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ABSTRACT

A class of compact projective manifolds can be viewed as a convex set in projective

space modulo a discrete group of isometries. This thesis explores the circumstances

under which this convex set is a symmetric convex cone. The irreducible symmetric

convex cones are analogous to symmetric spaces in Riemannian geometry and consist

of hyperbolic space and positive definite Hermitian matrices. Having a properly

embedded conic in the boundary of the convex set is equivalent to the existence of

a subspace isometric to the hyperbolic plane. When enough of these conics exist, I

will show that the convex set is a symmetric convex cone. This demonstrates how

the shape of the boundary of the convex set determines its isometry class. Further,

if enough twice differentiable curves are found in the boundary of the convex set, I

will show that it must be hyperbolic space. This result also has applications to affine

spheres.

vi



CHAPTER 1

Introduction

1.1 Motivation

Can two dimensional affine slices of the universal cover M̃ of a compact manifold

M determine when M has a lot of symmetries? This question will be explored for

when M̃ can be identified with a particular type of convex subset Ω of a projective

space. The space Ω, and hence also M , is given the Hilbert metric which is deter-

mined entirely by the shape of the boundary of Ω. For instance when the boundary of

Ω has some regularity, e.g. C2 or C1+α for some α ∈ (0, 1) (Benoist [8]), the manifold

M has hyperbolic properties. When Ω lacks these regularity properties, M will have

properties similar to a Euclidean space with the hexagonal norm. This is similar to

the potential presense of flats in Riemannian geometry. We will primarily look for

slices of Ω that are isometric to the hyperbolic plane H2 and use their existence to

determine when Ω is a symmetric convex cone; definitions and details about these

cones will follow a discussion of motivation from Riemannian geometry.

A manifold M with Riemannian metric d is a symmetric space if for every point
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x ∈ M , there is an isometry gx that is an involution. This means that gx(x) = x

and the derivative of gx, dgx : TxM → TxM , is minus the identity. See [30] for more

information on symmetric spaces.

In Riemannian geometry one can use the sectional curvature of M to determine

if M is locally a symmetric space, or if M̃ is a symmetric space. When M has

constant sectional curvature κ, the situation is ideal; by the Killing-Hopf theorem,

M̃ is isometric to

• a sphere if κ > 0,

• a Euclidean space if κ = 0 or

• a hyperbolic space if κ < 0.

The third case where κ < 0 has the most connections to Hilbert geometry due to the

hyperbolic behavior of Ω when its boundary is C2 or C1+α. If the curvature κ is not

constant, the Killing-Hopf theorem is not applicable; for negative sectional curvature

κ that is bounded away from zero, some conclusions can be made about M̃ . These

claims require some additional assumptions on M which will be discussed now.

In particular, one looks for conditions for when a Riemannian manifold M is

locally a rank one symmetric space, since in that case M has no subspaces that

are flat planes. Roughly, this means that M has totally geodesic strips of sectional

curvature −1 which is analogous to the property in Hilbert geometry of Ω having

a lot of subspaces isometric to H2. This is a natural choice when classifying spaces

of negative curvature since symmetric spaces with negative curvature are rank one.
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The manifold M is said to have higher hyperbolic rank if every geodesic lies in a strip

of sectional curvature −1. A full definition for higher hyperbolic rank can be found

in [15]. Intuitively, this means that every geodesic locally lies in a subspace isometric

to H2.

Here we recall some history of results involving higher hyperbolic rank. The first

is Hamenstädt’s hyperbolic rank rigidity theorem:

Theorem 1.1 (Hamenstädt, [28]). Let M be a closed manifold with higher hyperbolic

rank and sectional curvature κ ≤ −1. Then M is a locally rank one symmetric space.

Another from Connell-Nguyen-Spatzier looks at κ when it is 1
4
-pinched:

Theorem 1.2 (Connell, Nguyen, Spatzier [15]). Let M be a closed Riemannian

manifold with higher hyperbolic rank and sectional curvature κ 1
4
-pinched: −1 ≤ κ ≤

−1
4
. Then M is a rank one locally symmetric space.

This theorem pairs well with Hamenstädt’s due to its constrasting bound on κ.

Further, one can analogously define spherical rank and Euclidean rank when κ = 1

and κ = 0 respectively. In the next section, we will explore how Hilbert geometry is

connected to hyperbolic geometry through a review of each of their histories.

1.2 Ancient History

The Greek mathematician Euclid created an axiomic system for geometry in his

textbook The Elements. These axioms are members of a list of five statements,

or postulates, that are assumed to be true in Euclidean geometry. The first four
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postulates are intuitive. The fifth statement is the following:

5. Given a line and a point not on that line, there is exactly one line (in the same

plane) that passes through the point and is parallel to the line.

and is called the parallel axiom. The parallel axion is necessary for Euclidean geom-

etry; disregarding it allows one to study spherical or hyperbolic geometry. There are

two ways of breaking the fifth postulate: either parallel lines never exist, or parallel

lines are not unique.

On a sphere, parallel lines do not exist. The lines of shortest path, or geodesics,

are the great circles. These are the curves that split the sphere into two hemispheres.

Any two great circles will intersect.

In hyperbolic geometry, parallel lines are not unique. This is demonstrated in

Figure 1.1 for H2 with the Klein model of hyperbolic space which is characterized by

its straight line geodesics. A geodesic and a point not on that geodesic are shown in

green. Many geodesics pass through the point but do not intersect the line.

1.3 Klein’s Erlangen Program

By 1872, mathematicians’ view of geometry had evolved which was reflected in

Klein’s work ‘A comparative review of recent researches in geometry’ (see [34] for

more details). This work was the introduction to Klein’s Erlangen program and was

more of a manifesto than a research paper. Klein asserted that for a manifold under

some geometry and a group of transformations of the manifold, the goal is to research

the invariants of the manifold under the group. Further, he considered projective
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a

b

x

y

Figure 1.1: The Klein model of H2 and the Hilbert metric on Ω

geometry to be the most general form of geometry as it contains all others. Klein’s

original description of the program was not precise; he did not define a manifold and

instead discussed manifoldness and inverses of transformations of spaces were not

mentioned.

Additionally, the Erlangen program contains a description of isomorphic group

actions. Klein gives an example with the projective line and conics: the projective

line has a one to one correspondence with any conic, which means that the projective

line and a conic have equivalent group actions which are the Möbius transformations.

Hence geometric ideas about the projective line can be translated to geometric ideas

about conics. This theme will be used in further sections.

1.4 Hyperbolic Space

Here, we will further discuss the hyperbolic plane. The Klein model of hyperbolic

space consists of the points {(x1, x2, . . . , xn, 1) ∈ Rn+1|x2
1 + x2

2 + · · ·x2
n < 1} with
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Riemannian metric for this model given by

ds =

√
dx2

1 + · · ·+ dx2
n

1− x2
1 − · · · − x2

n

+
(x1dx1 + · · ·+ xndxn)2

(1− x2
1 − · · · − x2

n)2
.

Since geodesics are straight lines, calculating the distance between two points can be

reduced to a one dimensional problem. In this case, the metric is

ds =

√
dx2

1− x2
+

x2dx2

(1− x2)2
=

dx

(1− x2)

so that the distance between the point x = p1 and x = p2 where −1 < p1 < p2 < 1 is∫ x=p2

x=p1

1

(1− x2)
dx =

1

2
log

(
(1− p1)(1 + p2)

(1 + p1)(1− p2)

)
.

This distance can be applied not only to Hn, but to any convex set Ω (see Figure

1.1); extend a line segment between the points x, y ∈ Ω to find the intersection points

a, b ∈ ∂Ω of the line with the boundary of Ω, as shown in Figure 2.3.

Hence we define the Hilbert metric on a convex set Ω as

dΩ(x, y) =
1

2
log

(
|ay||xb|
|ax||yb|

)
where | · | is the Euclidean distance between the two points. Note that |ax||yb||ay||xb| =

[x; y; a; b] is the projective cross ratio of four points. The value of [x; y; a; b] is invariant

under projective transformations.

1.5 Hilbert Geometry and Convex Cones

In this thesis, Ω will be a type of convex set arising from convex cones. Let C be

a convex cone in Rm+1 with the property that if v is a ray in C, then −v /∈ C. This
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C is called properly convex. Let Ω be the projection p of C into Sm = Rm+1/R>0, i.e.

the set of half lines in Rm+1. To apply the Hilbert metric, we view Ω in any affine

chart where Ω is convex. The Hilbert metric is well defined since Ω is convex and

dΩ is projectively invariant. The set Ω is called properly convex if Ω = p(C) and C is

a properly convex cone. If there is an affine chart of Ω such that the the boundary

∂Ω does not contain any line segments, then Ω is called strictly convex.

If C = Con(C1⊕C2) where Con(C ′) is the convex hull of C ′ in Rm+1, then C is called

reducible. Then Ω is reducible if its associated cone C is reducible. For example, if

Ω is a line segment with cone C = {x, y ∈ R2|x, y > 0}, then Ω is reducible since

C = Con({R+ · e1} ⊕ {R+ · e2}). If C is not the convex hull of the sum of convex

cones, then C and Ω = p(C) are irreducible.

Additionally, any g ∈ SL(m + 1,R) with g · Ω = Ω is an isometry of Ω. For

example, when Ω ∼= H2, the isometry group of Ω is SO(2, 1) ⊂ SL(m+ 1,R). If there

is a discrete subgroup Γ of the isometry group of Ω and Ω/Γ is compact, then we say

that Ω is divisible. This will allow us to work in the compact setting of the manifold

M ∼= Ω/Γ when convenient.

Let g ∈ Γ ⊂ SL(m+ 1,R) have the property that its eigenvalues λi ordered such

that |λ1| ≥ · · · ≥ |λm+1| have the property that |λ1| > |λ2| and |λm| > |λm+1|. Then

g is called biproximal. The eigenline associated with λ1 is called x+
g and the eigenline

associated with λm+1 is x−g . The (projective) line segment between the points a and

b is denoted (a, b). The line γg = (x+
g , x

−
g ) is an axis of g. If the eigenvalues λi of g

7



are such that |λ1| > |λ2| > · · · > |λm| > |λm+1| then g is called loxodromic.

Put Ω into an affine chart so that Ω ⊂ Rm. Let H be a two dimensional plane

and take R = H ∩ Ω. If ∂R ⊂ ∂Ω and the convex hull Con(R) of R is such that

Con(R) ⊂ Ω, then R is called a properly embedded region. Typically we will discuss

properly embedded conics which are subspaces isometric to H2. Properly embedded

triangles are isometric to R2 with the hexagonal norm (see [21]).

Two points a, b ∈ ∂Ω are said to be part of a half triangle if there exists a point

c ∈ ∂Ω such that (a, c) ⊂ ∂Ω and (b, c) ⊂ ∂Ω. If (a, b) ⊂ Ω, then a and b are

extreme points of a properly embedded triangle. An element g ∈ Γ is called a rank

one isometry if g is biproximal and x+
g , x−g are not contained contained in any half

triangle

Naturally, properties of Ω hugely influence what we can know about M . In the

Riemannian case, we asked if M̃ is a symmetric space. In Hilbert geometry, we will

ask if Ω is a symmetric convex cone. Some examples, including symmetric convex

cones, are discussed in the next section.

1.6 Examples

The first example is C = {x ∈ R3|x1, x2, x3 > 0}, i.e an octant in R3. Here

Ω = p(C) ∼= T where T is a triangle. The automorphism group of T is diag(3,R)oS3

where diag(3,R) is the group of 3× 3 diagonal matrices over R and S3 permutes the

vertices e1, e2, and e3.

8



We will choose Γ ⊂ SL(3,R) so that Ω/Γ is a torus;

Γ =

〈
g1 =


2 0 0

0 2 0

0 0 1
4

 , g2 =


1
4

0 0

0 2 0

0 0 2


〉
.

The orbits of g1 · T and g2 · T are shown in Figure 1.2. The blue and green lines

are representing dotted lines since Γ acts discretely on T . One of the fundamental

domains of the Γ · T action is traced out in red; in the quotient T/Γ, opposite edges

are identified. Hence T/Γ is the two dimensional torus T 2.

e1 e2

e3

Figure 1.2:
The fundamental domain of the action of Γ on the triangle T . The orbits of g1 · T
are represented in green and the orbits of g2 · T are represented in blue. Each orbit is
discrete, so the solid lined orbits are representing dotted lines.

We will primarily be discussing irreducible sets Ω; the triangle T is not irreducible

since C = Con(R>0e1⊕ (R>0e2⊕R>0e3)); in fact any simplex is reducible. However,

the triangle is very important in characterizing different Ω. Since T/Γ ∼= T 2, the

presense of a properly embedded triangle in any Ω indicates a flat. The geometry

on a flat is not well behaved. In Hilbert geometry, geodesics are not unique on the

triangle- not even locally. An example of this is shown in Figure 1.6.

9



x y

z

Figure 1.3:
A cross ratio argument shows that since the red, green, and blue lines intersect exactly
one boundary edge of T on each side, dΩ(x, y) = dΩ(x, z) + dΩ(z, y). Small variations
of z show that geodesics are not locally unique on T .

The triangle T is an example of an n-simplex with n = 2. The cone associated to

the n-simplex is

{(x1, . . . , xn+1) ⊂ Rn+1|x1, . . . , xn+1 > 0}

which project to convex Ω and are hence (reducible) Hilbert geometries.

Since simplices in Hilbert geometry play an analogous role to flat subspaces in

Riemannian geometry, they provide a method to define a rank. A properly convex

set Ω ⊂ Sm has higher rank if for every p, q ∈ Ω, there exists a properly embedded

simplex where (p, q), the line between p and q, is contained in S. This definition

came from Zimmer whose results in [44] will be discussed later.

