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ABSTRACT

In this age of technology, more and more data is generated as an outcome of complex

processes through heterogeneous mechanisms. Statistical models therefore need to

invoke the complexities for appropriate inference. One such situation is when data is

generated from heterogeneous sub-populations. Hierarchical models form the state-of-

the-art methods for such scenarios. However, Markov Chain Monte Carlo methods,

which form the traditional inference method can be quite cumbersome to implement for

such large scale models, resulting in high time complexities. Sometimes, they may also

suffer from inconsistency issues. On the other hand, mean-field variational inference

methods even though fast, can suffer from inaccuracy in estimation. This dissertation

focuses on understanding such complex models and drawing inference from each of

those sub-populations and develops alternative techniques for inference, with statistical

guarantees.

Our specific contributions are as follows. We provide an in-depth analysis of two

specific types of latent variable models, namely, mixture and admixture models and also

develop an unsupervised learning scheme with applications to autonomous vehicles.

In the mixture model context, firstly, we develop an understanding of the posterior

contraction behavior of parameter estimation in the case of infinite mixture models,

corresponding to two choices of priors, one parametric and the other nonparametric.

Next, we provide an in-depth analysis of Bayesian mixtures under various misspecification

settings and provide an asymptotic characterization pertaining to such scenarios. Our

xv



study reveals a deep perception of the role, the kernel plays on the statistical decisions

of a practitioner. Next, in the context of admixture models, we develop a geometric

estimation mechanism to the well-known Latent Dirichlet Allocation model. Finally, we

provide a model-free inference scheme to robustly estimate and evaluate parameters of

various sub-populations, in the applied setting when the heterogeneous sub-populations

for data generation are derived from car driving scenarios, via the use of unsupervised

learning.
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CHAPTER I

Introduction

With the advent of technology, a large amount of today’s data is generated by means of

complex mechanisms. Data may be available in various forms - for example, unlabelled

data as in images, tweets, articles or time series data as in daily weather reports,

traffic scenarios including but not limited to inter-vehicular interactions. Moreover, data

available is often high-dimensional in nature as vast amount of information is generated at

low costs. For example, large-scale biological datasets obtained through next-generation

sequencing, proteomics or brain-imaging are often high-dimensional. Other kinds of data

may be more personal in nature, such as mobile app based monitoring of driving, health

or other individual-specific activities. Any suitable Statistical method therefore needs to

be considerate of the appropriate complexities of the data involved, for efficient inference.

The accommodations of appropriate Statistical models are two-fold. Firstly, the model

should be mindful of the heterogeneity of the processes and be suitable for inferring from

each of the subpopulations in the data-generating scheme. Secondly, the inference scheme

should also be scalable for large dimensional data. Unsupervised learning schemes such

as probabilistic Principal component analysis (cf. Tipping and Bishop (1999); Roweis

and Ghahramani (1999)), Factor analysis (cf. Anderson and Rubin (1956)), Independent
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component analysis (cf. Hyvärinen et al. (2004)) are well-known scalable techniques for

large datasets. Ghahramani (2004) provides a succint account of unsupervised learning

techniques. However, they often fail to capture the heterogeneity of the data because of

their model-free constitution. On the other hand, Bayesian hierarchical models such as

Mixture models (cf. McLachlan and Basford (1988)), Admixtures (cf. Pritchard et al.

(2000)), Hierarchical Dirichlet processes (HDP) (cf. Teh et al. (2006)), Hidden Markov

models (cf. Baum and Petrie (1966); Baum et al. (1970)) form the state-of the-art

methods for modelling of heterogeneous subpopulations. However, they may suffer

from inconsistency issues (cf. Miller and Harrison (2014)). Markov Chain Monte Carlo

algorithms (cf. Griffiths and Steyvers (2004); Escobar and West (1995); MacEachern

and Mueller (1998); Neal (2000); Teh et al. (2006); Fox et al. (2009)) form the state-

of-the-art methods for inference with hierarchical models. However, a large number of

latent variables in combination with complex modeling structures often makes it difficult

for MCMC algorithms to be scalable. A useful alternative is provided by Variational

Inference algorithms (cf. Jordan et al. (1999); Blei et al. (2003); Blei and Jordan

(2006); Hoffman et al. (2013); Mandt et al. (2017)). Several recent papers (cf. Wang

and Blei (2018, 2019)) explore the asymptotic consistency for Variational Inference

algorithms. However, finite sample outcomes for VI algorithms do not produce the

accurate Posterior distribution. Moreover, asymptotic consistency cannot be guaranteed

for graphical models with complex structures. As a result, the need for scalable and

statistically efficient algorithms is ever-present. This thesis focuses on understanding

inference-related questions for such complex models and develops appropriate techniques

for scalable inference with statistical guarantees. For this work, our focus is only on

mixture and admixture models.

The remainder of this chapter elaborates on the key contributions of this thesis.
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Relevant background material is included in each section to make the sections self-

contained.

1.1 Model complexity, estimation and interpretability in Bayesian

mixture modeling

Mixture models form the basic building blocks in latent variable modeling and

provide an interpretable way for a statistician to analyze data from heterogeneous

population sources (cf. McLachlan and Basford (1988); Lindsay (1995); Mengersen et al.

(2011)). With practical applicability in model-based clustering techniques and modeling

complex distributions(cf. McLachlan and McGriffin (1994)), mixture models provide

a wide range of scopes for statistical modeling. Mixture models view data as samples

from an assembly of latent sub-populations, each assuming its own distribution with

corresponding parameters.

More concretely, we work with the following specific formulation of mixture models.

Consider discrete mixing measures G =
∑k

i=1 piδθi . Here, p = (p1, . . . , pk) is a vector of

mixing weights, while atoms {θi}ki=1 are elements in a given compact space Θ. Mixing

measure G is combined with a kernel function f(·|θ) with respect to Lebesgue measure

µ to yield a mixture density:

pG(·) =

∫
f(·|θ)dG(θ) =

k∑
i=1

pif(·|θi).

When k <∞, we call this a finite mixture model with k components. For an infinite

mixture model, k is allowed to take the value ∞.. The atoms θi’s are representatives of

the underlying subpopulations.
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The choice of the kernel f , and the prior on the unknown distribution G, affect the

outcome of inference drastically for a practitioner of Bayesian mixture models. For a

Bayesian, the choice of priors for mixture models is essentially restricted to two primary

options:

(i) a nonparametric prior via use of Dirichlet process distribution on the mixing

measures.

(ii) a parametric counterpart of Dirichlet process mixtures via use of suitable priors

(eg. Poisson) on number of components.

Estimation of the true but unknown number of mixture components is an important

inference question relative to mixture models. The choice of the prior drastically

influences the efficiency of estimation corresponding to the parameters representing

these components. A common misconception that may have initially contributed to the

enthusiasm for Bayesian nonparametric modeling is that the use of such nonparametric

models eliminates altogether the need for determining the number of mixture components,

because the learning of such a quantity is "automatic" from the posterior samples of the

mixing measure. However, Miller and Harrison (2014) explicitly demonstrated that the

common practice of drawing inference about the number of mixture components via the

DP mixture by counting the number of support points in the sample of the Dirichlet

posterior leads to an asymptotically inconsistent estimate.

With this in context, we propose Merge-Truncate-Merge in Chapter II of this thesis.

It is a post-processing algorithm that resolves the inconsistency issue by allowing to

consistently estimate the true number of components with Dirichlet process mixtures.

Moreover, the algorithm outputs posterior samples that retain the original parameter

contraction rates pertaining to samples from the Dirichlet process posterior. Additionally,
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we also show that the parametric choice of prior given in (ii) yields optimal rates of

convergence of the mixing measure (up to a logarithmic term), in addition to correctly

recovering the number of mixture components, under considerably weak conditions.

Following George Box’s famous quote, "all models are wrong, but some are useful", a

natural question that may arise in the context of inference related to mixtures is: what

happens to a mixture model based statistical procedure when the model is actually

misspecified?

Misspecification may be of various different categories. Misspecifications of the kernel

may skew the performance of the methods in question and lead to an incorrect conclusion

because of non-robustness properties of the model. With regard to interpretability of

parameter estimation under the misspecified model regime, our results reveal several

new insights. Given the model is misspecified, the statistician might choose to indulge

in heavy-tailed kernels which allow for fast contraction of parameter estimates, thereby

implying that a given data set probably has relatively faster influence on the movement

of mass from the prior to the posterior distribution. In that regard, Laplace location

mixtures may be preferred to Gaussian location mixtures, provided that the bias due

to misspecification is not too large. On the other hand, when this is not the case,

it is advisable to have a more "conservative" approach by adopting Gaussian kernels

instead, despite the latter’s lagging posterior contraction behavior. Overall, the ultimate

model choice under misspecification will reside on resolving the tension between the

aforementioned bias and contracting variance.

Other kinds of misspecifications may arise out of a biased choice for the support of

the prior. Theoretical results often rely on critical assumptions which may create such

scenarios in practice. For example, a vast array of works that deal with asymptotically

optimal estimation procedures for the population density (cf. Ghosal et al. (1999);
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Ghosal and van der Vaart (2007); Shen et al. (2013)) rely on the critical assumption

that the space of parameters is bounded. It is also a common assumption for works that

deal with the theoretical understanding of the parameter estimation regime (cf. Nguyen

(2013); Gao and van der Vaart (2016); Scricciolo (2017)). However, such an assumption

may be unfavorable in situations where this bounded support in incorrectly specified.

While a small support allows for misspecification of the parameter space thereby leading

to a bias in estimation, a large or unbounded support leads to a slow contraction

rate thereby resulting in higher variability in estimation. In practice, it is common to

allow the base prior for the parameters to have an unbounded support to overcome the

additional step of estimating the support of the prior. As a result there is a glaring

mismatch between the practical application and theoretical understanding for parameter

estimation problems with Bayesian nonparametric priors. In Chapter III of this thesis,

we provide a solution to this problem via the use of sieve estimates.

Sieve methods have been implemented in the density estimation context by many

authors such as Ghosal and van der Vaart (2001); Shen and Wong (1994); Wong and

Shen (1995); Van de Geer (1993); Birge and Massart (1998). However, to the best of

our knowledge, there has been no such treatment in the context of parameter estimation.

As part of the sieve estimation procedure we allow the support of the prior to change

gradually with the sample-size. This enables us to overcome the bias in parameter

estimation while appropriately increasing the variance at a suitably chosen rate, thereby

providing a solution to the eternal bias-variance trade-off problem in this context. Our

theory reveals that this rate of change of support is much faster when the chosen kernel

is light-tailed as compared to heavy-tailed ordinary smooth kernels. This might be

counterintuitive to the results in Chapter II since it implies that for supersmooth kernels

a possible large change in bias of estimation results in only a relatively negligible change
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in variance. To address this puzzling issue, we develop a novel metric that generalizes

the well-known Wasserstein metric, which is the popular choice of metric for parameter

estimation. The use of this novel metric, which we call the "Orlicz-Wasserstein distance",

leads us to a deeper understanding of the behavior of the posterior atoms. We show

that for light-tailed kernels, the posterior atoms highly populate the neighbourhood of

the true atoms with little contribution from other regions of the parameter space. As a

result, the contribution to the variance mostly arises from the neighbourhoods of true

atoms. Therefore, beyond a certain point, change in variance is affected marginally by

change in bias.

1.2 Scalable and efficient geometric algorithms for probabilistic

models

Hierarchical and latent variable models broaden the scope of inference. However, a

key challenge with the use of hierarchical models is fast and efficient computation of

hyperparameters, both in the parametric and nonparametric context. The meaningful

inferential and methodological questions involved in hierarchical modeling are:

(I) Can we have a generic modeling scheme which encompasses a large number of

data generating procedures?

(II) Can we efficiently estimate the parameters of the models under the knowledge or

lack thereof of the number of latent subpopulations?

Scalable estimation for parametric models: For many complex probabilistic

models, especially those with latent variables, the probability distribution of interest

can be represented as an element of a convex polytope in a suitable ambient space, for
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which model fitting may be cast as the problem of finding the extreme points of the

polytope. For instance, a mixture density can be identified as a point in a convex set of

distributions whose extreme points are the mixture components. The well-acclaimed

Latent Dirichlet Allocation (LDA) (cf. Blei et al. (2003)) model, which is used for

analysis of text data, is another example of such a model. In the following, we provide

a brief overview of the LDA model.

α

θ z w

β

η

M
Nm

K

Figure 1.1: K topics, M documents, Nm exchangeable words in each document w

Latent Dirichlet Allocation Figure 1.1 provides a graphical model description of

the LDA model. The generative process of the model can be described as follows.

Consider a corpus of M documents with V denoting the number of words in the

vocabulary. Suppose there are K topics. Let α ∈ RK
+ , η ∈ RV

+ be the respective

hyperparameters corresponding to the topic distributions in a document and the word
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pm
w̄m
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β1 ;

Figure 1.2: Toy example of LDA

distributions in a topic respectively. The topics are generated as follows:

βk|η ∼ DirV (η), for k = 1, . . . , K.

For each of the M documents, generate a topic proportionality vector as:

θm|α ∼ DirV (α), for m = 1, . . . ,M. (1.1)

For each of the Nm words in document m, generate a topic label z, and a sample word

d from the corresponding topic as:

zn|θm ∼ Cat(θm); dn|zn ∼ Cat(βzn) forn = 1, . . . , Nm. (1.2)

Admixture model (cf. Pritchard et al. (2000)), which is popular in genetics is equivalent

to the LDA model. The LDA model embeds the topic distributions in the probability

simplex and therefore is convenient for word-document frequency distributions. This
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simplicial structure of the model is amenable to efficient inference and therefore prove

useful for other datatypes as well. In Chapter IV, we propose Dirichlet Simplex Nest

(DSN), a class of probabilistic models that generalizes the Latent Dirichlet Allocation.

By viewing data as noisy observations from the low-dimensional affine hull that contains

a simplex, our model shares an assumption that can be found in classical factor analysis,

non-negative matrix factorization (NMF) models (cf. Lee and Seung (2001)), as well as

in topic models (cf. Arora et al. (2012b)). The class of models provides a probabilistic

justification for these methods, which often impose an additional geometric condition

on the model known as separability that identifies the model parameters in a way that

permits efficient estimation (cf. Arora et al. (2012a)). Moreover the DSN modeling

provides an arguably more effective approach to archetypal analysis and non-negative

matrix factorization for non-separable data as well.

The key challenge for inference using the DSN model lies in scalable and efficient

parameter estimation. While Hamiltonian Monte Carlo lacks scalability guarantees for

such complexly structured models, NMF algorthms perform poorly when the separability

condition cannot be guaranteed. Variational Inference (cf. Blei et al. (2003)) forms the

go-to scalable algorithm for inference with the LDA model.However, the questions of

statistical efficiency with Variational Inference algorithms remain mostly unexplored.

Starting with an original geometric technique of Yurochkin and Nguyen (2016), we

provide in Chapter IV Voronoi Latent Admixture (VLAD) algorithm, a novel inference

algorithm that accounts for the convex geometry and low dimensionality of the latent

simplex structure endowed with a Dirichlet distribution. This allows for more effective

learning of asymmetric simplicial structures and the Dirichlet’s concentration parameter

for the general DSN model, and hence, expands its applicability to a broad range of data

distributions. More specifically, VLAD can be used for scalable and efficient estimation
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corresponding to the LDA model setup with greater accuracy than the state-of-the-art

Variational Inference algorithms. We also establish statistical consistency and estimation

error bounds for the proposed algorithm.

1.3 Evaluation of primitive scenarios for autonomous vehicles

While model-based inference schemes provide increased interpretability, they can

often be computationally expensive, especially for huge datasets. Moreover, structural

specificity of models may often hinder the general applicability of model-based schemes.

On the other hand, model-free mechanisms find a wider variety of applications.

In autonomous vehicle research, there has been a lot of work dedicated to understand-

ing traffic scenarios. Analysis and recognition of driving styles are profoundly important

to intelligent transportation and vehicle calibration. Unfortunately, it can be hard

to manually select a representative subset of scenarios or potentially computationally

expensive to annotate them because of limited prior knowledge. Several recent papers

employ unsupervised and empirical approaches to extract primitive driving patterns

from time series driving data without prior knowledge of the number of these patterns

(cf. Wang and Zhao (2017); Taniguchi et al. (2015); Bender et al. (2015)). However, this

wide variety of unsupervised approaches leads to the obvious question of which method

to choose.

With regards to that we develop a geometric invariant metric to compare different

driving scenarios in Chapter V of this thesis. This novel metric is generally applicable

and therefore can be easily extended to evaluate cluster efficiencies and stabilities of the

existing clustering methods.

Research on traffic encounters, so far, has been primarily restricted to understanding
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traffic driving encounters as objects. We propose a general framework to understand

distributional patterns in driving styles and provide an approximate solution for clustering

the distributional behavior via unsupervised learning techniques. Additionally, the

method provided is robust and model-free and therefore has a wider scope of application

beyond the specific dataset considered.

1.4 Thesis Organization

The remainder of this thesis proceeds as follows:

Chapter II: Posterior contraction of parameters and interpretability in

Bayesian mixture modeling This chapter addresses several key issues concern-

ing Bayesian nonparametric mixture models such as the inestimability of the number

of components with Dirichlet Process priors, and develops an understanding of the

behavior of the mixture models in the misspecified regime.

Chapter III: Bayesian contraction for Dirichlet process mixtures of smooth

densities This chapter proposes a solution for the problem of misspecification of

the underlying parameter space via the use of sieve estimates, and develops a deeper

understanding of the behavior of mixtures of smooth kernels.

Chapter IV: Dirichlet Simplex Nest and Geometric Inference This chapter

introduces a general modeling framework for inference via a generalization of the well-

known Latent Dirichlet Allocation Model and provides a solution for computationally

and statistically efficient inference.
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Chapter V: Robust Representation Learning of Temporal Dynamic Interac-

tions This chapter proposes a framework to analyse the behavior of unsupervised

clustering approaches with application to traffic encounters, and also provides a novel

clustering approach for the same.

Chapter VI: Conclusions and Future Work This chapter summarizes the novel

contributions of this thesis and discusses idea for future research.

Each chapter is self-contained with all the necessary background materials and can

be read independently of other chapters.
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CHAPTER II

Posterior Contraction of Parameters and

Interpretability in Bayesian Mixture Modeling

We study posterior contraction behaviors for parameters of interest in the context of

Bayesian mixture modeling, where the number of mixing components is unknown while

the model itself may or may not be correctly specified. Two representative types of prior

specification will be considered: one requires explicitly a prior distribution on the number

of mixture components, while the other places a nonparametric prior on the space of

mixing distributions. The former is shown to yield an optimal rate of posterior contraction

on the model parameters under minimal conditions, while the latter can be utilized to

consistently recover the unknown number of mixture components, with the help of a

fast probabilistic post-processing procedure. We then turn the study of these Bayesian

procedures to the realistic settings of model misspecification. It will be shown that the

modeling choice of kernel density functions plays perhaps the most impactful roles in

determining the posterior contraction rates in the misspecified situations. Drawing on

concrete posterior contraction rates established in this paper we wish to highlight some

aspects about the interesting tradeoffs between model expressiveness and interpretability
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that a statistical modeler must negotiate in the rich world of mixture modeling. 1.

2.1 Introduction

Mixture models are one of the most useful tools in a statistician’s toolbox for

analyzing heterogeneous data populations. They can be a powerful black-box modeling

device to approximate the most complex forms of density functions. Perhaps more

importantly, they help the statistician express the data population’s heterogeneous

patterns and interpret them in a useful way (McLachlan and Basford (1988); Lindsay

(1995); Mengersen et al. (2011)). The following are common, generic and meaningful

questions a practitioner of mixture modeling may ask:

(I) how many mixture components are needed to express the underlying latent sub-

populations.

(II) how efficiently can one estimate the parameters representing these components.

(III) what happens to a mixture model based statistical procedure when the model is

actually misspecified?

How to determine the number of mixture components is a question that has long

fascinated mixture modelers. Many proposed solutions approached this as a model

selection problem. The number of model parameters, hence the number of mixture

components, may be selected by optimizing with respect to some regularized loss

function; see, e.g., Lindsay (1995); Kass and Raftery (1995); Dacunha-Castelle and

Gassiat (1997) and the references therein. A Bayesian approach to regularization is to

place explicitly a prior distribution on the number of mixture components, e.g., Nobile
1This work has been published in Guha et al. (2019)
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(1994); Richardson and Green (1997); Nobile and Fearnside (2007); Miller and Harrison

(2018). A convenient aspect of separating out the modeling and inference questions

considered in (I) and (II) is that once the number of parameters is determined, the

model parameters concerned by question (II) can be estimated and assessed via any

standard parametric estimation methods.

In a number of modern applications of mixture modeling to heterogeneous data,

such as in topic modeling, the number of mixture components (the topics) may be very

large and not necessarily a meaningful quantity (Blei et al. (2003); Tang et al. (2014)).

In such situations, it may be appealing for the modeler to consider a nonparametric

approach, where both (I) and (II) are considered concurrently. The object of inference

is now the mixing measure which encapsulates all unknowns about the mixture density

function. There were numerous works exemplifying this approach, for eg., Leroux (1992);

Figueiredo and Jain (1993); Ishwaran et al. (2001). In particular, the field of Bayesian

nonparametrics (BNP) has offered a wealth of prior distributions on the mixing measure

based on which one can arrive at the posterior distribution of any quantity of interest

related to the mixing measure (Hjort et al. (2010)).

A common choice of such priors is the Dirichlet process (Ferguson (1973); Blackwell

and MacQueen (1973); Sethuraman (1994)), resulting in the famous Dirichlet process

mixture models (Antoniak (1974); Lo (1984); Escobar and West (1995)). Dirichlet process

(DP) and its variants have also been adopted as a building block for more sophisticated

hierarchical modeling, thanks to the ease with which computational procedures for

posterior inference via Markov Chain Monte Carlo can be implemented (Teh et al.

(2006); Rodriguez et al. (2008)). Moreover, there is a well-established asymptotic theory

on how such Bayesian nonparametric mixture models result in asymptotically optimal

estimation procedures for the population density. See, for instance, Ghosal et al. (1999);
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Ghosal and van der Vaart (2007); Shen et al. (2013) for theoretical results specifically

on DP mixtures, and Ghosal et al. (2000); Shen and Wasserman (2001); Walker et al.

(2007) for general BNP models. The rich development in both algorithms and theory in

the past decades has contributed to the widespread adoption of these models in a vast

array of application domains.

For some time there was a misconception among quite a few practitioners in various

application domains, a misconception that may have initially contributed to their

enthusiasm for Bayesian nonparametric modeling, that the use of such nonparametric

models eliminates altogether the need for determining the number of mixture components,

because the learning of such a quantity is "automatic" from the posterior samples of

the mixing measure. The implicit presumption here is that a consistent estimate of the

mixing measure may be equated with a consistent estimate of the number of mixture

components. This is not correct, as has been noted, for instance, by Leroux (1992) in

the context of mixing measure estimation. More recently, Miller and Harrison (2014)

explicitly demonstrated that the common practice of drawing inference about the number

of mixture components via the DP mixture, specifically by reading off the number of

support points in the Dirichlet’s posterior sample, leads to an asymptotically inconsistent

estimate.

Despite this inconsistency result, it will be shown in this chapter that it is still

possible to obtain a consistent estimate of the number of mixture components using

samples from a Dirichlet process mixture, or any Bayesian nonparametric mixture, by

applying a simple and fast post-processing procedure on samples drawn from the DP

mixture’s posterior. On the other hand, the parametric approach of placing an explicit

prior on the number of components yields both a consistent estimate of the number

of mixture components, and more notably, an optimal posterior contraction rate for
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component parameters, under a minimal set of conditions. It is worth emphasizing that

all these results are possible only under the assumption that the model is well-specified,

i.e., the true but unknown population density lies in the support of the induced prior

distribution on the mixture densities.

As George Box has said, "all models are wrong", but more relevant to us, all

mixture models are misspecified in some way. The statistician has a number of modeling

decisions to make when it comes to mixture models, including the selection of the class

of kernel densities, and the support of the space of mixing measures. The significance of

question (III) comes to the fore, because if the posterior contraction behavior of model

parameters is very slow due to specific modeling choices, one has to be cautious about

the interpretability of the parameters of interest. A very slow posterior contraction rate

in theory implies that a given data set probably has relatively very slow influence on

the movement of mass from the prior to the posterior distribution.

In this chapter we study Bayesian estimation of model parameters with both well-

specified and misspecified mixture models. There are two sets of results. The first results

resolve several outstanding gaps that remain in the existing theory and current practice

of Bayesian parameter estimation, given that the mixture model is well-specified. The

second set of results describes posterior contraction properties of such procedures when

the mixture model is misspecified. We proceed to describe these results, related works

and implications to the mixture modeling practice.

2.1.1 Well-specified regimes

Consider discrete mixing measures G =
∑k

i=1 piδθi . Here, p = (p1, . . . , pk) is a vector

of mixing weights, while atoms {θi}ki=1 are elements in a given compact space Θ ∈ Rd.

Mixing measure G is combined with a likelihood function f(·|θ) with respect to Lebesgue
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measure µ to yield a mixture density: pG(·) =
∫
f(·|θ)dG(θ) =

∑k
i=1 pif(·|θi). When

k < ∞, we call this a finite mixture model with k components. We write k = ∞ to

denote an infinite mixture model. The atoms θi’s are representatives of the underlying

subpopulations.

Assume that X1, . . . , Xn are i.i.d. samples from a mixture density pG0(x) =∫
f(x|θ)dG0(θ), where G0 is a discrete mixing measure with unknown number of support

points k0 <∞ residing in Θ. In the overfitted setting, i.e., an upper bound k0 ≤ k is

given so that one may work with an overfitted mixture with k mixture components, Chen

(1995) showed that the mixing measure G0 can be estimated at a rate n−1/4 under the

L1 metric, provided that the kernel f satisfies a second-order identifiability condition –

this is a linear independence property on the collection of kernel function f and its first

and second order derivatives with respect to θ.

Asymptotic analysis of Bayesian estimation of the mixing measure that arises in both

finite and infinite mixtures, where the convergence is assessed under Wasserstein distance

metrics, was first investigated by Nguyen (2013). Convergence rates of the mixing

measure under a Wasserstein distance can be directly translated to the convergence rates

of the parameters in the mixture model. Under the same (second-order) identifiability

condition, it can be shown that either maximum likelihood estimation method or a

Bayesian method with a non-informative (e.g., uniform) prior yields a (log n/n)1/4 rate

of convergence (Ho and Nguyen (2016); Nguyen (2013); Ishwaran et al. (2001)). Note,

however, that n−1/4 is not the optimal pointwise rate of convergence. Heinrich and

Kahn (2018) showed that a distance based estimation method can achieve n−1/2 rate of

convergence under W1 metric, even though their method may not be easy to implement

in practice. Ho et al. (to appear) described a minimum Hellinger distance estimator

that achieves the same optimal rate of parameter estimation.
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An important question in Bayesian analysis is whether there exists a suitable prior

specification for mixture models according to which the posterior distribution on the

mixing measure can be shown to contract toward the true mixing measure at the same

fast rate n−1/2. Rousseau and Mengersen (2011) provided an interesting result in this

regard, which states that for overfitted mixtures with a suitable Dirichlet prior on the

mixing weights p, assuming that an upper bound to the number of mixture component

is given, in addition to a second-order type identifiability condition, then the posterior

contraction to the true mixing measure can be established by the fact that the mixing

weights associated with all redundant atoms of mixing measure G vanish at the rate

close to the optimal n−1/2.

In our first main result given in Theorem 2.3.1, we show that an alternative and

relatively common choice of prior also yields optimal rates of convergence of the mixing

measure (up to a logarithmic term), in addition to correctly recovering the number of

mixture components, under considerably weaker conditions. In particular, we study the

mixture of finite mixture (MFM) prior, which places an explicit prior distribution on the

number of components k and a (conditional) Dirichlet prior on the weights p, given each

value of k. This prior has been investigated by Miller and Harrison (2018). Compared

to the method of Rousseau and Mengersen (2011), no upper bound on the true number

of mixture components is needed. In addition, only first-order identifiability condition

is required for the kernel density f , allowing our results to apply to popular mixture

models such as location-scale Gaussian mixtures. We also note that the MFM prior is

one instance in a class of modeling proposals, e.g., Nobile (1994); Richardson and Green

(1997); Nobile and Fearnside (2007) for which the established convergence behavior

continues to hold. In other words, from an asymptotic standpoint, all is good on the

parametric Bayesian front.
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Our second main result, given in Theorem 2.3.2, is concerned with a Bayesian

nonparametric modeling practice. A Bayesian nonparametric prior on mixing measures

places zero mass on measures with finite support points, so the BNP model is misspecified

with respect to the number of mixture components. Indeed, when G0 has only finite

support the true density pG0 lies at the boundary of the support of the class of densities

produced by the BNP prior. Despite the inconsistency results mentioned earlier on the

number of mixture components produced by Dirichlet process mixtures, we will show

that this situation can be easily corrected by applying a post-processing procedure to the

samples generated from the posterior distribution arising from the DP mixtures, or any

sufficiently well-behaved Bayesian nonparametric mixture models. By "well-behaved"

we mean any BNP mixtures under which the posterior contraction rate on the mixing

measure can be guaranteed by an upper bound using a Wasserstein metric.

Our post-processing procedure is simple, and motivated by the observation that a

posterior sample of the mixing measure tends to produce a large number of atoms with

very small and vanishing weights (Green and Richardson, 2001; Miller and Harrison,

2014). Such atoms can be ignored by a suitable truncation procedure. In addition,

similar atoms in the metric space Θ can also be merged in a systematic and probabilistic

way. Our procedure, named Merge-Truncate-Merge algorithm, is guaranteed to not only

produce a consistent estimate of the number of mixture components but also retain

the posterior contraction rates of the original posterior samples for the mixing measure.

Theorem 2.3.2 provides a theoretical basis for the heuristics employed in practice in

dealing with mixtures with unknown number of components (Green and Richardson

(2001); Nobile and Fearnside (2007)).
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2.1.2 Misspecified regimes

There are several ways a mixture model can be misspecified: either in the kernel

density function f , or the mixing measure G, or both. Thus, in the misspecified setting,

we assume that the data samples X1, . . . , Xn are i.i.d. samples from a mixture density

pG0,f0 , namely, pG0,f0(x) =
∫
f0(x|θ)G0(dθ), where both G0 and f0 are unknown. The

statistician draws inference from a mixture model pG,f , still denoted by pG for short,

where G is a mixing measure with support on compact Θ, and f is a chosen kernel

density function. In particular, a Bayesian procedure proceeds by placing a prior on

the mixing measure G and obtaining the posterior distribution on G given the n-data

sample. In general, the true data generating density pG0 lies outside the support of the

induced prior on pG. We study the posterior behavior of G as the sample size n tends

to infinity.

The behavior of Bayesian procedures under model misspecification has been inves-

tigated in the foundational work of Kleijn and van der Vaart (2006, 2012). These

papers focus primarily on density estimation. In particular, assuming that the true data

generating distribution’s density lies outside the support of a Bayesian prior, then the

posterior distribution on the model density can be shown to contract to an element of

the prior’s support, which is obtained by a Kullback-Leibler (KL) projection of the true

density into the prior’s support (Kleijn and van der Vaart (2006)).

It can be established that the posterior of pG contracts to a density pG∗ , where G∗ is a

probability measure on Θ such that pG∗ is the (unique) minimizer of the Kullback-Leilber

divergence K(pG0,f0 , pG) among all probability measure G on Θ. This mere fact is readily

deduced from the theory of Kleijn and van der Vaart (2006), but the outstanding and

relevant issue is whether the posterior contraction behavior carries over to that of G,
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and if so, at what rate. In general, G∗ may not be unique, so posterior contraction of G

cannot be established. Under identifiability, G∗ is unique, but still G∗ 6= G0.

This leads to the question about interpretability when the model is misspecified.

Specifically, when f 6= f0, it may be unclear how one can interpret the parameters that

represent mixing measure G, unless f can be assumed to be a reasonable approximation

of f0. Mixing measure G, too, may be misspecified, when the true support of G0 may

not lie entirely in Θ. In practice, it is a perennial challenge to explicate the relationship

between G∗ and the unknown G0. In theory, it is mathematically an interesting question

to characterize this relationship, if some assumption can be made on the true G0 and

f0, but this is beyond the scope of this chapter. Regardless of the truth about this

relationship, it is important for the statistician to know how impactful a particular

modeling choice on f and G can affect the posterior contraction rates of the parameters

of interest.

The main results that we shall present in Theorem 2.4.1 and Theorem 2.4.2 are

on the posterior contraction rates of the mixing measure G toward the limit point G∗,

under very mild conditions on the misspecification of f . In particular, we shall require

that the tail behavior of function f is not much heavier than that of f0 (cf. condition

(P.5) or (P.5’) in Section 2.4). Specific posterior contraction rates of contraction for G

are derived when f is either Gaussian or Laplace density kernel, two representatives

for supersmooth and ordinary smooth classes of kernel densities (Fan (1991)). A key

step in our proofs lies in several inequalities which provide upper bound of Wasserstein

distances on mixing measures in terms of weighted Hellinger distances, a quantity that

plays a fundamental role in the asymptotic characterization of misspecified Bayesian

models (Kleijn and van der Vaart (2006)).

It is interesting to highlight that the posterior contraction rate for the misspecified
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Gaussian location mixture is the same as that of well-specified setting, which is nonethe-

less extremely slow, in the order of (1/ log n)1/2. On the other hand, using a misspecified

Laplace location mixture results in some loss in the exponent γ of the polynomial rate

n−γ. Although the contrast in contraction rates for the two families of kernels is quite

similar to what is obtained for well-specified deconvolution problems for both frequentist

methods (Fan (1991); Zhang (1990)) and Bayesian methods (Nguyen (2013); Gao and

van der Vaart (2016)), our results are given for misspecified models, which can be

seen in a new light: since the model is misspecified anyway, the statistician should

be "free" to choose the kernel that can yield the most favorable posterior contraction

for the parameters of his/ her model. In that regard, Laplace location mixtures may

be preferred to Gaussian location mixtures, provided that the limit G∗ is not too far

from the true G0. When this is not the case, i.e., when the bias of the misspecified

model is too large due to the use of Laplace mixtures, it is more advisable to adopt

Gaussian kernels instead, despite the latter’s lagging posterior contraction behavior.

Although it is quite clear that the ultimate model choice under misspecification will

reside on resolving the tension between aforementioned bias and contracting variance, a

satisfactory formulation and solution for such a model choice problem which accounts

for parameter estimation and interpretability remains an interesting and important open

question.

Additionally, we note that the relatively slow posterior contraction rate for G is due

to the fact that the limiting measure G∗ in general may have infinite support, regardless

of whether the true G0 has finite support or not. From a practical standpoint, it is

difficult to interpret the estimate of G if G∗ has infinite support. However, if G∗ happens

to have a finite number of support points, which is bounded by a known constant, say

k, then by placing a suitable prior on G to reflect this knowledge we show that the
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posterior of G contracts to G∗ at a relatively fast rate (log n/n)1/4. This is the same

rate obtained under the well-identified setting for overfitted mixtures.

2.1.3 Further remarks

The posterior contraction theorems in this chapter provide an opportunity to re-

examine several aspects of the fascinating picture about the tension between a model’s

expressiveness and its interpretability. They remind us once again about the tradeoffs

a modeler must negotiate for a given inferential goal and the information available at

hand. We enumerate a few such insights:

(1) "One size does not fit all": Even though the family of mixture models as a

whole can be excellent at inferring about population heterogeneity and at density

estimation as a black-box device, a specific mixture model specification cannot do

a good job at both. For instance, a Dirichlet process mixture of Gaussian kernels

may yield an asymptotically optimal density estimation machine but it performs

poorly when it comes to learning of parameters.

(2) "Finite versus infinite": If the number of mixture components is known to be small

and an object of interest, then employing an explicit prior on this quantity results

in the optimal posterior contraction rate for the model parameters and thus is a

preferred method. When this quantity is known to be high or not a meaningful

object of inference, Bayesian nonparametric mixtures provide a more attractive

alternative as it can flexibly adapt to complex forms of densities. Regardless,

one can still consistently recover the true number of mixture components using a

nonparametric approach.

(3) "Some forms of misspecification are more useful than others". When the mixture
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model is misspecified, careful design choices regarding the (mispecified) kernel

density and the support of the mixing measure can significantly speed up the

posterior contraction behavior of model parameters. For instance, a heavy-tailed

and ordinary smooth kernel such as the Laplace, instead of the Gaussian kernel, is

shown to be especially amenable to efficient parameter estimation.

The remainder of the chapter is organized as follows. Section 2.2 provides necessary

backgrounds about mixture models, Wasserstein distances and several key notions

of strong identifiability. Section 2.3 presents posterior contraction theorems for well-

mispecified mixture models for both parametric and nonparametric Bayesian models.

Section 2.4 presents posterior contraction theorems when the mixture model is misspeci-

fied. In Section 3.5, we provide illustrations of the Merge-Truncate-Merge algorithm

via a simulation study. Proofs of technical results are provided in the supplementary

material.

Notation Given two densities p, q (with respect to the Lebesgue measure µ), the

total variation distance is given by V (p, q) = (1/2)

∫
|p(x)− q(x)|dµ(x). Additionally,

the squared Hellinger distance is given by h2(p, q) = (1/2)

∫
(
√
p(x)−

√
q(x))2dµ(x).

Furthermore, the Kullback-Leibler (KL) divergence is given by K(p, q) =∫
log(p(x)/q(x))p(x)dµ(x) and the squared KL divergence is given by K2(p, q) =∫
log(p(x)/q(x))2p(x)dµ(x). For a measurable function f , let Qf denote the integral∫
fdQ. For any κ = (κ1, . . . , κd) ∈ Nd, we denote

∂|κ|f

∂θκ
(x|θ) =

∂|κ|f

∂θκ1
1 . . . ∂θκdd

(x|θ) where

θ = (θ1, . . . , θd). For any metric d on Θ, we define the open ball of d-radius ε around

θ0 ∈ Θ as Bd(ε, θ0). We use D(ε,Ω, d̃) to denote the maximal ε-packing number for

a general set Ω under a general metric d̃ on Ω. Additionally, the expression an & bn
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will be used to denote the inequality up to a constant multiple where the value of the

constant is independent of n. We also denote an � bn if both an & bn and an . bn

hold. Furthermore, we denote Ac as the complement of set A for any set A while B(x, r)

denotes the ball, with respect to the l2 norm, of radius r > 0 centered at x ∈ Rd.

Finally, we use Diam(Θ) = sup{‖θ1− θ2‖ : θ1, θ2 ∈ Θ} to denote the diameter of a given

parameter space Θ relative to the l2 norm, ‖ · ‖, for elements in Rd.

2.2 Preliminaries

We recall the notion of Wasserstein distance for mixing measures, along with the

notions of strong identifiability and uniform Lipschitz continuity conditions that prove

useful in Section 2.3.

Mixture model Throughout the chapter, we assume that X1, . . . , Xn are i.i.d. sam-

ples from a true but unknown distribution PG0 with given density function

pG0 :=

∫
f(x|θ)dG0(θ) =

k0∑
i=1

p0
i f(x|θ0

i )

where G0 =
k0∑
i=1

p0
i δθ0

i
is a true but unknown mixing distribution with exactly k0 number

of support points, for some unknown k0. Also,
{
f(x|θ), θ ∈ Θ ⊂ Rd

}
is a given family

of probability densities (or equivalently kernels) with respect to a sigma-finite measure

µ on X where d ≥ 1. Furthermore, Θ is a chosen parameter space, where we empirically

believe that the true parameters belong to. In a well-specified setting, all support points

of G0 reside in Θ, but this may not be the case in a misspecified setting.

Regarding the space of mixing measures, let Ek := Ek(Θ) and Ok := Ok(Θ) respec-
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tively denote the space of all mixing measures with exactly and at most k support points,

all in Θ. Additionally, denote G := G(Θ) = ∪
k∈N+

Ek the set of all discrete measures

with finite supports on Θ. Moreover, G(Θ) denotes the space of all discrete measures

(including those with countably infinite supports) on Θ. Finally, P(Θ) stands for the

space of all probability measures on Θ.

Wasserstein distance As in Nguyen (2013); Ho and Nguyen (2016) it is useful to

analyze the identifiability and convergence of parameter estimation in mixture models

using the notion of Wasserstein distance, which can be defined as the optimal cost

of moving masses transforming one probability measure to another (Villani (2008)).

Given two discrete measures G =
k∑
i=1

piδθi and G′ =
∑k′

i=1 p
′
iδθ′i , a coupling between p

and p′ is a joint distribution q on [1 . . . , k]× [1, . . . , k′], which is expressed as a matrix

q = (qij)1≤i≤k,1 ≤j≤k′ ∈ [0, 1]k×k
′ with marginal probabilities

k∑
i=1

qij = p′j and
k′∑
j=1

qij = pi

for any i = 1, 2, . . . , k and j = 1, 2, . . . , k′. We use Q(p,p′) to denote the space of all

such couplings. For any r ≥ 1, the r-th order Wasserstein distance between G and G′ is

given by

Wr(G,G
′) = inf

q∈Q(p,p′)

(∑
i,j

qij‖θi − θ′j‖r
)1/r

,

where ‖ · ‖ denotes the l2 norm for elements in Rd. It is simple to see that if a sequence

of probability measures Gn ∈ Ok0 converges to G0 ∈ Ek0 under the Wr metric at a rate

ωn = o(1) for some r ≥ 1 then there exists a subsequence of Gn such that the set of

atoms of Gn converges to the k0 atoms of G0, up to a permutation of the atoms, at the

same rate ωn.

28



Strong identifiability and uniform Lipschitz continuity The key assumptions

that will be used to analyze the posterior contraction of mixing measures include uniform

Lipschitz condition and strong identifiability condition. The uniform Lipschitz condition

can be formulated as follows (Ho and Nguyen, 2016).

Definition 2.2.1. We say the family of densities {f(x|θ), θ ∈ Θ} is uniformly Lipschitz

up to the order r, for some r ≥ 1, if f as a function of θ is differentiable up to the order

r and its partial derivatives with respect to θ satisfy the following inequality

∑
|κ|=r

∣∣∣∣(∂|κ|f∂θκ
(x|θ1)− ∂|κ|f

∂θκ
(x|θ2)

)
γκ
∣∣∣∣ ≤ C‖θ1 − θ2‖δ‖γ‖

for any γ ∈ Rd and for some positive constants δ and C independent of x and θ1, θ2 ∈ Θ.

Here, γκ =
d∏
i=1

γκii where κ = (κ1, . . . , κd).

The first order uniform Lipschitz condition is satisfied by many popular classes of

density functions, including Gaussian, Student’s t, and skew-normal family. Now, strong

identifiability condition of the rth order is formulated as follows,

Definition 2.2.2. For any r ≥ 1, we say that the family {f(x|θ), θ ∈ Θ} (or in short,

f) is identifiable in the order r, for some r ≥ 1, if f(x|θ) is differentiable up to the order

r in θ and the following holds

A1. For any k ≥ 1, given k different elements θ1, . . . , θk ∈ Θ. If we have α(i)
η such that

for almost all x

r∑
l=0

∑
|η|=l

k∑
i=1

α(i)
η

∂|η|f

∂θη
(x|θi) = 0

then α(i)
η = 0 for all 1 ≤ i ≤ k and |η| ≤ r.
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Many commonly used families of density functions satisfy the first order identifiability

condition, including location-scale Gaussian distributions and location-scale Student’s

t-distributions. Technically speaking, strong identifiability conditions are useful in

providing the guarantee that we have some sort of lower bounds of Hellinger distance

between mixing densities in terms of Wasserstein metric between mixing measures. For

example, if f is identifiable in the first order, we have the following inequality (Ho and

Nguyen, 2016)

h(pG, pG0) & W1(G,G0) (2.1)

for any G ∈ Ek0 . It implies that for any estimation method that yields the convergence

rate n−1/2 for density pG0 under the Hellinger distance, the induced rate of convergence

for the mixing measure G0 is n−1/2 under W1 distance.

2.3 Posterior contraction under well-specified regimes

In this section, we assume that the mixture model is well-specified, i.e., the data are

i.i.d. samples from the mixture density pG0 , where mixing measure G0 has k0 support

points in compact parameter space Θ ⊂ Rd. Within this section, we assume further that

the true but unknown number of components k0 is finite. A Bayesian modeler places a

prior distribution Π on a suitable subspace of G(Θ). Then, the posterior distribution

over G is given by:

Π(G ∈ B
∣∣X1, . . . , Xn) =

∫
B

∏n
i=1 pG(Xi)dΠ(G)∫

G(Θ)

∏n
i=1 pG(Xi)dΠ(G)

(2.2)
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We are interested in the posterior contraction behavior of G toward G0, in addition to

recovering the true number of mixture components k0.

2.3.1 Prior results

The customary prior specification for a finite mixture is to use a Dirichlet distribution

on the mixing weights and another standard prior distribution on the atoms of the

mixing measure. Let H be a distribution with full support on Θ. Thus, for a mixture of

k components, the full Bayesian mixture model specification takes the form:

p = (p1, . . . , pk) ∼ Dirichletk(γ/k, . . . , γ/k),

θ1, . . . , θk
iid∼ H,

X1, . . . , Xn | G =
k∑
i=1

piδθi
iid∼ pG. (2.3)

Suppose for a moment that k0 is known, we can set k = k0 in the above model

specification. Thus we would be in an exact-fitted setting. Provided that f satisfies

both first-order identifiability condition and the uniform Lipschitz continuity condition,

H is approximately uniform on Θ, then according to Ho and Nguyen (2016) it can be

established that as n tends to infinity,

Π

(
G ∈ Ek0(Θ) : W1(G,G0) & (log n/n)1/2

∣∣∣∣X1, . . . , Xn

)
pG0−→ 0. (2.4)

The (log n/n)1/2 rate of posterior contraction is optimal up to a logarithmic term.

When k0 is unknown, there may be a number of ways for the modeler to proceed.

Suppose that an upper bound of k0 is given, say k0 < k. Then by setting k = k in the

above model specification, we have a Bayesian overfitted mixture model. Provided that
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f satisfies the second-order identifability condition and the uniform Lipschitz continuity

condition, H is again approximately uniform distribution on Θ, then it can be established

that (Ho and Nguyen, 2016):

Π

(
G ∈ Ok(Θ) : W2(G,G0) & (log n/n)1/4

∣∣∣∣X1, . . . , Xn

)
pG0−→ 0. (2.5)

This result does not provide any guarantee about whether the true number of mixture

components k0 can be recovered. The rate (upper bound) (log n/n)1/4 under W2 metric

implies that under the posterior distribution the redundant mixing weights of G contracts

toward zero at the rate (log n/n)1/2, but the posterior contraction to each of the k0

atoms of G0 occurs at the rate (log n/n)1/4 only.

Interestingly, it can be shown by Rousseau and Mengersen (2011) that with a

more judicious choice of prior distribution on the mixing weights, one can achieve a

near-optimal posterior contraction behavior. Specifically, they continued to employ the

Dirichlet prior, but they required the Dirichlet’s hyperparameters set to be sufficiently

small: γ/k ≤ d/2 in (2.3) where k = k, d is the dimension of the parameter space Θ.

Then, under some conditions on kernel f approximately comparable to the second-order

identifiability and the uniform Lipschitz continuity condition defined in the previous

section, they showed that for any ε > 0, as n tends to infinity

Π

(
∃I ⊂ {1, . . . , k}, |I| = k − k0 s.t.

∑
i∈I

pi < n−1/2+ε

∣∣∣∣X1, . . . , Xn

)
pG0−→ 1. (2.6)

For a more precise statement along with the complete list of sufficient conditions

leading to claim (2.6), we refer the reader to the original theorem of Rousseau and

Mengersen (2011). Although their theorem is concerned with only the behavior of the
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redundant mixing weights pi, where i ∈ I, which vanish at a near-optimal rate n−1/2+ε,

it can be deduced from their proof that the posterior contraction for the true atoms

of G0 occurs at this near-optimal rate as well. Rousseau and Mengersen (2011) also

showed that this performance may not hold if the Dirichlet’s hyperparameters are set to

be sufficiently large. Along this line, concerning the recovery of the number of mixture

components k0, Chambaz and Rousseau (2008) demonstrated the convergence of the

posterior mode of the number of components to the true number of components k0 at

a rate n−ρ, where ρ depends on k − k0, the number of redundant components forced

upon by our model specification. Finally, we note that in addition to Dirichlet-type

prior specifications, other types of prior specifications have also been taken up by other

researchers (Xie and Xu (2017); Fúquene et al. (2019)).

2.3.2 Optimal posterior contraction via a parametric Bayesian mixture

We will show that optimal posterior contraction rates for mixture model parameters

can be achieved by a natural Bayesian extension on the prior specification, even when

the upper bound on the number of mixture component k is unknown. The modeling idea

is simple and truly Bayesian in spirit: since k0 is unknown, let K be a natural-valued

random variable representing the number of mixture components. We endow K with a

suitable prior distribution qK on the positive integers. Conditioning on K = k, for each
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k, the model is specified as before:

K ∼ qK ,

p = (p1, . . . , pk)|K = k ∼ Dirichletk(γ/k, . . . , γ/k),

θ1, . . . , θk | K = k
iid∼ H,

X1, . . . , Xn | G =
k∑
i=1

piδθi
iid∼ pG . (2.7)

This prior specification is called mixture of finite mixtures (MFM) model (Richardson

and Green (1997); Stephens (2000); Miller and Harrison (2018)). In the sequel we show

that the application of the MFM prior leads to the optimal posterior contraction rates

for the model parameters. Interestingly, such guarantees can be established under very

mild conditions on the kernel density f : only the uniform Lipschitz continuity and

the first-order identifiability conditions will be required. The first-order identifiability

condition is the minimal condition for which the optimal posterior contraction rate can

be established by the proof technique employed, since this condition is also necessary for

exact-fitted mixture models to receive the n−1/2 posterior contraction rate. We proceed

to state such conditions.

(P.1) The parameter space Θ is compact, while kernel density f is first-order identifiable

and admits the uniform Lipschitz property up to the first order.

(P.2) The base distribution H is absolutely continuous with respect to the Lebesgue mea-

sure µ on Rd and admits a density function g(·). Additionally, H is approximately

uniform, i.e., minθ∈Θ g(θ) > c0 > 0.

(P.3) There exists ε0 > 0 such that
∫

(pG0(x))2/pG(x)dµ(x) ≤M(ε0) as long as

W1(G,G0) ≤ ε0 for any G ∈ Ok0 where M(ε0) depends only on ε0, G0, and Θ.
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(P.4) The prior qK places positive mass on the set of natural numbers, i.e., qK(k) > 0

for all k ∈ N.

Theorem 2.3.1. Under assumptions (P.1), (P.2), (P.3), and (P.4) on MFM, we have

that

(a) Π(K = k0|X1, . . . , Xn)→ 1 a.s. under PG0 .

(b) Moreover,

Π

(
G ∈ G(Θ) : W1(G,G0) . (log n/n)1/2

∣∣∣∣X1, . . . , Xn

)
→ 1

in PG0-probability.

The proof of Theorem 2.3.1 is deferred to Appendix 2.6.1. We now make several

remarks regarding the conditions required in the theorem.

