 3.

The ramification divisor of Tn(x) is given by

R = (n− 1)[∞] +
n−1∑
k=1

[zk + z−k]

where z is any primitive 2n-th root of unity in K.

2.2.1.2 Elliptic curves

Let E be an elliptic curve over K. It follows from the Riemann–Roch theorem

that E admits a projective model in P2 whose affine part is given by the Weierstrass

equation,

y2 = x3 + ax+ b, a, b ∈ K,

where ∆ = 4a3 + 27b2 6= 0. Then E is the closure of this affine curve and possesses

a unique point O at infinity; see [Har77, IV.4] or [Sil09]. The functions x and y,

considered as coordinates on the affine part of E, are called Weierstrass coordinates.

Let L : E → E be a morphism. We may express L in Weierstrass coordinates,

L(x, y) = (F (x, y), G(x, y)),

where F (x, y) and G(x, y) are rational functions in the function field of E and

G(x, y)2 = F (x, y)3 + aF (x, y) + b for all (x, y) ∈ E.

Let us express the group operation on E additively. It is well-known that the

group-theoretic inverse of a point (x, y) is given by (x,−y) (this follows, for instance,

from the geometric description of the group law on E). Suppose that L : E → E is
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an endomorphism of E as a group variety. The fact that L(−P ) = −L(P ) gives the

relation

L(x,−y) = (F (x,−y), G(x,−y)) = (F (x, y),−G(x, y)) = −L(x, y).

The Weierstrass equation shows that the function field KE is a quadratic extension

of K(x), so we may write F (x, y) = F1(x) + yF2(x) and G(x, y) = G1(x) + yG2(x).

The above relation now shows that F2 = G1 = 0, hence that any endomorphism of

E takes a special form:

L(x, y) = (F (x), yG(x)).

Consider the x-coordinate map:

x : E → P1

[X : Y : Z] 7→


XZ−1 if Z 6= 0,

∞ if Z = 0.

By using x as our quotient map π : E → P1 we can define a large number of interesting

dynamically affine rational functions.

Definition 2.2.2. Let E be an elliptic curve in Weierstrass form, and let L : E → E

be an endomorphism of E of degree > 1. The Lattès rational function `(x) associated

to L is the x-coordinate function of L(x, y) = (`(x), yτ(x)).

E E

P1 P1.

L

x x

`

Figure 2.5: “flexible” Lattès maps.

Lattès maps which are defined using the x-coordinate projection are sometimes

called “flexible” Lattès maps. Indeed the x-coordinate is not the only way to ob-

tain Lattès maps from elliptic curve endomorphisms. The x-coordinate realizes the
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“quotient-by-(−1)” map E → E/{±1} = P1. However, there are two isomorphism

classes of elliptic curves with other automorphisms besides P 7→ −P . For these

other automorphisms one may use (in Weierstrass coordinates) quotient maps given

by y, y2, or x2. These produce other examples of Lattès maps, which are sometimes

called “rigid” Lattès maps, since the isomorphism class of the associated elliptic curve

cannot be deformed without losing the extra automorphisms.

In general, a Lattès map is defined to be any rational function ` : P1 → P1 which

fits into a commuting diagram of the form

E E

P1 P1

A

π π

`

for some elliptic curve E, affine morphism A : E → E, and nonconstant morphism

π : E → P1.

Although we have ignored affine morphisms with nontrivial translation compo-

nents in the case of the multiplicative group, it turns out that all dynamically affine

rational functions are essentially accounted for by the standard families above. Re-

call that two rational functions f and g are said to be conjugate if there exists an

automorphism µ of P1 such that f = µ ◦ g ◦ µ−1.

Theorem 2.2.3. A rational function of degree > 1 is dynamically affine if and only

if it is conjugate to one of the following dynamically affine rational functions:

1. xn, with n ∈ Z\{±1};

2. a signed Chebyshev polynomial ±Tn(x) with n ≥ 2, or

3. a Lattès map `E,A,π(x) for some elliptic curve E, affine morphism A : E → E,

and nonconstant morphism π : E → P1.

We will not prove this theorem, which is standard. Instead we refer the reader
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to the standard reference [Sil07]. We remark here that the third item may be opti-

mized by giving quotient maps π that are “reduced”; in Weierstrass coordinates this

constrains π to be among a finite set (see Lemma 2.2.5).

2.2.2 Ramification of Dynamically Affine Maps

In the next section we will prove a new characterization of dynamically affine

maps in terms of Galois-theoretic conditions (Theorem 2.3.2). In this subsection, we

study the ramification of dynamically affine maps and prove the results that we will

need for the Galois-theoretic characterization.

The following notion is useful.

Definition 2.2.1. A Galois morphism π : D → C of curves is reduced if it has a

totally ramified critical value.

We first show that reduced morphisms between curves of low genus are essentially

determined by their ramification. Recall that the branching divisor Bπ of a noncon-

stant morphism π : D → C is the divisor on C given by Bπ =
∑

Q∈C(deg π − rQ)

where rQ is the size of the fiber of π over Q (counted without multiplicity).

Lemma 2.2.2. Let π : D → C and $ : D′ → C be reduced Galois morphisms. If

gD ≤ 1 and Bπ = B$ then there is an isomorphism ρ : D
∼−→ D′ such that π = $ρ.

Proof. The assumption that Bπ = B$ implies that the same points of C realize

the maximal coefficients of these divisors. As the totally ramified points are the

points with maximal coefficients, this implies π and $ have the same totally ramified

branch points. Comparing coefficients at any such point shows that π and $ have

the same degree. As π and $ are Galois and have the same degree, the equality of

the branching divisors shows that for any point Q in C, the lcm-ramification indices
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επ(Q) and ε$(Q) are equal. This implies that the normal divisors of π and $ are

equal, so from Lemma 2.1.9 we see that gD = gD′ .

Consider the smooth fiber product D ×̃C D′ (Definition 2.1.10). By Abhyankar’s

lemma (2.1.11), both projection maps D ×̃C D′ → D and D ×̃C D′ → D′ are un-

ramified. Let D′′ be an irreducible component of D ×̃C D′, say of genus g. The

Riemann–Hurwitz formula applied to the unramified morphism D′′ → D (of degree

d, say) is

(2.2) 2g − 2 = d(2gD − 2).

If gD = 0 then (2.2) implies that g = 0 and d = 1. The same consideration applies

to D′′ → D′ so the projection maps

D ←− D′′ −→ D′

are isomorphisms. Composing these isomorphisms produces the required isomor-

phism ρ.

If gD = 1 then (2.2) implies that g = 1. Let O and O′ be totally ramified points

of π and $, respectively, and let O′′ be a point of D′′ which maps to both O and O′.

We consider D as an elliptic curve E with basepoint O, and likewise for E ′ and E ′′.

Let Aut(D′′/C) be the set of automorphisms of D′′ over C. Let T be the subgroup

of Aut(D′′/C) generated by Aut(D′′/D) and Aut(D′′/D′), and let D′′/T denote the

quotient of D′′ by T .

The projection map D′′ → D defines an isogeny E ′′ → E by construction, so

Aut(D′′/D) is a subgroup of E ′′ (namely the kernel of this isogeny; see [Sil09,

III.4.10]). This isogeny induces an isomorphism between E ′′/Aut(D′′/D) and E,

showing that it is a Galois morphism of curves. The same consideration applies

verbatim to the projection map D′′ → D′, and it follows that the quotient map
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D′′ → D′′/T factors through D and D′. We obtain the following diagram:

D′′ D′

D D′′/T

C.

$

π

The quotient map D′′ → D′′/T is unramified (every point has |T | preimages), so

by the Riemann–Hurwitz formula the genus of D′′/T is equal to 1. However, the fiber

of π over π(O) contains only O which shows that D → D′′/T is an isomorphism.

The same consideration applies to D′ → D′′/T by looking at O′, and composing the

isomorphisms D → D′′/T ← D′ produces the required isomorphism ρ.

The next lemma gives an explicit description of the ramification of rational func-

tions whose Galois closure has genus zero. For expressing ramification data, it is

convenient to work with multisets. If f : D → C is a nonconstant morphism of

smooth projective curves, and Q is a point of C, we will write Ef (Q) for the multiset

of ramification indices ef (P ) for all points P in the fiber of f over Q. We will denote

multiplicities with exponents, e.g., the multiset {1, 1, 1, 2, 2} is denoted with [13, 22].

We will write Ef for the (disjoint) union of multisets Ef (Q) over all points Q ∈ C.

Lemma 2.2.3. Suppose that f is a rational function of degree n > 60 with a genus

zero Galois closure. Then there are automorphisms µ and τ of P1 such that (µfτ, Ef )

is equal to one of the following:

1. xn, [n] over each of two points,

2. Tn(x), [n] over one point, [12, 2n−1] over a set of two other points,

3. n is even, x
n
2 + x−

n
2 , [n

2
, n

2
] over one point, [2n/2] over each of two other points.
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Proof. Let (N, p) be the Galois closure of f . By applying the Riemann–Hurwitz

formula to the composite morphism π := f ◦ p and using Lemma 2.1.6, we obtain

that

−2 = deg π(−2) +
∑
P∈P1

(eπ(P )− 1) = deg π(−2) +
∑
Q∈P1

(deg π − rπ(P ))(2.3)

= deg π
(
−2 +

∑
Q∈P1

(
1− 1

επ(Q)

))
.

This shows that

(2.4)
∑
Q∈P1

(
1− 1

επ(Q)

)
< 2.

If επ(Q) > 1 then 1 − 1
επ(Q)

≥ 1
2
, so (2.4) shows that π has at most three critical

values.

When there are two critical values we may choose an automorphism µ so that µf

has critical values at 0 and ∞. Since επ(Q) ≤ deg π we have that

−2 = deg π
(
−2 + (1− 1

επ(0)
) + (1− 1

επ(∞)
)
)
≤ deg π

(
− 2

deg π

)
= −2.

It follows that we must have equality, and so επ(0) = επ(∞) = deg π. This implies

that these points are totally ramified for µf . Now we choose an automorphism τ

sending 0 and ∞ to the unique µf -preimages of 0 and ∞, respectively, so that µfτ

has totally ramified fixed points at 0 and ∞. It follows that µfτ = cxn for some

constant c ∈ K×, and we may rescale µ to c−1µ to obtain µfτ = xn.

Now suppose that there are three critical values of f . Let K(x) be the function

field of the Galois closure (N, p) of f so that we have containments K(t) ⊂ K(x) ⊂

K(y) corresponding to the morphisms N p−→ P1 f−→ P1 with f(x) = t and g(y) = x for

some rational function g(y). Let us set a(y) = f(g(y)).

From (2.3) we obtain that

(2.5)
∑
Q∈P1

1
επ(Q)

= 1 + 2
deg π
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which is greater than 1 but less than 1 + 2
60

since deg π ≥ deg f > 60. If every επ(Q)

were greater than two then the left-hand side would be too small, so at least one

lcm-ramification index must be equal to 2. Suppose that one lcm-ramification index

is 2 and the others are greater than 2. Since 1
2

+ 1
4

+ 1
4

= 1 at least one of them is

less than 4 so must be 3, but for any integer s ≥ 6 we have that 1 < 1
2

+ 1
3

+ 1
s
≤ 1,

and so s is either 4 or 5, but then 1
2

+ 1
3

+ 1
s
< 1 which also is a contradiction. We

conclude that the three ramification indices are (2, 2, s) for some integer s, and from

(2.5) we have s = deg π
2

.

We will now show that a(y) is equal to ys + y−s up to composing with automor-

phisms of P1 on either side. By composing with automorphisms we may assume that

amaps 0 and∞ to∞ with ramification index s and that the other critical values are 2

and −2. It follows that a(y) has the form b(y)y−s where b(y) is a polynomial of degree

2s and has nonzero constant term. Since the preimages of 2 have ramification index

2 it follows that b(y) − 2ys = c(y)2 and likewise for −2, so that b(y) + 2ys = d(y)2

for some polynomials c(y) and d(y) of degree s. Putting these together we have

b(y)2 − 4y2s = e(y)2, where e(y) = c(y)d(y). Then 4y2s = (b(y)− e(y))(b(y) + e(y)),

which shows that b(y) − e(y) = uyi and b(y) + e(y) = 4u−1y2s−i for some nonzero

constant u and 0 ≤ i ≤ 2s. This shows that b(y) = u
2
yi + 2

u
y2s−i which has no

constant term, and so i ∈ {0, 2s}. In either case we have b(y) = vy2s + v−1 for some

nonzero constant v which implies a(y) = b(y)y−s = vys + (vys)−1. By precomposing

with the automorphism y 7→ v1/sy we may assume v = 1. We have shown that a(y)

is equal to ys + y−s up to automorphisms.