A convex divisible Ω for which the automorphism group acts transitively is called

homogeneous ; its cone C is also homogeneous. If for each x ∈ Ω there exists an

automorphism of Ω of order 2 such that x is the only fixed point in Ω, then Ω and

its cone C are called symmetric (these definitions are from [8]).

The irreducible symmetric convex cones were classified by Koecher in 1965 (see

[8], [43] for Vinberg on homogeneous convex cones, [35]). Any irreducible symmetric

10



convex cone is one of the following:

• the half line consisting of all x ∈ R>0,

• hyperbolic space Hn = {x2
1 − x2

2 − · · · x2
n > 0 with x ∈ Rn and x1 > 0},

• positive definite n × n Hermitian (or symmetric for k = R) matrices over k =

R,C or the quaternions H

• positive definite 3× 3 Hermitian matrices over the octonions O.

Any simplex can be decomposed into the convex hull of the sum of half lines.

Properly embedded simplices and conics occur in every positive definite n× n Her-

mitian matrix; an illustrative example for simplices will be discussed now and the

case for conics is the focus of Chapter 3. The image of the cone of positive definite

n×n Hermitian matrices in SN for some N under π is called POS(n, k). The isome-

try group for each POS(n, k) is GL(n, k) where g ∈ GL(n, k) acts on X ∈ POS(n, k)

by

gXg∗ where g∗ is the conjugate transpose of g.

Consider X ∈ POS(3,R) where X is diagonal and is in the affine chart Trace(X) = 1.

Then 
1− λ 0 0

0 λ 0

0 0 0

 ,


µ 0 0

0 0 0

0 0 1− µ

 ,


0 0 0

0 σ 0

0 0 1− σ


define the three edges of a properly embedded triangle for λ, µ, σ ∈ (0, 1) and the

three vertices when λ = µ = σ = 0. By the spectral theorem, any X in the cone
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associated to POS(3,R) is diagonalizable, so every point in ∂POS(3,R) is either a

vertex or along an edge of a triangle. For n > 3, the boundary of POS contains

simplices. Further information can be found in Section 3 when we discuss properly

embedded conics in POS(n, k) for k = R,C,H or O.

1.7 Previous Results in Hilbert Geometry

Convex divisible Hilbert geometries Ω fall in two categories:

• either Ω is strictly convex with C1 boundary or

• Ω is not strictly convex, i.e. there exists a line segment in ∂Ω.

In the first case, Ω is has properties associated with hyperbolic manifolds. For

example,

Theorem 1.3 (Benoist [5]). Let Γ be a discrete group which divides some properly

convex open set Ω ⊂ Sm. Then Ω is strictly convex if and only if the group Γ is

Gromov hyperbolic.

This means that the Cayley graph of Γ has negative curvature. Additionally,

Benoist proves:

Theorem 1.4 (Benoist [5]). Let Γ be a torsion free discrete group which divides some

strictly convex open set Ω ⊂ Sm. Then the geodesic flow ϕt of the Hilbert metric on

the quotient manifold M = Ω/Γ is Anosov.

However, the second case when line segments lie in the boundary of Ω is more

complicated and less studied. It follows from Benzecri (see [11], Section 5) that if
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there exists a line segment in ∂Ω, then Ω contains a properly embedded triangle.

Hence Ω contains at least one flat.

For any divisible properly convex set Ω, one can ask: when is Ω an irreducible

symmetric convex cone? For example, a corollary of a theorem of Benzecri determines

Corollary 1.1 (Benzecri [11] or [8]). The only divisible properly convex open set in

Sm whose boundary is of class C2 is the hyperbolic space Hm.

Such Ω with C2 boundary must be strictly convex.

Now we will return to the notion of rank. The real rank of SL(m+1,R) ism. Recall

that Ω has higher rank if every line (x, y) ⊂ Ω is contained in a properly embedded

triangle. In the case where Ω is irreducible and not strictly convex, Zimmer has a

result about different types of rank [44] which is more extensive than given here:

Theorem 1.5 (Zimmer [44] Theorem 1.4). Suppose that Ω ⊂ Sm is an irreducible

properly convex domain and Γ ⊂ Aut(Ω) is a discrete group which divides Ω. Then

the following are equivalent:

• Ω is symmetric with real rank at least two,

• Ω has higher rank

• (x+
g , x

−
g ) ⊂ ∂Ω for every biproximal element g ∈ Λ.

If Ω is symmetric with real rank at least two, then Ω is POS(n,K) for n > 2 and

K = R,C,H or POS(3,O) where O is the octonions.

Recall that g ∈ Γ is a rank one isometry if g is biproximal and x+
g , x

−
g are not part

of any half triangle. A corollary of Theorem 1.5 is
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Corollary 1.2 (Zimmer [44]). With Ω defined as in Theorem 1.5, the following are

equivalent:

• Ω does not have higher rank

• Γ contains a rank one isometry.

This implies that if Ω is POS(n,K) for n > 2 or POS(3,O), then any Γ dividing

Ω cannot have a rank one isometry.

1.8 Results

Let ΛΩ
Γ = {x+

g , g ∈ Γ}. We will explore the classification of Ω when Ω has embed-

ded hyperbolic planes. The first result is about the hyperbolic planes embedded in

symmetric convex cones of higher rank.

Theorem 1. The symmetric convex cones POS(n,K) with K = R,C or H (n ≥ 2)

and POS(3,O) have a properly embedded conic through every boundary point.

The following is the main result and uses Theorem 1.5 and Theorem 1.

Theorem 2. Let Γ be a discrete subgroup of SL(m+ 1,R) which divides a properly

convex set Ω that is irreducible. Assume that for all x ∈ ΛΩ
Γ there is a properly

embedded conic Cx ⊂ ∂Ω. If Ω has rank one, then Ω is projectively equivalent to Hn.

If Ω has higher rank, then Ω is projectively equivalent to POS(n,K) with n > 2 and

K = R,C,H or POS(3,O) where O is the octonions.

An alternate to Theorem 2 is the following:
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Theorem 3. Let Γ be a discrete subgroup of of SL(m+ 1,R) which divides a strictly

convex irreducible set Ω. If for all x ∈ ΛΩ
Γ , there exists a C2 curve through x with

positive second derivative, then Ω is projectively equivalent to Hn.

Notice that Ω is required to be strictly convex in Theorem 3 which is necessary

as some of the tools used in the proof require strict convexity. We need that the C2

curve has positive second derivative at x ∈ ∂Ω because this ensures that Ω is strictly

convex in any neighborhood around x ∈ ∂Ω.

In the last section, Theorem 2 is applied to classical objects called affine spheres.

For a hypersurface H with a normal vector field ξ pointing towards the convex side

of H, H is an affine sphere if the lines through ξ meet at a point. If this point is

on the concave side of H, then H is a hyperbolic affine sphere. An example would

be one component of a hyperboloid of two sheets. The Cheng-Yau correspondence

gives the connection between hyperbolic affine spheres and convex sets Ω:

Theorem 1.6 (Cheng-Yau [14]). For any properly convex domain Ω in Sm, there is

a unique hyperbolic affine sphere H asymptotic to Ω.

For example, a component of a hyperboloid of two sheets is asymptotic to hyper-

bolic space. The classification of symmetric convex cones was applied to the problem

of classifying hyperbolic affine spheres as a result of this correspondence. To apply

Theorem 2 to affine spheres, we will translate some of the hypotheses.
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1.8.1 Outline of Proof

Here we will briefly outline the proof of Theorem 2. An important step is the

application of the following theorem of Benoist.

Theorem 1.7 (Benoist [5]). Let Ω be a properly convex irreducible set in Sm which

is divided by the discrete group Γ. If Ω is not symmetric, then Γ is Zariski dense in

SL(m+ 1,R).

The final step will be to show that for Ω that satisfy the hypotheses of Theorem

2, a discrete Γ ⊂ SL(m+ 1,R) cannot be Zariski dense in SL(m+ 1,R). This creates

a contradiction.

When g ∈ Γ is the axis of an embedded H2, the eigenvalues of g must satisfy

(1.1) 1 = 2
log |λ1| − log |λk|

log |λ1| − log |λm+1|
.

for some 1 < k < m+ 1. We will show that the set of g ∈ Γ, under the hypotheses of

Theorem 2, that have axis γg in an embedded H2 must Zariski dense in Γ. We will

show that Equation 1.1 is an algebraic equation on a subset of Γ which is Zariski

dense in SL(m + 1,R). This creates a contradiction, so Ω must be a symmetric

convex cone.

Now, we will outline the proof of Theorem 3 which has some overlapping ideas

with Theorem 2. For a point x ∈ ∂Ω where Ω is strictly convex, the quantity

α =
log |λ1| − log |λm+1|

log |λ1| − log |λk|
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will measure the shape of the boundary of Ω around x for 1 < k < m + 1. When

there is a C2 curve with positive second derivative passing through x, there exists a

k where α = 2. Since we have a dense set of g ∈ Γ whose x+
g are part of C2 curves

in the boundary, we can follow the argument from Theorem 2 to finish the proof.
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CHAPTER 2

Background

Let C be an open convex cone in Rm+1. Let Sm be the space of half lines through

the origin in Rm+1 with p : Rm+1 → Sm. Then Ω = p(C). We will assume that Ω is

properly convex, i.e. C does not contain an affine line. In either case, the boundaries

are defined as ∂C = C \ C and ∂Ω = Ω \ Ω.

The set Ω is called divisible if there exists a discrete Γ ⊂ SL(m+ 1,R) such that

Ω/Γ is comapct.

2.1 Zariski Density

The goal of these first few sections is to define Zariski dense subsemigroups of

reductive groups. These subsemigroups have special properties when projected into

a linear space (see [3] and [10]). We will start with the Zariski topology and Zariski

density of algebraic sets and we will work our way up to groups and finally, to results

of Benoist.

The first step is to define the Zariski topology on kn, where k is a field. Any
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subset X ⊂ kn will be given the subspace topology. Intuitively, the closed sets of kn

are the algebraic sets; we define the closed sets in the Zariski topology on kn by

V (P ) = {x ∈ kn|f(x) = 0 for all f ∈ P}

where P is a finite set of polynomials of n variables over k.

Intersections and unions of algebraic sets are defined as follows. Let I and J be

two sets of polynomials of n variables over k. Then IJ = {fg|f ∈ I, g ∈ J} and

I + J = {f + g|f ∈ I, g ∈ J}. Using these, it follows that

V (I) ∩ V (J) = V (I + J) and V (I) ∪ V (J) = V (IJ)

and these statements imply that finite unions
⋃k
i=1 Vi and infinite intersections

⋂∞
i=1 Vi

are closed algebraic subsets.

Some families of polynomials and their associated set are given below.

Family of Polynomials Associated Subvariety

{0} V

{1} ∅

{x = 0} when V = R2 the vertical axis of R2

detX = 1 when X ∈ Matn×n(k) SL(n, k)

Intuitively, closed sets in the Zariski topology are intersections of hyperplanes and

hypersurfaces which have zero Lebesgue measure in V = kn. Hence the open sets of

the Zariski topology are very large; if U ⊂ Cn is open in the Zariski topology on Cn

then U is dense in the standard topology on Cn. For X ⊂ V , let I(X) be the set of
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functions on V that vanish on X. This is called the ideal associated to X. The ideal

is used to define Zariski closure.

Let X be a subset of V . The Zariski closure of X is the set

X = {v ∈ V |for all f ∈ I(X), f(v) = 0} ⊂ V.

For example, if V = R and X is the set of integers, then X = R.

Finally, if X ⊂ kn and Y ⊂ km are two algebraic sets, then a map f : X → Y is

continuous in the Zariski topology, or regular, if f can be written as a restriction of

a polynomial map kn → km.

2.2 Algebraic Groups

An algebraic group is a group that is also an algebraic set such that multiplication

and inversion are regular maps. Our focus is on affine algebraic groups, i.e. GL(n, k).

A reductive group G is an algebraic group whose representations are all semi-

simple. The groups GL(n, k), SL(n, k) and SO(n) are reductive groups while any

unipotent group is not.

Each reductive group has an associated root system, which is a special set of

vectors in a vector space V . Abstract root systems will be introduced in the next

subsection and their association with reductive groups, along with examples, will

appear following. It is a theorem of Chevalley ([20]) that reductive groups are com-

pletely classified by their root systems. Here, our motivation for introducing root

systems will be to project G into a subset of V called the Weyl chamber a+. This
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α

α+ ββ

−α

−(α+ β) −β ⊥ to α

⊥ to (α+ β)

⊥ to β

Figure 2.1: The root system A2

will allow us to further exploit the algebraic properties of G.

2.2.1 Root Systems

Several definitions of root systems exist and the one presented here is most similar

to the one given in [13].

Let V be a finite dimensional vector space with a Euclidean inner product (·, ·).

The map

v 7→ v − 2
(v · n
n · n

)
n

defines a reflection of the vector v across a hyperplane passing through the origin

with normal vector n. If v ∈ V and f ∗ ∈ V ∗, define f ∗(v) = 〈f ∗, v〉. A generalization

of reflection where a Euclidean inner product is not required is

v 7→ v − 〈f ∗, v〉 f

where v, f ∈ V and f ∗ ∈ V ∗ with 〈f ∗, f〉 = 2.
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Reductive groups are classified by their root systems, which consist of the following

data:

• the pairings (V,Σ) and (V ∗,Σ∗) where V is a finite dimensional vector space

over R, V ∗ is the dual space of linear functions on V , Σ is a finite subset of

V \ {0} and Σ∗ is a finite subset of V ∗ \ {0},

• a bijection α 7→ α∗ between Σ and Σ∗

with the following conditions on this data:

• for each α ∈ Σ, 〈α∗, α〉 = 2,

• for each α, β ∈ Σ, 〈α∗, β〉 ∈ Z

• for each α ∈ Σ, the reflection

σα : v 7→ v − 〈α∗, v〉α

in V preserves Σ and the reflection

σα∗ : v 7→ v − λ∗(v)λ∗

in V ∗ preserves Σ∗.

