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ABSTRACT

Extreme events such as large motions and excess loadings of marine systems can

result in damage to the device or loss of life. Since the system is exposed to a random

ocean environment, these extreme events need to be understood from a statistical

perspective to design a safe system. However, analysis of extreme events is challenging

because most marine systems operate in the nonlinear region, especially when extreme

events occur, and observation of the extreme events is relatively rare for a proper

design. Conducting high-fidelity simulations or experimental tests to observe such

events is cost-prohibitive.

In the current research, a novel framework is proposed to randomly generate

test environments that lead to a large response of the system. With the generated

environment, large responses that would take a very long time to achieve can be

observed within a much shorter time window. The time-domain context around

the extreme event provides the user with rich insights towards the improvement of

the design. The proposed framework consists of two modules, which are named as

Threshold Exceedance Generator (TEG) and Design Response Estimator (DRE). The

framework is data-driven, and its application requires minimal knowledge about the

system from the user. The DRE module can identify a nonlinear marine system based

on collected data. The TEG module can generate ocean environments that lead to

large system response based on the system identification by the DRE module.

Machine learning methods, especially neural networks, are heavily used in the

proposed framework. In the thesis, the extreme generation problem in the marine

field is described and addressed from a machine-learning perspective. To validate

the framework, marine examples including linear wave propagation, nonlinear wave

propagation, nonlinear ship roll, tank sloshing, and a floating object in waves are

explored. Examples from such a wide range show that the framework can be used

for linear or nonlinear systems and Gaussian or non-Gaussian environments. The

cost and the amount of data to apply the method are estimated and measured. The

comparison between the results from the framework and Monte Carlo Simulation fully

demonstrates the accuracy and feasibility of using the data-driven approach.

xxi



CHAPTER I

Introduction

1.1 Motivation

As ocean technology develops and more advanced marine systems are built, hu-

man beings nowadays are capable of exploring more watery places of the earth that

have never been touched before. Ship traffic could not be busier due to booming

global trades. Oil platforms are being built farther away from the coast and deeper

at sea. Modern marine units are necessarily designed to survive in harsher ocean

environments. Environmental loadings like waves, winds, currents, tides, etc. sig-

nificantly affect the behavior of marine systems at sea. Extreme behaviors under

these environment loadings can result in damage or loss of life. Successful analysis of

extreme behavior of marine units in rough seas is crucial to provide information for

more reliable and robust designs, and safer operations.

However, such analysis is difficult due to many reasons. First of all, the ocean

environment is a random phenomenon in a probability sense. Statistical reports, like

ocean climate forecasts or sea states, are usually provided instead of deterministic

descriptions. Hence, to fully present the system behavior in the probability space,

an ensemble of nearly deterministic experiments or simulations with different random

seeds is analyzed often with high cost. Secondly, extreme behaviors at sea, like ship

roll ending in capsize, large bending moment leading to material fatigue or struc-

tural failure, severe wave loads impacting platform decks, etc, are considerably rare

for a good design. Observing extreme events associated with high rareness natu-

rally takes a very long time for conducting experiments or simulations. Nowadays,

ships, platforms, and other marine units are typically designed to operate for decades.

Moreover, to conclude a statistical summary, enough number of realizations associ-

ated with different environment seeds are required. Figure 1.1 shows that the cost of

extreme event simulation grows as the length of the exposure window and the number
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Figure 1.1: Cost scales with window length and probability space resolution

of the realizations increase. The extreme analysis is usually needed for long-term and

short-term cases. Depending on the location and season of operations, marine struc-

tures may experience a wide range of ocean climate conditions during their lifetime.

It is important from the long-term perspective to estimate the survivability of the

design in mixed ocean environments during a very large exposure window. It is also

important from the short-term perspective to evaluate the performance of the design

during a relatively constant sea condition that lasts for a shorter period like hours of

Sea State 9 (SS9) storm.

Classical linear theory may not be applied well for extreme scenarios since the

superposition assumption used in linear systems is no longer valid. Moreover, ocean

environments such as wave, wind, and current can produce many loadings on struc-

tures, leading to a complex nonlinear problem. More complex phenomena that do

not occur on simple linear systems can show up in nonlinear marine systems, which

play an important role in stability analysis, extreme prediction, failure estimation,

etc. These phenomena include but are not limited to the dependency of system

initial conditions, transient phase, chaos, and they form a barrier to apply many

linear methods. Instead of forming closed-form solutions, experiment methods and

numerical simulation focus more on a better characterization of the dynamics and

achieve reasonable results for real-world engineering usage. Especially for numerical

approaches, more computer-based methods have been developed as computational
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power has grown exponentially over the past 50 years. Though powerful hardware

and efficient algorithms ease the cost of lengthy simulations, characterizing system

behavior precisely in the water domain requires complex mathematical models, which

inhibit the ability of simulation to study large exposure times. For example, CFD

can take hours to simulate seconds of ship motion in waves. Direct application of

high-fidelity tools to simulate lifetime realizations is impossible.

A more promising way to combine the advantages from both theoretical and nu-

merical methods is to conduct high-fidelity simulations for short time windows when

the studied object exhibits a dangerous response. The remaining questions are how to

generate deterministic loading environments that lead the nonlinear system to dan-

gerous response, and how do the generated environments relate to the probability

and statistics theory. Therefore, an intelligent method that accounts for the different

nature of various nonlinear marine systems is needed.

1.2 Literature Review

In this section, previous works on modeling extreme events are briefly reviewed.

Specifically, linear methods, and three methods from the state-of-the-art, which are

the Design Loads Generator (DLG) method, the First Order Reliability Method

(FORM), and various kinds of extrapolation methods, are discussed. In the end,

their advantages and disadvantages are compared and summarized.

1.2.1 Gaussian Process and Linear Methods

The Gaussian process plays an important role in stochastic marine dynamic prob-

lems since many natural phenomena can be approximated by a Gaussian process. For

example, the elevation of a wind-generated wave can be assumed to be a Gaussian

process. The Gaussian assumption for ocean waves is considerably accurate for the

deepwater condition according to many experiment observations (Ochi , 1990). The

Gaussian assumption also eases the discussion of many problems due to its simple

mathematical form. For example, a Gaussian process can be uniquely defined by its

energy spectrum.

By assuming the elevation of ocean waves is Gaussian, many works have achieved

concise and closed-form results in statistics. Cartwright and Longuet-Higgins (1956)

derived the distribution of positive maxima (or crest height) for a narrowband or non-

narrowband Gaussian process. Lindgren (1970) and Tromans et al. (1991) showed

that the most likely wave profile around an a priori maximum crest height is the

3



autocorrelation curve scaled by the crest height. Ochi et al. (1973) gave the averaged

number of positive maxima per unit time by considering the distribution of the mean-

crossing period.

Another advantage of a Gaussian assumption is that results about extreme be-

havior are accessible. Closed-form solutions are usually available without running

large numbers of simulations, which is often the case for other methods on extreme

analysis. The tail behavior of a Gaussian process is fully described. The largest (or

smallest) elevation (also known as the extreme values) of a Gaussian process during

an exposure time window is a random variable. It is very interesting to ship and

marine designers to know the Extreme Value Distribution (EVD) associated with a

time window, which can be days during storms in the short-term sense, or decades

of a lifetime in the long-term sense. By using Order Statistics Theory, Ochi et al.

(1973) gave the distribution of the extreme value in terms of the spectrum parame-

ters and the exposure window length. Due to its straightforward meaning and simple

representation, the linear method becomes the first step for many reliability analysis

and ocean climate forecasting.

Since an ocean wave is often modeled properly by a Gaussian process and the

ocean is a primary source of forcing, many studies apply the Gaussian results to the

response of marine systems. By assuming the studied system is linear, the system

response under a Gaussian loading environment is another Gaussian process. Once

the spectrum of the response is calculated, previous findings for the Gaussian process

can be directly applied. This linear method is widely used when closed-form solutions

are desired.