The Galois group of K(y)/K(t) is generated by the automorphisms y 7→ y−1

and y 7→ ζy for an s-th root of unity in K. The group they generate will be D2s,

the dihedral group of order 2s. Because K(y) is the Galois closure, the elements
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fixing K(x) form a subgroup which cannot contain any normal subgroups. The

only possibilities are either a trivial group or a group of order two generated by an

involution of the form τ : y 7→ ζy−1 for some s-th root of unity in K. In the former

case, g(y) is an automorphism of P1. Since a(y) = f(g(y)) we have that f(x) =

xs+x−s after composing with the functional inverse to g(y) and s = 1
2

deg a = 1
2

deg f .

In the latter case, K(x) is the subfield of K(y) fixed by τ , which must be K(x) =

K(y + ζy−1). The equality of these fields implies there is an automorphism whose

composition with x is equal to y + ζy−1. After precomposing with the functional

inverse to g(y) we have a(y) = ys+y−s = f(y+ζy−1). Upon making the substitution

y =
√
ζw, this becomes a(w) = −ws − w−s = f(w

√
ζ
−1

+
√
ζw−1). By the defining

equation for Chebyshev polynomials (2.1), we have that f(x) = −Ts(x). In this case,

deg a = 2 deg f so that s = n. Thus f(x) is equal to Tn(x) up to composing with

automorphisms.

We now verify the ramification data of these three functions. The rational function

xs + x−s has critical points at 0 and ∞ with ramification degree s. The derivative

vanishes when x is an n-th root of unity and so 2 and −2 are critical values; an n-th

root of unity lies over 2 or −2 according to whether it is an even or odd power of

a primitive n-th root of unity. In either case the ramification degree of any one of

these roots of unity is 2. This verifies the third case. For the power map and the

Chebyshev polynomial, the multiset descriptions follow easily from the description

of their ramification given in §2.2.1.1.

The next proposition proves that any Galois morphism from a genus one curve to

a genus zero curve may be canonically factored into an isogeny and a reduced map.

Proposition 2.2.4. Let E be a genus one curve and let π : E → P1 be a nonconstant

Galois morphism. Let S ⊂ P1 be the subset of points Q such that επ(Q) is maximal.
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There exists a genus one curve E◦ such that π factors as E φ−→ E◦
p−→ P1 where p is

Galois and totally ramified over any Q ∈ S. Moreover, E◦ has the following universal

property: for any genus one curve E ′ such that π factors as E ψ−→ E ′
α−→ P1, there

exists a map ϕ : E ′ → E◦ such that φ = ϕψ and α = pϕ.

E′ E◦

P1

E
ψ

π

ϕ

pα

φ

Proof. Let G be the group of automorphisms of E commuting with π and let ω be a

nonzero regular one-form on E. The canonical map G → K× : σ 7→ ωσ/ω is clearly

independent of the choice of ω. Let G◦ be the kernel of this homomorphism and take

E◦ = E/G◦ with its quotient map φ : E → E◦. Therefore φ is unramified and so

E◦ is genus one by the Riemann–Hurwitz formula. Let q : E◦ → E/G be the map

induced by the inclusion G◦ ⊂ G and let i : E/G ∼−→ P1 be the map induced by π.

We have a factorization iqφ = π.

The quotient G/G◦ is isomorphic to a subgroup of K× so it is a cyclic group; let

σ be a generator. Any lift of σ to G must have a fixed point in E — G◦ was precisely

the fixed-point-free elements of G — and so σ has a fixed point P ∈ E◦K . As P is

fixed by every element of G/G◦ it is a totally ramified critical point of q. Because φ

and i are unramified we have επ(i(P )) = εq(P ) for any P ∈ E◦K . As εq(P ) divides

deg q with equality precisely when P is a fixed point of every element of G/G◦, it

follows that εq(P ) = deg q if and only if i(P ) ∈ S. Then p = iq is totally ramified

over all the points of S.

Now we prove that E◦ has the claimed universal property. Suppose π factors
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through a genus one curve E ′ as E ψ−→ E ′
α−→ P1, π = αψ. We view ψ as an isogeny

of elliptic curves by giving E and E ′ the base-points P and ψ(P ), respectively. It

follows that kerψ — with its natural group structure inherited from (E,P ) — is

isomorphic to Gal(ψ) and its natural translation action on E may be identified with

the action of Gal(ψ) on E. It is well-known that any one-form on E is translation-

invariant so that Gal(ψ) ≤ G◦ and it follows that there exists a map ϕ : E ′ → E◦

such that φ = ϕψ.

Showing that α = pϕ amounts to an easy diagram chase. Let Q ∈ E ′K and

consider a ψ-preimage P of Q. Then

p(ϕ(Q)) = p(φ(P )) = π(P ) = α(ψ(P )) = α(Q).

As Q was arbitrary this shows that α = pϕ.

The next lemma proves that there are only four types of reduced maps, and that

they may be distinguished on the basis of their ramification. When these maps are

used to construct Lattès maps, the degree 2 reduced maps correspond to “flexible”

Lattès maps, while the degree 3, 4, and 6 reduced maps correspond to “rigid” Lattès

maps (see [Sil07, §6]). Accordingly, for the degree 2 reduced map there is no con-

straint on the j-invariant, whereas for the other three cases a specific isomorphism

class of elliptic curves must be utilized in order to realize the reduced map.

Lemma 2.2.5. Let E be a genus one curve with j-invariant j(E) and let p : E → P1

be a reduced morphism. Then (deg p, j(E),Rp,Bp) satisfies one of the rows of the

following table: (for each divisor the points are distinct)
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deg p j(E) Rp Bp
2 − [P1] + [P2] + [P3] + [P4] [Q1] + [Q2] + [Q3] + [Q4]

3 0 2[P1] + 2[P2] + 2[P3] 2[Q1] + 2[Q2] + 2[Q3]

4 1728 [P1] + [P2] + 3[P3] + 3[P4] 2[Q1] + 3[Q2] + 3[Q3]

6 0
[P1] + [P2] + [P3]+

2[P4] + 2[P5] + 5[P6]
3[Q1] + 4[Q2] + 5[Q3]

Proof. The Riemann–Hurwitz formula for p gives the constraint that
∑

Q∈P1(1 −

εp(Q)−1) = 2. The finitely many solutions in the positive integers (εp(Q))Q can

be found in an elementary way: they are (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), and (2, 3, 6).

This suffices to determine the ramification and branching divisors. For instance, for

(2, 3, 6), the degree of p is 6 as p is reduced. It follows that the branching divisor is

Bp = (6− 6
2
)[Q1] + (6− 6

3
)[Q2] + (6− 1)[Q3]

= 3[Q1] + 4[Q2] + 5[Q3].

The other three cases are completely similar.

The next proposition collects the results we will need about the ramification of

rational functions with Galois closure genus one.

Proposition 2.2.6. Let f be a rational function such that f ◦2 has Galois closure

genus one. Suppose that deg f > 24. Let (N, p) be the Galois closure of f : P1 → P1.

Then:

� for any point P , ef (P ) ∈ {1, 2, 3, 4, 6},

� for any Q ∈ P1, there are at most four preimages of Q which have ramification

index 6= εf (Q),
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Proof. Let (N2, p2) denote the Galois closure of f ◦2 : P1 → P1, and let π = f ◦2 ◦ p2.

By Proposition 2.2.4 the morphism π factors as N2
φ−→ E◦

q−→ P1 where q is reduced

and E◦ is a genus one curve. By the Riemann–Hurwitz formula applied to φ, we

have that

0 = 2gN2 − 2 = (deg φ)(2gE◦ − 2) + |Rφ| = |Rφ|,

which shows that φ is unramified.

Let P be any point of P1. By multiplicativity of ramification indices, it follows

that ef (P ) divides εf◦2(f(P )). Let R be any p2-preimage of P . By Lemma 2.1.8 we

see that

εf◦2(f(P )) = eπ(R) = eq(ψ(R)).

Since q is reduced, there are only four possibilities for the degree of q. From

Lemma 2.2.5 we see that deg q ∈ {2, 3, 4, 6}. From the explicit expressions for the

branching divisors it follows that eq(Q) ∈ {1, 2, 3, 4, 6} for any point Q of N2. This

proves the first claim.

We now prove the second claim. First suppose that N is genus zero. Then f is

constrained by Lemma 2.2.3 to one of three possibilities, and in each of them the

claim is immediately verified.

Now suppose that N is genus one. We factor p using Proposition 2.2.4 to obtain

a genus one curve E and a factorization N
ψ−→ E

w−→ P1 where w is reduced. By

the same Riemann–Hurwitz argument as before, ψ is an unramified map. Since p is

Galois, for any point P ∈ P1 the ramification indices ep(R) of points R which are

in the fiber of p over P are all equal (Lemma 2.1.8). Let Q be a point of P1 and

suppose P is an f -preimage of Q such that ef (P ) 6= εf (Q). Let R be any p-preimage
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of P . We have from Lemma 2.1.8 that

εf (Q) = ef◦p(R) = ep(R)ef (P ) = ew◦ψ(R)ef (P ) = ew(ψ(R))ef (P ).

Since ef (P ) 6= εf (Q), this shows that ew(ψ(R)) > 1, hence that w(ψ(R)) = p(R) = P

is a critical value of w. By Lemma 2.2.5, there are at most four critical values of w.

This proves the second claim.

2.3 Lifting

Let f be a power map, a Chebyshev polynomial, or a Lattès rational function.

Although it is not obvious, it turns out that there is almost always a canonical choice

for the group variety G which realizes f . Aside from a few exceptions in low degree,

it turns out that the Galois closure (N, p) of f contains a group variety which realizes

f as a dynamically affine map. This means that there is a morphism F : N → N and

a group variety G ⊂ N with F (G) ⊂ G, such that the diagram

N N

P1 P1

F

p p

f

commutes.

The above diagram has another property which is also special to dynamically

affine maps: this diagram is cartesian in the category of smooth projective curves.

This means that the smooth fiber product P1 ×̃f,p N is isomorphic to N over P1.

The next definition axiomatizes this property to a general morphism f : C → C

and Galois morphism π : D → C. To emphasize the intuition that the left copy of

D → C is the “pullback” of the right copy of D → C, let us write f ∗D for the smooth

fiber product C ×̃f,πD and f ∗π for the projection map f ∗π : f ∗D → C.
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Definition 2.3.1. Let f be a noninvertible endomorphism of a curve C. Let π : D →

C be a (generically) Galois morphism and let F be an endomorphism of D. We say

that f lifts along π to F if f ◦ (f ∗π) is (generically) Galois, and the smooth fiber

product f ∗D is isomorphic to D over C.

D f∗D D

C C.

π

∼

f∗π π

f

Figure 2.6: Lifting f along a Galois morphism π.

In this section we will prove two theorems. The first theorem is a Galois-theoretic

characterization of dynamically affine maps.

Theorem 2.3.2. Let f be a rational function of degree > 60. The following are

equivalent:

� f is dynamically affine;

� the genus of the Galois closure of f ◦r is bounded independently of r.

Our second theorem proves that dynamically affine maps admit liftings to their

Galois closure.

Theorem 2.3.3. Any dynamically affine rational function of degree > 12 lifts along

its Galois closure p : N → P1 to a morphism A : N → N. The étale locus4 of A is a

group variety G ⊂ N, A(G) ⊂ G, and A|G is an affine morphism.

We begin by studying rational functions whose iterates have Galois closure ≤ 1.

Lemma 2.3.4. Let f be a rational function such that the Galois closures of f and

f ◦2 have genus one. Let (E, p) denote the Galois closure of f . Then p is reduced.
4i.e., the largest subset of N on which A is unramified.
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Proof. Consider f as a morphism of genus zero curves C → D where C (resp. D) has

coordinate x (resp. y). Apply Proposition 2.2.4 to the composite map fp : E → D

to get a genus one curve E ′′ and maps φ : E → E ′′, r : E ′′ → D. Next apply

Proposition 2.2.4 to the map p : E → C to get a genus one curve E ′ and maps ψ : E →

E ′, q : E ′ → C. Proposition 2.2.4 guarantees the existence of a map ϕ : E ′ → E ′′

making the diagram commute:

E′ E′′

DC

E
ψ

p

ϕ

rq

f

φ

We regard all function fields as subfields of an algebraic closure of KD. Consider

the subfield F of KE′ which is fixed by both Gal(ϕ) and Gal(q). Then F is a subfield

of KE′′ and KC inside of KE′ . We claim that the intersection L of KE′′) and KC is

KD. Any critical value of r is a critical value of f , and vice versa. As the Galois

closures of f and f ◦2 have genus one, it follows that εf (Q) = εf◦2(Q) for all Q ∈ D.

Let Q be a totally ramified critical value of r and set R = h(Q). Then εf (Q) is

maximal among ramification indices of f — and also f ◦2 — so that εf◦2(R) ≤ εf (Q),

but the reverse inequality clearly also holds so that εf◦2(R) = εf (Q). But then

εf◦2(R) = εf (R) = εr(R) is maximal among ramification indices of r, hence R is a

totally ramified critical value of r. If every totally ramified critical value of r had no

f -unramified f -preimages then we would have εf◦2(R) > εf (R), which would be a

contradiction.