With these conditions, one can classify root systems for a vector space V . The most

basic root system exists in V = R and consists of the pair {v,−v} with 〈v∗, v〉 = 2.

The roots for another system denoted A2 are shown in Figure 2.1. Each vector in
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the A2 system has coordinates
(√

2 cos
(
nπ
3

)
,
√

2 sin
(
nπ
3

))
for some integer n, and

(√
2 cos

(nπ
3

)
,
√

2 sin
(nπ

3

))
·
(√

2 cos
(mπ

3

)
,
√

2 sin
(mπ

3

))
= 2 cos

(
(n−m)π

2

)
∈ Z and

= 2 when n = m

as required in the definition of root systems.

For the A2 example, the reflections across hyperplanes perpendicular to each

root are shown in Figure 2.1; these correspond to the reflections of a triangle and

generate the dihedral group of order six. For any root system (V,Σ, V ∗,Σ∗), the

group generated by σα for α ∈ Σ is called the Weyl group; we have just shown that

the Weyl group for the root system A2 is the dihedral group of order six.

The hyperplanes of reflection of A2, shown in Figure 2.1, subdivide R2 into six

disconnected regions called Weyl chambers. In any root system a Weyl chamber

is a fundamental domain of the action of the Weyl group on V . We can choose a

particular Weyl chamber, called the principal Weyl chamber a+ by

a+ = {v ∈ V | 〈v, α〉 > 0 for all α ∈ Σ}.

2.2.2 Root Systems and Algebraic Groups

In future sections we will restrict the group G to the case where G = SL(n, k)

where k is a field. This group is algebraic because it is a closed subset under the

Zariski topology of all n × n matrices since SL(n, k) = {X ∈ Mat(n)|det(X) = 1}.
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Let A = (ai) be the subgroup of SL(n, k) of diagonal matrices; this group is a

subgroup of the group (k×)n under multiplication. LetX(A) be the group of algebraic

homomorphisms from A to k×. We can map A to X(A) via εi : a 7→ ai. In fact, the

εi generate X(A).

The group A acts on the Lie algebra sl(n, k) of SL(n, k) by the adjoint action;

here this is just conjugation i.e. Ad(a)(X) = aXa−1. Explicitly, when X = (xij),

aXa−1 =



x11
a1

a2
x12 · · · a1

an
x1n

a2

a1
x21 x22 · · · a2

an
x2n

...
. . .

...

an
a1
xn1 · · · · · · xnn


From this you can see that the adjoint action of A on sl(n, k) splits sl(n, k) into a sum

of eigenspaces Eij where each Eij has a 1 in the (i, j) position and zero elsewhere.

Each Eij has associated eigenvalue λij given by λij(a) = ai
aj

.

2.3 The Benoist Cone for Zariski Dense Subsemigroups

Suppose that Γ ⊂ G is a lattice in G. This means that

• G is a linear, semisimple Lie group (with finitely many connected components,

• Γ is a discrete subgroup of G, and

• G/Γ has finite volume.

When Γ is a lattice, the space M = G/Γ has a Riemannian metric that comes from

the Haar measure. The Borel density theorem says that in many cases, the lattice Γ
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is also Zariski dense in G.

Theorem 2.1 (Borel Density Theorem). A lattice Γ in a linear semisimple Lie group

G is Zariski dense as long as G has no compact factors.

Rather than working with lattice subgroups, we will work in the similar situation

where G = SL(m+ 1,R) acts on a convex set Ω and has a discrete subgroup Γ such

that Ω/Γ is compact. In this case, we say that Ω is divided by Γ. The subgroup

Γ may or may not be Zariski dense in SL(m + 1,R); this will affect the geometric

properties of Ω/Γ.

2.3.1 Zariski Dense Semigroups

In the work of Benoist and Quint in [10], results are given for the more general

semigroups rather that groups. The set G is a semigroup if there is a multiplication

∗ on G such that

• for all g, h ∈ G, g ∗ h ∈ G and

• there exists an element e such that for all g ∈ G, e ∗ g = g ∗ e = g.

Essentially, the difference bewteen how groups and semigroups are defined is that

inverses are not required in semigroups. Benoist and Quint work in this generality

as it is necessary in proofs related to the Law of Large Numbers for random walks in

reductive groups. However, in all of our applications, G is a subgroup of SL(m,R)

for some integer m > 0 and the symbol ∗ for multiplication will be omitted.

From this point, our discussion is concerned with Zariski dense subsemigroups of
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SL(n,R). We do not need to worry about the group structure of the Zariski closure

of subgroups due to the following lemma:

Lemma 2.2 (See Lemma 6.15 in [10]). Let Γ be a Zariski dense subsemigroup of

GL(n,R). Then the Zariski closure of Γ in GL(n,R) is a group.

2.3.2 The Jordan Projection

When G is a reductive group, every element g ∈ G can be decomposed uniquely

into its Jordan decomposition. This is a set of commuting elements ge, gh, and gu

in G where g = geghgu and ge is semisimple with eigenvalues of modulus one, gh

is semisimple with positive eigenvalues, and gu is unipotent. When G = SL(n,R),

gh is a diagonal matrix with positive eigenvalues. This decomposition ensures the

existence of a map called the Jordan projection µ for any g ∈ SL(n,R) as

µ : G→ a+ where µ(g) = (log |λ1|, . . . , log |λn|)

and where |λ1| ≥ |λ2| ≥ . . . ≥ |λn| are the moduli of the eigenvalues of g. The

Jordan projection is uniquely determined due to the Jordan decomposition. The

element µ(g) lies on the wall of a Weyl chamber if and only if there is some i where

|λi| = |λi+1|.

2.3.3 Loxodromic Elements

Let g ∈ SL(n, k) and |λ1| ≥ |λ2| ≥ · · · ≥ |λn| be the modulus of the eigenvalues

of g in decreasing order. The element g is said to be proximal if |λ1| > |λ2| and

biproximal if both g and g−1 are proximal. An element g is called loxodromic if
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Figure 2.2: The limit cone of λ(g1), λ(g2), and λ(g3) for some g1, g2, g3 ∈ Γ.

|λi| > |λi+1| for all 0 < i < n. Loxodromic elements g have the property that the

Jordan projection µ(g) belong to the interior of a+. In most cases we can assume

any g ∈ G is loxodromic due to the following result:

Theorem 2.3 (Benoist [10]). Let G be a connected algebraic semisimple real Lie

group and let Γ be a Zariski dense subsemigroup of G. Then the set Γlox of loxodromic

elements of Γ is still Zariski dense.

2.3.4 Benoist results

In this section we discuss the Jordan projection µ(Γ) of a Zariski dense subgroup

Γ of G. For each g ∈ Γlox, µ(g) maps into what we will be the limit cone of Γ. The

limit cone consists of t · χ(g) for all g ∈ Γlox with t > 0; this is shown in Figure

2.2 Then the limit cone LΓ of Γ is defined as the smallest closed cone in the Weyl

chamber containing µ(Γlox).

When G is a connected algebraic semisimple Lie group and Γ is a Zariski dense

subsemigroup of G, one can apply the following very important theorem of Benoist:

Theorem 2.4 (Benoist [2]). The limit cone LΓ is convex with nonempty interior.
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We will return to a discussion of the limit cone when G = SL(3,R) in Chapter 5.

2.4 The Hilbert Metric

The Klein model of hyperbolic space consists of the points {(x1, x2, . . . , xn, 1) ∈

Rn+1|x2
1 + x2

2 + · · ·x2
n < 1} where geodesics are straight lines. This can be checked

using the Riemannian metric for this model which is given by

ds =

√
dx2

1 + · · ·+ dx2
n

1− x2
1 − · · · − x2

n

+
(x1dx1 + · · ·+ xndxn)2

(1− x2
1 − · · · − x2

n)2

Since geodesics are straight lines, calculating the distance between two points reduces

to a one dimensional picture. In this case, the metric is

ds =

√
dx2

1− x2
+

x2dx2

(1− x2)2
=

dx

(1− x2)

so that the distance between the point x = p1 and x = p2 where −1 < p1, p2 < 1 is∫ x=p2

x=p1

1

(1− x2)
dx =

1

2
log

(
1− p1

1 + p1

)
− 1

2
log

(
1− p2

1 + p2

)
=

1

2
log

(
(1− p1)(1 + p2)

(1 + p1)(1− p2)

)
.

This metric can be rewritten in terms of Euclidean distances. Therefore this

distance can be applied not only to Hn, but to any convex set Ω; extend a line

segment between the points x, y ∈ Ω to find the intersection points a, b ∈ ∂Ω of the

line with the boundary of Ω, as shown in Figure 2.3.

Hence we define the Hilbert metric on a convex set Ω as

dΩ(x, y) =
1

2
log

(
|ay||xb|
|ax||yb|

)
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a

b

x

y

Figure 2.3: The Hilbert Metric

where | · | is the Euclidean distance. Note that |ay||xb||ax||yb| = [x; y; a; b] is the projec-

tive cross ratio of four points. The value of [x; y; a; b] is invariant under projective

transformations.

Let x ∈ Ω, let ξ ∈ TxΩ and consider t ∈ R such that x+ tξ ∈ Ω. The distance dΩ

can be seen as arising from a Finsler norm F in the following sense:

F (x, ξ) =
d

dt
(dΩ(x, x+ tξ))t=0 =

|ξ|
2

(
1

|xx+|
+

1

|xx−|

)
where x+ is the intersection of the line through (x, x + tξ) and ∂Ω when t > 0 and

x− is the intersection of the line through (x,+tξ) and ∂Ω when t < 0. Note that this

norm may be asymmetrical due to the shape of the boundary of Ω.

2.5 Lyapunov Exponents

Let N be a Riemannian manifold and let φt : N → N be a C1 flow on N .

The Lyapunov exponents of the flow φt measure the spread of infinitesimally close
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geodesics on N under the action of φt. For example, a vector v ∈ TN approximates

the initial displacement between two close geodesics. As t increases under the flow φt,

the distance between each orbit changes by approximately ||dφt(v)||. The exponential

growth rate, averaged for all t, of ||dφt(v)|| is

lim
t→+∞

1

t
log ||dφt(v)|| = χ(v)

whenever χ(v) exists. The existence of χ(v) is guaranteed for a subset of full measure

of TN by the multiplicative ergodic theorem (MET) when N has a φt invariant

probability measure µ. In particular, the MET guarantees more; there is a set of full

measure with respect to µ of points v ∈ TN and a decomposition

TN = R ·X ⊕ E1 ⊕ · · · ⊕ Ep

where X is a vector field that generates the flow φt. Further, there are real numbers

χ1(v) < · · · < χp(v) where for any vector vi ∈ Ei \ {0}, the Lyapunov exponents are

(2.1) χi(v) = lim
t→+∞

1

t
log ||dφt(vi)||.

Finally, the MET ensures that limt→±∞
1
t

log |detdφt| =
∑p

i=1 χi(v)dimEi.

In the following sections, we will examine the case where φt is the geodesic flow ϕt

on SM , the unit tangent space ofM whereM is either Γ\H2 or Ω/Γ under the Hilbert

metric. When γ(t) ∈ M is a geodesic with γ(0) = x ∈ M and γ′(0) = v ∈ SxM ,

then ϕt((x, v)) = (γ(t), γ′(t)) ∈ SM .

Note that dϕt is a map dϕt : TSM → TSM and the Lyapunov decomposition

given by the MET is a decomposition of TSM . In the next section, we will study
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the geodesic flow on H2 using algebraic techniques (see [23]) and afterwards follow

Crampon in [18], [17], [19], and [16] to study the Lyapunov exponents in Hilbert

geometry from multiple points of view.

2.5.1 Lyapunov Exponents for the Geodesic Flow on Γ\H2

The Lyapunov exponents for the geodesic flow on compact quotients of H2 will

be used in Chapter 4 so we will give an outline of how they are calculated. Much of

the setup can be found in further detail in [23]. To simplify calculations, we will use

the upper half space model of H2;

H2 = {x+ iy = z ∈ C|Im(z) = y > 0}

which has the metric ds =
√

dx2+dy2

y
. Under this metric, the positive imaginary

axis, i.e. {x + iy = z ∈ H2|x = 0} is a geodesic. Since the isometry group of H2 is

transitive on SH2, the full description of all geodesics can be obtained by considering

the orbit of the positive imaginary axis under the isometry group.

The isometry group of H2 is PSL(2,R) which acts on the upper half space model

by Mobius transformations: a b

c d

 · z =
az + b

cz + d
.

Lete Γ be a discrete subgroup of PSL(2,R) such that Γ\PSL(2,R) is compact. The

Mobius transformations are generated by the maps z 7→ az, z 7→ z + b and z 7→ 1
z
.

The orbit of the positive imaginary contains lines parallel to the imaginary axis and
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half circles which meet the real axis {z = x + iy|y = 0} orthogonally. Identifying z

with

z
1

 ∈ CP 1, one can formulate the action as matrix multipliation;

a b

c d


z

1

 =

az + b

cz + d

 =

az+b
cz+d

1

 ∈ CP 1.

The stabilizer of the point z = i ∈ H2 is PSO(2) ⊂ PSL(2,R). Thus H2 can be

identified with PSL(2,R)/PSO(2) by sending z ∈ H2 to gPSO(2) where g · i = z. In

addition to acting on H2, the element g ∈ PSL(2,R) acts on x = (z, v) ∈ TM by

g · x = (g · z, g′(z)v). In coordinates, this map is

(dg)(z, v) =

(
az + b

cz + d
,

1

(cz + d)2
v

)
.