Though linear methods provide closed-form solutions and bypass expensive sim-

ulation, the linear assumption of the system dynamics may not be valid or accurate,

especially when the system undergoes extreme response. When the system behaves

in its nonlinear regime, the system output may not be Gaussian, and therefore results

of the Gaussian process are not applicable.

1.2.2 Design Loads Generator

The Design Loads Generator (DLG) method by Troesch (1997), Alford (2008),

and Kim (2012) steps further from the linear methods. The contribution of the

DLG method is that it not only estimates the EVD but also provides an ensemble of

deterministic environments to simulate extreme scenarios in the time domain. With

the DLG, the time window around the moment (or design time) when the system

undergoes extreme response is efficiently simulated. The time-domain simulations
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add to the statistical summary to allow the user to understand a more complete story

of the extreme response.

The method heavily utilizes Fourier analysis while maintaining the properties of

the Gaussian process. It considers a Gaussian process x(t) which can represent a

linear water wave or linear system response under Gaussian loadings. The Gaussian

process can be approximated by a Fourier series

x(t) =
N∑
i=1

ai cos(2πfit+ φi) (1.1)

where fi are discretized frequencies, Fourier amplitudes ai =
√

2S(f)∆f are evalu-

ated based on the energy spectrum of the Gaussian process, and φi are random vari-

ables uniformly distributed from−π to π. With the given representation, the only ran-

domness of the Gaussian process comes from the random phase vector (φ1, · · · , φN).

The objective of the DLG method is to randomly generate the phase vector such

that the process at the design time (specified by the user) x(td) follows the EVD

associated to the exposure window length T for the Gaussian process. By simulating

the scenario with the generated phase vector, a time-domain realization is produced,

with which the user can observe an extreme response at the design time. Multiple

simulations can be conducted to collect an ensemble of realizations, which produces

a more complete time and probability domain analysis.

The procedure of DLG generating phase vectors is briefly illustrated in Figure 1.2.

Since the desired exposure length T may be very long, a much shorter window T ′ is

used to conduct a pre-experiment, which produces a collection of phase vector whose

resultant response x(td) follows the EVD associated to T ′. The collected phases are

then used to fit a model with parameter λi for each Fourier component. The parameter

of each model is then optimized such that the resultant response follows the EVD

associated with T as much as possible. Then each model can generate candidate

phase angles for their own Fourier component. The generated phase vectors are then

filtered by an Acceptance-Rejection (A-R) algorithm such that the resultant response

follows the EVD associated with T .

The advantage of the DLG method is that it provides simulation environments in

terms of phase vectors and the generated random seed is constrained to follow the

EVD theory. Filip et al. (2017, 2018) and Xu et al. (2019) have applied the DLG

method to generate wave environments for CFD cases like wave impacting on fixed

deck, an extreme roll of a moving Tumblehome hull in head and following seas, etc.

These nonlinear systems are first linearized to be applicable for the DLG method.
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Figure 1.2: DLG generates phase vectors that satisfy the EVD theory
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The DLG-generated wave environments are then used in the nonlinear simulations to

collect statistical information of the nonlinear system.

The shortcomings of the DLG method come from two aspects. First, the approach

is based on linear methods, which means it inherits the Gaussian assumption of the

system response. The linear assumption also eases the dependency of the initial condi-

tion and transient effect, which occurs for nonlinear systems. It also provides the rule

by giving a Gaussian EVD for the A-R algorithm to post-filter the candidate phase

vectors. As a comparison, for a nonlinear system whose response is non-Gaussian,

the EVD rule is still an open research question. The second aspect is the indepen-

dence assumption for phases from different Fourier components. In the method, all

parametric models are standalone with their own parameters. The process to gener-

ate the candidate pool of phase vectors is also performed in parallel for all models.

However, the phases at the design time are in fact correlated even for a Gaussian

process. Though the correlation among different Fourier components is improved by

updating model parameters together and filtering the phases as a vector by the A-R

algorithm, the correlation may still be unresolved or inaccurate.

1.2.3 First Order Reliability Method

The First Order Reliability Method (FORM) used in the marine domain by Jensen

(1996, 2008, 2009) is developed beyond linear systems. For a nonlinear system in a

random ocean environment parameterized by a random seed, the FORM method

searches for the most probable seed that leads to the failure of the nonlinear system.

Specifically, it considers a random wave environment parameterized by

η(x, t) =
N∑
i=1

aiσi cos(ωit− kix) + biσi sin(ωit− kix) (1.2)

where ai and bi are uncorrelated standard normal random variables, ωi and ki are the

discretized angular frequencies and corresponding wave number, and σ is calculated

based on the input wave spectrum.

σi =
√
S(ωi)∆ωi (1.3)

The system response under a random seed (a1, b1, · · · , aN , bN) is then represented

by

φ(td; a1, b1, · · · , aN , bN) (1.4)

where td is the design time and φ(t) is the response time series.
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Figure 1.3: FORM method searches the most probable seed on the failure surface

A failure indicator is then defined by

G(a1, b1, · · · , aN , bN) = φ(td; a1, b1, · · · , aN , bN)− φ0 (1.5)

where φ0 is the user-defined failure threshold. The indicator is positive when the

system has response that exceeds the threshold (or system failure), and it is negative

when the system has safe response. The equation

G(a1, b1, · · · , aN , bN) = 0 (1.6)

defines a failure surface in a high-dimension parameter space.

The objective of the FORM method is to search for a random seed

(a∗1, b
∗
1, · · · , a∗N , b∗N) (1.7)

that is closest to the origin on the failure surface. It represents the most probable

seed that leads to a system failure at the design time. The name of the method “first

order” means that the failure surface in the probability space is linearized, rather

than linearizing system dynamics. Figure 1.3 visualizes the failure surface with a

low-dimension example.

There are pros and cons to applying the FORM method. The method extends to

the nonlinear systems which are not addressed well by linear methods. The method

is also efficient in finding the optimal point (a∗1, b
∗
1, · · · , a∗N , b∗N) by using an iterative
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searching algorithm on the failure surface. However, the iteration may be expensive

if the time-domain simulation of φ(t) takes a long time, like a CFD simulation. The

method is also not a generative model since it produces only the optimal parameter

seed on the failure surface instead of a series of seeds in the failure region. The Fourier

representation of a Gaussian process in Equation 1.2 generates a non-ergodic random

process (Shinozuka and Deodatis , 1991).

1.2.4 Extrapolation Methods

Extrapolation methods estimate the extreme value distribution of a random pro-

cess (Gaussian or non-Gaussian) during an exposure time window based on observed

data. The time window length to be estimated is usually much larger than the time

length when the observed data is collected. For example, an oceanographer is inter-

ested in the expected extreme wave elevation during 100 years given the observed

data collected in one year. Many methods can be categorized into this extrapola-

tion family. The extrapolation process usually consists of three steps in establishing

mathematical models. The first step is to select mathematical assumptions. Exam-

ple assumptions include observations are independent and identically distributed, or

peaks of the random process appear Poisson-like. Mathematical models are often de-

rived according to the selected assumptions. These models are usually a parametric

probability distribution that describes how the observations or quantities of interest

are distributed. The second step is to estimate the model parameters based on the

observed data, which can also be regarded as model fitting. The last step is extending

the fitted model into the region of interest with the help of order statistics or a basic

assumption like Bernoulli, Binomial, etc.

Weihull (1951) probability paper, as traditional extrapolation methods, are sim-

ple and widely used in the field of oceanography. Gumbel have proved that the

largest value among a group of independent and identically distributed random vari-

ables follows the Generalized Extreme Value (GEV) distribution as the group size

becomes infinite (also referred to as the asymptotic condition). The CDF of the GEV

distribution for the extreme random variable is

F (x;µ, σ, ξ) = exp

[
−
(

1 +
x− µ
σ

ξ

)−1/ξ
]

(1.8)

where µ, σ, ξ are the location, scaling, and shape parameters respectively. Depending

on the sign of ξ, the GEV distribution can be partitioned into three types, which are
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Figure 1.4: Example of using Gumbel and Weibull probability paper to fit observed
data

Gumbel (Type I), Fréchet (Type II), and Weibull (Type III). By plotting the observa-

tion data and the corresponding empirical CDF in log log scale, the observations are

expected to be fitted by a straight line if they follow a Gumbel distribution. Alter-

natively, the observations can also be plotted in log− log log scale to check whether

they follow a Weibull distribution. The fitted line then automatically produces the

parameters of the GEV distribution. Figure 1.4 illustrates the probability paper of

the Gumbel and Weibull types.