It follows that some totally ramified critical value Q of r has an f -unramified

f -preimage. Then the number of places of L over Q is simultaneously equal to both

one and [L : KD], so L = KD. As KD ⊂ F ⊂ L we conclude F = KD. Hence
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fq is Galois with Galois group generated by Gal(q) and Gal(ϕ) inside of Aut(E ′);

however, E was the Galois closure of f so that ψ must be an isomorphism. Since q

is reduced we conclude p is reduced.

Proposition 2.3.5. Let f be a rational function of degree n > 60. The following

are equivalent:

(a) f ◦r has genus zero Galois closure for every integer r ≥ 1,

(b) f ◦r has genus zero Galois closure for some integer r > 1,

(c) f is conjugate to x±n or ±Tn(x),

(d) there is a reduced map p : P1 → P1 and an affine morphism A : Gm → Gm such

that f ◦ p is Galois, and the diagram

Gm Gm

P1 P1

A

p p

f

commutes.

Proof. Property (d) implies (c) by the classification of dynamically affine maps (The-

orem 2.2.3). We have shown that (c) implies (d) already (in §2.2.1.1) by directly

constructing p and A, however we did not show that f ◦ p is Galois. We show this

now.

Suppose f is conjugate to x±n. There is no loss of generality in assuming that f is

simply equal to x±n. The field extension induced by x±n is K(t)→ K(x) : t 7→ x±n.

For xn (resp. x−n) this realizes K(x) as the splitting field of xn − t ∈ K(t)[x] (resp.

xn− t−1 ∈ K(t)[x]). By assumption, K is characteristic zero so this extension is also

separable. It follows that x±n is Galois and p = id, so f ◦ p = f is Galois.

Now suppose f is conjugate to εTn, ε ∈ {−1, 1}. Again, there is no loss of

generality in assuming that f is simply equal to εTn. Recall the defining equation of
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the Chebyshev polynomials:

(2.6) Tn(x+ x−1) = xn + x−n.

The field extension induced by εTn is K(t)→ K(x) : t 7→ εTn, and we identify K(t)

with its image under this embedding. Consider the quadratic extension K(y) over

K(x) given by adjoining a root of y2− xy+ 1 ∈ K(x)[y]. Using (2.6) we obtain that

εt = Tn(x) = Tn(y+y−1) = yn+y−n, or equivalently that y2n−εtyn+1 = 0. The roots

of this equation in K(y) are y±1ωi, i = 0, . . . , n− 1, where ω is a primitive n-th root

of unity in K. This shows that K(y) is the splitting field of y2n− εtyn + 1 ∈ K(t)[y]

over K(t). It follows that the function field of NεTn is isomorphic to K(y). The

morphism p : NεTn → P1 corresponding to the inclusion K(x)→ K(y) : x 7→ y + y−1

is Galois, and has a totally ramified critical point at 1. We have shown that (c) and

(d) are equivalent.

Clearly (a) implies (b) so we will show that (c) implies (a) and that (b) implies

(c). Assume f satisfies (c). We have shown that f then satisfies (d), which proves

that f has a genus zero Galois closure. However, the set of power maps and (signed)

Chebyshev polynomials is closed under iteration (Proposition 2.2.1), so we have

already shown (a).

Now assume that f satisfies (b). The function field of the Galois closure (Nr, pr)

of the iterate f ◦r contains the function field of the Galois closure of the second iterate

f ◦2 (both function fields considered in the algebraic closure of K(t)). This produces

a canonical map Nr → N2. By the Riemann–Hurwitz formula, the genus of N2 must

be ≤ the genus of Nr, which is zero, and so f ◦2 must also have genus zero Galois

closure. Applying Lemma 2.2.3 to f ◦2 constrains the ramification multi-set of f ◦2 to

one of the following possibilities:
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1. [n2] over each of two points P and Q,

2. [n2] over one point P , [12, 2n
2−1] over a set of two other points {Q,R},

3. [n
2

2
, n

2

2
] over one point, [2n

2/2] over each of two other points.

Case (3) cannot actually occur. Indeed ramification indices are multiplicative over

compositions of dominant maps, so any ramification index for the composite f ◦2 must

be realized as a product of ramification indices from a single case of Lemma 2.2.3.

However the integer n2

2
cannot be realized as a product of two integers taken from

any one of the sets {n}, {n, 1, 2}, or {n
2
, 2}.

It is well-known that the automorphism group of the projective line acts 3-

transitively.5 By replacing f with a conjugate we may thus assume that (P,Q) =

(∞, 0) in case (1) and (P,Q,R) = (∞, 2,−2) in case (2). In the first case, f will

have ramification index n over each point of {0,∞}. In order for f ◦2 to achieve

a ramification index of n2, f must stabilize the set {0,∞}. Let p(x) := f(1/x) if

case (1) is satisfied and f(0) = ∞, and let p(x) := f(x) otherwise. Then in the

first case we have that p(0) = 0, while in either case we have that p(∞) = ∞. By

Lemma 2.2.3 there exist automorphisms µ and ν of P1 such that p equals either

µ ◦ xn ◦ ν or µ ◦ Tn ◦ ν.

Suppose p is µ ◦ xn ◦ ν. There are two critical values of xn and both are fixed

and totally ramified so we are in the first case. Either µ and ν both fix 0 and ∞,

or they both permute 0 and ∞. Hence (µ, ν) = (axε, bxε) for constants a, b ∈ K

and ε ∈ {−1, 1}, so f = cx±n for some constant c ∈ K. If d ∈ K is any solution of

c = d−1∓n, then the automorphism τ(x) = dx satisfies τ ◦ f ◦ τ−1 = x±n.

Suppose p is µ ◦ Tn ◦ ν. The polynomial Tn has only one totally ramified critical

value so we are in the second case. In order for f ◦2 to achieve a ramification index
5i.e., AutP1 acts transitively on {(P,Q,R) : P,Q,R ∈ P1, P,Q,R distinct}.
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of n2 over∞, p (= f) must fix∞ as it is the unique totally ramified critical point of

f and has ramification index n. Then ν must also fix ∞ for ∞ is the unique totally

ramified critical point of Tn, and it follows that µ fixes ∞ also. From the defining

equation (2.6) of the Chebyshev polynomials it is easily determined that the finite

critical values of Tn are precisely {2,−2}. It follows that µ stabilizes {2,−2}. As

we are in the second case, the set of the two unramified pre-images of f over the

set {2,−2} must be {2,−2}, since otherwise the second iterate of f would have a

ramification index of 4. Hence ν stabilizes {2,−2} also. It is easily found that the

only automorphisms of P1 fixing ∞ and stabilizing {2,−2} are {x,−x}. It follows

that f is conjugate to ±Tn(x).

The next proposition is the complement of Proposition 2.3.5 for genus one Galois

closure.

Proposition 2.3.6. Let f be a nonconstant rational function of degree > 12. The

following conditions are equivalent:

(a) f ◦r has genus one Galois closure for every integer r ≥ 1,

(b) f ◦r has genus one Galois closure for some integer r > 1,

(c) f is a Lattès map,

(d) there is a reduced map p : E → P1 and an affine morphism A : E → E such that

f ◦ p is Galois and the diagram

E E

P1 P1

A

p p

f

commutes.

Proof. Condition (a) clearly implies (b). We will show that (b) =⇒ (d) =⇒

(c) =⇒ (a).
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Assume f satisfies (b). Let F : X → Y be any nonconstant morphism of curves

with Galois closure (N, p), and let R be a point in Y . Recall that the ramification

index eF◦p(P ) under F ◦ p of any point P ∈ N such that F (p(P )) = R is equal

to εF (R) (Lemma 2.1.8). It follows by multiplicativity of ramification indices that

ep(P ) = εF (R)/eF (p(P )). Since p is Galois we have that rp(p(P )) = deg p/ep(P ),

and therefore

(2.7) Bp =
∑
Q∈X

(deg p− rp(Q)) =
∑
Q∈X

(deg p)

{
1− eF (Q)

εF (F (Q))

}
[Q].

Let (Ei, pi) be the Galois closure of f ◦i (i = 1, 2) and let Bi be the branching

divisor of pi. Using (2.7) we have that

(2.8) Bi =
∑
Q∈P1

(deg pi)

{
1−

ef◦i(Q)

εf◦i(f ◦i(Q))

}
[Q] for i = 1, 2.

If P is any preimage of f over Q, then ef◦2(P ) = ef (P )ef (Q) divides εf◦2(f ◦2(P )). As

this holds for any preimage P of Q, it follows that εf (Q)ef (Q) divides εf◦2(f ◦2(P ))

also. This shows that

(2.9) εf (Q)ef (Q) = εf (Q)
(ef◦2(P )

ef (P )

)
divides εf◦2(f ◦2(P )) for all P ∈ P1.

Upon multiplying (2.9) on both sides by ef◦2(P )−1 we obtain that

(2.10)
εf (f(P ))

ef (P )
divides

εf◦2(f
◦2(P ))

ef◦2(P )
for all P ∈ P1.

Note that both quantities in (2.10) are integers.

Let us write B1 :=
∑

Q∈P1 aQ[Q], B2 :=
∑

Q∈P1 bQ[Q], and di := deg pi. From (2.8)

we have that

d1

(
1− ef (Q)

εf (f(Q))

)
= aQ,

and by rearranging we obtain

(1− aQd−1
1 )−1 =

εf (f(Q))

ef (Q)
.
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Likewise we get that

(1− bQd−1
2 )−1 =

εf◦2(f
◦2(Q))

ef◦2(Q)
.

From (2.10) we have that

(2.11) (1− aQd−1
1 )−1 divides (1− bQd−1

2 )−1 for all Q ∈ P1

where both quantities in (2.11) are integers. We claim that (2.11) suffices to show

B1 = B2.

For any positive integer r there is a canonical map

ir : Nf◦(r+1) → Nf◦r

coming from the field inclusion of the respective function fields inside the algebraic

closure of K(t). By the Riemann–Hurwitz formula, it follows that Nf◦2 has genus g2

which is ≤ gr = 1. If the Galois closure of f ◦2 were genus zero, then Proposition 2.3.5

would imply that f ◦r would have genus zero Galois closure for r � 0, which is a

contradiction. Hence the genus of Nf◦2 is one. By Proposition 2.2.6, every ramifica-

tion index of f is ≤ 6. If the Galois closure of f were genus zero, then Lemma 2.2.3

implies that f would have some ramification index which is at least deg f/2. As

deg f/2 > 6, this is a contradiction, and so the Galois closure of f is genus one.

It follows from Lemma 2.3.4 that p1 and p2 are reduced morphisms from genus

one curves to genus zero curves. Therefore there are only four possibilities which are

tabulated by Lemma 2.2.5. First consider the case that d2 = 2. By Lemma 2.2.5 we

have that B2 = [Q1] + [Q2] + [Q3] + [Q4] for distinct points Qi. As N1 is reduced,

there are only four possibilities for B1. From (2.11) we have the constraint that

(1− aQid−1
1 )−1 divides (1− bQid−1

2 )−1 = (1− 1
2
)−1 = 2. Considering a as an integer

variable in the equation (1− ad−1
1 )−1 = 2 where d1 ranges over the four possibilities
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{2, 3, 4, 6} of Lemma 2.2.5, we find that d1 = 3 is disallowed (corresponds to the

non-integral solution a = 3/2). The remaining possible cases are

(1− ad−1
1 )−1 = i ⇐⇒



a = 0, i = 1,

a = 1, i = 2, d1 = 2,

a = 2, i = 2, d1 = 4,

a = 3, i = 2, d1 = 6.

A direct case-by-case inspection of the branching divisors in Lemma 2.2.5 shows that

the only possibility is if d1 = 2 and B1 = B2. Similar arguments prove that B1 = B2

for the other three cases of Lemma 2.2.5 when d2 = 3, 4 and 6.

By Lemma 2.2.2 there is an isomorphism ρ : E1
∼−→ E2 such that p1 = p2ρ. As

E1 is the Galois closure of f , there is a map ψ0 : E2 → E1 such that p1ψ0 = fp2.

Set ψ = ψ0ρ. Any nonconstant morphism ψ : E → E of degree > 1 for an elliptic

curve E is an affine morphism. Indeed if O ∈ E is the identity section of E, then

we may postcompose ψ with a translation T to obtain a morphism Tψ such that

(Tψ)(O) = O, and it is well-known that any morphism E → E sending O to O is

automatically a homomorphism of groups, [Sil09, III.4.8]. This shows that f is a

Lattès map for the genus one curve E with affine morphism ψ. This proves that (b)

implies (d).

Assume f satisfies (d). Then f is a Lattès map by definition. By [Sil12, The-

orem 3.26], the Galois closure of any iterate f ◦r is genus one. This shows that (c)

implies (a).

We may now prove Theorem 2.3.2 and Theorem 2.3.3.

Proof of Theorem 2.3.2. For any positive integer r there is a canonical map

ir : Nf◦(r+1) → Nf◦r
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coming from the field inclusion of the respective function fields inside the algebraic

closure ofK(t), and the degree of ir is the degree of the corresponding field extension.