(i) It is worth stating up front that these conditions are almost minimal in order

for the optimal posterior contraction to be guaranteed, and are substantially

weaker than previous works (as discussed above). In particular, assumption (P.1)

is crucial in establishing that the Hellinger distance h(pG, pG0) ≥ C0W1(G,G0)

where C0 is some positive constant depending only on G0 and Θ. Assumption (P.2)

and (P.4) are standard conditions on the support of the prior so that posterior

consistency can be guaranteed for any unknown G0 with unknown number of

support atoms residing on Θ. The role of (P.3) is to help control the growing

rate of KL neighborhood, which is central in the analysis of posterior convergence

rate of mixing measures. This assumption is held for various choices of kernel f ,

including location families and location-scale families. Therefore, the assumptions
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(P.1), (P.2),(P.3) and (P.4) are fairly general and satisfied by most common choice

of kernel densities.

(ii) Condition (P.2) may be replaced by the following weaker condition:

(P.2’) The base distribution H is absolutely continuous with respect to the Lebesgue

measure µ on Rd and admits a density function g(·). Additionally, H must

contain sufficient mass near the atoms of G0, i.e., minθ:‖θ−θ0
i ‖≤ε g(θ) ≥ c0 > 0

for some ε > 0.

We prefer (P.2) which is required for unknown G0 and is a reasonable assumption

in practice.

(iii) The contraction rate with respect to theW1 norm for strongly identifiable family of

densities is OP ((log(n)/n)1/2). The contraction rates relative to the Lq norms for

q ≥ 1 can be obtained by Lemma 2.9.2 and it is easy to show that the corresponding

contraction rates are OP ((log(n)/n)1/2q) for 1 ≤ q ≤ 2 and OP ((log(n)/n)1/q) for

q ≥ 2.

Theorem 2.3.1 provides a positive endorsement for employing the MFM prior when

the number of mixture components is unknown, but is otherwise believed to be finite

and an important quantity of inferential interest. The papers of Richardson and Green

(1997); Miller and Harrison (2018) discuss additional favorable properties of this class

of models. However, when the true number of mixture components is large, posterior

inference with the MFM may still be inefficient in practice. This is because much of the

computational effort needs to be expended for the model selection phase, so that the

number of mixture components can be reliably ascertained. Only then does the fast

asymptotic rate of parameter estimation come meaningfully into effect.
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2.3.3 A posteriori processing for BNP mixtures

Instead of placing a prior distribution explicitly on the number of mixture components

when this quantity is unknown, another predominant approach is to place a Bayesian

nonparametric prior on the mixing measure G, resulting in infinite mixture models.

Bayesian nonparametric models such as Dirichlet process mixtures and the variants have

remarkably extended the reach of mixture modeling into a vast array of applications,

especially those areas where the number of mixture components in the modeling is

very large and difficult to fathom, or when it is a quantity of only tangential interest.

For instance, in topic modeling applications of web-based text corpora, one may be

interested in the most "popular" topics, the number of topics is less meaningful (Blei

et al. (2003); Teh et al. (2006); Nguyen (2015); Yurochkin et al. (2017)). DP mixtures

and variants can also serve as an asymptotically optimal device for estimating the

population density, under standard conditions on the true density’s smoothness, see,

e.g., Ghosal and van der Vaart (2001, 2007); Shen et al. (2013); Scricciolo (2014).

Since a nonparametric Bayesian prior such as the Dirichlet process places zero

probability on mixing measures with finite number of supporting atoms, the Dirichlet

process mixture’s posterior is inconsistent on the number of mixture components,

provided the true number of mixture components is finite Miller and Harrison (2014).

It is well known in practice that Dirichlet process mixtures tend to produce many small

extraneous components around the "true" clusters, making them challenging to use to

draw conclusion about the true number of mixture components when this becomes a

quantity of interest (MacEachern and Mueller (1998); Green and Richardson (2001)).

In this section we describe a simple posteriori processing algorithm that consistently

estimates the number of components for any general Bayesian prior, even without the

37



exact knowledge of its structure as long as the posterior for that prior contracts at some

known rate to the true G0.

Our starting point is the availability of a mixing measure sample G that is drawn

from the posterior distribution Π(G|X1, . . . , Xn), where X1, . . . , Xn are i.i.d. samples

of the mixing density pG0 . Under certain conditions on the kernel density f , it can be

established that for some Wasserstein metric Wr, as n→∞

Π

(
G ∈ G(Θ) : Wr(G,G0) ≤ δωn

∣∣∣∣X1, . . . , Xn

)
pG0−→ 1 (2.8)

for all constant δ > 0, while ωn = o(1) is a vanishing rate. Thus, ωn can be taken to

be (slightly) slower than actual rate of posterior contraction of the mixing measure.

Concrete examples of the posterior contraction rates in infinite and (overfitted) finite

mixtures are given in Nguyen (2013); Gao and van der Vaart (2016); Ho and Nguyen

(2016).

The posterior processing algorithm operates on an instance of mixing measure G,

by suitably merging and truncating atoms that provide the support for G. The only

inputs to the algorithm, which we call Merge-Truncate-Merge (MTM) algorithm is G, in

addition to the upper bound of posterior contraction rate ωn, and a tuning parameter

c > 0. The tuning parameter c is useful in practice, as we shall explain, but in theory

the algorithm "works" for any constant c > 0. Thus, the method is almost "automatic"

as it does not require any additional knowledge about the kernel density f or the space

of support Θ for the atoms. It is also simple and fast. We shall show that the outcome

of the algorithm is a consistent estimate of both the number of mixing components and

the mixing measure. The latter admits a posterior contraction rate’s upper bound ωn

as well.
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The detailed pseudocode of MTM algorithm is summarized in Algorithm 2.1. At a

high level, it consists of two main stages. The first stage involves a probabilistic procedure

for merging atoms that may be clustered near one another. The second stage involves

a deterministic procedure for truncating extraneous atoms and merging them suitably

with the remaining ones in a systematic way. The driving force of the algorithm lies

in the asymptotic bound on the Wasserstein distance, i.e., Wr(G,G0) ≤ cωn with high

probability. When cωn is sufficiently small, there may be many atoms that concentrate

around each of the supporting atoms of G0. Although G0 is not known, such clustering

atoms may be merged into one, by our first stage of probabilistic merging scheme. The

second stage (truncate-merge) is also necessary in order to obtain a consistent estimate

of k0, because there remain distant atoms which carry a relatively small amount of

mass. They will need to be suitably truncated and merged with the other more heavily

supported atoms. In other words, our method can be viewed as a formal procedure of

the common practices employed by numerous practitioners.

We proceed to present the theoretical guarantee for the outcome of Algorithm 2.1.

Theorem 2.3.2. Let G be a posterior sample from posterior distribution of any Bayesian

procedure, namely, Π(·|X1, . . . , Xn) according to which the upper bound (2.8) holds for

all δ > 0. Let G̃ and k̃ be the outcome of Algorithm 2.1 applied to G, for an arbitrary

constant c > 0. Then the following hold as n→∞.

(a) Π(k̃ = k0|X1, . . . , Xn)→ 1 in PG0-probability.

(b) For all δ > 0, Π

(
G ∈ G(Θ) : Wr(G̃, G0) ≤ δωn

∣∣∣∣X1, . . . , Xn

)
−→ 1 in PG0-

probability.

We add several comments concerning this theorem.
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Algorithm 2.1 Merge-Truncate-Merge Algorithm
Input: Posterior sample G =

∑
i piδθi from (2.8), rate ωn, constant c.

Output: Discrete measure G̃ and its number of supporting atoms k̃.
{Stage 1: Merge procedure:}

1: Reorder atoms {θ1, θ2, . . . } by simple random sampling without replacement with
corresponding weights {p1, p2, . . . }.

let τ1, τ2, . . . denote the new indices, and set E = {τj}j as the existing set of
atoms.

2: Sequentially for each index τj ∈ E , if there exists an index τi < τj such that
‖θτi − θτj‖ ≤ ωn, then:

update pτi = pτi + pτj , and remove τj from E .

3: Collect G′ =
∑

j: τj∈E pτjδθτj .

write G′ as
∑k

i=1 qiδφi so that q1 ≥ q2 ≥ . . . .

{Stage 2: Truncate-Merge procedure:}
4: Set A = {i : qi > (cωn)r}, N = {i : qi ≤ (cωn)r}.
5: For each index i ∈ A, if there is j ∈ A such that j < i and qi‖φi − φj‖r ≤ (cωn)r,

then

remove i from A and add it to N .

6: For each i ∈ N , find atom φj among j ∈ A that is nearest to φi

update qj = qj + qi.

7: Return G̃ =
∑

j∈A qjδφj and k̃ = |A|.
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(i) The proof of this theorem is deferred to Appendix 2.6.2, where we clarify carefully

the roles played by each step of the MTM algorithm.

(ii) Although it is beyond the scope of this chapter to study the practical viability of

the MTM algorithm, for interested readers we present a brief illustration of the

algorithm via simulations in Section 3.5.

(iii) In practice, one may not have a mixing measure G sampled from the posterior

Π(·|X1, . . . , Xn) but a sample from G itself, say Fn, the empirical distribution

function. Then one can apply the MTM algorithm to Fn instead. Assume that

Fn is sufficiently close to G, in the sense that Wr(Fn, G) . Wr(G,G0), it is

straightforward to extend the above theorem to cover this scenario.

Practical implications At this point, one may look forward to some guidance regard-

ing the modeling choices of parametrics versus nonparametrics. Even in the tight arena

of Bayesian mixture modeling, the jury may still be out. The results in this section seems

to provide a stronger theoretical support for the former, when it comes to the efficiency

of parameter estimation and the corresponding model interpretation. However, as we

will see in the next section, when the mixture model is misspecified, the fast posterior

contraction rate offered by the use of the MFM prior is no longer valid. On the other

hand, Bayesian nonparametric models are more versatile in adapting to complex forms

of population densities. In many modern applications it is not meaningful to estimate

the number of mixing components, only the most "significant" ones in a sense suitably

defined. Perhaps a more meaningful question concerning a Bayesian nonparametric

mixture model is whether it is capable of learning selected mixture components in an

efficient way.
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2.4 Posterior contraction under model misspecification

In this section, we study the posterior contraction behavior of the mixing measure

under the realistic scenarios of model misspecification. There are several ways a mixture

model can be misspecified, due to the misspecification of the kernel density function f ,

or the support of the mixing measure G, or both. From here on, we shall assume that

the data population follows a mixture distribution composed of unknown kernel density

f0 and unknown mixing measure G0 — thus, in this section the true density shall be

denoted by pG0,f0 to highlight the possibility of misspecification.

To avoid heavy subscripting, we continue to use pG instead of pG,f to represent the

density function of the mixture model that we operate on. The kernel density f is

selected by the modeler. Additionally, G is endowed with a suitable prior Π on the

space of mixing measures with support belonging to compact parameter space Θ. By

Bayes rule (Eq. (3.1)) one obtains the posterior distribution Π(G|X1, . . . , Xn), where

the n-i.i.d. sample X1, . . . , Xn are generated by pG0,f0 . It is possible that f 6= f0. It is

also possible that the support of G0 does not reside within Θ. In practice, the statistical

modeler would hope that the kernel choice of f is not too different from the true but

unknown f0. Otherwise, it would be unclear how one can interpret the parameters that

represent the mixing measure G. Our goal is to investigate the posterior contraction of

Π(G|X1, . . . , Xn) in such situations, as sample size n tends to infinity. The theory is

applicable for a broad class of prior specification on the mixing measures on Θ, including

the MFM prior and a nonparametric Bayesian prior such as the Dirichlet process.

A fundamental quantity that arises in the theory of Bayesian misspecification for

density estimation is the minimizer of the Kullback-Leibler (KL) divergence from the

true population density to a density function residing in the support of the induced
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prior on the space of densities pG, which we shall assume to exist (cf. Kleijn and van der

Vaart (2006)). Moreover, assume that the KL minimizer can be expressed as a mixture

density pG∗ , where G∗ is a probability measure on Θ. We may write

G∗ ∈ arg min
G∈P(Θ)

K(pG0,f0 , pG). (2.9)

We will see in the sequel that the existence of the KL minimizer pG∗ entails its uniqueness.

In general, however, G∗ may be non-unique. Thus, define

M∗ :=

{
G∗ ∈ P(Θ) : G∗ ∈ arg min

G∈P(Θ)

K(pG0,f0 , pG)

}
.

It is challenging to characterize the set M∗ in general. However, a very useful

technical property can be shown as follows:

Lemma 2.4.1. For anyG ∈ P(Θ) andG∗ ∈M∗, it holds that
∫

pG(x)

pG∗(x)
pG0,f0(x)dx ≤ 1.

By exploiting the fact that the class of mixture densities is a convex set, the proof of

this lemma is similar to that of Lemma 2.3 of Kleijn and van der Vaart (2006), so it is

omitted. This leads quickly to the following fact.

Lemma 2.4.2. For any two elements G1,∗, G2,∗ ∈ M∗, pG1,∗(x) = pG2,∗(x) for almost

all x ∈ X .

In other words, the mixture density pG∗ is uniquely identifiable. Under a standard

identifiability condition of the kernel f , which is satisfied by the examples considered in

this section, it follows that G∗ is unique. Due to the model misspecification, in general

G∗ 6= G0. The best we can hope for is that the posterior distribution of the mixing

measure G contracts toward G∗ as n tends to infinity. The goal of the remaining of
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this section is to study the posterior contraction behavior of the (misspecified) mixing

measure G towards the unique G∗.

Following the theoretical framework of Kleijn and van der Vaart (2006), the pos-

terior contraction behavior of the mixing measure G can be obtained by studying the

relationship of a weighted version of Hellinger distance and corresponding Wasserstein

distances between G and the limiting point G∗. In particular, for a fixed pair of mixture

densities pG0,f0 and pG∗ , the weighted Hellinger h between two mixture densities is

defined as follows (Kleijn and van der Vaart , 2006).

Definition 2.4.1. For G1, G2 ∈ P(Θ),

h
2
(pG1 , pG2) :=

1

2

∫ (√
pG1(x)−

√
pG2(x)

)2 pG0,f0(x)

pG∗(x)
dx.

It is clear that when G∗ = G0 and f = f0, the weighted Hellinger distance reduces

to the standard Hellinger distance. In general they are different due to misspecification.

According to Lemma 2.4.1, we have h(pG1 , pG2) ≤ 1 for all G1, G2 ∈ P(Θ).

Choices of prior on mixing measures As in the previous section, we work with

two representative priors on the mixing measure: the MFM prior and the Dirichlet

process prior. Both prior choices may contribute to the model misspecification, if the

true mixing measure G0 lies outside of the support of the prior distribution.

Recall the MFM prior specification given in Eq. (2.7). We also need a stronger

condition on qK :

(P.4’) The prior distribution qK on the number of components satisfies qk & k−α0 for

some α0 > 1.
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The α0 > 1 condition is placed in order to ensure that qK is a proper distribution on

natural numbers. Note that the assumption with prior on the number of components

qK is mild and satisfied by many distributions, such as Poisson distribution. In order to

obtain posterior contraction rates, one needs to make sure the prior places sufficient

mass on the (unknown) limiting point of interest. For the MFM prior, such a condition

is guaranteed by the following lemma.

Lemma 2.4.3. Let Π denote the prior for generating G based on MFM (2.7), where H

admits condition (P.2) and qK admits (P.4’). Fix r ≥ 1. Then the following holds, for

any G∗ ∈ P(Θ)

Π (G : W r
r (G,G∗) ≤ (2r + 1)εr)

&
γΓ(γ)D!qD

D

(
c0

(
ε

Diam(Θ)

)d)D (
1

D

(
ε

Diam(Θ)

)r)γ(D−1)/D

(2.10)

for all ε sufficiently small so that D(ε,Θ, ‖.‖) > γ. Here, D = D(ε,Θ, ‖.‖) and qD stand

for the maximal ε-packing number for Θ under ‖.‖ norm and the prior weight Π(K = D),

respectively.

The proof of Lemma 2.4.3 is provided in Appendix 3.7.3. Alternatively, for a

Dirichlet process prior, G is distributed a priori according to a Dirichlet measure with

concentration parameter γ > 0 and base measure H satisfying condition (P.2). An

analogous concentration bound for such a prior is given in Lemma 5 of Nguyen (2013).

It is somewhat interesting to note that the difference in the choices of prior under

misspecification does not affect the posterior contraction bounds that we can establish.

In particular, as we have seen for the definition, G∗ does not depend on a specific choice

of prior distribution (only its support). Due to misspecification, G∗ may have infinite
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support, even if the true G0 has a finite number of support points. When G∗ has infinite

support, the posterior contraction toward G∗ becomes considerably slower compared to

the well-specified setting. In addition to the structure of G∗, we will see in the sequel

that the modeler’s specific choice of kernel density f proves to be especially impactful

on the rate of posterior contraction.

2.4.1 Gaussian location mixtures

Consider a class of kernel densities that belong to the supersmooth location family

of density functions. A particular example that we focus on in this section is a class of

Gaussian distributions with some fixed covariance matrix Σ. More precisely, f has the

following form:

{
f(·|θ), θ ∈ Θ ⊂ Rd : f(x|θ) :=

exp(−(x− θ)>Σ−1(x− θ)/2)

|2πΣ|−1/2

}
, (2.11)

where | · | stands for matrix determinant. Note that, Gaussian kernel is perhaps the

most popular choice in mixture modeling.

With the Gaussian location kernel, it is possible to obtain a lower bound on the

Hellinger distance between the mixture densities in terms of the Wasserstein distance

between corresponding mixing measures (Nguyen (2013)). More useful in the misspecified

setting is a key lower bound for the weighted Hellinger distance in terms of the Wasserstein

metric, which is given below in Prop. 2.4.1. In order to establish this bound we shall

require a technical condition relating f to the true f0 and G0. This condition is stated

by assumption (P.5) or a weaker version (P.5’).

(P.5) The support of G0, namely, supp(G0) is a bounded subset of Rd. Moreover, there
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are some constants C0, C1, α > 0 such that for any R > 0,

sup
x∈Rd,θ∈Θ,θ0∈supp(G0)

f(x|θ)
f0(x|θ0)

1‖x‖2≤R ≤ C1 exp(C0R
α).

The condition in (P.5) that the support of G0 has the same dimension d is purely for

the sake of interpretability, if the quantity of inferential interest is the mixing measure

G. This is also related to the condition in (P.5) on the density ratio f(x/θ)/f0(x|θ0). In

fact, both conditions on the support of G0 and on f0 are not strictly necessary from a

technical standpoint; only a "black-box" condition directly placed on the true density

pG0,f0 will be sufficient. Accordingly, (P.5) may be replaced by the following weaker

condition.

(P.5’) Assume that there are some constants C0, C1, α > 0 such that for any R > 0,

sup
x∈Rd,θ∈Θ

f(x|θ)
pG0,f0(x)

1‖x‖2≤R ≤ C1 exp(C0R
α).

It is simple to verify that (P.5) implies (P.5’).

Examples In the following examples, the statistician decides to fit the data with a

Gaussian location mixture model pG,f , where the kernel f(x|θ) corresponds to a Gaussian

kernel with mean parameter θ ∈ Θ ⊂ Rd, a fixed non-degenerate covariance Σ as given

by Eq. (2.11). In addition, the mixing measure G ∈ P(Θ).

1. If f0 is a Gaussian kernel with mean parameter in a bounded set Θ0 ⊂ Rd and

fixed non-degenerate covariance Σ0, and G0 ∈ P(Rd), then the true density pG0,f0

corresponds to a Gaussian location mixture. The model may be misspecified due

to either Σ0 6= Σ, or supp(G0) 6⊂ Θ, or both. In this case, (P.5) is satisfied for
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α ≥ 2. The constant C0 depends on Σ,Σ0 as well as supp(G0) and Θ. On the

other hand, C1 depends on the eigenvalues of Σ, Σ0 as well as the value of α.

2. If f0 is a Gaussian kernel with both mean and covariance parameter varying in

some compact subsets of Rd and positive definite d× d matrices, respectively, so

that the true density pG0,f0 corresponds to a Gaussian location-scale mixture. In

this case, (P.5) is not applicable, but (P.5’) holds with α ≥ 2. The constant C0

depends on Σ,Θ as well as the compact subsets corresponding to the location and

covariance parameters. On the other hand, C1 depends on the value of α chosen,

Σ as well as the compact subset corresponding to the covariance parameter.

3. If f0 is a Student’s t kernel, with both mean and covariance parameter varying in

some compact subsets of Rd and positive definite d× d matrices, respectively, then

pG0,f0 corresponds to a location-scale mixture of t distributions. In this scenario

too, (P.5) may not be applicable, but (P.5’) is, for any α > −2. Both C0 and

C1 depend on the choice of α. In addition C0 depends on Σ,Θ as well as the

compact subsets corresponding to the location and covariance parameters, while

C1 depends on Σ as well as the compact subset corresponding to the covariance

parameter.

4. If f0 is a Laplace kernel with mean parameter in a bounded set Θ0 ⊂ Rd, fixed

covariance Σ0, fixed scale parameter λ0, and G0 ∈ P(Rd), (P.5) is satisfied for any

α > −2. Both C0 and C1 depend on the choice of α. In addition C0 depends on

Σ,Θ as well as the compact subsets corresponding to the location and covariance

parameters, while C1 depends on Σ as well as the compact subset corresponding

to the covariance parameter.
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Proposition 2.4.1. Let f be a Gaussian kernel given by (3.8), Θ a bounded subset of

Rd. Moreover, assume that f,Θ and the true data generating distribution PG0,f0 satisfy

either condition (P.5) or (P.5’) for α ≤ 2. Then, there exists ε0 > 0 depending on Θ and

Σ, such that for any G,G′ ∈ P(Θ), whenever h(pG, pG′) ≤ ε0, the following inequality

holds

h(pG, pG′) ≥ C exp

(
− (1 + 8λmax(λ−1

min + C0))/W 2
2 (G,G′)

)
.

Here, λmax and λmin are respectively the maximum and minimum eigenvalue of Σ. C is

a constant depending on the parameter space Θ, the dimension d, the covariance matrix

Σ, G0 and C1 in condition (P.5) or (P.5’).

The proof of Proposition 2.4.1 is provided in Appendix 2.6.4. We are ready to prove

the first main result of this section.

Theorem 2.4.1. Assume that f satisfies condition specified in Prop. 2.4.1, and Π is

an MFM prior on P(Θ) specified in Lemma 2.4.3. Then, as n tends to infinity, the

following holds,

Π

(
G ∈ G(Θ) : W2(G,G∗) .

(
log log n

log n

)1/2∣∣∣∣X1, . . . , Xn

)
→ 1

in pG0,f0-probability.

The proof of Theorem 2.4.1 is given in Appendix 2.9.1. The same posterior contraction

behaviors hold if we replace MFM prior by the Dirichlet process prior with no change in

the proof, except that Lemma 5 of Nguyen (2013) is used in place of Lemma 2.4.3.
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2.4.2 Laplace location mixtures

Next, we consider a class of multivariate Laplace kernel, a representative in the

family of ordinary smooth density functions. It was shown by Nguyen (2013) that

under a Dirichlet process location mixture with a Laplace kernel, assuming the model is

well-specified, the posterior contraction rate of mixing measures to G0 is of order n−γ

for some constant γ > 0. Under the current misspecification setting, we will be able to

derive contraction rates toward G∗ in the order of n−γ′ for some constant γ′ dependent

on γ. The density of location Laplace distributions is given by :

f(x|θ) =
2

λ(2π)d/2

K(d/2)−1

(√
2/λ
√

(x− θ)>Σ−1(x− θ)
)

(√
λ/2
√

(x− θ)>Σ−1(x− θ)
)(d/2)−1

, (2.12)

where Σ and λ > 0 are respectively fixed covariance matrix and scale parameter such

that |Σ| = 1. Here, Kv is a Bessel function of the second kind of order v. As discussed

in Eltoft et al. (2006), Km(x) ∼
√

π
2x

exp(−x) as |x| → ∞. Therefore, there exists R̃

such that as long as ‖x− θ‖ > R̃, we have

f(x|θ) �
exp

(
−
√

2
λ
‖x− θ‖Σ−1

)
(‖x− θ‖Σ−1)(d−1)/2

,

where we use the shorthand notation ‖y‖Σ−1 =
√
y>Σ−1y. To ease the ensuing presen-

tation, we denote

τ(α) :=

√
2/(λλmax)(√

2/(λλmin) +
√

2/(λλmax) + C0

)1/α
.

50



The following proposition provides a key lower bound of weighted Hellinger distance in

terms of the Wasserstein metric.

Proposition 2.4.2. Let f be a Laplace kernel given by (3.5) for fixed Σ and λ such that

|Σ| = 1. Moreover, f,Θ and G0 satisfy either condition (P.5) or (P.5’) for some α ≥ 1.

Then, there exists ε0 > 0 depending on Θ, λ and Σ, such that for any G,G′ ∈ P(Θ),

whenever h(pG, pG′) ≤ ε0, the following inequality holds

(
log

1

h(pG, pG′)

)d/(2α)

exp

(
−τ(α)

(
log

1

h(pG, pG′)

)1/α
)
≥ CW

2/m
2 (G,G′).

for any positive constant m < 4/(4 + 5d). Here, λmax and λmin are respectively the

maximum and minimum eigenvalue of Σ. The constant C depends on the parameter

space Θ, the dimension d, the covariance matrix Σ, the scale parameter λ, G0 and C1 in

(P.5) or (P.5’).

The proof of Proposition 2.4.2 is provided in Appendix 2.6.5. Given the above result,

the posterior contraction rate for mixing measures G in the location family of Laplace

mixture distributions can be obtained from the following result:

Theorem 2.4.2. Assume that f is given by equation (3.5) for fixed Σ and λ such that

|Σ| = 1. Additionally, assume that f satisfies condition specified in Prop. 2.4.2, and

Π an MFM prior on P(Θ) specified in Lemma 2.4.3. Then, as n tends to infinity, the

following holds

(i) (Parameter estimation) We have

Π

(
G ∈ G(Θ) : W2(G,G∗) . exp

(
−mτ(α)

2

(
log n− log log n

2(d+ 2)

)1/α
)∣∣∣∣X1, . . . , Xn

)
→ 1
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in pG0,f0-probability for any positive constant m < 4/(4 + 5d).

(ii) (Density estimation) Moreover, if f satisfies condition (P.5) or (P.5’) for some

α < 1,

Π

(
G ∈ G(Θ) : ‖pG − pG∗‖L̃q .

(
(log(n))2

n

)1/q(2d+1)∣∣∣∣X1, . . . , Xn

)
→ 1

in pG0,f0-probability for 1 ≤ q ≤ 2.

When q ≥ 2, we find that

Π

(
G ∈ G(Θ) : ‖pG − pG∗‖L̃q .

(
(log(n))2

n

)2/q(2d+1)∣∣∣∣X1, . . . , Xn

)
→ 1

in pG0,f0-probability.

The proof of Theorem 2.4.2 is straightforward using the result in Proposition 2.4.2

and analogous to the proof argument of Theorem 2.4.1; therefore, it is omitted. Note

that, identical to the Gaussian kernel case, a similar contraction behavior also holds for

the Laplace kernel with the Dirichlet process prior. The proof can be obtained similar

to the MFM prior as shown in the case of Gaussian kernels.

Note that we only need condition (P.5’) for the proofs of Theorem 2.4.2 and Proposi-

tion 2.4.2 to hold. Condition (P.5) is a stricter condition which ensures (P.5’). Examples

of condition (P.5) or (P.5’) for Laplace mixtures is provided as follows.

Examples In the examples that follow, the statistician decides to fit the data with a

Laplace location mixture model pG,f , where the kernel f(x|θ) corresponds to a Laplace

kernel with mean parameter θ ∈ Θ ⊂ Rd, a fixed non-degenerate covariance Σ with

|Σ| = 1 and a scale parameter λ > 0, as given by Eq. (3.5). In addition, the mixing
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measure G ∈ P(Θ).

1. If f0 is a Gaussian kernel with mean parameter in a bounded set Θ0 ⊂ Rd and

fixed non-degenerate covariance Σ0, and G0 ∈ P(Rd), then the true density pG0,f0

corresponds to a Gaussian location mixture. In this case, (P.5) is satisfied for

α ≥ 2. The constant C0 depends on λ,Σ,Σ0 as well as supp(G0) and Θ. On the

other hand, C1 depends on the eigenvalues of λ,Σ, Σ0 as well as the value of α.

2. If f0 is a Gaussian kernel with both mean and covariance parameter varying in

some compact subsets of Rd and positive definite d× d matrices, respectively, so

that the true density pG0,f0 corresponds to a Gaussian location-scale mixture. In

this case, (P.5) is not applicable, but (P.5’) holds with α ≥ 2. The constant C0

depends on Σ,Θ as well as the compact subsets corresponding to the location and

covariance parameters. On the other hand, C1 depends on the value of α chosen,

Σ as well as the compact subset corresponding to the covariance parameter.

3. If f0 is a Student’s t kernel, with both mean and covariance parameter varying in

some compact subsets of Rd and positive definite d× d matrices, respectively, then

pG0,f0 corresponds to a location-scale mixture of t distributions. In this scenario

too, (P.5) may not be applicable, but (P.5’) is, for any α > −1. Both C0 and

C1 depend on the choice of α. In addition C0 depends on Σ,Θ as well as the

compact subsets corresponding to the location and covariance parameters, while

C1 depends on Σ as well as the compact subset corresponding to the covariance

parameter.

4. If f0 is a Laplace kernel with mean parameter in a bounded set Θ0 ⊂ Rd, fixed

covariance Σ0, fixed scale parameter λ0, and G0 ∈ P(Rd), (P.5) is satisfied for any
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α ≥ 1. Both C0 and C1 depend on the choice of α. In addition C0 depends on

Σ,Θ as well as the compact subsets corresponding to the location and covariance

parameters, while C1 depends on Σ as well as the compact subset corresponding

to the covariance parameter.

5. If f0 is a Laplace kernel with mean, scale and covariance parameters varying in some

compact subsets of R+, Rd and positive definite d×d matrices with determinant 1,

respectively, so that the true density pG0,f0 corresponds to a Laplace location-scale

mixture. In this case, (P.5’) holds with α ≥ 1. The constant C0 depends on Σ, λ,Θ

as well as the compact subsets corresponding to the location, scale and covariance

parameters. On the other hand, C1 depends on the value of α chosen, Σ as well

as the compact subsets corresponding to the scale and covariance parameters.

Remarks (i) It is worth noting that compared to the well-specified setting, the

posterior contraction upper bound obtained for Gaussian location mixtures remains the

same slow logarithmic rate (log log n/ log n)1/2. For Laplace mixtures, when the truth

f0 satisfies condition (P.5) with α ≤ 1, the posterior contraction upper bound obtained

under misspecification remains a polynomial rate of the form n−γ
′ modulo a logarithmic

term. Due to misspecification there is a loss of a constant factor in the exponent γ′,

which is dependent on the shape of the kernel density as it is captured by the term τ(α).

(ii) Although Gaussian mixtures have proved to be an asymptotically optimal density

estimation device under suitable and mild conditions (cf. Ghosal and van der Vaart

(2007)), the results obtained in this section raise some cautions for Gaussian kernels as

a choice for mixture modeling under model misspecification, even if the true G0 has

finite number of support points, when the primary interest is in the quality of model

parameter estimates. Mixtures of heavy-tailed and ordinary smooth kernel densities
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such as the Laplace prove to be more amenable to efficient parameter estimation. Thus,

the modeler may be tempted to select for f , say, a Laplace kernel over a supersmooth

kernel such as Gaussian kernel, provided that either condition (P.5) or (P.5’) is valid.

(iii) It is interesting to consider the scenario where the true kernel f0 happens to be

a Gaussian kernel: if we use either a well-specified or a misspecified Gaussian kernel to

fit the data, the posterior contraction bound is the extremely slow (log log n/ log n)1/2

accordingly to Theorem 2.4.1. This rate may be too slow to be practical interpretation

of parameters. If the statistician is too impatient to get to the truth G0, because sample

size n is not sufficiently large, he may well decide to select a Laplace kernel f instead.

Despite the intentional misspecification, he might be comforted by the fact that the

posterior distribution of G contracts at an exponentially faster rate to a G∗ given by

Theorem 2.4.2 for α = 2. It is of interest, in theory at least, in this scenario to study the

relation between G∗ and true G0, given certain assumptions on the true density pG0,f0 .

Practical implications All models are misspecified in practice. In particular, when

the kernel is misspecified, in general the limiting mixing measure G∗ would have infinite

support. Since the mixing measure G is a device for representing the heterogeneity of

the data population, this means when we employ (Bayesian) nonparametric models

in practice, the more data we have the more heterogeneous patterns will show up

via posterior estimates. As such, Theorems 2.4.1 and 2.4.2 inform us how the choice

of the kernel affects the quality of the estimates for G. In the language of Bayesian

inference, the theorems quantify in an asymptotic sense the role of data sample in

transforming the prior distribution to the posterior distribution on the quantity of

interest, whereas the matter of consistency toward the truth G0 is left unknown (and in

fact, unknowable in practice). On the other hand, these theorems should not be viewed
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as an endorsement of one kernel choice over another. It does not make sense to use G as

a device for heterogeneity of the data population unless the kernel choice f is believed

to be meaningful, i.e., f is sufficiently close to the true f0. This is how a practitioner

typically assumes. Once such a kernel choice f has been made, we have shown that

some (misspecified) kernels result in more efficient estimates, and hence more conductive

to interpretation, than others.

2.4.3 When G∗ has finite support

The source of the deterioration in the statistical efficiency of parameter estimation

under model misspecification is ultimately due to the increased complexity of the limiting

point G∗. Even if the true G0 has a finite number of support points, this is not the case

for G∗ in general. Unfortunately, it is very difficult to gain concrete information about

G∗ both in practice and in theory, due to the lack of knowledge about the true pG0,f0 .

When some precious information about G∗ is available, specifically, suppose that we

happen to know G∗ has a bounded number of support points k∗ such that k∗ < k for

some known k. Then it is possible to devise a new prior specification on the mixing

measure G so that one can gain a considerably improved posterior contraction rate

toward G∗. We will show that it is possible to obtain the contraction rate of the order

(log n/n)1/4 under W2 metric — this is the same rate of posterior contraction one would

get with overfitted mixtures in the well-specified regime.

In order to analyze the convergence rate of mixing measure under that setting of

k∗, we introduce a relevant notion of integral Lipschitz property, which is a generalized

form of the uniform Lipschitz property for the misspecification scenarios.

Definition 2.4.2. For any given r ≥ 1, we say that the family of densities f admits

the integral Lipschitz property up to the order r with respect to two mixing measures
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G0 and G∗ , if f as a function of θ is differentiable up to the order r and its partial

derivatives with respect to θ satisfy the following inequality

∑
|κ|=r

∣∣∣∣(∂|κ|f∂θκ
(x|θ1)− ∂|κ|f

∂θκ
(x|θ2)

)
γκ
∣∣∣∣ ≤ C(x)‖θ1 − θ2‖δ‖γ‖r

for any γ ∈ Rd and for some positive constants δ independent of x and θ1, θ2 ∈ Θ. Here,

C(x) is some function such that
∫
C(x)

pG0,f0(x)

pG∗(x)
dx <∞.

It is clear that when f has integral Lipschitz property up to the order r, for some

r ≥ 1, with respect to G0 and G∗, then it will admit uniform Lipschitz property up to

the order r. We can verify that the first order intergral Lipschitz property is satisfied by

many popular kernels, including location-scale Gaussian distribution and location-scale

Cauchy distribution.

In the following we shall work with the MFM prior (2.7). Moreover,

(M.0) qK places positive masses on K ∈
{

1, . . . , k
}
and 0 mass elsewhere, where k � k∗

is a fixed number.

Given that k∗ is finite, we obtain a key lower bound of weighted Hellinger distance in

terms of the Wasserstein metric under strong identiability of f :

Proposition 2.4.3. Assume that f is second order identifiable and admits uniform

integral Lipschitz property up to the second order. Then, for any G ∈ Ok, the following

inequality holds

h(pG, pG∗) & W 2
2 (G,G∗).

The proof of Proposition 2.4.3 is in Appendix 2.7.2. Before stating the final theorem
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of this section, we will need following assumptions:

(M.1) The assumptions of Proposition 2.4.3 hold, i.e., f is second order identifiable and

admits uniform integral Lipschitz property up to the second order.

(M.2) There exists ε0 > 0 such that
∫

(pG0,f0(x))pG∗(x)/pG(x)dµ(x) ≤M∗(ε0) whenever

we have W1(G,G∗) ≤ ε0 for any G ∈ Ok∗ where M∗(ε0) depends only on ε0, G∗,

G0, and Θ.

(M.3) The parameter γ in Dirichlet distribution in MFM satisfies γ < k. Additionally,

the base distribution H satisfies Assumption (P.2).

Theorem 2.4.3. Assume k0 <∞, and assumptions (M.0),(M.1),(M.2) and (M.3) hold.

Then we have that,

Π

(
G ∈ G(Θ) : W2(G,G∗) . (log n/n)1/4

∣∣∣∣X1, . . . , Xn

)
→ 1

in pG0,f0-probability.

The proof of Theorem 2.4.3 is deferred to Section 2.9.5.

Further remarks The above theorem raises a promising prospect for combating

model misspecification, by having the modeler fit the data to an underfitted mixture

model pG. Unfortunately, this theorem does not address this scenario, under which the

limiting mixing measure would correspond to the KL minimizer

G∗∗ = arg min
G∈Ok(Θ)

K(pG0,f0 , pG).
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Figure 2.1: Initial distribution G. Figure 2.2: After first stage-"merge".

Figure 2.3: After second stage-"truncation". Figure 2.4: After second stage-"merge".

for some k <∞, provided that this quantity exists (compare this with G∗ given in (2.9)).

Due to the lack of convexity of the class of mixture densities with bounded number of

mixture components, the theory developed in this section (tracing back to the work

of Kleijn and van der Vaart (2006)) is not applicable. Thus, posterior contraction

behaviors in an underfitted mixture models remain an interesting open question.

2.5 Simulation studies

In this section we provide an illustration of the MTM algorithm’s behavior via a

simple simulation study. Figures 2.1, 2.2, 2.3 and 2.4 illustrate the different stages in

the application of MTM algorithm 2.1. In each figure, green dots denote the atoms in

59



the set of "remaining atoms" at each stage, with weights proportional to their sizes.

Red dots denote the supporting atoms of the true mixing measure G0. Black circles

denote balls of radius ωn around each of the "remaining atoms". Blue circles denote

balls of radius ωn
4k0

around the atoms of G0.

Starting with an input measure G represented in Fig. 2.1, the first stage of the

algorithm (merge procedure, from line 1 to line 4) merges nearby atoms to produce G′,

which is represented by Fig. 2.2. There remains some atoms that carry very small mass,

they are suitably truncated (via line 5 in the algorithm), and then merged accordingly

(via line 6). Fig. 2.3 and Fig. 2.4 represent the outcome after these two steps of the

algorithm. Observe how the atoms in each of the blue circles are merged to produced

a reasonably accurate estimate of the corresponding atom of G0. The number of such

circles gives the correct number of the supporting atoms of G0.

Next, we illustrate the performance of the MTM algorithm as it is applied to the

samples from a Dirichlet process mixture, given the data generated by mixtures of three

location Gaussian distributions:

pG0(·) =
3∑
i=1

p0
iN (·|µ0

i ,Σ
0)

where N (·|µ,Σ) is the Gaussian distribution with mean vector µ and covariance matrix

Σ. For simulation purposes, we consider the following four different settings (n is the

sample size):

1. Case A: µ0
1 = (0.8, 0.8), µ0

2 = (0.8,−0.8), µ0
3 = (−0.8, 0.8), Σ0 = 0.05I3, n = 500.

2. Case B: µ0
1 = (0.8, 0.8), µ0

2 = (0.8,−0.8), µ0
3 = (−0.8, 0.8), Σ0 = 0.05I3, n = 1500.

3. Case C: µ0
1 = (1.8, 1.8), µ0

2 = (1.8,−1.8), µ0
3 = (−1.8, 1.8), Σ0 = 0.05I3, n = 500.
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Figure 2.5: Case A. Figure 2.6: Case B.

4. Case D: µ0
1 = (0.8, 0.8), µ0

2 = (0.8,−0.8), µ0
3 = (−0.8, 0.8), Σ0 = 0.01I3, n = 1500.

Here, I3 is the identity matrix of dimension 3. Additionally, the weight vector for all

these cases is chosen as p0 = (p0
1, p

0
2, p

0
3) = (0.4, 0.3, 0.3).

As mentioned above, a Dirichlet process prior with an uniform prior base measure H

in the region [−6, 6]× [−6, 6], along with concentration parameter α = 1. This choice

of prior enables us to sample significantly larger numbers of components of the mixing

measure than the true number of three components.

It is known that the contraction rate of mixing measures under location Gaussian

DPMM is C̃(log(n)−1/2) with respect to the Wasserstein-2 norm, for some constant

C̃ which depends on Σ0(the covariance matrix), the location parameters µ0
i and the

weights p0
i (Nguyen, 2013). For our purpose, in order for ωn to satisfy Equation (2.8),

we may choose any ωn as long as ωn
log(n)−1/2 → ∞. We selected ωn =

(
log(log(n))

(log(n))

)1/2

for

all our applications of the MTM algorithm.

The MTM algorithm is provably consistent (in the asymptotic sense) for all chosen

constants c > 0. In practice for n being fixed, the input c to Algorithm 2.1 should be
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chosen so that C̃
(log(log(n)))1/2 ≤ c. Moreover, for finite n it is not expected that the posterior

probability for k = k0 is close to 1. However, for identifying the number of components

the posterior mode provides a reasonable estimate. In particular, (1−
∑3

i=1
c
p0
i
) forms

a useful lower bound on the posterior mass at the true parameter as identified in

Equation (2.25) in the supplement. To identify k = k0 consistently using the posterior

mode safely, one needs to choose c < c0, with c0 satisfying (1−
∑3

i=1
c0
p0
i
) > 1/2. The

exact computation of the upper bound c0 and the lower bound C̃
(log(log(n)))

for c may be

unrealistic but a reasonable estimate may be possible. Nonetheless, we simply considered

a large range of c and show there is a range where we can robustly identify the true

number of components via the posterior mode.

For the DP mixture’s posterior computation, we make use of the non-conjugate

split-merge sampler of Jain and Neal Jain and Neal (2007) with (5, 1, 1, 5) scheme, i.e.,

5 scans to reach the split launch state, 1 split-merge move per iteration, 1 Gibbs scan

per iteration, and 5 moves to reach the merge launch state. We run our experiments for

two settings corresponding to sample sizes 500 and 1500. The sampler had 2000 burn-in

iterations followed by 18000 sample iterations (a total 20000), with each 10th iteration

being counted.

The experiments run for DP mixture-based sampler, followed by application of the

MTM procedure for 4 different values of the tuning parameter c in Algorithm 2.1,

namely, for c = 0.45, 0.5, 0.55, 1.0. The proportional frequencies are plotted in Figure 2.5

and Figure 2.6 respectively, along with the proportional frequencies for DP mixture.

The uniform base measure for the Dirichlet Process prior is chosen so as to enable

easier creation of newer components in the split-merge scheme. As a consequence

the DP mixture’s posterior yields quite bad results as far as the number of mixture

components is concerned. However, even under that case, we can recover the true
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Figure 2.7: Case C. Figure 2.8: Case D.

number of components by considering the mode of the frequency distribution after an

application of the MTM algorithm on the posterior samples, with appropriate constant

c. It is expected, however, that a large choice of c would underestimate the number of

components. This is also what is observed from the simulations, where the procedure

breaks down when c = 1.0.

We perform the experiments under four different settings of data populations. In

particular, figure 2.7 consists of data generated from mixture of Gaussians with more

widely spread location parameter values. In this case, it is expected that the convergence

to the true number of components via Algorithm 2.1 will be faster for the posterior

mode, in comparison to the situation where the location parameters are closer together.

This is indeed what is observed in our simulations. The value of the covariance matrix

Σ0, on the other hand does not seem to noticeably affect the results. This is again

expected, since the prior support [−6, 6]× [−6, 6] is quite large in comparison to the

eigenvalues of the covariance matrix chosen.
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2.6 Appendix A: Proofs of key results

In this appendix, we provide proofs for several key results in the chapter.

2.6.1 Proof of Theorem 2.3.1

The proof of the theorem consists of two key parts. First, we recall a general

framework for establishing posterior contraction of mixing measures. Then we proceed

to apply this framework to analyze the specific setting of the MFM model.

2.6.1.1 General framework

To establish convergence rates of mixing measures under the setting of MFM, we

utilize the general framework of posterior contraction of mixing measures under well-

specified setting from Nguyen (2013). To state such results formally, we will need to

introduce several key definitions in harmony with the notations in this chapter. Let

G be endowed with a prior distribution Π on a measure space of discrete probability

measures in G(Θ). Fix G0 ∈ P(Θ). For any set S ⊂ G(Θ), we define the Hellinger

information of the W1 metric for subset S by the following function

ΨS(r) := inf
G∈S: W1(G,G0)≥r/2

h2(pG, pG0).

Note that, the choice of first order Wasserstein metric in the above formulation is due

to the lower bound of Hellinger distance between mixing densities in terms of first order

Wasserstein distance between their corresponding mixing measures in (2.1). Now, for

any mixing measure G1 ∈ G(Θ) and r > 0, we define a Wasserstein ball centered at G1
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under W1 metric as follows

BW1(G1, r) =
{
G ∈ G(Θ) : W1(G,G1) ≤ r

}
.

Furthermore, for any M > 0, we define a Kullback-Leibler neighborhood of G0 by

BK(ε,M) =

{
G ∈ G(Θ) : K(pG0 , pG) ≤ ε2 log

(
M

ε

)
, K2(pG0 , pG) ≤ ε2

(
log

(
M

ε

))2
}

For the proof of Theorem 2.3.1, we use a straightforward extension of Theorem 4

in Nguyen (2013), adapted to the setting in this work.

Theorem 2.6.1. Fix G0 ∈ G.

Define M(G, G, r) := D

(
ΨG(r)

1/2

2Diam(Θ)α−1
√
C1

,G ∩ BW1(G, r/2),W1

)
for any G ⊂ G.

Assume the following:

(a) The family of likelihood functions is finitely identifiable and satisfies

h(f(x|θi), f(x|θ′j)) ≤ C1‖θi − θ′j‖α for any θi, θ′j ∈ Θ, for some constants C1 > 0,

α ≥ 1.

(b) There is a sequence εn → 0 such that nε2n is bounded away from 0 or tending to
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infinity, a constant M > 0 sufficiently large, and a sequence Mn such that

logD(ε/2,Gn ∩BW1(G0, 2ε)\BW1(G0, ε),W1)

+ sup
G∈Gn

logM(Gn, G, r) ≤ nε2n, ∀ ε ≥ εn, (2.13)

Π(G\Gn)

Π(BK(εn,M))
= o

(
exp

(
−2nε2n log

(
M

εn

)))
(2.14)

Π(BW1(G0, 2jεn)\BW1(G0, jεn))

Π(BK(εn,M))
≤ exp

(
nΨGn(jεn)/16

)
,

∀j ≥Mn (2.15)

exp

(
2nε2n log

(
M

εn

)) ∑
j≥Mn

exp
(
−nΨGn(jεn)/16

)
→ 0. (2.16)

Then, we have that Π(G ∈ G : W1(G,G0) ≥Mnεn|X1, . . . , Xn)→ 0 in PG0-probability.

2.6.1.2 Posterior contraction under MFM

Now, we apply the above result to establish the convergence rate of mixing measure

under a well-specified MFM model. The constant M for part (c) of Theorem 2.6.1 is

chosen later. Also, let εn := M(log n/n)1/2 where M is a sufficiently large constant

that will be chosen later. Note that it is enough to show, Π

(
G ∈ G(Θ) : W1(G,G0) &

(log n)1/2

n1/2

∣∣∣∣X1, . . . , Xn

)
→ 0, since Π(G ∈ G(Θ) \ G(Θ)|X1, . . . , Xn) = 0.

With εn chosen as above, we denoteAn := Π(G ∈ G(Θ) : W1(G,G0) & εn|X1, . . . , Xn).

It is clear that

An =
∞∑
k=1

Π(G ∈ Ok(Θ) : W1(G,G0) & εn|X1, . . . , Xn)Π(K = k|X1, . . . , Xn)

≤ Π(G ∈ Ok0(Θ) : W1(G,G0) & εn|X1, . . . , Xn) + Π(K 6= k0|X1, . . . , Xn).
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Now, we divide our proof into the following key steps

Step 1: Π(K = k0|X1, . . . , Xn)→ 1 a.s. PG0 . As the model is identifiable, this result

is the direct application of Doob’s consistency theorem Doob (1948).

Step 2: PG0

(
Π(G ∈ Ok0(Θ) : W1(G,G0) & εn|X1, . . . , Xn)

)
→ 0 as n → ∞. The

proof of this result is the application of Theorem 2.6.1. In fact, as we focus on the

posterior contraction of G0 from G ∈ Ok0(Θ), we denote the prior on G ∈ Ok0(Θ) to be

Π = H ×Q where Q d
= Dir(γ/k0, . . . , γ/k0). Now, we claim that

εcH . H(‖θi − θ0
i ‖ ≤ ε, i = 1, . . . , k0) . εcH

εγ
′

. Q(|pi − p0
i | ≤ ε, i = 1, . . . , k0) (2.17)

where cH > 0 and γ′ > 0 are some positive constants and ε is sufficiently small. The

proof of claim (2.17) can be obtained in Ghosal and van der Vaart (2017). To facilitate

the discussion, we further divide Step 2 into two small steps.

Step 2.1: To obtain the bound for Π(BK(εn,M)), we utilize the result from Wong and

Shen (1995) to bound KL divergence and squared KL divergence. In particular, from The-

orem 5 of Wong and Shen (1995), if p and q are two densities such that 2h2(p, q) ≤ ε2 and∫
p2/q ≤M2 then we obtain that K(p, q) . ε2 log(M/ε) and K2(p, q) . ε2(log(M/ε))2

where the constants in these bounds are universal.

Now, since f admits Lipschitz continuity up to the first order, we achieve that

h2(pG, pG0) ≤ C1W1(G,G0) for any G ∈ Ok0(Θ) where C1 is a positive constant depend-

ing only on Θ. Now, for any G ∈ Ok0(Θ) such that W1(G,G0) ≤ Cε2n where C < ε0

is a sufficiently small constant to be chosen later, the previous bound implies that
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h2(pG, pG0) ≤ C1Cε
2
n. Since Cε2n ≤ ε0 for all n sufficiently large, we also have that∫

(pG0(x))2/pG(x)dµ(x) ≤M(ε0) according to assumption (P.3). Combining all the

previous results, we achieve that

K(pG0 , pG) . ε2n log(
√
M(ε0)/

√
CC1εn),

K2(pG0 , pG) . ε2n(log(
√
M(ε0)/

√
CC1εn))2

when M is sufficiently large. Define M :=
√
M(ε0)/CC1. Therefore, we have

Π(BK(εn,M)) ≥ Π(G ∈ Ok0(Θ) : W1(G,G0) ≤ Cε2n).

For any G =
∑k0

i=1 piδθi such that ‖θi − θ0
i ‖ ≤ ε and |pi − p0

i | ≤ ε/(k0Diam(Θ)) for any

1 ≤ i ≤ k0 and sufficiently small ε > 0, we can check that

W1(G,G0) ≤
k0∑
i=1

p0
i ∧ pi‖θi − θ0

i ‖+

k0∑
i=1

|pi − p0
i |Diam(Θ) ≤ 2ε.