The map dg preserves the length of the vector v under the norm ds2 = dx2+dy2

y
.

Hence we get a restricted map dg : SH2 → SH2 which defines an action of PSL(2,R)

on SH2. This action is simply transitive, so we conclude that

PSL(2,R) ∼= SH2.

To determine a map PSL(2,R) → H2, we simply pick a basepoint (z, v) ∈ H2 and

let g 7→ dg · (z, v) = (g(z), g′(z)v). For all further calculations, this basepoint is

(z, v) = (i, i) where v = i indicates a vector of unit length in the positive vertical

direction.

The motivation for this process is that under the identification SH2 ∼= PSL(2,R),

the geodesic flow ϕt : SH2 → SH2 can be defined entirely in terms of actions on
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PSL(2,R). When working with these group actions, the Lyapunov exponents for a

quotient of hyperbolic space is a more attainable calculation. The first step will be

to define the geodesic flow on SH2 and then interpret the map for ϕt : PSL(2,R)→

PSL(2,R) using the identification of PSL(2,R) with SH2.

To define the map ϕt : SH2 → SH2 it is only necessary to determine ϕt(i, i). Note

that the action of PSL(2,R) preserves geodesics. Then, if x = (z, v) = dg · (i, i), it

follows that ϕt(x) = dg · ϕt(i, i). It can be shown that ϕt(i, i) = (eti, eti).

In order to compose the action of ϕt on (i, i) with the action of dg, we will define

ϕt so that ϕt(z, v) = dht · (z, v) = (ht(z), h′t(z)v) for some Mobius transformation h.

We only need that dht · (i, i) = (eti, eti) since dht will only be directly acting on the

basepoint (i, i). More simply, we need h where

dht · (i, i) = (ht(i), h
′
t(i)i) = (eti, eti).

A choice of ht(z) is ht(z) = etz. A representative of the Mobius transformation ht(z)

in PSL(2,R) is a−1
t where

(2.2) at =

e−t/2 0

0 et/2

 .

The inverse of at is used because the geodesic flow will be a right action on PSL(2,R).

Thus

ϕt(z, v) = dg · d(a−1
t )(i, i) = d(ga−1

t )(i, i)

where dg · (i, i) = (z, v). The geodesic flow on PSL(2,R) can now be defined;
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(2.3) ϕt : PSL(2,R)→ PSL(2,R) where g 7→ Rat(g)

where Rat is right multiplication by a−1
t .

Recall from Equation 2.1 that Lyapunov exponents of the geodesic flow ϕt on Γ\H2

measure the exponential growth rate of dϕt. Although the multiplicative ergodic the-

orem only guarantees existence of Lyapunov exponents for spaces with a probability

measure, in this example we can compute this growth rate on H2 rather than Γ\H2.

On H2, dϕt maps TSH2 to itself. Since we have defined ϕt as a right translation by

a−1
t on PSL(2,R), this growth rate can be explored by treating PSL(2,R) as a Lie

group.

Let G be a closed linear group with tangent bundle TG ∼= G×g where g is the Lie

algebra of G. If α(t) : [0, 1] → G is a differentiable curve, then define its derivative

to be

(2.4) dα(t0) = (α(t0), α(t0)−1α′(t0)) ∈ G× g

with t0 ∈ [0, 1]. Defining a new curve α(t)h−1 allows us to see the effect of right

translation on tangent spaces. Calculating the derivative,

d(α(t)h−1)(t0) = (α(t0)h−1, (α(t)h−1)−1α′(t0)h−1) = ((α(t0)h−1, hα(t0)−1α′(t0)h−1)

and comparing with Equation 2.4 we conclude that the derivative of Rh is

(2.5) dRh : TgG→ Tgh−1G dRh(g, v) = (gh−1, hvh−1).
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Now we can return to the geodesic flow ϕt : PSL(2,R) → PSL(2,R) which was

defined by right multiplication by a−1
t in Equation 2.3. From Equation 2.5, we have

that dϕt(g, v) = dRat(g, v) = (ga−1
t , atva

−1
t ); to calculate Lyapunov exponents for ϕt

we will need ||dϕt(v)||. The value of ||dϕt(v)|| will depend on v. Note that v ∈ g, so

we will choose v ∈ sl(2,R). The space sl(2,R) is a three dimensional vector space

with basis

v1 =

1 0

0 −1

 v2 =

0 1

0 0

 v3 =

0 0

1 0

 .

Next,

atv1a
−1
t = v1 atv2a

−1
t = e−tv2 atv3a

−1
t = etv3.

Finally, it follows that for any norm || · || on g, the Lyapunov exponents for ϕt are

1. χ(v1) = 0,

2. χ(v2) = −1, and

3. χ(v3) = 1.

Now that we have calculated the Lyapunov exponents of the geodesic flow, we

can discuss what they mean. First, the case where χ = 0 corresponds to the flow

direction. Notice that exp
(
t
2
v1

)
= a−1

t and that the geodesic flow is given by Rat .

The case where χ = −1 describes a direction where vectors in SH2 move closer

together under the geodesic flow in positive time.

Next, let s ∈ R and consider the points (i, i) and (s+ i, i) in SH2. Then

ϕt(i, i) = (eti, eti) and ϕt(s+ i, i) = (s+ eti, eti)
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and note that d(eti, s+ eti) ≤ |s|
et

since |s|
et

is the length of the horizontal line between

z = eti and z = s+eti. Thus the distance between ϕt(i, i) and ϕt(s+i, i) goes to zero

as t goes to infinity. With some work, one can show that these points {(s+i, i)|s ∈ R}

form the stable manifold for the geodesic flow through the point (i, i).

Since (z, v) = (i, i) is the basepoint for the identification of SH2 with PSL(2,R),

we can define the stable manifold for the geodesic flow through any point (z, v) which

will be the orbit of the stable horocycle flow. Let

u−(s) =

1 s

0 1


and define the stable horocycle flow H−s on PSL(2,R) ∼= SH2 by

H−s : PSL(2,R)→ PSL(2,R) with h 7→ Ru−(s) = hu−(−s).

This is analogous to the definition of the geodesic flow on PSL(2,R).

We can now interpret the Lyapunov exponent χ(v2) = −1. This suggests that

along the direction of v2 ∈ g = sl(2,R), the geodesic flow compresses geodesics and

that this exponential decay is −1. Note that exp(−sv2) = u−(−s) and that u−(s)

generates stable manifolds, which confirms this interpretation.

Now, we can also define the unstable manifold for the basepoint (i, i). These are

the points (z, v) on SH2 such that the distance between ϕt(i, i) and ϕt(z, v) goes to

zero as t goes to negative infinity. These points are given by the orbit of (i, i) under
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the action of

u+(s) =

1 0

s 1

 .

More generally, the unstable horocycle flow H+
s : PSL(2,R) → PSL(2,R) is defined

by h 7→ hu+(−s). Finally, χ(v3) = 1 and exp(−2v3) = u+(−s) which generates the

unstable manifolds for the geodesic flow.

2.6 Lyapunov Exponents in Hilbert Geometry

The background in this section is primarily work from Crampon, who applied

some of Foulon’s constructions in [25] to Hilbert geometry. A summary of this work

is in his survey [18] with most of the details found in [16] and [19]. The relationship

between Lyapunov exponents and the shape of the boundary of Ω is covered in [17].

The notation used in this section is inspired by these papers.

The concepts that Crampon introduces require Ω to be strictly convex with C1

boundary (see discussion in Section 3.6 in [18]). These concepts include geodesic

flow, parallel transport, and stable/unstable sets. Note that parallel transport will

be defined as an operator on the double tangent space and will only be defined along

geodesics, unlike in Riemannian geometry (see Section 3.3 in [18] for motivation).

Crampon also introduces a notion of curvature, which will not be discussed here.

A summary of this background is given in Subsection 2.6.1. In Subsection 2.6.2,

we describe the relationship between geodesic flow and parallel transport (see [16] or

[19]) on M = Ω/Γ. Finally, the different notions of Lyapunov exponents on Ω/Γ are
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x− x+

w = (x, ξ)

Figure 2.4: w ∈ HΩ and x+, x− ∈ ∂Ω

described in Subsection 2.6.3.

2.6.1 Parallel Transport and Geodesic Flow

Let HM = (TM \ {0})/R>0 be the space of pairs w = (x, [ξ]) where x ∈ M

and [ξ] is a direction in TM . The geodesic flow ϕt is a map ϕt : HM → HM that

projects to geodesics under π : HM → M and is defined as follows. If lw(t) is a

speed one (with respect to dΩ) geodesic line leaving x ∈M at t = 0 in the direction

of [ξ] ∈ HxM , then ϕt(w) = (lw(t), [l′w(t)]).

In addition to geodesic flow, a well defined parallel tranport exists on M . M.

Crampon constructs these maps in [16] using the dynamical formalism introduced by

Foulon in [25]. Let X : HM → THM be the vector field that generates the geodesic

flow ϕt. The method starts by finding a splitting of THM which will depend on the

vector field X. This relies on some regularity of X and HM . The next step is to use

an analogue of covariant differentiation, DX , which is defined so that a vector field

Z ∈ THM is parallel when DX(Z) = 0 and Z projects to the geodesic flow on HM .

This allows a link between geodesic flow and parallel transport that will be essential
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in the calculation of Lyapunov exponents.

In Foulon’s dynamical formalism, a vector field X0 and a function m must be

chosen so that X0 is a smooth second order differential equation on M and

m ∈ C1
X0(HM) = {f : HM → HM |LX0f exists.}

where L is the Lie derivative. We will take X0 to be the generator of the Euclidean

geodesic flow on HM , where straight lines are also geodesics. Hence X0 is well

defined and smooth. We will take m to be the function that satisfies X = mX0

where X is the generator of the Hilbert geodesic flow. To see what m should be,

recall from Section 2.4 that the Finsler norm on TM is

(2.6) F (x, ξ) =
|ξ|
2

(
1

|xx+|
+

1

|xx−|

)
where | · · · | is a Euclidean norm in an affine chart on Ω and x+, x− can be seen in

Figure 2.6.1 on the boundary of Ω. Therefore to ensure that each vecotr π(X(w))

has unit Finsler norm while each vector π(X0(w)) has unit Euclidean norm, we take

m = 2
(

1
|xx+| + 1

|xx−|

)−1

= 2
(
|xx+||xx−|
|xx+|+|xx−|

)
. In some affine chart on Ω, LX0 is just

differentiation along the direction of (x+x−), so that

LX0 = 2

(
|xx+| − |xx−|
|x+x−|

)
, L2

X0 = − 4

|x+x−|
and LnX0 = 0

for n > 2. Therefore the conditions of Foulon’s dynamical formalism are satifised

and we will apply their results.

First, recall that π is the projection π : HM → M and that dπ is a map dπ :

THM → TM . The vertical distribution V HM ⊂ THM is the kernel of dπ and this
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is the standard vertical bundle of THM . If M has dimension m, then TwHM has

dimension 2m− 1 and VwHM has dimension m− 1. There is a decomposition

TwHM = R ·X ⊕ VwHM ⊕ hXHM ;

it follows that hXHM has dimension m − 1. The distribution hXHM is called the

horizontal distribution. The horizontal distribution depends on X and has basis

[X, Yi] where Yi is one of the basis elements of VwHM .

Remarkably, this construction allows us to define a pseudo-complex structure JX

on V HM ⊕ hXHM :

JX : V HM ⊕ hXHM → V HM ⊕ hXHM

where JX : V HM → hXHM , JX : hXM → V HM , and JX ◦ JX = −Id. Later,

we will see that the relationship between the Lyapunov exponents of ϕt and the

Lyapunov exponents of the parallel transport T t relies on the existence of JX .

Finally, M. Crampon defines an analogue of covariant differentiation, DX : THM →

THM , which is used to define parallel transport. We can just state how it acts on

each distribution:

DX(X) = 0, DX(Y ) = −1

2
vX([X, [X, Y ]]), [DX , HX ] = 0

where vX : THM → V HM is the vertical operator defined by

vX(X) = vX(Y ) = 0, vX([X, Y ]) = −Y
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and HX : V HM → THM is the horizontal operator defined by

HX(Y ) = −[X, Y ]− 1

2
vX([X, [X, Y ]]).

The properties of VX and HX can be found in Crampon’s [16].

A vector field Z ∈ THM is called parallel along the generator of the flow X

if DX(Z) = 0 and Z projects to the geodesics flow on HM . Then the parallel

transport of the vector Z(w) ∈ TwHM at time t is defined as T t(Z(w)) = Z(ϕt(w))

where Z(ϕt(w)) is the parallel vector at ϕt(w). Note that without a Riemannian

connection, the parallel transport T t is not necessarily an isometry.

2.6.2 Relationship Between Geodesic Flow and Parallel Transport

Let X be the vector field that generates the Hilbert geodesic flow. In [16], Cram-

pon shows that THΩ has a splitting that depends on X where

THM = R ·X ⊕ Es ⊕ Eu

and

Es =
{
Z ∈ THΩ, lim

t→∞
||dϕt(Z)|| = 0

}
and Eu =

{
Z ∈ THΩ, lim

t→−∞
||dϕt(Z)|| = 0

}
and || · || is a Finsler norm. Now, in terms of dynamical formalism,

Eu = {Y + JX(Y ), Y ∈ V HM} and Es = {Y − JX(Y ), Y ∈ V HM} = JX(Eu)

which have the property that for Zu ∈ Eu and Zs ∈ Es,

(2.7) dϕt(Z
u) = etT t(Zu) and dϕt(Z

s) = e−tT t(Zs).
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which demonstrates a relationship between the lengths of vectors under orbits of dϕt

and under orbits of T t.

A horosphere Hx+(x) based at x+ ∈ ∂Ω through x ∈ Ω is the subset

Hx+(x) = {y ∈ Ω, lim
p→x+

dΩ(x, p)− dΩ(y, p) = 0}.