For sufficiently large r the genera on both sides of this map are independent of r,

say equal to g. Applying the Riemann–Hurwitz formula to ir shows that 2g − 2 =

deg ir(2g − 2) + |Rir |. If g > 1 then deg ir = 1, implying that the corresponding

function fields are equal. This cannot happen since the function field of Nf◦r over

K(t) contains the function field corresponding to f ◦r, so its degree over K(t) must

go to infinity.

Hence the genus of the Galois closure of f ◦r is ≤ 1 for all r � 0, and f satisfies

the hypotheses of either Proposition 2.3.5 or Proposition 2.3.6. In either case we see

that f is dynamically affine.

Proof of Theorem 2.3.3. Let f be a dynamically affine rational function of degree n

and let (N, p) denote its Galois closure. We have already shown that dynamically

affine maps fit into commutative diagrams of the form

N N

P1 P1,

A

p p

f

and that N contains a group variety G (G = Gm for power maps and Chebyshev,

G = N for Lattès maps) such that A|G is an affine morphism. In both cases, G is

precisely the étale locus of A, and A(G) ⊂ G.

What remains is to show that this diagram is cartesian. There is no loss of

generality in assuming that f is equal to either x±n, ±Tn(x), or a Lattès map, since

the property of the diagram being cartesian is preserved when f is replaced by a

conjugate of itself.

If f is x±n then p is an isomorphism and the diagram is automatically cartesian.
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In the remaining two cases, we claim that there exists a totally ramified point Q of

p such that f has an unramified preimage over Q. When f is ±Tn(x) the Galois

closure map p is x+x−1 (this was proven in Proposition 2.3.5). The map p has totally

ramified critical values at x = ±2. However the critical points of the nth Chebyshev

polynomial are at x = ∞ and {x + x−1 : x ∈ µ2n\{±1}}. In particular, ±Tn(x) is

unramified at the points ±2. For any ε ∈ {±1} we have that εTn(2) = ε2, showing

that 2 is an unramified preimage of the point Q = ε2 which is totally ramified for p.

Now suppose f is a Lattès map. The proof of Proposition 2.3.6 showed that f and

f ◦2 have Galois closures which are isomorphic over P1. Therefore we have a diagram,

N N N

P1 P1 P1,

F

p

F

p p

f f

in which the left-most morphism p is the Galois closure of f ◦2. By the Riemann–

Hurwitz formula (in the form of Lemma 2.1.9), we have the equalities

(2.12)
∑
Q∈P1

(
1− 1

εf (Q)

)
=
∑
Q∈P1

(
1− 1

εf◦2 (Q)

)
= 0.

However εf (Q) ≤ εf◦2(Q) for any point Q in P1. As the quantity 1− 1
ε
is monotone-

increasing in the variable ε, it follows from (2.12) that we must have equality εf (Q) =

εf◦2(Q) for any point Q in P1.

Suppose that R is a totally ramified critical value of p. Let P be a point of N

such that (f ◦ p)(P ) = R and let Q = f(R). Then

deg p = εf (Q) = εf◦2(Q) = εpF ◦2(Q) = εp(Q),

showing that Q is a totally ramified critical value of p. Since εfp(Q) = εp(Q), we

must have that ef (R) = 1. This proves the existence of a point Q which is a totally

ramified critical value for p such that f has an unramified preimage over it.
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Let us choose coordinates x and t for P1 so that we have the diagram

N N

P1
x P1

t .

F

p p

f

We must show that the smooth fiber product P1
x ×̃f,p N is isomorphic to N over

P1
x. For this it suffices to show that P1

x ×̃f,p N is irreducible. Indeed, the universal

property of the smooth fiber product implies there is a map j : N → P1
x ×̃f,p N such

that the diagram

N

P1
x ×̃f,p N N

P1
x P1

t

F

p

j

p

f

commutes. Once we have shown that P1
x ×̃f,p N is irreducible, then the diagram shows

that the degree of j is 1. This will show that j is an isomorphism of P1
x ×̃f,p N and

N over P1
t . The existence of the isomorphism j will also verify the other condition

for f to lift to p, namely that the composite map

P1
x ×̃f,p N → P1

x

f−→ P1
t

is Galois. Hence to finish the proof we need only show that P1
x ×̃f,p N is irreducible.

It is the same to show that the function fields of P1
x and N are linearly disjoint

over the function field of P1
t . Recall that we have shown the existence of a totally

ramified point Q of p such that f has an unramified preimage P , say, over Q. We

proceed by contradiction. Let K(x) and KN be the function fields of P1
x and N,

resp., considered as subfields of K(t)a. Suppose that K(x) and KN are not linearly

disjoint over K(t). Since p is Galois, the failure of linear disjointness is equivalent

to the existence of a subfield K(t) ⊂ L ⊂ (K(x) ∩KN) which has degree > 1 over
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K(t). Let i : D → P1
t be the curve D and nonconstant morphism i corresponding to

the extension L/K(t). We have that deg i = [L : K(t)] > 1. We obtain the following

diagram:
P1
x ×̃f,p N N

P1
x D

P1
t .

p

f

i

As Q is totally ramified for p, it has a single preimage i−1(Q) under i. Since

deg i > 1, Q is thus a critical value of i. However, by multiplicativity of ramification

indices, the ramification index ei(i−1(Q)), which is greater than 1, must divide ef (P )

which is equal to 1. This contradiction completes the proof.

2.4 Irreducible Pairs

In this section we introduce the notion of an irreducible pair of rational functions.

Let f and g be rational functions over K of degree > 1. Recall that the smooth

fiber product P1 ×̃f,g P1 is defined to be the smooth, possibly disconnected curve

associated to the tensor product of the function fields (Definition 2.1.10).

Let Crs denote the smooth fiber product P1 ×̃f◦r,g◦s P1 of the iterates f ◦r and g◦s.

Definition 2.4.1. If Crs is irreducible for all positive integers r and s, we say that

f and g form an irreducible pair.

Theorem 2.4.2. Let f and g be rational functions of degree > 60. Suppose f and

g form an irreducible pair and that the genus of Crs is bounded independently of r

and s. Then there exist a one-dimensional group variety G and a Galois morphism

π : G→ P1 such that f and g both lift along π to affine morphisms ψ and ϕ of G.
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In particular, it follows that the group variety G and the quotient map π : G→ P1

yield a simultaneous realization for f and g as dynamically affine rational functions.

First we will prove a useful result which lets us bound the genus of the Galois clo-

sures of the rational functions in an irreducible pair when the smooth fiber products

of the iterates have low genus.

Lemma 2.4.3. Suppose C11 is irreducible and has genus g. If deg g � deg f + g

then the Galois closure of f is genus zero or one.

Proof. Using Lemma 2.1.12 shows that

(2.13)
∑
S∈C,

εf (S)>1

∑
Q∈D,
f(Q)=S

∑
R∈E,
g(R)=S

(
ef (Q)− gcd(ef (Q), eg(R))

)
≤ 2(deg f + g).

For any S ∈ C let TS be the subset of points R ∈ g−1(S) such that εf (S) does not

divide eg(R). Then for any R ∈ TS there is a f -preimage Q lying over S such that

ef (Q) does not divide eg(R), and then ef (Q) − gcd(ef (Q), eg(R)) ≥ 1. From (2.13)

it follows that the size of TS is at most 2(deg f + g). Then rg(S) = #TS + #T cS ≤

2(deg f + g) + (deg g)εf (S)−1. Applying the Riemann–Hurwitz formula to g gives

−2 ≥ −2 deg g +
∑
S∈C,

εf (S)>1

(deg g − rg(S))

≥ −2 deg g +
∑
S∈C,

εf (S)>1

(deg g − 2(deg f + g)− (deg g)εf (S)−1)

= (deg g)
{
−2 +

∑
S∈C

(1− εf (S)−1)
}
− 2(deg f + g) ·#{S ∈ C : εf (S) > 1}.

This shows that if deg g � deg f + g then we must have

∑
S∈C

(1− εf (S)−1) ≤ 2.

Using the formula for the genus of the Galois closure (Lemma 2.1.9) shows that

gNf ≤ 1.



66

We are ready to prove Theorem 2.4.2.

Proof of Theorem 2.4.2. We will prove that f and g have the same Galois closure

N (up to isomorphism), and that f and g lift along their common Galois closure

morphism p : N → P1 to endomorphisms ψ and ϕ of N. Then we will show that

N contains an open group variety G such that ψ(G) ⊂ G and ϕ(G) ⊂ G, and the

restrictions of ψ and ϕ to G are affine morphisms.

By Lemma 2.4.3 the genus of the Galois closure of the iterate f ◦r : P1 → P1 is

≤ 1 for sufficiently large r. The Galois-theoretic classification of dynamically affine

maps (Theorem 2.3.2) implies f is dynamically affine, and the same consideration

holds for g. Let (Nf , pf ) (resp. (Ng, pg)) denote the Galois closure of f (resp. g).

Theorem 2.3.3 implies that f lifts along pf and g lifts along pg.

We now show that Nf and Ng are isomorphic over P1. First we prove that f and

g have similar ramification. Precisely, we will prove that for any point Q ∈ P1 either

1. Q is a totally ramified critical value of f and g, or

2. εf (Q) = εg(Q).6

Let C denote the smooth fiber product P1 ×̃f,g P1, and let π and $ denote the

projection maps:
C P1

P1 P1.

$

π g

f

To prove the first claim, suppose Q is a totally ramified critical value of f which

is not a totally ramified critical value of g. From this assumption we will derive a

contradiction. As g is dynamically affine, its ramification indices at points which are

not totally ramified are bounded from above by 6. Indeed, when g is conjugate to a

power map xn or a Chebyshev polynomial ±Tn(x) then this follows from the explicit
6Recall that εf (Q) is defined to be the least common multiple of the set {ef (P ) : f(P ) = Q}.



67

description of the ramification in §2.2.1.1. Suppose g is a Lattès map. We have

already seen that g lifts to an endomorphism ψ : Ng → Ng, and that Ng is reduced

(Theorem 2.3.3 and Proposition 2.3.6). As g has degree > 60, the Galois closure Ng

is genus one by Proposition 2.3.6. By the Riemann–Hurwitz formula applied to ψ,

we see that

2gNg − 2 = (degψ)(2gNg − 2) + |Rψ|,

which shows that |Rψ| = 0, i.e., ψ is unramified. Therefore for any point P in P1 we

have that

eg(P ) ≤ εg(g(P )) = εg◦pg(g(P )) = εpg◦ψ(g(P )) = εpg(g(P )).

By Lemma 2.2.5 we see that εpg(Q) is ≤ 6 for any point Q ∈ P1. This proves that

the ramification indices of g are ≤ 6. It follows that rg(Q) ≥ 6−1 deg g.

Suppose P is a point of C such that g($(P )) = Q. Since g($(P )) = f(π(P )), we

see that

e$(P ) =
eπ(P )ef (π(P ))

eg($(P ))
≥ eπ(P )(deg f)

6
≥ 1

6
deg f.

As this lower bound holds for any point P lying over $(P ), this shows that

r$($(P )) = #F$($(P )) ≤ (deg$)(1
6

deg f)−1 = 6.
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Applying the Riemann–Hurwitz formula to $ obtains

2gC − 2 = (2gP1 − 2) deg$ +
∑
P∈C

(e$(P )− 1)

= (−2) deg f +
∑
R∈P1

(deg$ − r$(R))

≥ −2 deg f +
∑
R∈P1

(deg f − 6)

≥ −2 deg f +
∑

R∈g−1(Q)

(deg f − 6)

≥ −2 deg f + (1
6

deg g)(deg f − 6)

= (deg f)(1
6

deg g − 2)− deg g

≥ (60)(1
6
60− 2)− 60 = 420.

The right-hand side is positive but this would imply gC > 1, a contradiction. This

proves the first claim.

We also prove the second claim by contradiction. Suppose that a point R ∈ P1

is not a totally ramified critical value of either f or g, and that εf (R) 6= εg(R). Set

r := εf (R) and s := εg(R). By switching f and g if necessary, we may assume that

r > s.

By the description of the ramification in Lemma 2.2.3 and Proposition 2.2.6, εf (R)

is less than or equal to 6, and all but at most 4 f -preimages of R have ramification

index equal to εf (R). Let P be an f -preimage of R. If ef (P ) 6= r then it is a proper

divisor of r, hence no greater than r/2. It follows that the sum of ef (P ) over {P ∈

Ff (R) : ef (P ) 6= r} is at most 4(r/2) = 2r. The sum of ef (P ) over Ff (R) is equal to

deg f (Lemma 2.1.6), so the sum of ef (P ) over {P ∈ Ff (R) : ef (P ) = r} is at least

deg f − 2r. Therefore, the number of points in the subset {P ∈ Ff (R) : ef (P ) = r}

is at least 1
r
(deg f − 2r).