Hence, by choosing universal constant C such that Cε2n ≤ ε, we would have that

Π(G ∈ Ok0(Θ) : W1(G,G0) ≤ Cε2n)

≥ Π(G ∈ Ok0(Θ) : ‖θi − θ0
i ‖ ≤ Cε2n, |pi − p0

i | ≤ Cε2n/(k0Diam(Θ)), ∀ 1 ≤ i ≤ k0)

& ε2(cH+γ′)
n (2.18)

where the last inequality is due to the results from claim (2.17).

Step 2.2: To apply the posterior contraction rate result of Theorem 2.6.1, we choose

Gn = Ok0(Θ) for all n. Now, it is clear that Π(G\Gn) = 0. Therefore, condition (2.14)
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is obviously satisfied. Additionally, by means of Lemma 4 in Nguyen (2013), we can

check that condition (2.13) is satisfied with our choice of εn as M is sufficiently large.

For condition (2.15), from the bound of KL neighborhood in (2.18), we find that

Π(BW1(G0, 2jεn)\BW1(G0, jεn))

Π(BK(εn,M))
. ε−2(cH+γ)

n .

Since f is first order identifiable and admits uniform Lipschitz property up to the first

order, according to (2.1), we obtain that ΨGn(r) & Cr2 for any r > 0 where C is some

positive constant that depends only on G0 and Θ. Therefore, we have

exp

(
nΨGn(jεn)/16

)
≥ exp(nC(jεn)2)/16) ≥ nCM

2
n/16

for any j ≥ Mn. By choosing Mn such that M2
n ≥ 32(cH + γ)/C, it is clear that

condition (2.15) is satisfied.

For condition (2.16), combining with the above bound of ΨGn(r), we would have that

exp

(
2nε2n log

(
M

εn

)) ∑
j≥Mn

exp
(
−nΨGn(jεn)/16

)
. nM

2 ∑
j≥Mn

n−CM
2
n/16

. nM
2−CM

2
n

16 → 0

as long as Mn is chosen such that M2
n ≥ 32M

2

C
. Therefore, condition (2.16) is satisfied.

As a consequence, we achieve the conclusion of the theorem.
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Proof of claim (2.17) According to the formulation of Dirichlet distribution, we

obtain that

Q(|pi − p0
i | ≤ ε, i = 1, . . . , k0)

=
Γ(γ)

(Γ(γ/k0))k0

∫
|pi−p0

i |≤ε, 1≤i≤k0

k0−1∏
i=1

p
γ/k0−1
i

(
1−

k0−1∑
i=1

pi

)γ/k0−1

dp1 . . . dpk0−1.(2.19)

Now, for γ/k0 ≤ 1, equation (2.19) can be re-written as:

Q(|pi − p0
i | ≤ ε, i = 1, . . . , k0)

≥ Γ(γ)

(Γ(γ/k0))k0

∫
|pi−p0

i |≤ε, 1≤i≤k0

k0−1∏
i=1

p
γ/k0−1
i dp1 . . . dpk0−1

&
Γ(γ)

(Γ(γ/k0))k0

1

(γ/k0)k0
ε(k0−1)(γ/k0).

Here, the first inequality in the above display follows from the fact that 1−
k0−1∑
i=1

pi ≤ 1

while the second inequality is due to direct integration and the fact that ε is sufficiently

small.

On the other hand, for γ/k0 > 1 , we can rewrite equation (2.19) as

Q(|pi − p0
i | ≤ ε, i = 1, . . . , k0)

≥ Γ(γ)

(Γ(γ/k0))k0


1−

k0−1∑
i=1

p0
i

2


γ/k0−1 ∫

|pi−p0
i |≤ε, 1≤i≤k0

k0−1∏
i=1

p
γ/k0−1
i dp1 . . . dpk0−1

where the above inequality follows due to the fact that p0
i > 0 for all i ∈ {1, . . . , k0} and

that for sufficiently small ε > 0 such that |pi − p0
i | ≤ ε for all i ∈ {1, . . . , k0 − 1}, we
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have pk0 ≥ p0
k0
/2. Therefore, the lower bound for the Dirichlet distribution Q follows

automatically from the results of these two separate conditions of γ/k0 ≤ 1 and γ/k0 > 1.

On the other hand, to show the bounds for H, we note that Θ ⊂ Rd. Suppose

B(θ, ε) := {θ′ ⊂ Θ : ‖θ − θ′‖ ≤ ε} denotes the `2 ball in Θ ∩ Rd around θ, with radius ε.

Then it can be seen that

min
θ′∈Θ

(g(θ′)µ(B(θ′, ε))/µ(Θ))k0 ≤ H(‖θi − θ0
i ‖ ≤ ε, i = 1, . . . , k0)

≤ max
θ′∈Θ

(g(θ′)µ(B(θ′, ε))/µ(Θ))k0

since B(θ0
i , ε) are disjoint for all i ≤ k0 , for sufficiently small ε > 0. Here, µ(A) denotes

the d-dimensional Lebesgue measure of the set A ⊂ Θ and g is the density function

of H based on Assumption (P.2). Using the fact that εd . µ(B(θ′, ε)) . εd and the

condition that H is approximately uniform in Assumption (P.2), the remainder of the

claim follows.

2.6.2 Posterior consistency of Merge-Truncate-Merge algorithm

The goal of this section is to both deliver a proof of Theorem 2.3.2 and clarify the

role played by each of the steps of the MTM algorithm.

2.6.2.1 Probabilistic scheme for merging atoms

The first step of MTM algorithm comprises of lines from 1 to 3 in Algorithm 1. It

describes a probabilistic scheme for merging atoms from an input measure G. Recall

that G is a sample from the posterior distribution of a mixing measure which is assumed

to be relatively close to the true G0, per Eq. (2.8). To simplify notations within this

subsection we shall remove subscript n in ωn in (2.8), namely, we will not incorporate
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the randomness of data in the results in this subsection.

In that regard, suppose that we have a measure G =
∑

j pjδθj ∈ G(Θ) such that

Wr(G,G0) ≤ δω for some r ≥ 1. Here, δ, ω are sufficiently small such that the following

two properties hold:

(B.1) ω < min{(p0
min/2)1/r,minu6=v

‖θ0
u−θ0

v‖
8
}.

(B.2)
√
δ < p0

min/(2k0), where p0
min := mink0

i=1 p
0
i .

Denote by A(G) the set of atoms corresponding to any mixing measure G. For a given

G and ω, let gω,G be the set of all discrete measures which collect the atoms from G

such that all their atoms spaced apart by a distance at least ω:

gω,G := {G′ =
∑
j

p′jδθ′j : θ′j ∈ A(G),min
u6=v
‖θ′u − θ′v‖ ≥ ω}.

Note in this definition that any G′ ∈ gω,G must have finite number of atoms, because Θ

is compact.

The first merge step in the MTM algorithm is motivated by the following result,

which establishes the existence of a probabilistic procedure that transform G into another

measure G′ ∈ gω,G that possesses some useful properties, namely, the supporting atoms

of G′ are well-separated from one another, while G′ remains sufficiently close to G0 in

the sense of a Wasserstein metric.

Lemma 2.6.1. Assume thatWr(G,G0) ≤ δω for some r ≥ 1 where ω, δ satisfy condition

(B.1) and (B.2). Then, there exists a probabilistic scheme which transform G into a
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G′ =
∑k

j=1 p
′
jδθ′j such that k ≥ k0 and the following holds:

P ({G′ : G′ satisfies (G.1) and (G.2)}|G) ≥ 1− δr/2
k0∑
i=1

1

p0
i

.

Here, P is the probability measure associated with the probabilistic scheme and the

conditions (G.1) and (G.2) stand for

(G.1) G′ ∈ gω,G and Wr(G
′, G0) ≤ (k0 + 2)

√
δω.

(G.2) For each i = 1, . . . , k0 there is an index j for an atom of G′ for which |pj−p0
i | ≤ δr/2

and ‖θ′j − θ0
i ‖ ≤

√
δω.

Proof. The probabilistic scheme is the first merge step described in the MTM algorithm.

We recall it in the following

1. Reorder the indices of components {θ1, . . . , θ|G|} by simple random sampling

without replacement (SRSWOR) with corresponding weights {p1, . . . , p|G|}.

2. Let τ1, . . . , τ|G| denote the new indices, and set E = {τj}j as the existing set of

atoms.

3. Sequentially for each index τj , if there exists an index τi < τj such that ‖θτi−θτj‖ ≤

ω, we perform the following updates

• update pτi = pτi + pτj .

• update E by removing index τj from E .

4. Set G′ =
∑

j: τj∈E pτjδθτj .
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The proof consists of two main steps. First, we shows that every atom of G0 lies in a
√
δω neighborhood of a unique atom of G′ =

∑k
i=1 p

′
iδθ′i having large mass, with high

probability. This will allows us to deduce that G′ satisfies (G.2) with a high probability.

Next, we shall show that

{G′ : G′ satisfies (G.2) |G} ⊂ {G′ : G′ satisfies (G.1) |G}. (2.20)

to conclude the lemma. Note that by the nature of construction it automatically holds

that G′ ∈ gω,G.

Step 1: Let P (B|G) be the probability of an event B under the SRSWOR scheme

used above, conditioned the mixing measure G. Furthermore, let G(A) denote the

mass assigned to the set A ⊂ Θ by measure G. Thus, for a given ε > 0

G(B(θ, εω)) =
∑

i:‖θi−θ‖≤εω

pi

for any θ ∈ Θ, where B(θ, εω) is an ‖·‖-ball of radius εω centers at θ. Now, for calculating

the Wasserstein distance, the amount of mass transfer between θ0
i and those atoms of G

residing in B(θ0
i , εω)c is at least |p0

i −G(B(θ0
i , εω))|. Therefore, as Wr(G,G0) ≤ δω,

|p0
i −G(B(θ0

i , εω))|1/rεω ≤ δω

for any index i ∈ {1, . . . , k0} and for any 2 ≥ ε > 0. The upper bound of 2 arises from the

consideration of selecting disjoint balls combined with the fact that ω < minu6=v
‖θ0
u−θ0

v‖
4

.
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It leads to the following inequalities

p0
i −

(
δ

ε

)r
≤ G(B(θ0

i , εω)) ≤ p0
i +

(
δ

ε

)r
. (2.21)

Since ω < minu6=v
‖θ0
u−θ0

v‖
4

, based on the standard union bound, the following inequality

holds

G
(
∪k0
i=1B(θ0

i ,
√
δω)
)

=

k0∑
i=1

G(B(θ0
i ,
√
δω)) > 1− k0(

√
δ)r > 0. (2.22)

The last inequality in the above display holds because 1 ≥ p0
min > 2k0

√
δ. Now,

combining Equations (2.22) with (2.21), for specific choice of ε =
√
δ, we get that

G(B(θ0
i ,
√
δω))

G(B(θ0
i ,
√
δω) ∪ (∪k0

i=1B(θ0
i ,
√
δω))c)

≥ p0
i − (
√
δ)r

p0
i + (k0 + 1)(

√
δ)r
≥ 1− δr/2

p0
i

> 0.

Divide Θ into disjoint subsets Θ = A1 ∪ . . . ∪ Ak0+1, where Ai = B(θ0
i ,
√
δω) for

all i ≤ k0, and Ak0+1 = (∪k0
i=1B(θ0

i ,
√
δω))c. For each i = 1, . . . , k0, let Ei denote the

set of G′ obtained from G with one atom residing in Ai. The probabilistic scheme

for the selection of atoms for G′ from the those of G (via random sampling without

replacement) will pick an atom from Ai and gives it a lower index than one from Ak0+1

with probability

P (Ei|G) =
G(Ai)

G(Ai) +G(Ak0+1)
≥ 1− δr/2

p0
i

.

Moreover, if G′ ∈ Ei and θ′j ∈ A(G′) such that ‖θ′j − θ0
i ‖ ≤

√
δω, then

p0
i + δr/2 ≥ p0

i +

(
δ

2

)r
≥ G(B(θ0

i , 2ω)) ≥ p′j ≥ G(B(θ0
i ,
√
δω)) ≥ p0

i − δr/2.
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Thus G′ ∈ Ei satisfies (G.2).

This entails that P ({G′ : G′ satisfies (G.2)}|G) ≥ P (∩i0i=1E
i|G) ≥ 1−

(∑k0

i=1
δr/2

p0
i

)
,

which concludes the first proof step.

An useful fact to be used later is that if θ0
i ∈ B(θ′j,

√
δω) for some j ≤ k, when

θ′j ∈ A(G′), G′ ∈ Ei , then G(B(θj, ω)) ≥ ωr. Indeed, suppose that this claim does not

hold, then by the definition of Wasserstein metric, we find that

|p0
i − ωr|1/r

√
δω ≤ Wr(G,G0) ≤ δω,

which is a contradiction as we have p0
min ≥ 2k0

√
δ and ωr < p0

i /2.

Step 2: To establish (2.20) it suffices to assume that G′ =
∑

j p
′
jδθ′j ∈ E

i satisfies that

for every i = 1, . . . , k0, ‖θ′i − θ0
i ‖ ≤

√
δω, and |p0

i − G(B(θ0
i ,
√
δω))| ≤ δr/2. Then, we

have

p0
i − δr/2 ≤ G(B(θ0

i ,
√
δω)) ≤ G′(B(θ′i, ω)) = p′i.

The above result leads to G′((∪k0
i=1B(θ′i, ω))c) ≤ k0δ

r/2.

Now, we construct an measure G̃ =
∑

l p̃lδφl from G′ and G, by "de-merging" all

atoms of G′ except for its first k0 atoms. Specifically, for indices l ≤ k0, simply take

p̃l = p′l and φl = θ′l. Additionally, if index l > k0 is such that ‖θl − θ′i‖ > ω for all

i ≤ k0, then φl = θl and p̃l = pl. Otherwise, let p̃l = 0. By the triangle inequality with

Wasserstein metric,

Wr(G
′, G0) ≤ Wr(G

′, G̃) +Wr(G̃, G0) ≤ k
1/r
0

√
δω +Wr(G̃, G0). (2.23)
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The second inequality above holds because
∑k0

l=1 p̃l =
∑k0

j=1 p
′
j ≥ 1− k0δ

r/2. So, there

exists a coupling of G′ and G̃ such that any mass transfer occurs between atoms located

at most ω in distance from each other. Moreover, the coupling can be so obtained that

the total mass travelling a non-zero distance is bounded above by k0δ
r/2.

It remains to obtain a suitable upper bound for W r
r (G̃, G0). From the definition of

Wasserstein metric, we can write

Wr(G̃, G0) = inf
q∈Q(p̃,p0)

(∑
i,l

qil‖φl − θ0
i ‖r
)1/r

,

where Q(p̃,p0) is the set of all possible couplings between p̃ = (p̃1, . . . , p̃|G|) and

p0 = (p0
1, . . . , p

0
k0

). Now, we consider a coupling q ∈ Q(p̃,p0) such that qii = min{p0
i , p̃i}

for any i. Then, the following inequalities hold

W r
r (G̃, G0) ≤

k0∑
i=1

p̃i‖φi − θ0
i ‖r +

∑
i,l 6=i

qil‖φl − θ0
i ‖r

≤ (
√
δω)r +W r

r (G,G0) ≤ (
√
δω)r + (δω)r = (1 + δr/2)δr/2ωr.

Therefore, following Equation (2.23), we have,

Wr(G
′, G0) ≤ (k

1/r
0 + (1 + δr/2)1/r)

√
δω ≤ (k0 + 2)

√
δω.

As a consequence, we achieve the conclusion of the lemma.

2.6.2.2 Truncate-merge scheme

In the previous subsection we studied properties of the first stage of the MTM

algorithm, which is applied an arbitrary discrete measure G that is sufficiently close
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to G0 under Wasserstein metric, namely, Wr(G,G0) ≤ δω for some small quantities

δ > 0 and ω > 0. The next stage of the MTM algorithm comprises of lines 4 to 7 in

the algorithm’s description. It is applied to a measure G′, which is the outcome of the

algorithm’s first stage. Denote G′ =
∑k

j=1 p
′
jδθ′j where k ≥ k0. As a consequence of

Lemma 2.6.1, G′ satisfies two important properties (G.1) and (G.2), which are to be

restated here for the reader’s convenience.

(G.1) G′ ∈ gω,G and Wr(G
′, G0) ≤ δ′ω, where δ′ = (k0 + 2)

√
δ.

(G.2) For each i ≤ k0, there exists an (unique) atom of G′, which is relabeled θ′i so that

|θ0
i − θ′i‖ ≤

√
δω ≤ ωp0

min/(2k0) ≤ ω/(2k0).

By definition, G′ ∈ gω,G implies that its atoms are well-separated, namely, for any

1 ≤ i < j ≤ k, ‖θ′i − θ′j‖ ≥ ω. Assuming slightly stronger conditions on the two

quantities ω and δ, we can say more about the structure of G′, which turns out to be

very useful in identifying the true number of atoms k0 of G0 via a truncation procedure.

(B.3) ω < 7p0
min minu6=v ‖θ0

u−θ0
v‖

16
.

(B.4)
√
δ < p0

min/(2k0(k0 + 2)), where p0
min := mink0

i=1 p
0
i .

Lemma 2.6.2. Suppose that ω and δ satisfy conditions (B.1), (B.3) and (B.4). Then

for any G′ satisfying properties (G.1) and (G.2), the following hold.

(a) For each 1 ≤ i 6= j ≤ k0, we obtain that (p′j)
1/r‖θ′i − θ′j‖ > ω.

(b) For each j > k0, we find that min1≤i≤k0(p′j)
1/r‖θ′i − θ′j‖ ≤ ω.

Proof. To show (a), note for any i, j ≤ k0

‖θ′i − θ′j‖ ≥ ‖θ0
i − θ0

j‖ − ‖θ′i − θ0
i ‖ − ‖θ′j − θ0

j‖ ≥ ‖θ0
i − θ0

j‖ −
ω

k0

≥ 7

8
‖θ0

i − θ0
j‖ (2.24)
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where the first inequality follows from triangle inequality, the second inequality is due

to the hypothesis with G′, and the third inequality is due to (B.1).

By the definition of Wasserstein distances, for mass transport to be achieved between

G′ and G0, an amount of mass at least |p0
i − p′i| should be transported from atom θ0

i of

G0 to an atom of G′ other than θ′i. Hence, for any i ≤ k0, |p0
i − p′i|(ω − ‖θ′i − θ0

i ‖)r ≤

W r
r (G′, G0) ≤ (δ′ω)r. Invoking the hypothesis with G′, these inequalities lead to

|p0
i − p′i|1/r ≤ 2δ′. Combining with the condition

√
δ <

p0
i

2k0(k0+2)
, the above inequality

leads to p′i > p0
i −

(p0
i )

2

2k2
0
≥ p0

i

2
. Combining this with Equation (2.24) and (B.3) to conclude.

Turning to part (b), suppose for some j > k0, we have (p′j)
1/r‖θ′i − θ′j‖ > ω for all

i ≤ k0. Then by triangle inequality and the properties of G′, we find that

‖θ′j − θ0
i ‖+

ω

2k0

≥ ‖θ′j − θ0
i ‖+ ‖θ0

i − θ′i‖ ≥ ‖θ′i − θ′j‖ > ω/p′j
1/r
.

Applying the triangle inequality again, ‖θ0
i −θ′j‖ ≥ ‖θ′j−θ′i‖−‖θ0

i −θ′i‖ ≥ ω(1− 1
2k0

) ≥ ω
2
.

Combining the two preceeding bounds, we get 2‖θ′j − θ0
i ‖ > ω/p′j

1/r for all i ≤ k0.

Now, since Wr(G
′, G0) ≤ δ′ω, we can find a coupling q ∈ Q(p′,p0) between p′ =

(p′1, . . . , p
′
k) and p0 = (p1, . . . , p

0
k0

) such that
∑

ij qij‖θ′j − θ0
i ‖r ≤ (δ′ω)r. However, based

on the previous inequalities, we have for the given index j

k0∑
i=1

qij‖θ′j − θ0
i ‖r >

k0∑
i=1

qij

(
1

2

)r
ωr/p′j =

(
1

2

)r
ωr,

which is a contradiction as δ′ < 1/2 due to condition (B.4). This concludes the proof of

the lemma.

79



2.6.2.3 Proof of Theorem 2.3.2

Now we are ready for the proof of this theorem. It suffices to prove for the case

constant c = 1.

Proof of part (a): Recall that we are given a (random) mixing measure for which

the following holds: for each fixed ε > 0 and δ > 0, as n→∞, there holds

P n
G0

{
Π

(
Wr(G,G0) ≥ δωn

∣∣(X1, . . . , Xn)

)
≥ ε

}
→ 0.

Choose δ sufficiently small, and as n gets large ωn also becomes so small that all

conditions (B.1–4) in the preceeding sections are satisfied. Then, we can appeal to

Lemma 2.6.1 and the above mentioned Equation to obtain that, measure G′ as produced

in the probablistic merge stage of the MTM algorithm also admits a posterior contraction

toward G0, in the sense that as n→∞

P n
G0

{
Π

(
Wr(G

′, G0) ≤ (k0 + 2)
√
δωn
∣∣(X1, . . . , Xn)

)
≥ (1− ε)

(
1−

k0∑
i=1

δ
r
2

p0
i

)}
→ 1.

Since this holds for any δ > 0, we deduce that the posterior probability Π

(
Wr(G

′, G0) ≤

(k0 + 2)
√
δωn
∣∣(X1, . . . , Xn)

)
→ 1 in PG0 probability.

Suppose that G′ satisfies both conditions (G.1) and (G.2) (per Lemma 2.6.1), then

it can be verified that if the atoms of G′ are arranged in descending order of their

masses, then each of the top k0 atoms of G′ lie in an ωn
2k0

- ball around an atom of G0.

Specifically, using the representation G′ =
∑kn

i=1 qiδφi , where q1 ≥ · · · ≥ qkn , we have

that ‖θ0
i − φi‖ ≤ ωn

2k0
and |qi − p0

i | ≥ δr/2 for all i ∈ {1, . . . , k0}.

Recall that G′ is fed into the second stage, the truncate-merge procedure, of the
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MTM algorithm. Note that |qi − p0
i | ≤ δr/2 implies qi > p0

i − δr/2 > p0
i /2 > ωrn for n

sufficiently large. By Lemma 2.6.2 that for each j > k0, mini≤k0(qj)
1/r‖φi − φj‖ ≤ ωn,

but for each i, j ≤ k0, i 6= j, (qj)
1/r‖φi − φj‖ ≥ ωn. Following the definition of k̃ = |A|,

we deduce that k̃ = k0. The final step is to coat this guarantee with a probability

statement, due to the fact that G′ is random given G,

P n
G0

{
Π

(
k̃ = k0|X1, . . . , Xn

)
≥ (1− ε)

(
1−

k0∑
i=1

δr/2

p0
i

)}
−→ 1 (2.25)

as n→∞. Let δ → 0 to conclude the proof of part (a).

Proof of part (b): The proof boils down to showing that the reassignment of mass

as in the second stage of the MTM Algorithm only increases the Wasserstein distance by

a constant factor. Denote by p0 = (p0
1, . . . , p

0
k0

) and q = (q1, . . . , qkn) the weight vectors

of G0 and G′ respectively. Suppose that Wr(G
′, G0) ≤ (k0 + 2)

√
δωn as before. So can

find a coupling f ∈ Q(p0, q) such that

(∑
i,j

fij‖θ0
i − φj‖r

)1/r

≤ 2(k0 + 2)
√
δωn.

Define the set Vi,n := {θ ∈ Θ : ‖θ − θ0
i ‖ ≤ minu6=v

‖θ0
u−θ0

v‖
2
− ωn

2k0
}. Furthermore, the

following inequalities hold

‖φj − θ0
i ‖ ≥ min

u6=v

‖θ0
u − θ0

v‖
2

− ωn
2k0

≥ min
u6=v

‖θ0
u − θ0

v‖
4
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for all i ≤ k0 and j 6∈ Vi,n, because ωn satisfies assumption (B.1). Therefore, we find

that

∑
i,j:φj 6∈Vi,n

fij ≤ 4

(
2(k0 + 2)

√
δωn

minu6=v ‖θ0
u − θ0

v‖

)r

.

Notice that if j ∈ Vi,n, the second stage of the MTM Algorithm assigns the mass

corresponding to atom j of G′ to atom i of G̃. We can assume henceforth that G̃ is such

that |A(G̃)| = k0 as a result of the proof of part (a) of this theorem.

Since the sets Vi,n are disjoint, this assignment is unique. It follows that we can find

f ′ ∈ Q(p0, q
′) such that

∑
i,j 6=i

f ′ij‖θ0
i − φj‖r ≤ 4r

(
2Diam(Θ)(k0 + 2)

√
δωn

minu6=v ‖θ0
u − θ0

v‖

)r

,∑
i

f ′ii‖θ0
i − φi‖r ≤ ((k0 + 2)

√
δωn)r (2.26)

where q′ = (q′1, . . . , q
′
k0

) is the weight vector of G̃. The first inequality above follows,

since ‖φi − θ0
i ‖ ≤ ‖φj − θ0

i ‖ for all pairs i, j with i ≤ k0, with strict inequality for

i 6= j. To obtain the conclusion for the second inequality in (2.26), we note that

p0
i =

∑
j fij =

∑
j f
′
ij. Therefore, f ′ii =

∑
j fij −

∑
j 6=i f

′
ij. Then, if φj is an atom of G′,

for any j 6= i, we have ‖θ0
i − φi‖ ≤ ‖θ0

i − φj‖. Hence, we find that

∑
i

f ′ii‖θ0
i − θi‖r ≤

∑
i,j

fij‖θ0
i − φj‖r ≤ W r

r (G′, G0) ≤ ((k0 + 2)
√
δωn)r.

By the nature of construction A(G̃) ⊂ A(G′). Using the two parts of Equation (2.26),

we obtain that

Wr(G̃, G0) ≤
(

1 + 4r
(

2Diam(Θ)

mini,l ‖θ0
i−θ0

l ‖

)r)1/r

((k0 + 2)
√
δωn).
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The full probability statement is

P n
G0

{
Π

(
G ∈ G(Θ) : Wr(G̃, G0) ≤ Cδωn

∣∣X1:n

)
≥ (1− ε)

(
1−

k0∑
i=1

δ
r
2

p0
i

)}
→ 1, (2.27)

where C =
(

1 + 4r
(

2Diam(Θ)

mini,l ‖θ0
i−θ0

l ‖

)r)1/r

(k0 + 2) is a constant dependent on G0 and Θ.

Finally, letting δ → 0 we obtain the desired conclusion for part (b).

2.6.3 Proof of Lemma 2.4.3

To simplify the proof argument, we specifically assume that G∗ is a discrete mixture.

The proof argument for other settings of G∗ is similar and is omitted. Now, we consider

an ε > 0 maximal packing set of parameter space Θ. It leads to a D−partition

(S1, . . . , SD) of Θ such that Diam(Si) ≤ 2ε for all 1 ≤ i ≤ D. Choose ε to be sufficiently

small such that D > γ.

For mixing measures G =
∑

i piδθi and G∗ =
∑∞

i=1 p
∗
i δθ∗i , we denote G(Si) :=∑

i:θi∈Si pi and G∗(Si) =
∑

i:θ∗i ∈Si
p∗i . Invoking the detailed formulation of Wasserstein

metric, we can check that

W r
r (G,G∗) ≤ (2ε)r + Diamr(Θ)

D∑
i=1

|G(Si)−G∗(Si)|.

Equipped with the above inequality, the following inequality holds

Π(W r
r (G,G∗) ≤ (2r + 1)εr) ≥ Π

(
D∑
i=1

|G(Si)−G∗(Si)| ≤ (ε/Diam(Θ))r

)
.
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For any positive constant A, we find that

Π

(
D∑
i=1

|G(Si)−G∗(Si)| ≤ A

)
≥ qDΠ(B ∩ {|G(Si)−G∗(Si)| ≤ A/D, for each i}|K = D)

where B stands for the event that each Si contains exactly one atom of G.

Governed by the above observations, by substituting A = (ε/Diam(Θ))r, we obtain

that

Π(W r
r (G,G∗) ≤ (2r + 1)εr)

& qD

(
c0

(
ε

Diam(Θ)

)d)D

Π({|G(Si)−G∗(Si)| ≤ A/D, for each i}|B ∩ {K = D})︸ ︷︷ ︸
:=T

.

By means of Dirichlet probability model assumption on ∆D−1, the standard simplex

of dimension D, we have the following evaluations with T

T & D!
Γ(γ)∏D

i=1 Γ(γ/D)

∫
U

D−1∏
i=1

(G(Si))
(γ/D)−1(1−

D−1∑
i=1

G(Si))
(γ/D)−1d(G(Si))

≥ D!
Γ(γ)∏D

i=1 Γ(γ/D)

D−1∏
i=1

min(G∗(Si)+(ε/Diam(Θ))r/D,1)∫
max(G∗(Si)−(ε/Diam(Θ))r/D,0)

(G(Si))
(γ/D)−1d(G(Si))

≥ D!
Γ(γ)γ/D∏D

i=1(γ/D)Γ(γ/D)

(
1

D

(
ε

Diam(Θ)

)r)γ(D−1)/D

where U := ∆D−1 ∩ |G(Si)−G∗(Si)| ≤ (ε/Diam(Θ))r/D. Here, the second inequality

in the above display is due to the fact that (1 −
∑D−1

i=1 G(Si))
(γ/D)−1 > 1 as γ < D.

Invoking the basic inequality αΓ(α) < 1 for 0 < α < 1, we reach the conclusion of the

lemma.
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2.6.4 Proof of Proposition 2.4.1

We denote a sphere of radius R as SR := {x ∈ Rd : ‖x‖2 ≤ R} for any R > 0. Direct

computations lead to

2V (pG, pG′) =

∫
Rd

|pG(x)− pG′(x)|dµ(x)

=

∫
Sc
R

|pG(x)− pG′(x)|dµ(x) +

∫
SR

|pG(x)− pG′(x)|pG0,f0(x)

pG∗(x)

pG∗(x)

pG0,f0(x)
dµ(x)

≤
∫
Sc
R

|pG(x)− pG′(x)|dµ(x)

+

∥∥∥∥ pG∗(·)
pG0,f0(·)

1SR

∥∥∥∥
∞

∫
Rd

|pG(x)− pG′(x)|pG0,f0(x)

pG∗(x)
dµ(x)

(2.28)

where the last inequality is an application of Holder’s inequality. Now, a direct evaluation

yields that

∫
Sc
R

|pG(x)− pG′(x)|dµ(x) ≤ 2

∫
Sc
R

max
G

pG(x)dµ(x) ≤ 2

∫
Sc
R

sup
θ
f(x|θ)dµ(x)

≤ 2

∫
Sc
R

sup
θ

1

|2πΣ|1/2
exp(−‖x− θ‖2

2/(2λmax))dµ(x).

(2.29)

The last inequality is due to the fact that (x− θ)>Σ−1(x− θ) ≥ ‖x− θ‖2
2/λmax for

all x ∈ Rd and θ ∈ Θ.

We now assume that d > 2 as the d ≤ 2 case can be treated similarly. Since Θ ⊂ Rd

is bounded, we can find r > 0 such that ‖θ‖2 < r for all θ ∈ Θ. Now, given R > r, for
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any fixed value of x ∈ ScR, we can check that infθ ‖x − θ‖2
2 ≥ (‖x‖2 − r)2. Therefore

equation (2.29) leads to

∫
Sc
R

|pG(x)− pG′(x)|dµ(x) .
∫
Sc
R

1

|2πΣ|1/2
exp(−(‖x‖2 − r)2/(2λmax))dµ(x).

Invoking spherical coordinates by substituting z = ‖x‖2, we get

∫
Sc
R

|pG(x)− pG′(x)|dµ(x) .
∫
z>R

zd−1

|2πΣ|1/2
exp(−(z − r)2/(2λmax))dz.

We denote gR(d) :=
∫
z>R

zd exp(−(z − r)2)dz. By integrating by parts with some basic

algebraic manipulation, we find that

gR(d− 1) = (d/2)gR(d− 3) + (Rd−2/2) exp(−(R− r)2) + rgR(d− 2). (2.30)

Observe that (Rd−2/2) exp(−(R − r)2) & (Rs/2) exp(−(R − r)2) for all s ≤ d − 2.

Also,
∫∞
x

exp(−t2/2)dt ≤ 1
x

exp(−x2/2) . xd−2 exp(−x2/2) and
∫∞
x
t exp(−t2/2)dt .

exp(−x2/2) . xd−2 exp(−x2/2) follows using standard arguments for gaussian tail-

bounds. Here we use the condition d > 2. For d ≤ 2, the tail probability can be directly

bounded using standard gaussian tailbounds.

We can expand gR(s) recursively using Equation (2.30) for all s ≤ d−2 as well. Now,

equipped with equation (2.30), and following the discussion in the previous paragraph,

we can write

∫
Sc
R

|pG(x)− pG′(x)|dµ(x) . Rd−2 exp(−(R− r)2/2λmax). (2.31)
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Now, we demonstrate that
∥∥∥ pG∗ (·)
pG0,f0

(·)1SR

∥∥∥
∞

is bounded above by c2 exp(λ−1
minR

2) for

some positive constant c2 depending only on C1, G0 and λmin. Recall that G0 =∑k0

i=1 p
0
i δθ0

i
. Here k0 can be allowed to be ∞. The analysis follows through similar to

the finite k0 case.

The conditions on pG0,f0 imply that

∥∥∥∥ pG0,f (·)
pG0,f0(·)

1SR

∥∥∥∥
∞
≤ sup

x∈Rd,θ∈Θ,θ0∈supp(G0)

f(x|θ)
f0(x|θ0)

1‖x‖2≤R ≤ C1 exp(C0R
2).

Then, we have the following inequalities

∥∥∥∥ pG∗(·)
pG0,f0(·)

1SR

∥∥∥∥
∞

=

∥∥∥∥ pG∗(·)pG0,f (·)
pG0,f (·)
pG0,f0(·)

1SR

∥∥∥∥
∞

. sup
x∈SR, i∈{1,...,k0}

C1 exp(C0R
2) exp

(
1

2
(x− θ0

i )
′Σ−1(x− θ0

i )

)
≤ C1 exp(C0R

2) sup
x∈SR

exp(λ−1
min(‖x‖2 + sup

i
‖θ0

i ‖2))

≤ c2 exp((λ−1
min + C0)R2). (2.32)

The bounds apply uniformly for all R > r. Therefore, when R ≥ 4r, we can bound

equation (2.28) according to the bounds in (2.31) and (2.32) as follows:

V (pG, pG′) . exp((λ−1
min + C0)R2)V (pG, pG′) +Rd−2 exp(−λ−1

maxR
2/4)

where V (pG, pG′) :=
∫
Rd |pG(x)−pG′(x)|pG0,f0

(x)

pG∗ (x)
µ(dx) is the weighted variational distance.

Now consider R > 0 satisfying Rd−2 ≤ exp(−λ−1
maxR

2/8). If V (pG, pG′) = exp(−(λ−1
min +

C0 + λ−1
max/8)R2), we obtain that

V (pG, pG′) . exp(−λ−1
maxR

2/8) = (V (pG, pG′))
1

1+8λmax(λ−1
min

+C0) .
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Note that, V (pG, pG′) . h(pG, pG′) by standard application of Holder’s inequality. Also,

since the kernel for location Gaussian mixtures is supersmooth (Fan (1991)), it follows

from Theorem 2 in Nguyen (2013) that V (pG, pG′) & exp

(
− 1/W 2

2 (G,G′)

)
. The proof

of the proposition now follows from this fact, and the inequality connecting weighted

Hellinger and variational distances.

2.6.5 Proof of Proposition 2.4.2

We denote a sphere of radius R as SR := {x ∈ Rd : ‖x‖2 ≤ R} for any R > 0.

Assume maxθ∈Θ ‖θ‖2 ≤ r and also supi≤k0
‖θ0

i ‖2 ≤ r. We consider R > 2r large enough

such that, ‖θ‖2 ≤ r and ‖x‖2 ≥ R implies

Clower

exp
(
−
√

2
λ
‖x− θ‖Σ−1

)
(‖x− θ‖Σ−1)(d−1)/2

≤ f(x|θ) ≤ Cupper

exp
(
−
√

2
λ
‖x− θ‖Σ−1

)
(‖x− θ‖Σ−1)(d−1)/2

.

The above inequalities can always be achieved for R large enough because of the

asymptotic formulation of multivariate Laplace distributions.

Following equation (2.28) in the proof of Theorem 2.4.1, we will prove the proposition

by providing upper bounds for
∥∥∥ pG∗ (·)
pG0,f0

(·)1SR

∥∥∥
∞

and
∫
Sc
R
|pG(x)− pG′(x)|dµ(x). Because

the Laplace density is bounded, ‖pG∗(·)1SR‖∞ is bounded by a constant. Similar to the
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proof of Proposition 2.4.1, we have,

∥∥∥∥ pG∗(·)
pG0,f0(·)

1SR

∥∥∥∥
∞

. C1 exp(C0R
α) max

x,θ:‖θ‖2≤r,‖x‖2≤R
exp

(√
2

λλmin

‖x− θ‖2

)
(‖x− θ‖2)(d−1)/2

. exp(C0R
α)exp

(√
2

λλmin

(R + r)

)
(R + r)(d−1)/2

. exp

((√
2

λλmin

+ C0

)
Rα

)
R(d−1)/2.

Now, in order to minimize
∫
Sc
R
|pG(x)− pG′(x)|dµ(x), observe that

∫
Sc
R

|pG(x)− pG′(x)|dµ(x) .
∫
Sc
R

sup
G
pG(x)dµ(x) .

∫
Sc
R

sup
θ
f(x|θ)dµ(x)

.
∫
Sc
R

sup
θ

exp
(
−
√

2
λ
‖x− θ‖Σ−1

)
(‖x− θ‖Σ−1)(d−1)/2

.
∫
Sc
R

1

(‖x‖2 − r)(d−1)/2
exp

(
−
√

2λ−1
max(‖x‖2 − r)

)
dµ(x)

.
∫
Sc
R

1

(‖x‖2)(d−1)/2
exp

(
−
√

2

λλmax

‖x‖2

)
dµ(x).

Substituting z = ‖x‖2 in above equation, we get

∫
Sc
R

|pG(x)− pG′(x)|dµ(x) .
∫
Sc
R

zd−1

z(d−1)/2
exp

(
−z
√

2

λλmax

)
dz.

Denote gR(s) :=
∫
Sc
R
zs exp(−z)dz. Then, we find that

gR(s) = Rs exp(−R) + sgR(s− 1).
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Invoking integration by parts with the above equality for s = d−1
2

leads to the following

inequality

∫
Sc
R

|pG(x)− pG′(x)|dµ(x) . R
d−1

2 exp

(
−
√

2

λλmax

R

)
.

Since the above bounds apply for all R large enough, following the approach with

equation (2.28) in the proof of Theorem 2.4.1, we can write

V (pG, pG′) . exp

((√
2

λλmin

+ C0

)
Rα

)
R

d−1
2 V (pG, pG′) +R

d−1
2 exp

(
−
√

2

λλmax

R

)
.

Recall that V (pG, pG′) :=
∫
Rd |pG(x) − pG′(x)| pG0

(x)

pG∗ (x)
µ(dx) is the weighted variational

distance. By setting V (pG, pG′) = exp
(
−
[√

2
λλmin

+
√

2
λλmax

+ C0

]
Rα
)
, as α ≥ 1, we

see that

V (pG, pG′) .

(
log

1

V (pG, pG′)

)d/2α
exp

(
−τ(α)

(
log

1

V (pG, pG′)

)1/α
)
,

where τ(α) =
√

2
λλmax

/[√
2

λλmax
+
√

2
λλmin

+ C0

]1/α

. Now, the location family of

multivariate Laplace distributions pertains to the ordinary smooth likelihood families.

Therefore, from part (1) of Theorem 2 in Nguyen (2013), it follows that for any

m < 4/(4 + 5d), W 2
2 (G,G′) ≤ V (pG, pG′)

m. We note in passing that improved rates for

other choices of Wr may be possible by utilizing techniques similar to Gao and van der

Vaart (2016). Thus, by means of the inequality V (pG, pG′) . h(pG, pG′), the following

inequality holds

(
log

1

h(pG, pG′)

) d
2α

exp

(
−τ(α)

(
log

1

h(pG, pG′)

)1/α
)

& W
2/m
2 (G,G′).
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The result now follows by taking logarithms of both sides.
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2.7 Appendix B: Weighted Hellinger and Wasserstein distance

In this appendix, we will establish several useful bounds between weighted Hellinger

distance and Wasserstein metric that are employed in the proofs for misspecified settings

of Section 2.4. See the formal setup of G0, f0 and G∗ in the beginning of that section.

First, we start with the following lemma regarding an upper bound of weighted

Hellinger distance in terms of Wasserstein metric when the kernel f satisfies first order

integral Lipschitz condition.

Lemma 2.7.1. Assume that the kernel f is integral Lipschitz up to the first order.

Then, for any mixing measure G1 and G2 in P(Θ), there exists a positive constant C(Θ)

depending only on Θ such that

h
2
(pG1 , pG2) ≤ C(Θ)W1(G1, G2).

Proof. Denote the weighted total variation distance as follows

V (pG1 , pG2) =
1

2

∫
|pG1(x)− pG2(x)|pG0,f0(x)

pG∗(x)
dµ(x)

for any G1, G2 ∈ P(Θ). It is clear that h2
(pG1 , pG2) ≤ V (pG1 , pG2) for any G1, G2 ∈

P(Θ).

For any coupling q of the weight vectors of G1 =
k1∑
i=1

pi,1δθi,1 and G2 =
k2∑
i=1

pi,2δθi,2 , we

can check via triangle inequality that

V (pG1 , pG2) ≤ 1

2

∫ ∑
i,j

qij|f(x|θi,1)− f(x|θj,2)|pG0,f0(x)

pG∗(x)
dµ(x)

≤ C(Θ)
∑
i,j

qij‖θi,1 − θj,2‖
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where the existence of positive constant C(Θ) in the second inequality is due to the first

order integral Lipschitz property of f . The above result implies that

h
2
(pG1 , pG2) ≤ V (pG1 , pG2) ≤ C(Θ)W1(G1, G2)

for any G1, G2 ∈ P(Θ). We achieve the conclusion of the lemma.

2.7.1 Proof of Lemma 2.4.2

The proof is a straightforward application of Lemma 2.4.1. In fact, from that lemma,

we have

2 ≤
∫ (

pG1,∗(x)

pG2,∗(x)
+
pG2,∗(x)

pG1,∗(x)

)
pG0,f0(x)dµ(x) ≤ 2

where the first inequality is due to Cauchy inequality. The above inequality holds only

when pG1,∗(x) = pG2,∗(x) for almost all x ∈ X , which concludes our lemma.

2.7.2 Proof of Proposition 2.4.3

Denote the weighted total variation distance as follows

V (pG1 , pG2) =
1

2

∫
|pG1(x)− pG2(x)|pG0,f0(x)

pG∗(x)
dµ(x)

for any G1, G2 ∈ G. Then, by means of Holder’s inequality, we can verify that

V (pG1 , pG2) ≤
√

2h(pG1 , pG2)

(∫
(
√
pG1(x) +

√
pG2(x))2pG0,f0(x)

pG∗(x)
dµ(x)

)1/2

≤ 2
√

2h(pG1 , pG2)
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where the last inequality is due to Lemma 2.4.1. Therefore, to obtain the conclusion of

the proposition, it is sufficient to demonstrate that

inf
G∈Ok

V (pG, pG∗)/W
2
2 (G,G∗) > 0 (2.33)

where k > k∗. Firstly, we will show that

lim
ε→0

inf
G∗∈Ok

{
V (pG, pG∗)

W 2
2 (G,G∗)

: W2(G,G∗) ≤ ε

}
> 0.

Assume that the above inequality does not hold. It implies that there exists a sequence

of Gn ∈ Ok(Θ) such that V (pGn , pG∗)/W
2
2 (Gn, G∗)→ 0 as n→∞. By means of Fatou’s

lemma, we have

0 = lim inf
n→∞

V (pGn , pG∗)

W 2
2 (Gn, G∗)

≥ 1

2

∫
lim inf
n→∞

|pGn(x)− pG∗(x)|pG0,f0(x)

pG∗(x)

W 2
2 (Gn, G∗)

dµ(x).

Hence, for almost every x ∈ X , we obtain that

lim inf
n→∞

|pGn(x)− pG∗(x)|pG0,f0(x)

pG∗(x)

W 2
2 (Gn, G∗)

= 0.

The above equality is equivalent to

lim inf
n→∞

|pGn(x)− pG∗(x)|
W 2

2 (Gn, G∗)
= 0

for almost every x ∈ X . However, using the same argument as that of Theorem 3.2

in Ho and Nguyen (2016), the above equality cannot hold due to the second order
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identifiability of f , which is a contradiction. Therefore, we can find positive constant

ε0 > 0 such that as long as W2(G,G∗) ≤ ε0, we achieve that V (pG, pG∗) & W 2
2 (G,G∗).

As a consequence, to obtain the conclusion of (2.33), we only need to verify that

inf
G∈Ok: W2(G,G∗)>ε0

V (pG, pG∗)/W
2
2 (G,G∗) > 0.

Assume that the above result does not hold. It implies that we can find a sequence of

Gn ∈ Ok such thatW2(Gn, G∗) > ε0 and V (pGn , pG∗)/W
2
2 (Gn, G∗)→ 0 as n→∞. Since

Θ is a bounded subset of Rd, we can find a subsequence of Gn such that W1(Gn, G)→ 0

for some G ∈ Ok such that W2(G,G∗) ≥ ε0. From our hypothesis, we will have that

V (pGn , pG∗)→ 0. However, by virtue of Fatou’s lemma, we obtain that

0 = lim inf
n→∞

V (pGn , pG∗) ≥ V (pG, pG∗).

The above equation leads to pG(x) = pG∗(x) for almost every x ∈ X . Due to the

identifiability of f , the previous equation leads to G ≡ G∗, which is a contradiction to

the assumption that W2(G,G∗) ≥ ε0. We obtain the conclusion of the proposition.
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2.8 Appendix C: Posterior contraction under misspecification

This appendix is devoted to the description of a general method for establishing

posterior convergence rates of mixing measures under misspecified settings, extending

the methods of Kleijn and van der Vaart (2006). Once the general method is fully

developed we shall be ready to complete the proofs of the main theorems of Section 2.4,

which are given in Section 2.8. Recall the weighted Hellinger distance defined in (2.4.1),

which leads to the following definition.

Definition 2.8.1. For any set S ⊂ G, define a real-valued function ΨS : R → R+ as

follows

ΨS(r) = inf
G∈S: W2(G,G∗)≥r/2

h
2
(pG, pG∗)

for any r ∈ R.

A key ingredient to establishing the posterior contraction bounds is through the

existence of tests for subsets of parameters of interest. In the model misspecification

setting, it is no longer appropriate to test any mixing measure G against true measure

G0. Instead, following Kleijn and van der Vaart (2006), it is appropriate to test any

mixing measure G against G∗, which is ultimately achieved by testing
pG0,f0

pG∗
pG against

pG0,f0 . This insight leads us to the following crucial result regarding the existence of

test for discriminating G∗ against a closed Wasserstein metric ball centered at G1 for

any fixed pair of mixing measures (G∗, G1).

Lemma 2.8.1. Consider S ⊂ G such that G∗ ∈ S. Given G1 ∈ S such that

W2(G1, G∗) ≥ r for some r > 0. Assume that either one of the following two sets

of conditions holds:
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(1) S is a convex set, in which case, let M(S, G1, r) = 1.

(2) S is a nonconvex set. In addition, f has first order integral Lipschitz property. In

this case, we define that

M(S, G1, r) = D

(
ΨS(r)

8C(Θ)
,S ∩BW2(G1, r/2),W2

)
.

Then, there exists tests φn such that

PG0,f0φn ≤ M(S, G1, r) exp(−nΨS(r)/8), (2.34)

sup
G∈S∩BW2

(G1,r/2)

PG0,f0

PG∗
PG(1− φn) ≤ exp(−nΨS(r)/8). (2.35)

By means of the existence of tests in Lemma 2.8.1, we have the following result

regarding testing G∗ versus a complement of a closed Wasserstein ball.

Lemma 2.8.2. Assume that all the conditions in Lemma 2.8.1 hold. Let D(ε) be a

non-decreasing function such that , for some εn ≥ 0 and every ε > εn,

sup
G∈S

M(S, G, r)D(ε/2,S ∩BW2(G∗, 2ε)\BW2(G∗, ε),W2) ≤ D(ε).

Then, for every ε > εn there exist tests φn (depending on ε > 0) such that, for every

J ∈ N,

PG0,f0φn ≤ D(ε)

[Diam(Θ)/ε]∑
t=J

exp(−nΨS(tε)/8), (2.36)

sup
G∈S:W2(G,G∗)>Jε

PG0,f0

PG∗
PG(1− φn) ≤ exp(−nΨS(Jε)/8). (2.37)

For any ε > 0,M > 0, we define a generalized Kullback-Leibler neighborhood of G∗
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by

B∗K(ε, G∗, PG0,f0 ,M) :=

{
G ∈ G : −PG0,f0 log

pG
pG∗
≤ ε2 logM/ε+ ε,

PG0,f0

(
log

pG
pG∗

)2

≤ ε2 (log(M/ε))2

}
. (2.38)

Invoking the results in Lemma 2.8.1 and Lemma 2.8.2, we have the following theorem

establishing posterior contraction rate for G∗.

Theorem 2.8.1. Suppose that for a sequence of {εn}n≥1 that tends to a constant (or

0) such that nε2n →∞, and constants C,M > 0, and convex sets Gn ⊂ G, we have

logD(εn,Gn,W2) ≤ nε2n, (2.39)

Π(G\Gn) ≤ exp(−n(ε2n log(M/εn) + εn)(C + 4)), (2.40)

Π(B∗K(εn, G∗, PG0,f0 ,M)) ≥ exp(−n(ε2n log(M/εn) + εn)C), (2.41)

Additionally, Mn is a sequence such that

ΨGn(Mnεn) ≥ 8(ε2n log(M/εn) + εn)(C + 4), (2.42)

exp(2n(ε2n log(M/εn) + εn))
∑
j≥Mn

exp(−nΨGn(jεn)/8)→ 0. (2.43)

Then, Π(G ∈ G : W2(G,G∗) ≥Mnεn|X1, . . . , Xn)→ 0 in PG0,f0-probability.

The above theorem is particularly useful for establishing the convergence rate of

G∗ ∈ P(Θ) for which the suitable sieves Gn of mixture densities are convex classes of

functions. In the situation where Gn are non-convex, we need the following result, which

is the generalization of Theorem 4 in Nguyen (2013).
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Theorem 2.8.2. Assume that f admits the first order integral Lipschitz property.

Additionally, there is a sequence εn with εn → 0 such that n log(1/εn)−2 is bounded

away from 0, a sequence Mn, a constant M > 0, and a sequence of sets Gn ⊂ G such

that the following conditions hold

logD(ε/2,Gn ∩BW2(G∗, 2ε)\BW2(G∗, ε),W2)

+ sup
G∈Gn

logM(Gn, G, r) ≤ nε2n ∀ ε ≥ εn, (2.44)

Π(G\Gn)

Π(B∗K(εn, G∗, PG0,f0 ,M))
= o

(
exp

(
−2n

(
ε2n log

(
M

εn

)
+ εn

)))
, (2.45)

Π(BW2(G∗, 2jεn)\BW2(G∗, jεn))

Π(B∗K(εn, G∗, PG0,f0 ,M))
≤ exp

(
nΨGn(jεn)/16

)
, ∀j ≥Mn (2.46)

exp

(
2n

(
ε2n log

(
M

εn

)
+ εn

)) ∑
j≥Mn

exp
(
−nΨGn(jεn)/16

)
→ 0. (2.47)

Then, we have that Π(W2(G,G∗) ≥Mnεn|X1, . . . , Xn)→ 0 in PG0,f0- probability.
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2.9 Appendix D: Proofs of remaining results

We are now ready to complete the proof of the main posterior contraction theorems

stated in Section 2.4.