The Peak-Over-Threshold (POT) method by Davison and Smith (1990), and Lead-

better (1991) extracts more data from observed time series compared to daily or yearly

maxima. The method considers all peak values that exceed a certain threshold of u.

It assumes that the exceedance events are independent, and occur with Poisson times.

It also assumes that the excess values from the threshold follow the generalized Pareto

distribution with a sufficiently large threshold.

F (y) = Pr(Y < y) = 1−
(

1 + c
y

a

)−1/c

+
(1.9)

where a and c are scaling and shape parameters respectively, and Y is the excess

value defined by X−u. By fitting the Pareto distribution and Poisson process to the

observed data, the model is able to produce a statistical estimation of problems like

the tail behavior and the return period (Belenky et al., 2010, 2012; Campbell et al.,

2014).

While methods based on the GEV and POT concepts develop models for the

asymptotic range, Naess and Gaidai (2008); Næss and Gaidai (2009); Naess et al.

(2010); Gaidai et al. (2016) developed a new method of estimating the extreme dis-
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Figure 1.5: Example of using the parametric model to fit the processed mean up-
crossing rates

tribution for a system response process in the sub-asymptotic range. The method

considers the threshold crossing under the Poisson assumption. A parametric model

is used to approximate the mean upcrossing rate ν+(u) given by

ν+(u) = q̃(u) exp [−a(u− b)c] (1.10)

where q̃(u) behaves like constant, and a, b and c are shape parameters.

The mean upcrossing rates of various thresholds are estimated based on the ob-

served data and used to determine the model parameters, as illustrated in Figure 1.5.

Once the model of mean upcrossing rate is achieved, the rate for even a larger thresh-

old that is located in the range of sparse observations can then be extrapolated.

Statistical conclusions like the Extreme Value Distribution can then be calculated

from the estimated mean upcrossing rate.

FMT
(x) = Pr(MT ≤ x) = exp[−ν+(x)T ] (1.11)

where MT = max{X(t); 0 ≤ t ≤ T} is the extreme value during the exposure time

window of length T .

One of the advantages of extrapolation methods is their simplicity. Users can di-

rectly fit a parametric model to the observed data and they can also easily determine

the confidence interval of the parameters, which depends on the sparsity of the data

in a certain region. The model parameters are computed instantaneously since the

involved optimization problem of finding the best-fit parameters is straightforward.

By introducing more assumptions, relatively fewer parameters are needed to be de-
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Perspective Linear DLG FORM Extrapolation
Gaussianity Gaussian Gaussian Both Both
Domain time/probability time/probability time/probability (time)/probability
Generative No Yes No No
Data-driven No No Yes Yes
Cost low low It depends It depends

Table 1.1: Compare state-of-the-art methods of extreme event modeling

termined. Therefore, extrapolation methods are often used to efficiently estimate the

EVD for the studied process.

There are also shortcomings embedded in the extrapolation methods. These meth-

ods rarely provide a time-domain simulation environment to verify whether the es-

timated extreme event can be really realized. The methods are also applied with

ideal assumptions like a high threshold value or asymptotic condition. Moreover, to

reduce the variance of the model parameters, an adequate amount of data needs to

be collected. The data collection task might be expensive for application scenarios

like CFD simulations or experiments.

1.3 Identification of Research Need

The state-of-the-art methods of modeling and estimating extreme events have been

briefly reviewed in Section 1.2 with their advantages and disadvantages discussed.

Table 1.1 compares these methods from different perspectives.

The first perspective shown in the first row of the table is whether the method

can be applied to a Gaussian or non-Gaussian process. The linear theory and the

DLG method usually assume the studied process is a Gaussian process. The process

can be a Gaussian environment like the elevation process of Gaussian ocean waves or

the system response of a linear system under Gaussian loadings. The FORM method

and the extrapolation methods can be applied to both Gaussian and non-Gaussian

processes.

The study domain of these four methods is compared in the second row. Since the

linear method uses the Gaussian assumption, it can give the theoretical closed-form

distribution of positive maxima and their occurring times. The statistical results

answer the question in both the time and probability domains. The DLG method is

able to produce time-domain realizations while being constrained by the probability

conclusions from the linear method. The FORM method iteratively evaluates the

response in the time domain to search for the optimal random seed in the probability

space. It also can produce a statistical summary like the failure probability of the
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studied system. On the other hand, the extrapolation method often fits a model to

the observed data, which usually comes from processed time-domain data. Moreover,

conclusions of interest for this method are usually in probability description like return

period, mean upcrossing rate, and etc.

The third dimension of comparison is whether the method is generative, which

means whether the method is able to generate time-domain realizations to verify the

estimated extreme event indeed happens. This measure is important since visualizing

the dangerous behavior of the system presented in a more complete story can help

ship and marine designers improve safety during the design iteration and understand

failure more completely. Compared to other methods, the DLG method, as the name

indicates, is the only method that is able to generate loading environments for extreme

event simulation.

The fourth perspective for comparison is whether the methods rely on observed

data. The observations can come from experiment measurement or numerical simu-

lation. Since the linear method and the DLG method are derived or developed with

Gaussian assumption, theoretical, or even closed-form results are often available with-

out relying on observed data. However, for more general cases like a non-Gaussian

process, observed data is often required to understand the system.

Finally, the computational cost of these methods is compared. Due to the simplic-

ity of the Gaussian assumption, the linear method and the DLG method can finish

the analysis quickly. However, for the FORM method and the extrapolation method,

the cost mainly comes from data collection. The FORM method requires the response

evaluation for a given random seed during iterations. The extrapolation method re-

quires enough observed data to fit the parametric model. If the data collection process

involves expensive procedures like CFD simulation or experiment measurements, the

cost becomes very high. If the observed data comes from simplified mathematical

simulations that can be efficiently conducted, the cost is low.

Considering the advantages and disadvantages of the state-of-the-art methods,

the current research is proposing a new framework to model the extreme event of the

system response. In the format of Table 1.1, the proposed framework is designed with

the properties in Table 1.2.

The proposed framework can be applied to both Gaussian or non-Gaussian pro-

cesses. Since many marine systems behave nonlinearly, especially in the context of

extreme events, the response of nonlinear systems is generally non-Gaussian. Hence,

the proposed framework is designed to work in this more general situation with as

few assumptions as possible. Due to this general application situation and fewer as-
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Perspective the proposed method

Gaussianity Both
Domain time/probability
Generative Yes
Data-driven Yes
Cost medium

Table 1.2: Properties of the proposed framework in current research

sumptions to be relied upon, the proposed framework is designed to be data-driven.

Moreover, nowadays numerical simulations like CFD can achieve acceptably accurate

results compared to experiments and at the same time produce large amounts of

data. For example, a typical CFD case can have multi-million cells describing a flow

domain and necessary fluid properties inside each cell can be retrieved at all time

steps during the simulation. Many users can obtain access to the High-Performance

Computing (HPC) service remotely, which gives a more promising application area

for data-driven approaches. Though more data becomes accessible, acquiring valu-

able data is challenging. Hence, the proposed data-driven framework is designed to

require less data, which reduces the cost of data collection for the user. The proposed

framework is also generative by providing the user with simulation environments. By

conducting simulations with the generated environments, the user is able to observe

the extreme response of the system around a certain timestamp. These observed

extreme events and their time ensemble allow a more complete analysis in both the

time and probability domain.