69

With the help of Lemma 2.1.12 we get that

(2.14) 2gC − 2 = −2 deg f +
∑

(P,Q)∈F

(
ef (P )− gcd(ef (P ), eg(Q))

)
,

where F = {(P,Q) ∈ P1 × P1 : f(P ) = g(Q)}. Let Q be any g-preimage of R. Then

for any f -preimage P of R we have that (P,Q) ∈ F , so the sum in (2.14) is greater

than or equal to

∑
Q∈Fg(R)

∑
P∈Ff (R)

(
ef (P )− gcd(ef (P ), eg(Q))

)
≥

∑
Q∈Fg(R)

∑
P∈Ff (R),
ef (P )=r

(
ef (P )− gcd(ef (P ), eg(Q))

)

≥
∑

Q∈Fg(R)

1
r
(deg f − 2r)

(
r − gcd(r, eg(Q))

)
≥

∑
Q∈Fg(R)

1
r
(deg f − 2r)

(
r − gcd(r, s)

)
.

There are at least 1
s

deg g points in Fg(R), so we get that

∑
(P,Q)∈F

(
ef (P )− gcd(ef (P ), eg(Q))

)
≥ (1

s
deg g)1

r
(deg f − 2r)

(
r − gcd(r, s)

)
.

Since r > s, we have that gcd(r, s) ≥ r/2. Recall that r ≤ 6, and since s < r, the

next largest possibility for s is 4 (Proposition 2.2.6). Therefore

∑
(P,Q)∈F

(
ef (P )− gcd(ef (P ), eg(Q))

)
≥ (1

s
deg g)1

r
(deg f − 2r)( r

2
)

≥ (1
s

deg g)1
2
(deg f − 2r)

≥ (1
4

deg g)1
2
(deg f − 12)

= (1
8

deg g)(deg f − 12).
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Returning to (2.14) we see that

2gC − 2 = −2 deg f +
∑

(P,Q)∈F

(
ef (P )− gcd(ef (P ), eg(Q))

)
≥ −2 deg f + (1

8
deg g)(deg f − 12)

≥ −2 deg f + 15
2

(deg f − 12)

= 11
2

deg f − 90 ≥ 11
2

60− 90 = 240 > 0.

This would show that gC > 1, a contradiction. This proves the second claim.

Now we will use this description of the ramification of f and g to show that Nf

and Ng are isomorphic over P1, i.e, there is an isomorphism ρ : Nf
∼−→ Ng such that

pgρ = pf .

We have already shown that f and g are dynamically affine. In particular, f

and g are conjugate to either a power map, a Chebyshev polynomial, or a Lattès

map. We will show that f and g are simultaneously conjugate to functions with

the same Galois closure. This will show that f and g also have the same Galois

closure. Suppose that µ is an automorphism of P1 such that µfµ−1 is either a power

map, a Chebyshev polynomial, or a Lattès map, and let us write h = µgµ−1. The

description of the ramification of dynamically affine maps in Proposition 2.3.5 and

Proposition 2.3.6 shows that g has at most three totally ramified critical values,

hence the same is true of h.

If h has two totally ramified critical values then h is equal to cxn for some c ∈ K×

and n ∈ Z\{0}. Maps of the form cxn (as above) are automatically Galois, so this

shows that f and g are both Galois, hence Nf = Ng and we may take ρ = id in this

case. Then µfµ−1 and h have the same étale closure, namely Gm, and they are both

affine morphisms. This proves the theorem when h has two totally ramified critical

values.
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Suppose h has a single totally ramified critical value. Then this must also be

the case with µfµ−1, and so µfµ−1 must be ±Tm for some positive integer m. As

h and ±Tm each have a single totally ramified critical value at infinity, and h is

itself conjugate to a dynamically affine map, h is equal to a polynomial of the form

µ ◦ (±Tn) ◦ µ−1 for some µ(x) = ax + b, a ∈ K×, b ∈ K, and positive integer n.

We make use of the description of ramification of Chebyshev polynomials in §2.2.1.1

to determine the possibilities for µ. Since the critical values of ±Tm are at {±2},

and these are not totally ramified critical values, the critical values of h are also at

{±2}. Then µ must stabilize the set {±2} since {±2} is the set of critical values for

±Tn. There are two possibilities depending on whether µ acts trivially on this set

or not: we have either µ = x or −x. In either case, we see that µfµ−1 = ±Tn and

µgµ−1 = ±Tm. All Chebyshev maps of degree > 2 have the same Galois closure (this

was shown in the proof of Proposition 2.3.5), so this shows that f and g have the

same Galois closure if h has a single totally ramified critical value. Hence Nf = Ng

and we may take ρ = id in this case also. By Theorem 2.3.3 both f and g lift to

morphisms ψ and ϕ of Nf . Up to a simultaneous conjugation, ψ and ϕ are both

power maps, which shows that their étale loci are both equal to Gm. This proves the

theorem when h has a single totally ramified critical value.

If h has no totally ramified critical values then f and g are Lattès maps by

the classification of dynamically affine rational functions (Theorem 2.2.3). We have

shown that any Lattès map of degree > 12 has a reduced realization given by its

Galois closure (Proposition 2.3.6):

Nf Nf

P1 P1.

pf pf

f

As Nf has genus one, the map Nf → Nf is unramified by the Riemann–Hurwitz
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formula. Recall that if P is a point in the Galois closureNf , then under the composite

map fpf it has ramification index εf (Q) where Q = f(pf (P )). It follows from

commutativity of the diagram that εpf (Q) = εf (Q) for any Q ∈ P1. The same

consideration for g now shows that

εpf (Q) = εf (Q) = εg(Q) = εpg(Q).

As pf and pg are both reduced, comparing ramification at any totally ramified critical

value shows that pf and pg have the same degree, and it follows that they have

the same branching divisors also. Applying Lemma 2.2.2 obtains an isomorphism

ρ : Nf
∼−→ Ng such that pf = pgρ, as required. Since f and g are dynamically affine,

Theorem 2.3.3 shows that such maps lift to endomorphisms ψ and ϕ of their Galois

closure. The ramification loci of ψ and ϕ are empty, so they are equal, and any

endomorphism of degree > 1 of an elliptic curve is automatically an affine morphism,

[Sil09, III.4.8]. This concludes the proof of Theorem 2.4.2.

2.5 Proofs of Main Theorems

In this section we prove the main theorems of this chapter: Theorem 1.2.1 and

Theorem 1.2.3.

2.5.1 Proof of Theorem 1.2.3

We recall the statement of Theorem 1.2.3.

Theorem (Theorem 1.2.3). Let C be a curve of positive genus and let f and g be

endomorphisms of C of degree greater than one. Then there exist orbits of f and g

with infinite intersection if and only if f and g have a common iterate.

For the proof we will need a theorem of Lang.
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Theorem 2.5.1 ([Lan60], p. 320). Let Γ be a subgroup of finite type of K×. Then

the curve ax + by = 1 with a, b ∈ K and ab 6= 0 has only a finite number of points

with x, y ∈ Γ.

Proof of Theorem 1.2.3. The Riemann–Hurwitz formula for f shows that

2gC − 2 = (deg f)(2gC − 2) + |Rf |.

If gC > 1 then both sides are positive, which can only occur if |Rf | = 0 and deg f = 1.

As we have assumed f has degree > 1, this cannot occur. Hence we are reduced to

the case when gC = 1.

Because f is not a degree one map it has a fixed point O. Let E be the elliptic

curve (C,O) and let EndE denote the set of endomorphisms of C to itself which

send O to O; EndE is a commutative ring. We have that f(X) = r(X) and g(X) =

s(X)+Q for some r, s ∈ EndE and Q ∈ E. Because deg s = deg g the endomorphism

s − 1 is nonconstant and thus surjective; suppose (s − 1)(R) = Q. Then for any

positive integer b we have

g◦b(X) = sb(X) + (1 + s+ · · ·+ sb−1)(Q) = sb(X) + (sb − 1)(R).

Thus for any positive integers a and b, the condition that f ◦a = g◦b is equivalent

to the conditions that ra = sb and (sb − 1)(R) = O. Pick orbits of f and g having

infinite intersection, and let P be any point in the intersection; then the orbits Of (P )

and Og(P ) also have infinite intersection, so there are infinitely many pairs (a, b) of

positive integers such that ra(P ) = sb(P ) + (sb − 1)(R). Let (c, d) be another such

pair of positive integers. Then

(2.15) (ra − sb)(P ) = (sb − 1)(R)
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and

(2.16) (rc − sd)(P ) = (sd − 1)(R).

Apply sd − 1 to (2.15) and sb − 1 to (2.16) to obtain (sd − 1)(ra − sb)(P ) = (sb −

1)(rc − sd)(P ). As P cannot be a torsion point we must have (sd − 1)(ra − sb) =

(sb − 1)(rc − sd), or equivalently

(2.17) (1− sb)ra + (rc − 1)sb = rc − sd.

Embed EndE as a subring of C and let R ∈ C (resp. S ∈ C) correspond to r (resp.

s). We see from (2.17) that if Rc 6= Sd then the equation(
1− Sb

Rc − Sd

)
X +

(
Rc − 1

Rc − Sd

)
Y = 1

has infinitely many solutions in the multiplicative subgroup Γ ⊂ C× generated by R

and S, but this is a contradiction by the theorem of Lang (Theorem 2.5.1). We see

that Rc = Sd, which implies that rc = sd. By (2.16) one has (sd−1)(R) = O so that

f c = gd. This concludes the proof of Theorem 1.2.3.

2.5.2 Lifting Lemma

Let f and g be endomorphisms of degree > 1 of a curve C and let π : D → C be a

(generically) Galois morphism. Recall we say that f lifts along π to an endomorphism

F of D if f ◦ (f ∗π) is (generically) Galois, and the diagram

D D

C C

F

π π

f

is cartesian, i.e., that the smooth fiber product C ×̃f,πD is isomorphic to D over C.

Suppose that f and g both lift along π to endomorphisms F and G of D. We now

prove a result which lets us lift orbits of f and g with infinite intersection to orbits
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of F and G with infinite intersection. This lets us reduce the proof of Theorem 2.5.1

to Theorem 1.2.3, once we have shown the existence of a lifting for f and g.

Lemma 2.5.1. Suppose that f and g both lift along π to endomorphisms F and G of

D. If there are c, d ∈ C such that Of (c)∩Og(d) is infinite then there exist a ∈ π−1(c)

and b ∈ π−1(d) such that OF (a) ∩ OG(b) is infinite.

Proof. Let S ⊂ N×N be an infinite subset such that f ◦r(c) = g◦s(d) for any (r, s) ∈ S.

Choose a ∈ π−1(c) and b ∈ π−1(d) arbitrarily. As the orbit of c contains an infinite

set, it is itself infinite, so it must be disjoint from the set of preperiodic points for

f in C. The same consideration holds for Og(d), and also OF (a) and OG(b) since π

maps F -preperiodic points into f -preperiodic points, and likewise for G.

For any (r, s) ∈ S we have that πF ◦r(a) = πG◦s(b) so that F ◦r(a) · u = G◦s(b) for

some u ∈ Galπ (depending on r and s). Let Su := {(r, s) ∈ S : F ◦r(a) · u = G◦s(b)}

so that S =
⋃
u∈Galπ Su; as S is infinite one of the Su must be infinite also.

We claim that F is Galπ-equivariant. Once we have shown this we are done, since

then F ◦r(a) · u = F ◦r(a · u), showing that F ◦r(a · u) = G◦s(b) for any (r, s) ∈ Su,

which implies that OF (a · u) ∩ OG(b) is infinite since neither of these orbits contain

any preperiodic points.

Let L denote the function field of C over K, and let La be an algebraic closure of

L. From the assumption that f lifts along π, we have a cartesian diagram:

D D

C C.

F

π π

f

There are unique subfields L′,M,M ′ of La corresponding to the diagram above, say

M ′ M

L′ L,
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where arrows denote inclusions. Let us choose a generator α for M over L, so that

M = L(α). Since the diagram is cartesian, M and L′ are linearly disjoint over

L, and M ′ is equal to the compositum of M and L′ inside of La. It follows that

M ′ = L′ ⊗LM = L′ ⊗L L(α) = L′(α).

As M/L is Galois, linear disjointness of M and L′ implies that M ∩ L′ = L.

Therefore restriction, σ 7→ σ|M , gives an isomorphism between the Galois groups of

M ′/L′ and M/L (cf. e.g., [Lan02, (1.12)]). This means that for any automorphism

σ ∈ Gal(M ′/L′), we have a commuting diagram

(2.18)
M ′ M

M ′ M.

σ σ|M

There is a canonical isomorphism between ρ : Galπ → Gal(M/L) given by

ρ(u)ψ = ψ ◦ u−1 for ψ ∈ KD.

It follows that for any σ ∈ Gal(M/L) there is a unique u ∈ Galπ such that σα = α◦

u−1. There is an isomorphism ρ′ : Galπ → Gal(M ′/L′) which is defined in the same

way as ρ, and since restriction σ 7→ σ|M defines an isomorphism between Gal(M ′/L′)

and Gal(M/L), it follows that for any σ ∈ Gal(M ′/L′) such that ρ(u) = σ, we have

that

(σ|M)α = α ◦ u−1 = ρ(u)α.

From this it follows that the diagram of curves which corresponds to (2.18) is given

by
D D

D D.