2.9.1 Proof of Theorem 2.4.1

First we show part(i)

Note that the MFM prior places full mass on discrete measure with finite support, it

is enough to show Π

(
G ∈ G(Θ) : W2(G,G∗) &

(
log logn

logn

)1/2
∣∣∣∣X1, . . . , Xn

)
→ 0.

The proof of this result is a straightforward application of Proposition 2.4.1, Lemma 2.4.3,

and Theorem 2.8.1; therefore, we will only provide a sketch of this proof. Similar to the

proof of Theorem 2.3.1 (for the well-specified setting), we proceed by constructing a

sequence εn and sieves Gn that satisfy all the conditions specified in Theorem 2.8.1.

Step 1: First, we choose εn to satisfy condition (2.41) in Theorem 2.8.1. To that effect,

we proceed by making use of the results from Lemma 8.1 in Kleijn and van der Vaart

(2006). In particular, from Lemma 8.1 of Kleijn and van der Vaart (2006), as long as P

is a probability measure and Q is a finite measure (with densities p and q respectively,

with respect to Lebesgue measure on Rd) such that h(p, q) ≤ ε and
∫
p2/q ≤ M , we

obtain that

P log(p/q) . ε2 log(M/ε) + ‖p− q‖1,

P (log(p/q))2 . ε2(log(M/ε))2, (2.48)

where the constants in these bounds are universal. For the purpose of our proof, we will

choose p = pG0,f0 and q = pGpG0,f0/pG∗ .
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Since the Gaussian kernel satisfies the integral Lipschitz property up to the first

order, by invoking the result of Lemma 2.7.1, we have

‖p− q‖1 =

∥∥∥∥pG0,f0

pG∗
(pG − pG∗)

∥∥∥∥
1

. W1(G,G∗) ≤ W2(G,G∗). (2.49)

Additionally, for the Gaussian kernel f given by (3.8), we find that

h
2
(pG, pG∗) ≤ C1W

2
2 (G,G∗) (2.50)

for any G ∈ G(Θ). For Gaussian location mixtures as long as there exists ε0 > 0 such

that W2(G,G∗) ≤ ε0, we also can check that
∫
pG0,f0(x)pG∗(x)/pG(x)dµ(x) ≤ M∗(ε0)

for some positive constant M∗(ε0) depending only on ε0, G0, and Θ. Therefore, as long

as W2(G,G∗) ≤ ε ≤ ε0, we have for mixing measure G,

−PG0,f0 log(pG/pG∗) ≤ ε2(log(M/ε)) + ε,

PG0,f0 [log(pG/pG∗)]
2 ≤ ε2(log(M/ε))2,

where M := M∗(ε0). The constants in the bounds are all universal.

Governed by this result, we can write

Π(B∗K(εn, G∗, PG0,f0 ,M)) ≥ Π(W2(G,G∗) . εn)

for any sequence εn ≤ ε0. Now, the packing number D = D(εn) (with packing radius εn)

in Lemma 2.4.3 satisfies D(εn) �
(

Diam(Θ)
εn

)d
. Following the result in Lemma 2.4.3, we

101



have with r = 2 that

log(Π(B∗K(εn, G∗, PG0,f0 .M))) & D(εn)(log c0 + log(εn/D(εn)))

+ log(εn/D(εn))(1 + (1 + (2/d))γ(D(εn)− 1)/D(εn)).

With εn � ( logn
n

)1/(d+2), one can check that condition (2.41) and (2.39) hold.

Step 2: Note that condition (2.40) holds automatically since we take Gn = G, while

condition (2.39) follows from Lemma 4 in Nguyen (2013).

Step 3: Next we will show condition (2.42) and condition (2.43) for some appropriate

choice of Mn for the εn considered in Step 1.

Following proposition 2.4.1 we know that ΨGn(r) & exp

(
−(1+8λmax(λ−1

min+C0))/r2

)
.

Using this fact, we can check to see that Mn such that Mnεn ≈
(

log log(n)
logn

)1/2

works,

with εn ≈ ( logn
n

)1/(d+2).

2.9.2 Proof of Lemma 2.8.2

Consider a tε/2 maximal-packing of the set BW1(G∗, 2tε)\BW1(G∗, tε). Let St be

the corresponding set of D(tε/2,S ∩BW1(G∗, 2tε)\BW1(G∗, tε) points obtained there in.

Then as in Lemma 2.8.1 corresponding to each point G1 in St, there exist ωn,t which

satisfies (2.34) and (2.35). Then taking φn as the supremum over all these tests ωn,t
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over all points in St , all t ≥ J we see that by the union bound,

PG0,f0φn ≤
∑
t>J

∑
G1∈St

M(S, G1, tε) exp(−nΨS(tε)/8),

≤ D(ε)

[Diam(Θ)/ε]∑
t=J

exp(−nΨS(tε)/8)

sup
G∈∪t≥J{BW1

(G∗,2tε)\BW1
(G∗,tε)}

PG0,f0

PG∗
PG(1− φn) ≤ sup

t≥J
exp(−nΨS(tε)/8)

≤ exp(−nΨS(Jε)/8).

The last inequality follows from the fact that ΨS(·) is an increasing function in its

argument.

2.9.3 Proof of Theorem 2.8.2

The following lemma is analogous to Lemma 7.1 in Kleijn and van der Vaart (2006)

and Lemma 8.1 in Ghosal et al. (2000) and can be similarly proved.

Lemma 2.9.1. For every M, ε > 0, C > 0, and probability measure Π on G, we obtain

that

PG0,f0

(∫ n∏
i=1

pG(Xi)

pG∗(Xi)
dΠ(G) ≤ Π(B∗K(ε, G∗, PG0,f0 ,M))

× exp(−(1 + C)n(ε2 log (M/ε) + ε)

)
≤ log2(M/ε)

C2n (1 + ε log(M/ε))2 .

Equipped with this lemma we can now prove the theorem as follows. Denote An the
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event such that

∫ n∏
i=1

pG(Xi)

pG∗(Xi)
dΠ(G) ≤ Π(B∗K(ε, G∗, PG0,f0 ,M)) exp(−n(ε2 log(M/ε) + ε)(1 + C)).

The above result indicates that PG0,f01An ≤ (C2n)−1 log(M/ε)2 for any ε > 0 and C > 0.

For any sequence εn, we denote Un =
{
G ∈ G : W2(G,G∗) ≥Mnεn

}
and Sn,j =

{G ∈ Gn :

W2(G,G∗) ∈ [jεn, (j + 1)εn)} for any j ≥ 1. From the result of Lemma 2.8.1 and

condition (2.52), there exists a test φn such that inequality (2.36) and (2.37) hold when

D(εn) = exp(nε2n). Now, we have

PG0,f0Π(G ∈ Un|X1, . . . , Xn)

= PG0,f0φnΠ(G ∈ Un|X1, . . . , Xn)

+PG0,f0(1− φn)1AnΠ(G ∈ Un|X1, . . . , Xn)

+PG0,f0(1− φn)1AcnΠ(G ∈ Un|X1, . . . , Xn)

≤ PG0,f0φn + PG0,f01An + PG0,f0(1− φn)1AcnΠ(G ∈ Un|X1, . . . , Xn). (2.51)

According to Lemma 2.8.2, we have PG0,f0φn ≤ exp(nε2n)
∑

j≥Mn

exp
(
−nΨGn(jεn)/8

)
→ 0,

which is due to condition (2.47). Additionally, from the formation of An, we also obtain

that PG0,f01An ≤ (C2n)−1 log(M/ε)2. If n log(1/ε)−2 →∞, it is clear that PG0,f01An → 0

for any C ≥ 1. If n log(1/ε)−2 does not tend to ∞ but is bounded away from 0, then we

can choose C > 0 large enough such that PG01An is sufficiently close to 0. Therefore, the

first two terms in (2.52) can always be made to vanish to 0. To achieve the conclusion

of the theorem, it is sufficient to demonstrate that the third term in (2.51) goes to 0. In
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fact, we have the following equation

Π(G ∈ Un|X1, . . . , Xn) =

(∫
Un

n∏
i=1

pG(Xi)

pG∗(Xi)
dΠ(G)

)
/

(∫ n∏
i=1

pG(Xi)

pG∗(Xi)
dΠ(G)

)
.

From the formulation of An, we have

PG0,f0(1− φn)1AcnΠ(G ∈ Un|X1, . . . , Xn) (2.52)

≤
{
PG0,f0(1− φn)

(∫
Un

n∏
i=1

pG(Xi)

pG∗(Xi)
dΠ(G)

)}
/{

Π(B∗K(ε, G∗, PG0,f0 ,M)) exp(−(1 + C)n(ε2 log(M/ε) + ε)

}
.

By means of Fubini’s theorem, we obtain that

PG0,f0(1− φn)

( ∫
Un∩Gn

n∏
i=1

pG(Xi)

pG∗(Xi)
dΠ(G)

)
=

∫
Un∩Gn

PG0,f0

pG∗
pG(1− φn)dΠ(G)

≤
∑
j≥Mn

Π(Sn,j) exp(−nΨGn(jε)/8) (2.53)

where the last inequality is due to inequality (2.37) and condition (2.52). Furthermore,
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by means of Fubini’s theorem

PG0,f0(1− φn)

( ∫
Un\Gn

n∏
i=1

pG(Xi)

pG∗(Xi)
dΠ(G)

)

≤ PG0,f0

∫
Un\Gn

n∏
i=1

pG(Xi)

pG∗(Xi)
dΠ(G)

=

∫
Un\Gn

( n∏
i=1

∫
pG(xi)

pG∗(xi)
pG0,f0(xi)dxi

)
Π(G)

≤
∫

Un\Gn

Π(G) = Π(Un\Gn) ≤ Π(G\Gn) (2.54)

where the second inequality in the above result is due to Lemma 2.4.1. By combining

the results of (2.52), (2.53), and (2.54), we obtain

PG0,f0(1− φn)1AcnΠ(G ∈ Un|X1, . . . , Xn)

≤

∑
j≥Mn

Π(Sn,j) exp(−nΨGn(jε)/8) + Π(G\Gn)

Π(B∗K(ε, G∗, PG0,f0 ,M)) exp(−(1 + C)n(ε2 log(M/ε) + ε)

≤ exp((1 + C)n(ε2 log(M/ε) + ε)
∑
j≥Mn

exp
(
−nΨGn(jεn)/16

)
+o(exp((C − 1)n(ε2 logM/ε+ ε))

where the last inequality is due to condition (2.53) and (2.54). If n log(1/εn)−2 is bounded

away from 0 by choosing C ≥ 1, the right hand side term of the above display will go to 0

due to condition (2.47). Therefore, we have PG0,f0(1−φn)1AcnΠ(G ∈ Un|X1, . . . , Xn)→ 0

as n→∞.

As a consequence, PG0,f0Π(G ∈ Un|X1, . . . , Xn)→ 0. We achieve the conclusion of

the theorem.
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2.9.4 Proof of Lemma 2.8.1

For the setting (1) when S is convex, since BW2(G1, r/2) is a convex set, we also

have S ∩BW2(G1, r/2) is a convex set. By means of the result of Theorem 6.1 in Kleijn

and van der Vaart (2006), there exist tests φn such that

PG0,f0φn ≤
[
1− 1

2
inf

G∈S∩BW2
(G1,r/2)

h
2
(pG, pG∗)

]n
,

sup
G∈S∩BW2

(G1,r/2)

PG0,f0

pG∗
pG(1− φn) ≤

[
1− 1

2
inf

G∈S∩BW2
(G1,r/2)

h
2
(pG, pG∗)

]n
.

Due to inequality (1 − x)n ≤ exp(−nx) for all 0 < x < 1 and n ≥ 1, the above

inequalities become

PG0,f0φn ≤ exp

(
− n

2
inf

G∈S∩BW2
(G1,r/2)

h
2
(pG, pG∗)

)
,

sup
G∈S∩BW2

(G1,r/2)

PG0,f0

pG∗
pG(1− φn) ≤ exp

(
− n

2
inf

G∈S∩BW2
(G1,r/2)

h
2
(pG, pG∗)

)
.

Now, since W2(G1, G∗) = r and W2(G,G1) ≤ r/2 as long as G ∈ S ∩ BW2(G1, r/2), it

implies that W2(G1, G∗) ≥ r/2. Therefore, according to Definition 2.8.1, we will obtain

that

ΨS(r) = inf
G∈S: dW2

(G,G∗)≥r/2
h

2
(pG, pG∗) ≤ inf

G∈S∩BW2
(G1,r/2)

h
2
(pG, pG∗).

With the above inequality, we reach the conclusion of part (1).

Regarding part (2), we consider a maximal c0r-packing of S ∩BW2(G1, r/2) under

W2 metric. It gives us a set of M = M(S, G1, r) = D(c0r,S ∩BW2(G1, r/2),W2) points

G̃1, . . . , G̃M in S ∩BW2(G1, r/2).

Now, for any G ∈ S ∩ BW2(G1, r/2), we can find t ∈
{

1, . . . ,M
}

such that
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W1(G, G̃t) ≤ c0r. Due to the triangle inequality, we achieve that

h(pG, pG∗) ≥ h(pG∗ , pG̃t)− h(pG, pG̃t)

≥
(

ΨS(r)

)1/2

−
(
C(Θ)c0r

)1/2

where the second inequality is due to Definition 2.8.1 and Lemma 2.7.1. By choosing

the positive number c0 = ΨS(r)/(4C(Θ)r), we obtain

h(pG, pG̃t) ≤ ΨS(r)/2 ≤ h(pG∗ , pG̃t)/2.

It eventually leads to h(pG, pG∗) ≥ h(pG∗ , pG̃t)/2. According to the result of Theorem

6.1 in Kleijn and van der Vaart (2006) and inequality (1 − x)n ≤ exp(−nx) for all

0 < x < 1 and n ≥ 1, by denoting

At :=
{
G ∈ G : h(pG, pG̃t) ≤ h(pG∗ , pG̃t)/2

}
,

there exists test ψ(t)
n such that

PG0,f0ψ
(t)
n ≤ exp

(
− n

2
inf
G∈At

h
2
(pG, pG∗)

)
,

sup
G∈At

PG0,f0

pG∗
pG(1− ψ(t)

n ) ≤ exp

(
− n

2
inf
G∈At

h
2
(pG, pG∗)

)
.

Since h2
(pG, pG∗) ≥ h(pG∗ , pG̃t)/2 ≥ ΨS(r)/2 for all G ∈ At, the above inequalities can
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be rewritten as

PG0,f0ψ
(t)
n ≤ exp(−nΨS(r)/8),

sup
G∈At

PG0,f0

pG∗
pG(1− ψ(t)

n ) ≤ exp(−nΨS(r)/8).

By choosing φn = max
1≤t≤M

ψ
(t)
n , we quickly achieve that

PG0,f0φn ≤ M(S, G1, r) exp(−nΨS(r)/8),

sup
G∈S∩BW (G1,r/2)

PG0,f0

pG∗
pG(1− φn) ≤ exp(−nΨS(r)/8).

As a consequence, we obtain the conclusion of the lemma.

2.9.5 Proof of Theorem 2.4.3

Due to the assumption on prior pK , it is sufficient to demonstrate that

Π

(
G ∈ Ok(Θ) : W2(G,G∗) &

(log n)1/4

n1/4
|X1, . . . , Xn

)
→ 0

in PG0,f0- probability. We divide our proof for the above result into the following steps

Step 1: To obtain the bound for Π(B∗K(εn, G∗, PG0,f0 ,M)), we use Lemma 8.1 fromKleijn

and van der Vaart (2006) to obtain a bound for weighted KL divergence and squared

weighted KL divergence. Similar to the proof of Theorem 2.4.1, with the choice of

p = PG0,f0 and of finite measure q = pGpG0,f0/pG∗ , as long as G ∈ Ok such that
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h(pG, pG∗) ≤ ε and
∫
pG0,f0pG∗/pG ≤M then we obtain that

−PG0,f0 log
pG
pG∗

. ε2 log(M/ε) + ε

PG0,f0

(
log

pG
pG∗

)2

≤ ε2(log(M/ε))2.

For the purpose of this proof we use M = M∗(ε0), where M∗(ε0) is as in condition (M.2)

in Section 2.4.3. Now, according to Lemma 2.7.1, as f admits integral Lipschitz property

up to the first order, we obtain that h2
(pG, pG∗) ≤ CW1(G,G∗) for any G ∈ Ok where

C is a positive constant depending only on Θ. Now, from the discussion in the above

paragraph we have

Π(B∗K(εn, G∗, PG0,f0 ,M)) ≥ Π(G ∈ Ok : W1(G,G∗) ≤ Cε2n)

& Π(G ∈ Ek : W1(G,G∗) ≤ Cε2n)

& ε2(cH+γ)
n .

where the last inequality can be obtained similar to equation (2.18) based on the

assumption γ < k. Now, we note that ΨGn(r) & r4 , since f is assumed to be second

order identifiable and to satisfy the integral Lipschitz property of second order. Then,

by choosing εn = n−1 and Mn = A
(

log(n)
n3

)1/4

for some sufficiently large A, we can see

that condition (2.46) is satisfied.

Step 2: We choose the sieves Gn = Ok for all n ≥ 1. With these choices, it is clear

that Π(G\Gn) = 0. Therefore, condition (2.45) is satisfied.
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Step 3: For condition (2.47) to be satisfied,

exp

(
2n

(
ε2n log

(
M

εn

)
+ εn

)) ∑
j≥Mn

exp
(
−nΨGn(jεn)/16

)
.

∑
j≥Mn

exp(−Cn−3M4
n/16)

. 2 exp(−Cn−3M4
n/16)

. 2n−
AC
16 → 0.

Lemma 2.9.2. Assume that supθ∈Θ,x f(x|θ) < ∞, then, for q ≥ 2, G1, G2 mixing

measures on Θ,

‖pG1 − pG2‖q . (h(pG1 , pG2))2/q, (2.55)

whereas for 1 ≤ q ≤ 2,

‖pG1 − pG2‖q . (h(pG1 , pG2))1/q. (2.56)

Proof. Assume q ≥ 2,

‖pG1 − pG2‖qq =

∫
|pG1(x)− pG2(x)|qdx

≤
∫
|√pG1(x)−

√
pG2(x)|q|√pG1(x) +

√
pG2(x)|q

≤ (2 sup
θ∈Θ,x

f(x|θ))q
∫
|√pG1(x)−

√
pG2(x)|2+(q−2)dx

≤ (2 sup
θ∈Θ,x

f(x|θ))2q−2

∫
|√pG1(x)−

√
pG2(x)|2dx

. h2(pG1 , pG2). (2.57)
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For 2 ≥ q ≥ 1,

‖pG1 − pG2‖2q
q ≤

∫
|pG1(x)− pG2(x)|2qdx

≤
∫
|√pG1(x)−

√
pG2(x)|2q|√pG1(x) +

√
pG2(x)|2q

≤ (2 sup
θ∈Θ,x

f(x|θ))2q

∫
|√pG1(x)−

√
pG2(x)|2+(2q−2)dx

≤ (2 sup
θ∈Θ,x

f(x|θ))4q−2

∫
|√pG1(x)−

√
pG2(x)|2dx

. h2(pG1 , pG2). (2.58)
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CHAPTER III

Bayesian Contraction for Dirichlet Process Mixtures

of Smooth Densities

Dirichlet process mixture models (DPMM) have been an important modeling toolbox

for numerous domains arising from biological, physical, and social sciences. However, a

concrete understanding of the effects of parameter space, kernel density function, and

dimension on the posterior convergence rate of mixing measure with Dirichlet process

prior has remained elusive. In this chapter, we study carefully the effects of these

factors under both the well-specified and misspecified settings of convolution DPMM.

Moreover, we develop a novel metric that generalizes the Wasserstein metric. Our

technique involces establishing fundamental connections between (weighted) Hellinger

distance the generalized Wasserstein metric under various regimes of parameter space,

kernel density function, and dimension. To our findings, these connections also provide

important insight on complex posterior convergence rate of mixing measure arising from

challenging settings of other hierarchical Bayesian nonparametric models.1.
1This work has been published in Guha et al. (2020+)
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3.1 Introduction

Mixture models are often used by statisticians as black-box methods to analyse

data generated from heterogeneous subpopulations as an outcome of complex processes

(McLachlan and Basford (1988); Lindsay (1995); Mengersen et al. (2011)). A common

issue faced by all practicing mixture modelers is the choice of kernels appropriate for

analyses. Smooth density families are popular choices for nonparametric inference. In

that regard, families of varying smoothness such as Laplace or Gaussian kernels have

been used extensively for inferential problems related to density estimation, clustering

analysis etc., (cf. Kotz et al.; Bailey et al. (1994.); Roeder and Wasserman (1997); Robert

(1996); Banfield and Raftery (1993)).

The following are some of the inferential questions to ask.

(I) How do you choose between heavy or light-tailed kernels for appropriate inference?

(II) Suppose we allow the number of components to grow with the sample size, can we

efficiently estimate the parameters corresponding to components in an arbitrary

region of the parameter space?

(III) Gaussian kernels are the most popular choices for model fitting, however, the

parameter estimation rates for Gaussian kernels tends to be very low Fan (1991);

Zhang (1990). There is therefore an inconsistency in practice and theory. Can this

be resolved?

This chapter provides answers to some of these questions.

Consider discrete mixing measures G =
∑∞

i=1 piδθi . Here, p = (p1, . . . , pk) is a vector

of mixing weights, while atoms {θi}∞i=1 are elements in a given space Θ ∈ Rd. Mixing

measure G is combined with a likelihood function f(·|θ) with respect to Lebesgue
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measure µ to yield a mixture density: pG(·) =
∫
f(·|θ)dG(θ) =

∑∞
i=1 pif(·|θi). We call

this an infinite mixture model. The atoms θi’s are representatives of the underlying

subpopulations.

This setup can also be represented in a different framework where we observe a

random variable Y which is a mixture of the true signal, X and a noise component Z, i.e.,

the model assumes Y = X+Z, with X ∼ G, Z ∼ f . The problem of inferring about the

unknown distribution G is called the deconvolution problem. The asymptotic behavior

for the deconvolution problem involving smooth densities have been well-studied by

several authors (cf. Carroll and Hall (1988); Fan (1991); Zhang (1990)).

In the Bayesian paradigm, inference on the mixing measure is carried out by the

choice of a suitable prior distribution on G which provides a way to compute the posterior

distributions for objects of interest. A common choice of such priors for mixing measures

is the Dirichlet process (Ferguson (1973); Blackwell and MacQueen (1973); Sethuraman

(1994)), giving rise to the famous Dirichlet process mixture models (Antoniak (1974); Lo

(1984); Escobar and West (1995)). There is a well-established asymptotic theory on how

such Bayesian nonparametric mixture models result in asymptotically optimal estimation

procedures for the population density. See, for instance, Ghosal et al. (1999); Ghosal and

van der Vaart (2007); Shen et al. (2013) for theoretical results specifically on DP mixtures,

and Ghosal et al. (2000); Shen and Wasserman (2001); Walker et al. (2007) for general

BNP models. In particular, Ghosal and van der Vaart (2001, 2007); Scricciolo (2011);

Shen et al. (2013) have studied posterior contraction rates with convolution mixtures

when the kernel in question is the gaussian kernel while Gao and van der Vaart (2016);

Scricciolo (2017) consider the scenario for Laplace kernels. A number of these works

deal with density estimation scenarios. However, as we have shown in Chapter II, good

contraction rates for density estimation do not necessarily result in efficient estimation of
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parameters. This is because the efficiency in density estimation is borne out as a result

of smoothness of the kernel, which itself may lead to overparametrization for parameter

estimates, thereby causing an inefficiency in estimation. Nguyen (2013); Gao and van der

Vaart (2016) derive contraction rates for parameter estimation of convolution kernels.

In their results, they make the critical assumption that the parameter space Θ, which

forms the support of the prior on atoms, is compact. However, practical application

of convolution mixtures involve placing a prior on an unbounded support Escobar and

West (1995); Roeder and Wasserman (1997). This results in a glaring mismatch between

theoretical and practical frameworks. We address this issue in this work.

The choice of the kernel f , and the prior on the unknown distribution G, affect the

outcome of inference drastically for a practitioner of Bayesian mixture models. With the

advent of new methods such as Variational Inference (Blei et al. (2003)) and also efficient

MCMC techniques, solutions to inferential questions require much lesser computational

time. In addition Optimal Transport provides adequate tools for parameter estimation.

However, the choice of the appropriate support for the prior still remains an open

problem and this theoretical assumption has been difficult to get rid of when deadling

with asymptotics. Often in practice, a flat prior is employed over a restricted region

of the parameter space when one has no bias towards any specific vicinity. However,

restricting the prior to a specific region of the parameter space risks misspecification

of the support of the prior. On the other hand, an almost flat prior with spread out

mass would mean the contraction rate suffers if the support of the prior is too "large".

Being mindful of this tension between the restriction and inclusivity of the support of

the prior, in this work, we design a sieve type method that allows us to expand the

support of the prior at the appropriate rate so as to negligibly affect the asymptotic

contraction rates. This method can be coupled with other choices of priors for more
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efficient results.Sieve methods have been implemented for density estimation by many

authors such as Ghosal and van der Vaart (2001); Shen and Wong (1994); Wong and

Shen (1995); Van de Geer (1993); Birge and Massart (1998). In this chapter we also

show that this expansion rate is polynomial in the number of samples for supersmooth

Gaussian kernels and logarithmic for ordinary smooth Laplace kernels.

The choice of the appropriate prior is another difficult decision the practitioner

has to make. While Supersmooth kernels such as Gaussian kernels give fast density

estimation rates (Ghosal and van der Vaart (2001)), they have slow logarithmic rates

of convergence for parameter estimation as pointed out in Chapter II. The scenario

is reversed for Laplace kernels, which show faster polynomial contraction behavior for

parameter estimation, while the rates for density estimation are slower than the n−1/2

rates obtained for Gaussian kernels. In that respect, it might be counterintuitive to

note that the expansion rate of the parameter space is exponentially faster for Gaussian

kernels than that for Laplace kernels. To resolve this seemingly puzzling issue, we

develop in this chapter, a new theoretical framework via a novel metric to evaluate

parameter estimation. The metric developed generalizes the well-known Wasserstein

metric which has thus far been used successfully to study parameter estimation (Gao

and van der Vaart (2016); Scricciolo (2017)). We call our metric the Orlicz-Wasserstein

metric since it uses the notion of Orlicz norm for comparison of random variable along

with optimal transport to compare distributions. Using the above notion of convergence

we are able to show that the slow convergence rate for Gaussian kernels essentially arises

from atoms of the posterior which are close to the true atoms and the posterior places

vanishingly small mass on mixing measures with atoms away from the truth.

Further Remarks :
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(i) "Gaussian kernels lead to coagulative mixing measures aposteriori": Even though

the contraction rate is very poor for Gaussian kernels, this is mostly due to the

fact that samples from the posterior place large mass on atoms close to true atoms

and this mass is shared by various atoms close to the truth. Contraction rates

are different for various parts of the parameter space, for example, it is almost

polynomial in regions away from the true atoms, but logarithmic close to the

truth.

(ii) "Gaussian kernels better for misspecified scenarios than Laplace kernels?": Laplace

kernels being heavy tailed and sharp-peaked tend to have a large bias in density

estimation. On the other hand, Gaussian kernels suffer from slow contraction rates

for parameter estimation. However, the results of this chapter suggest the parame-

ter estimates in regions away from the true atoms contract almost polynomially.

In that context, accounting for lack of knowledge of the truth, it might be more

conservative to use Gaussian mixtures for parameter estimation. Moreover, as an

added advantage this would also allow us to estimate the neighborhoods regions

of the truth in a fast and efficient manner.

The remainder of the chapter is organized as follows. Section 3.2 provides necessary

backgrounds about mixture models, Wasserstein distances and several key notions of

Dirichlet process mixture models. Section 3.3 presents presents exact lower bounds

for the Hellinger metric with respect to Wasserstein distances for varying degree of

smoothness of kernels as well as posterior contraction theorems corresponding to those

kernels. In Section 3.4 we develop a novel metric extending the notion of Wasserstein

distance and show that it helps to characterize the coagulative nature of atoms for

Gaussian kernels In Section 3.5, we provide illustrations of this coagulative nature for
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Gaussian kernels via a simulation study. Proofs of results are deferred to the Appendices.

Notation: For any function f : X → R, we denote f̃(ω) as the Fourier transformation

of function f .

Given two densities p, q (with respect to the Lebesgue measure µ), the total variation

distance is given by V (p, q) = (1/2)

∫
|p(x)− q(x)|dµ(x). Additionally, the squared

Hellinger distance is given by h2(p, q) = (1/2)

∫
(
√
p(x)−

√
q(x))2dµ(x). Furthermore,

the Kullback-Leibler (KL) divergence is given by K(p, q) =

∫
log(p(x)/q(x))p(x)dµ(x)

and the squared KL divergence is given by K2(p, q) =

∫
log(p(x)/q(x))2p(x)dµ(x).

‖ · ‖ is used to denote the l2 norm, where as ‖ · ‖Σ denotes the scaled l2 norm with

scaling matrix, Σ. Let λmax and λmin respectively denote the maximum and minimum

eigenvalues of Σ.

For a measurable function f , let Qf denote the integral
∫
fdQ. For any κ =

(κ1, . . . , κd) ∈ Nd, we denote
∂|κ|f

∂θκ
(x|θ) =

∂|κ|f

∂θκ1
1 . . . ∂θκdd

(x|θ) where θ = (θ1, . . . , θd). For

any metric d on Θ, we define the open ball of d-radius ε around θ0 ∈ Θ as Bd(ε, θ0).

We use D(ε,Ω, d̃) to denote the maximal ε-packing number for a general set Ω under a

general metric d̃ on Ω. Additionally, the expression an & bn will be used to denote the

inequality up to a constant multiple where the value of the constant is independent of n.

We also denote an � bn if both an & bn and an . bn hold. Furthermore for any set A,

we denote Ac as its complement, while B(x, r) denotes the ball, with respect to the l2

norm, of radius r > 0 centered at x ∈ Rd. The expression D(ε,P, d) used in the chapter

denotes the ε-packing number of the space P relative to the metric d. d is replaced by

h to denote the hellinger norm. Finally, we use Diam(Θ) = sup{‖θ1 − θ2‖ : θ1, θ2 ∈ Θ}

to denote the diameter of a given parameter space Θ relative to the l2 norm, ‖ · ‖, for

elements in Rd.
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3.2 Preliminary

We recall the notion of Wasserstein distance for mixing measures, along with the

notions of Dirichlet Process mixture models that prove useful in the remainder of the

chapter.

Mixture model Throughout the chapter, we assume that X1, . . . , Xn are i.i.d. sam-

ples from a true but unknown distribution PG0 with given density function

pG0 :=

∫
f(x|θ)dG0(θ) =

∞∑
i=1

p0
i f(x|θ0

i )

where G0 =
∞∑
i=1

p0
i δθ0

i
is a true but unknown mixing distribution with possibly infinitely

many support points. Moreover, assume that supi ‖θ0
i ‖ <∞. Also,

{
f(x|θ), θ ∈ Θ ⊂ Rd

}
is a given family of probability densities (or equivalently kernels) with respect to a

sigma-finite measure µ on X where d ≥ 1. For this work, f is either an ordinary smooth

kernel or a supersmooth kernel. Furthermore, Θ is a chosen parameter space, where we

empirically believe that the true parameters belong to. In a well-specified setting, all

support points of G0 reside in Θ, but this may not be the case in a misspecified setting.

Regarding the space of mixing measures, let Ek := Ek(Θ) and Ok := Ok(Θ) respec-

tively denote the space of all mixing measures with exactly and at most k support points,

all in Θ. Additionally, denote G := G(Θ) = ∪
k∈N+

Ek the set of all discrete measures

with finite supports on Θ. Moreover, G(Θ) denotes the space of all discrete measures

(including those with countably infinite supports) on Θ. Finally, P(Θ) stands for the

space of all probability measures on Θ.
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Dirichlet process mixture Models We assume that the kernel f is well-specified.

A Bayesian mixture modeler places a prior distribution Π on a suitable space G(Θ). The

posterior corresponding to Πn(varying with sample size) can be computed as:

Πn(G ∈ B
∣∣X1, . . . , Xn) =

∫
B

∏n
i=1 pG(Xi)dΠn(G)∫

G(Θ)

∏n
i=1 pG(Xi)dΠn(G)

. (3.1)

Our primary interest is to study the posterior contraction behavior to G0 with varying

values of Πn.

One of the most popular models that has been widely used in practice to study G0

is the Dirichlet Process Mixture Models (DPMM), which can be stated as follows

G ∼ DP (α,H),

θ1, . . . , θn
i.i.d.∼ G,

Xi|θi ∼ f(Xi|θi), ∀i = 1, . . . , n. (3.2)

where {f(·|θ), θ ∈ Θ} is a chosen location family of density functions and H is a prior

distribution on Θ. The common assumptions/problems that people usually utilize and

face with DPMM are:

(1) Some atoms of true mixing measure G0 may not lie in the chosen parameter space

Θ, i.e., we are under misspecified parameter space setting.

(2) Kernel f is potentially different from f0, i.e., we are under misspecified kernel

setting.

(3) The role of dimension d in the posterior contraction of mixing measure G. The

application of studying such constant is to understand an open problem regarding
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the roles of sample sizes in each group and the number of groups in complex

hierarchical models, such as Hierarchical Dirichlet process (HDP).

Wasserstein distance As in Nguyen (2013) it is useful to analyze the convergence of

parameter estimation in mixture models using the notion of Wasserstein distance, which

can be defined as the optimal cost of moving masses transforming one probability measure

to another Villani (2008). Given two discrete measures G =
k∑
i=1

piδθi and G′ =
∑k′

i=1 p
′
iδθ′i ,

a coupling between p and p′ is a joint distribution q on [1 . . . , k] × [1, . . . , k′], which

is expressed as a matrix q = (qij)1≤i≤k,1 ≤j≤k′ ∈ [0, 1]k×k
′ with marginal probabilities

k∑
i=1

qij = p′j and
k′∑
j=1

qij = pi for any i = 1, 2, . . . , k and j = 1, 2, . . . , k′. We use Q(p,p′)

to denote the space of all such couplings of p and p′. For any r ≥ 1, the r-th order

Wasserstein distance between G and G′ is given by

Wr(G,G
′) = inf

q∈Q(p,p′)

(∑
i,j

qij‖θi − θ′j‖r
)1/r

,

where ‖ · ‖ denotes the l2 norm for elements in Rd. It is simple to see that if a sequence

of probability measures Gn ∈ Ok0 converges to G0 ∈ Ek0 under the Wr metric at a rate

ωn = o(1) for some r ≥ 1 then there exists a subsequence of Gn such that the set of

atoms of Gn converges to the k0 atoms of G0, up to a permutation of the atoms, at the

same rate ωn.

3.3 Sieve methods via growing parameter space

Dirichlet Process mixture models place a base measure H as a prior distribution on

Θ. In practice, there is no assumption made on Θ. However, to facilitate theoretical

understanding of the behavior of the posterior, it is necessary to assume Θ to be bounded
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(Gao and van der Vaart (2016); Ghosal and van der Vaart (2001)). However, since the

range of atoms of G0 is unknown , it is highly possible that the true mixing measure G0

can possibly have some of its atoms lying outside the chosen parameter space Θ. If we

choose Θ to be an unbounded set of Rd, it is known that the posterior distribution of

G will not be consistent, i.e., it does not concentrate around the true mixing measure

G0. A simple yet appealing solution is to allow Θ to expand with the sample size so

that ultimately it will contain all the atoms of G0. However, to understand the effect

of expansion of parameter space, we need to carefully study the precise behavior of

the Wasserstein distance between two mixing measures with respect to the hellinger

distance. The following subsection deals with this.

3.3.1 Lower bound of Hellinger distance based on Wasserstein metric

Throughout this subsection, we assume that {f(·|θ), θ ∈ Θ)} is a location family of

density functions such that f(x|θ) = f(x− θ) for all θ ∈ Θ = [−θ̄, θ̄]d. We will utilize

two important properties regarding Fourier transform of f (Fan (1991)):

Definition 3.3.1. Given {f(·|θ), θ ∈ Θ)} is a location family of density functions such

that f(x|θ) = f(x− θ) for all θ ∈ Θ. Then, the following holds

(1) f has ordinary smooth property with two parameters α and β if we have

inf
ω∈Rd
|f̃(ω)

d∏
i=1

(1 + α|ωi|β)| > 0.

(2) f has supermooth property with two positive parameters α and β if we have

inf
ω∈Rd
|f̃(ω)

d∏
i=1

exp(α|ωi|β)| > 0.
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It is clear that standard univariate Gaussian or Cauchy function is a supermooth

function while univariate Laplace function is an ordinary smooth function. The product

Gaussian kernel is also Gaussian. Note that the same does not apply for the multivariate

Laplace kernel given in Eq. (3.5). However, the following example shows that the

product Laplace kernel is also supersmooth.

Example 3.3.1. Let fσ(·|θ) be a univariate Laplace kernel with standard deviation σ.

Then the product Laplace kernel is given by

fd,σ1,...,σd(x|(θ1, . . . , θd)) =
d∏
i=1

fσi(xi|θi). (3.3)

f̃σi(ωi) =
1

1 + σ2
i ω

2
i

, and thus f̃d,σ1,...,σd(ω|(θ1, . . . , θd)) =
∏d

i=1

1

1 + σ2
i ω

2
i

, and thus the

product of univariate Laplace kernels is also ordinary smooth with α = maxi σ
2
i and

β = 2.

The following key result provides an upper bound for Wasserstein distance of location

mixing measures with respect to the Hellinger distance for corresponding mixture

densities.

Theorem 3.3.1. (Ordinary smooth density) Assume that f has the ordinary smooth

property with two positive parameters α and β. Denote

inf
ω∈Rd
|f̃(ω)

d∏
i=1

(1 + α|ωi|β)| = cf > 0.

Then, the following holds
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(a) If β > 1 + 1/d, then

W1(G,G′) ≤ 3 max
{√

2d, δ̄βd1 ad, cdδ̄1θ̄
d
}{

log

(
C

h(pG, pG′)

)} 1+d/2
1+βd

h(pG, pG′)
1

1+βd

where ad =
πd/4√

(d
2

+ 1)Γ(d/2)
·

2d+1
√
‖f‖∞

cf
· max{1, (α exp(−β/2)ββ/2)d}, cd =

2
√

2√
π

(8πe)d/2√
d

, δ̄(β−1)d−1
1 = β22+dd+(

√
dθ̄)

(β−1)d−1
2 , and C = exp

(
(βd+1)(

√
dθ̄+δ

2

1)

)
.

(b) If 0 < β ≤ 1 + 1/d, then

W1(G,G′) ≤ 3 max
{√

2d, δ̄βd2 ad, cd

}{
log

(
C̃

h(pG, pG′)

)} 1+d/2
1+βd

h(pG, pG′)
1

1+βd

where cd = 2d+1d exp

(
dδ

2

2

2
+ dθ

)
(θ + δ2 + δ

2

2), δ̄
βd+1
2 = βd(1 + d)1+d/2, and

C̃ = exp(1 + d).

The proof of Theorem 3.3.1 is provided in Section 3.7.1. The above result is an

extension of similar well-known results for ordinary smooth kernels Gao and van der

Vaart (2016) with careful consideration of the constants relative to the boundary of the

parameter space. We have the following comments regarding the results of Theorem

3.3.1:

(i) The choices of C and C̃ in part (a) and part (b) are to guarantee that the functions

ε

{
log(C/ε)

}1+d/2

and ε
{

log(C̃/ε)

}1+d/2

are strictly increasing functions of ε ∈

(0, 1].

(ii) When d and α are fixed, the main difference between the upper bounds ofW1(G,G′)

under two settings of β and d is the dependence of constants on θ̄. When β > 1+1/d,

125



the dependence on θ̄ is at the order θ̄max{βd/2,d+1/2}. When β ≤ 1 + 1/d, the

dependence on θ̄ is at the order exp(dθ̄)θ̄.

When f is a supersmooth kernel we have the following result:

Theorem 3.3.2. (Supersmooth density) Assume that f has the supersmooth property

with two positive parameters α and β. Denote

inf
ω∈Rd
|f̃(ω)

d∏
i=1

exp(α|ωi|β)| = cf > 0.

Then, the following holds:

W1(G,G′) ≤ ad

(
4dα

log(1/h(pG, pG′))

)1/β

+addh(pG, pG′)
1/2

(
max

{
4dα

log(1/h(pG, pG′))
, θ̄

}) 2 + d

β(2 + d/2)


,

where ad = C max{d, πd/4√
Γ(d/2 + 1)

}, with C being a universal constant independent of

d, θ̄, β and α.

The proof is provided in Section 3.6.1.

The proofs of Theorems 3.3.1 and 3.3.2 rely on the choice of mollifiers which are

smoother than the kernel f , but are as less smooth as possible, the less smooth the

mollifier the stricter the hellinger bound. For ordinary smooth location mixtures we

use a Gaussian mollifier. We expect a sharper mollifier to give a stronger bound for

ordinary smooth location mixtures. However, the primary focus for this chapter is the

appropriate expansion rate for the parameter space Θ, and a sharper mollifier does not

seem to affect that drastically for the Laplace kernel. Therefore, we make no attempts

to secure a sharper bound.
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3.3.2 Growing parameter space

Sieve methods have been used to study contraction of estimators when the parameter

space in question is large (Shen and Wong (1994); Wong and Shen (1995)). As pointed

out earlier, there is a mismatch between the current theoretical and practical approaches

to parameter estimation for Bayesian mixture models. This section aims to reduce that

gap and improve understanding for posterior contraction when the parameter space in

question is unbounded. Suppose without loss of generality the parameter space Θ = Rd.

We consider the following adaptation of Eq. (3.2) for Dirichlet Process Mixture model:

Gn ∼ DP (α,Hn),

θ1, . . . , θn
i.i.d.∼ Gn,

Xi|θi ∼ f(Xi|θi), ∀i = 1, . . . , n. (3.4)

We make the following assumption on Hn.

(P.1) The base distribution Hn is supported on Θn = [−θ̄n, θ̄n]d, is absolutely continuous

with respect to the Lebesgue measure µ on Θn and admits a density function gn(·).

Additionally, Hn is approximately uniform, i.e., minθ∈Θn gn(θ) >
c0

µ(Θn)
> 0.

Θn approximates Θ so that Θn ↑ Θ as n ↑ ∞. Moreover, the posterior contraction

becomes tractable with Θn.

The rate of expansion, θ̄n plays an important role in maintaining the efficiency of

estimating G0. In particular, if we expand the parameter space Θn too fast, the posterior

convergence rate of G0 will become much slower. On the other hand, if we expand Θn

too slowly, it may take a lot of samples to avoid the misspecified setting of parameter
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space even though the posterior convergence rate of G0 only becomes slightly slower. As

a consequence, we want to have a good trade-off between rate of expansion and earliest

time that all the true atoms of G0 belong to Θn. This section explores this solution via

growing parameter space and provides appropriate rates of expansion of the parameter

space.

To establish convergence rates of location mixtures under the growing parameter

space setting, we utilize the general framework of posterior contraction of mixing

measures under well-specified setting from Nguyen (2013). To state such results formally,

we will need to introduce several key definitions in harmony with the notations in this

chapter.

Let G be endowed with the prior distribution Πn, given by Eq. (3.4), on a measure

space of discrete probability measures in G(Θ). Fix G0 ∈ P(Θ) such that Θ0 ⊂ [−θ̄0, θ̄0]d

is a bounded subset of Rd containing all the atoms of G0..

For any mixing measure G1 ∈ G(Θ) and r > 0, we define a Wasserstein ball centered

at G1 under W1 metric as follows

BW1(G1, r) =
{
G ∈ G(Θ) : W1(G,G1) ≤ r

}
.

Note that, the choice of first order Wasserstein metric in the above formulation is due

to the lower bound of Hellinger distance between mixing densities in terms of first order

Wasserstein distance between their corresponding mixing measures in Theorems 3.3.1

and 3.3.2. We restrict our attention to consider the classes of Gaussian and Laplace

location mixtures.
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3.3.2.1 Laplace location mixtures

For Laplace location mixtures,the Laplace kernel with covariance Σ and dimension d

is given by,

fLΣ (x|θ) =
1

|Σ|(2π)d/2

K(d/2)−1

(√
(x− θ)>Σ−1(x− θ)

)
(√

λ/2
√

(x− θ)>Σ−1(x− θ)
)(d/2)−1

, (3.5)

where |Σ| denotes the determinant of matrix Σ. Also, Kv is a Bessel function of the

second kind of order v. This form of the multivariate Laplace distribution can be seen

in Eltoft et al. (2006).

The characteristic function f̃LΣ corresponding to fLΣ is given by f̃LΣ (ω) = 1
1+ω′Σω

,

thus clearly satisfying the ordinary smooth property with β = 2 and α = λmax. The

next theorem provides contraction rates corresponding to expanding parameter space

under the assumption that the parameter space contains the true atoms. As noted

in Example 3.3.1 the results of the theorem are applicable for both location mixtures

of multivariate Laplace distributions as well as for location mixtures of product of

multivariate Laplace distributions. Without loss of generality, we prove the results for

location mixtures of multivariate Laplace distributions only.

Theorem 3.3.3. Assume that Πn is the Dirichlet process prior distribution with Hn,

the base distribution satisfying condition (P.1). Also, assume that θ̄n ↑ ∞, εn ↓ 0, such

that
θ̄dn
ε2d+2
n

log

(
exp(θ̄n)

ε2n

)
= o(n) and nε2n →∞. Then, if fΣ is of the form of Eq. (3.5),

the following holds.

Πn

(
G : W1(G,G0) & θ̄d+1/2

n ε1/1+2d
n

{
log

(
exp(ad,λmin θ̄n)

εn

)}1 + d/2

1 + 2d |X1:n

)
→0 (3.6)
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in P n
G0

probability, where the constant ad and the constant of proportionality associated

with & are dependent on d, λmin with λmin being the smallest eigenvalue of Σ.

The proof of Theorem 3.3.3 is provided in Section 3.7.2 in the Appendix.

As a consequence of this theorem, we have the following corollary.

Corollary 3.3.1. Assume that Πn is the Dirichlet process prior distribution with Hn,

the base distribution satisfying condition (P.1) with θ̄n = o

(
log

(
n

(log n)2d+2

))
. Then,

if fΣ is of the form of Eq. (3.5), the following holds.

Πn

(
G : W1(G,G0) & ad,Σ

(
(log n)(4d2+5d+3)/(2+4d)

n1/(2+2d)(1+2d)

)∣∣∣∣X1, . . . , Xn

)
→0 (3.7)

in P n
G0

probability, where ad,Σ is a constant dependent on d,Σ.

Proof. We substitute θ̄n = o(log(1/εn)) with εn =
log n

n1/2d+2
in the result of Theorem 3.3.3

to see that all the assumptions in Theorem 3.3.3 are satisfied. This choice of εn and θ̄n

gives us the result.

Corollary 3.3.1 tells us that when the truth G0 is mixture of location Laplace kernels,

the appropriate rate of expansion of the parameter space so as to also maintain a fast

contraction rate to the truth is o(log(n)). In this case the parameters contract at a

polynomial rate faster than the rate obtained in Nguyen (2013). However, for d = 1, it

is slightly slower than the rate obtained in Gao and van der Vaart (2016). The next

subsection deals with the expansion rate for gaussian kernels.
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3.3.2.2 Gaussian location mixtures

For the Gaussian location mixtures with covariance matrix Σ, the kernel, fGΣ , has

the following form:

fGΣ (x|θ) :=
exp(−(x− θ)>Σ−1(x− θ)/2)

|2πΣ|−1/2
. (3.8)

Moreover, if f̃GΣ gives the characteristic function corresponding to fGΣ , then it is well-

known that f̃GΣ (ω) = exp(−ω′Σω/2). Therefore it has supersmooth property with β = 2

and α = λmax, where λmax is the maximum eigenvalue of Σ.

In that regard, the next theorem provides contraction rates of parameters corre-

sponding to the expansion rates of the parameter space:

Theorem 3.3.4. Assume that Πn is the Dirichlet process prior distribution with Hn,

the base distribution satisfying condition (P.1). Also, assume that θ̄n ↑ ∞, εn ↓ 0, such

that
θ̄dn
εd+2
n

log

(
θ̄n
εn

)
= o(n) and nε2n →∞. Then, if fΣ is of the form of Eq. (3.8), the

following holds.

Πn

G : W1(G,G0) & ad,Σ

( 4d

log(1/εn)

)1/2

+ dε1/2n θ̄n

2 + d

4 + d

∣∣∣∣X1:n

→0 (3.9)

in P n
G0

probability, where ad,Σ is a constant dependent on d, Sigma.

As a consequence of this theorem, we have the following corollary.

Corollary 3.3.2. Assume that Πn is the Dirichlet process prior distribution with Hn,

the base distribution satisfying condition (P.1) with θ̄n = o

(
n(2d+4)/(3d2+12d+2)

(log n)(4+d)/(2+d)

)
. Then,
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if fΣ is of the form of Eq. (3.8), the following holds.

Πn

(
G : W1(G,G0) & ad,Σ

(
log log n

log(n)

)1/2∣∣∣∣X1, . . . , Xn

)
→0 (3.10)

in P n
G0

probability, where ad,Σ is a constant dependent on d,Σ.

Proof. We substitute θ̄n = o

(
1

εn log(1/εn)

)
with εn =

log n

n(2d+4)/(3d2+12d+8)
in the result

of Theorem 3.3.4 to see that all the assumptions in Theorem 3.3.4 are satisfied. This

choice of εn and θ̄n gives us the result.

Corollary 3.3.2 says that for gaussian location mixtures the appropriate rate of expan-

sion is polynomial as opposed to the logarithmic rate of expansion for Laplace mixtures.

This might be seemingly counterintuitive, since Gaussian kernel being supersmooth has

a very slow logarithmic contraction rate as opposed to the polynomial contraction rate

for Laplace kernels. However, this result seems to be indicative of the fact that mixing

measures contract to 0 much faster for Gaussian kernels in regions of the space away

from any of the atoms of the true mixing measure. This seems to suggest that the slow

contraction rate for Gaussian kernels arises out of the "coagulative" nature of Gaussian

mixing measures- i.e., the components of the mixing measures aposteriori tend to cluster

around the components of the true mixing measure while smaller components by weight

are contributed by "empty" spaces. Laplace mixtures on the other hand do not have

the "coagulative tendency" courtesy the heavy tail nature which enforces aposteriori

components to be away from each other. Hence, the contributing weight for "open

spaces" is no different from that of the neighborhoods of true atoms. As a result mixing

measures for the Laplace kernel tend to have a larger bias of estimation and a smaller

variance of estimation. The opposite is observed for Gaussian kernels, where the bias
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is small but the variance is large. This fact was also noted in Chapter II. The above

discussion suggests the following recommendation for practitioners.

Recommendation:

(i) Fit a mixture of Gaussian kernels to obtain an estimate of the "locality" of

representative atoms. This gives a crude knowledge of the domain of mixing

atoms while remaining conservative in approach. This is because the Gaussian

kernels have slow posterior contraction rates closer to the truth and convergence

behavior closer to the true atoms remains slow. Hence, Gaussian kernels may not

be appropriate to estimate the number of distinct components.