1.4 Research Overview and Thesis Outline

As mentioned in the previous section, the proposed framework is expected to

model extreme events for a linear or nonlinear system. The data-driven and generative

requirements for the proposed framework makes the task challenging. Therefore,

machine learning methods are heavily used in the proposed framework to better

format and solve the problem. These machine learning concepts and methods have

been applied successfully in other fields of study like computer vision, natural language

processing, and speech recognition. As will be shown in later chapters, these machine

learning methods used in the proposed framework achieve encouraging results for

marine-related tasks.

The proposed framework considers a deterministic system exposed to a random

environment. An example can be a ship moving in random ocean waves. Since the
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Figure 1.6: A random seed specifies an ocean environment, and determines a response
realization.

only randomness comes from the loading environment, the ship motion can be fully

described if the randomness of the environment is specified. The specific setting of

the environment is here called the random seed. In other words, each random seed

corresponds to one realization of the motion process. Mathematically, the ocean wave

is a random environment and its elevation process can be approximated by a Fourier

series

η(x, t) =
N∑
i=1

ai cos(2πfit− kix+ φi) (1.12)

where N is the number of Fourier components, constants ai, fi, and ki are ampli-

tudes, frequencies, and wavenumbers respectively for different components. The only

random variables φi are the corresponding phase angles, which can be regarded as the

random seed in this example. Once the random seed in the format of phase vector

(φ1, · · · , φN) is specified, the wave environment is uniquely determined. The ship

motion under such an environment can then be represented by

ηr(t;φ1, · · · , φN) (1.13)

where t is time and (φ1, · · · , φN) is the specified random seed. Figure 1.6 illustrates

how a random seed is mapped to a environment realization and a response realization.

The objective of the proposed framework is to generate random seeds as many

as the user wants and these seeds can lead to large responses that are over the user-

specified threshold at the design time. Mathematically, the proposed framework de-

sires to return the seeds sampled from the distribution

Pr (φ1, · · · , φN |ηr(td;φ1, · · · , φN) > ζ) (1.14)

where td is the user-specified design time for the user to observe the extreme event,

ζ is the user-specified threshold for the system response. With the generated seeds,
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the user can simulate the extreme scenarios.

The proposed framework consists of two modules, which are named as Threshold

Exceedance Generator (TEG), and Design Response Estimator (DRE). The TEG

module is designed to learn the distribution (or pattern) of the random seeds in the

collected dataset and then generate new seeds that share a similar distribution. When

applying the TEG module, it needs to know how large (or dangerous) the response

is at the design time for a given seed. For a simple dynamical system where the

behavior can be simply modeled, evaluation of the response is usually simple and

efficient. In this case, the DRE module is not needed. However, if the evaluation

of the response is computationally expensive or no simple mathematical model can

be built, it is suggested to use the DRE module to first characterize or identify the

system. The DRE module is designed to estimate the response of the system at the

design time for a given seed. Generally speaking, the TEG and DRE modules focus

on different aspects of the task, as shown by

Pr(φ1, · · · , φN︸ ︷︷ ︸
TEG

| ηr(td;φ1, · · · , φN)︸ ︷︷ ︸
DRE

> ζ). (1.15)

As data-driven modules, TEG and DRE ask for the dataset in different formats.

The TEG module requires a seed table which consists of samples of seed vectors and

their corresponding response. On the other hand, the DRE module, like many other

system identification methods, requires pairs of input and output time series. Due

to the wide range of applications from each module, they can be used with other

existing methods. For example, the DRE module can benefit the FORM method in a

quick evaluation of the system response. In the later chapters, the TEG module and

the DRE module will be explained in great detail and supported by many examples.

Figure 1.7 shows the structure map of the current thesis.

In Chapter II, the fundamental background of machine learning is briefly reviewed,

which includes Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN),

and Long Short-Term Memory (LSTM). Instead of listing rigorous mathematical

equations, the chapter focus on the intuition and functionality of the machine learning

methods, which are helpful to better understand the TEG and DRE modules.

Chapter III discusses the TEG module from the motivation and the methodology.

The computation complexity of the module is theoretically analyzed. The size of

the data collection required by the module is also discussed through experiments.

To validate the module, examples of linear waves, nonlinear waves, and nonlinear

ship roll are analyzed. The linear wave example starts from a bichromatic wave
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to better visualize the joint distribution of Fourier phases without worrying about

the high-dimension difficulty in the visualization of phase vectors. A five-component

wave is studied to check the pairwise joint distribution among the phases. Finally,

a 30 component wave example is introduced followed by a discussion on the relation

between the threshold conditional probability and the Extreme Value Distribution.

After the module succeeds in linear examples, examples with more nonlinearity are

brought in. Specifically, examples are the second-order nonlinear wave and the ship

roll excited by wave and wind loadings.

Chapter IV explains the DRE module. To validate the module for the identifica-

tion of dynamical systems, examples from the previous chapter are tested. Two new

examples from CFD simulations, tank sloshing and a floating object, are introduced

to present the potential of the DRE module.

Chapter V combines the TEG and DRE modules with an integrated example in

order to illustrate the usage of the proposed framework. The example is a floating

object undergoing pitch motion in irregular waves. The example is simulated via

CFD. As is shown in the chapter, the proposed framework achieves the goal.

Finally, Chapter VI summarizes the results and findings. Future work is also

discussed to improve this data-driven framework.
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Figure 1.7: Chapter map
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CHAPTER II

Neural Networks

Machine learning methods, especially neural networks, are heavily used in the

proposed framework. This chapter focuses on the important concepts and function-

ality of relevant machine learning methods, instead of listing mathematical equations

or providing rigorous proofs. The current chapter aims to help the readers who are

not familiar with the machine learning domain to better understand the intuitions

and ideas that appear in later chapters. Specifically, this chapter presents the ba-

sic concepts that are used to use Recurrent Neural Networks (RNN) including Long

Short-Term Memory (LSTM).

2.1 What is Machine Learning?

Most machines complete their tasks by following concrete instructions that are

explicitly programmed by humans. However, there are other advanced tasks where

humans cannot give explicit instructions to the machine. Examples are the recognition

of handwritten letters and retrieval and ranking of search results based on the user’s

query. The instructions of completing these tasks are no longer given by humans,

and instead, they are learned from data. Humans are still involved in the process by

preparing the data and designing the learning methods. Since most learning methods

are data-driven, other names like pattern recognition or statistical inference are also

used in different fields. As the amount of data has tremendously grown in the past

several decades, machine learning methods have achieved breakthroughs in many

fields. After several generations of development, machine learning methods perform

well on many advanced tasks that humans are normally good at, such as perception

and decision making.

Depending on various types of tasks, machine learning methods can be categorized

into different families. A fundamental and widely-used family of methods is called
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Figure 2.1: A supervised learning example: curve-fitting to data points

supervised learning. It develops predictive models based on both input and output

data. The developed model acts as a mapping from the independent variables (or

features) to the dependent variables (or labels). One example of a supervised learning

task is to fit curves to data, shown in Figure 2.1. Given the dataset (blue circles),

the fitted curve (red) is found by machine learning algorithms and it produces the

prediction ŷ for any new independent variable xnew. Other supervised learning ex-

amples are classifying an image into “cat” or “not cat”, and controlling the steering

angle and the accelerator based on the driving condition. Based on the convention,

supervised learning is further broken into regression problems for cases when depen-

dent variables are continuous, and classification problems in cases when dependent

variables are discrete.

Machine learning models can also be described from the probabilistic perspective.

These descriptions are important and widely-used since they are built on probability

theory. For the previous classification example, producing the probability of the image

being a “cat” image tells more story than just outputting a binary result (1: “cat”; 0:

“not cat”). In this case, it may sound trivial to classify the image into the “cat” class

if the predictive probability is larger than 0.5. However, such a decision threshold

may be difficult to make for an example of classifying a tumor image into “benign”

or “malignant”. A too high threshold can result in an error that may bring an undue

concern to a healthy patient. In the opposite case, too low of a threshold can result in

an error of the cancer being not treated in time. Therefore, separate from the decision

phase, the probabilistic description Pr(y|X) with X being the image and y being the

class, in this case, tells a more complete story than just classification decision.