F

u

F

u

This shows that F is Galπ-equivariant as was to be shown.
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2.5.3 Proof of Theorem 1.2.1

We recall the statement of Theorem 1.2.1.

Theorem (Theorem 1.2.1). For rational functions f, g of coprime degree and degree

greater than one, the orbits Of (c) and Og(d) have finite intersection for any c, d ∈ K.

Proof. Let K(t) be the function field of P1. Let K(x), K(y) ⊂ K(t)a be the field

extensions of K(t) corresponding to the morphisms f and g, i.e., x, y ∈ K(t)a and we

have that f(x) = g(y) = t. As the degrees of f and g are coprime, the field extensions

K(x)/K(t) andK(y)/K(t) have coprime degree, hence are linearly disjoint. It follows

that K(x)⊗K(t)K(y) is a field, and so the smooth fiber product P1 ×̃f,g P1 is a curve

(irreducible). The same consideration holds for P1 ×̃f◦r,g◦s P1, and it follows that f

and g form an irreducible pair. Theorem 1.2.1 therefore follows from Theorem 2.5.1.

Theorem 2.5.1. Suppose that f and g form an irreducible pair. Then the orbits

Of (c) and Og(d) have finite intersection for any elements c, d of K.

Proof. Suppose to the contrary that the intersection Of (c)∩Og(d) is infinite for some

c, d ∈ K. Let K0 ⊂ K be the field generated over Q by c, d, and the coefficients of f

and g. Consider the (possibly singular) curve C ′ over K0 defined by the numerator of

the bivariate rational function f(x)− g(y) and let π : C → C ′ be its normalization.7

By hypothesis there is an infinite subset S ⊂ N>0 × N>0 such that f ◦m(c) = g◦n(d)

for any (m,n) ∈ S. This establishes a map of sets

S → C ′(K0)

(m,n) 7→ (f ◦(m−1)(c), g◦(n−1)(d)).

7i.e., C is smooth and π induces an isomorphism between the function fields of C and C′.
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This map is injective as the orbits of c and d are necessarily infinite, so C ′ has

infinitely many points defined over K0. As π is a birational isomorphism, it induces

an isomorphism on a nonempty open subset, i.e., for some nonempty open subsets

U ⊂ C and U ′ ⊂ C ′ we have π|U : U
∼−→ U ′. As the complement of U ′ in C ′ is finite,

we see that U ′(K0) is infinite, and so U(K0) is infinite also. We conclude that C has

infinitely many points defined overK0. By applying Faltings’s theorem as generalized

to finitely generated fields, [Fal84, Theorem 3], we see that the genus of C is zero or

one.

For any positive integers r and s, we have that Of (c) = ∪r−1
i=0Of◦r(f ◦i(c)). There-

fore if Of (c) and Og(d) have infinite intersection, then for some positive integers i

and j, the orbits Of◦r(f ◦i(c)) and Og◦s(g◦j(d)) have infinite intersection also. The

pair (f ◦r, g◦s) is clearly still irreducible, so we may again apply Faltings’s theorem

just as above to conclude that the genus of Crs is zero or one for any positive integers

r and s.

By Theorem 2.4.2, there exist a curve N and a Galois morphism π : N → P1 such

that f and g both lift along π to endomorphisms F and G of N. By Lemma 2.5.1

there are orbits of F and G with infinite intersection. If gN > 0 then Theorem 1.2.3

implies that F and G have a common iterate. It follows that f and g then have

a common iterate also, i.e., f ◦r = g◦s for some positive integers r and s. By the

universal property of the smooth fiber product we obtain a morphism j : P1 → Crs

such that the diagram
P1

Crs P1

P1 P1

=

=

j

g◦s

f◦r
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commutes. As Crs is irreducible, the degree of the composite P1 j−→ Crs → P1 is

(deg j)(deg g)s but this cannot equal one, so we have obtained a contradiction in the

case that gN = 1.

Suppose that gN = 0. By Theorem 2.4.2, f and g lift along π : N → P1 to affine

morphisms ψ and ϕ of an open group variety G ⊂ N. As ψ and ϕ both have degree

> 1 (since f and g were assumed to have degree > 1), G cannot be isomorphic to the

additive group, so it is isomorphic to Gm (there are no twists since K is algebraically

closed). Therefore ψ and ϕ are simultaneously conjugate to affine morphisms of Gm.

It follows that ψ◦2 and ϕ◦2 are simultaneously conjugate to polynomials (note that

(cxn)◦2 is a polynomial). By Lemma 2.5.1 there are orbits of ψ and ϕ with infinite

intersection, and it follows that ψ◦2 and ϕ◦2 also have orbits with infinite intersection.

It follows that ψ◦2 and ϕ◦2 are simultaneously conjugate to polynomials S and T

which have orbits with infinite intersection. We have thus reduced the problem to

the main theorem of a paper of Ghioca-Tucker-Zieve, [GTZ12], which asserts that S

and T have a common iterate. It follows that ψ◦2 and ϕ◦2 have a common iterate,

hence that ψ and ϕ have a common iterate, and finally that f and g have a common

iterate. This concludes the proof of Theorem 2.5.1.



CHAPTER III

Polynomials with Integral Divided Differences

This chapter studies functions with integral divided differences. We prove the

following characterization of polynomial functions whose mth divided difference is

integer-valued. Let K be an algebraic number field of degree d with ring of integers

O.

Theorem (Theorem 1.3.1). Let s : N→ K. Suppose that1

(i) δms is O-valued, and

(ii) for each embedding σ : K → C, |σs(n)| � θnσ for some positive number θσ and

∏
σ:K→C

(1 + θσ) < ed
(

1+
1
2

+···+ 1
m

)
.

Then s(n) is a polynomial in n.

Along the way to proving Theorem 1.3.1 we prove two other results, one local and

one global. Both results concern the following elementary number-theoretic function:

τm,p(n) := max
S⊂{1,...,n},

#S=m

wp
{∏
k∈S

k
}
.

In other words, τm,p(n) is the maximal p-adic valuation of a product of m distinct

positive integers that are ≤ n. We will prove the following new results concerning

δms and τm,p.
1We write rn � qn to mean there is a positive constant C such that |rn| ≤ C|qn| for all n ≥ 0.

80
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Theorem 3.0.1. Let s : N → Cp. Let ‖δms‖p denote the supremum of δms over

Nm+1\∪i<j {ni = nj}. Let c(n) denote the nth finite difference of s (cf. (3.3)). Then

(3.1) ‖δms‖p = sup
n≥m
|c(n)|ppτm,p(n).

Theorem 3.0.2.

∏
p prime

pτm,p(n) = exp
{(

1 + 1
2

+ · · ·+ 1
m

)
n+O(n exp{−α(log n)1/2} log n)

}
for some positive constant α.

These theorems are proved in §3.1 and §3.2.

Notation: A place v of K is an equivalence class of isometric embeddings σ : K →

Cp with p ∈ {2, 3, 5, . . . ,∞} where Cp is the completion of an algebraic closure of

the p-adic field Qp and C∞ := C. MK denotes the set of all places of K. dv denotes

the local degree at v. |x|v := |σ(x)|p is the norm corresponding to a place v and a

representative embedding σ, and wp is the (additive) p-adic valuation. [ · ] denotes

the floor function and Hm = 1 + 1
2

+ · · ·+ 1
m

is the mth harmonic number, H0 := 0.

ϑ(n) :=
∑

p≤n log p is the Chebyshev function and π(n) equals the number of rational

primes ≤ n.

3.1 Divided Differences

In this section p always denotes a finite rational prime. The results of this section

are in the local setting so we often omit the subscript p from norms for brevity. The

goal of this section is to prove Theorem 3.0.1. In §3.3 we will combine the local

estimates (3.1) using the product formula to obtain a condition for the Archimedean

growth of the finite differences of a sequence whose mth divided difference is integral.

Let us briefly recall some necessary background from difference calculus. Let

s : N → K be a sequence and let m be a non-negative integer. The mth divided
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difference of s is the function δms : Xm → K given by

(3.2) δms(n0, . . . , nm) :=
m∑
i=0

{∏
j 6=i

(ni − nj)−1
}
s(ni)

where

Xm := {(n0, . . . , nm) ∈ Nm+1 : ni all distinct}.

We mention without proof that the sequence s can be reconstructed using values of

its divided differences by means of Newton’s interpolation formula (cf. [MT51], §1).

The nth finite difference of s is defined by2

(3.3) c(n) :=
n∑
k=0

(
n

k

)
(−1)n−ks(k).

Recall the following classical result of difference calculus. We only sketch a proof.

Lemma 3.1.1. Let s : N → K be a sequence and let c : N → K be its sequence of

finite differences. Then s is polynomial if and only if c is eventually zero.

Proof. Let S be the forward shift operator on sequences defined by (Ss)(n) := s(n+1)

for all non-negative integers n. Then for any non-negative integer `,

{(S − id)ns}(`) =
n∑
k=0

(
n

k

)
(−1)n−ks(`+ k),

and in particular, {(S − id)ns}(0) = c(n). We have that (S − id)(nd) = dnd−1 +

O(nd−2), and so the restriction of S − id to the space of polynomial sequences is

nilpotent. This shows that c is eventually zero if s is polynomial.

Conversely, assume that c is eventually zero. It is easy to verify that the inverse

relation of (3.3) is given by

(3.4) s(n) =
n∑
k=0

(
n

k

)
c(k),

2Strictly speaking, this is the sequence obtained by evaluating the finite differences of s at zero. We will not have
use for the usual finite differences, so we refer to the sequence defined by (3.3) as the finite differences of s for the
sake of brevity.
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and this shows that s is given by a polynomial of degree ≤ N if c(n) = 0 for

n > N .

Let m be a non-negative integer and p a prime. Let E be a non-Archimedean

Banach space over Cp and let `∞p (Nm+1, E) denote the Banach space of bounded

functions F : Nm+1 → E equipped with the norm given by

‖F‖ := sup
n∈Nm+1

‖F (n)‖ .

Define x = (x0, . . . , xm), j = (j0, . . . , jm), and(
x

j

)
:=

(
x0

j0

)(
x1

j1

)
· · ·
(
xm
jm

)
∈ Z[x0, . . . , xm].

The following proposition generalizes Mahler’s theorem to bounded functions (cf.

(1.5)).

Proposition 3.1.2. Let F : Nm+1 → E. There exist unique Cj ∈ E such that for all

n ∈ Nm+1

(3.5) F (n) =
∑

j∈Nm+1

Cj

(
n

j

)
(finite sum).

The Mahler coefficients C have the properties that

(i) F is bounded if and only if C is bounded,

(ii) the mapping F 7→ C is a self-isometry of `∞p (Nm+1, E), and

(iii) F extends to a continuous function Zm+1
p → E if and only if C goes to zero.3

Note that the proposition does not imply that the
(
n
j

)
form an orthonormal basis

for `∞p (Nm+1, E) as the sum
∑

j∈Nm+1 Cj
(
x
j

)
does not necessarily converge.

3i.e., lim
N→∞

sup
j0+···+jm>N

∥∥∥Cj∥∥∥ = 0.
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Proof. We proceed by induction on m. If m = 0 then we take Cn to be the nth finite

difference of F given by Cn :=
∑n

k=0

(
n
k

)
(−1)n−kF (k). The inverse relation is given

by (3.4) which proves existence for (3.5), and uniqueness follows from bijectivity of

this mapping. If F is bounded then C is bounded by the ultrametric inequality and

vice versa. To see that F 7→ C is an isometry when F is bounded it suffices to

observe that the relation (3.3) and its inverse (3.4) are both defined over Z and to

apply the ultrametric inequality. The third property is Mahler’s theorem [Mah58].

Now suppose m is a positive integer. Fix a natural number nm and define the

function

Gnm : Nm → E

(n0, . . . , nm−1) 7→ F (n0, . . . , nm−1, nm).

By the inductive hypothesis there are uniquely defined coefficients Di = Di(nm) ∈ E

for i ∈ Nm such that for all (n0, . . . , nm−1) ∈ Nm

F (n0, . . . , nm−1, nm) =
∑
i∈Nm

Di(nm)

(
n0

i0

)(
n1

i1

)
· · ·
(
nm−1

im−1

)
.

We may also express Di(nm) as a function of nm in terms of its finite differences,

cn(i) ∈ E, to obtain

(3.6) F (n0, . . . , nm−1, nm) =
∑
i∈Nm

∑
k≥0

ck(i)

(
nm
k

)(
n0

i0

)(
n1

i1

)
· · ·
(
nm−1

im−1

)
.

Setting Cj0,...,jm := cjm(j0, . . . , jm−1) proves (3.5), and uniqueness follows from that

of ck(i) and Di(nm).

If F is bounded then Gnm is bounded for all nm ∈ N, and by the inductive

hypothesis ‖Gnm‖ = ‖D(nm)‖. Similarly, supnm∈N |Di(nm)| = supnm∈N |ck(i)| for all

i ∈ Nm. This proves that C is bounded. If C is bounded then, by means of the

ultrametric inequality, (3.5) shows that F is bounded.
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If F is bounded we observe that

‖F‖ = sup
nm∈N

sup
i∈Nm
|F (n0, . . . , nm−1, nm)| = sup

nm∈N
‖Gnm‖ = sup

nm∈N
‖D(nm)‖

= sup
i∈Nm

sup
nm∈N

|Di(nm)|

= sup
i∈Nm

sup
nm∈N

|ck(i)| = ‖C‖ .