(ii) To obtain an estimate of the number of components or the parameters associated

with them, fit mixture of Laplace or any heavy-tail kernel with prior mass of atoms

constrained/upweighted in the representative regions.

3.4 Contraction of excess mass for Gaussian mixtures

The previous section shows that the sieve estimates can be chosen suitably for

Gaussian location mixtures, to obtain appropriate contraction rates. In this section

we build on the discussion of the previous section. We show that when fitting with

a mixture of Gaussian densities, weights of mixing components away from the truth

vanish at an almost polynomial rate. In order to achieve this result we make use of a

novel metric which we define below. We call this the Orlicz-Wasserstein metric. It is a

generalization of the Wasserstein distance corresponding to Orlicz norms.

The Orlicz norm is defined as follows:
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Definition 3.4.1. Let µ be a σ−finite measure on a space X with metric ‖ · ‖. Assume

that Φ : [0,∞)→ [0,∞) be a convex function satisfying:

(i) Φ(x)
x
→∞, as x→∞

(ii) Φ(x)
x
→ 0, as x→ 0.

Then the Orlicz space is defined as :

LΦ := {f : X → R|∃ k ∈ R+ so that
∫
X

Φ(‖f(x)‖/k) dµ(x) ≤ 1}. (3.11)

Moreover, the Orlicz norm corresponding to f ∈ LΦ is given by:

‖f‖Φ := inf{k ∈ R+ :

∫
X

Φ(‖f(x)‖/k) dµ(x) ≤ 1} (3.12)

The Orlicz norm generalizes the concept of Lp-norm. A coupling between two

probability measures ν1 and ν2 on a space X is a joint distribution on X × X with

corresponding marginal distributions ν1 and ν2. Corresponding to the Orlicz norms, we

define the Orlicz-Wasserstein metric as follows which generalizes theWr-metric. Without

loss of generalisation, we will assume X = Rd, with ‖ · ‖ denoting the Euclidean metric.

Lemma 3.4.1. Let ν1, ν2 be probability measures on (Rd, ‖ · ‖). Assume that Φ :

[0,∞)→ [0,∞) is a convex function satisfying conditions (i) and (ii) in Definition 3.4.1.

Suppose we define

WΦ(ν1, ν2) := inf
ν∈Q(ν1,ν2)

inf{k ∈ R+ :

∫
Rd×Rd

Φ(‖x− y‖/k) dν(x, y) ≤ 1}, (3.13)

where Q(ν1, ν2) is the set of all possible couplings of ν1 and ν2. Then, WΦ defines
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a distance metric on the set of probability measures on (Rd, ‖ · ‖). We call WΦ the

Orlicz-Wasserstein metric on (Rd, ‖ · ‖)

Proof. We need to show the following:

(i) WΦ(ν1, ν2) = WΦ(ν2, ν1) for any probability measures ν1, ν2 on (Rd, ‖ · ‖).

(ii) WΦ(µ, µ) = 0 for any probability measure µ on (Rd, ‖ · ‖).

(iii) WΦ(ν1, ν2) ≤ WΦ(ν1, ν3) + WΦ(ν3, ν2) for any probability measures ν1, ν2, ν3 on

(Rd, ‖ · ‖).

(i) follows easily from the fact ‖x− y‖ is symmetric with respect to x, y ∈ Rd .

For (ii) consider the coupling, ν(x, y) = µ(x)1x=y, then it is clear to see that for any

k > 0,
∫
Rd×Rd Φ(‖x− y‖/k) dν(x, y) = 1 and therefore WΦ(µ, µ) = 0.

For part (iii), assume that WΦ(ν1, ν3) = k1,WΦ(ν3, ν2) = k2. Then, it is enough

to show that there exists a coupling ν of ν1 and ν2 such that
∫
Rd×Rd Φ(‖x − y‖/(k1 +

k2)) dν(x, y) ≤ 1.

By results from Villani (2003, 2008), there exists a coupling µ1 of ν1 and ν3 and a

coupling µ2 of ν2 and ν3 such that,

∫
Rd×Rd

Φ(‖x− z‖/k1) dµ1(x, z) ≤ 1

∫
Rd×Rd

Φ(‖z − y‖/k2) dµ2(y, z) ≤ 1. (3.14)

Then, by a result in probability theory there exists a probability measure µ on
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Rd × Rd × Rd such that

∫
x∈Rd

µ(dx, y, z) = µ2(y, z)

∫
x∈Rd

µ(x, dy, z) = µ1(x, z) (3.15)

Define ν(x, y) :=
∫
z∈Rd µ(x, y, dz).

∫
Rd×Rd

Φ(‖x− y‖/(k1 + k2)) dν(x, y)

=

∫
Rd×Rd×Rd

Φ(‖x− y‖/(k1 + k2)) dµ(x, y, z)

≤
∫

Rd×Rd×Rd

Φ((‖x− z‖+ ‖y − z‖)/(k1 + k2)) dµ(x, y, z)

≤ k1

k1 + k2

∫
Rd×Rd

Φ

(
‖x− z‖
k1

)
dµ1(x, z)

+
k2

k1 + k2

∫
Rd×Rd

Φ

(
‖y − z‖
k2

)
dµ2(y, z) ≤ 1. (3.16)

The first inequality follows from the triangle inequality property of ‖ ·‖, while the second

inequality follows from the convexity of Φ.

Example 3.4.1. When Φ(x) = xr, then WΦ(ν1, ν2) = Wr(ν1, ν2), the usual Wasserstein

norm of order r.

The notion of Orlicz-Wasserstein distance is stronger than that of the usual Wasser-

stein distance to compare probability measures. This is formalized in the following

lemma.
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Lemma 3.4.2. Let ν1, ν2 be probability measures on (Rd, ‖ · ‖). Also assume Φ,Ψ are

convex functions satisfying conditions (i) and (ii) in Definition 3.4.1.

(i) Suppose that for all x > 0, Φ(x) ≤ Ψ(x), then

WΦ(ν1, ν2) ≤ WΨ(ν1, ν2) (3.17)

(ii) Let kδ,d(x1, . . . , xd) =
∏d

i=1 kδ(xi), where kδ(x) = c
1

δ
(
∫

exp(−itx/δ) exp(−t4)dt)2,

with c being the constant of proportionality. Suppose Φ(x) ≤ exp((7/32)xα)− 1

for some 0 < α ≤ 4/3. Moreover, also assume ν2 = ν1 ∗ kδ,d. Then

WΦ(ν1, ν2) ≤ Cαδ, (3.18)

for some constant Cα,d.

Proof. (i) follows easily from the fact that for each k such that∫
Rd×Rd Φ(‖x− y‖/k) dν(x, y),

∫
Rd×Rd Ψ(‖x− y‖/k) dν(x, y) ≤ ∞,∫

Rd×Rd Φ(‖x− y‖/k) dν(x, y) ≤
∫
Rd×Rd Ψ(‖x− y‖/k) dν(x, y), and thus,

∫
Rd×Rd

Ψ(‖x− y‖/k) dν(x, y) ≤ 1 =⇒
∫

Rd×Rd

Φ(‖x− y‖/k) dν(x, y) ≤ 1.

For (ii), consider the case α ≥ 1.

Following the result from (i), it is enough to show WΨ(ν1, ν2) . δd,

where Ψ(x) = exp(xα)− 1. Consider X ∼ ν1 and Y ∼ kδ,d. Then for k such that
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∫
R exp((7/32)|yi/k|α − (7/16)|yi/δ|4/3)dyi <∞, the followin holds.

inf

{ ∫
Rd×Rd

Φ(‖x− y‖/k) dµ(x, y) : µ ∈ Q(ν1, ν2)

}

≤
(

1

δ

)d ∫
Rd

exp((7/32)‖y‖α/kα)
d∏
i=1

k1(yi/δ)
d∏
i=1

dyi − 1

≤
d∏
i=1

(
1

δ

)∫
R

exp((7/32)|yi|α/kα)k1(yi/δ)dyi − 1

=
d∏
i=1

(
1

δ

)∫
R

φ(yi)
2 exp((7/32)|yi/k|α − (7/16)|yi/δ|4/3)dyi − 1,

where φ(·) is the function in Lemma 3.4.4. The second inequality follows from the fact

that ‖x‖p ≤ ‖x‖q when p ≥ q, where ‖ · ‖p is the Lp norm. The final equality follows

from Lemma 3.4.4.

Now, as |φ(x)| ≤ Cφ for some constant Cφ <∞, we have following the result in part

(i),

WΦ(ν1, ν2) ≤ Cαδ

where

Cα = inf

{
k > 0 :

∫
R

exp(|y/k|α − |y|4/3)dy − 1 ≤ 1

C2
φ

}
.

Cα as defined above exists because α ≤ 4/3.

Wasserstein distances are useful to quantify contraction behaviour of mixture dis-

tributions. Namely, if one mixing measure is close to another in Wasserstein distance,
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it provides a way to control the corresponding contraction rates of the atoms and

the masses associated with them. The following lemma provides a similar result for

Orlicz-Wasserstein norms.

Lemma 3.4.3. Let G0 =
∑k0

i=1 p
0
i δθ0

i
, G =

∑k
j=1 piδθi be mixing measures such that

θj, θ
0
i ∈ Rd for all i, j. Assume that Φ : [0,∞)→ [0,∞) is a convex function satisfying

conditions (i) and (ii) in Definition 3.4.1. Then

∑
j

pj1‖θj−θ0
i ‖>η for all i ≤

(
Φ

(
η

WΦ(G,G0)

))−1

. (3.19)

Here, k0, k can also take the value ∞.

Proof. Suppose q = (qij)1≤i≤k0,1 ≤j≤k ∈ [0, 1]k0×k is a coupling between p0 = (p0
1, . . . , p

0
k0

)

and p = (p1, . . . , pk), with Q(p,p′) representing the space of all such couplings of p and

p′.

Then, for k fixed,

∑
qijΦ(‖θ0

i − θj‖/k) ≥
∑

qij1‖θ0
i−θj‖≥ηΦ(η/k) ≥

∑
pj1‖θ0

i−θj‖≥η for all iΦ(η/k).

(3.20)

Let K = inf{k ≥ 0 :
∑
pj1‖θ0

i−θj‖≥η for all iΦ(η/k) ≤ 1}. Then,

K ≥ η

(
Φ−1

(
1∑

pj1‖θ0
i−θj‖≥η for all i

))−1

, (3.21)

where Φ−1 is the functional inverse to Φ. This exists and is concave as Φ is monotonic
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increasing and convex. Moreover, by Lemma 3.4.2(i),

WΦ(G,G0) := inf
q∈Q(p,p′)

inf{k ≥ 0 :
∑

qijΦ(‖θ0
i − θj‖/k) ≤ 1} ≥ K (3.22)

Combining Eqs. (3.32) and (3.22) we get the result.

Previously, we have shown that the excess mass for atoms of G which are away from

any atom of G0 is well controlled by the Orlicz-Wasserstein norm. The next theorem

obtains a contraction rate for the excess mass for Gaussian location mixtures.

The proof of Theorem 3.4.1 depends on certain key technical lemmas which we prove

prior to stating the main theorem.

Lemma 3.4.4. Let f(x) = exp(−x4), and f̃(t) = (1/2π)
∫∞
−∞ exp(−itx)f(x)dx. Then,

|f̃(t)| ≤ φ(t) exp(−7/32|t|4/3), (3.23)

where φ(t) is an absolutely bounded real-valued function.

Proof. Consider a rectangle on the complex plane, with vertices at R,−R,R+ iζ,−R+

iζ respectively. Following Goursat’s Theorem (E.M.Stein and Shakarchi (2010)) for

integration along rectangular contours on the complex plane, the contour integral along

a closed rectangle is 0.

Therefore,
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R∫
−R

exp(−itx)f(x)dx +

R+iζ∫
R

exp(−itx)f(x)dx

+

−R∫
−R+iζ

exp(−itx)f(x)dx+

−R+iζ∫
R+iζ

exp(−itx)f(x)dx = 0.

Now,

|
R+iζ∫
R

exp(−itx)f(x)dx| = |
ζ∫

0

exp(itR− tx)f(R + ix)idx| ≤ C exp(−R4)→ 0,

as R→∞. Similarly,

|
−R∫

−R+iζ

exp(−itx)f(x)dx| → 0,

as R→∞.

Therefore,

lim
R→∞

R+iζ∫
−R+iζ

exp(−itx)f(x)dx = lim
R→∞

R∫
−R

exp(−itx)f(x)dx = 2πf̃(t).
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Now,

lim
R→∞

R∫
−R

exp(−itx)f(x)dx = 2πf̃(t) = lim
R→∞

R+iζ∫
−R+iζ

exp(−itx)f(x)dx

= lim
R→∞

R∫
−R

exp(it(x+ iζ))f(x+ iζ)dx.

= lim
R→∞

R∫
−R

exp(−itx− tζ)) exp(−(x+ iζ)4)dx.

Expanding the above expression,

f̃(t) = (1/2π) lim
R→∞

R∫
−R

exp(−itx− 4ix3ζ + 4ixζ3 − tζ − (x2 − 3ζ2)2 + 8ζ4)dx.

Substituting ζ =
1

4
sign(t)|t|1/3 in the above equationa,

|f̃(t)| ≤ (1/2π) exp(−(7/32)|t|4/3)

∞∫
−∞

exp(−(x2 − (1/3)|t|1/2)2)dx. (3.24)

The proof is complete when we note that φ(t) = (1/2π)
∫∞
−∞ exp(−(x2− (1/3)|t|1/2)2)dx

is an absolutely bounded function.

Lemma 3.4.5. Let k(t) = cf̃(t)2, where f̃(t) = (1/2π)
∫∞
−∞ exp(−itx) exp(−x4)dx and

c is a constant of proportionality so that
∫∞
−∞ k(t)dt = 1. Then,

|
∞∫

−∞

exp(itx)k(t)dt| . exp(−(x/2)4) (3.25)
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Proof. Define f(x) = exp(−x4). Then, by a version of the Fourier inversion theorem,

∞∫
−∞

exp(itx)k(t)dt = f ∗ f(x),

where ∗ is the convolution operator. Since convolution of even functions is even, it is

enough to show the result for x > 0. Then,

f ∗ f(x) =

∞∫
−∞

exp(−y4) exp(−(y − x)4)dy

=

∞∫
x/2

exp(−y4) exp(−(y − x)4)dy +

x/2∫
−∞

exp(−y4) exp(−(y − x)4)dy

≤ exp(−(x/2)4)

∞∫
x/2

exp(−(y − x)4)dy + exp(−(x/2)4)

x/2∫
−∞

exp(−y4)dy

≤ 2 exp(−(x/2)4)

∞∫
−∞

exp(−y4)dy. (3.26)

The result holds with C = 2
∫∞
−∞ exp(−y4)dy since

∫∞
−∞ exp(−y4)dy <∞.

Lemma 3.4.6. Let ν1, ν2 be probability measures on (Rd, ‖ · ‖) and let Φ be a convex

function satisfying conditions (i) and (ii) in Definition 3.4.1. Then,

WΦ(ν1, ν2) ≤ 2 inf{k ∈ R+ :

∫
Rd

Φ(‖x‖/k) d|ν1(x)− ν2(x)| ≤ 1}. (3.27)

Proof. Consider a coupling, ν between ν1 and ν2 that keeps fixed all the mass shared
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between ν1 and ν2, and redistributes the remaining mass independently, i.e.,

ν(x, y) = (ν1(x)
∧

ν2(y))1x=y +
1

(ν1 − ν2)+(Rd)
(ν1(x)− ν2(x))+(ν2(y)− ν1(y))+

(3.28)

Assume that k0 := inf{k ∈ R+ :
∫
Rd Φ(‖x‖/k) d|ν1(x)− ν2(x)| ≤ 1}. Then, using ν as

defined in the above display we get

∫
Rd×Rd

Φ(‖x− y‖/2k0) dν(x, y)

=

∫
Rd×Rd

Φ(‖x− y‖/2k0)
1

(ν1 − ν2)+(Rd)
(ν1(x)− ν2(x))+(ν2(y)− ν1(y))+

≤
∫

Rd×Rd

Φ(‖x‖/k0)(ν1(x)− ν2(x))+ ≤ 1

Therefore,

WΦ(ν1, ν2) ≤ 2 inf{k ∈ R+ :

∫
Rd

Φ(‖x‖/k) d|ν1(x)− ν2(x)| ≤ 1}.

Now, we are ready to state the main theorem of this section.

Theorem 3.4.1. Assume that f is such that f(x|θ) = f(x − θ) ∼ N (θ,Σ) for all

θ ∈ Θ = [−θ̄, θ̄]d. Also assume that Φ is a convex function satisfying conditions (i) and
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(ii) in Definition 3.4.1 such that Φ(x) ≤ exp(x)− 1. Then for mixing measures G,G′,

WΦ(G,G′) ≤ Cd

(
θ̄5/4

(log(1/h(pG, pG′)))1/8
+

(
1

log(1/h(pG, pG′))

)11/8

+

(
1

log(c/h(pG, pG′)(log(1/h(pG, pG′)))d/4)

)1/2)
(3.29)

for some constant Cd,Σ dependent on the dimension d,Σ.

The proof of Theorem 3.4.1 is provided in Section 3.6.3.

As a consequence of this theorem we have the following corollary.

Corollary 3.4.1. Assume that εn ↓ 0, such that εn =
(log(n))2

n1/(d+2)
. Also assume that

Πn is the Dirichlet process prior distribution with Hn, the base distribution satisfying

condition (P.1) with θ̄n = θ̄0, with Θ0 ⊂ [−θ̄0, θ̄0]d being bounded subset of Rd containing

all the atoms of G0. Then, if fΣ is of the form of Eq. (3.8), the following holds for any

η > 0.

Πn

(
G =

∑
piδθi ∈ G(Θn) :

∑
j

pj1‖θj−θ0
i ‖>η for all i

≥ 2 exp

(
−η log(n/(log n)2d+4)1/8

(d+ 2)

)
|X1, . . . , Xn

)
PG0→ 0. (3.30)

in P n
G0

probability.

Proof. By the proof technique of Theorem 3.3.4, we get for some sufficiently large L.

Πn(G ∈ G(Θn) : h(pG, pG0) ≥ L(log(n))2

n1/(d+2)
|X1, . . . , Xn)

PG0→ 0. (3.31)
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From Theorem 3.4.1, we have,

Πn

(
G ∈ G(Θn) : WΦ(G,G0) ≥ 1

(log(n/(log n)2d+4)/(d+ 2)))1/8
|X1, . . . , Xn

)
PG0→ 0.

Let G0 =
∑k0

i=1 p
0
i δθ0

i
, G =

∑k
j=1 piδθi Suppose q = (qij)1≤i≤k0,1 ≤j≤k ∈ [0, 1]k0×k is

a coupling between p0 = (p0
1, . . . , p

0
k0

) and p = (p1, . . . , pk), with Q(p,p′) representing

the space of all such couplings of p0 and p.

Using the proof technique similar to Lemma 3.4.3, we get

∑
qij exp(‖θ0

i − θj‖/k) ≥
∑

qij1‖θ0
i−θj‖≥η exp(η/k) ≥

∑
pj1‖θ0

i−θj‖≥η for all i exp(η/k).

Let K = inf{k ≥ 0 :
∑
pj1‖θ0

i−θj‖≥η for all i exp(η/k) ≤ 2}. Then,

K ≥ η

(
log

(
1∑

pj1‖θ0
i−θj‖≥η for all i

))−1

,

∑
j

pj1‖θj−θ0
i ‖>η for all i ≤ 2 exp

(
−η

WΦ(G,G0)

)
.

Therefore,

Πn

(
G =

∑
piδθi ∈ G(Θn) :

∑
j

pj1‖θj−θ0
i ‖>η for all i

≥ 2 exp

(
−η log(n/(log n)2d+4)1/8

(d+ 2)

)
|X1, . . . , Xn

)
PG0→ 0. (3.32)

in P n
G0

probability.
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Corollary 3.4.1 suggests an almost polynomial rate of estimation of mixing measures

in regions of the space away from the true atoms. We believe the rate of contraction

can be optimized further with a more refined choice of Φ(·) than the one mentioned in

Theorem 3.4.1, however, we make no such attempts in this work. The Orlicz-Wasserstein

metric penalizes the coupling between outlying points more heavily than those in the

central region as a result providing an improved bound for mixture of Gaussian kernels.

However, it does not improve on the bound for Laplace location mixtures.

3.5 Simulation Studies

This section provides simulations to compare the effect between fitting with mixtures

of heavy tail distributions compared to fitting with light-tailed mixtures. We consider a

simple simulation setup.

We compare how the contraction of excess mass behavior compares if we fit with

light-tailed kernels such as Gaussian as opposed to fitting with heavy tailed kernels such

as multivariate Student’s t distribution.

We consider two settings. In the left panels of Figures 3.3 and 3.6 the data is

generated by mixtures of three location Gaussian distributions:

pG0(·) =
3∑
i=1

p0
iN (·|µ0

i ,Σ
0)

where N (·|µ,Σ) is the Gaussian distribution with mean vector µ and covariance matrix

Σ. We consider 2-dimensional distributions. On the other hand for the right panels of

Figures 3.3 and 3.6, the data is generated from a mixture of Multivariate Student’s t

distribution of dimension 2.
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pG0(·) =
3∑
i=1

p0
iT (·|µ0

i ,Σ
0).

For both the settings µ0
1 = (0.8, 0.8), µ0

2 = (0.8,−0.8), µ0
3 = (−0.8, 0.8), Σ0 = 0.7I2,

n = 3500 where n is the sample size. Here, I2 is the identity matrix of dimension

2. Additionally, the weight vector for all these cases is chosen as p0 = (p0
1, p

0
2, p

0
3) =

(0.4, 0.3, 0.3).

A Dirichlet Process prior is chosen with a Gaussian base measure H with mean

mu = (0, 0) and covariance Σ = 2.5I2 is chosen as the prior, along with concentration

parameter α = 2. This choice of prior enables us to sample significantly larger numbers

of components of the mixing measure than the true number of three components and

also allows us to choose more components away from the atoms of the true mixing

components. .

For the DP mixture’s posterior computation, we make use of the slice sampler of

Walker S.Walker (2007); J.Griffin and S.Walker ; Muller et al. (2015). The sampler had

10000 burn-in iterations followed by 20000 sample iterations (a total 30000), with each

10th iteration being counted.

This yielded sample mixing measures for the Dirichlet Posterior. We considered

the mean of the posterior and smoothed it out with a Gaussian kernel of Covariance

5I2. The smoothing was done to make the difference between the contour plots of the

posterior means apparent. The results of the experiments are denoted in Figures 3.3

and 3.6 respectively. It is clear that the contraction of excess mass when fitting with

Gaussian kernel is comparable if only slightly slower than that obtained by fitting with

a heavy tailed kernel. As verified by our theoretical analysis, the excess mass contracts
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Figure 3.1: truth is mixture of light-tail
kernel, fit with mixture of light-tail.

Figure 3.2: truth is mixture of heavy-tail
kernel, fit with mixture of light-tail

Figure 3.3: Fitting with Gaussian

Figure 3.4: truth is mixture of light-tail
kernel, fit with mixture of heavy-tail

Figure 3.5: truth is mixture of heavy-tail
kernel, fit with mixture of heavy-tail

Figure 3.6: Fitting with Student’s t
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at polynomial rate for ordinary smooth kernels and slightly slower than polynomial for

Gaussian kernels, although not as slow as logarithmic as was initially thought. Moreover,

we can also note that the contour plots indicate a larger maximum value of the contour

posterior mean density for multivariate T distribution as opposed to Gaussian. This

corroborates the results obtained in the chapter.
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3.6 Appendix A: Proofs

In this section, we provide the proofs for several results in the chapter.

3.6.1 Proof of Theorem 3.3.2

We have the following notations. a . b for this proof implies a ≤ C · b for a

universal constant C independent of α, β, d, and θ̄. Also, f ∗ g will denote the outcome

of convolution operation on functions f and g.

Consider the following density function in R:

k(x) :=
96

π

(
sin(x/4)

x

)4

. (3.33)

This density function has been used by Caillerie et al. (2011) to obtain bounds for

Wasserstein distances of mixing measures. They show that the characteristic function

corresponding to k(·) is given by:

k̃(ω) = 3g(4|ω|)/16, (3.34)

where g(ω) = (ω3/2−2ω2 +16/3)1[0,2[(ω)+(−ω3/6+2ω2−8ω+32/3)1[2,4[(ω). Notably,

k̃(·) is a continuous twice differentiable symmetric function with Lipschitz second

derivative and has support in [−1, 1].

Our strategy to obtain upper bounds for W1(G,G′) is to convolve G with mollifiers,

kδ,d(·), of the form kδ,d(x) =
∏d

i=1

1

δ
k(xi/δ) for δ > 0, where x := (x1, . . . , xd).

By triangle inequality, we can write:

W1(G,G′) ≤ W1(G,G ∗ kδ,d) +W1(G′, G′ ∗ kδ,d) +W1(G ∗ kδ,d, G′ ∗ kδ,d).
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Consider a coupling of G and G∗kδ,d, given by (θ, θ+ ε), with θ, ε being independent

with marginals G and kδ,d, respectively.

Then,

W1(G,G ∗ kδ,d) ≤ E[‖ε+ θ − θ‖] ≤
√

E[‖ε‖2] ≤ C
√
dδ,

where C is a constant indepedent of d, δ. The last inequality above can be seen by

evaluating the second derivative of the characteristic function k̃(·) at t = 0. Therefore,

we can write

W1(G,G′) ≤ C
√
dδ +W1(G ∗ kδ,d, G′ ∗ kδ,d),

for a different constant C.

For every M > 0, we have,

W1(G ∗ kδ,d, G′ ∗ kδ,d) ≤
∫
‖x‖ · |(G−G′) ∗ kδ,d(x)|dx

=

∫
‖x‖2≤M

‖x‖ · |(G−G′) ∗ kδ,d(x)|dx

︸ ︷︷ ︸
s1

+

∫
‖x‖2>M

‖x‖ · |(G−G′) ∗ kδ,d(x)|dx

︸ ︷︷ ︸
s2

,

with the first inequality following from Theorem 6.15 in Villani (2008).
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Bounding s1: Using Hölder’s inequality, we obtain

s1 =

∫
‖x‖≤M

‖x‖ · |(G−G′) ∗ φδ(x)|dx

≤
( ∫
‖x‖≤M

‖x‖2dx

)1/2( ∫
‖x‖≤M

|(G−G′) ∗ φδ(x)|2dx
)1/2

=
πd/4√

(d
2

+ 1)Γ(d/2)
M1+d/2‖(G−G′) ∗ φδ‖2

≤ πd/4√
Γ(d/2 + 1)

M1+d/2‖(G−G′) ∗ φδ‖2. (3.35)

Let gδ be defined as :

gδ(x) :=
1

2π

∫
Rd

ei〈t,x〉
k̃δ,d(ω)

f̃(ω)

By a generalized Minkoswki’s inequality, it is known that ‖µ ∗ g‖2 ≤ |µ|‖g‖2 for a signed

measure µ with total-variation |µ| and an L2(Rd)-integrable function g. Therefore,

‖(G−G′) ∗ kδ,d‖2
2 = ‖pG ∗ gδ − pG′ ∗ gδ)‖2

2 ≤ 4V 2(pG, pG′)‖gδ‖2
2 ≤ 8h2(pG, pG′)‖gδ‖2

2

Using Plancherel’s identity,

‖gδ‖2
2 =

1

(2π)d

∫
k̃2
δ,d(ω)

f̃ 2(ω)
dω ≤ Cπ−d

∫
[−1/δ,1/δ]d

1

f̃ 2(ω)
dω.

The last inequality follows because k̃δ,d(·) is bounded with support in [−1/δ, 1/δ]d.

Along with the condition on supersmooth densities, this leads us to the following
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bound on s1.

s1 ≤ C
π−d/4√

Γ(d/2 + 1)
M1+d/2h(pG, pG′) exp(2dαδ−β) (3.36)

Bounding s2: For M > 0,

s2 ≤ M−1

∫
‖x‖2>M

‖x‖2
2 · |(G−G′) ∗ kδ,d(x)|dx

≤ M−1

∫
‖x‖2

2 · |(G−G′) ∗ kδ,d(x)|dx

≤ M−1

(∫
‖x‖2

2 · (G ∗ kδ,d)(x)dx+

∫
‖x‖2

2 · (G′ ∗ kδ,d)(x)dx

)
≤ 2M−1

(∫
‖u‖2

2 ·G(u)du+ 2

∫
‖v‖2

2 · kδ,d(v)dv

+

∫
‖w‖2

2 ·G′(w)dw

)
(3.37)

Now,
∫
‖w‖2

2 ·G′(w)dw ≤ dθ̄2, and
∫
‖v‖2

2 · kδ,d(v)dv ≤ dδ2
∫
x∈R
|z|2 · k(z)dz.∫

x∈R
|z|2 · k(z)dz is the variance pertaining to the density k(·) and is therefore a

constant that can be computed from the second derivative of the characteristic function,

k̃(·) at 0. Therefore, using these results we get

s2 .M−1d(θ̄2 + δ2) (3.38)

Combining the results of Eq. (3.36) and Eq. (3.38), we get

W1(G,G′) . ad(δ +M−1(θ̄2 + δ2) +M1+d/2h(pG, pG′) exp(2dαδ−β)),
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where ad = max{d, πd/4√
Γ(d/2 + 1)

}.

Limiting attention to δ < θ̄, we have:

W1(G,G′) . ad(δ +M−1θ̄2 +M1+d/2h(pG, pG′) exp(2dαδ−β)). (3.39)

Differentiating the RHS of Eq. (3.39) with respect to M , we can choose

M =

(
θ̄2

(1 + d/2)h(pG, pG′) exp(2dαδ−β)

)1/(2+d/2)

.

With regards to δ we choose δ =

(
4dα

log(1/h(pG, pG′))

)1/β

. Then we get,

W1(G,G′) . ad

( 4dα

log(1/h(pG, pG′))

)1/β

+ (2 + d/2)h(pG, pG′)
1/2(θ̄)

 2 + d

2 + d/2

 .

On the other hand, when δ > θ̄, we get,

W1(G,G′) . ad

((
4dα

log(1/h(pG, pG′))

)1/β

+(2 + d/2)h(pG, pG′)
1/2

(
4dα

log(1/h(pG, pG′))

)( 2 + d

β(2 + d/2)

))
.

Combining the results for the cases θ̄ > δ and θ̄ ≤ δ, we get the required result.

3.6.2 Proof of Theorem 3.3.4

The proof of this result follows by an application of Lemma 3.7.2, 3.7.3 and 3.7.4 in

combination with Theorem 2.1 in Ghosal et al. (2000).
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We break the proof into several steps.

Step 1: First we compute the contraction rate relative to the Hellinger metric.

We apply Theorem 7.1 in Ghosal et al. (2000), with ε = Lεn and

D(ε) = exp

(
c1

(
θ̄n√
λminεn

)d
log

(
e+

32eθ̄2
n

λminε2n

))
, where L ≥ 2 a large constant to be

chosen later and c1 is the constant in Eq. (3.70). Lemma 3.7.3 shows the validity of this

choice of D(ε). Then there exists a test function φn that satisfies

P n
G0
φn ≤ exp

(
c1

(
θ̄n√
λminεn

)d
log

(
e+

32eθ̄2
n

λminε2n

))
× exp(−KnL2ε2n)

1

1− exp(−KnL2ε2n)
,

sup
G∈G(Θn):h(pG,pG0

)≥Lεn
P n
G(1− φn) ≤ exp(−KnL2ε2n) (3.40)

Now,

EPG0
Πn(G ∈ G(Θn) : h(pG, pG0) ≥ Lεn|X1, . . . , Xn)φn

≤ P n
G0
φn ≤ 2 exp

(
c1

(
θ̄n√
λminεn

)d
log

(
e+

32eθ̄2
n

λminε2n

)
−KnL2ε2n

)
.

(3.41)
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Based on computation with the posterior,

Πn(G : h(pG, pG0 ≥ εn)|X1, . . . , Xn)(1− φn)

=

∫
G∈G(Θn):h(pG,pG0

)≥εn

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)(1− φn)∫

G∈G(Θn)

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)

≤

∫
G∈G(Θn):h(pG,pG0

)≥εn

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)(1− φn)∫

G∈G(Θn):K(pG0
,pG).ε2n,K2(pG0

,pG).ε2n(log(Mn/εn))2

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)

,

where Mn = exp(dλ−1
min(5θ̄2

0 + 4θ̄2
n)), with λmin being the minimum eigenvalue of Σ.

Step 1.1: In this step we show that∫
G∈G(Θn):K(pG0

,pG).ε2n,K2(pG0
,pG).ε2n(log(Mn/εn))2

n∏
i=1

pG(Xi)

pG0(Xi)
dΠn(G)

& exp(−(1 + C)nλminε
2
n)

Γ(γ)(c0γπ
d/2)Dn

(2Γ(d/2 + 1))Dn(2Dn)Dn−1

(√
λminεn
2θ̄n

)r(Dn−1)+dDn

(3.42)

with pnG0
probability→ 1,

for all C > 0 and εn > 0 is sufficiently small, where Dn = D(
√
λminεn,Θn, ‖.‖) ≈

(
θ̄n
εn

)d
stands for the maximal

√
λminεn-packing number for Θn under ‖.‖ norm, and Γ(·) is

the gamma function. First we show that

{G ∈ G(Θn) : W2(G,G0) .
√
λminεn}

⊂ {G ∈ G(Θn) : K(pG0 , pG) . ε2n, K2(pG0 , pG) . ε2n(log(Mn/εn))2},

(3.43)
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for εn sufficiently small.

Since
∫

(pG0(x))2

pG(x)
µ(dx) ≤Mn by Lemma 3.7.4 part(ii), it follows by an application

of Theorem 5 in Wong and Shen (1995) that for εn < 1/2(1− e−1)2,

h(pG, pG0) . ε2n =⇒ K2(pG0 , pG) . ε2n(log(Mn/εn))2.

Following Example 1 in Nguyen (2013), h2(pG, pG0) ≤ W 2
2 (G,G0)

8λmin
for Gaussian location

mixtures. Moreover,K(pG, pG0) ≤ W 2
2 (G,G0)

2λmin
. Combining the above displays, Eq. (3.43)

follows.

Following Lemma 8.1 in Ghosal et al. (2000), for every C, ε,M > 0 and any measure

Π on the set {G ∈ G(Θn) : K(pG0 , pG) . ε2n, K2(pG0 , pG) . ε2n(log(M/εn))2}, we have,

P n
G0

(∫ n∏
i=1

pG(Xi)

pG0(Xi)
dΠn(G) ≤ exp(−(1 + C)nε2)

)
≤ 1

C2nε2(log(M/ε))2
. (3.44)

The result in Eq.(3.42) now follows by an application of Lemma 3.7.2 in combination

with Eq. (3.43) and (3.44) using the fact that nε2n →∞.

Step 1.2: Let the event in (3.42) be denoted as Tn. Then

EPG0
[Πn(G : h(pG, pG0) ≥ Lεn)|X1, . . . , Xn)(1− φn)] ≤ PG0(TCn )

+ PG0(Tn)
exp((1 + C)nλminε

2
n)

Γ(γ)(c0γπd/2)Dn

(2Γ(d/2+1))Dn (2Dn)Dn−1

(√
λminεn
2θ̄n

)r(Dn−1)+dDn

× sup
G∈G(Θn):h(pG,pG0

)≥Lεn
P n
G(1− φn)

.
exp((1 + C)nλminε

2
n)

Γ(γ)(c0γπd/2)Dn

(2Γ(d/2+1))Dn (2Dn)Dn−1

(√
λminεn
2θ̄n

)r(Dn−1)+dDn
exp(−KnL2ε2n) + o(1). (3.45)
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The final step follows from simple computation similar to that of the Proof of Theorem

2.1 in Ghosal et al. (2000) and using the fact that
θ̄dn
εd+2
n

log

(
θ̄n
εn

)
= o(n). Combining

Eq. (3.41) and (3.45) and using the condition
θ̄dn
εd+2
n

log

(
θ̄n
εn

)
= o(n), it follows that for

L large enough

Πn(G ∈ G(Θn) : h(pG, pG0) ≥ Lεn|X1, . . . , Xn)
PG0→ 0. (3.46)

Now using Theorem 3.3.2 for Gaussian location mixtures, the result follows by noting

that as θ̄n ↑ ∞ and εn ↓ 0,
1

log(1/Lεn)
≤ θ̄n for n sufficiently large.

3.6.3 Proof of Theorem 3.4.1

a . b for this proof implies a ≤ C · b for a universal constant C dependent on α, d,

and θ̄. Also, f ∗ g will denote the outcome of convolution operation on functions f and

g.

Consider the following density function in R:

k(x) := c

 ∞∫
−∞

exp(−itx) exp(−t4)dt

2

, (3.47)

where c is a proportionality constant so that
∫∞
−∞ k(x)dx = 1. Lemma 3.4.4 shows that

k(·) is integrable.

Moreover, Lemma 3.4.5 shows that the characteristic function k̂(·), corresponding to

k(·) satisfies,

|k̂(x)| . exp(−(x/2)4).
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The strategy to obtain upper bounds for WΦ(G,G′) is to convolve G with mollifiers,

kδ,d(·), of the form kδ,d(x) =
∏d

i=1

1

δ
k(xi/δ) for δ > 0, where x := (x1, . . . , xd).

By triangle inequality, following Lemma 3.4.1 we can write:

WΦ(G,G′) ≤ W1(G,G ∗ kδ,d) +WΦ(G′, G′ ∗ kδ,d) +WΦ(G ∗ kδ,d, G′ ∗ kδ,d).

For Φ(x) = exp(x)− 1, following Lemma 3.4.2 part (ii),

WΦ(G,G ∗ kδ,d) ≤ Cαδ.

Therefore, we can write

WΦ(G,G′) ≤ 2Cαδ +WΦ(G ∗ kδ,d, G′ ∗ kδ,d).

For every M > 0,

WΦ(G ∗ kδ,d, G′ ∗ kδ,d) ≤ 2 inf{k ∈ R+ :

∫
Rd

Φ(‖x‖/k) · |(G−G′) ∗ kδ,d(x)|dx ≤ 1}

≤ 2 inf{k ∈ R+ :

∫
‖x‖2≤M

Φ(‖x‖/k) · |(G−G′) ∗ kδ,d(x)|dx

︸ ︷︷ ︸
s1

≤ 1/2

and
∫

‖x‖2>M

Φ(‖x‖/k) · |(G−G′) ∗ kδ,d(x)|dx

︸ ︷︷ ︸
s2

≤ 1/2},

with the first inequality following from Lemma 3.4.6.
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Bounding for s1: Using Holder’s inequality, we obtain

inf{k ∈ R+ :

∫
‖x‖2≤M

Φ(‖x‖/k) · |(G−G′) ∗ kδ,d(x)|dx ≤ 1/2}

≤ inf{k > 0 :

∫
‖x‖≤M

exp(‖x‖/k) · |(G−G′) ∗ kδ,d(x)|dx ≤ 3/2}

≤ inf

{
k > 0 :

( ∫
‖x‖≤M

exp(M/k)dx

)1/2( ∫
‖x‖≤M

|(G−G′) ∗ kδ,d(x)|2dx
)1/2

≤ 3/2

}

≤ inf

{
k > 0 :

πd/4√
(d

2
+ 1)Γ(d/2)

Md/2 exp(M/k)‖(G−G′) ∗ kδ,d(x)‖2 ≤ 3/2

}

=
M

log(cd/(‖(G−G′) ∗ kδ,d‖2Md/2))
(3.48)

Since f is Gaussian, f̃(ω) ≥ cf exp(−α
∑d

i=1 ω
2
i ) for some cf , α > 0. Therefore, we

have

‖(G−G′) ∗ kδ,d‖2
2 =

∫
|G̃− G̃′|2(ω)|k̃δ,d(ω)|2dω =

∫
|f̃(G̃− G̃′)|2(ω)

|k̃δ,d(ω)|2

|f̃(ω)|2
dω

≤ ‖pG − pG′‖2
2 sup
ω∈Rd

|k̃δ,d(ω)|2

|f̃(ω)|2

≤ 4‖f‖∞h2(pG, pG0) sup
ω∈Rd

{
1

c2
f

·
d∏
i=1

exp(−δ4|ωi|4) exp(2α|ωi|2)

}
.

Taking derivatives we obtain the maximum as,

sup
ωi∈R

{
exp(−δ4|ωi|4) exp(2α|ωi|2)

}
= exp(α2/δ4).

161



Therefore,

inf{k ∈ R+ :

∫
‖x‖2≤M

Φ(‖x‖/k) · |(G−G′) ∗ kδ,d(x)|dx ≤ 1/2}

≤ M

log(c/(h(pG, pG0) exp(α2dδ−4)Md/2))
(3.49)

for a different constant c.

Bounding for s2: For M > 0,

assume k1 = inf{k ∈ R+ : EX∼G−G′(Φ(‖X‖5/4/kM (1/4)) ≤ 1/2} and

k2 = inf{k ∈ R+ : EY∼kδ,d(Φ(‖Y ‖5/4/kM (1/4)) ≤ 1/2}. Then by convexity of Φ it is clear

that inf{k ∈ R+ : EX∼G−G′,Y∼kδ,d(Φ(‖X + Y ‖5/4/kM (1/4)) ≤ 1/2} ≤ k1 + k2. Then,

inf{k ∈ R+ :

∫
‖x‖2>M

Φ(‖x‖/k) · |(G−G′) ∗ kδ,d(x)|dx ≤ 1/2}

≤ inf{k ∈ R+ :

∫
‖x‖2>M

Φ(‖x‖5/4/kM (1/4)) · |(G−G′) ∗ kδ,d(x)|dx ≤ 1/2}

≤ inf{k ∈ R+ : EX∼G−G′,Y∼kδ,d(Φ(‖X + Y ‖5/4/kM (1/4)) ≤ 1/2}

≤ inf{k > 0 :

∫
Rd

exp(‖x‖5/4/kM1/4) · |(G−G′)(x)|dx ≤ 3/2}

+ inf{k > 0 :

∫
Rd

exp(‖x‖5/4/kM1/4) · |kδ,d(x)|dx ≤ 3/2}

≤ (dθ̄)5/4

log(3/2)M1/4
+ Cδ5/4/M1/4, (3.50)

where C = inf{k > 0 :
∫
Rd

exp(‖x‖5/4/k) · |k1,d(x)|dx < ∞ as k1,d(x) ∼ O(exp(−|x|4/3))

for large |x|, by Lemma 3.4.4

Therefore, using these results we get
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WΦ(G,G′) . δ + max

{
(dθ̄)5/4

log(3/2)M1/4
+ Cδ5/4/M1/4,

M

log(c/(h(pG, pG0) exp(α2dδ−4)Md/2))

}
≤ (dθ̄)5/4

log(3/2)M1/4
+ Cδ5/4/M1/4

+
M

log(c/(h(pG, pG0) exp(α2dδ−4)Md/2))
. (3.51)

Choosing M = (log(1/h(pG, pG0)))
1/2 and δ =

2α2

log(1/h(pG, pG0))
in Eq. (3.51) we

get,

WΦ(G,G′) .
(dθ̄)5/4

(log(1/h(pG, pG0)))1/8
+

(
1

log(1/h(pG, pG0))

)11/8

+

(
1

log(c/h(pG, pG0)(log(1/h(pG, pG0)))d/4)

)1/2

(3.52)
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3.7 Appendix B: Auxiliary results

In this appendix, we provide auxiliary results for posterior convergence rate of mixing

measures under the growing parameter space or prior distribution settings.

3.7.1 Proof of Theorem 3.3.1

The proof of this theorem is an improvement and generalization of the argument of

Lemma 7 in Gao and van der Vaart (2016) to multivariate settings of kernel functions

where the constants in the inequalities are carefully studied. Throughout this proof,

a . b means that a ≤ C · b where C is a universal constant independent of α, β, d, and

θ. Denote Φδ to be the multivariate normal distribution with mean 0 and covariance

δ2Id. From triangle inequality, we obtain that

W1(G,G′) ≤ W1(G,G ∗ Φδ) +W1(G ∗ Φδ, G
′ ∗ Φδ) +W1(G′ ∗ Φδ, G

′).

By choosing two independent vectorsX ∼ G and Y ∼ N(0, δ2I), we haveX+Y ∼ G∗Φδ.

From the definition of first order Wasserstein metric, it follows that

W1(G,G ∗ Φδ) ≤ E‖X + Y −X‖ = E‖Y ‖ =
δd√

2
. Hence, we have

W1(G,G′) ≤
√

2δd+W1(G ∗ Φδ, G
′ ∗ Φδ). (3.53)
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Then, for every positive constant M we obtain that

W1(G ∗ Φδ, G
′ ∗ Φδ) ≤

∫
‖x‖ · |(G−G′) ∗ φδ(x)|dx

=

∫
‖x‖≤M

‖x‖ · |(G−G′) ∗ φδ(x)|dx

︸ ︷︷ ︸
s1

+

∫
‖x‖>M

‖x‖ · |(G−G′) ∗ φδ(x)|dx

︸ ︷︷ ︸
s2

.

Bounding s1: Following the steps as in Eq. (3.35), we can show that using Holder’s

inequality, we obtain

s1 ≤
πd/4√

Γ(d/2 + 1)
M1+d/2‖(G−G′) ∗ kδ,d‖2. (3.54)

According to the assumption with f , we have

‖(G−G′) ∗ φδ‖2
2 =

∫
|G̃− G̃′|2(ω)|φ̃δ(ω)|2dω =

∫
|f̃(G̃− G̃′)|2(ω)

|φ̃δ(ω)|2

|f̃(ω)|2
dω

≤ ‖pG − pG′‖2
2 sup
ω∈Rd

|φ̃δ(ω)|2

|f̃(ω)|2

≤ 4‖f‖∞h2(pG, pG0) sup
ω∈Rd

{
1

c2
f

· exp(−δ2‖ω‖2)
d∏
i=1

(1 + α|ωi|β)2

}
.

Hence, we can compute:

sup
ω∈Rd

{
exp(−δ2‖ω‖2)

d∏
i=1

(1 + α|ωi|β)2

}
=
[

sup
x≥0

{
exp

(−δ2x2

2

)
(1 + αxβ)

}]2d
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Since:

1 + αxβ ≤ 2 max{1, αxβ} = max{2, 2αxβ}

Thus:

[
sup
x≥0

{
exp

(−δ2x2

2

)
(1 + αxβ)

}]2d ≤ (max
{

2 , 2α exp(
−β
2

)
( β
δ2

)β/2})2d

,

since:

−δ2x exp(
−δ2x2

2
)(2αxβ) + exp(

−δ2x2

2
)(2αβxβ−1)

= exp(
−δ2x2

2
)(2αxβ−1)(−δ2x2 + β)

attains maximum at
√
β/δ, from which we derive

||(G−G′) ∗ φδ||2 ≤
2
√
‖f‖∞
cf

h(pG, pG′) ·
(

max
{

2 , 2α exp(
−β
2

)
( β
δ2

)β/2})d (3.55)

By combining the result of (3.35) and (3.55), we achieve that

s1 ≤
2
√
‖f‖∞
cf

πd/4√
Γ(d/2 + 1)

M1+d/2h(pG, pG′)

·
(

max
{

2 , 2α exp(
−β
2

)
( β
δ2

)β/2})d (3.56)
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Bounding s2: On the other hand, when M > 2
√
dθ̄ + 2δ2, for s2 we have

s2 ≤ exp(−M)

∫
‖x‖>M

‖x‖ exp(‖x‖) |(G−G′) ∗ φδ(x)|dx

= exp(−M)

∫
‖x‖>M

‖x‖ exp(‖x‖)
∣∣∣ ∫
||y||≤

√
dθ̄

(G−G′)(y)φδ(x− y)dy
∣∣∣ dx

≤ 2 exp(−M)

∫
‖x‖>M

∫
||y||≤

√
dθ̄

‖x‖ exp(‖x‖)φδ(x− y)dy dx

=
2

(2π)d/2δd
exp(−M)

∫
‖x‖>M

∫
||y||≤

√
dθ̄

‖x‖ exp(‖x‖) exp
(
− ||x+ y||22

2δ2

)
dy dx

≤ 2

(2π)d/2δd
exp(−M) · πd/2

Γ(1 + d
2
)
· (
√
dθ̄)d

·
∫

‖x‖>M

‖x‖ exp(‖x‖) exp
(
− (||x|| −

√
dθ̄)2

2δ2

)
dx

=
2 exp(−M)(

√
dθ̄)d

(2)d/2δdΓ(1 + d
2
)
·
∫

‖x‖>M

‖x‖ exp(‖x‖) exp
(
− (||x|| −

√
dθ̄)2

2δ2

)
dx

=
2 exp(−M)(

√
dθ̄)d

(2)d/2δdΓ(1 + d
2
)
· 2πd/2

Γ(d/2)

·
∫

r>M

rd exp
(
− (r − (

√
dθ̄ + δ2))2

2δ2

)
exp

(δ2 + 2
√
dθ̄

2

)
dr

=
2 exp(−M)(

√
dθ̄)d

(2)d/2δdΓ(1 + d
2
)
· 2πd/2

Γ(d/2)

·
∫

t>M−(
√
dθ̄+δ2)

(2t)d exp
(
− t2

2δ2

)
exp

(δ2 + 2
√
dθ̄

2

)
dt

=
4δ · 2d/2 exp(−M)(

√
dθ̄)d

Γ(1 + d
2
)

· πd/2

Γ(d/2)
exp

(δ2 + 2
√
dθ̄

2

) ∫
u>M

2δ

ud exp
(
− u2

2

)
du

≤ 4δ · 2d/2 exp(−M)(
√
dθ̄)d

Γ(1 + d
2
)

· πd/2

Γ(d/2)
exp

(δ2 + 2
√
dθ̄

2

)
2(d−1)/2Γ

(
d+ 1

2

)
≤ 2
√

2δ · (4πdθ̄2)d/2

Γ(1 + d
2
)

exp(−M/2)
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Then, using Stirling’s approximation along with the accurate bound from Robbins

[citation], we can simplify the result to:

s2 ≤
2
√

2√
π

(8πe)d/2√
d
· δθ̄d exp(−M/2).

Let cd = 2
√

2√
π

(8πe)d/2√
d

, we can get:

s2 ≤ cd δ θ̄
d exp(−M

2
). (3.57)

By means of (3.56) and (3.58), an upper bound for W1(G,G′) is

W1(G,G′) ≤
√

2δd+ adM
1+d/2h(pG, pG′) ·max

{
1 , δ−βd

}
+ cd δ θ̄

d exp(−M
2

)

where:

ad =
πd/4√

(d
2

+ 1)Γ(d/2)
·

2d+1√c1

cf
·max{1, (α exp(−β/2)ββ/2)d}, cd =

2
√

2√
π

(8πe)d/2√
d

Assume that δ ∈ (0, δ̄] for some δ > 1 that will be chosen later. Then, it is clear that

max

{
1, δ−βd

}
≤ (δ̄/δ)βd for all δ ∈ (0, δ̄]. Hence, as δ ∈ (0, δ̄], we further achieve the

upper bound of W1(G,G′) as

W1(G,G′) ≤
√

2δd+ δ̄βdadM
1+d/2h(pG, pG′)δ

−βd + cdδ̄θ̄
d exp(−M

2
)

≤ C1

(
δ +M1+d/2h(pG, pG′)δ

−βd + exp(−M
2

)

)
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where C1 = max
{√

2d, δ̄βdad, cdδ̄θ̄
d
}
. By taking the derivative with respect to δ,

we can choose δ =

(
βdM1+d/2h(pG, pG′)

)1/(βd+1)

. Regarding M , we choose M =

2

βd+ 1
log

(
C

h(pG, pG′)

)
where C is chosen to satisfy the following two properties:

• log(C) ≥ (βd+ 1)(
√
dθ + δ2).