The horospheres based at x+ and x− provide the basepoints of the stable and unstable

sets of the geodesic flow ϕt on HΩ as Crampon proves in [19]:

Theorem 2.5 (Crampon [19]). Let w = (x, [ξ]) ∈ HΩ, x± = ϕ±∞(w) ∈ ∂Ω. The

stable an unstable sets of w are the C1 submanifolds

W s(w) = {v ∈ HΩ, ϕ+∞(v) = x+, π(v) ∈ Hx+(x)}

and

W u(w) = {v ∈ HΩ, ϕ−∞(v) = x−, π(v) ∈ Hx−(x)}

where π : HΩ→ Ω is the projection.

Later, in Section 2.7, we will need THx+ which is defined as

(2.8) THx+ = {TxHw|w = (x, [ξ]) ∈ W s(x+)}

where Hw is the horosphere at w.

2.6.3 Lyapunov Exponents of Geodesic Flow and Parallel Transport

Recall that parallel transport T t is a map on THM . We will use T t to define

a map T tx+ on HM which can be thought of as parallel transport in the direction
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of x+. Recall the projection π : HM → M so that dπ : THM → HM . Define

dπ−1
x+ (x) = (x, [xx+]) ∈ THM . Then T tx+ = dπ ◦ T t ◦ dπ−1

x+ .

We call a point w ∈ HM weakly regular if for all Z ∈ TwHM , the limit

lim
t→±∞

1

t
log ||dϕt(Z)||

exists. Whenever w is weakly regular, these numbers χ(Z) = limt→±∞
1
t

log ||dϕt(Z)||

for Z ∈ TwHM can only take a finite number of values, called the Lyapunov expo-

nents χi of the geodesic flow ϕt.

When w is weakly regular for the geodesic flow, w is also weakly regular for the

parallel transport. A Lyapunov exponent for T tx+ is defined to be

η(v) = lim
t→∞

1

t
logF (T tx+v)

where F is the Finsler norm from Equation 2.6. These η(Z) for Z ∈ TwHM also

take only a finite number of values for weakly regular w and are called the parallel

Lyapunov exponents.

For Zi ∈ THM , let

χ+
i = χ(Zi) for Zi ∈ Zu, χ−i = χ(Zi) for Zi ∈ Zs, and ηi = η(Zi).

Working from Equation 2.7, Crampon shows that

1. χ+
i = 1 + ηi

2. χ−i = −1 + ηi

3. χ+
i = χ−i + 2, and

4. −2 ≤ χ+
i ≤ 0 ≤ χ−i ≤ 2.
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2.6.4 Lyapunov Exponents for Periodic Orbits

Let γ be a periodic orbit of the geodesic flow on M . Lifted to Ω, the geodesic γ̃ is

associated to an element g ∈ Γ for which γ̃ is its axis. Since γ is loxodromic we can

identify a highest modulus eigenvalue |λ1| and a lowest modulus eigenvalue |λm+1|.

Then

Lemma 2.6. The length of the periodic orbit of γ is

lg =
1

2
(log |λ1| − log |λm+1|)

Proof. Choose an affine chart for Ω where the eigenvector associated to λ1 is[
0 . . . 1

]T
and the eigenvector associated to λm+1 is

[
1 . . . 0

]T
. Let

p =

[
µ 0 . . . 0 1− µ

]T
∈ γ̃.

Then

g · p =
1

λ1µ+ λm+1(1− µ)


λ1µ

...

λm+1(1− µ)

 =


gp1

...

gpm+1

 .
Then from a calculation it follows that

dΩ(p, g · p) =
1

2
log

(
d((0, 1), (gp1, gpm+1))d((1, 0), (µ, 1− µ))

d((0, 1), (µ, 1− µ))d((1, 0), (gp1, gpm+1))

)
=

1

2
log

√
λ2

1

λ2
m+1

where d is the Euclidean distance in the affine chart.
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Let Z ∈ TwHΩ be such that dπ(Z) = vi, an eigenvector with eigenvalue λi. Then

in [16], Crampon shows that

||T nlg || ≈ λ1

λ2

ne−nlγ .

To calculate the parallel lyapunov exponent ηi, we can take

ηi = lim
n→∞

1

nlγ
||T nlγ (Z)|| = −1 + 2

log |λ1| − log |λi|
log |λ1| − log |λm+1|

Finally, using the equations from 2.6.3, we also get that

(2.9) χ+
i = 2

log |λ1| − log |λi|
log |λ1| − log |λm+1|

and χ−i = −2 + 2
log |λ1| − log |λi|

log |λ1| − log |λm+1|
.

These formulas for the Lyapunov exponents of periodic orbits will become very im-

portant in the proof of Theorem 2.

2.7 Approximate Regularity

In this subsection we will define an alternative definition of Lyapunov exponents

for points p ∈ ∂Ω where the boundary ∂Ω around p has a Hölder-like regularity.

This property is called approximate regularity and was introduced by M. Crampon

in [17] and [19]; we will first define approximate regularity for functions on Rn and

then extend the definition to ∂Ω.

A convex C1 function f : R → R with f(0) = f ′(0) = 0 is called approximately

α-regular (Crampon, [19]) if there exists an α ∈ [1,∞] such that

lim
t→0

log
(
f(t)+f(−t)

2

)
log |t|

= α.
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For example, the function t 7→ |t|α′ is approximately regular with α = α′ (note

that α′ > 1 since t 7→ |t|α′ must have continuous derivative). In particular, if f is

approximately α-regular, then for any ε and small enough t, (Lemma 4.3 in [19])

|t|α+ε ≤ f(t) + f(−t)
2

≤ |t|α−ε.

Hence whenever f is approximately α-regular, the function f(t)+f(−t)
2

has a shape

similar to |t|α around t = 0.

Let f : Rn → R be a convex C1 function with f(0) = 0 and ∂f
∂xi

(0) = 0 for

1 ≤ i ≤ n. Then f is called approximately regular (Crampon, [19]) if for any vector

v ∈ Rn \ {0}, there exists α(v) ∈ [1,∞] such that

lim
t→0

log
(
f(tv)+f(−tv)

2

)
log |t|

= α(v).

For example, the function (x, y) 7→ |x|α1 +|y|α2 is approximately regular with α(e1) =

α1 and α(e2) = α2.

The next step is to extend the notion of approximate regularity the boundary of

a convex set Ω of dimension m. Pick a point p ∈ ∂Ω. We will model the shape of ∂Ω

around p with a function f : Tx∂Ω ∼= Rm−1 → R. In particular, for a small subset

U ⊂ Tp∂Ω containing p, define

f : U → R x 7→ µ

where µ is the scalar such that (x + µnp) intersects ∂Ω and np is the normal unit

vector to ∂Ω at p that points inside of Ω. In this construction, f(0) = 0 and all of

the first partial derivatives of f vanish at 0.
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As an example we will explore the approximate regularity of the boundary of Hn.

Take a ball model for Hn where the center of the ball is at (0, · · · , 1):

Hn = {(x1, . . . , xn) : x2
1 + · · ·+ x2

n−1 + (xn − 1)2 < 1}.

The boundary of Hn around the origin is modeled by the function

(x1, . . . , xn−1) 7→ 1−
√

1− x2
1 − x2

2 − · · · − x2
n−1

and a calculation reveals that α(ei) = 2 for 1 ≤ i ≤ n− 1.

The next goal is to relate approximate regularity α to the parallel Lyapunov

exponent η. However, since α(v) is defined for a direction v ∈ Tp∂Ω and η(Z) is

defined for a vector Z ∈ TwHM , we will need to construct a relationship between

vectors in TwHM and vectors in Tp∂Ω.

In Theorem 4.11 in [19], Crampon shows that there is a correspondence between

weakly forward regular points w = (x, [ξ]) and approximately regular points ϕ∞(w) =

x+ ∈ ∂Ω which we will discuss now. Define

px+ : TxHw(x)→ Tx+∂Ω

be the projection in the direction [xx+] from the tangent space to the horosphere at

w = (x, [ξ]) to the tangent space of ∂Ω at the point x+ as shown in Figure 2.7.

Finally, we can restate Crampon’s Theorem 4.11 in [19]:

Theorem 2.7 (Crampon [19]). A point in w = (x, [ξ]) ∈ HΩ is weakly forward

regular if and only if ∂Ω is approximately regular at x+ = ϕ∞(w). The Lyapunov
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v ∈ TxHw

ξ

w = (x, [ξ])

x+ px+(v)

Ω

Figure 2.5:
Relationship between weakly regular w = (x, [ξ]) and approximately regular x+ =
ϕ∞(w)
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exponents are related by

η(v) =
2

α(px+(v))
− 1, v ∈ TxHw(x).
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CHAPTER 3

Conics in the Boundary of POS(n)

In this section, we explore POS(n), one type of symmetric cone in Hilbert geom-

etry. The goal is to prove Theorem 1:

Theorem 1. The symmetric convex cones POS(n,K) with K = R,C or H with

n ≥ 2 and POS(3,O) have a properly embedded conic through every boundary point.

The method is that we will prove Theorem 1 by considering each case for K individ-

ually in the following sections.

3.1 Introduction

Let M be an m×m matrix with entries in K where K will be R, C, the quaternions

H, or the octonions O. If K = R, then M is a symmetric matrix. Assume K = C or

H. For q ∈ K, let q be the conjugate of q. Let M be an m×m matrix with entries in

K and let M∗ be its conjugate transpose. M is Hermitian if M∗ = M . For x ∈ Kn
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and a Hermitian matrix M = (aik),

(3.1) x∗Mx =
n∑

i,k=1

xiaikxk

which is in R since
n∑

i,k=1

xiaikxk =
n∑

i,k=1

xkaikxi

and aik = aki.

Let K = R. The matrix M is called positive definite if for all x ∈ Km \ {0},

xTMx > 0 and positive semi-definite if for all x ∈ Km, xTMx ≥ 0. Further, any

positive semi-definite symmetric m × m matrix can be diagonalized into the form

diag(1, . . . , 1, 0, . . . , 0) by the spectral theorem which will be discussed in the next

section. The number of 1’s is called the rank and the number of zeros, m− (rank),

is called the co-rank. Rank is preserved when projecting M to SN by equivalently

defining rank as the number of nonzero eigenvalues.

Let K = C or H. We can say that a Hermitian matrix M is positive definite if

x∗Mx > 0 for all x ∈ Kn and positive semi-definite if x∗Mx ≥ 0 for all x ∈ Kn.

Recall that C is a convex cone in RN+1 and Ω = p(C) is the projection of C

into SN which is the set of half lines in RN+1. Throughout this section, C =

{positive definite Hermitian m×m matrices over K} and POS(m,K) = p(C). Note

that if M ∈ C, the set p−1(p(M) \ {0}) is in C. Hence techniques from linear algebra

can be applied to C and then projected to POS(m,K).
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3.2 The Real Case

Let K = R and let M be symmetric.

Another way to determine if M is positive definite is by the following remark

which follows from Sylvester’s Law.

Remark 3.1. A symmetric matrixM is positive definite if and only if the determinants

of its leading minors are positive.

In order to move from the projective POS(m,K) to C, we will sometimes take an

affine chart of POS(m,K) by setting Tr(M) = 1. The boundary of POS(m,K) is

∂POS(m,K) = p({positive semi-definite matrices over K}) \ (POS(m,K)).

Let X ∈ POS(m,K) and g ∈ GL(m,K). Then g acts on X by gXgT . This action

is transitive on all of POS(m,K) and is transitive on the sets {M ∈ ∂POS(m,K) :

M has rank r} for 0 ≤ r ≤ m.

The positive definite symmetric matrices have properly embedded conics through

every point on the boundary:

Proposition 3.2. Let x ∈ ∂POS(m,R). Then there is a conic Cx ⊂ ∂POS(m,R)

such that Con(Cx) \ Cx is contained in the interior of POS(m,R).

We will need some facts about diagonalizing symmetric matrices to prove this

proposition.

Theorem 3.1 (Spectral Theorem, Theorem 4.1.5 in [32]). Let A be an n×n matrix
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over R. Then A is symmetric if and only if there is an orthogonal n × n matrix P

and a real diagonal matrix D such that A = PDP T .

Further, suppose the matrix D from Theorem 3.1 is of the form

D = diag(a1, . . . , ak, 0, . . . , 0).

Let g = diag( 1√
|a1|
, . . . , 1√

|ak|
, 0, . . . , 0). Then

gDgT = diag(±1, . . . ,±1, 0 . . . , 0)

where the ith coordinate is +1 if ai > 0, and −1 if ai < 0.

Proof. Assume without loss of generality (see Theorem 3.1 and the discussion that

follows) that x = diag(

p times︷ ︸︸ ︷
1, . . . , 1,

q times︷ ︸︸ ︷
0, . . . , 0). Let xd = diag(1,

q times︷ ︸︸ ︷
0, . . . , 0). Any properly

embedded conic Cxd passing through xd ∈ ∂POS(q + 1,R) can be mapped to a

properly embedded conic passing through x with the following block diagonals: Ip−1 0

0 Cxd



Let yd = (0,

q times︷ ︸︸ ︷
1, . . . , 1). If q = 1, then the orbit

(3.2)

a b

c d


0 0

0 1


a c

b d

 =

b2 bd

bd d2


is parametrized by (b, d) ∈ R2 \ {0} with b2 + d2 = 1 in the affine chart Trace = 1.

Setting b = 1, d = 0, this conic passes through xd. Note that xd ∈ ∂POS(2,R)
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and has dimension 1. Since POS(2,R) has dimension 2, the orbit in Equation 3.2 is

exactly the boundary of POS(2,R). Hence Cxd is properly embedded.