This proves that F 7→ C is a self-isometry of `∞p (Nm+1, E). If F extends to a

continuous function Zm+1
p → E then by Corollaire 1, §2.7, [Ami64], the coefficients

C go to zero.

We can now prove that the p-adic supremum of higher divided differences is given

by the p-adic supremum of the finite differences relative to p−τm,p(n). As before, let

τm,p(n) := max
0<i1<···<im≤n

(wp(i1) + · · ·+ wp(im)).

We recall that the finite differences of a function s are defined by

c(n) :=
n∑
k=0

(
n

k

)
(−1)n−ks(k) (n ∈ N).

Theorem (Theorem 3.0.1). Let s : N→ Cp. Then

(3.7) ‖δms‖p = sup
n≥m
|c(n)|ppτm,p(n).

In particular, if δms(n) is integral for all n ∈ Xm then |c(n)|p ≤ p−τm,p(n) for all

n ≥ m.

We will show that (3.7) holds even if ‖δms‖p is infinite.

Remark 1. In view of the theorem, and the fact that τm,p(n) is monotonically in-

creasing in m, we have the bound (m ≥ 1):

‖δm−1s‖p ≤ max
{
|c(m− 1)|p|(m− 1)!|−1

p , ‖δms‖p
}
.
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This shows that if δms is Z-valued then there is a positive integer N such that Nδks

is Z-valued for all k ≤ m.

Proof. The claim is clearly true when m = 0 so suppose m ≥ 1. Let (n0, . . . , nm) ∈

Xm and set ` = (ni0 , ni1 , . . . , nim) where the indices have been reindexed so that

ni0 > ni1 > · · · > nim . Now set ` = (x1 + · · ·+ xm + y, x1 + · · ·+ xm−1 + y, . . . , x1 +

x2 + y, x1 + y, y) where the x1, . . . , xm are positive integers as the integers n0, . . . , nm

are all distinct. We make use of the formula for the Mahler series for the mth divided

difference due to Schikhof, [Sch06], Theorem 54.1:

(3.8) δms(n) =
∑
j≥0

∑
k1,...,km≥1

c(j + k1 + · · ·+ km)

km(km + km−1) · · · (km + · · ·+ k1)

(
y

j

) m∏
i=1

(
xi − 1

ki − 1

)
.

Note that (3.8) is always a finite sum.

The dependence of the x1, x2, . . . , xm, y on the entries of ` is clearly invertible, and

as the x1, x2, . . . , xm vary over all positive integers, and y varies over all non-negative

integers, the corresponding ` will vary over all strictly decreasing tuples in Xm. As

δms is a symmetric function, the right-hand side of (3.8) will therefore achieve all

values of δms as x1, . . . , xm vary over all positive integers and y varies over all non-

negative integers. Now setting (x1, x2, . . . , xm, y) = (a1 + 1, a2 + 1, . . . , am + 1, am+1),

a := (a1, a2, . . . , am, am+1), and letting na be the corresponding element of Xm, we

see the right-hand side of (3.8) gives a well-defined function

F : Nm+1 → Cp

(a1, . . . , am+1) 7→ δms(na),

and that moreover ‖F‖p = ‖δms‖p.

By reindexing with i1 = km, i2 = km + km−1, . . . , im = km + km−1 + · · ·+ k1 and
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n = j + k1 + · · ·+ km, we get that

sup
j≥0,k1,...,km≥1

∣∣∣∣ c(j + k1 + . . .+ km)

km(km + km−1) · · · (km + · · ·+ k1)

∣∣∣∣
p

(3.9)

= sup
0<i1<···<im≤n

∣∣∣∣ c(n)

i1i2 · · · im

∣∣∣∣
p

= sup
n≥m
|c(n)|ppτm,p(n)

where τm,p(n) := max0<i1<···<im≤n(wp(i1) + · · ·+ wp(im)).

If ‖F‖p is infinite, then (3.8) and (3.9) show that

sup
j≥0,k1,...,km≥1

∣∣∣∣ c(j + k1 + . . .+ km)

km(km + km−1) · · · (km + · · ·+ k1)

∣∣∣∣
p

= sup
n≥m
|c(n)|ppτm,p(n) =∞,

for if this were finite then the second part of Proposition 3.1.2 would imply that

F ∈ `∞p (Nm+1).

If ‖F‖p is finite, then it follows from (3.8), (3.9), and Proposition 3.1.2 that

‖F‖p = ‖δms(n)‖p = sup
n≥m
|c(n)|ppτm,p(n).

This concludes the proof.

We have already remarked that congruence-preservation is equivalent to integral-

ity of δ1s and now we offer a third interpretation. Integrality of δ1s implies that for

all primes p and integers m,n ∈ N,

|s(m)− s(n)|p ≤ |m− n|p.

In other words, δ1s is Z-valued if and only if s is simultaneously Lipschitz continuous

with Lipschitz constant 1 for every p-adic metric on N. It is natural to ask for

a similar interpretation for the integrality of higher divided differences. The next

proposition provides such an interpretation though we will not have use for it.

Proposition 3.1.3. Let s : N → Cp and let m be a positive integer. Suppose that

‖δms‖p ≤ M . Then s extends to an element f of Cm−1(Zp,Cp) and f (m−1) is Lips-

chitz continuous with Lipschitz constant M |(m− 1)!|p.
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Proof. By the recursive definition of divided differences (cf. [MT51], §1),

(3.10) |δm−1s(x0, · · · , xm−1)− δm−1s(x1, · · · , xm)| ≤M |x0 − xm|

for all x = (x0, · · · , xm) ∈ Xm. Since δms is a symmetric function, from (3.10) we

obtain the inequalities

(3.11) |δm−1s(xi; yij)− δm−1s(xj; yij)| ≤M |xi − xj|

where 0 ≤ i < j ≤ m and yij := (x0, . . . , x̂i, . . . , x̂j, . . . , xm) ∈ Xm−2.

We equip Zmp with the metric given by

dm(x, y) := max
1≤i≤m

|xi − yi|p,

and will show that δm−1s is Lipschitz continuous for this metric on the dense subset

Xm−1 ⊂ Zmp . By a limiting argument, it suffices to show the Lipschitz condition

for δm−1s on elements x = (x1, . . . , xm) and y = (y1, . . . , ym) in Xm−1 such that

{x1, . . . , xm} ∩ {y1, . . . , ym} = ∅. Let z0 = x, zm = y, and

zi := (x1, x2, . . . , xm−i, ym−i+1, . . . , ym) for 0 < i < m.

Then dm(zi, zi+1) = |xm−i − ym−i|p for 0 ≤ i < m. Because zi and zi+1 differ by only

one coordinate, and since we assumed none of the xi coincided with any of the yj, we

may apply (3.11). We conclude that |δm−1s(zi)− δm−1s(zi+1)|p ≤M |xm−i−ym−i|p =

Mdm(zi, zi+1) for 0 ≤ i < m. Using

δm−1s(z0)− δm−1s(zm) =
m−1∑
i=0

(δm−1s(zi)− δm−1s(zi+1))

together with the ultrametric inequality shows that

|δm−1s(x)− δm−1s(y)|p ≤M max
0≤i<m

|δm−1s(zi)− δm−1s(zi+1)|p

≤M max
0≤i<m

|xm−i − ym−i|p

= Mdm(x, y).
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We have shown that δm−1s is Lipschitz continuous on a dense subset of Zmp so we

may extend its domain from Xm−1 to Zmp to obtain a Lipschitz continuous extension

δ̂m−1s : Zmp → Cp of δm−1s. It follows that s extends to a (m− 1)-times continuously

differentiable function f : Zp → Cp and that f (m−1)(a) = (m − 1)!δ̂m−1s(xa) where

xa := (a, a, . . . , a) (cf. [Sch06], §29). By Lipschitz continuity of δ̂m−1s we get that

|f (m−1)(a)− f (m−1)(b)| ≤M |(m− 1)!|pdm(xa, yb) = M |(m− 1)!|p|a− b|p.

Corollary. Let s : N→ Q and suppose that δm+1s is Z-valued. Then for every prime

p, the function s extends to a p-adic m-times continuously differentiable function

fp : Zp → Qp and f (m)
p is Lipschitz continuous with constant |m!|p.

The corollary extends in the obvious way to functions valued in number fields. We

now derive an explicit formula for τm,p(n) which will be needed in the next section.

Recall that for n ≥ m we define

τm,p(n) := max
0<i1<···<im≤n

(wp(i1) + · · ·+ wp(im)).

Lemma 3.1.4. Let m be a non-negative integer, p a prime ≥ m, n an integer ≥ m,

and ap(n) := [np−[logp n]]. Then

(3.12) τm,p(n) =


m[logp n] if ap(n) > m,

m[logp n] + ap(n)−m if ap(n) ≤ m.

The formula generally fails if p < m, e.g., τp+1,p(p
2) = p + 1 whereas (3.12) gives

p+ 2.

Proof. If m is zero the formula clearly holds so suppose that m is positive. Let

t := [logp n], and suppose

n = a0 + a1p+ a2p
2 + · · ·+ atp

t
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where 0 ≤ ai < p for 0 ≤ i ≤ t and at 6= 0. We will calculate a set of integers

1 ≤ i1 ≤ · · · ≤ im ≤ n that realize the maximum p-adic valuation.

Ifm < at then we take im = atp
t, im−1 = (at−1)pt, . . . , i1 = (at−m+1)pt. Adding

up the valuations we get that τm,p(n) = mt. If m ≥ at, then we can take im = atp
t,

im−1 = (at − 1)pt, . . . , im−at+1 = pt. Subsequently, we may take im−at = pt − pt−1,

im−at−1 = pt−2pt−1, . . . , i1 = pt−(m−at)pt−1. As p ≥ m by hypothesis,m−at ≤ p−1

so that the valuation of pt − (m − at)pt−1 is precisely t − 1. Putting the valuations

together we get that

τm,p(n) = tat + (t− 1)(m− at) = mt+ at −m.

This finishes the proof of (3.12).

3.2 Asymptotic Behavior of Certain Sums over Primes

The previous section established a local estimate for the finite differences c of an

arbitrary sequence s with integral mth divided difference: for any s : N → Cp and

any finite prime v of K,

δms v-integral =⇒ |c(n)|v ≤ p−τm,p(n).

To combine this local estimate over all primes we will need to calculate the asymptotic

behavior of ∑
p≤n

τm,p(n) log p.

The goal of this section is to prove that this is nHm + o(n) (Theorem 3.0.2). The

standard bound for the Chebyshev function coming from the prime number theorem,

ϑ(x) = x + o(x), or even ϑ(x) = x + O( x
log x

), is not strong enough to establish the

estimates needed for the proof. Instead we will employ the following useful estimate
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due to Rosser and Schoenfeld, [RS62], (2.29):

(3.13) ϑ(x) = x+O(x exp{−α(log x)1/2})

for some positive constant α.

First we prove a simple lemma. Let [ · ] : R→ Z denote the floor function.

Lemma 3.2.1.

∑
p≤n

[logp n] log p = n+O(n exp{−α(log n)1/2})

for some positive constant α.

Proof. For any prime p in the sum we have that r := [logp n] must be positive. We

then have that

[logp n] = r ⇐⇒ log n

r + 1
< log p ≤ log n

r
⇐⇒ n

1
r+1 < p ≤ n

1
r .

Then

0 ≤
∑
p≤n

[logp n] log p =
∞∑
r=1

∑
n

1
r+1<p≤n

1
r

r log p

≤
∑

√
n<p≤n

log p

= ϑ(n)− ϑ(
√
n).

The last term is n+O(n exp{−α(log n)1/2}) by (3.13).

Let m be a non-negative integer, p a prime, n any integer ≥ m. As before we set

τm,p(n) := max
0<i1<···<im≤n

(wp(i1) + · · ·+ wp(im)).

Let Hm be the mth harmonic number and set H0 = 0.
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Theorem (Theorem 3.0.2).

∑
p≤n

τm,p(n) log p = nHm +O(n exp{−α(log n)1/2} log n)

for some positive constant α.

Proof. This is clear if m is zero as τ0,p(n) ≡ 0, so we suppose m is positive. Suppose

n = c0 + c1p + · · · + ctp
t where 0 ≤ ci < p and ct 6= 0. Let ap(n) := ct. When

n, p ≥ m, Lemma 3.1.4 gives the formula:

(3.14) τm,p(n) =


m[logp n] if ap(n) > m,

m[logp n] + ap(n)−m if ap(n) ≤ m.

The asymptotic contribution to
∑

p≤n τm,p(n) log p from the logarithmic term in τm,p

is given by Lemma 3.2.1:

(3.15)
∑
p≤n

m[logp n] log p = mn+O(n exp{−α(log n)1/2}).