One probabilistic perspective, especially useful for classification models, is to de-

termine whether the model is discriminative or generative. A discriminative model

learns the conditional distribution Pr(y|X) from data, while a generative model learns

20



the joint distribution Pr(X, y). In the previous example, classifying an image into

“cat” or “not cat” is a discriminative model. As a comparison, a corresponding

generative model is to produce a new image and its class at the same time sam-

pled from the learned distribution Pr(X, y). One can also ask the generative model

to produce a “cat” image by sampling from Pr(X|y) = Pr(X, y)/Pr(y). Since the

generative model learns a more complex (or higher dimensional) distribution than

the discriminative model does, it can also serve to produce discriminative results by

Pr(y|X) = Pr(X, y)/Pr(X). Though the generative model can produce more results

than the discriminative model, it usually needs more time and data to be trained.

In later chapters, the concepts introduced here will reappear for the two modules of

the proposed framework. As will be shown later, the Threshold Exceedance Generator

(TEG) module is a classification and generative model, and the Design Response

Estimator (DRE) module is a regression and discriminative model.

2.2 How does Machine Learning Work?

To build a machine learning model that approximates the mapping from features

to labels, a typical workflow looks like Figure 2.2. The first step to build such a data-

driven model is to collect the data which comes from either experimental measure-

ments or numerical simulations. The collected data are usually tabulated as shown

in Table 2.1, where each row presents a sample (or a record) and columns represent

features or labels. The convention of laying out samples by rows is commonly-used

in many machine learning frameworks and is adopted in the current thesis. The raw

data needs to be preprocessed before being sent to the models. Common preprocess-

ing includes but not limited to imputation, scaling, and encoding. Data imputation

is to infer the missing value within the table. One of the imputation approaches is

to fill the missing blanks with the mean value of the corresponding feature column.

Data scaling is to normalize each feature and label column separately such that the

values from these columns are comparable. Common scaling schemes are Min-Max

and Standardization. The Min-Max scaling sets the lower bound of the column to

zero and the upper bound of the column to one. Then the linearly scaled values

from the column range from zero to one. The Standardization approach scales each

value of the column by the mean and the standard deviation of that column. Data

encoding is required when the categorical (or class) features appear in the dataset.

Integer-Encoding assigns integers from 0 to K − 1 to each of K classes. However,

sometimes the Integer-Encoding may bring in an unwanted relation, which means a
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Figure 2.2: Workflow to build a machine learning model

X1 X2 · · · y1 · · ·
...

...
...

...
...

Table 2.1: Layout (row-wise) of collected data.

class encoded with K−1 is not necessarily larger than a class encoded with 0. A more

common encoding approach that addresses this problem is called One-Hot-Encoding,

where the encoding integer is converted to a one-hot binary vector. The One-Hot-

Encoding process to encode a color feature column is illustrated in Figure 2.3. Later

chapters will show how the Standardization and the One-Hot-Encoding are used in

both TEG and DRE modules.

After the data is preprocessed, it is given to the model to learn (or recognize)

the pattern inside the data, which plays the core role of a machine-learning problem.

Depending on the task complexity and the amount of data collected, different model

Figure 2.3: Categorical feature encoding
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designs are considered. Many machine learning models are parametric and can be

regarded as a function f(X; θ) where X are the given features and θ are the model

parameters. Different model architectures mean different structures between X and

θ. For the previous example of fitting a curve to the given data points, a polynomial

can be regarded as the machine learning model with parameters being the coefficients

in front of each power term. One of the well-known machine learning models, called

Neural Network, is heavily used in the current thesis and is reviewed in the next

section. Once a parametric model is selected, the model training process is to find

the best (or nearly best) parameters such that the prediction ŷ = f(X; θ) from the

model is as close as possible to the given ground-truth. A mathematical way to

describe the training process is in the optimization format

min
θ

L(ŷ, y) (2.1)

where L(·, ·) is the loss function to measure the error between the prediction and its

ground-truth. Table 2.2 lists the common loss functions, where the MSE and MAE

loss functions are used in regression problems and the Cross-Entropy loss functions are

used in classification problems. Since there are multiple samples in the dataset, the

loss is often evaluated based on the average across multiple samples. Since the closed-

form solution to the optimization problem is often unavailable, an iterative approach

like Gradient Descent is widely used. Gradient Descent updates the model parameters

by considering the derivatives of the loss with respect to the model parameters

θ ← θ − α∂L
∂θ

(2.2)

where α is called the learning rate. Figure 2.4 demonstrates how the parameters

are optimized during the training process for a 2D parameter space. Many optimiz-

ers based on Gradient Descent are developed, which include but are not limited to

Stochastic Gradient Descent, Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.,

2012), and Adam (Kingma and Ba, 2014). The iterative optimization (or training

process) stops when the loss converges, thereby producing a trained model with the

optimal parameters.

Once the model is trained, it is important to evaluate its predictive performance.

For a sufficiently complex model with a sufficient number of parameters relative to

the amount of collected data, it can theoretically fit all the given data perfectly.

Though the performance of the trained model is perfect on the given data, its per-

formance may become worse for the new data. This phenomenon is commonly seen
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Figure 2.4: Gradient Descent illustration for a 2D parameter space

Name Definition

Mean Squared Error (MSE) L(ŷ, y) = 1
2(y − ŷ)2

Mean Absolute Error (MAE) L(ŷ, y) = |y − ŷ|
Cross Entropy (binary) L(ŷ, y) = −[y log ŷ + (1− y) log(1− ŷ)]

Cross Entropy (multi-class) L(ŷ, y) = −
∑K

i=1 yi log(ŷi)

Table 2.2: Common Loss Function for Neural Networks

Figure 2.5: Models (red curves) underfit, well-fit, overfit the observations (blue dots)
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size of the raw dataset ratio for training-validation-test

103 0.6 - 0.2 - 0.2
104 0.7 - 0.2 - 0.1
> 106 0.98 - 0.01 - 0.01

Table 2.3: An example with common ratios for data splitting

in many cases, called overfitting. Figure 2.5 illustrates how a complex model overfits

the given data. Generally speaking, the overfitted model tends to “memorize” the

noise while recognizing the pattern in the data. To objectively measure the predic-

tive performance of the trained model, one typical approach is to form a validation

dataset. Hence, the collected data is usually split into the training and validation

datasets. The training dataset is then used to fit the model parameters and the

validation dataset is used to measure the model performance on new data. When

multiple model candidates are considered, a third dataset called test dataset is often

formed. In this case, the training dataset is again used to fit the parameters, and

the performance of the model candidates on the validation dataset produces the best

candidate. The performance of the best candidate on the test dataset is then reported

as the performance for “unseen” data. As a rule of thumb, Table 2.3 lists the common

ratios for data splitting.

To avoid overfitting, it is important to select a proper model complexity that is

relative to the amount of collected data. As the amount of collected data increases,

a more complex model can be adopted. Common approaches to avoid overfitting are

collecting more data, or selecting a simpler model design. Another way to control

the complexity of the model, called early stopping, is stopping the training process of

a complex model if the performance on the validation dataset becomes worse. The

model complexity can also be changed by regularizing the model parameters. For

the curve fitting example, regularization is achieved by introducing the norm of the

model parameters to the loss function.

min
θ

L(ŷ, y) + λ||θ||2 (2.3)

where || · || is some norm measure like L1-norm or L2-norm and λ is the regularization

coefficient specified by the user.

As shown in later chapters, neural networks are selected as the model design for

both TEG and DRE modules. Reducing the model complexity and early stopping

are used to avoid overfitting. The training costs for both modules are relatively low

and the trained models achieve good results on both training and validation datasets.
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Figure 2.6: A Venn diagram showing Neural Networks family

2.3 Neural Network Structures

In this section, one family of Neural Networks is briefly reviewed. They are heavily

used in the current design of the TEG and DRE modules. The introduction starts

from a very basic vanilla type of neural network, called a Multi-Layer Perceptron

(MLP), where its architecture and training process is reviewed. After familiarization

with MLP, a deeper type of neural network called a Recurrent Neural Network (RNN)

is discussed to better learn the pattern of sequential data, such as a time series. A

concrete architecture of RNN, called Long Short-Term Memory (LSTM), is then

introduced.