• The function
(

log(C/ε)

)1+d/2

ε is increasing as ε ∈ (0, 1].

The second requirement holds as long as C ≥ exp(1 + d/2). Overall, we can choose

C = exp

(
(βd+ 1)(

√
dθ̄ + δ

2
)

)
. Now, we need to choose δ̄ such that(

βdM1+d/2h(pG, pG′)

)1/(βd+1)

≤ δ̄ for all values of h(pG, pG′). Due to the choice of C̄,

the previous inequality is guaranteed as long as it holds for h(pG, pG′) = 1, i.e.,

βd

(
2

βd+ 1

)1+d/2

(βd+ 1)1+d/2(
√
dθ̄ + δ̄2)1+d/2 ≤ δ̄βd+1,

which is equivalent to βd21+d/2(
√
dθ̄ + δ̄2)1+d/2 ≤ δ̄βd+1. By choosing δ̄2 ≥

√
dθ̄, the

previous bounds holds as long as βd22+dδ̄2+d ≤ δ̄βd+1. As long as (β − 1)d > 1, this

inequality leads to δ̄(β−1)d−1 ≥ β22+dd. As a consequence, if we choose δ̄(β−1)d−1 =

β22+dd+ (
√
dθ̄)

(β−1)d−1
2 , then all the previous conditions hold.

Combining all of the previous results, we eventually have

W1(G,G′) ≤ max
{√

2d, δ̄βdad, cdδ̄θ̄
d
}{( 1

C

)1/(βd+1)

+

(
2

βd+ 1

)(1+d/2)/(βd+1)

×
(

(βd)1/(βd+1) + (βd)−βd/(βd+1)

)}{
log

(
C

h(pG, pG′)

)}1+d/2

h(pG, pG′)

≤ 3 max
{√

2d, δ̄βdad, cdδ̄θ̄
d
}{

log

(
C

h(pG, pG′)

)} 1+d/2
1+βd

h(pG, pG′)
1

1+βd
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where the final inequality is due to the fact that βd > 1, which implies that

{(
1

C

)1/(βd+1)

+

(
2

βd+ 1

)(1+d/2)/(βd+1)(
(βd)1/(βd+1) + (βd)−βd/(βd+1)

)}
≤ 3.

As a consequence, we achieve the conclusion of part (a) of the theorem.

(b) Unlike the upper bound of s2 in part (a), the high level proof idea of this case is

to achieve the upper bound of s2 without any dependence on δ on the lower bound of

M under the setting that β ≤ 1 + 1/d. In particular, we obtain that

s2 ≤ exp(−M)

∫
‖x‖>M

‖x‖ exp(‖x‖)φδ(x− θ)dx

≤ exp(−M)

∫
‖x+ θ‖ exp(‖x+ θ‖)φδ(x)dx

≤ exp(−M)

∫
(‖x‖+ ‖θ‖) exp(‖x‖+ ‖θ‖)φδ(x)dx

≤ exp(−M)

∫
(‖x‖+ dθ) exp(‖x‖+ dθ)φδ(x)dx. (3.58)

It is clear that

∫
exp(‖x‖)φδ(x)dx ≤

∫
exp(

d∑
i=1

|xi|)φδ(x)dx

=
d∏
i=1

∫
1√
2πδ

exp

(
− |xi|

2

2δ2
+ |xi|

)
dxi

=
d∏
i=1

∫
exp(δ2/2)

1√
2πδ

exp

(
− (|xi| − δ2)2

2δ2

)
dxi

≤ 2d exp(dδ2/2). (3.59)
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Additionally, we also have that

∫
‖x‖ exp(‖x‖)φδ(x)dx

≤
∫

(
d∑
i=1

|xi|) exp(
d∑
i=1

|xi|)φδ(x)dx =
d∑
i=1

∫
|xi| exp(

d∑
i=1

|xi|)φδ(x)dx

=
d∑
i=1

{∫
1√
2πδ
|xi| exp

(
− |xi|

2

2δ2
+ |xi|

)
dxi
∏
j 6=i

∫
1√
2πδ

exp

(
− |xj|

2

2δ2
+ |xj|

)
dxj

}

≤ 2d−1 exp((d− 1)δ2/2)
d∑
i=1

∫
1√
2πδ
|xi| exp

(
− |xi|

2

2δ2
+ |xi|

)
dxi

where the final inequality is due to inequality in (3.59). For any 1 ≤ i ≤ d, we can

demonstrate that

∫
1√
2πδ
|xi| exp

(
− |xi|

2

2δ2
+ |xi|

)
dxi

= 2

∫
xi>0

1√
2πδ

xi exp

(
− x2

i

2δ2
+ xi

)
dxi

= 2

∫
xi>0

1√
2πδ

exp(δ2/2)xi exp

(
− (xi − δ2)2

2δ2

)
dxi

≤ 2

{ ∫
xi>δ2

1√
2πδ

exp(δ2/2)(xi − δ2) exp

(
− (xi − δ2)2

2δ2

)
dxi

+ δ2 exp(δ2/2)

∫
xi>0

1√
2πδ

exp

(
− (xi − δ2)2

2δ2

)}

≤ 2

(
1√
2πδ

exp(δ2/2)δ2 + δ2 exp(δ2/2)

)
≤ 2(δ + δ2) exp(δ2/2). (3.60)
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By combining (3.58), (3.59), and (3.60), we eventually obtain that

∫
‖x‖>M

‖x‖ exp(‖x‖)φδ(x− θ)dx ≤ 2dd exp

(
dδ2

2
+ dθ

)
(θ + δ + δ2).

The above result leads to the following upper bound of s2

s2 ≤ 2d+1d exp

(
dδ2

2
+ dθ

)
(θ + δ + δ2) exp(−M)

≤ 2d+1d exp

(
dδ

2

2
+ dθ

)
(θ + δ + δ

2
) exp(−M) (3.61)

for any δ ∈ (0, δ] where the choice of δ will be chosen later. Combining the result of

(3.61) with (3.56), we achieve an upper bound for W1(G,G′) as follows

W1(G,G′) ≤
√

2δd+ δ̄βdadM
1+d/2h(pG, pG′)δ

−βd

+2d+1d exp

(
dδ

2

2
+ dθ

)
(θ + δ + δ

2
) exp(−M)

≤ C2

(
δ +M1+d/2h(pG, pG′)δ

−βd + exp(−M)

)
(3.62)

for any δ ∈ (0, δ̄] and M > 0 where

C2 = max

{√
2d, δ̄βdad, 2

d+1d exp

(
dδ

2

2
+ dθ

)
(θ + δ + δ

2
)

}
. By using the same ar-

gument as that of part (a), we can choose δ =

(
βdM1+d/2h(pG, pG′)

)1/(βd+1)

and

M =
1

βd+ 1
log

(
C̃

h(pG, pG′)

)
where C̃ = exp(1 + d) is chosen to guarantee that{

log(C̃/ε)

}1+d/2

ε is a strictly increasing function of ε ∈ (0, 1]. To guarantee that the
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above choice of δ ∈ (0, δ̄], it is sufficient to choose δ̄ such that

(
βdM1+d/2h(pG, pG′)

)1/(βd+1)

≤ δ̄

for all values of h(pG, pG′). Due to the choice of C̃, we only need to consider h(pG, pG′) = 1,

i.e., we need to choose δ̄ such that δ̄βd+1 ≥ βd(1 + d)1+d/2. Therefore, by choosing

δ̄βd+1 = βd(1+d)1+d/2, the previous conditions hold. These choices of δ̄ and C̃ eventually

lead to

W1(G,G′) ≤ C2

{
log

(
C̃

h(pG, pG′)

)} 1+d/2
1+βd

h(pG, pG′)
1

1+βd .

We achieve the conclusion of part (b) of the theorem.

3.7.2 Proof of Theorem 3.3.3

The proof of this result is similar to the proof of Theorem 3.3.4.

We break the proof into several steps.

Step 1: First we compute the contraction rate relative to the Hellinger metric.

We apply Theorem 7.1 in Ghosal et al. (2000), with ε = Lεn and

D(ε) = exp

c2

(
θ̃n

λminε2

)d

log

(
e+

16
√

2eθ̃n
λminε2

), where L ≥ 2 a large constant to be

chosen later and c2 is the constant in Eq. (3.71). Lemma 3.7.3 shows that this choice of
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D(ε) is valid. Then there exists a test function φn that satisfies

P n
G0
φn ≤ exp

c2

(
θ̃n

λminε2n

)d

log

(
e+

16
√

2eθ̃n
λminε2n

)
× exp(−KnL2ε2n)

1

1− exp(−KnL2ε2n)
,

sup
G∈G(Θn):h(pG,pG0

)≥Lεn
P n
G(1− φn) ≤ exp(−KnL2ε2n) (3.63)

Now,

EPG0
Πn(G ∈ G(Θn) : h(pG, pG0) ≥ Lεn|X1, . . . , Xn)φn

≤ P n
G0
φn ≤ 2 exp

c2

(
θ̃n

λminε2n

)d

log

(
e+

16
√

2eθ̃n
λminε2n

)
−KnL2ε2n


= o(1). (3.64)

The last line follows from the condition
θ̄dn
ε2d+2
n

log

(
exp(θ̄n)

ε2n

)
= o(n) and therefore,

θ̄dn
ε2d+2
n

log

(
θ̄n
ε2n

)
= o(n). Based on computation with the posterior,

Πn(G : h(pG, pG0 ≥ εn)|X1, . . . , Xn)(1− φn)

=

∫
G∈G(Θn):h(pG,pG0

)≥εn

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)(1− φn)∫

G∈G(Θn)

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)

≤

∫
G∈G(Θn):h(pG,pG0

)≥εn

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)(1− φn)∫

G∈G(Θn):K(pG0
,pG).ε2n log (Mn/εn),K2(pG0

,pG).ε2n(log(Mn/εn))2

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)

,

where Mn = exp
(

7
4
dλ−1

min(θ̄0 + θ̄n)
)
V (θ̄0), where V (·) is the function in Lemma 3.7.4

part(i), and λmin being the minimum eigenvalue of Σ.
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Step 1.1: In this step we show that∫
G∈G(Θn):K(pG0

,pG).ε2n log (Mn/εn),K2(pG0
,pG).ε2n(log(Mn/εn))2

n∏
i=1

pG(Xi)

pG0(Xi)
dΠn(G)

& exp(−(1 + C)n
√
λminε

2
n log (Mn/εn))

× Γ(γ)(c0γπ
d/2)Dn

(2Γ(d/2 + 1))Dn(2Dn)Dn−1

(√
λminε

2
n

2θ̄n

)(Dn−1)+dDn

(3.65)

with pnG0
probability→ 1,

for all C > 0 and εn > 0 is sufficiently small, where Dn = D(
√
λminε

2
n,Θn, ‖.‖) ≈

(
θ̄n
ε2n

)d
stands for the maximal

√
λminεn-packing number for Θn under ‖.‖ norm, and Γ(·) is

the gamma function. First we show that

{G ∈ G(Θn) : W1(G,G0) .
√
λminε

2
n}

⊂ {G ∈ G(Θn) : K(pG0 , pG) . ε2n, K2(pG0 , pG) . ε2n(log(Mn/εn))2}, (3.66)

for εn sufficiently small.

Since
∫

(pG0(x))2

pG(x)
µ(dx) ≤Mn by Lemma 3.7.4 part(ii), it follows by an application

of Theorem 5 in Wong and Shen (1995) that for εn < 1/2(1− e−1)2,

h(pG, pG0) . ε2n =⇒ K2(pG0 , pG) . ε2n(log(Mn/εn))2, K(pG0 , pG) . ε2n(log(Mn/εn))

Following Lemma 3.7.5, h2(pG, pG0) ≤ W1(G,G0)

2
√

2λmin
for Laplace location mixtures.

Combining the above displays, Eq. (3.66) follows.

The following lemma is analogous to Lemma 7.1 in Kleijn and van der Vaart (2006)

and Lemma 8.1 in Ghosal et al. (2000) and can be similarly proved.
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Lemma 3.7.1. For every M, ε > 0, C > 0, any measure Π on the set

{G ∈ G(Θn) : K(pG0 , pG) . ε2n(log(M/εn)), K2(pG0 , pG) . ε2n(log(M/εn))2}, we obtain

that

P n
G0

(∫ n∏
i=1

pG(Xi)

pG∗(Xi)
dΠ(G) ≤ exp(−(1 + C)n(ε2 log (M/ε))

)
≤ 1

C2nε2
. (3.67)

The result in Eq.(3.65) now follows by application of Lemmas 3.7.1 and 3.7.2 in

combination with Eq. (3.66) and (3.67) using the fact that nε2n →∞.

Step 1.2: Let the event in (3.65) be denoted as Tn. Then

EPG0
[Πn(G : h(pG, pG0) ≥ Lεn)|X1, . . . , Xn)(1− φn)] ≤ PG0(TCn )

+ PG0(Tn)
exp((1 + C)n

√
λminε

2
n log (Mn/εn))

Γ(γ)(c0γπd/2)Dn

(2Γ(d/2+1))Dn (2Dn)Dn−1

(√
λminεn
2θ̄n

)2(Dn−1)+dDn

× sup
G∈G(Θn):h(pG,pG0

)≥Lεn
P n
G(1− φn)

.
exp((1 + C)n

√
λminε

2
n log (Mn/εn))

Γ(γ)(c0γπd/2)Dn

(2Γ(d/2+1))Dn (Dn)Dn−1

(√
λminεn
2θ̄n

)(Dn−1)+dDn
exp(−KnL2ε2n) + o(1). (3.68)

The final step above follows from simple computation similar to that of the Proof of

Theorem 2.1 in Ghosal et al. (2000) and using the fact that
θ̄dn
ε2d+2
n

log

(
θ̄n
ε2n

)
= o(n)

because
θ̄dn
ε2d+2
n

log

(
exp(θ̄n)

ε2n

)
= o(n) as per the condition of the Theorem. Combining

Eq. (3.64) and (3.68) and using the condition
θ̄dn
ε2d+2
n

log

(
exp(θ̄n)

ε2n

)
= o(n) it follows

that for L large enough

Πn(G ∈ G(Θn) : h(pG, pG0) ≥ Lεn|X1, . . . , Xn)
PG0→ 0. (3.69)
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Now using Theorem 3.3.1 for Laplace location mixtures with β = 2, the result follows

by noting that as θ̄n ↑ ∞ and εn ↓ 0,
1

log(1/Lεn)
≤ θ̄n for n sufficiently large.

3.7.3 Prior mass on Wasserstein ball

Lemma 3.7.2. Let G ∼ DP (γ,Hn), where Hn admits condition (P.1) . Fix r ≥ 1.

Then the following holds, for any G0 ∈ P(Θn)

Π (W r
r (G,G0) ≤ (2r + 1)εr) ≥ Γ(γ)(c0γπ

d/2)Dn

(2Γ(d/2 + 1))Dn(2Dn)Dn−1

(
ε

2θ̄n

)r(Dn−1)+dDn

for all ε sufficiently small so that D(ε,Θn, ‖.‖) > γ. Here, Dn = D(ε,Θn, ‖.‖) stands for

the maximal ε-packing number for Θn under ‖.‖ norm, and Γ(·) is the gamma function.

Proof. From Lemma 5 in Nguyen (2013),

Π (W r
r (G,G0) ≤ (2r + 1)εr) ≥ Γ(γ)γDn

(2Dn)Dn−1

(
ε

Diam(Θn)

)r(Dn−1)

sup
S

Dn∏
i=1

Hn(Si),

where, S := (S1, ..., SDn) denotes the Dn disjoint ε/2-balls that form a maximal ε-packing

of Θn. The supremum is taken over all such packings. Now, Hn(A) ≥
(

c0

µ(Θn)

)
µ(A).

Moreover,
∏Dn

i=1 µ(Si) ≥
(

(
√
πε)d

2Γ(d/2 + 1)

)Dn
. Using this, we arrive at the result.

3.7.4 Metric Entropy with Hellinger distance

Lemma 3.7.3. Let G0 be a discrete mixing measure with all its atoms in Θ = [−θ̃, θ̃]d ⊂

Rd. Let PG(Θ) := {pG : G ∈ G(Θ)}. Then,
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(i) if the kernel f is multivariate Gaussian with covariance matrix Σ,

logD(ε/2, {pG ∈PG(Θ) : ε < h(pG, pG0) ≤ 2ε}, h)

≤ c1

(
θ̃√
λminε

)d

log

(
e+

32eθ̃2

λminε2

)
(3.70)

for some universal constant c1.

(ii) if the kernel f is multivariate Laplace with covariance matrix Σ,

logD(ε/2, {pG ∈PG(Θ) : ε < h(pG, pG0) ≤ 2ε}, h)

≤ c2

(
θ̃

λminε2

)d

log

(
e+

16
√

2eθ̃

λminε2

)
(3.71)

for some universal constant c2.

Proof. Let N(ε,P, d) denotes the ε-covering number of the space P relative to the

metric d. It is related to the packing number by the following identity:

N(ε,P, h) ≤ D(ε,P, d) ≤ N(ε/2,P, h). (3.72)

The proof is similar to the proof of Lemma ?? and is therefore omitted.

(i) Using the result in Example 1 of Nguyen (2013), when fΣ(·|θ) ∼ Nd(θ,Σ),

h2(fΣ(·|θi), fΣ(·|θ′j)) = 1− exp

(
−1

8
‖θi − θ′j‖2

Σ−1

)
≤
‖θi − θ′j‖2

8λmin
, (3.73)

where ‖z‖Σ−1 :=
√
z′Σ−1z.

Let G0 =
∑k0

i=1 p
0
i δθ0

i
and G =

∑k′

j=1 p
′
jδθ′j be mixing measures in G(Θ), with
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k0, k
′ ∈ [1,∞]. Let q = (qij)1≤i≤k0,1 ≤j≤k′ ∈ [0, 1]k0×k′ denote a coupling of p0 and

p′.

Using Lemma 1 of Nguyen (2013) with φ(x) =
1

2
(
√
x− 1)2, gives us:

h2(pG, pG0) ≤ inf
q∈Q(p0,p′)

∑
i,j

qij
‖θi − θ′j‖2

8λmin
=
W2(G,G0)2

8λmin
, (3.74)

where Q(p0,p
′) is the set of all couplings of p0 and p′. Therefore, it immediately

follows that:

logD(ε/2, {pG ∈PG(Θ) : ε < h(pG, pG0) ≤ 2ε}, h)

≤ logD(
√

2λminε, {G : G ∈ G(Θ)0},W2)

≤ N

(√
λmin

8
ε,Θ, ‖ · ‖

)
log

(
e+

32eθ̃2

λminε2

)
.

The last inequality follows by applying Eq. (3.72) followed by Lemma 4 part (b)

of Nguyen (2013). The result then follows immediately.

(ii) Consider the multivariate Laplace kernel of dimension d. Let Y ∼ fΣ(·|θ), where

fΣ(·|θ) is the multivariate Laplace density with location parameter θ and covariance

matrix Σ as in Eq. (3.79). Then Eltoft et al. (2006) shows that :

Y = θ +
√
ZX, (3.75)

for some random variables X ∼ N (0,Σ), Z ∼ Exp(1).

Following Lemma 1 in Nguyen (2013),

h2(fΣ(·|θi), fΣ(·|θ′j)) ≤ EZh2(g(θi, ZΣ), g(θ′j, ZΣ)), where g(θ,Σ) ∼ N (θ,Σ).
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Using the result in Eq. (3.73), we can show,

h2(fΣ(·|θi), fΣ(·|θ′j)) ≤ 1−

∞∫
0

exp

(
− 1

8Z
‖θi − θ′j‖2

Σ−1

)
exp(−Z)dZ

≤ 1−

∞∫
b

exp

(
− 1

8Z
‖θi − θ′j‖2

Σ−1

)
exp(−Z)dZ

≤ 1− exp

(
− 1

8b
‖θi − θ′j‖2

Σ−1

)
exp(−b).

The above equation holds for any b > 0. Minimizing w.r.t. b we obtain,

h2(fΣ(·|θi), fΣ(·|θ′j)) ≤ 1− exp

(
− 1√

2
‖θi − θ′j‖Σ−1

)
≤
‖θi − θ′j‖√

2λmin
.

It, therefore, immediately follows similar to Eq. (3.74) that

h2(pG, pG0) ≤ W1(G,G0)√
2λmin

. (3.76)

The result then follows similar to the steps in part (i).

3.7.5 Computation of M corresponding to KL ball

Lemma 3.7.4. Let G be a discrete mixing measure with all its atoms in
[
−θ̃, θ̃

]d
for

some θ̃ > 0. Furthermore, assume the atoms of G0 lie in
[
−θ̄, θ̄

]d where θ̄ > 0 is given.

Then, the following holds:
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(i) if the kernel f is multivariate Laplace,∫
(pG0(x))2

pG(x)
µ(dx) ≤ exp

(
7

4
dλ−1

min(θ̄ + θ̃)

)
V (θ̄), (3.77)

for some continuous function V (·) independent of θ̃.

(ii) if the kernel f is multivariate Gaussian,∫
(pG0(x))2

pG(x)
µ(dx) ≤ exp(dλ−1

min(5θ̄2 + 4θ̃2)). (3.78)

Here µ is the Lebesgue measure on Rd.

Proof. (i) Following Eltoft et al. (2006), we consider the multivariate Laplace kernel of

dimension d > 1, with mean parameter θ and variance Σ, given by:

fΣ(x|θ) :=
1

(2π)d/2|Σ|1/2
K(d/2)−1(

√
(x− θ)′Σ−1(x− θ))[√

(x− θ)′Σ−1(x− θ)
](d/2)−1

. (3.79)

Here, | · | denotes the determinant of a matrix. Moreover, Kn(x) denotes the modified

Bessel function of the second kind with parameter n, evaluated at x.

For d = 1, the Laplace kernel of mean parameter θ and standard deviation parameter

σ is given by:

fσ(x|θ) :=
1

2σ
exp

(
−|x− θ|

σ

)
(3.80)

We provide the solution for d > 1. The case d = 1 is trivial and will not be shown

here. The function Kn(z) does not possess a closed form but for n > (−1/2) an integral
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form can be obtained as follows:

Kn(z) =

√
π

(n− 1/2)!

(z
2

)n ∞∫
1

exp(−zt)(t2 − 1)n−1/2dt. (3.81)

Let G0 =
∑k0

i=1 p
0
i δθ0

i
and G =

∑k′

j=1 p
′
jδθ′j . Let q = (qij)1≤i≤k0,1 ≤j≤k′ ∈ [0, 1]k0×k′

denote a coupling of p0 and p′.

Using lemma 2 of Nguyen (2013) with φ(x) =
1

x
, gives us:∫

(pG0(x))2

pG(x)
µ(dx) ≤ inf

q∈Q(p0,p′)

∑
i,j

qij

∫
(fΣ(x|θ0

i ))
2

fΣ(x|θ′j)
µ(dx), (3.82)

where Q(p0,p
′) is the set of all couplings of p0 and p′.

Denote
√

(x− θ)′Σ−1(x− θ) as ‖x− θ‖Σ−1 . By explicit computation,

fΣ(x|θ0
i )

fΣ(x|θ′j)
=

[
K(d/2)−1 (‖x− θ0

i ‖Σ−1)

K(d/2)−1

(
‖x− θ′j‖Σ−1

)] [‖x− θ′j‖Σ−1

‖x− θ0
i ‖Σ−1

](d/2)−1

=

∫ ∞
1

exp(−t‖x− θ0
i ‖Σ−1)(t2 − 1)(d/2)−(3/2)dt∫ ∞

1
exp(−t‖x− θ′j‖Σ−1)(t2 − 1)(d/2)−(3/2)dt

≤

∫ ∞
1

exp(−t‖x− θ0
i ‖Σ−1)(t2 − 1)(d/2)−(3/2)dt∫

7/4

3/2
exp(−t‖θ0

i − θ′j‖Σ−1) exp(−t‖x− θ0
i ‖Σ−1)(t2 − 1)(d/2)−(3/2)dt

≤ exp(
7

4
‖θ0

i − θ′j‖Σ−1)


∫ ∞

1
exp(−t‖x− θ0

i ‖Σ−1)(t2 − 1)(d/2)−(3/2)dt∫
7/4

3/2
exp(−7

4
‖x− θ0

i ‖Σ−1)(t2 − 1)(d/2)−(3/2)dt


︸ ︷︷ ︸

:=TΣ(x|θ0
i )

The second equality in the above equation follows from Eq. (3.81) for n = d/2− 1, while

the second inequality follows by the triangle inequality for the norm ‖ · ‖Σ−1 and the fact
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that
∫ ∞

1
exp(−t‖x− θ′j‖Σ−1)(t2 − 1)n−1/2dt ≥

∫
7/4

3/2
exp(−t‖x− θ′j‖Σ−1)(t2 − 1)n−1/2dt.

Eltoft et al. (2006) shows that the Bessel function satisfies

Kd(x) ∼
√

π

2x
exp(−x) (3.83)

as |x| → ∞. Using this fact, and the fact that θ0
i ∈ [−θ̄, θ̄]d it is easy to show that

∫
fΣ(x|θ0

i )TΣ(x|θ0
i )µ(dx) < V (θ̄) <∞

for some function V depending only on θ̄.

It therefore follows from Eq. (3.82) that∫
(pG0(x))2

pG(x)
µ(dx) ≤ inf

q∈Q(p0,p′)

∑
i,j

qij exp

(
7

4
‖θ0

i − θ′j‖Σ−1

)
V (θ̄)

< exp

(
7

4
dλ−1

min(θ̄ + θ̃)

)
V (θ̄).

The result for d = 1 follows similarly.

(ii) For the multivariate Gaussian kernel with covariance matrix Σ, similar to the

multivariate Laplace case, we get:∫
(pG0(x))2

pG(x)
µ(dx) ≤ inf

q∈Q(p0,p′)

∑
i,j

qij

∫
(fΣ(x|θ0

i ))
2

fΣ(x|θ′j)
µ(dx), (3.84)

where Q(p0,p
′) is the set of all couplings of p0 and p′, and fΣ(·|θ) is the multivariate

Gaussian kernel with covariance parameter Σ and mean parameter θ.
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∫
(fΣ(x|θ0

i ))
2

fΣ(x|θ′j)
µ(dx) =

∫
fΣ(x|θ0

i ) exp

(−‖x− θ0
i ‖2

Σ−1 + ‖x− θ′j‖2
Σ−1

2

)
µ(dx) (3.85)

=

∫
fΣ(x|θ0

i ) exp

(−‖θ′j − θ0
i ‖2

Σ−1

2
+ 〈x− θ′j,Σ−1θ′j − θ0

i 〉
)
µ(dx),

where the second equality follows by simple calculation using x−θ0
i = (x−θ′j)+(θ′j−θ0

i ).

If MΣ(t|θ) is the moment generating function of the Gaussian distribution with mean

θ and covariance Σ, then

MΣ(t|θ) = exp(〈θ, t〉+
1

2
〈t,Σt〉).

Using this result , we can rewrite Eq. (3.86) as∫
(fΣ(x|θ0

i ))
2

fΣ(x|θ′j)
µ(dx) = exp(〈θ′j − θ0

i ,Σ
−1θ0

i + θ′j〉) ≤ exp(2dλ−1
min(θ̃ + θ̄)2 + dλ−1

minθ̄
2),

The bound on
∫

(pG0(x))2/pG(x)µ(dx) then follows immediately.

3.7.6 Equivalence of Hellinger and Wasserstein metrics for Laplace location

mixtures

Lemma 3.7.5. Let G,G′ be discrete mixing measures. Also assume that f is the

multivariate Laplace kernel as given in Eq. (3.5). Then the following holds:

h2(pG, pG′) ≤
1

2
√

2λmin
W1G,G

′), (3.86)

where λmin is the minimum eigenvalue of Σ.
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Proof. Suppose fi, f ′i are Gaussian kernels with location parameter θi, θ′i respectively,

and Covariance matrix Σ. Then, as in proof of Lemma 3.7.3,

h2(fi, f
′
i) = 1− exp

(
− 1

8λmin
‖θi − θ′i‖2

)
.

Moreover, from Eltoft et al. (2006) we know that if a random variable Y has a Laplace

distribution with location parameter θ and covariance matrix Σ, then Y is distributionally

equivalent to:

Y
d
= θ +

√
ZX, (3.87)

where X is a Gaussian random variable with mean 0 and covariance Σ and Z ∼ Exp(1)

and is independent of X.

Using this formulation, if g(·|θ,Σ) is the Laplace kernel then,

g(x|θ,Σ) =

∫
R

exp(−z)f(x|θ, zΣ)dz. (3.88)
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Using the techniques similar to proof of 3.7.3 combined with Eq. (3.86), we obtain

h2(g(·|θi,Σ), g(·|θ′i,Σ)) ≤ 1−
∫
R

exp(−z) exp

(
− 1

8zλmin
‖θi − θ′i‖2

)
dz

≤ 1−

‖θi − θ′i‖
2
√

2λmin∫
0

exp(−z)dz

− exp

(
−‖θi − θ

′
i‖

2
√

2λmin

) ∞∫
‖θi − θ′i‖
2
√

2λmin

exp(−z)dz

≤ exp

(
−‖θi − θ

′
i‖

2
√

2λmin

)(
1− exp

(
−‖θi − θ

′
i‖

2
√

2λmin

))
≤ ‖θi − θ′i‖

2
√

2λmin
. (3.89)

The conclusion of the lemma follows similar to Lemma 3.7.3.
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CHAPTER IV

Dirichlet Simplex Nest and Geometric Inference

We propose Dirichlet Simplex Nest, a class of probabilistic models suitable for a

variety of data types, and develop fast and provably accurate inference algorithms by

accounting for the model’s convex geometry and low dimensional simplicial structure. By

exploiting the connection to Voronoi tessellation and properties of Dirichlet distribution,

the proposed inference algorithm is shown to achieve consistency and strong error bound

guarantees on a range of model settings and data distributions. The effectiveness of our

model and the learning algorithm is demonstrated by simulations and by analyses of

text and financial data.1 2.

4.1 Introduction

For many complex probabilistic models, especially those with latent variables, the

probability distribution of interest can be represented as an element of a convex polytope

in a suitable ambient space, for which model fitting may be cast as the problem of

finding the extreme points of the polytope. For instance, a mixture density can be
1Code: https://github.com/moonfolk/VLAD
2This work has been published in Yurochkin* et al. (2019)
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identified as a point in a convex set of distributions whose extreme points are the mixture

components. In the well-known topic model (Blei et al. (2003)) for text analysis, a

document corresponds to a point drawn from the topic polytope, its extreme points

are the topics to be inferred. This convex geometric viewpoint provides the basis

for posterior contraction behavior analysis of topic models, as well as developing fast

geometric inference algorithms (Nguyen (2015); Tang et al. (2014); Yurochkin and

Nguyen (2016); Yurochkin et al. (2017)).

The basic topic model – the Latent Dirichlet Allocation (LDA) of Blei et al. (2003),

as well as the comparable finite admixtures developed in population genetics (Pritchard

et al. (2000)) were originally designed for categorical data. However, there are many real

world applications in which the convex geometric probabilistic modeling continues to be

a sensible approach, even if observed measurements are no longer discrete-valued, but

endowed with a variety of distributions. To expand the scope of admixture modeling

for a variety of data types, we propose to study Dirichlet Simplex Nest (DSN), a class

of probabilistic models that generalizes the LDA, and to develop fast and provably

accurate inference algorithms by accounting for the model’s convex geometry and its

low dimensional simplicial structure.

The generative process given by a DSN is simple to describe: starting from a simplex

B of K vertices embedded in a high-dimensional ambient space S, one draws random

points from the B’s relative interior according to a Dirichlet distribution. Given each

such point, a data point is generated according to a suitable probability kernel F . For

the general simplex nest, S can be any vector space of dimensions D ≥ K − 1, while the

probability kernel F can be taken to be Gaussian, Multinomial, Poisson, etc, depending

on the nature of the observed data (continuous, categorical or counts, resp.). If S is

standard probability simplex, and F a Multinomial distribution over categories, then
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the model is reduced to the familiar LDA model of Blei et al. (2003).

Although several geometric aspects of the DSN can be found in a vast array of

well-known models in the literature, they were rarely treated together. First, viewing

data as noisy observations from the low-dimensional affine hull that contains B, our

model shares an assumption that can be found in both classical factor analysis and

non-negative matrix factorization (NMF) models (Lee and Seung (2001)), as well as the

work of Anandkumar et al. (2012); Arora et al. (2012b) arising in topic models. Second,

the convex constraints (i.e., linear weights of a convex combination are non-negative and

sum to one) are present in all latent variable probabilistic modeling, even though most

dominant computational approaches to inference such as MCMC sampling (Griffiths

and Steyvers (2004)) and variational inference (Blei et al. (2003); Hoffman et al. (2013);

Kucukelbir et al. (2017)) do not appear to take advantage of the underlying convex

geometry.

As is the case with topic models, scalable parameter estimation is a key challenge for

the Dirichlet Simplex Nest. Thus, our main contribution is a novel inference algorithm

that accounts for the convex geometry and low dimensionality of the latent simplex

structure endowed with a Dirichlet distribution. Starting with an original geometric

technique of Yurochkin and Nguyen (2016), we present several new ideas allowing for more

effective learning of asymmetric simplicial structures and the Dirichlet’s concentration

parameter for the general DSN model, thereby expanding its applicability to a broad

range of data distributions. We also establish statistical consistency and estimation

error bounds for the proposed algorithm.

The chapter proceeds as follows. Section 4.2 describes Dirichlet Simplex Nest models

and reviews existing geometric inference techniques. Section 4.3 elucidates the convex

geometry of the DSN via its connection to the Voronoi Tessellation of simplices and the
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Figure 4.1: GDM; time ≈ 1s
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Figure 4.2: Xray; time < 1s
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Figure 4.3: HMC; time ≈ 10m
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Figure 4.4: VLAD; time < 1s

Figure 4.5: Toy simplex learning: n = 5000, D = 3,K = 3, α = 2.5, σ = 0.1.

structure of Dirichlet distribution on low-dimensional simplices. This helps motivate

the proposed Voronoi Latent Admixture (VLAD) algorithm. Theoretical analysis of

VLAD is given in Section 4.4. Section 4.5 presents an exhaustive comparative study on

simulated and real data. We conclude with a discussion in Section 4.6.
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4.2 Dirichlet Simplex Nest

We proceed to formally describe Dirichlet Simplex Nest as a generative model.

Let β1, . . . , βK ∈ S be K elements in a D-dimensional vector space S, and define

B = Conv(β1, . . . , βK) as their convex hull. When K ≤ D+1, B is a simplex in general

positions. Next, for each i = 1, . . . , n, generate a random vector µi ∈ B by taking

µi :=
∑K

k=1 θikβk, where the corresponding coefficient vector θi = (θi1, . . . , θiK) ∈ ∆K−1

is generated by letting θi ∼ DirK(α) for some concentration parameter α ∈ RK
+ . Now,

given µi the data point xi is generated by xi|µi ∼ F (· | µi), where F is a given probability

kernel such that E[xi | θi] = µi for any i = 1, . . . , n.

Relation to existing models The DSN encompasses several existing models in the

literature. If we set S := ∆D−1 and likelihood kernel F (·) to Multinomial, then we

recover the LDA model (Blei et al. (2003)). Other specific instances include Gaussian-

Exponential (Schmidt et al. (2009)) and Poisson-Gamma models (Cemgil (2009)).

Estimating B is a challenging task for the general Dirichlet Simplex Nest model.

Taking the perspective of Bayesian inference, a standard MCMC implementation for

the DSN is likely computationally inefficient. In the case of LDA, as noted in Yurochkin

and Nguyen (2016), the inefficiency of posterior inference can be traced to the need

for approximating the posterior distributions of the large number of latent variables

representing the topic labels. With the DSN model, we bypass the representation of such

latent variables by integrating them out, but doing so at the cost of losing conjugacy.

An alternative technique is variational inference (Blei et al. (2017); Paisley et al. (2014)).

While very fast, this powerful method may be inaccurate in practice and does not carry

a strong theoretical guarantee.
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Relation to NMF and archetypal analysis The DSN provides a probabilistic

justification for these methods, which often impose an additional geometric condition

on the model known as separability that identifies the model parameters in a way that

permits efficient estimation (Donoho and Stodden (2003); Arora et al. (2012a); Gillis

and Vavasis (2014)). Separability is somewhat related to a control on the Dirichlet’s

concentration parameter α, by setting α be sufficiently small. The DSN allows for

a probabilistic description of the nature of the separation. Moreover, by addressing

also the case where α is large, the DSN modeling provides an arguably more effective

approach to archetypal analysis and non-negative matrix factorization for non-separable

data. We remark that an approach proposed by Huang et al. (2016) also permits a

more general geometric identification condition called sufficiently scattered, but this

generality comes at the expense of efficient estimation.

Geometric inference Geometric Dirichlet Means (GDM) algorithm of Yurochkin and

Nguyen (2016) is a geometric technique for estimating the (topic) simplex B that arises

in the Latent Dirichlet Allocation model. The basic idea of GDM is simple: performing

the K-means clustering algorithm on the n points µi (or their estimates) to obtain K

centroids. These centroids cannot be a good estimate for B’s vertices, but they provide

reasonable directions toward the vertices. Starting from the simplex’s estimated centroid,

the GDM constructs K line segments connecting to the K centroids and suitably extends

the rays to provide an estimate for the K vertices. The GDM method is shown to be

accurate when either B is equilateral, or the Dirichlet concentration parameter α is

very small, i.e., most of the points µis are concentrated near the vertices. The quality of

the estimates deteriorates in the absence of such conditions.

The deficiency of the GDM algorithm can be attributed to several factors: first, for

192



a general simplex, the K-means centroids and the simplex’s vertices do not line up.

Fortunately, we will see that they may be lined up in a straight line by a suitable affine

transformation of the simplex structure. Second, the nature of the Dirichlet distribution

on the simplex is not pro-actively exploited, including that of parameter α. Third,

typically K � D, the affine hull of B is a very low-dimensional structure, a fact not

utilized by the GDM algorithm. It turns out that these shortcomings may be overcome

by a careful consideration of the geometric structure of the simplex and the Dirichlet

distribution.

For illustrations, we consider a toy problem of learning extreme points of simplex B,

given Gaussian data likelihood xi|µi ∼ N (µi, σ
2ID) and D = K = 3. The triangle is

chosen to be non-equilateral and Dirichlet concentration parameter is set to α = 2.5.

Figure 4.1 illustrates the deteriorating performance of the GDM. In Figure 4.2, we also

observe Xray (Kumar et al. (2013)), another recent NMF algorithm, failing to solve the

problem, as the aforementioned separability assumption is violated for large α. On the

other hand, Figure 4.3 demonstrates the high accuracy of the posterior mean obtained

by Hamiltonian Monte Carlo (HMC) (Neal et al. (2011); Hoffman and Gelman (2014))

implemented using Stan (Carpenter et al. (2017)), albeit at the cost of 10 minutes

training time. Lastly our new algorithm (VLAD) in Fig. 4.4, exhibits an accuracy

comparable to that of the HMC and the run-time of the GDM algorithm.

4.3 Inference of the Dirichlet Simplex Nest

4.3.1 Simplicial Geometry

In order to motivate our algorithm, we elucidate the geometry of the DSN through

the concept of Centroidal Voronoi Tessellation (CVT) (Du et al. (1999)) of a simplex
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B, a convex subset of D-dimensional metric space S.

Definition 4.3.1 (Centroidal Voronoi Tessellation). Let Ω ⊂ S be an open set equipped

with a distance function d and a probability density ρ. For a set of K points c1, . . . , cK ,

the Voronoi cell corresponding to ck is the set

Vk = {x ∈ Ω : d(x, ck) < d(x, cl) for any l 6= k}.

The collection of Voronoi cells V1, . . . , VK is a tessellation of Ω; i.e. the cells are disjoint

and ∪kVk = Ω. If c1, . . . , cK are also the centroids of their respective Voronoi cells, i.e.,

ck =
1∫

Vk
ρ(x)dx

∫
Vk

xρ(x)dx

the tessellation is a Centroidal Voronoi Tessellation.

CVTs are special: any set of k points induces a Voronoi tessellation, but these points

are generally not the centroids of their associated cells. One can check that a CVT

minimizes

J(c1, . . . , cK) =

∫
Vk

d(x, ck)
2ρ(x)dx.

It is a fact that J has a unique global minimizer as long as ρ vanishes on a set of

measure zero, the Voronoi cells are convex, and the distance function is convex in each

argument (Du et al. (1999)). Moreover, it can be seen that the centroids of the CVT of

an equilateral simplex equipped with the DirK(α) distribution fall on the line segments

between the centroid of the simplex and the extreme points of the simplex, but this is

not the case when the simplex shape is non-equilateral (cf. Fig. 4.1).

The following lemma formalizes the aforementioned insight to a simplex of arbitrary
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shape B by considering a suitably modified distance function d(·, ·) of the CVT. (In

Fig. 4.4, the blue, purple and yellow dots are the sample versions of the Voronoi cells of

the CVT under the new distance function and the corresponding centroids are in red.)

Lemma 4.3.1. Let B ∈ RD×K denote the matrix form of simplex B. Suppose it has

full (column) rank, equipped with distance function ‖ · ‖(BBT )† and the probability

distribution PB defined as

PB(S) = Prob({θ ∈ ∆K−1 : Bθ ∈ S}),

where θ is distributed by symmetric Dirichlet density ρα := DirK(α), for any S ⊂ int(B),

and A† denotes a pseudo-inverse of A. The centroids of its CVT fall on the line segments

connecting the centroid of B to β1, . . . , βK .

Proof. Let c1, . . . , cK and V1, . . . , VK be the centroids and cells of the CVT of ∆K−1

equipped with Euclidean distance and DirK(α) density ρα. It suffices to verify that

Bc1, . . . , BcK and BV1, . . . , BVK are the centroids and cells of the CVT of B = B∆K−1.

By a change of variables formula,

argmin

{∫
BVk
‖x−Bv‖2(BBT )†ρα(B

†x)| det(B†)|dx∫
Vk
ρα(B†x)| det(B†)|dx

: v ∈ Vk
}

= argmin

{∫
Vk
‖Bθ −Bv‖2(BBT )†ρα(θ)dθ∫

Vk
ρα(θ)dθ

: v ∈ Vk
}

= argmin

{∫
Vk
‖θ − v‖22ρα(θ)dθ∫
Vk
ρα(θ)dθ

: v ∈ Vk
}
,

which we recognize as the centroids of the CVT of ∆K−1 under `2 metric. Since ∆K−1

is a standard simplex and therefore equilateral, the centroids of the CVT of equilateral

simplex fall on the line segments connecting the centroid of the simplex to its extreme

points.
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Lemma 4.3.1 suggests an algorithm to estimate the extreme points of B. First,

estimate the centroids of the CVT of B (equipped with scaled Euclidean norm ‖·‖(BBT )†)

and search along the rays extending from the centroid of B through the CVT centroids

for the simplicial vertices.

4.3.2 The Voronoi Latent Admixture (VLAD) Algorithm

We first consider the noiseless problem, F (· | µ) = δµ. That is, xi = µis are observed.

In this case, Lemma 4.3.1 suggests estimating the CVT centroids by scaled K-means

optimization:

argmin
c1,...,cK

{
1
2

∑K
k=1

∑
xi∈Vk(xi − ck)

T (BBT )†(xi − ck)
}
, (4.1)

Unfortunately, the scaled Euclidean norm ‖ · ‖(BBT )† is unknown. We propose an

equivalent approach that does not depend on knowledge of BBT .

In the noiseless case, observe that the population covariance matrix of the samples

takes the form Σ = BSBT , where S is the covariance matrix of a Dir(α) random variable

on ∆K−1. By the standard properties of the Dir(α) distribution, it can be seen that

S = 1
K(Kα+1)

P , where P = IK − 1
K
1K1

T
K is the centering matrix. Hence, knowledge of

Σ will be sufficient because the centered data points x fall in span(Σ) = span(BPBT ):

For each (θ, x) pair,

x̄ := Bθ︸︷︷︸
x

− 1
K
B1︸ ︷︷ ︸

E[x]

= Bθ − 1
K
B1(1T θ︸︷︷︸

=1

) = BPθ := Bθ̄. (4.2)

This suggests that the centroids of the CVT may be recovered by clustering the centered

data points in the ‖ · ‖Σ†-norm. This insight is formalized by
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Lemma 4.3.2. The centroids of the CVT of simplex B under ‖ · ‖(BBT )†-norm are

given by {c∗k + c0|k = 1, . . . , K}, where (c∗1, . . . , c
∗
K) solves the minimization

min
c1,...,cK
V1,...,VK

1

2

K∑
k=1

∫
x∈BVk

(x̄− ck)TΣ†(x̄− ck)ρ(x)dx (4.3)

and c0 =
∫
xρ(x)dx is the centroid of simplex B.

Proof. We first show that (4.3) is equivalent to (unscaled) K-means clustering on ∆K−1.

Note that Σ = δBPBT for some δ > 0. Without loss of generality, we restrict to ck’s in

span{BPBT}. Write ck = BPvk for vk ∈ RK , for k = 1, . . . , K. Recalling (4.2) and the

fact P is a projector,

(1/δ)
∑K

k=1

∫
x∈BVk

(x̄− ck)TΣ†(x̄− ck)ρ(x)dx

=
∑K

k=1

∫
θ∈Vk

(θ̄ − vk)TPBTΣ†BP (θ̄ − vk)ρα(θ)dθ

=
∑K

k=1

∫
θ∈Vk

(θ̄ − vk)TP (θ̄ − vk)ρα(θ)dθ

=
∑K

k=1

∫
θ∈Vk
‖θ̄ − Pvk‖2

2ρα(θ)dθ. (4.4)

Since θ is distributed by the symmetric Dirichlet ρα = Dir(α) on ∆K−1, the last equality

entails that the optimal vk’s are the points which represent the barycentric coordinate of

the centroids of the CVT of ∆K−1. Thus, the optimal solution for ck = BPvk represents

the centroids of the CVT of simplex B under ‖ · ‖(BBT )†-norm (using the coordinating

system that is centered at origin c0).

We proceed to address the optimization (4.3) applied to empirical data to arrive at

Voronoi Latent Admixture (VLAD) algorithm in Algorithm 4.1. We utilize the singular

value decomposition (SVD) of the centered data points to simplify computation. Let
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X̄ ∈ Rn×D be the matrix whose rows are the centered data points and X̄ = UΛW T be

its SVD. Each term in the objective of (4.3) is equivalent to, with Σ being replaced by

its empirical version, Σn = 1
n
WΛ2W T :

(x̄i − ck)TΣ†n(x̄i − ck) =

n(ui − ηk)TΛW TWΛ−2W TWΛ(ui − ηk) = n‖ui − ηk‖2
2,

where x̄i = WΛui, and set ck = WΛηk. Thus, instead of performing scaled K-means

clustering in S, it suffices to perform standard K-means in the low (K − 1) dimensional

space. This yields a significant computational speed-up. After applying VLAD, the

weights θi’s can be obtained by projecting the data points onto B and compute the

barycentric coordinates of the projected points.

Algorithm 4.1 Voronoi Latent Admixture (VLAD)
Input: data x1, . . . , xn; K; extension parameter γ.
Output: simplex vertices β1, . . . , βK
1: ĉ0 ← 1

n

∑
i xi {find data center}

2: x̄i ← xi − ĉ0, i = 1, . . . , n {centering}
3: compute top K − 1 singular factors of the centered data matrix X̄ ∈ Rn×D: X̄ =
UΛW T

4: η1, . . . , ηK ← K-means(u1, . . . , un), where the ui’s are the rows of U ∈ Rn×(K−1)

5: ĉk ← WΛηk + ĉ0

6: β̂k ← ĉ0 + γ(ĉk − ĉ0)

It remains to estimate the extreme points βks given the CVT centroids cks. This task

is simplified by two observations: First, the CVT centroids reside on the line segment

between the centroid of simplex B and its extreme points, per Lemma 4.3.1. Thus

we merely need to estimate the ratio of the distance from the extreme point to the

centroids of B and the distance from the CVT centroids to the centroid of B. Due to

the symmetry of DirK(α) distribution on ∆K−1, this ratio is identical for all extreme
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points – we refer to this ratio as the extension parameter γ. Secondly, γ does not

depend on the geometry of B, only that of the Dirichlet distribution. Thus, γ can be

easily estimated by appealing to a Monte Carlo technique on DirK . This subroutine is

summarized in Algorithm 4.2, provided that α is given.

Algorithm 4.2 Evaluating extension parameters
1: generate θ1, . . . , θm ∼ DirK(α), where m is the number of Monte Carlo samples
2: v1, . . . , vK ← K-means(θ1, . . . , θm)

3: γ ←
√
K2 −K

(∑K
l=1 ‖vl −

1
K
1K‖2

)−1

4.3.3 Estimating the Dirichlet Concentration Parameter

Next, we describe how to estimate concentration parameter α from the data, by

employing a moment-based approach. Recall from the previous section that there is

an one-to-one mapping between α and the extension parameter γ. For each α > 0,

let γ(α) > 0 denote the corresponding extension parameter and B(γ) ∈ RD×K the

estimator of B output by VLAD with extension parameter γ. In the absence of noise,

the covariance matrix of the DSN model has the form BS(α)BT , where S(α) ∈ RK×K is

the covariance matrix of a Dir(α) random variable on ∆K−1. This suggests we estimate

α by a generalized method of moments approach:

α̂ = argmin
α>0

‖B̂(γ(α))S(α)B̂(γ(α))T − Σ̂‖, (4.5)

where Σ̂ is the sample covariance matrix Σ̂ = 1
n
X̄T X̄. We remark that there is no need

to run VLAD multiple times to evaluate the objective in (4.5) at multiple α-values. After

VLAD is run once, we may evaluate γ(α) for any value of γ by affinely transforming the

output of VLAD. Further, (4.5) is a scalar optimization problem, so the computational
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cost of solving (4.5) is negligible.

In the presence of noise, the covariance matrix of the DSN model no longer has the

form BS(α)BT . We need to add a correction term to ensure a consistent estimator of

BS(α)BT . For example, if the noise is Gaussian, a consistent estimator of BS(α)BT is

Σ̃ = Σ̂− σ̂2ID,

where σ̂2 is an estimate of the noise variance. In Supplement 4.7.1.3, we give consistent

estimators of BS(α)BT for multinomial and Poisson noise. With a good estimator Σ̃ of

BS(α)BT in place, we replace Σ̂ in (4.5) by Σ̃ and then solve (4.5) to obtain an estimate

of α.

4.4 Consistency and Estimation Error Bounds

In this section we establish consistency properties and error bound guarantees of the

VLAD procedure.

For c = (c1, . . . , cK) ∈ RK×D, define φA : RD × RK×D → R as

φA(x, c) = mink∈{1,...,K} ‖x− ck‖2
A†

where A is a positive semidefinite matrix. Recall Σ as the covariance matrix of the

data generating distribution and Σn its empirical counterpart. In the algorithm, we

work with the best rank K − 1 approximation of Σn, which we denote by (Σn)K . Let

Q denote the distribution for µis. Recall that Xi|µi ∼ F (·|µi). Let P be the induced

distribution corresponding to X̃i, which is the projection of Xi on the affine space of

dimension K − 1 spanned by the top K − 1 eigenvectors of Σ. We also use Pn to denote
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the empirical distribution of the data represented by random variables Xi.