Now let q > 1. The following orbit will parametrize a conic:

(3.3)

a c · · · c

d

. . .

d





0

1

. . .

1





a

c d

...
. . .

c d


=



(n− 1)c2 cd · · · cd

cd d2

...
. . .

cd d2


which we will call Orb(yd).

Taking the affine chart, Trace = 1, we get the equation c2 +d2 = 1
n−1

, d 6= 0. This

is a conic with the point xd missing. Letting d→ 0, the orbit converges to the point

xd. Hence Orb(yd) is a conic passing through xd on the boundary of POS(q + 1,R).

It remains to show that Orb(yd) is properly embedded. Let

Y =



α β · · · β

β γ

...
. . .

β γ


∩ POS(m,R);

this is nonempty by choosing α, β, γ so that the determinants of the leading minors

of Y are positive. The set Y has dimension 2 and is preserved by the action in

Equation 3.3. The set Orb(yd) is in the boundary of Y and has dimension 1. Hence

∂Y = Orb(yd).
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3.3 The Complex Case

Recall that for K = C, the action of g ∈ G = GL(m,K) on M ∈ POS(m,C) is

gMg∗.

We will need the spectral theorem for n× n complex Hermitian matrices:

Theorem 3.2 (Spectral Theorem, Theorem 4.1.5 in [32]). Let A be an n×n matrix

over C. Then A is Hermitian if and only if there is a unitary n× n matrix U and a

real diagonal matrix D such that A = UDU∗.

This will allow us to prove the following proposition directly.

Proposition 3.3. Let x ∈ ∂POS(m,C). Then there is a properly embedded conic

Cx ⊂ ∂POS(m,C).

Proof. Given some point on x ∈ ∂POS(m,C), you can diagonalise x it with some

unitary matrix U to get a diagonal matrix D and the rest follows from Proposition

3.2

3.4 The Quaternion Case

Let K = H and α0 + α1i + α2j + α3k = q ∈ H. The conjugate of q is q =

α0−α1i−α2j−α3k. M is called normal if M∗M = MM∗. Note that Hermitian ⇒

normal.

Let POS(m,H) be the set of all Hermitian m ×m matrices M over H such that

x∗Mx > 0 for all x ∈ Hn. We will apply a quaternionic version of the spectral
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theorem to show that there is a properly embedded conic through every point on the

boundary of POS(m,H).

Theorem 3.3 ([24] (Theorem 3.3 and Proposition 3.8)). If M is an m×m normal

matirx with entries in H, then there exists matrices D and U with U unitary, D

diagonal, and U∗MU = D. Further if M is Hermitian, all of its right eigenvalues

are real and hence D has real entries.

Proposition 3.4. Let x ∈ ∂POS(m,H). Then there is a properly embedded conic

Cx ⊂ ∂POS(m,H).

Proof. Apply Theorem 3.3 to any point in the boundary of POS(m,H) and then

follow the real case.

3.5 The Octonionic Case

In Vinberg’s classification of homogoneous convex cones (see Section 1.6), the only

example of POS(m,K) with K = O is POS(3,O). Our exploration of this space, or

rather its associated convex cone in R27, is covered in more detail by Baez in [1] and

our notation is primarily from this source. A 3 × 3 octonionic Hermitian matrix is

of the form 
α z y∗

z∗ β x

y x∗ γ


with α, β, γ ∈ R and x, y, x ∈ O. Its automorphism group is e6(−26) with maximal

compact subgroup F4 which can be used to diagonalize any element.
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Let V be a vector space over R of dimension n with inner product 〈·, ·〉 and

associated norm |·| such that the orthogonal group O(p, q) acts on V . The Clifford

algebra C(p, q), or C(V ), is the tensor algebra ⊗V quotiented out by elements of the

form x⊗ x+ 〈x, x〉 with x ∈ V . This is equivalent to quotienting out by

x⊗ y + y ⊗ x+ 2 〈x, y〉 .

The Clifford algebras contain the groups Spin and Pin which we will construct

now. Let C∗(V ) be the group of invertible elements in C(V ). The group Pin(V ) is

generated by the unit vectors in V , i.e.

Pin(V ) = {a ∈ C∗(V ) : a = u1 · · ·ur with nonnegative integer r, ui ∈ V and |ui| = 1.}.

The group Spin(V ) is generated by the product of pairs of unit vectors in V , i.e.

Spin(V ) = {a ∈ C∗(V ) : a = u1 · · ·u2r with nonnegative integer r, ui ∈ V and |ui| = 1}.

Next, return to the 3×3 octonionic Hermitian matrices, which we will call h3(O);

they are of the form

(3.4)


α z∗ y∗

z β x

y x∗ γ

 .

We will use the decomposition

h3(O) 3 X =


α ϕ1 ϕ2

ϕ∗1 a+ β γ∗

ϕ∗2 γ −a+ β
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so that h3(O) ∼= R2 ⊕ V9 ⊕ (S+
8 ⊕ S−8 ) where (α, β) ∈ R2, h =

a γ∗

γ −a

 ∈ V9
∼= R9

(traceless elements of h2(O)) and (ϕ1, ϕ2) = ϕ ∈ O2 ∼= S+
8 ⊕ S−8 ∼= R16. The goal

is to find an element of the orbit of X under F4 with all real entries so that we can

apply the spectral theorem from the R case.

First, Spin(9, 0) is a double cover of SO(9), so Spin(9, 0) acts transitively on the

unit sphere in R9 ∼= V9. Hence you can map Equation 3.4 to an element where the

entry x is real. Call this new matrix Y . It remains to make z and y real while fixing

x. The group that fixes a vector in V9 is Spin(8, 0). We will use the following result

from Theorem 14.69 in [29]:

Theorem 3.4 (Theorem 14.69 in [29]). Consider the spin representation ρ+⊕ ρ− of

Spin(7, 0) on S+
8 ⊕ S−8 ∼= R8 ⊕ R8. The orbit through the point (a, b) ∈ S+ ⊕ S− is

{(x, y) ∈ S+ ⊕ S−||x| = a and |y| = b}.

Let (a, b) = (ϕ1, ϕ2). Since Spin(7, 0) ⊂ Spin(8, 0), we let Spin(7, 0) act on

(ϕ1, ϕ2). By the preceding theorem, the orbit of (ϕ1, ϕ2) contains

((|ϕ1|, 0, . . . , 0)︸ ︷︷ ︸
x

, (|ϕ2|, 0, . . . , 0)︸ ︷︷ ︸
y

),

so that when we identify S+
8 ⊕S−8 with O⊕O, each coordinate is real. Thus Y (and

hence X) has been conjugated to a matrix in POS(3,R) which we can diagonalize

with the spectral theorem over R.

The above discussion provides a proof for the following.
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Proposition 3.5. Let x ∈ ∂POS(3,O). Then there is a properly embedded conic

Cx ⊂ ∂POS(3,O).
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CHAPTER 4

Conics in the Boundary of Rank One Hilbert Geometries

Let Ω be a convex divisible set with dividing group Γ ⊂ SL(m + 1,R). The set

Ω has higher rank if for every a, b ∈ Ω the line (a, b) is contained in a properly

embedded simplex. If Ω does not have higher rank, then Ω has rank one. Let

ΛΩ
Γ = {x+

g : g ∈ Γ}. The goal of this section is to prove the following theorem.

Theorem 2. Let Γ be a discrete subgroup of SL(m+ 1,R) which divides a properly

convex set Ω that is irreducible. Assume that for all x ∈ ΛΩ
Γ there is a properly

embedded conic Cx ⊂ ∂Ω. If Ω has rank one, then Ω is projectively equivalent to Hn.

If Ω has higher rank, then Ω is projectively equivalent to POS(n,K) with n > 2 and

K = R,C,H or POS(3,O) where O is the octonions.

We will first prove the following theorem:

Theorem 4.1. Let Γ be a discrete subgroup of SL(m+1,R) which divides a properly

convex irreducible set Ω. Assume that for all x ∈ ΛΩ
Γ there is a properly embedded

conic Cx ⊂ ∂Ω. If there exists a g ∈ Γ whose axis γg ⊂ Ω, then Ω is projectively
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equivalent to Hn.

In order to prove Theorem 4.1, we need to collect some basic facts in 4.1 about Ω

and Γ. This will allow us to show that for each g ∈ Γlox = {g ∈ Γ|g is loxodromic},

Ω contains an embedded H2 which is fixed by g. Then, in Section 4.2, we introduce

flag manifolds to show that if we have one geodesic in Ω with endpoints in ΛΩ
Γ , we

get a Zariski dense set of g ∈ Γ, such that (x−g , x
+
g ) = γg ⊂ Ω. In particular, each γg

is not contained in ∂Ω.

An important step of the proof is an application of the following theorem of

Benoist:

Theorem 4.2 (Benoist, [5]). Let Ω be a properly convex irreducible set divisible by

the discrete group Γ. If Ω is not symmetric, then Γ is Zariski dense in SL(m+ 1,R).

Our goal will be to show that if Ω ⊂ Sm and Γ have all of the properties listed in

Theorem 2, then Γ cannot be Zariski dense in SL(m + 1,R) and hence Ω must be

symmetric.

4.1 Embedded H2

Lemma 4.3 (See discussions in [6]). Let Ω be a properly convex set divided by a

discrete group Γ. Then for all g ∈ Γ − {1}, there exist x+
g , x

−
g ∈ ∂Ω which are fixed

by the action of g. In particular, g fixes the geodesic between x+
g and x−g .

The idea behind this lemma is that all g ∈ Γ − {1} are biproximal. This means

that for the eigenvalues {λi}m+1
i=1 (with corresponding eigenvectors {pi}m+1

i=1 ) of g with
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|λ1| ≥ |λ2| ≥ · · · ≥ |λm+1|, we have that |λ1| > |λ2| and |λm+1| < |λm|. The

eigenvectors pi are points in Sm and from Lemma 4.3, p1, pm+1 ∈ ∂Ω. The action of

g on Ω moves points in Ω towards p1 = x+
g and the action of g−1 on Ω moves points

towards pm+1 = x−g .

Now, fix g ∈ Γ and assume that γg = (x−g , x
+
g ) ⊂ Ω.

Lemma 4.4. Let g ∈ Γ − {1} with x+
g , x

−
g ∈ ∂Ω as in Lemma 4.3 and assume that

γg = (x+
g , x

−
g ) ⊂ Ω. Assume that there exists a properly embedded conic Cx−g ⊂ ∂Ω

passing through x−g . Then there exists a properly embedded conic C(x+
g ,x
−
g ) ⊂ ∂Ω that

passes through the points x+
g and x−g . Further, this conic must be the boundary of an

embedded H2 and contain the line γg.

Proof. Observe that g fixes γg, x
+
g and x−g and moves all other elements of Ω towards

x+
g . Hence a candidate for C(x+

g ,x
−
g ) is limk→∞ g

kCx−g = C. We must have that

x+
g ∈ C because x+

g is the sink of g. It remains to verify that C does not collapse into

a segment in the boundary ∂Ω. The convex hull of C, Con(C) contains γg \{x+
g , x

−
g }

which is contained in the interior of Ω. So Con(C) is not in ∂Ω.

4.2 Axes in Ω

Theorem 4.5 (Theorem 6.3 in [10]). Let G be a connected algebraic semisimple

real Lie group and let Γ be a Zariski dense subsemigroup of G. Then the set Γlox of

loxodromic elements of Γ is also Zariski dense in G.

From the hypotheses in Theorem 4.1, we will assume that there is an isome-
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try g ∈ Γ with axis (x+, x−) ⊂ Ω. By definition, x+, x− ∈ ΛΩ
Γ . Using this line

(x+, x−), we will find a Zariski dense subset Γ′ ⊂ Γlox ⊂ Γ where each g ∈ Γ′ has line

(x−g , x
+
g ) inside of Ω. Note that Lemma 4.3 and convexity of Ω already guarantee

that (x−g , x
+
g ) ⊂ Ω.

Let z be a full flag of Rm+1, which is a nested collected of subspaces {0} ⊂ V1 ⊂

· · · ⊂ Vm ⊂ Rm+1 where dim(Vi) = i. The full flag manifold X is the set of all full

flags z. Following Guivarc’h in [27], the eigenvectors {pi}m+1
i=1 of g map to X by

{pi}m+1
i=1 7→

(
{0} ⊂ R · p1 ⊂ · · · ⊂

m∑
i=1

R · pi ⊂ Rm+1

)
= z+

g .

The set ΛX
Γ is a subset of X defined by ΛX

Γ = {z+
g |g ∈ Γlox}. Note that z−g = z+

g−1 .

Distances in X are measured as the supremum of distances between the subspaces of

corresponding dimension (see [2] for more details). The following lemma will allow

us to start to restrict Γlox to a Zariski dense subset, which will be the goal of Lemma

4.8.

Lemma 4.6 (Lemma 2.6 in [3]). Let G = SL(m+1,R), X the flag manifold of Rm+1

and let Γ be a Zariski dense subsemigroup in G. Then for all ε > 0, z+, z− ∈ ΛX
Γ ,

the set

{g ∈ Γlox, d(z+
g , z

+) ≤ ε, d(z−g , z
−) ≤ ε}

is Zariski dense in Γ.

Next, we apply this result to the boundary of Ω by projection.
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Lemma 4.7. Let G = SL(m+ 1,R), Ω a convex set and Γ a Zariski dense subgroup

of G. Let ΛΩ
Γ = {x+

g , g ∈ Γ} and let x−, x+ ∈ ΛΩ
Γ . Let Γlox be the set of loxodromic

elements in Γ. Then the set

{g ∈ Γlox, d(x+
g , x

+) ≤ ε, d(x−g , x
−) ≤ ε}

is Zariski dense in Γ.