Figure 2.6 shows the relation among different neural network architectures via a

Venn diagram. In this section, the MLP, RNN, and LSTM design are reviewed. Note

that there exist other types of neural networks like Convolutional Neural Network

(CNN) that are mainly used for image pixel data. Also, there exist other types of RNN

like Gated Recurrent Unit (GRU) that may be suitable for the proposed framework

and they are usually compared with the LSTM design. However, to demonstrate how

machine learning methods can be applied to the extreme marine dynamical problems,

the discussion and comparison are out of scope for the current thesis and only LSTM

is considered when designing the proposed models.

2.3.1 Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP), also known as Feedforward Neural Network, marks

the beginning of neural networks. Due to its straightforward architecture, it is also

mentioned as a “vanilla” neural network. The idea of neural networks first appeared
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Figure 2.7: An example of Multi-Layer Perceptron architecture

Figure 2.8: Node computation: weighted summation and nonlinear activation

as a mathematical model in the 1940’s to imitate human intelligence. To describe

how neurons in the human brain might work, the model tends to translate the biolog-

ical connection among neurons into computer-based machines. The neural network

models have been developed over several decades by many mathematicians, neurosci-

entist, and computer scientists (McCulloch and Pitts , 1943; Hebb, 2005; Rosenblatt ,

1958; Widrow and Hoff , 1960; Werbos , 1990; Rumelhart et al., 1986).

Figure 2.7 shows a typical MLP architecture as an example. The neural network

maps the input on the left to the output on the right, which is called Forward Propa-

gation. Its layers consist of one input layer, two hidden layers, and one output layer.

The nodes and neurons inside each layer are represented as blue circles. The number
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Name Definition Derivative

sigmoid g(z) = 1
1+e−z g′(z) = g(1− g)

tanh g(z) = ez−e−z
ez+e−z g′(z) = 1− g2

ReLU g(z) = max(0, z) g′(z) = 1(z > 0), 0(otherwise)
leaky ReLU g(z) = max(0.01z, z) g′(z) = 1(z > 0), 0.01(otherwise)

Table 2.4: Common Activation Functions for Neural Networks

of nodes in each layer is also called layer width. For example, the width of both hidden

layers is four. For the MLP architecture, the nodes inside each layer are connected to

all the nodes in its previous and next layers. Therefore, these fully-connected layers

are also called “dense” layers. The node computes its output based on its inputs in

two steps, as shown Figure 2.8. The first step is a weighted summation of its inputs

(and adding bias). Mathematically, it computes

z = w1x1 + w2x2 + · · ·+ wnxn + b (2.4)

where w1, · · · , wn are the weight parameters and b is the bias parameter for the

node. These parameters are optimized in the training process. The second step is a

nonlinear activation.

a = g(z) (2.5)

where g(·) is a nonlinear function. Common choices of the nonlinear activation func-

tions are listed in Figure 2.4. Without the nonlinear activation, neural networks

are not able to approximate possible nonlinear relations between the input and the

output.

For the example architecture shown in Figure 2.7, the calculation of output for a

training sample in a matrix representation is then

a[1] = g[1]([x1, x2, x3]W [1] + b[1]) (2.6)

a[2] = g[2](a[1]W [2] + b[2]) (2.7)

[ŷ1, ŷ2] = a[3] = g[3](a[2]W [3] + b[3]) (2.8)

where W [1] ∈ R3×4 and b[1] ∈ R1×4 are the parameters of the first hidden layer

and a[1] ∈ R1×4 is the output of the first hidden layer. Similarly, W [2] ∈ R4×4 and

b[2] ∈ R1×4 are the parameters of the second hidden layer and a[2] ∈ R1×4 is the

output. Finally, W [3] ∈ R4×2 and b[3] ∈ R1×2 are the parameters for the output layer

and ŷ = a[3] ∈ R1×2 is the final prediction. Therefore, the model has 16+20+10 = 46
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Figure 2.9: Training process: 1) forward propagation, 2) loss calculation, 3) back-
propagation, 4) update parameters

parameters in total to fit the nonlinear relation between the input and the output.

The model training to determine the model parameters W and b is achieved

through an iteration process shown in Figure 2.9. A batch of training samples is

given to the model, which produces its output estimation of ŷ. Then estimates are

compared against their according ground-truth y in the training dataset via a loss

function. The averaged (or weighted) loss is then used to perform a backpropagation,

where the derivatives of the loss with respect to all model parameters are calculated.

The efficient computation of the derivatives in the backpropagation is performed from

the output side to the input side. Once the derivatives are calculated, the model pa-

rameters are then updated via Gradient Descent.

As shown in later chapters, this vanilla type of neural network is used together

with LSTMs in the TEG and DRE modules.

2.3.2 Recurrent Neural Network (RNN)

The Recurrent Neural Network (RNN) is developed by Hopfield (1982) and Rumel-

hart et al. (1986) to recognize the pattern of sequential data like time series, audio
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Figure 2.10: A simple RNN architecture

Figure 2.11: A diagram illustrating how the RNN unit becomes stateful

waves, and natural language. The supervised task is to predict the output sequence

based on the given input sequence. Figure 2.10 shows a simple RNN structure. A

RNN unit takes the current input xt and produce the current output yt. Different

from a vanilla neural network, this RNN unit is stateful, which means the unit when

calculating the next output yt+1 is different from the current unit. Therefore, it may

be helpful by equivalently unfolding the concise representation (shown on the left)

into a clearer long chain (shown on the right).

The RNN achieves its stateful behavior via an internal state variable, also known

as hidden units. Figure 2.11 shows how the RNN unit updates its state over time.

To calculate the output at the current timestamp, it first calculates its new hidden

units based on the old hidden units and current input.

at = tanh(W [at−1, xt] + b) (2.9)

where at and at−1 are the hidden units at timestamp t (new) and t− 1 (old), xt is the

input at timestamp t, W is the weight parameter and b is the bias parameter. The
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Figure 2.12: Different types of RNN architecture

prediction at current timestamp is then calculated as

yt = σ(at) (2.10)

where σ(·) is the sigmoid function given in Table 2.4. It is worth noting that the

model parameter W and b are used for the prediction at all time steps while the

hidden units vary over time. Therefore, compared to direct application of a MLP

by treating the whole sequence as the input vector, the RNN reduces the number

of parameters by sharing them over time. This efficient parameterization makes the

RNN outperform the MLP in many sequential tasks. Another advantage of RNN over

MLP is its flexible input dimension. The sequence length can be arbitrary without

changing the RNN design.

Based on the lengths of the input and output sequences, different architectures of

RNN are developed. Figure 2.12 shows how these RNNs are structured to account

for different mapping conditions.

To increase the model complexity and learning ability for large datasets, a deep

RNN is often used by “stacking up” multiple RNN layers, as shown in Figure 2.13.

In the setting of Figure 2.13, the output sequence from each RNN layer is treated as

the input sequence to the next (or upper) RNN layer. The output sequence from the

very top RNN layer is hence the final output of this deep RNN structure.
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Figure 2.13: A diagram shows a deep RNN architecture

2.3.3 Long Short-Term Memory (LSTM)

Many types of RNN with similar structures are developed based on the idea of

stateful units. A more complex design compared to Figure 2.10 is called LSTM, which

is designed by Hochreiter and Schmidhuber (1997). It is proved to be successful in

many machine learning examples and still widely used today. Figure 2.14 shows its

computation unit, and the computation flow is well explained by Olah (2015). The

important components of a LSTM unit are briefly reviewed as follows with a focus

on intuition.