Since K-means clustering is a subroutine of our algorithm, we expect at least some

sort of condition requiring that the K-means clustering routine be well-behaved in some

sense. To that end we need the following standard condition on the population K-means

objective (Pollard (1981)).

(a.1) Pollard’s regularity criterion (PRC): The Hessian matrix of the function c 7→

QφBSBT (·, c) evaluated at c∗ for all optimizers c∗ of QφBSBT (·, c) is positive defi-

nite, with minimum eigenvalue λ0 > 0.

It turns out that this will be all we need for the following theorem in the noiseless

setting, where we have Σ = BSBT = (Σ)K has rank K − 1 and so, P = Q and X̃i
L
= Xi.

Theorem 4.4.1. Consider the noiseless setting, i.e., F (· | µ) = δµ. Suppose that

B = Conv(β1, . . . , βK) is the true topic simplex, while (β1n, . . . , βKn) are the vertex

estimates obtained by VLAD algorithm. Moreover, assume the error due to Monte Carlo

estimates of the extension parameter is negligible. Provided that condition (a.1) holds,

min
π
‖(βπ(1)n, . . . , βπ(K)n)− (β1, . . . , βK)‖ = OP(n−1/2),

where the minimization is taken over all permutations π of {1, . . . , K}.

Note that the constant corresponding to the rate OP(n−1/2) is dependent on the

Hessian matrix of the function c 7→ PφΣ(·, c). The proof for Theorem 4.4.1 is in

Supplement 4.7.1.1.

In general, F (· | µ) is not degenerate. Due to the presence of "noise" in the K − 1

SVD subspace, the estimates of the CVT centroids may be inconsistent, which entails

inconsistency of the VLAD’s estimate for B. The following theorem provides an error
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bound in the general setting. We need a strengthening of Pollard’s Regularity Criterion.

Let (Σ)K denote the best K − 1 rank approximation of Σ with respect to the Frobenius

norm. Assume:

(a.2) The Hessian matrix of the function c 7→ Pφ(Σ)K (·, c) evaluated at c∗ for all

optimizers c∗ of Pφ(Σ)K (·, c) is uniformly positive definite with minimum eigenvalue

λ0 > 0, for all (Σ)K such that (Σ−BSBT ) ≤ ε̃ID, for some ε̃ > 0.

The noise level is formalized by the following conditions:

(b) There is ε0 > 0 such that ε0ID −Cov(X|θ) is positive semi-definite uniformly over

θ ∈ ∆K−1.

(c) There exists M0 such that for all M > M0,
∫
B(
√
M,c0)c

‖x − c0‖2
2g(x)dx ≤ k1

M
, for

some universal constant k1, where B(
√
M, c0) is a ball of radius

√
M around

population centroid c0 and g(·) is the density of P with respect to the Lebesgue

measure on the K−1 dimensional space which contains the top K−1 eigenvectors

of BSBT + ε0ID.

Theorem 4.4.2. Suppose that B = Conv(β1, . . . , βK) is simplex corresponding to

extreme points of the DSN. Let (β1n, . . . , βKn) be the corresponding extreme point

estimates obtained by the VLAD algorithm. Assume the error in the Monte Carlo

estimates of the extension parameter is negligible. Provided that (a.2), (b) and (c) hold,

then

minπ ‖(βπ(1)n, . . . , βπ(K)n)− (β1, . . . , βK)‖2 = O

(√
ε

1/3
0 /λ0

)
+OP(n−1/2),

(4.6)

where π ranges over permutations of {1, . . . , K}.
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The constant corresponding to the rate OP(n−1/2) in the theorem depends on the Hessian

matrix of the function c 7→ PφΣ(·, c); constant corresponding to the O
(√

ε
1/3
0 /λ0

)
depends on the minimum and maximum eigenvalues of the matrix BSBT . Proof is in

Supplement 4.7.1.2.

The preceding results control the error incurred by the VLAD algorithm when

the concentration parameter α is known. When α is unknown, our proposed solution

in Section 4.3.3 performs well in both simulated and real-data experiments. We do

not know in theory whether the concentration parameter α is identifiable, we shall

present empirical results in Supplement 4.7.1.5 which suggest identifiability. Assuming

a condition which guarantees model identifiability, we can establish that the estimate

obtained by the VLAD algorithm via (4.5) is in fact consistent.

Theorem 4.4.3. Assume that function ϕ(α̃) = γ(α̃)2

K(Kα̃+1)
is monotonically increasing in α̃,

where γ(α̃) is the extension parameter corresponding to α̃. Let α0 ∈ C be the true concen-

tration parameter for some compact set C . Let α̂n = argminα∈C ‖B̂(γ(α))S(α)B̂(γ(α))T−

Σ̃n‖, where Σ̃n is a consistent estimator of BS(α)BT . Then,

‖α̂n − α0‖
P−→ 0. (4.7)

See Supplement 4.7.1.4 for the proof.

4.5 Experiments

The goal of our experimental studies is to demonstrate the applicability and efficiency

of our algorithm for a number of choices of the DSN probability kernel: Gaussian, Poisson

and Multinomial (i.e. LDA). We summarize all competing estimation procedures in our
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comparative study and their corresponding underlying assumptions in Table 4.1.

We remark that Gibbs sampler (Griffiths and Steyvers (2004)), Stan implementation

of No U-Turn HMC (Hoffman and Gelman (2014); Carpenter et al. (2017)) and Stochastic

Variational Inference (SVI) (Hoffman et al. (2013)) may be augmented with techniques

such as empirical Bayes to estimate hyperparameter α, although it may slow down

convergence. We instead allow these baselines to use true values of α in all simulated

experiments to their advantage; when latent simplex is of general geometry (i.e. non-

equilateral), GDM (Yurochkin and Nguyen (2016)) requires α → 0 to perform well,

which is alike separability. Not all baselines are suitable for all three probability kernels,

i.e. Gibbs sampler and SVI rely on (local) conjugacy and are only applicable in the LDA

scenario; RecoverKL by Arora et al. (2013) is an algorithm that relies on a separability

condition (i.e. anchor words) designed for topic models.

In simulated experiments we will consider both VLAD with estimated concentra-

tion parameter α following our results in Section 4.3.3 and VLAD trained with the

knowledge of true data generating α (VLAD-α). For real data analysis, we estimate the

concentration parameter by (4.5) and apply VLAD to a text corpus and stock market

data set.

4.5.1 Comparative Simulation Studies

Convergence behavior We investigate the convergence of the estimates of the DSN

extreme points for the three likelihood kernels under the increasing sample size. The

hyperparameter settings are D = 500, K = 10, α = 2 (for LDA vocabulary size D =

2000). To ensure non-trivial geometry of the DSN we rescale extreme points towards their

mean by uniform random factors between 0.5 and 1. We use the Minimum Matching

distance - a metric previously studied in the context of polytopes estimation (Nguyen
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Table 4.1: Baselines and required conditions

Method Conjugacy True α Separability

VLAD (this work) × × ×
VLAD-α (this work) ×

√
×

Gibbs (Griffiths and Steyvers (2004))
√ √? ×

Stan-HMC (Carpenter et al. (2017)) ×
√? ×

SVI (Hoffman et al. (2013))
√ √? ×

GDM (Yurochkin and Nguyen (2016)) × ×
√?

RecoverKL (Arora et al. (2013)) × ×
√

SPA (Gillis and Vavasis (2014)) × ×
√

MVES (Chan et al. (2009)) × ×
√

Xray (Kumar et al. (2013)) × ×
√
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Figure 4.6: Gaussian data
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Figure 4.7: Poisson data
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Figure 4.8: Categorical data
Figure 4.9: Minimum matching distance for increasing n

(2015)) to compare the quality of the fitted DSN model returned by a variety of inference

algorithms. We defer additional details to Supplement 4.7.2.

In Fig. 4.9 we see that VLAD and VLAD-α significantly outperform all baselines.

Further, the estimation error reduces with increased sample size verifying statements of

Theorems 4.4.2 and 4.4.3. We note that Stan HMC may also achieve good performance,

however it is very costly to fit (e.g., 40 HMC iterations for Poisson case and n = 30000

took 14 hours compared to 7 seconds for VLAD), therefore we had to restrict number of

iterations, which explains its wider error bars across experiments.

Geometry of the DSN To study the role of geometry of the DSN we rescale
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Figure 4.10: Gaussian data
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Figure 4.11: Poisson data
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Figure 4.12: Categorical
data

Figure 4.13: Minimum matching distance for varying DSN geometry.
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Figure 4.14: Gaussian data
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Figure 4.15: Poisson data
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Figure 4.16: Categorical
data

Figure 4.17: Minimum matching distance for increasing α.

extreme points towards their mean by uniform random factors ck ∼ Unif(cmin, 1) for

k = 1, . . . , K and vary cmin in Fig. 4.13 (smaller values imply more severe skewness of

the latent simplex). To isolate the effect of the geometry of the DSN, we compare to

GDM combined with knowledge of true α and extension parameter estimation using

Algorithm 4.2 (GDM-MC). If the underlying simplex is equilateral, GDM-MC will be

equivalent to VLAD-α.

In Fig. 4.13 we see that VLAD and VLAD-α are robust to varying skewness of the

DSN. On the contrary, GDM-MC is only accurate when the latent simplex becomes

closer to equilateral. This experiment verifies geometric motivation of our work — in

practice we can not expect latent geometric structure to be necessarily equilateral and

geometrically robust method such as VLAD is more reliable.
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Table 4.2: NYT topic modeling (categorical data)

Perplexity Coherence Time

VLAD 1767 0.86 6min
GDM 1777 0.88 30min
Gibbs || HMC 1520 0.80 5.3hours
RecoverKL || MVES 2365 0.70 17min
SVI || SPA 1669 0.81 40min

Table 4.3: Stock data factor analysis (continuous data)

Frobenius norm Volume Time

VLAD 0.300 0.14 1s
GDM 0.294 1499 1s

Gibbs || HMC 0.299 1.95 10min
RecoverKL || MVES 0.287 5.39× 109 3min

SVI || SPA 0.392 3.31× 107 1s

Varying Dirichlet prior To complete our simulation studies we verify α estimation

procedure proposed in Section 4.3.3 and analyzed in Theorem 4.4.3. It is also interesting

to compare performance of other baselines for larger α — scenario often overlooked in

the literature.

In Fig. 4.17 (and in previous experiments) we see that performance gap between

VLAD and VLAD-α is very small, supporting effectiveness of our α estimation procedure

across probability kernels. Additionally, we see that higher values of α lead to degrading

performance of all considered methods, however VLAD degrades more gracefully.

4.5.2 Real Data Analysis

Topic modeling We analyze a collection of news articles from the New York Times.

After preprocessing, we have 5320 unique words and 100k training documents with 25k

left out for perplexity evaluation. We also compare semantic coherence of the topics

(Newman et al. (2010)).
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In Table 4.2 (left) we present results for K = 80 topics. The Gibbs sampler has the

best perplexity score, but it falls behind in topic coherence. VLAD estimated α = 0.05

and has approximately same perplexity and coherence as GDM, while being 5 times

faster. VLAD identified contextually meaningful topics, as can be seen from good

coherence score and by eye-balling the topics — they cover a variety of concepts from

fishing and cooking to the Enron scandal and cancer. The top 20 words for each of the

VLAD topics are provided along with the code.

Stock market analysis We collect variations (closure minus opening price) for 3400

days and 55 companies. We train several algorithms on data from the first 3000 days

and report the average distance between the data points from the last 400 days and

fitted simplices (i.e., Frobenius norm). This metric alone might be misleading since

stretching any simplex will always reduce the score, therefore we also report the volumes

of corresponding simplices. Results are summarized in Table 4.3 (right) — our method

(estimated α = 0.05) achieves comparable fit in terms of the Frobenius norm with a more

compact simplex. Among the factors identified by VLAD, we notice a growth component

related to banks (e.g., Bank of America, Wells Fargo). Another factor suggests that the

performance of fuel companies like Valero Energy and Chevron are inversely related to

the performance of defense contractors (Boeing, Raytheon).

4.6 Summary and Discussion

The Dirichlet Simplex Nest model generalizes a number of popular models in ma-

chine learning applications, including LDA and several variants of non-negative matrix

factorization (NMF). We also develop an algorithm that exploits the geometry of the

DSN to perform fast and accurate inference. We demonstrate the superior statistical

and computational properties of the algorithm on several real datasets and verify its
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accuracy through simulations.

One of the key distinctions between the DSN model and NMF models is we replace

the separability assumption by a Dirichlet prior on the weights. The main benefit of

this approach is it enables us to model data that does not contain archetypal points

(Cutler and Breiman (1994)). Among the limitations of our approach is the reliance on

the Dirichlet distribution assumption in a crucial way, that the Dirichlet distribution is

symmetric on the standard probability simplex ∆K−1. In theory, the algorithm breaks

down when the Dirichlet distribution is asymmetric. Surprisingly, in simulations at

least, we found that VLAD seems quite robust in recovering the correct direction of

extreme points, even as most existing methods break down in such situations. These

findings are reported in Supplement 4.7.3.
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4.7 Appendix

4.7.1 Proofs of Theorems

In this section we present the proofs of main theorems in Section 4.4. We will first

reintroduce some notations for the reader’s convenience.

Notation Let λmax(A) and λmin(A) denote the largest and smallest non-zero singular

values of the matrix A. We use f(·) to denote the density of Q with respect to Lebesgue

measure on the K − 1 dimensional subspace containing the simplex B. Let g(·) be the

density of P with respect to the Lebesgue measure on the K − 1 dimensional space

containing the eigenvectors of ΣK
tot, where ΣK

tot is best K − 1-rank approximation matrix

of Σtot := BSBT + ε0ID and ε0ID is a uniform upper bound on Cov[xi | θ]. Let Σ be the

population covariance matrix with ΣK as the best K − 1 rank approximation. Note that

Σ = Cov(Xi) = E[Cov(Xi|µi)] + Cov(E[Xi|µi]) ≤ ε0ID +BSBT . (4.8)

4.7.1.1 Proof of Theorem 1

The following is a standard assumption to ensure the consistency of the k-means

procedure embedded in our algorithm:

(a.1) Pollard’s regularity criterion (PRC): The Hessian matrix of the function c 7→

QφBSBT (·, c) evaluated at c∗ for all optimizer c∗ of QφBSBT (·, c) is positive definite,

with minimum eigenvalue λ0 > 0.

Proof. First, we note that under the assumption of the noiseless setting, by following

along the lines of the proof of Lemma 4.3.2, it can be seen that if c∗ = (c∗1, . . . , c
∗
K)

optimize Eq. (4.1) and vk’s are such that (v1, . . . , vK) form the empirical CVT centroids

of ∆K−1, then c∗i = BPvi + c0, where c0 is the population centroid.
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Next, the convergence of the empirical CVT centroids to the corresponding population

CVT centroids occurs at rate OP( 1√
n
) rate following Pollard (1982b). The consistency

of the extreme points of the Dirichlet Simplex Nest follows by the continuous mapping

theorem since

‖Pek‖2

‖Pvk‖2

=
‖ek − 1

K
1K‖2

‖vk − 1
K
1K‖2

=
‖B(ek − 1

K
1K)‖2

‖B(vk − 1
K
1K)‖2

, (4.9)

where e1, . . . , eK are the canonical basis vectors on RK denoting the vertices of ∆K−1.

Finally, the knowledge of α enables us to compute ‖ek−
1
K
1K‖2

‖vk− 1
K
1K‖2

. This concludes the

proof.

4.7.1.2 Proof of Theorem 2

It is considerably more challenging to establish the error bounds for our algorithm in

the general setting where the observations are noisy. First, let us define the following:

CPn ={c∗ : c∗ = argmin
c∈RkD

Pnφ(Σn)K (·, c) = argmin
c∈RkD

1

n

n∑
i=1

φ(Σn)K (X̃i, c)},

CQ ={c∗ : c∗ = argmin
c∈RkD

QφBSBT (·, c)}.

Recall the following assumptions from the main text:

(a.2) The Hessian matrix of the function c 7→ Pφ(Σ)K (·, c) evaluated at c∗ for all optimizer

c∗ of Pφ(Σ)K (·, c) is uniformly positive definite with minimum eigenvalue bounded

below from some λ0 > 0, for all (Σ)K such that (Σ − BSBT ) ≤ ε̃ID, for some

ε̃ > 0.

(b) There exists ε0 > 0 such that ε0ID −Conv(X|θ) is positive semi-definite uniformly
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over θ ∈ ∆K−1.

(c) There exists M0 such that for all M > M0,

∫
B(
√
M,c0)c

‖x− c0‖2
2g(x)dx ≤ k1

M
,

for some universal constant k1, where B(
√
M, c0) is a ball of radius

√
M around

the population centroid, c0.

The assumptions (b) and (c) are very general assumptions and satisfied by a vast array

of noise distributions, especially those with subexponential tails. In particular, the noise

distributions considered in this work all satisfy these assumptions.

Proof. The proof proceeds by the following steps:

First, in Step 1, we show that it is enough to restrict attention to the population

estimates instead of empirical estimates. Next, in Step 2, we show that the k-means

objectives for distributions of µi’s and xi’s are close. Step 3 shows that the objective

values at the respective minimizers are also close to each other for the distributions

considered in Step 2. Finaly, Step 4 uses the strong convexity condition of (a.2) to

bound the distance between respective k-means centers, and Step 5 translates this

bound to the estimation of the simplex vertices.

In that regard,

Step 1: Following Pollard (1982b), the empirical estimates of CVT centroids optimiz-

ing PφΣK (·, c) converges to the corresponding population estimate at rate OPn(n−1/2).

Thus it is enough to restrict attention to the population estimates.
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Step 2: We will show that for all ε0 sufficiently small,

|QφBSBT (·, c)− PφΣK (·, c)| = O(ε
1/3
0 )

uniformly over c ∈ BK .

Since Q denotes the distribution corresponding to µi’s, this distribution places its

entire mass inside the simplex, therefore all minimizers of the function QφBSBT (·, c)

lie inside BK . We can hence restrict our attention to c ∈ BK . By assumption (b),

we have BSBT ≤ ΣK . Thus, it is enough to establish a bound for |QφBSBT (·, c) −

PφΣK (·, c)| ∀ c ∈ BK .

|QφBSBT (·, c)− PφΣK (·, c)| ≤ |PφΣK (·, c)−QφΣK (·, c)|

+|QφBSBT (·, c)−QφΣK (·, c)|.
(4.10)

Step 2.1: Now, to bound the second term on the right hand side of Eq. (4.10) we use,

|QφBSBT (·, c)−QφΣK (·, c)| ≤
∫
|φBSBT (x, c)− φΣK (x, c)|f(x)dx

≤ λmax([BSBT ]† − [ΣK ]†)

≤ λmax([BSBT ]† − [(BSBT + ε0I
K
D ]†)

≤ ε0
λmin(BSBT )λmin(BSBT + ε0IKD )

,

where B† denotes the pseudo-inverse of B, and IKD is the matrix with top K−1 diagonal

elements as 1, the rest zeros.

Step 2.2: Turning to the first term on right hand side of Eq. (4.10), we note that

‖βi−βj‖2 ≤ K−1
K
λmax(BSBT ). Therefore a compact ball of radius aλmax(BSBT ) around
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the centroid c0 of the simplex B for all sufficiently large constants a > K−1
K

contains the

simplex completely. Consider a ball B(
√
M, c0) of radius

√
M , with M = aλmax(BSBT )

around the centroid c0, the scalar a to be chosen later. For any M > 0,

|PφΣK (·, c)−QφΣK (·, c)| ≤
∣∣∣∣ ∫
B(
√
M,c0)c

φΣK (x, c)g(x)dx
∣∣∣∣

+

∣∣∣∣ ∫
B(
√
M,c0)

φΣK (x, c)[g(x)− f(x)]dx
∣∣∣∣. (4.11)

Step 2.2.1: For the first term on the right hand side of Eq. (4.11), we see that,

∫
B(
√
M,c0)c

φΣK (x, (c1, . . . , cK))g(x)dx

≤ min
i∈{1,...,K}

∫
B(
√
M,c0)c

‖x− ci‖2
ΣKg(x)dx

≤ max 2‖ci − c0‖2
2P(X ∈ B(

√
M, c0)c)

+
2

λmin(BSBT )

∫
B(
√
M,c0)c

‖x− c0‖2
2g(x)dx.

(4.12)

The first inequality follows from Fatou’s lemma, while the second follows from the fact

that ‖a+ b‖2
2 ≤ 2(‖a‖2

2 + ‖b‖2
2).

Suppose that the noise distribution is subexponential for all latent locations θ ∈ B.

Combining this with the Chebyshev inequality and condition (c), Eq. (4.12) can be
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re-written as: ∫
B(
√
M,c0)c

φΣK (x, (c1, . . . , cK))g(x)dx

≤ C̃λmax(BSBT )
V ar(X)

M
+

2k1

λmin(BSBT )M

≤ C̃
2(K − 1)λ2

max(BSBT )

M
+

2k1

λmin(BSBT )M

(4.13)

for some universal constant k1.

Step 2.2.2: For the second term on the right hand side on Eq. (4.11), we use the

following result.

Claim 1. ForM = aλmax(BSBT ), when centroids ci ∈ B ∀ i, φΣK (x, c = (c1, . . . , cK))

as a function of x is Lipschitz on B(
√
M, c0), with Lipschitz constant 4

√
M

λmin(BSBT )
.

Now using the above result, we can easily extend φΣK (x, c = (c1, . . . , cK)) to a

Lipschitz function on the entire domain. For the particular choice of a,

∣∣∣∣ ∫
B(
√
M,c0)

φ(Σ)K (x, c)(g(x)− f(x))dx
∣∣∣∣

≤
2
√
aλmax(BSBT )

λmin(BSBT )
sup
‖l‖Lip≤1

∣∣∣∣ ∫ l(x)(g(x)− f(x))dx
∣∣∣∣

≤
2
√
aλmax(BSBT )

λmin(BSBT )
W1(g, f)

≤
2
√
aλmax(BSBT )

λmin(BSBT )

√
(K − 1)ε0.

(4.14)

In the above, ‖l‖Lip denotes the Lipschitz constant of the function l(·). The second

inequality in the above equation follows from Kantorovich-Rubinstein duality while for

the last inequality, we use the definition of the Wasserstein distance and take (X,µ) as
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the coupling with densities X ∼ g and µ ∼ f marginally (Villani (2008)). Then, for

any upper bound M1 on the variance of ‖X − µ‖2 , W2(g, f) ≤M1, and we use the fact

that
√

(K − 1)ε0 forms such an upper bound.

Now, for the noise level ε0 > 0 sufficiently small, there exists ε > 0, which is dependent

on ε0, such that the open interval
(
C ′ (K−1)λ2

max(BSBT )
ε

,
λ2

min(BSBT )

λmax(BSBT )(K−1)ε0
ε2/16

)
is non-

empty for any fixed constant C ′. Whenever a is chosen in this range, |QφBSBT (·, c)−

PφΣK (·, c)| ≤ ε. Note that we can choose ε = O(ε
1/3
0 ) and a = O(ε

−1/3
0 ) to satisfy the

above condition.

Step 3: In this step, we show that objective function values for k-means corresponding

to that of the population distributions of xi’s and µi’s are close. Notice that the bounds

obtained in Step 2 are uniform over c ∈ B. For ease of writing, we denote Rq(c) =

QφBSBT (·, c) and Rp(c) = PφΣK (·, c). Also, let argminRp(c) = cp and argminRq(c) = cq.

Then, for ε0 sufficiently small, it follows from the discussion above that

|Rq(cp)−Rq(cq)|

= |Rq(cp)−Rp(cp) +Rp(cq)−Rq(cq) +Rp(cp)−Rp(cq)|

≤ |Rq(cp)−Rp(cp) +Rp(cq)−Rq(cq)| = O(ε
1/3
0 ).

(4.15)

Step 4: In this step, we show that ‖ argminc PφΣK (·, c)− argmincQφBSBT (·, c)‖2 → 0

as ε0 → 0. The intuition behind this is that since the functions QφBSBT (·, c) and

Rp(c) = PφΣK (·, c) are point-wise close, and their minimized values are also close to

one another, therefore, the points of minima must also be close. By a standard strong

convexity argument, employing condition (a.2), for ε0 sufficiently small, we get,
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‖ argmin
c

PφΣK (·, c)− argmin
c

QφBSBT (·, c)‖2 = O

(√
ε

1/3
0 /λ0

)
. (4.16)

Step 5 : Finally, the error bound for the simplex vertices follows from a continuous

mapping theorem’s argument in a similar manner to that of the proof for Theorem

4.4.1.

Claim 1. ForM = aλmax(BSBT ), when centroids ci ∈ B ∀ i, φΣK (x, c = (c1, . . . , cK))

as a function of x is Lipschitz on B(
√
M, c0), with Lipschitz constant 4

√
M

λmin(BSBT )
.

Proof of Claim 1.

|φΣK (x, c = c1, . . . , cK)− φΣK (y, c = c1, . . . , cK)|
‖x− y‖

≤ max
i∈{1,...,K}

|‖x− ci‖ΣK − ‖y − ci‖ΣK |
‖x− y‖2

≤ sup
2‖x− y‖

λmin(BSBT )
≤ 4

√
M

λmin(BSBT )
.

(4.17)

4.7.1.3 Consistent estimation of concentration parameter

In this section we first provide several easy calculations required for the estimating

equations for some commonly used noise distributions.

Lemma 4.7.1. Depending on the data generating distribution, the covariance matrix

of the DSN model is given as follows.

(a) Gaussian data: Σ = BS(α)BT + σ2Id, provided that xi|µi ∼ N (µi, σ
2ID).
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(b) Poisson data: Σ = BS(α)BT + Diag(
∑

iBi/K), provided that xij|µi
ind∼ Poi(µij),

where Bi denotes the ith column of B and Diag(a) is a diagonal matrix with the ith

diagonal element denoting the ith element of the vector a. Here, µi = (µi1, . . . , µiD).

(c) Multinomial data:

Σ = (1− 1
N

)BS(α)BT + 1
N
Diag(

∑
iBi/K)− 1

N
(
∑

iBi/K)(
∑

iBi/K)T , provided

that xi|µi ∼ Multinomial(N,µi1, µiD). Here, µi = (µi1, . . . , µiD) is a probability

vector. (N resembles the number of words per document in the LDA model).

Proof. We compute Cov(xi) for each of the models. Note that Cov(Xi) = E(Cov(xi|µi))+

Cov(E(xi|µi)) from the tower property of conditional covariance, and Cov(E(xi|µi)) =

BS(α)BT for all the models. Therefore we just need the computation for E(Cov(xi|µi))

for each of the models.

For the Gaussian model, E(Cov(xi|µi)) = σ2ID.

For the Poisson model, E(Cov(xi|µi)) = E(µi) = BE(θi) = Diag(
∑

iBi/K), where

the second equality follows as µi = Bθi by the model, and the last equality follows

because θi ∼ Dir(α).

For the multinomial model,

E(Cov(xi|µi)) =
1

N
E(Diag(µi))−

1

N
Cov(µiµ

T
i )

=
1

N
(Diag(

∑
i

Bi/K)−BS(α)BT ),

from which the result follows.

Equation 4.6, for estimating α uses the data covariance matrix, Σ̂n. While this gives

the correct estimating equation in the noiseless scenario, but for the noisy version we

218



need to use Σ̃n instead where Σ̃n is a consistent estimator for BS(α)BT . The estimator

estimator for different noise distributions can be obtained via the above lemma.

4.7.1.4 Proof of Theorem 3

The proof of consistency of the proposed estimate for the Dirichlet concentration

parameter is given as follows.

Proof. Notice that ‖Σ̃n−BS(α0)BT‖ = oP (1). Also, ‖B̂(γ(α))−B(γ(α))‖ = OP (n−1/2)

for all α ∈ C . Therefore ‖B̂(γ(α))S(α)B̂(γ(α))T −B(γ(α))S(α)B(γ(α))T‖ = OP (n−1)

for all α ∈ C . By monotonicity of the function ϕ, BS(α0)BT−B(γ(α))S(α)B(γ(α))T as

a function of α is injective for all α ∈ C . Therefore, ‖B̂(γ(α0))S(α0)B̂(γ(α0))T − Σ̃n‖ =

oP (1), by triangle inequality. The statement of the theorem then follows by employing a

subsequence argument.

4.7.1.5 Identifiability of the concentration parameter

In the statement of Theorem 3, we require a condition which amounts to a identifia-

bility condition of the parameter α. In this section, we provide empirical evidence that

the DSN model with unknown concentration parameter α is identifiable from second

moments.

As we shall see, the identifiability of α boils to the invertibility of a scalar function.

Recall the covariance matrix of a Dir(α) distribution is

S(α) =
IK − PK
K(Kα + 1)

,

where PK = 1
K
1K1

T
K is the projector onto span{1K}. Let B(γ) = γ(C − µ) + µ be the

γ-extension of the (scaled) K-means centroids C from the center of the DSN µ = 1
K
B1K .
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The question of the identifiability of the concentration parameter boils down to whether

there are distinct α1 and α2 such that

B(γ(α1))S(α1)B(γ(α1))T = B(γ(α2))S(α2)B(γ(α2))T , (4.18)

where γ(α) is the extension parameter that corresponds to concentration parameter α.

As long as C has full column rank, we may pre and post-multiply (4.18) by C† and

(C†)T respectively to see that (4.18) is equivalent to

(γ(α1)(IK − PK) + PK)S(α1)(γ(α1)(IK − PK) + PK)

= (γ(α2)(IK − PK) + PK)S(α2)(γ(α2)(IK − PK) + PK).

Recalling S(α) is a scalar multiple of IK − 1
K
1K1

T
K , we see that (4.18) is equivalent to

whether there are distinct α1 and α2 such that

γ(α1)2

K(Kα1 + 1)
=

γ(α2)2

K(Kα2 + 1)
.

This is equivalent to the invertibility of the function

ϕ(α) =
γ(α)2

K(Kα + 1)
. (4.19)

Figure 4.18 shows this function for K = 10 over a range of reasonable values of α. We

see that the function is in fact invertible.

Although Figure 4.18 suggests (4.19) is invertible, we do not have a rigorous proof.

The main challenge is obtaining precise control on the growth of (4.18). Inspecting

Figure 4.18 shows that ϕ(α) is almost flat as soon as α exceeds 5
2
. Intuitively, this
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Figure 4.18: Empirical study of α identifiability.

is a consequence of the hardness of distinguishing between DSNs with large α’s (and

correspondingly large extension parameters). Mathematically, it is hard to obtain precise

control on the growth of ϕ(α) because it is not possible to evaluate γ(α) explicitly.

Although it is possible to show that

γ(α) =
1− 1

K∫
Vk
eTk θpα(x)dx− 1

K

, (4.20)

where Vk = {θ ∈ ∆K−1 : argmax{θl : l ∈ [K]} = k} is the k-th Voronoi cell in a

centroidal Voronoi tessellation of ∆K−1, ek is the kth canonical basis vector and pα is
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likelihood for Poison data
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Figure 4.22: Held out data performance for increasing sample size n

the Dir(α) density, it is hard to evaluate the integral. We defer an investigation of the

identifiability of the concentration parameter to future work.

4.7.2 Experimental Details

4.7.2.1 Computational cost of VLAD

In this section, we tally up the computational cost of VLAD. The dominant cost it

that of computing the top K singular factors of the centered data matrix X̄. This costs

O(DKn) floating point operations (FLOP’s). The cost of the subsequent clustering step

is asymptotically negligible compared to the cost of the SVD. Assuming each step of the

K-means algorithm costs O(Kn) FLOP’s and the algorithm converges linearly, we see

that the cost of obtaining an O( 1
n
)-suboptimal solution is O(Kn log n). We discount the

cost of Monte Carlo estimates of the extension parameter because it can be tabulated.

Thus the computational cost of the algorithm is dominated by the cost of computing

the SVD.
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Figure 4.24: Negative log-
likelihood for Poison data
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Figure 4.26: Held out data performance for varying DSN geometry
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likelihood for Poison data
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Figure 4.30: Held out data performance for increasing α

4.7.2.2 Additional results

Additional results for convergence behavior We complement the results pre-

sented in Fig. 4.9 with the corresponding plots of the likelihood evaluated on a set of

held out data. These results are summarized in Fig. 4.9. For all plots, the smaller value

is better. We see that VLAD shows performance as good as HMC and Gibbs sampler

at a much lower computational time.

Additional results for geometry of the DSN Again, we further support our

results of Fig. 4.13 with the corresponding held out data likelihood scores. Fig. 4.26

summarizes the results - VLAD shows competitive performance.
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Additional results for varying Dirichlet prior In Figure 4.30 we demonstrate

held out data likelihood corresponding to experiments of Fig. 4.17. We see that VLAD

performs well in the whole range of analyzed values and likelihood kernels.

Data generation for simulations studies For all experiments, unless otherwise

specified, we set D = 500, K = 10, α = 2, n = 10000 (for LDA vocabulary size D = 2000).

To generate DSN extreme points, for Gaussian data we sample β1, . . . , βK ∼ N (0, K);

for Poisson data β1, . . . , βK ∼ Gamma(1, K1); for the LDA β1, . . . , βK ∼ DirD(η) with

η = 0.1. To ensure skewed geometry we further rescale extreme points towards their

mean by uniform random factors between 0.5 and 1. To do so first compute the mean

of extreme points C = 1
K

∑
k βk and then rescale each one with βk = C + ck(βk − C),

where ck ∼ Unif(cmin, 1). Except for the DSN geometry experiment, we set cmin = 0.5.

Then we sample weights θi ∼ DirK(α) and data mean µi =
∑

k θikβk. For Gaussian

data xi|µi ∼ N (µi, σ
2ID), σ = 1; for Poisson data xi|µi ∼ Pois(µi); for LDA we follow

standard generating process of Blei et al. (2003) with 3000 words per document. All

experiments were run for 20 repetitions and mean was used in the plots along with half

standard deviation error bars.

Baseline methods and algorithms setups We considered four separability based

NMF algorithms: Xray (Kumar et al. (2013)) with code from https://github.com/

arbenson/mrnmf; MVES (Chan et al. (2009)) with code from http://www.ee.nthu.

edu.tw/cychi/source_code_download-e.php; Sequential Projection Algorithm (Gillis

and Vavasis (2012)) that we implemented in Python; RecoverKL (Arora et al. (2013)) for

the LDA case with code from https://github.com/MyHumbleSelf/anchor-baggage.

Bayesian NMF approaches often assume positive weights without the simplex con-
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straint imposed by the Dirichlet prior on weights. Incorporating the simplex constraint

complicates the inference (Paisley et al. (2014)) as Dirichlet distribution is not con-

jugate to popular choices of data likelihood such as Gaussian or Poisson. Therefore

we are not aware of any implementation for DSN type of models outside of the LDA

scenario. We instead chose to compare to automated Bayesian inference methods. We

implemented DSN inference with Poison and Gaussian likelihoods in Stan (Carpenter

et al. (2017)) and considered all three supported estimation procedures: HMC with No

U-Turn Sampler (Hoffman and Gelman (2014)), MAP optimization and (Kucukelbir

et al. (2017)) Automatic Differentiation Variational Inference. MAP optimization and

ADVI performed poorly and we did not report their performance. HMC was always

trained with true value of α and with knowledge of σ = 1 for the Gaussian scenario.

Number of iterations was set to 80 for n < 3000, 60 for n = 3000 and 40 for n > 3000.

We had to restrict number of iterations due to prohibitively long running time (40

iterations for n = 30000 took 3.5 hours for Gaussian likelihood and 14 hours for Poisson

likelihood; VLAD took 7 seconds in both cases). For the LDA, we used Gibbs sampler

(Griffiths and Steyvers (2004)) from https://github.com/lda-project/lda trained

for 1000 iterations (1000 iterations for n = 30000 took 3.6 hours; VLAD took 3min).

Gibbs sampler was trained with true values of α and η. We used Stochastic Variational

Inference (Hoffman et al. (2013)) implementation from scikit-learn (Pedregosa et al.

(2011)) and trained it with true values of α and η.

For the Geometric Dirichlet Means (Yurochkin and Nguyen (2016)) we used imple-

mentation from https://github.com/moonfolk/Geometric-Topic-Modeling with 8

K-means restarts and ++ initialization.

VLAD was implemented in Python using numpy SVD package and scikit-learn

(Pedregosa et al. (2011)) K-means clustering with 8 restarts and ++ initialization. The
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code is available at https://github.com/moonfolk/VLAD.

For the NYT data https://archive.ics.uci.edu/ml/datasets/bag+of+words

we trained Gibbs sampler with α = 0.1 and η = 0.1 for 1000 iterations and SVI with

default settings. For the stock data we trained HMC for 100 iterations with α = 0.05.

4.7.3 On asymmetric Dirichlet prior

In our work we assumed that θi ∼ DirK(α), where α ∈ R+. When α is a scalar,

the corresponding Dirichlet distribution is referred to as symmetric. More generally,

α ∈ RK
+ is a vector of parameters. Our algorithmic guarantees, such as alignment of

CVT centroids of B, extreme points and centroid of B and equivalence of extension

parameters for all extreme points directions, fail for the general asymmetric case. Wallach

et al. (2009) showed that more careful treatment of the parameter α can improve the

quality of the LDA topics. Geometric treatment of the asymmetric Dirichlet distribution

remains to be the question of future studies. To facilitate the discussion, here we

visualize the problem using toy D = 3, K = 3 example (similar to Fig. 4.5 ) with

α = (0.5, 1.5, 2.5). Results of the four different algorithms are shown in Fig. 4.35. Note

that for VLAD (Fig. 4.34) we only show the directions of the line segments of the

obtained sample CVT centroids and the data center, since we do not have a procedure

for extension parameter estimation in the asymmetric Dirichlet case. We see that all of

the algorithms fail with various degrees of error and notice that the directions obtained

by VLAD no longer appear consistent, however do not deviate drastically from the truth.

We propose to call such toy triangle experiment a triangle test and hope to "pass" the

asymmetric Dirichlet triangle test in the future work.
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Figure 4.31: GDM
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Figure 4.32: Xray
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Figure 4.33: HMC
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Figure 4.34: VLAD

Figure 4.35: Asymmetric Dirichlet toy simplex learning: n = 5000, D = 3,K = 3, α =
(0.5, 1.5, 2.5)
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CHAPTER V

Robust Representation Learning of Temporal

Dynamic Interactions

Robust representation learning of temporal dynamic interactions is an important

problem in robotic learning in general and automated unsupervised learning in particular.

Temporal dynamic interactions can be described by (multiple) geometric trajectories in

a suitable space over which unsupervised learning techniques may be applied to extract

useful features from raw and high-dimensional data measurements. Taking a geometric

approach to robust representation learning for temporal dynamic interactions, it is

necessary to develop suitable metrics and a systematic methodology for comparison and

for assessing the stability of an unsupervised learning method with respect to its tuning

parameters. Such metrics must account for the (geometric) constraints in the physical

world as well as the uncertainty associated with the learned patterns. 1In this chapter we

introduce a model-free metric based on the Procrustes distance for robust representation

learning of interactions, and an optimal transport based distance metric for comparing

between distributions of interaction primitives. These distance metrics can serve as

an objective for assessing the stability of an interaction learning algorithm. They are
1This work has been published in Guha et al. (2020)
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also used for comparing the outcomes produced by different algorithms. Moreover, they

may also be adopted as an objective function to obtain clusters and representative

interaction primitives. These concepts and techniques will be introduced, along with

mathematical properties, while their usefulness will be demonstrated in unsupervised

learning of vehicle-to-vechicle interactions extracted from the Safety Pilot database, the

world’s largest database for connected vehicles.

5.1 Introduction

Advances in large scale data processing and computation enables the application of

sophisticated learning algorithms to robotic design in complex and dynamic environments.

In many applications a fundamental challenge lies not only in learning about the

interaction between the ego agent and the environment, but also interactions between

multiple agents. Due to the high dimensionality and typically noisy nature of the data

required for such learning tasks, a standard approach is to utilize strong modeling

assumptions on the interactions. For example, the interaction between a robotic agent

and the environment can be represented by instantaneous physical variables such as

positions, velocities, a time series of which are then endowed with a stationary distribution

for mathematical convenience and interpretability (e.g., via a Markov process framework).

While such approach is useful in highly controlled environments, the strong modeling

assumption are usually violated in domains where the interactions among agents and

with the environment are highly dynamic Foerster et al. (2017). Such domains require

the development of more robust and data-driven representation learning approaches.

As a concrete example which serves as a primary motivation for this work, take

the interaction between two intelligent vehicles that approach each other in a typical
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intersection. What the two vehicles proceed to do next depend on what they can learn

of their encounter in real-time. The two cars may come toward the intersection in

varying speeds at perhaps slightly different time points. They may or may not signal

their intention. For example, one plans to go straight while the other plans to take

a turn cutting through the other’s path. Not only do the two agents have to learn

their temporally varying interaction, they have to do so quickly and accurately while

continually negotiating the traffic. In this type of applications where the interaction is

highly dynamic, a promising approach to robust interaction learning is by decomposing

the interaction in terms of simpler elements Frazzoli et al. (2005); Wang and Zhao (2017).

For traffic applications, such interaction elements are called traffic primitives. These

primitives can be learned, labeled, and effectively utilized for subsequent tasks such as

vehicle trajectory prediction Zhu et al. (2019), traffic data generation Ding et al. (2018);

Zhang et al. (2019), or anomaly detection Zhang and Wang (2019).

Stripping away the language of vehicle-to-vehicle (V2V) interactions, the temporal

dynamic interaction between two agents comprises of a pair of well-aligned trajectories

defined on a suitable space that satisfy constraints presented by the environment

and agents’ behaviors. Thus, the goal of robust representation learning of a pairwise

interaction between the two dynamic agents boils down to the learning of pairs of

functions or curves which describe the aligned car physical movements and/or driving

behaviors. Such a mathematical viewpoint can be generalized to interactions among

three or more vehicles. In this chapter we will focus on the learning of interactions

in two-agent dynamic scenarios. Although our work is motivated by the learning of

multi-agent traffic interaction’s primitives, we believe that the techniques developed here

can be utilized to other settings of multi-agent temporal dynamic interaction learning.

Within the context of real-world traffic learning, both rule-based methods Frazzoli
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et al. (2005), supervised learning Pervez et al. (2017), and unsupervised learning Wang

and Zhao (2017) have been applied to identify the interaction primitives. Due to the

heterogeneity and complexity of traffic scenarios, unsupervised learning is a powerful tool

to identify latent structures in unlabeled traffic scenario time series data; the goal is to

organize the data into homogeneous groups/ clusters Bender et al. (2015); Hamada et al.

(2016); Taniguchi et al. (2015); Wang et al. (2017); Liao (2005). Within automatically

learned clusters, interpretable and typical driving behaviors can be obtained and analyzed,

e.g., left/right turns along with multiple attributes including speed, acceleration, yaw

rate and side-slip angle using Dynamic Time Wrapping (DTW) as a similarity measure

Yao et al. (2019). Statistical model-based approaches that can learn complex driving

behaviors while allowing for encoding domain-knowledge are also available. For instance,

primitive segments extracted from time series traffic data can be obtained without

specifying the number of categories via Bayesian nonparametric methods based on

Dirichlet processes. They include hierarchical Dirichlet Process Hidden Markov Model

(HDP-HMM) Taniguchi et al. (2016); Wang et al. (2017). Dirichlet process mixtures of

Gaussian processes were also successfully employed to identify complex multi-vehicle

velocity fields Guo et al. (2019); Joseph et al. (2011).

Given the plethora of methods and the need for learning complex interaction patterns

in dynamic domains, it is natural to ask which method one should use. For unsupervised

learning, this question is particularly challenging because one typically works with

unlabelled data and without immediately available objective functions for the quality of

learned clusters of interactions, especially ones which are mathematically represented

as a collection of two or more curves taking values in a suitable space, as discussed

above. In addition, while the problem of devising techniques which are free of any tuning

parameters is an important one, parameter-free algorithms tend to be not robust. A
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typical unsupervised learning method still requires some prior knowledge or pre-defined

parameters (tuning knobs). As a result, clustering results may still be sensitive to these

choices. Thus, even when a method is settled on, it is still an important issue how to

handle the various tuning knobs and to assess their sensitivity, or stability with respect

to changes in the tuning parameters.

Identifying suitable clustering criteria and analyzing learning stability/sensitivity

have received much attention in data mining and statistical learning literatures. For

clustering criteria, there are broadly two categories: internal and external criteria Xu

and Wunsch (2009). Internal criteria relies on a similarity or dissimilarity measure that

may be applied to the data samples. Such measures evaluate how alike the members

of the same cluster are, how different the members of different clusters are, or some

combination of thereof Rokach and Maimon (2005); Xu and Tian (2015). On the

other hand, there is a priori structure how the data should be partitioned, external

criteria allow one to compare the clustering results against this structure Rokach and

Maimon (2005). Examples include Rand index, mutual information and model-based

likelihood-type objectives Xu and Tian (2015).

Meanwhile, there is a rich literature on sensitivity analysis that focuses on the impacts

of changes in model/method specification on the learning outcomes, see, e.g. textbooks

Chatterjee and Hadi (1988); Saltelli et al. (2004, 2008). If we focus on Bayesian methods

or model-based methods, the key issue is on the effect of the prior/ model specification.

While there are a number of variations, most sensitivity analysis techniques involve

model fitting with varying prior/ model specifications, and assessing the impacts on

posterior distributions or estimates of parameters of interest. A model is said to be

robust if the estimates are relatively insensitive to such varying specifications Gustafson

(2000); Sivaganesan (2000). Alternatively, instead of varying the model parameters
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one may consider perturbing data: a geometric framework was developed to conduct

sensitivity analysis with respect to the perturbation of the data, the prior and the

sampling distribution for a class of statistical models. Within this framework, various

geometric quantities were studied to characterize the intrinsic structure and effect of

the perturbation Zhu et al. (2011).

To assess the quality of unsupervised learning methods for temporal dynamic inter-

actions, at a high level one may consider the aforementioned methods and frameworks.

Moreover, it is necessary to develop a set of suitable metrics for interaction comparison

and for assessing the stability of an unsupervised learning method with respect to

its tuning parameters. Motivated by the representation of dynamic vehicle-to-vehicle

interactions that arise in the traffic learning domain, one has to effectively deal with

pairs of aligned functions, i.e., trajectories taking values in a suitable space, which is

typically non-Euclidean and has high or infinite dimensions. Such metrics must account

for the geometric constraints in the physical world as well as the uncertainty associated

with the learned patterns.

To this end, we introduce a model-free metric on pairs of functions based on a

Procrustes-type distance, and an optimal transport based Wasserstein distance metric

for comparing between distributions of such pairs of functions. The former metric is

critical because it preserves translation and rotation invariance, key properties required

for capturing the essence of the temporal dynamic between two autonomous or semi-

autonomous agents (e.g., vehicles or robots). The latter metric is also appropriate

because the result of a clustering algorithm can be mathematically represented as the

solution of an optimal transport problem Graf and Luschgy (2000); Ho et al. (2017). In

addition to some connection to optimal transport based clustering, it is worth noting

how our technical contributions are also inspired by several other prior lines of work.
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In particular, Procrustes-type metrics have been employed in generalized Procrustes

analysis which solves the problem of reorienting points to a fixed configuration Gower

(1975). Similar metrics have also been successfully used in literature to study such

problems of shape preservation Srivastava and Klassen (2016) as well for alignment of

manifolds Wang and Mahadevan (2008); Lipman et al. (2013). In our work, we use it to

solve the clustering problem by comparing pairs of curves, each of which may be viewed

as manifolds on R2.

Finally, we note that the introduced distance metrics can serve as an objective for

assessing the stability of an interaction primitive learning algorithm. They are also

used for comparing the outcomes produced by different algorithms. Furthermore, they

may also be adopted as an objective function to obtain clusters of interactions, and the

representative interactions. These concepts and techniques will be introduced in this

chapter, along with mathematical properties, while their usefulness will be demonstrated

in the analysis of vehicle-to-vehicle interactions that arise in the Safety Pilot database

?, the world’s largest database for connected vehicles.

The chapter is organized as follows. In Section 5.2, we describe a distance metric for

pairs of trajectories and explicate its useful mathematical properties. Building on this,

Section 5.3 studies distributions of trajectory pairs, which lead to methods for obtaining

and assessing clusters of interactions. Finally, Section 5.4 illustrates our methods on the

clustering analysis of vehicle-to-vehicle interactions data.

5.2 A distance metric on temporal interactions

Because a temporal interaction between two agents is composed of trajectories, we

need to first formally define a trajectory. Let f : R → R2 denote a trajectory of an
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object (e.g., vehicles, robots). In particular, f(t) represents the location of the object at

time-point t. It suffices for our purpose to restrict to t ≥ 0.

We can consider all possible trajectories in a similar manner. Define the set of

all possible trajectories as F = {f : [0,∞) → R2 : f is continuous}. The set of

all possible trajectories up to time-point t starting from time-point s is denoted by

F[s,t) = {f : [s, t) → R2|f ∈ F}. Similarly for (t1, . . . , tk) ∈ Rk
+ we will use Ft1,...,tk :=

{(f(t1), . . . , f(tk)) : f ∈ F}. Also, we define F := ∪s,t∈R+F[s,t).

Next, operations can be defined on these trajectories. For any c ∈ R2, and f ∈ F

we define f + c ∈ F as (f + c)(x) = f(x) + c for all x ∈ [0,∞). Similarly, for any

orthogonal matrix O ∈ R2×2, define the function O � f ∈ F as (O � f)(x) = O · f(x)

for all x ∈ [0,∞), where O · f(x) is the usual matrix product between matrix O and

vector f(x) which have matching dimensions.

With these definitions in place, we now define an interaction and operations on

these interactions. An interaction is an ordered pair (f1, f2) such that f1, f2 ∈ F.

We also define operations on interactions as well. Let SO(n) be the group of n × n

orthogonal matrices with determinant +1. For a pair f1, f2 ∈ F, we define O(f1,f2) =

{(O � f1, O � f2) : O ∈ SO(2)}. Similarly, define C(f1,f2) = {(f1 + c, f2 + c) : c ∈ R2}.

5.2.1 Rotation and translation-invariant metrics on curves

To evaluate the stability and overall quality of clustering, we want a distance metric,

d : F2 × F2 → R+, where (F2 = F× F), that has the following properties:

(a) Distance between two interactions is invariant with respect to the re-ordering of

corresponding trajectories, i.e., for f11, f12, f21, f22 ∈ F, the following holds:

d((f11, f12), (f21, f22)) = d((f12, f11), (f21, f22)).
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(b) Distance between a pair of interactions is invariant of starting points of the

trajectories composing the interactions, given the knowledge of the relative distance

of the starting points of trajectories comprising each interaction. Specifically, if

(f ′1, f
′
2) ∈ C(f1,f2) ∪ O(f1,f2), then,

d((f ′1, f
′
2), (f1, f2)) = 0.

Condition (a) enables the removal of order in a pair of curves in an interaction,

while condition (b) in essence characterizes rotational and translational invariance

of interactions. We will henceforth use (O, C)(f1,f2) to denote the set {(O � f1 + c, O �

f2 + c) : O ∈ SO(2), c ∈ R2}. As shown in Lemma 5.6.1, condition (b) implies that

d((f11, f12), (f21, f22)) = d((O�f11 + c, O�f12 + c), (f21, f22)) for all c ∈ R2, O ∈ SO(2).

This appears to be a reasonable requirement since the exact location and orientation

of interactions should not affect the classification of different interactions into clusters

characterized by "primitives". Note that throughout this chapter we only consider

non-reflective rotational transforms, i.e., transforms involving orthogonal matrices, O,

such that det(O) = +1.