Proof. Let z+
g be the flag corresponding to g. Then z+

g is the flag {0} ⊂ V1 ⊂ · · · ⊂

Vm+1 = Rm+1 invariant under g defined as follows. The subspace V1 is identified with

the projective point x+
g and the other Vi are invariant under g. Similarly, z−g is the

flag invariant under g−1. Then we can apply Lemma 4.6.

Now, let q be the projection from the full flag to V1 which is a one dimensional

subspace. Then q(z+
g ) = x+

g and q(z−g ) = x−g . Note also that dX ≥ dSm since dX

is the supremum of distances in each subspace in the flag. Then by choosing some

z+ = q−1(x+) and z− = q−1(x−), we get Lemma 4.7.

Finally, we almost have the conclusion to this section:

Lemma 4.8. With the assumptions from Lemma 4.7, there exists an ε > 0 so that

the set

Γ′ = {g ∈ Γlox, d(x+
g , x

+) ≤ ε, d(x−g , x
−) ≤ ε, (x−g , x

+
g ) ⊂ Ω}

is Zariski dense in Γ.
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Proof. Since (x+, x−) ⊂ Ω, we can choose an ε so that all points (x+
g , x

−
g ) in both ΛΩ

Γ

and such that d(x+
g , x

+) ≤ ε and d(x−g , x
−) ≤ ε have the property that (x+

g , x
−
g ) ⊂ Ω

i.e. (x+
g , x

−
g ) is not contained in the boundary of Ω.

4.3 Technical Lemma

The following lemma is used in the proof of Theorem 4.1.

Lemma 4.9. The set of all loxodromic (m+ 1)× (m+ 1) matrices that have eigen-

values λi, λj, λk with i 6= j that satisfy the equation

(4.1)
∏
k

∏
i 6=j

(
λ4
k − λ2

iλ
2
j

)
= 0

is an algebraic set.

In order to prove this lemma, we will introduce the tensor product and the exterior

product of finite dimensional vector spaces V and W over R. Let vi ∈ V , wi ∈ W

and µi ∈ R and let H be the subspace of V ×W generated by elements of the form

(vi+vj, wk)−(vi, wk)−(vj, wk), (vi, wj+wk)−(vi, wj)−(vi, wk), and (µivj, wk)−(vj, µiwk).

Suppose V has basis {ui} for 1 ≤ i ≤ n and W has basis {di} for 1 ≤ i ≤ m. The

tensor product V ⊗W is defined to be (V ×W )/H and has basis {ui ⊗ dj}. If g

and h are linear maps on V and W respectively, then we get a map g⊗ h on V ⊗W

defined by

(g ⊗ h)(vi ⊗ wj) = (g · vi)⊗ (h · wj).
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The map g ⊗ h can be written as an nm× nm matrix called the Kronecker product

using the entries of the matrices associated to g and h. We can gain some under-

standing of the behavior of g ⊗ h with the following theorem.

Theorem 4.10 (Theorem 4.2.12 in [31]). Let A ∈ Mat(n) and B ∈ Mat(m). Let λ

be an eigenvalue of A with corresponding eigenvector x and let µ be an eigenvalue

of B with corresponding eigenvector y. Then λµ is an eigenvalue of A ⊗ B with

corresponding eigenvector x⊗y and any eigenvalue of A⊗B arises as such a product

of eigenvalues of A and B.

In the proof of Lemma 4.9 we will be using Theorem 4.10 to construct a matrix

whose eigenvalues are products of the eigenvalues of g. We can also construct a

matrix whose eigenvalues are pairwise sums of the eigenvalues of g;

Theorem 4.11 (Theorem 4.4.5 in [31]). Let A ∈ Mat(n) and B ∈ Mat(m). Let λ

be an eigenvalue of A with corresponding eigenvector x and let µ be an eigenvalue

of B with corresponding eigenvector y. Then λ + µ is an eigenvalue of the sum

(In ⊗B) + (A⊗ Im) and x⊗ y is a corresponding eigenvector. Every eigenvector of

the sum (In ⊗B) + (A⊗ Im) arises as a sum of the eigenvectors of A and B.

Consider V ⊗V , the tensor product of V with itself. Let J be the subset of V ⊗V

generated by elements of the form v ⊗ v. Define the exterior product of V , denoted

∧2V , to be (V ⊗ V )/J . Note that in the exterior product, vi ∧ vj = −vj ∧ vi. Since

∧2(V ) is a vector space, we can use it as part of a tensor product. In the proof of

Lemma 4.9, we will construct the space V ⊗ ∧2(V ).
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Proof of Lemma 4.9. Let V = Rm+1. The map g ⊗ g is a map on W = V ⊗ V . Let

W have the basis B where

B = {vi ⊗ vj such that vi, vj are eigenvectors of g.}

Note that W has dimension (m + 1)2. From Theorem 4.10, the linear map g ⊗ g

has eigenvalues λiλj with associated eigenvectors vi ⊗ vj. Let U be the subspace of

W with basis C = {m ⊗m,m ∈ Rm+1}. Then g ⊗ g induces a linear map on W/U

which we will call g ∧ g.

Note that for i 6= j,

(g ∧ g)(vi ⊗ vj + U) = λiλj(vi ⊗ vj) + U,

so λiλj with i 6= j are eigenvalues of g ∧ g. Since W/U has dimension
(
m+1

2

)
, these

are the only eigenvalues of g ∧ g.

Note that if A is an n× n matrix with eigenvalues µi, then the matrix (−A) has

eigenvalues −µi. Let g ∧ g ∈ Mat
((
m+1

2

))
. Then by Theorem 4.11 the map

(Im+1 ⊗−(g ∧ g)) + (g2 ⊗ (I(m+1
2 ))

has eigenvalues λ2
k − λiλj for i 6= j. Replacing g with g2, we get that the following

algebraic condition

det((Im+1 ⊗−(g2 ∧ g2)) + (g4 ⊗ (I(m+1
2 ))) = 0.

is equivalent to Equation 4.1.
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4.4 Proof of Theorem 4.1 and 2

Here we combine the previous sections with background from Section 2.5 and

Section 2.3 to finish proving Theorem 4.1.

Proof of Theorem 4.1. Assume for contradiction that Γ is Zariski dense in SL(m +

1,R). Once a contradition is obtained, we will apply Theorem 4.2; this will prove

that Ω is a symmetric convex cone.

Since Γ is Zariski dense in SL(m + 1,R), the set Γ′ ⊂ Γ (see Lemma 4.8 for

information about Γ′) must also be Zariski dense in SL(m + 1,R) (Lemma 4.8).

Choose g ∈ Γ′. By Lemma 4.4, there exists a conic C in ∂Ω whose interior contains

the line (x−g , x
+
g ). This conic C is the boundary of an embedded H2 ⊂ Ω. Thus, for

some k, we must have that µk(g) = 1, i.e.

(4.2) 1 = 2
log |λ1| − log |λk|

log |λ1| − log |λm+1|
.

Repeating this process for all of g ∈ Γ′, we see that all g ∈ Γ′ must satisfy Equation

4.2.

Equation 4.2 can be rearranged to |λk|2 − |λm+1||λ1| = 0. Since g is loxodromic,

each λi ∈ R so any g satisfying Equation 4.2 must also satisfy

(4.3) λ4
k − λ2

1λ
2
m+1 = 0
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Let

(4.4) c(g) =
∏
k

∏
i 6=j

(λ4
k − λ2

iλ
2
j)

for 1 ≤ i, j, k ≤ m + 1 and i 6= j. The set of g ∈ SL(m + 1,R) satisfying Equation

4.4 cannot be all of SL(m + 1,R); let pi be the ith prime starting with p1 = 2 and

construct

g =

(
1

p1 · · · pm+1

)
diag(p1, p2, . . . , pm+1).

Then for g to satisfy Equation 4.4, there must be primes pi, pj, pk with i 6= j and

p2
k = pipj, which is not possible. By Lemma 4.9, Equation 4.4 is algebraic. Since all

of g ∈ Γ′ must satisfy Equation 4.4, Γ′ cannot be Zariski dense in SL(m+ 1,R) and

hence by Theorem 4.2, Ω must be a symmetric convex cone.

Two points c, d ∈ ∂Ω are said to be part of a half triangle if there exists a point

f ∈ ∂Ω such that (c, f) ⊂ ∂Ω and (d, f) ⊂ ∂Ω. An element g ∈ Γ is called a rank

one isometry if g is biproximal and x+
g , x−g are not contained contained in any half

triangle.

The proof of Theorem 2 will require the following result by Zimmer ([44]):

Theorem 4.12 ([44] Theorem 1.4). Suppose that Ω ⊂ Sm is an irreducible properly

convex domain and Γ ⊂ Aut(Ω) is a discrete group which divides Ω. Then the

following are equivalent:

• Ω is symmetric with real rank at least two,
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• Ω has higher rank

• (x+
g , x

−
g ) ⊂ ∂Ω for every biproximal element g ∈ Γ.

And a corollary of Theorem 4.12:

Corollary 4.13. With Ω defined as in Theorem 4.12, the following are equivalent:

• Ω does not have higher rank

• Γ contains a rank one isometry.

Proof of Theorem 2. We know from Corollary 4.13 that if Ω does not have higher

rank, Γ contains a rank one isometry. Then by Theorem 4.12, there exists an element

g ∈ Γ such that (x+
g , x

−
g ) ⊂ Ω. Then apply Theorem 4.1. If Ω has higher rank,

Theorem 4.12 implies that Ω is symmetric with real rank at least 2, which makes Ω

one of POS(n,K) for n > 2 and K = R,C,H or POS(3,O). Note that by Theorem

1, such spaces have properly embedded conics through every boundary point.
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CHAPTER 5

Strictly Convex Hilbert Geometries

In this section, the main focus will be on strictly convex Ω and C2 curves in the

boundary of Ω and a major tool here will be α:

α(v) = lim
t→0

log
(
f(tv)+f(−tv)

2

)
log |t|

wheref is a function whose graph models the shape of the boundary of Ω at x ∈ ∂Ω

(see Section 2.5). Recall that α indicates how much the graph of f at x looks like

the graph of |t|α at t = 0. Define g(t) = f(tv). We will see that when g(t) is C2 and

g′′(t) > 0, then α = 2.

For loxodromic elements g, the corresponding α at x+
g ∈ ∂Ω are given by

α(vi) =
log |λ1| − log |λi|

log |λ1| − log |λm+1|
i = 2, . . . ,m

so the possible values α can take depend on the projection of Γ into the cone LΓ

(See Section 2.3.4). In this first section, we describe this relationship for when

Γ ⊂ SL(3,R).

In the second section, we prove the theorem:
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Theorem 3. Let Γ be a discrete subgroup of of SL(m+ 1,R) which divides a strictly

convex irreducible set Ω. Assume that Γ contains a rank one isometry. If for all

x ∈ ΛΩ
Γ , there exists a C2 curve through x with positive second derivative, then Ω is

projectively equivalent to Hn.

5.1 Bounds on α

For a loxodromic g ∈ SL(3,R), its Jordan projection is given by

g 7→ (log |λ1|, log |λ2|, log |λ3|)

where the λi are the eigenvalues of g with |λ1| > |λ2| > |λ3|. We can view these

coordinates as (log |λ1|, log |λ2|, log |λ3|) = (x, y, z) with x > y > z and x+y+z = 0.

The quantity α is given by

α =
log |λ1| − log |λ3|
log |λ1| − log |λ2|

=
x− z
x− y

.

The goal is to find bounds for α for g ∈ Γ ⊂ SL(3,R) in terms of the limit cone LΓ.

Since (x, y, z) lies in the plane x+y+z = 0, it is more convenient to use two coordi-

nates instead of three coordinates. Additionally, the points (x, y, z) and (µx, µy, µz)

with µ ∈ R produce the same α, so a further dimension can be removed.

Note that for fixed x and z, y → x means α→∞ and y → z means α→ 1. The

boundary of the Weyl chamber contained in the plane x+ y + z = 0 is two lines:

• one where y = z which has boundary vector 1√
6
〈2,−1,−1〉 and

• another where x = y which has boundary vector 1√
6
〈1, 1,−2〉.
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Making these two vectors part of a circle of radius 1, the circle is parametrized by

r(θ) =


2√
6

cos θ

− 1√
6

cos θ + 1√
2

sin θ

− 1√
6

cos θ − 1√
2

sin θ


which you can substitute into the equation for α to get

α(θ) =

√
3 cos θ + sin θ√
3 cos θ − sin θ

.

The function α(θ) has the property that α(0) = 1, α(θ) → ∞ as θ → π
3

and α is

always increasing on 0 < θ < π
3
. Hence if you know the values of θ that are possible

for the Jordan projection of g ∈ Γ, you can get bounds for α.

Let the limit cone LΓ be such that

θl = inf
r(θ)∈LΓ

θ and θu = sup
r(θ)∈LΓ

θ.

Then αmin = α(θ1) and αmax = α(θ2).

5.2 Smooth Curves in the Boundary

The purpose of this section is to prove the following theorem:

Theorem 3. Let Γ be a discrete subgroup of of SL(m+ 1,R) which divides a strictly

convex irreducible set Ω. If for all x ∈ ΛΩ
Γ = {x+

g : g ∈ Γ}, there exists a C2 curve

through x with positive second derivative, then Ω is projectively equivalent to Hn.

We will first prove the following lemma:
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Lemma 5.1. Let Γ be a discrete subgroup of SL(m + 1,R) which divides a strictly

convex set Ω. Assume that there exists an element g ∈ Γ such that the axis of g,

denoted γg, is not contained in the boundary of Γ. If for all x ∈ ΛΩ
Γ there exists

a direction v ∈ TxΩ for which α(v) = 2, then Ω is projectively equivalent to the

symmetric convex cone Hn.