The asymptotic contribution from m[logp n] − τm,p(n) is more difficult to establish.

We will show that for some positive constant α

(3.16)
∑
p≤n

(
m[logp n]− τm,p(n)

)
log p = (m−Hm)n+O(n exp{−α(log n)1/2} log n).

Combining (3.14), (3.15), and (3.16) immediately proves the claim so we now

establish (3.16). Let t ≥ 1, a ≥ 1, n > 1 be integers and let p be a prime. Then we

have the following equivalences,

a = [np−t] ⇐⇒ a ≤ np−t < a+ 1

⇐⇒ an−1 ≤ p−t < (a+ 1)n−1

⇐⇒ (na−1)
1
t ≥ p > (n(a+ 1)−1)

1
t .(3.17)

If a = [np−t] then we also claim that

(3.18) 1 ≤ a < p ⇐⇒ t = [logp n], a = ap(n).
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To see this, let n = b0 + b1p+ · · ·+ bsp
s with 0 ≤ bi < p for 0 ≤ i ≤ s, and s chosen

to be ≥ t. Then

[np−t] = [(b0 + · · ·+ bt−1p
t−1)p−t + bt + bt+1p+ · · ·+ bsp

s−t].

As 0 ≤ (b0 + · · ·+bt−1p
t−1)p−t < 1, we have that a = [np−t] = bt+bt+1p+ · · ·+bsp

s−t.

If 1 ≤ a < p then we must have t = [logp n], bt+1 = · · · = bs = 0, and a = bt = ap(n).

The converse of (3.18) is clear by the definition of ap(n). This proves the equivalence

(3.18), and by putting (3.17) and (3.18) together we get that for any integers t ≥

1, a ≥ 1, n > 1, and prime p,

(3.19) a = ap(n), t = [logp n] ⇐⇒ (n(a+ 1)−1)
1
t < p ≤ (na−1)

1
t , 1 ≤ a < p.

We will use (3.19) to sum over triples of integers t, a, p such that p is prime,

a = ap(n), and t = [logp n]. For integers a ≥ 1, n > 1, define

Pa,n := {p prime : (n(a+ 1)−1)
1
t < p ≤ (na−1)

1
t for some integer 1 ≤ t ≤ [log2 n]},

and consider the sum

G(n) :=
m−1∑
a=1

∑
p∈Pa,n

(m− a) log p.

Using (3.19) shows that

G(n) =
∑

p≤n,ap(n)≤m

(m− ap(n)) log p.

From (3.14),

∑
p≤n

(
m[logp n]− τm,p(n)

)
log p = O(1) +

∑
p≤n,ap(n)≤m

(m− ap(n)) log p,

where the implied constant comes from the primes ≤ m, and so we have that

(3.20)
∑
p≤n

(
m[logp n]− τm,p(n)

)
log p = G(n) +O(1).
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In view of (3.20) it will suffice to prove (3.16) for G(n). Observe that

G(n) =

[log2 n]∑
t=1

m−1∑
a=1

(m− a){ϑ((na−1)
1
t )− ϑ((n(a+ 1)−1)

1
t )}.

Let Gt(n) denote the inner sum for 1 ≤ t ≤ [log2 n]. Then

(3.21) Gt(n) = mϑ{(n
1
)1/t} − ϑ{(n

1
)1/t} − ϑ{(n

2
)1/t} − · · · − ϑ{( n

m
)1/t}.

By (3.13) there is a positive constant α such that

ϑ{(n
a
)1/t} = (n

a
)1/t +O(n exp{−α(log n)1/2}).

With the help of (3.21) we get that

(3.22) Gt(n) = {mn
1
t − n

1
t − (n/2)

1
t − · · · − (n/m)

1
t }+O(n exp{−α(log n)1/2}).

Let La(n) :=
∑[log2 n]

t=1 (n
a
)

1
t for 1 ≤ a ≤ m. By summing up (3.22) we get

(3.23) G(n) = mL1(n)−L1(n)−L2(n)−· · ·−Lm(n)+O(n exp{−α(log n)1/2} log n).

Once n ≥ a we have that

(n/a) ≤ La(n) = (n/a) + (n/a)
1
2
{

1 + (n/a)
1
3
−1

2 + · · ·+ (n/a)
1

[log2 n]
−1

2
}

< (n/a) + (n/a)
1
2 (log2 n),

and so La(n) = (n/a) +O(
√
n log n). Finally, from (3.23) we get that

G(n) = mn− (n/1)− (n/2)− · · · − (n/m) +O(n exp{−α(log n)1/2} log n)

which proves (3.16) in view of (3.20).

Remark. If the Riemann hypothesis is true then the error terms in Lemma 3.2.1 and

Theorem 3.0.2 improve significantly: for any ε > 0,

∑
p≤n

[logp n] log p = n+O(n1/2+ε),
∑
p≤n

τm,p(n) log p = nHm +O(n1/2+ε log n).

We will not need these stronger error terms for the applications in §3.3.



95

3.3 Proof of Theorem 3.3.2

In §3.1 we established a local estimate for the finite differences c of a sequence s

with integral mth divided difference. The calculations in §3.2 show that

lim
n→∞

∏
p prime

p
τm,p(n)

n = e1+
1
2

+···+ 1
m .

By combining the local estimates for δms with this calculation we will obtain a

characterization of polynomial sequences in terms of the Archimedean growth of

their finite differences. Let K be an algebraic number field of degree d with ring

of integers O. For the sake of generality, we work with an arbitrary finite set S of

places of K that contains the Archimedean places. Recall that the finite differences

of s are defined by

c(n) :=
n∑
k=0

(
n

k

)
(−1)n−ks(k) (n ∈ N).

Proposition 3.3.1. Let s : N → K and let S ⊂ MK be a finite set containing the

Archimedean places. Suppose that

(i) δms is O-valued, and

(ii) for each v in S there is a positive number ρv such that |c(n)|v � ρnv .

If

(3.24)
∏
v∈S

ρdvv < ed
(

1+
1
2

+···+ 1
m

)
then s(n) is a polynomial in n.

Proof. By Lemma 3.1.1 the conclusion is equivalent to c being eventually zero, so for

the sake of contradiction suppose that (3.24) holds and that c has infinitely many

nonzero terms.
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Let v be a place ofK not in S, pv the rational prime v lies over, σv a representative

embedding for v, and dv the local degree of v. The finite differences (3.3) of the

sequence σvs : N→ Cp are clearly given by σvc(n). We may apply Theorem 3.0.1 to

see that |c(n)|v = |σvc(n)|pv ≤ p
−τm,pv (n)
v for n ≥ m, and so

(3.25)
∏
v 6∈S

|c(n)|dvv ≤
∏
v 6∈S

p−dvτm,pv (n)
v .

Note that both sides amount to finite products (τm,pv(n) = 0 if pv > n).

By the definition of τm,p(n),

τm,p(n) ≤ max
1≤i1≤···≤im≤n

(wp(i1) + · · ·+ wp(im)) = m max
1≤i≤n

wp(i) = m[logp(n)],

and in particular τm,p(n) = O(log n). Then, once n is larger than any prime lying

under a prime of S, we have that

∑
v 6∈S

dvτm,pv(n) log pv =
∑
pv≤n

dvτm,pv(n) log pv −
∑
v∈S

dvτm,pv(n) log pv

= d
∑
p≤n

τm,p(n) log p+O(log n).

With the help of Theorem 3.0.2 we see that

∑
v 6∈S

dvτm,pv(n) log pv = dnHm + o(n).

By putting this together with (3.25) we obtain

∏
v 6∈S

|c(n)|dvv ≤ e−ndHm+o(n).

Now let ni be chosen so that c(ni) 6= 0 for all non-negative integers i. With the

help of the product formula we obtain

∏
v∈S

ρ−dvv ≤ lim inf
i→∞

(∏
v∈S

|c(ni)|−dv/niv

)
≤ e−dHm .

This contradicts (3.24) and concludes the proof.
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We now prove a generalization of Theorem 1.3.1. In addition to the integrality of

higher divided differences we will consider the possibility of p-adic analytic interpo-

lation — i.e., the existence of a power series F (x) ∈ Cp[[x]] which converges for all

x ∈ D<R
p := {x ∈ Cp : |x|p < R} such that R > 1 and F (n) = σvs(n) for all n ≥ 0.

It is known that p-adic analytic interpolation corresponds to p-adic decay of finite

differences (cf. e.g., [Sch06], §54). By combining this decay with the decay coming

from the integrality of δms, we obtain a common generalization of the Hall–Ruzsa

and Hilliker–Straus theorems, [Hal71], [Ruz71], [HS70], as well as one of the main

results from Dwork’s work on the rationality of the zeta function over a finite field

(cf. Remark 2).

Theorem 3.3.2. Let s : N→ K, let S ⊂MK be a finite set containing the Archimedean

places M∞
K , and let F ⊂MK be another finite set disjoint from S. Suppose that

(i) δms is O-valued,

(ii) for each v in S there is a positive number θv such that |s(n)|v � θnv , and

(iii) for each v in F there is a number Rv > 1 such that σvs extends to a p-adic

analytic function D<Rv
pv → Cpv .

If

(3.26)
∏

v∈M∞K

(1 + θv)
dv

∏
v∈S\M∞K

max{1, θv}dv
∏
v∈F

(p
1

pv−1
v Rv)

−dv < ed
(

1+
1
2

+···+ 1
m

)
then s(n) is a polynomial in n.

Proof of Theorem 1.3.1. Take S = M∞
K , F = ∅ and apply Theorem 3.3.2, noting

that there are two isometric embeddings for every complex place.

Proof of Theorem 3.3.2. By Proposition 3.3.1 we see that s is polynomial if for each
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v ∈ S ∪ F there are positive constants Dv and ρv such that

(3.27) |c(n)|v ≤ Dvρ
n
v for all n ≥ 0

and

(3.28)
∏

v∈S∪F

ρdvv < edHm .

Suppose that v is an Archimedean place in S. Then |c(n)|v ≤ max0≤k≤n |s(k)|v

by the ultrametric inequality. As |s(n)|v � θnv by hypothesis, there is a positive

constant Dv such that

|c(n)|v ≤ max
0≤k≤n

Cθkv =


Dv if θv < 1,

Dvθ
n
v if θv ≥ 1.

Hence in either case we may take ρv = max{1, θv}. Now suppose v is a non-

Archimedean place in S. We have that

|c(n)|v ≤
∑

0≤k≤n

(
n

k

)
|s(k)|v.

Therefore for some positive constant Dv we have that |c(n)|v ≤ Dv(1 + θv)
n, and

here we take ρv = 1 + θv. Then for every v in S (3.27) is satisfied.

Now we consider the places v in F . By hypothesis, for any place v in F there

exists an analytic function fv(x) defined on the closed disk of Cpv of radius Rv,

Rv > 1, containing zero such that σvs(n) = fv(n) for all n ≥ 0. Without loss of

generality, we may assume that fv is analytic on a disk of radius strictly larger than

Rv for all v ∈ F since the inequality (3.26) remains valid even if Rv is replaced with

a sufficiently close but smaller quantity. Furthermore, by taking a sufficiently small

ε > 0 we may assume that for all v in F , fv is analytic on a disk of radius strictly

larger than Rv + ε. Now we make use of a theorem of Iwasawa, [Iwa72], Theorem 3,
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to see that

(3.29) lim
n→∞

|c(n)|vr−n = 0

for any real number r such that

(3.30) p
−1
pv−1
v (Rv + ε)−1 < r.

On the other hand, (3.29) implies that |c(n)|1/nv > r for only finitely many n, or that

lim supn |c(n)|1/nv ≤ r. Hence there are positive constants Dv, ρv satisfying (3.27) and

ρv ≤ r for all v ∈ F . As r was arbitrary subject to (3.30) this shows that r may

be taken to be ≤ p
−1
pv−1
v R−1

v . Therefore the constants Dv, ρv may be chosen to satisfy

(3.27) as well as

(3.31)
∏
v∈F

ρdvv ≤
∏
v∈F

(p
1

pv−1
v Rv)

−dv .

Putting (3.31) together with the choices of ρv for v in S shows that

∏
v∈S∪F

ρdvv ≤
∏

v∈M∞K

(1 + θv)
dv

∏
v∈S\M∞K

max{1, θv}dv
∏
v∈F

(p
1

pv−1
v Rv)

−dv .

This inequality shows that (3.26) implies (3.28) and concludes the proof.

Remark 2. It is well-known that a power series
∑

n≥0 anX
n is the expansion of a

rational function if and only if there exists an integer N such that

(3.32) c(n) := det(an+i+j)
N
i,j=0

is zero for all sufficiently large n. Theorem 3.3.2 may be applied to the sequence

s whose finite differences are given by (3.32) to obtain a generalization of Dwork’s

Theorems 2 and 3 from his article proving the rationality of the zeta function of a

variety over a finite field [Dwo60]. We have not emphasized this application however

as hypotheses (1) and (3) of Theorem 3.3.2 do not appear to be natural conditions

on power series.
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