Similar to the hidden units in Figure 2.10, the cell state is used as a stateful

memory in LSTM, shown in Figure 2.15. It acts like a “conveyor belt” carrying

information flow according to Olah’s description. The carried cargo on the belt can

be thrown away and newly manufactured cargo can be added on the belt, which is

controlled by two gates, called forget gate and update gate respectively. Figure 2.16

shows how the “forget” controller signal, ft, is calculated based on the current input

and previous output.

ft = σ(Wf [ht−1, xt] + bf ) (2.11)

where ht−1 is the previous output, xt is the current input, Wf is the weight parameter

for the forget gate, and bf is the bias parameter for the gate. The nonlinear sigmoid

function produces a control signal that ranges from 0 to 1. Similar to the “forget”
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Figure 2.14: A diagram shows the LSTM unit

Figure 2.15: LSTM cell state
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Figure 2.16: LSTM forget gate

controller, a update controller is also designed with its control signal calculated as

it = σ(Wi[ht−1, xt] + bi) (2.12)

where Wi and bi are the weight and bias parameters of the “update” gate, respectively.

The “update” controller also produces a control signal that ranges from 0 to 1. The

new cargo is “manufactured” by

C̃t = tanh(WC [ht−1, xt] + bC) (2.13)

where WC and bC are the weight and bias parameters for the new cargo. Note that

the control signal are elementwise operations which allow each piece of cargo to be

removed or added seperately. Therefore, the final cargo on the belt is then calculated

by

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.14)

where ∗ is elementwise multiplication between the control signal and specific cargo.

Not all the cargo on the belt is needed in the output calculation. A output gate

controls how much cargo on the belt are packed and produced as the output, as shown

in Figure 2.18. Similar to the “update” controller and its newly manufactured cargo,

a “output” controller and its packed cargo can be calculated as follows.

ot = σ(Wo[ht−1, xt] + bo) (2.15)
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Figure 2.17: LSTM update gate

ht = ot ∗ tanh(Ct) (2.16)

where Wo and bo are weight and bias parameters for the “output” gate and ht is the

final output of the LSTM unit at timestamp t.

As shown in later chapters, both the TEG module and the DRE module use

multiple layers of LSTM architecture together with Dense (or Fully-Connected) ar-

chitecture to complete their different tasks. Specifically, the TEG module uses a

many-to-one deep LSTM design and the DRE module uses a many-to-many (same

length) deep LSTM design.

Table 2.5 compares the difference of machine learning tasks between the mod-

ules. The TEG module solves a generative classification problem, while the DRE

module solves a regression problem. To generate a seed vector that specifies a load-

ing environment, the TEG module treats the coordinates of the vector as sequential

data. In terms of a Fourier representation, the TEG module can generate a Fourier

phase sequence that follows the joint distribution of the given phase sets in a high-

dimensional space. Different from the TEG module that deals with the Fourier phase

in a frequency domain, the DRE module solves a system identification problem to

predict the system response based on the system input in the time domain. In later

chapters, different concrete architectures are designed to successfully complete the

tasks for both modules. An open-source neural network library written in Python,

called Keras, is used to implement the designs.
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Figure 2.18: LSTM output gate

Compare TEG DRE

Generative Yes No
Regression No Yes
Independent variable frequency domain time domain
Dependent variable discrete real
Input generation history system input
Output distribution of phases system output

Table 2.5: Compare applying the LSTM network to TEG and DRE tasks
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CHAPTER III

Module I - Threshold Exceedance Generator

In this chapter, a module named Threshold Exceedance Generator (TEG), is pro-

posed to randomly generate deterministic wave environments that lead to large system

response as many as the user desires. Simulation with the generated environments

can explain the full time-domain story of the large system response. The chapter first

demonstrates how the seed vector associated with a dangerous environment is dis-

tributed in high-dimensional space. Next, a machine learning approach, specifically

a LSTM architecture, is proposed to recognize and generate new seed vectors based

on the pattern in the probability space. Three examples, including linear waves, non-

linear waves, and nonlinear ship roll, are used to illustrate how the proposed model

can be applied.

3.1 The Independent and Not-Identically Distributed As-

sumption

Consider a stochastic ocean wave elevation η(x, t) represented as a Fourier series

η(x, t) =
N∑
i=1

ai cos(2πfit− kix+ φi) (3.1)

where ai, fi and ki are amplitudes, frequencies, and wave numbers repectively for

each Fourier component. The frequencies and the wave numbers are related via the

dispersion relation

(2πfi)
2 = gki tanh(kih) (3.2)

where h is the finite water depth and g is the gravity constant. The phase angles φi

are uniformly distributed from −π to π. Due to the Central Limit Theorem (CLT),

the resultant elevation process at an arbitrary location η(x0, t) is a Gaussian process
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when N is sufficiently large. Since a Gaussian process is uniquely defined by its energy

density spectrum, the discrete amplitudes can be determined from the discretized

single-sided sea spectrum

ai =
√

2S(fi)∆f (3.3)

where S(fi) is the spectral density evaluated at frequency fi, and ∆f is the frequency

spacing for the discretized spectrum. The resultant wave elevation at time t0 and lo-

cation x0, η(x0, t0) then follows the zero-mean Gaussian distribution with Probability

Density Function (PDF) as follows.

fη(x0,t0)(x) =
1

σ
√

2π
e−

x2

2σ2 (3.4)

where the variance σ2 relates to the spectrum by

σ2 =

∞∫
0

S(f) df ≈ 1

2

N∑
i=1

a2
i (3.5)

When the DLG method is used to generate the phase set (φ1, · · · , φN) that leads

to large elevation at (x0, t0) = (0, 0), the Independent and Not-Identically Distributed

(INID) among Fourier components is assumed. Specifically, the PDF for each phase

φi random variable is parameterized by one model parameter λi

fφi(z) =
1

λi
√

2π
e−z

2/2λ2i +
1

2π

[
1− erf

(
π

λi
√

2

)]
,−π ≤ z < π (3.6)

where erf(x) = 2√
π

∫ x
0
e−t

2
dt. The phase model is a single-peak truncated Gaussian-

like distribution. Kim (2012) showed the independently distributed assumption is

incorrect. A similar experiment to verify his argument is demonstrated.

For the experiment, Figure 3.1 shows the JONSWAP discretized spectral density

vs. frequency (left) and corresponding amplitudes vs. frequency (right) for the Gaus-

sian wave. The spectrum has N = 30 Fourier components evaluated with uniform

spacing in the range from 0.04 Hz to 0.09 Hz.

20,000 realizations are generated and the phase angle of each of the 30 components

is uniformly distributed from −π to π. The resultant elevation for each realization

is evaluated using Eq. 3.1 at (x0, t0) = (0, 0). Figure 3.2 shows the histogram of

elevation normalized by the standard deviation σ calculated by Eq. 3.5. Among 20,000

realizations, 3283 of them lead to elevations that exceed one standard deviation, and

they are colored in red in the histogram. The phase vectors that leads to η > σ
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Figure 3.1: Single-sided spectrum and 30 discretized Fourier amplitudes

Figure 3.2: Histogram of elevation, η. 3283 out of 20,000 realizations have η that are
greater than σ

are selected and visualized in Figure 3.3. The figure plots a histogram for each

component in a 3D space where each histogram shows the phase angle distribution.

Each 2D histogram is colored based on the corresponding amplitude ai for that Fourier

component shown in Figure 3.1. In other words, the figure presents the marginal

distribution given the condition η > σ, which is Pr(φi|η > ζ).