Let ρ be a distance metric for F2. We will then construct a metric d satisfying (a)

and (b) from ρ. Definition 5.2.1 shows how we can define d in terms of ρ.

Definition 5.2.1. Define Procrustes distance

d((f11, f12), (f21, f22)) (5.1)

:= inf
(f ′1,f

′
2)∈(O,C)(f21,f22)

{
min

{
ρ((f11, f12), (f ′1, f

′
2)), ρ((f12, f11), (f ′1, f

′
2))

}}
.

From the definition of metric d above, it is clear that (f21, f22) ∈ (O, C)(f11,f12) ∪
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(O, C)(f12,f11) ⇐⇒ d((f11, f12), (f21, f22)) = 0. With that knowledge, we can define an

equivalence relation, ∼, as

(f11, f12) ∼ (f21, f22) ⇐⇒ d((f11, f12), (f21, f22)) = 0. (5.2)

Although d is not a proper metric on F2, as Proposition 5.2.1 shows, d does define a

metric on the quotient space relative to the equivalence relation.

Proposition 5.2.1. Let ρ be a distance metric on F2 such that for all f11, f12, f21, f22 ∈

F,

(i) ρ satisfies, for some function h,

ρ((f11, f12), (f21, f22)) = h((f11, f12)− (f21, f22)).

(ii) ρ is an inner-product norm.

Then d given by Eq. (5.1) is a distance metric on the quotient space F2/ ∼.

Proposition 5.2.1 also provides a method to build a metric satisfying conditions (a)

and (b) above. One way to do so is from a probability measure perspective. In fact, let

µ be a probability measure on [0,∞). We consider the set of trajectories with integrable

Euclidean norm on [0,∞), i.e., we restrict attention to the following set of trajectories:

F2(µ) =

{
f : [0,∞)→ R2

∣∣∣∣f is continuous,
∞∫

0

‖f(x)‖2
2µ(dx) <∞,

}

where ‖ · ‖2 is the Euclidean norm in R2. For our purposes, we use ρ as the usual

Euclidean metric on F2
2(µ) := F2(µ) × F2(µ). Namely, for (f11, f12), (f21, f22) ∈ F2

2(µ),
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we use

ρ((f11, f12), (f21, f22))2 := ‖f11 − f21‖2
2 + ‖f12 − f22‖2

2, (5.3)

where ‖f1i−f2i‖2
2 =

∫∞
0
‖f1i(x)−f2i(x)‖2

2µ(dx), i = 1, 2. Here and henceforth we assume

that the trajectories f11, f12, f21, f22 all span across the same length of time. Note that

this choice of metric satisfies the criteria in Proposition 5.2.1. Also, equivalently, to

define similar rotation and translation invariant metrics on F[s,t), for any s < t 6=∞, we

can simply choose any probability measure µ with support on [s, t).

Proposition 5.2.2 below provides a simple method to explicitly compute the metric d

between interactions, when ρ is given by (5.3). We will need the following notation:

(A1) For (f11, f12), (f21, f22) ∈ F2
2(µ), let UDV T be the singular value decomposition

for the matrix given by

2∑
i=1

∞∫
0

(
f2i(x)− f̄2·(x)

) (
f1i(x)− f̄1·(x)

)T
µ(dx),

where f̄2·(x) =
∫∞

0
(f21(x) + f22(x))/2 µ(dx) and

f̄1·(x) =
∫∞

0
(f11(x) + f12(x))/2 µ(dx).

Each of the summands in (A1) form a 2× 2 dimensional matrix. Here, f̄1(x) denotes

the elementwise integration of the 2 × 1 vector (f11(x) + f12(x))/2. Moreover, the

outer-integral in each of the summands in (A1) is an elementwise integral of the 2× 2

matrix integrand formed by matrix multiplication of the 2× 1 vector
(
f21(x)− f̄2·(x)

)
and the 1× 2 vector

(
f11(x)− f̄1·(x)

)T .
Proposition 5.2.2. Assume f11, f12, f21, f22 ∈ F2(µ). Let UDV T be the singular value
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decomposition as in (A1). Then,

inf
(f ′1,f

′
2)∈(O,C)(f21,f22)

(ρ((f11, f12), (f ′1, f
′
2)))2 = −2 trace

D
1 0

0 det(V TU)




+
2∑
i=1

∞∫
0

∥∥∥∥f2i(x)− f̄2·(x)

∥∥∥∥2

2

+

∥∥∥∥f1i(x)− f̄1·(x)

∥∥∥∥2

2

µ(dx).

The optimal O, C that define the infimum are given by :

Õ = V T

1 0

0 det(V TU)

U,
C̃ = f̄1·(x)− Õ ·

(
f̄2·(x)

)
.

(5.4)

The proof of the proposition is discussed in Section 5.6.1.2. The problem discussed

in Propostion 5.2.2 is a version of the well-known least root mean square deviation

problem. It was first solved by the Kabsch algorithm Kabsch (1976, 1978). A more

computationally efficient method to compute the optimal O, C was later obtained using

the theory of quarternions Horn (1986); Coutsias et al. (2004).

5.3 Quantifying distributions of primitives

The metric defined above can be used to obtain clusters of interactions, in addition

to evaluating the overall quality and stability of a particular clustering method. Our

starting point is to note that the problem of clustering or summarizing interactions

can be formalized as finding a discrete distribution on the space of interactions. More

specifically, one needs to obtain a discrete probability distribution on interactions, where

each supporting atom represents a typical interaction (namely, an interaction primitive)
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and the mass associated with each atom represents the proportion of a cluster. From

this perspective, an objective that naturally arises is to minimize a distance from the

empirical distribution of interactions to a discrete probability measures with a fixed

number, say k, of supporting atoms, which represent the primitives. An useful tool for

defining distance metrics on the space of distributions arises from the theory of optimal

transport Villani (2003).

Optimal transport distances enable comparisons of distributions in arbitrary struc-

tured and metric spaces by accounting for the underlying metric structure. They have

been increasingly adopted to address clustering in a number of contexts Pollard (1982a);

Graf and Luschgy (2000); Ho et al. (2017). For instance, it is well-known that the

problem of determining an optimal finite discrete probability measure minimizing the

second-order Wasserstein distance W2 to the empirical distribution of the data is di-

rectly connected to the k-means clustering problem (discussed in Section III in details).

Inspired by this connection, we will seek to summarize the distribution of interactions

appropriately. To this end, we will define Wasserstein distances for distributions of

interactions as follows, by accounting for the metric structure developed in the previous

section.

Let d be a distance metric on F2
2(µ)/ ∼, where ∼ is the equivalence relation defined

in Eq. (5.2).

Fix [(f11, f12)] ∈ F2
2(µ)/ ∼. Here, [(f11, f12)] denotes the equivalence class corre-

sponding to interaction (f11, f12) relative to the equivalence relation ∼ and F2
2(µ)/ ∼

denotes the collection of all such classes of interactions. Let P (F2
2(µ)/ ∼) denote all

probability measures on F2
2(µ)/ ∼. For a fixed order r ≥ 1, define the following subset

of P (F2
2(µ)/ ∼) subject to a moment-type condition using the metric d:
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Pr(F2
2(µ)/ ∼) :=

{
G ∈ P (F2

2(µ)/ ∼)|∫
dr([(f21, f22)], [(f11, f12)])dG([(f21, f22)]) <∞

}
.

This class of probability measures can be shown to be independent of the choice of

[(f11, f12)] and therefore the collection of order-r integrable probability measures on the

quotient space F2
2(µ)/ ∼ is independent of the choice of the base class [(f11, f12)]. We

arrive at the following distance metric to compare between probability measures on the

quotient space F2
2(µ)/ ∼. This is an instantiation of Wasserstein distances that arise in

the theory of optimal transport in metric spaces Villani (2003).

Definition 5.3.1 (Wasserstein distances). Let F,G ∈ Pr(F2
2(µ)/ ∼). The Wasser-

stein distance of order r between F and G is defined as:

Wr(F,G) :=

(
inf

π∈Π(F,G)

∫
dr([(f11, f12)], [(f21, f22)])dπ([(f11, f12)], [(f21, f22)])

)1/r

,

where Π(F,G) is the collection of all joint distributions on F2
2(µ)/ ∼ ×F2

2(µ)/ ∼ with

marginals F and G.

5.3.1 Wasserstein barycenter and k-means clustering

In this section, we present the Wasserstein barycenter problem and highlight its

connection to the k-means formulation.

Wasserstein barycenter problem Fixing the order r = 2, let P1, P2, . . . , PN

∈ P2(F2
2(µ)/ ∼) be probability measures on F2

2(µ)/ ∼. Their second-order Wasserstein
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barycenter is a probability measure P̄N,λ such that

P̄N,λ = argmin
P∈P2(F2

2(µ)/∼)

N∑
i=1

λiW
2
2 (P, Pi).

The Wasserstein barycenter problem was first studied by Agueh and Carlier (2011).

When Pi are themselves finite discrete probability measures on arbitrary metric spaces, ef-

ficient algorithms are available for obtaining locally optimal solutions to the above Cuturi

and Doucet (2014).

k-means clustering problem The k-means clustering problem, when adapted to

obtaining clusters in a non-Euclidean space of interactions, can be viewed as solving for

the set S of k elements [(g11, g12)], . . . , [(gk1, gk2)] ∈ F2
2(µ)/ ∼ such that, given samples

(f11, f12), . . . , (fn1, fn2) ∈ F2(µ)

S = argmin
T :|T |≤k

n∑
i=1

inf
[(f ′1,f

′
2)]∈T

d2([(fi1, fi2)], [(f ′1, f
′
2)]). (5.5)

It can be shown that this is equivalent to finding a discrete measure P which solves

the following for the choice r = 2:

inf
P∈Ok(F2

2(µ)/∼)
Wr(P, Pn), (5.6)

where Pn is the empirical measure on F2
2(µ)/ ∼, i.e., Pn places mass 1/n on equivalence

class sample [(fi1, fi2)] for all i = 1, . . . , n, and Ok(F2
2(µ)/ ∼) is the set of all measures

in F2
2(µ)/ ∼ with at most k support points. (It is interesting to note that Eq. (5.6) is a

special case of the Wasserstein barycenter problem for N = 1 and r = 2.)
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At the high level our approach is simple: we seek to summarize the empirical

data distribution of interactions using a k-means-like approach, but there are several

challenges due to the complex metric structure exhibited by the non-Euclidean space of

interactions. Finding the exact solution even in the simplest cases is an NP-hard problem.

The most common method to approximate the solution is the use of iterative steps

similar to Lloyd’s algorithm Lloyd (1982) for solving the Euclidean k-means problem.

However, the computation of cluster centroids at each iteration of Lloyd’s algorithm

when applied to the non-Euclidean metric d is non-trivial. Moreover, the computation

of pairwise distances between equivalence classes of interactions is non-trivial. In the

next subsection we present some approximate solutions to Eq. (5.5).

5.3.2 Approximations for non-Euclidean k-means clustering

The primary objective for this section is to obtain a robust representation for

the distribution over interaction primitives. Although the empirical distribution of

interactions provides an estimate of the distribution over primitives, it suffers from

lack of robustness guarantees. A robust k-approximation for the empirical distribution

is formalized by Eq. (5.6). For order r = 2 this is equivalent to solving the k-means

problem given by Eq. (5.5) for the interaction scenarios. The computational problem for

computing exact centroids of k-means clusters is cumbersome and generally not solvable

for arbitrary distance metrics d. To overcome such challenges we propose three separate

methods to obtain approximate solutions to Eq. (5.5). The first approach is a standard

application of multi-dimensional scaling technique. The second and third approaches

are based on other geometric ideas to be described in the sequel.
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5.3.2.1 Multidimensional Scaling

Multi-dimensional scaling (MDS) provides a way to obtain a lower dimensional

representation of high-dimensional and/or non-Euclidean space elements while approxi-

mately preserving some distance measure among data points. Given a distance (a.k.a.

dissimilarity) matrix D = (dij)1≤i,j≤n, which collects all pairwise distance among the

n data points using a notion of distance such as metric d described earlier, MDS finds

points x1, . . . , xn ∈ Rm, for some small dimension m, such that

{x1, . . . , xn} = argmin
y1,...,yn∈Rm

n∑
i,j=1

(‖yi − yj‖ − dij)2 (5.7)

In order to apply the k-means clustering technique to our MDS representation, the

following implicit assumption is required:

(C1) Each of the cluster centroids for the k-means problem corresponds to an interaction

in the data sample.

Given (C1), Eq. (5.5) can be reformulated as follows.

Approximate k-means Given interaction samples (f11, f12), . . . , (fn1, fn2) ∈ F2(µ),

find a set S ⊂ {1, . . . , n} such that,

S = argmin
T :|T |≤k

n∑
i=1

min
j∈T

d2([(fi1, fi2)], [(fj1, fj2)]). (5.8)

The approximate k-means problem in Eq. (5.8) differs from the k-means problem (5.5)

in that instead of finding primitives that are the global minimizer (and hence correspond

to the cluster means), we look for the primitive that is closest to all other interactions

in its cluster. The advantage of this approach is that we do not need explicitly the
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inverse map that goes from the MDS representation back to the interaction space. We

summarize this approach as Algorithm 5.1 in the following.

Algorithm 5.1 Clustering interactions
Input: interaction sample {(fi1, fi2)}ni=1

Output: k interaction primitives
1: Obtain x1, . . . , xn as solution of MDS Eq. (5.7) with dij = d([(fi1, fi2)], [(fj1, fj2)]).
2: Perform k-means on x1, . . . , xn to obtain the centroids.
3: Approximate the centroids with points xi ∈ Rm which are closest in ‖ · ‖ distance to

the centroids, Γ1,Γ2, . . . ,Γk.
4: Return as primitives the k interaction sample corresponding to these approximate

centroids, {(gj1, gj2)}kj=1.

5.3.2.2 Geometric Approximations

A major computational challenge to solving Eq. (5.8) lies in the SVD decomposition

of the Procrustes distances (Eq. (5.1)) relative to each pair of interactions. There require

O(n2) such decomposition. To avoid this, we instead consider a geometric approximation

of the Procrustes distance, inspired by work from the field of morphometrics Stegmann

and Gomez .

Consider two interactions (fi1, fi2) and (fj1, fj2). Then, by an application of triangle

inequality,

inf
(f ′1,f

′
2)∈(O,C)(fj1,fj2)

ρ((fi1, fi2), (f ′1, f
′
2)) (5.9)

= inf
O1∈SO(2),c1∈R2

ρ((fi1, fi2), O1 � (fj1, fj2) + c1)

≤ inf
O1∈SO(2),c1∈R2

ρ((f11, f12), O1 � (fj1, fj2) + c1)

+ inf
O2∈SO(2),c2∈R2

ρ((f11, f12), O2 � (fi1, fi2) + c2).

Eq. (5.9) shows that knowledge of optimal rotational matrices and translation vectors
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for computing the distances d([(fi1, fi2)], [(f11, f12)]) and

d([(fj1, fj2)], [(f11, f12)]) can provide an upper bound for computing the distance be-

tween the ith and jth pair of interactions. Therefore, we can provide a reasonable upper

bound for all the n2 pairwise distances by simply performing only O(n) SVD decompo-

sitions. This approach, which we call the first geometric approximation, is summarized

in Algorithm 5.2.

Algorithm 5.2 First Geometric Approximation
Input: {(fi1, fi2)}ni=1

Output: k centroids
1: for i = 1, 2, . . . , n do
2: Center and reorient (fi1, fi2) to (f11, f12) using Algorithm 5.4.
3: end for
4: Perform k-means on the centered and oriented {(fi1, fi2)}ni=1 to obtain the centroids,
{(Γj1,Γj2)}kj=1.

5: Return the centroids, {(Γj1,Γj2)}kj=1.

However, this gain in computation efficiency is also accompanied by a loss of statistical

efficiency. To mitigate this tension between computational and statistical efficiency

we propose a second geometric approximation which performs the approximation of

Algorithm 5.2 in batch form, where the batches comprise of the respective clusters. This

procedure is described in Algorithm 5.3.

5.4 Experimental Results

In this section we provide a demonstration of our methods for unsupervised learning

of vehicle interactions. In particular, we will evaluate the quality and stability of

clustered primitives extracted from vehicle-to-vehicle interactions based on real-world

experiments conducted in Ann Arbor, Michigan. In the literature for this application

domain, a real-time interaction between two vehicles is also alternatively referred to
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Algorithm 5.3 Second Geometric Approximation
Input: {(fi1, fi2)}ni=1

Output: k centroids
1: Randomly assign interaction samples {(fi1, fi2)}ni=1 to k clusters. Let zi indicate the

cluster assignment.
2: while k-means convergence criterion has not been met do
3: for k′ = 1, 2, . . . , k do
4: Center and orient all interaction samples (fi1, fi2) to (fik′1, fik′2) using Algorithm

5.4 if (fik′1, fik′2) is the first interaction sample such that zi = k′ for i = 1, 2, . . . n.
Denote these oriented and centered samples as (f ′i1, f

′
i2)(t).

5: Compute the centroid for cluster j, (Γj1,Γj2), such that for t = 1, 2, . . . , tm,

(Γj1,Γj2)(t) =
1

# (zi = k)

∑
i:zi=k

(f ′i1, f
′
i2)(t)

6: end for
7: for i = 1, 2, . . . , N do
8: for j = 1, 2, . . . , k do
9: Center and orient (fi1, fi2) to (Γj1,Γj2).

10: Compute the L2 distance between the centered and oriented (fi1, fi2) and
(Γj1,Γj2).

11: end for
12: Set zi = j if the smallest computed distance is from the centroid of cluster j.
13: end for
14: end while
15: Return the centroids, {(Γj1,Γj2)}kj=1.

as an encounter. In practice, the interactions between vehicles are represented by

multi-dimensional time series of varying duration, which need to be further segmented

into shorter time duration via suitable data processing techniques.

5.4.1 Vehicle-to-vehicle (V2V) interaction data processing

We work with a real-world V2V interaction data set which is extracted from the nat-

uralistic driving database generated by experiments conducted as part of the University

of Michigan Safety Pilot Model Development (SPMD) program. In these experiments,
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Figure 5.1: Mul-
tidim. Scaling (cf.
Section 5.3.2.1)

Figure 5.2:
First geometric
approx. (cf.
Section 5.3.2.2)

Figure 5.3: Sec-
ond geometric ap-
prox. (cf. Sec-
tion 5.3.2.2)

Figure 5.4: Poly-
nomial coefficients
(cf. Section 5.4.2)

Figure 5.5:
DTW cost matrix
(cf. Wang and
Zhao (2017))

Figure 5.6: Silhouette plots for 5 clusters obtained under various approaches:

3*
Total within

Square Distance 3*

Cluster 1
Average within
Square Distance 3*

Cluster 5
Average within
Square Distance 3*

Cluster 1
Average between
Square Distance 3*

Cluster 5
Average between
Square Distance

MDS 10.68 1.74e-03 (1.53e-05) 1.23e-02 (4.60e-04) 1.55e-02 (4.57e-04) 1.17e-01 (5.13e-03)

First Geometric Approx. 13.32 9.50e-04 (2.96e-05) 6.33e-03 (3.92e-04) 5.01e-02 (4.97e-03)) 1.12e-02 (2.92e-04)

Second Geometric Approx. 274.27 3.97e-03 (1.42e-04) 8.01e-02 (1.38e-03) 1.86e-02 (8.43e-04) 1.84e-02 (1.51e-03)

Spline Coefficients 222.56 5.02e-02 (3.91e-03) 9.40e-02 (1.05e-02) 5.95e-02 (4.27e-03) 2.05e-01 (2.33e-02)

DTW Matrices 201.12 3.12e-02 (4.51e-03) 9.00e-03 (3.41e-04) 5.01e-02 (6.30e-03) 9.38e-03 (3.79e-04)

Table 5.1: A table of the quantities from Eq. (5.8), Eq. (5.11), and Eq. (5.13)) for each
method’s cluster with the most interaction (Cluster 1) and cluster with the fewest (Cluster 5).
Variance of these distances are included in parentheses. Note that the Procrustes distances were
normalized so that the maximum distance between any interaction is 1.
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dedicated short range communications (DSRC) technology was utilized for the commu-

nication between two vehicles. Approximately 3,500 equipped vehicles have collected

data for more than 3 years. Latitude and longitude data of each vehicle was recorded

by the by-wire speed sensor. The on-board sensor records data in 10Hz.

To investigate basic V2V interaction behaviors, a subset of 1400 driving scenarios

was further filtered out from the SPMD’s database. Each scenario consists of a time

series of GPS locations and speeds of a pair of vehicles, which are mutually less than

100 metres apart. For our purposes, it is natural to posit that each scenario is inclusive

of multiple shorter encounters through different time duration. Pre-processing of the

data was therefore aimed at segmenting each scenario into more basic driving segments.

These segments constitute basic building blocks from which we can meaningfully learn

interaction primitives using a variety of clustering algorithms. The issue of segmentation

is akin to identifying change points on functional curves embedded in a higher dimensional

space. We consider two different segmentation schemes for V2V interaction data

processing.

The first segmentation scheme is detailed in Appendix 5.6.2. It will be called a

two-step spline approach, which goes as follows. Given an encounter, we fit it with

cubic splines in two main steps. Here, the change points act as the knots. The first

step involves identifying a large number of probable change points via a binary search

approach to add change points if adding change points reduced the squared error between

the fitted values and the observed data. The next step involves a single forward pass to

remove excess change points from consideration in order to minimize the squared error

with a penalty for the number of change points. We then segment each interaction at

the knots. This segmentation technique created a set of 5622 basic V2V interactions to

work with.
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The second segmentation scheme is considerably more complex, as it is derived from

a nonparametric Bayesian model for time series data, the sticky Hierarchical Dirichlet

Process Hidden Markov Model (HDP-HMM) Fox et al. (2009). This model extends the

basic HMM by allowing the number of hidden Markov states to be unbounded, while

encouraging the Markov process to be "sticky", that is, the state tends to be constant for

a period of time (e.g., a car tends to go straight after a long period of time). For model

selection, as we will elaborate later, one of the hyperparameters of sticky HDP-HMM is

varied. Consequently, the number of basic V2V interactions varied from 8779 to 8829

with an average of 8799 interactions.

5.4.2 Cluster analysis of V2V interactions

We evaluate the clustering of primitives qualitatively and quantitatively. For the

former, silhouette plots are useful – the silhouette, s(i), for interaction i is defined as

following:

s(i) =
b(i)− a(i)

max(a(i), b(i))
.

Here, a(i) is the average Procrustes distance between interaction i and all other interac-

tions in the same cluster as interaction i, while b(i) is the average Procrustes distance

from interaction i to those in another cluster. The cluster used for b(i) is the one that

minimizes this average distance. By definition, the silhouette ranges from -1 to 1. It will

be close to 1 if b(i) is significantly larger than a(i) and -1 if a(i) is significantly larger

than b(i). Thus, the quality of the clustering for interaction i decreases as s(i) decreases.

Plotting the silhouettes for all interactions provides a qualitative way to determine how

the clustering is performing because if most silhouettes are close to 1, the clustering is

performing well.
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Figure 5.7: Cluster 1 Figure 5.8: Cluster 2 Figure 5.9: Cluster 3

Figure 5.10: Cluster 4 Figure 5.11: Cluster 5 Figure 5.12: All clusters

Figure 5.13: Plot of the three most typical interactions organized from the cluster with
the most interaction to the cluster with the fewest for clustering using Multidimensional
scaling (cf. Section 5.3.2). The interactions are centered and oriented using Algortihm 5.4 to
(t, 2t− 1,−t, 1− 2t) for t = 0, 0.01, . . . , 1. The solid shapes and shapes with a black interior
indicate the starting location of each interaction. The dot with the black interior indicates
the second trajectory. Midpoints are indicated by dots filled in with a grey interior. Different
shapes indicate different V2V interactions. Note that the individual cluster interactions plots
are placed on their own scales.
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Figure 5.14: In-
cluster distances
from mean interac-
tions

Figure 5.15: In-
cluster distances
from typical interac-
tions

Figure 5.16: All dis-
tances from mean in-
teractions

Figure 5.17: All dis-
tances from typical
interactions

Figure 5.18: In-
cluster distances
from the mean
interactions

Figure 5.19: In-
cluster distances
from the typical
interactions

Figure 5.20: All dis-
tances from mean in-
teractions

Figure 5.21: All dis-
tances from the typi-
cal interactions

Figure 5.22: In-
cluster from mean in-
teractions

Figure 5.23: In-
cluster distances
from typical interac-
tions

Figure 5.24: All dis-
tances from mean in-
teractions

Figure 5.25: All dis-
tances from typical
interactions

Figure 5.26: Line plots showing the distribution (frequency) of interaction distance to either
the cluster mean or the typical interaction. Clusters are obtained by the first geometric method
in row 1, the second geometric method in row 2, and the cubic spline coefficients based method
in row 3 (cf. Section 5.4.2). The clusters are numbered according to the number of interactions
so that Cluster 1 has the most and Cluster 5 has the fewest. Note that the range for the y-axis
are much larger on the left plots compared to the right plots.
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forming because if most silhouettes are close to 1, the clustering is performing well.

For a more quantitative way to examine the clustering, we look at the quantity in

Eq. (5.5) and Eq. (5.8). Naturally, the method that reduces that quantity the most

should be selected. We can also break down that quantity further by the contribution

of each cluster. Specifically, suppose zi indicates the cluster membership. If (Γj1,Γj2) is

the cluster’s mean, then we report the following:

1

# (zi = k)

∑
i:zi=k

d2([(fi1, fi2)], [(Γj1,Γj2)]). (5.10)

Alternatively, if interaction j minimizes d2([(fi1, fi2)], [(gj1, gj2)]) for all zi, zj = k, the

approximate version is the following:

1

# (zi = k)

∑
i:zi=k

d2([(fi1, fi2)], [(gj1, gj2)]). (5.11)

To compare clusters with different number of interactions, we choose to divide it by the

size of the cluster. Finally, like the silhouette, it might also be helpful to compare this

against the average square Procrustes distance of one cluster’s mean V2V interaction

and the interactions of all other clusters. In other words, we report the following if the

cluster’s mean interactions are recoverable:

1

# (zi 6= k)

∑
i:zi 6=k

d2([(fi1, fi2)], [(Γj1,Γj2)]). (5.12)

Again, we can report the approximate version instead:

1

# (zi 6= k)

∑
i:zi 6=k

d2([(fi1, fi2)], [(gj1, gj2)]). (5.13)
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Note that the silhouette is more stringent because for the silhouette, we average only

the distance from interactions of the nearest cluster for an observation.

We then made these silhouette plots and calculated the quantity for five different

methods. First, we wanted to evaluate how well the three clustering approaches,

namely the Multidimensional Scaling approximation and the first and second geometric

approximations of the Procrustes distance, introduced in Section 5.3, performed. Next,

because we segmented encounters using splines, we wanted to examine the quality

of k-means clustering based on the coefficients of the cubic splines fitted to these

interactions. In other words, suppose for interaction i, we fit the cubic spline c1
i10 +

c1
i11t + c1

i12t
2 + c1

i13t
3 to (gi1)1. We do the same for (gi2)2, (gi2)1, and (gi2)2. Then, we

perform k-means on the vectors, {{c1
i1`}3

`=0, {c2
i1`}3

`=0, {c1
i2`}3

`=0, {c2
i2`}3

`=0}ni=1. We call

this approach spline coefficient clustering. Finally, dynamic time warping (DTW) is a

standard approach to match curves – in Wang et. al Wang and Zhao (2017), k-means

clustering is performed on the DTW matrices that match one trajectory to another for

each V2V interaction. This is another approach we wish to evaluate.

We focus on reporting for the case k = 5 for the moment, while the analysis can

be replicated on other choices of k. The results for encounters segmented by the two

step approach can be seen in Figure 5.6 and Table 5.1. Accordingly, the MDS approach

outlined in Algorithm 5.1 appears to perform the best whereas the spline coefficients

and DTW matrices perform the worst. The total within square distance from Eq. (5.8)

for the MDS approach in Table 5.1 is smallest and the silhouette plots in Figure 5.6

look reasonable. Indeed, even though the first geometric approximation’s average within

square distance for the clusters with most and fewest interactions is smaller and the

average between square distance is comparable or larger, the silhouette plot shows us

that the MDS approach does significantly better with the cluster with the second and
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third largest cluster. The silhouette values are much higher for that cluster than the

first geometric approximation.

For interpretability, one may be interested in visualizing typical interactions from

each clusters. Take the MDS method. There are various interesting observations in Fig.

5.13. For instance, the two clusters with most interactions are interactions in which

the vehicles do not move far from each other. On the other hand, the other clusters

have interactions in which the opposite is true. Further, while only the cluster with the

fewest interactions have vehicles going in the same direction, there are variation in how

the vehicles are moving in opposite directions. Figure 5.41 in the Appendix shows the

three most typical encounters for all clustering methods.

One can look more deeply into the distribution of interactions in each cluster, which

is revealed by Figure 5.26. The left two plots show the proportion of interactions in each

cluster a certain distance away from the mean or typical interaction for each cluster.

On the other hand, the right two plots show the proportion of interactions from the

entire data set a certain distance away for each cluster’s mean or typical interaction.

The first geometric approximation plot is ideal. While the other methods have a cluster

that peaks higher near zero, the left two plots show higher peaks near zero across all

clusters, indicating that most interactions in the cluster are close to the typical or

mean interaction. On the other hand, the right two plots show a peak near zero and

then plateau for a bit before decreasing to zero. This supports what we see in the

silhouette plot. The plateau demonstrates that the clusters are well separated because

interactions outside the cluster are further away. Because of the left two plots, the peak

near zero likely comes from the interactions assigned to that cluster. It is likely that the

plots for the MDS will look similar to the first geometric approximation plots. For the

second geometric approximation, the interaction plots for the mean interaction are ideal.
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However, outside of the largest cluster, the typical interaction to cluster interaction

plots peak at values not near zero or plateau for ranges of distances. Meanwhile, the

plots for polynomial coefficient exhibit peculiar peaks or plateaus in the left plots. These

peaks are slightly dampened when using the typical interaction in place of the mean

interaction.

5.4.3 Stability Evaluation

We had to develop a statistic for stability based on our distance metric. Consider the

k-means problem in a Euclidean space. Let x1, . . . , xn ∈ Rd be points in an Euclidean

space belonging to clusters {1, . . . , K}. The cost function relative to the k-means

problem is given by

min
{Γ1,...,Γk,z1,...,zn}

1

n

k∑
j=1

∑
i:zi=j

‖xi − Γj‖2.

The above cost function can also be written as:

min
{z1,...,zn}

1

2n

K∑
k=1

∑
i,j:zi,zj=k

‖xi − xj‖2. (5.14)

Eq. (5.14) provides a way to partition the dataset {x1, . . . , xn} so as to optimize the

within cluster distance. We then use a measure equivalent to (5.14) to evaluate the

stability of algorithms. Namely, if we use the same notation as before, then the stability

of the algorithm is measured by computing

1

2n

K∑
k=1

∑
i,j:zi,zj=k

d2((fi1, fi2), (fj1, fj2))), (5.15)
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Figure 5.27: All k
and β between 2 and
20

Figure 5.28: All β
between 10 and 20
and k between 10 and
20

Figure 5.29: All β
between 2 and 20 and
k between 10 and 20

Figure 5.30: All β
between 2 and 20 and
k between 10 and 20

Figure 5.31: The left two plots show heatmaps of the statistic introduced in Eq. (5.15) for
encounters segmented by the two-step spline approach (cf. Appendix 5.6.2) and then clustered
via MDS (cf. Section 5.3.2). The right two show changes in this statistic.

Figure 5.32: MDS cluster-
ing (cf. Section 5.3.2) ap-
plied to two-step spline seg-
mented encounters (cf. Ap-
pendix 5.6.2).

Figure 5.33: DTW matrix
clustering applied to encoun-
ters segmented by BNP (cf.
Wang and Zhao (2017)).

Figure 5.34: Two step
spline segmented encounters
clustered using primitives ex-
tracted from BNP segmented
encounters clustered using
DTW matrices (cf. 5.4.3).

Figure 5.35: Heatmaps of the statistic given by Eq. (5.15) for non-reflective Procrustes distance
for k ≥ 10 across different methods.
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for varying values of tuning parameters, where d((fi1, fi2), (fj1, fj2))) is the metric

introduced in Eq. (5.2).

We then calculated this statistic for the MDS approach outlined in Section 5.3.2.

Applying k-means to the MDS projection of the (non-reflective) Procrustes distance

requires the specification of the following parameters: dimension of the projection,

β, and the number of clusters, k. The results for β ∈ [2, 20] and k ∈ [2, 20] can be

seen in Figure 5.31. From the heatmap, the MDS approach is particularly stable for

k ≥ 15 and β > 5. This is further supported by examining the change in the statistic

introduced in Eq. (5.15). This makes sense because increasing the dimension for the

MDS representation provides a better representation of the pairwise distance. On the

other hand, increasing k also leads to greater stability. However, the scales in the figure

suggests that most of the instability occurs when k ≤ 10.

As before, we proceed to compare among methods and data sets. First, following

Wang and Zhou Wang and Zhao (2017), we examined the stability of the DTW approach

for the encounters segmented by sticky HMM-HDP. While there are more parameters

to consider, we empirically investigated the results with α and c fixed to 2 and 100

respectively and allowed γ and k to vary between [2, 19] and [2, 20]. Because changing γ

gives us new primitives, we had to interpolate and recalculate the Procrustes distance for

each set of primitives. Second, we wanted to inspect the stability of "transferring" prim-

itives. In other words, let {(g′j1, g′j2)}kj=1 be the primitives derived from applying BNP

to segment encounters and using the DTW matrices to cluster them and {(fi1, fi2)}ni=1

be the interactions extracted from the encounters using our two-step approach outlined

in Appendix 5.6.2. We assign interaction i to cluster j if

j = argminj′=1:kd((fi1, fi2), (g′j1, g
′
j2)).
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Here, d((fi1, fi2), (g′j1, g
′
j2)) is the distance introduced in Eq. (5.1). The results can be

seen in Figure 5.35. For DTW, the results are similar to the results before with respect

to k and may even be better. On the other hand, as seen in the scales in Figure 5.35, we

see that there is greater instability in both the range and the pattern when we "transfer"

primitives. Further, unlike before, this instability persists even as k increases. This could

be due to the more extreme values in the BNP primitive data set. As a result, there

might be primitives that do not exist in the data set segmented by the two step spline

approach. This could mean that as we increase k, we might not be adding centroids

used to cluster the data. In addition, the ones that do exist might be influenced by these

more extreme values. This might be why the values are unstable for lower values of k.

5.5 Conclusion

We developed a distance metric for the space of trajectory pairs that is invariant

under translation and rotation. By using it to measure the distance between distributions,

we could also use this metric for clustering and for evaluating a variety of unsupervised

techniques for interaction learning. The distance metric and geometric approximation

methods that we introduced help to address the challenges for robust learning of non-

Euclidean quantities that represent temporally dynamic interactions. These techniques

were demonstrated by the unsupervised learning of vehicle-to-vehicle interactions. An

interesting direction for our work is to extend the metric based representation and

geometric algorithms to the multiple-vehicle interaction setting, and general multi-agent

settings. The challenge is the find a right metric or a family of metrics which are both

meaningful and computationally tractable for a number of learning tasks of interests.
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5.6 Appendix

5.6.1 Proofs

5.6.1.1 Proof of Proposition 5.2.1

We need to establish

(a) For any f11, f12, f21, f22 ∈ F,d((f11, f12), (f21, f22)) = 0 if and only if (f11, f12) ∼

(f21, f22).

(b) For any f11, f12, f21, f22 ∈ F, d((f11, f12), (f21, f22)) = d((f21, f22), (f11, f12)).

(c) For any f11, f12, f21, f22, f31, f32 ∈ F, d((f11, f12), (f21, f22))

≤ d((f31, f32), (f21, f22)) + d((f11, f12), (f31, f32)).

Condition (a) follows by definition. To establish (b), note ρ((f11, f12), (f
′
1, f

′
2)) =

ρ((f ′1, f
′
2), (f11, f12)), so

ρ((f11, f12), O1 � (f21, f22) + c1)

= ρ(O1 � (f21, f22) + c1, (f11, f12)) (5.16)

= ρ((f21, f22), O∗1 � (f11, f12)−O∗1 � c1),

where the second equality is due to property (i) and (ii) in the proposition, with O∗1

being the conjugate transpose of O1, which is also orthogonal when O1 is. Now taking

infimum over C1 and O1 the conclusion of part (b) is achieved.

For condition (c), notice that it is easy to see, following the argument similar to
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Eq. (5.16), that

inf
O1,O2∈SO(2);C1,C2∈R2

ρ(O2 � (f11, f12) + C2, O1 � (f21, f22) + C1) (5.17)

= inf
O1∈SO(2),C1∈R2

ρ((f11, f12), O1 � (f21, f22) + C1).

Now for any f31, f32 ∈ F,

ρ(O2 � (f11, f12) + C2, O1 � (f21, f22) + C1) (5.18)

≤ ρ(O2 � (f11, f12) + C2, (f31, f32)) + ρ((f31, f32), O1 � (f21, f22) + C1),

by triangle inequality applied to ρ. Taking infimum wrt O1, O2 ∈ SO(2);C1, C2 ∈ R2,

the rest follows immediately.

5.6.1.2 Proof of Proposition 5.2.2

Note that

d((f11, f12), O � (f21, f22) + c))2 := (5.19)
∞∫

0

(
‖f11(x)−O · f21(x)− c‖2

2 + ‖f12(x)−O · f22(x)− c‖2
2

)
µ(dx).

Minimizing Eq. (5.19) with respect to c, for fixed O, we get

c =

∞∫
0

f11(x) + f12(x)

2
µ(dx)−O ·

 ∞∫
0

f21(x) + f22(x)

2
µ(dx)

 .

Substituting this value of c, we obtain Eq. (5.20).
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inf
c∈R2

(ρ((f11, f12), O � (f21, f22) + c))2

= −2
∞∫

0

f11(x)−
∞∫

0

f11(x) + f12(x)

2
µ(dx)

T

·O ·

f21(x)−
∞∫

0

f21(x) + f22(x)

2
µ(dx)

µ(dx)

− 2

∞∫
0

f12(x)−
∞∫

0

f11(x) + f12(x)

2
µ(dx)

T

·O ·

f22(x)−
∞∫

0

f21(x) + f22(x)

2
µ(dx)

µ(dx)

+
2∑
i=1

∞∫
0

∥∥∥∥f2i(x)−
∞∫

0

f21(x) + f22(x)

2
µ(dx)

∥∥∥∥2

2

µ(dx)

+
2∑
i=1

∞∫
0

∥∥∥∥f1i(x)−
∞∫

0

f11(x) + f12(x)

2
µ(dx)

∥∥∥∥2

2

µ(dx).

(5.20)

Minimizing Eq. (5.20) with respect to O is same as maximizing Eq. (5.21) with

respect to O ∈ SO(2).

2trace
( ∞∫

0

(
f11(x)−

∞∫
0

f11(x) + f12(x)

2
µ(dx)

)T
·

O ·

f21(x)−
∞∫

0

f21(x) + f22(x)

2
µ(dx)

µ(dx)

)

+ 2trace
( ∞∫

0

f12(x)−
∞∫

0

f11(x) + f12(x)

2
µ(dx)

T

·

O·
(
f22(x)−

∞∫
0

f21(x) + f22(x)

2
µ(dx)

)
µ(dx)

)

= 2trace(UDV T ·O) = 2trace(D(UT ·OT · V )T ).

(5.21)
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Now, this is maximized for O ∈ SO(2), when O = V T

1 0

0 det(V TU)

U . Plugging in

this minimizing value for O, we get the solution for

inf(f ′1,f
′
2)∈(O,C)(f21,f22)

(ρ((f11, f12), (f ′1, f
′
2)))2 as required.

Lemma 5.6.1. Assume that (f ′, g′) ∈ C(f,g) ∪ O(f,g) =⇒ d((f ′, g′), (f, g)) = 0. Then,

for all c ∈ R2, O ∈ SO(2),

d((f11, f12), (f21, f22))

= d((O � f11 + c, O � f12 + c), (f21, f22)). (5.22)

Proof. By triangle inequality,

d((f11, f12), (f21, f22)) ≤ d((O � f11 + c, O � f12 + c), (f21, f22)) + d((O � f11 + c, O �

f12 + c), (f11, f12)), so by assumption d((f11, f12), (f21, f22)) ≤ d((O � f11 + c, O � f12 +

c), (f21, f22)). The lemma follows by considering the reverse inequality.

5.6.2 Obtaining primitives via splines

Our two-step procedure to extract primitives is as follows.

1. Add change points for each trajectory via the following steps. (a) Test whether

using the midpoint as a change point reduces the squared error of the fitted

polynomial (b) If it does, return the midpoint. (c) Otherwise, test whether using

the midpoint of the valid interval of the half with the larger square error as a

change point reduces the squared error. Rule out the other half as a site for

change points. (d) Repeat (b)-(c) until either a change point is found or no further

candidates exist. (e) If a change point was added previously, repeat (a)-(d) for the
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two segments and any subsequent segments. Stop when no more change points

are added.

2. Combine the change points from all trajectories in the following manner. Remove

change points via a forward search in the following way. Suppose that we have

a set, C, of L ordered change points, c1, c2, ..., cL, across all trajectories. Let c0

denote the start point and cL+1 denote the end point. Define ε to be our tolerence.

Proceed in these steps: (a) Set ` = 0, `′ = 1, and `′′ = 2; (b) Fit a polynomial

to each trajectory from c` to c`′′ ; (c) If the sum of the squared error of the fitted

polynomials is below ε or there are only 4 observations between c` and c`′′ , remove

c`′ from the set of C. Otherwise, increment `. Increase `′ and `′′ by one and go

back to (b) if `′′ ≤ L+ 1; (d) Set L to be the size of C. Re-index the change points

in C from one to L and return C.

To select ε from a set of potential tolerances, we set it to be the value that after

running (2), minimizes

n∑
i=1

L+1∑
`=1

(
f(ti)− f̂`(ti)

)2

1(ti≤c`) + L+ 2.

5.6.3 Algorithm for centering and reorienting primitives

Algorithm 5.4 provides a way to reorient one set of interactions to another and is

embedded in Algorithms 5.2 and 5.3.
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Figure 5.36: Multidim. scaling approach (cf.
Section 5.3.2.1)

Figure 5.37: First geometric approx. (cf. Sec-
tion 5.3.2.2)

Figure 5.38: Second geometric approx. (cf.
Section 5.3.2.2)

Figure 5.39: Polynomial coefficients (cf. Sec-
tion 5.4.2)

Figure 5.40: DTW cost matrix (cf. Wang and
Zhao (2017))

Figure 5.41: Plot of the three most typical interactions organized from the cluster with the
most interaction to the cluster with the fewest for various methods. See Figure 5.13 for the
legend and for how the interactions are oriented.
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Algorithm 5.4 Centering and reorienting interactions
Input: Two interaction samples, (fi1, fi2) and (fj1, fj2)
Output: A centered (fi1, fi2) and a centered (fj1, fj2) reoriented to the centered
(fi1, fi2)

1: Set f̃i(t) ∈ R2tmR
2 to be the concatenation of fi1 and fi2 such that f̃i(t) = fi1(t) for

t = 1, 2, . . . tm and f̃i(t) = fi2(t) for t = tm + 1, tm + 2, . . . 2tm and f̃j(t) ∈ R2tmR
2

be the same concatenation of fi1 and fi2.
2: For f i(t) ∈ R2tmR

2 and f i(t) ∈ R2tmR
2, set

f i(t) = f̃i(t)−
1

2tm

2tm∑
t′=1

f̃i(t
′)

f j(t) = f̃j(t)−
1

2tm

2tm∑
t′=1

f̃j(t
′).

3: Perform singular value decomposition to get the matrices U , D, V such that
UDV T = f j(t)

Tf i(t).
4: From before, let

Õ = V T

[
1 0
0 det(V TU)

]
U.

Then, set f ′i1(t), f
′
i2(t) ∈ RT

R
2 to be the matrices such that for t = 1, 2, . . . , T ,

f
′
i1(t) = f i(t)

f
′
i2(t) = f i(t+ tm).

On the other hand, set f ′j1(t), f
′
j2(t) ∈ R

T
R

2 to be the matrices such that for
t = 1, 2, . . . , T ,

f
′
j1(t) = (Õf j)(t)

f
′
j2(t) = (Õf j)(t+ tm).

5: Return (f
′
i1, f

′
i2) and (f

′
j1, f

′
j2).
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CHAPTER VI

Conclusions and Future Work

This dissertation develops a deeper understanding of the behaviors of latent structural

models and provides algorithms for scalable and statistically efficient inference with

them. Our main contributions are summarized as follows:

• An algorithmic approach to estimating the number of components in Bayesian

mixture models along with an exploration of the consistency behavior of the same.

• A comprehensive understanding of the behavior of Bayesian nonparametric models

under various misspecified settings and the impact of the choice of kernel.

• A general modeling framework for data arising from heterogeneous populations

and a fast parametric geometric algorithm for inference.

• An unsupervised learning approach for evaluating clustering algorithms with

application to traffic encounters.

We provide a summary of future endeavors in the next sections.
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6.1 A velocity flow model to analyse traffic movements

In Chapter V of this thesis, we develop a distributional viewpoint to analyse traffic

driving patterns. The primary motivation for the problem arises from the endeavour to

develop an extensive understanding of autonomous vehicles. While such a viewpoint

is useful to model one-on-one traffic interactions, practical applications also demand

a broader perspective. For example, autonomous vehicles need to navigate through

various surroundings at different points in time. The number of active on-road vehicles

could be potentially infinite with varying degrees of correlations between the vehicles.

This raises a challenging question of modeling multi-vehicle interactions under different

on-road traffic scenarios. Guo et al. (2019) provide a very useful model via the use of

Gaussian random fields. However, their model relies on the key assumption that traffic

flow patterns are independent over time within the same spatial domain. While this

assumption may not be unreasonable for freeway traffic, presence of traffic signals within

city limits makes it impractical.

A possible solution may be obtained by employing an Hierarchical Dirichlet process-

Hidden Markov model (HDP-HMM) (Fox et al. (2009)) over the Gaussian random field

framework. However, this makes the inference problem quite challenging. While MCMC

algorithms may not be feasible for such large datasets, Variational inference algorithms

are not guaranteed to be statistically efficient under such complex modeling setups. To

provide a solution for this problem, we aim to explore a statistically and computationally

efficient solution by the use of geometric algorithms based on the framework of Yurochkin

et al. (2019).
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6.2 Misspecification in the number of mixture model compo-

nents

In Chapter II and III we provide a systematic understanding of Bayesian nonpara-

metric mixture models under various scenarios of misspecification. One common form

of misspecification is that in the number of components. Consider the following model.

Let X1, . . . , Xn be i.i.d samples from true distribution PG0 with density function

pG0 :=

∫
f(x|θ)dG0(θ) =

k0∑
i=1

p0
i f(x|θ0

i )

where G0 =
k0∑
i=1

p0
i δθ0

i
is a true but unknown mixing distribution with exactly k0 number

of support points. Here,
{
f(x|θ), θ ∈ Θ ⊂ Rd

}
is a given family of probability densities

with respect to a sigma-finite measure µ on X and Θ is a bounded set of Rd where

d ≥ 1. We use Ek := Ek(Θ) and Ok := Ok(Θ) respectively to denote the space of all

mixing measures with exactly and at most k components in Θ.

Motivation: In practice, the knowledge of the kernel f is not available to the statisti-

cian. The choice of the kernel may, therefore be completely subjective. This may give

rise to situations when k0 =∞. Under such circumstances, there may be some atoms θ0
i

such that their associated mass (weight) p0
i is very small. Additionally, there may also

be some atoms θ0
i and θ0

j such that their distance is very close. Due to these issues, the

estimation of the parameters and weights under these situations suffers from very slow

convergence rates. Moreover the number of true components may be underestimated

due to lack of representation of some of the heterogeneous components. For practical

application, therefore, it is common custom (Ishwaran and Zarepour (2002)) to choose
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the number of components K to be large enough so as to overestimate the true number

of components. Rousseau and Mengersen (2011) provides a critical analysis of overfitted

mixtures. This, however, raises a different concern. If K is chosen to be too large, the

rate of contraction suffers, while the choice of a small K risks underestimation scenarios,

where the contraction properties are not well-understood. As it is often not very hard to

estimate the closed atoms and very small weights, we would like to estimate some mixing

measures G∗ from a model with probability measures that has k < k0 components. The

choice of k ensures that we obtain the most informative atoms and weights while the

remaining atoms and weights may be mixed together. In particular, we consider the

MLE estimation of mixture models as follows

Ĝn = arg max
G∈Ok

n∑
i=1

log pG(Xi).

Assume that there exists a discrete mixing measure G∗ that minimizes the KL

divergence between pG0 and pG, i.e.,

G∗ = arg min
G∈Ok

KL(pG0 , pG).

Since Ok is not convex set in terms of mixing measures, G∗ may not be unique. This

also raises an issue since parameter or density estimation is not well-studied when the

underlying space of probability densities is non-convex. Given this theoretical challenge,

our future goals are two-fold: providing an in-depth analysis for estimation under

non-convexity of the parameter space and using the results developed to promote an

understanding of asymptotic and finite sample behaviors for under-fitted mixtures with

k < k0.
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6.3 Statistical efficiency of Variational Inference for hierarchical

Bayesian models

While Markov Chain Monte Carlo methods are statistically efficient, computationally

they may not be as effective with complex models especially under time-constraints,

for example, when dealing with online learning problems with hierarchical models.

Variational Inference (Blei et al. (2003); Hoffman et al. (2013)) provides a computa-

tionally efficient alternative for inference to MCMC algorithms, especially when the

underlying model is complicated and involves numerous latent variables. However,

statistical efficiency of Variational Inference algorithms remain poorly studied. Even

though some of the recent works by Wang and Blei (2018, 2019); Yang et al. (2017)

provide a theoretical understanding of the statistical efficiencies of VI algorithms, general

frameworks involving complex hierarchical models such as Hierarchical Dirichlet Process

(Teh et al. (2006)) remain largely under-studied. Moreover, an understanding of the

estimation of the number of components when the underlying model is a mixture model

is also not well understood. This provides an opportunity to extensively explore the

statistical and theoretical properties of VI algorithms and is one of the avenues of

research we aim to explore in the near future.

6.4 Geometric inference for hierarchical models

Chapter IV of this thesis introduces a general modeling framework for hierarchical

models, while also providing a statistically and computationally efficient solution for the

same. The inference algorithm developed in the chapter relies on two key assumptions:

(a) the knowledge of the number of topics K, and (b) assumption of symmetry of the
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Dirichlet parameter α.

The asymmetry of α vastly extends the applicability of the model to arbitrary datasets.

While K, the number of topics can be estimated using nonparametric techniques such

as in Yurochkin et al. (2017), the question of inference for asymmetric α yet remains

unresolved. Potential approaches could involve the use of a probabilistic or differential

gemetric transform instead of a linear transform as employed in this thesis. Secondly,

the consistency results are obtained under asymptotic conditions as the number of

words in each document increases to ∞. An explicit computation of the error bounds

of inferential parameters under finite sample cases could also prove to be a potential

avenue of research. While Nguyen (2015) provides some similar results, the bounds are

not guaranteed to be sharp. An in-depth analysis of sharp finite sample bounds could

prove to be of interest for both theoretical and practical reasons.
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