Proof. From Equation 2.9 in Section 2.5, we have that

α(vi) =
log |λ1| − log |λm+1|

log |λ1| − log |λi|

for some vi ∈ TxΩ. Then the argument proceeds in the same way as in the proof of

Theorem 2.

To extend the results of the lemma to C2 curves, we need Taylor’s theorem:

Theorem 5.2 (Taylor’s theorem, see [36]). Suppose f is a k times differentiable

function in an open interval (−a, a). Then in this interval,

f(t) =
k∑
j=0

f j(0)

j!
tj + rk(t)

where rk(t) is the remainder function and has the property that

lim
t→0

rk(t)

tk
= 0.

Proof of Theorem 3. The goal is to show that a C2 curve c(t), with c(0) = x and

positive second derivative, has the property that, for c′(0) = vi, α(vi) = 2. As
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in Section 2.5, we can model the boundary of Ω at x as the graph of a function

f : RN → R where f(0) = 0 and Df · v = 0 for all v ∈ RN . By assumption,

f ′′(0) > 0. Recall the definition of α:

α(vi) = lim
t→0

log
(
f(tvi)+f(−tvi)

2

)
log |t|

and define

g(t) =
f(tvi) + f(−tvi)

2

Then g(0) = 0 and g′(0) = 0 and g′′(0) > 0. By Taylor’s theorem, g can be written

as

g(t) = g′′(0)t2 + r2(t) with lim
t→0

r2(t)

t2
= 0 .

Then,

α = lim
t→0

log g(t)

log |t|

= lim
t→0

log
(

g(t)
g′′(0)t2

)
+ log(g′′(0)t2)

log |t|

= lim
t→0

log
(

1 + r2(t)
g′′(0)t2

)
+ 2 log |t|+ log(g′′(0))

log |t|

= 2

The result follows from Lemma 5.1
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CHAPTER 6

Application to Affine Spheres

6.1 Introduction

Let C be the convex cone associated to hyperpolic space H2, i.e. C = {(x, y, z) ∈

R3|x2 + y2 < z2} with isometry group PSO(2, 1). The orbit of the point (0, 0, 1)

is the component of the hyperboloid of two sheets x2 + y2 − z2 = −1 with z > 0

and shares an isometry group with the cone C. The hyperboloid sits inside the cone

C (see Figure 6.1) and is asymptotic to the boundary of C. It is an example of a

collection of classical convex objects called affine spheres which will be defined in

the next section. In particular, it is a hyperbolic affine sphere which means that lines

transverse to the surface meet on the concave side of the sphere at a point called the

center. There is a direct correspondence between convex cones and a subset of affine

spheres, which was conjectured by Calabi and proved by Cheng-Yau:

Theorem 6.1 (Cheng-Yau [14]). For any properly convex domain Ω in Sm, there is

a unique hyperbolic affine sphere H asymptotic to Ω.

Further, any hyperbolic affine sphere H whose center is the origin is asymptotic
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to a properly convex cone by projecting H to Sm.

One motivation for working with affine spheres instead of convex sets is that affine

spheres have a Riemannian metric arising from the second fundamental form of H

called the Blaschke metric. In [9], Benoist and Hulin prove that the Hilbert metric

dΩ and the Blaschke metric dB are uniformly comparable with

(6.1)
1

c(n)
dΩ ≤ dB ≤ c(n)dΩ

where c(n) depends on the dimension n of the space. Tholozan extends this result

in [42] to

(6.2) dB(x, y) < dΩ(x, y) + 1

for x, y ∈ Ω. The usefulness of Equation 6.2 is limited to when dΩ and dB are large,

e.g. Tholozan uses it to compare volume entropy.

However, the goal of this section is to translate results about convex sets into

results about affine spheres. The first step is to provide the necessary definitions;

a more comprehensive description can be found in Loftin’s survey on affine spheres

([39]).

6.2 Preliminaries

6.2.1 Definitions

A smooth hypersurface H in Rn+1 has a transverse normal vector field called an

affine normal. When this vector field ξ is invariant under affine transformations,
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then the hypersurface H can be studied with tools from affine geometry. The set of

these transformations is the special affine group,

SA(n+ 1,R) = {φ : x 7→ Ax+ b|A ∈ SL(n+ 1,R), b ∈ Rn+1}

and the vector field ξ is affine invariant if

φ∗ξH(x) = ξφ(H)(φ(x))

for φ ∈ SA(n + 1,R) and x ∈ H. This means that while φ might not fix H, φ must

map the affine normal vector field ξH of H to the affine normal vector field ξφ(H) of

φ(H). The described vector field ξ is not unique (e.g. −ξ) but we will later add

conditions on ξ that will make it unique.

For a hypersurface H and its affine normal vector field ξ, let ξx be the vector in

ξ at the point x. Extend all ξx to lines L = {x + µξx|µ ∈ R}. If every line in L

meets at a point, then H is called a proper affine sphere and the meeting point is

called the center of the affine sphere H. If the lines in L are parallel, i.e. meet at

infinity, then H is called an improper affine sphere or a parabolic affine sphere. By

symmetry, n-spheres in Rn+1 are affine spheres and further, ellipsoids must be affine

spheres by affine invariance.

Choose ξ so that the transverse normal vectors point to the convex side of a

proper affine sphere H. If the ξx point towards the center, then H is an elliptic

affine sphere. If the ξx point away from the center, then H is a hyperbolic affine

sphere. An ellipsoid is an elliptic affine sphere and one component of a hyperboloid
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of two sheets is a hyperbolic affine sphere. The typical examples of affine spheres

are quadric hypersurfaces; when H is a smooth quadric hypersurface, it is either an

elliptic, a hyperbolic, or a parabolic affine sphere.

Any elliptic affine sphere must be an ellipsoid, which was shown by Blaschke in R3

in [12] and for any dimension by Deicke in [22]. Further, any parabolic affine sphere

must be an elliptic paraboloid which is a corollary of Cheng-Yau’s work in [14] (see

Section 6 in [39] for more details.) However, the classification of hyperbolic affine

spheres is more complicated. These are the affine spheres that are asymptotic to a

convex cone, as stated in Theorem 6.1. In addition to the hyperbolic affine sphere

described in the introduction, there is a family of hyperbolic affine spheres asymptotic

to the simplex whose cone is C = {(x, y, z)|x, y, z > 0} given by xyz = K for K > 0.

For a general simplex with cone C = {(x1, x2, · · · , xn) ∈ Rn|x1, x2, . . . , xn > 0}, the

associated affine sphere is

x1x2 · · ·xn = K

for K > 0. In the next section, we will study some of the affine geometry associated

to affine spheres.

Affine Structure Equations and the Blaschke metric

Let H be a strictly convex hypersurface and let ξ be a transverse vector field on H

that is not necessarily an affine transverse vector field. There is a splitting of TRn+1

at each x ∈ H given by

TxRn+1 = TxH ⊕ R · ξ
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If X and Y are two vector fields tangent to H, the standard connection on Rm+1

∇XY is not necessarily tangent to H. The relationship is described via the Gauss-

Weingarten structure equations

∇XY = DXY + h(X, Y )ξ

∇Xη = −S(X) + τ(X)ξ

where D is a torsion free connection on TH, h is a symmetric tensor, S is an endo-

morphism on TM and τ is a one form on TM . Note that these equations are not

specific to affine spheres, but are defined for hypersurfaces H and a transverse vector

field to H. The transverse vector field ξ is considered an affine transverse vector

field when each ξx points to the convex side of H, h is positive definite, τ = 0, and

|det(X1, . . . , Xn, ξ)| = 1 for any h-orthonormal frame (X1, . . . , Xn) of TH (see [39]

for more details).

Any smooth, strictly convex hypersurface has a well defined affine normal (see

Theorem 1 [39]). Since h is positive definite, it is a Riemannian metric which is

called the Blaschke metric. The affine mean curvature is K = 1
n
trS. Affine spheres

can be classified by their mean curvatures; if K > 0, the affine sphere is elliptic, if

K = 0, the affine sphere is an elliptic paraboloid and if K < 0 the affine sphere is

hyperbolic. The metric of an elliptic or a hyperbolic affine sphere can be scaled so

that the mean curvature is K = ±1.
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6.2.2 The Cheng-Yau Correspondence

The existence of a hyperbolic affine sphere asymptotic to the boundary of the

cone over Ω comes from solving the Monge-Ampère equation in the form

(6.3) det(uij) =

(
K

u

)n+2

in Ω and (uij) > 0 and u|∂Ω = 0

where uij is the (ij)th entry in the Hessian of the function u and K is a chosen affine

mean curvature. This method is described by Gigena in [26]. We will describe this

procedure for the example where C is the cone {(x, y, z) ∈ R3|x2 + y2 ≤ z2} and

K = −1. In this case, we will take an affine chart for Ω = π(C) to be parametrized

by X = {(x, y, 1) : x2 + y2 ≤ 1}.

The first step is to solve the differential equation

• uxxuyy − (uxy)
2 =

(
1
u

)4
and u > 0 for x2 + y2 ≤ 1

• u = 0 on x2 + y2 = 1.

One can check that u(x, y) =
√

1− x2 − y2 satisfies this differential equation and

Cheng-Yau guarantees its uniqueness. Then the affine sphere is Y = 1
u
X which is

given by

Y =

{
1√

1− x2 − y2
(x, y, 1)|x2 + y2 ≤ 1

}

= {(x, y, z)|x2 + y2 − z2 ≤ −1}

where the second equality comes from relabeling.

In the 1970s, Cheng-Yau solved these equations and gave us the following theorem:
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Theorem 6.2 (Theorem 3 in [39]). For any proper, open, convex cone C ⊂ Rn+1,

there is a unique convex properly embedded hyperbolic affine sphere H ⊂ Rn+1 which

has affine mean curvature −1, has the vertex of C as its center, and is asymptotic to

the boundary of C.

The reverse is much easier. If you start with the affine sphere H, then the convex

cone C is just the convex hull of H and its center. This correspondence allows us to

apply Theorem 2 to affine spheres.

6.2.3 Homogeneous Affine Spheres

An affine sphere H is called homogeneous if its automorphism group G ⊂ SA(n+

1,R) acts transitively on H. Due to the Cheng-Yau correspondence, the classification

of homogeneous convex cones given by Vinberg (see Section 1.6) carries over to a

classification of homogeneous hyperbolic affine spheres which we will discuss further

now.

Let C ⊂ Rn+1 be a convex cone and let dx′ be a measure on Rn+1 that is invariant

under the special affine group. Define the characteristic function φC on C as

φC(x) =

∫
C′
e−〈x,x

′〉dx′

for every x ∈ C. It is called the characteristic function because it characeterizes C; if

C1 and C2 are two convex cones such that C1 ∩ C2 6= ∅ and φC1 = φC2 on C1 ∩ C2, then

C2 = C2. This can be proved by considering that when y approaches the boundary

of C, the quantity φC(y) approaches infinity. Further facts about the characteristic

function are given by Vinberg in [43].
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In [41], Sasaki defines the characteristic surface Sd of φC as

Sd = {x ∈ C : φC(x) = d}

which is a noncompact submanifold of C. This surface is an affine sphere:

Theorem 6.3 ([41] Theorem 4a). Let C be a homogeneous convex cone with charac-

teristic function φC. Every characteristic surface Sd is a complete hyperbolic affine

sphere with mean curvature a · d
2

n+2 where a is a negative constant.

Additionally, this affine sphere is asymptotic to the boundary of C which follows

from the following theorem:

Theorem 6.4 ([41] Theorem 4b). Let H be a complete homogeneous hyperbolic affine

sphere whose center is at the origin. Then there exists a homogeneous convex cone

C such that H is asyptoptic to the boundary of C. Further, C =
⋃
d Sd where Sd are

characteristic surfaces of Ω and H = Sd for some d > 0.

Hence the homogeneous hyperbolic affine spheres are in correspondence with the

homogeneous convex cones.

6.3 Results

In this section we will extend Theorem 4.1 to apply to hyperbolic affine spheres.

We will say that an affine sphere H is divisible if there exists a discrete subgroup

Γ ⊂ SA(n+ 1,R) such that H/Γ is compact.
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Figure 6.1:
The affine sphere asymptotic to the cone over H2 is one sheet of a hyperboloid of two
sheets.

Corollary 6.1. Let Γ be a discrete subgroup of SA(m+ 1,R) which divides a hyper-

bolic affine sphere H ⊂ Rn+1 with center at the origin. If for every g ∈ Γlox, the axis

lg lies in an embedded hyperboloid, then H is a hyperbolic space.

Proof. From Theorem 6.2, the affine sphere H has a corresponding convex set Ω ⊂

Sm. The first obstacle is that we need Ω (and its convex cone C) to be divisible, i.e.

there is a discrete group Γ of projective transformations that acts cocompactly on

Ω. A transformation g ∈ SA(n+ 1,R) that preserves an affine sphere with center at

the origin must also lie in SL(n+ 1,R). Since Γ, which divides H, also preserves the

line passing through each point in H and the origin, Γ preserves the convex cone C.

Since Ω = π(C), Γ fixes Ω and it only remains to show that Ω/Γ is compact.

Let F be a compact fundamental domain for the action of Γ on H and construct

FΩ by taking the convex hull of F . Clearly FΩ is compact. Since {γ(F )|γ ∈ Γ}

covers H, {γ(FΩ)|γ ∈ Γ} must cover Ω (take the convex hull of each γ(F )). Hence

H divisible implies that Ω is divisible.

Take an element g ∈ Γlox, its corresponding axis lg, and the embedded hyperboloid
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S. This corresponds to a conic Cx+
g

in the boundary of Ω with axis (x+
g , x

−
g ) ⊂

Con(Cx+
g

). Then follow the proof of Theorem 4.1 starting at Lemma 4.8 where we

construct a Zariski dense subset Γ′ of Γlox where each g ∈ Γ′ has axis in the interior

of Ω.
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