Note that Figure 3.3 only portrays the marginal distribution and does not pro-

vide correlation information among Fourier components. Even though visualizing

the joint distribution Pr(φ1, · · · , φ30|η > σ) is hard, we can still discuss whether

the phases are independent or not for the condition η > σ. In fact, Kim (2012)

shows that the conditional phases are distributed dependently by contradiction. If

the phases are distributed independently, then shuffling the phases for each Fourier

component, as shown in Figure 3.4, would not affect the distribution of the elevation

η. However, Figure 3.5 shows that the histogram of η from the shuffled dataset is sig-

nificantly different from the original histogram of η. Therefore, the Independent and

Not-Identically Distributed (INID) assumption is not suitable for the phases among
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Figure 3.3: 30 2D histogram representing the marginal distribution Pr(φi|η > ζ),
colored based on ai (in Figure 3.1) for i-th Fourier components

Figure 3.4: Shuffle the selected phases within the group for each Fourier component
to check dependency given the condition η > σ
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Figure 3.5: Compare the orignal histogram of the elevation (η > σ) and the histogram
from the shuffled. Both histograms are “density” normalized so that the
area is 1

different Fourier components. In other words, the phases from different Fourier in-

dices are correlated. Thus it is more correct to sample the phase as a vector from the

joint distribution, Pr(φ1, · · · , φN |η > ζ).

Another limitation of the DLG phase model is that the distribution is symmetric

at the origin. This limitation does not take into effect if the wave and the dynamical

system are both linear since the distribution of the phases can always be symmetric

if shifted in time and space. However, for nonlinear wave or dynamical systems, the

distribution of the phases is no longer guaranteed to be symmetric. This part is

demonstrated in nonlinear wave and nonlinear ship roll examples.

3.2 Methodology

3.2.1 Generative Model

The objective of the TEG as a Generative Model is to generate samples from the

distribution

Pr (φ1, · · · , φN |ηr(td;φ1, · · · , φN) > ζ) (3.7)

As mentioned in the Chapter II, supervised learning is to build a model that can pre-

dict the label y (dependent variable) based on the features X (independent variables).

The process using the dataset to estimate the parameters of the model is called model

training. For supervised learning, both features and labels are included in the dataset.

Supervised learning tasks can be categorized from different perspectives. From the

perspective of label type, regression tasks address the continuous labels, and classi-
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Example Classification

Discriminative classify the image into “Dog” or “Cat”
Generative generate “Dog” and “Cat” images (data augmentation)

Table 3.1: Example of Generative and Discriminative Models

Generation of images Generation of environments

image pixels seed vector (Fourier phases)
“Cat” category response above threshold
“Dog” category response below threshold

Table 3.2: Analogy between problems of generative models

fication tasks deal with the categorical labels. From the perspective of model usage,

discriminative models learn the conditional probability Pr(y|X), and generative mod-

els learn the joint probability Pr(X, y). Discriminative models are used to estimate

the distribution of the labels given the features, and generative models can be used

to generate both features and labels following the similar distribution of the dataset.

Table 3.1 compares the difference between discriminative and generative models via

a simple example. In the example, a generative model can learn the pixel pattern

from the given images and “create” new cat or dog images. With the similar idea

used to generate ocean environments, a generative model can learn the pattern inside

the environments that lead to large system response, and generate new environments

that could also lead to large responses. Table 3.2 gives an analogy between generation

of cat images and generation of environments that lead to large system response.

The TEG model is able to sample the environment seeds in a format of phase

vector as many times as the user desires. Therefore, the TEG model is built as a

generative model and the condition

ηr(td;φ1, · · · , φN) > ζ (3.8)

and

ηr(td;φ1, · · · , φN) ≤ ζ (3.9)

where ηr(td; ·) is the system response at the design time and φ1, · · · , φN is the seed

vector, can be treated as two labeling categories.

Two challenges have to be solved to train the TEG model. First, the model archi-

tecture needs to efficiently approximate and sample the joint distribution which spans

a high-dimensional space with the size equal to the number of Fourier components.

The second challenge is related to the cost of generating a dataset when the ex-

42



ζ Pr(ηr(td)) > ζ

0σ 0.5000
1σ 0.1587
2σ 0.02275
3σ 0.001350
4σ 3.167× 10−5

5σ 2.867× 10−7

6σ 9.866× 10−10

7σ 1.280× 10−12

Table 3.3: Probability of exceedance vs. rareness for a zero-mean Gaussian random
variable

ceedance threshold value is high. A brute-force way to prepare the dataset for the

model training is to generate phases independently and uniformly from −π to π, and

then select the phases that lead to threshold exceedance responses. The phases after

being filtered are no longer uniformly and dependently distributed as shown in sec-

tion 3.1, and they are used as the dataset to train the model. However, when the

threshold value is set high, only a small set of the samples leads to an exceedance

response, and most of them cannot be used for training. For a zero-mean Gaussian

variable, Table 3.3 lists the exceedance probability (or 1 - Cumulative Distribution

Function (CDF)) of a randomly generated phase sequence with the prescribed thresh-

old ζ. Specifically, the probability of exceedance versus the threshold value in terms

of the standard deviation of σ is listed in Table 3.3. Considering how small the

probability of exceedance is for ζ ≥ 4σ, an efficient algorithm is required.

The new generative method addresses both challenges, as is shown in the remain-

der of this section.

3.2.2 Lauguage Model

The idea behind the TEG model architecture is taken from natural language

processing. The language model in machine learning can estimate the likelihood of

sequential data. For example, after training on a menu dataset, the language model

can tell the probability difference between the following two phrases.

Pr(“The”, “apple”, “and”, “pair”, “salad”) = 3.2× 10−13

Pr(“The”, “apple”, “and”, “pear”, “salad”) = 5.7× 10−10

The language model can be built on different levels including character level and

word level. The example above with a sequence of words is a word-level language

model and an example of character-level models could be estimating the following

probabilities.
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Pr(“a”, “p”, “p”, “l”, “e”) = 1.6× 10−4

Pr(“a”, “p”, “l”, “p”, “e”) = 4.8× 10−7

Let (x1, · · · , xN) represent sequence data of length N . From the chain rule, the

joint probability of observing the sequence can be decomposed into a product of

conditional probabilities.

Pr(x1, · · · , xN) = Pr(x1) Pr(x2|x1) · · ·Pr(xN |x1, · · · , xN−1) (3.10)

where Pr(xn|x1, · · · , xn−1) is the conditional probability of xn given the history of

the generated sequence. Therefore, successfuly learning Pr(xn|x1, · · · , xn−1) can not

only estimate the joint probability but also provide the sampling method based on

the generation history.

Since the features are sequential data, and the order of each feature in the sequence

matters to the prediction, a neural net from the RNN architecture, called LSTM,

is used to take the generated sequence as input and the distribution of the next

element as the output. In Figure 2.12, a “many-to-one” RNN architecture is selected

to approximate the mapping from the generated sequence to the probability vector

for the next “to-be-sampled” element. Once the conditional probability mapping is

learned by the model, it can generate a feature sequence of indefinite length. The

sequence is generated by recursively sampling the next element from the predicted

distribution Pr(xn|x1, · · · , xn−1).

In the following subsections, the similar idea of building language models to gen-

erate samples from the joint distribution is introduced and customized to generate

the correlated phase set step by step.

3.2.3 Data Preparation

Let Φ be the raw phase dataset sampled from the distribution of threshold ex-

ceedance phases in Eq. 3.7. Eq. 3.11 shows the dataset matrix Φ with shape (M,N)

after being filtered by the threshold ηr(td;φ1, · · · , φN) > ζ, where M is the number

of realizations and N is the number of Fourier components. Each row of the ma-

trix is one realization or sample and the column of the matrix corresponds to the

corresponding Fourier indices.
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Φ =


φ11 φ12 · · · φ1N

φ21 φ22 · · · φ2N

...
...

...
...

φM1 φM2 · · · φMN

 (3.11)

For the word-level text generation problem, the model outputs the probability

vector for the next word in the dictionary. However, for the phase generation scenario,

the phase angle is a continuous variable in the interval [−π, π). Parameterization of

the PDF on the continuous interval is required to format the model output. Moreover,

successful sampling based on the distribution output is also required. The most (if not

the most) straightforward parameterization on a bounded interval can be a discrete

histogram. Hence, all continuous phase angles are digitized by a uniform bin grid.

Let D represent the digitized phase angles.

D =


d11 d12 · · · d1N

d21 d22 · · · d2N

...
...

...
...

dM1 dM2 · · · dMN

 (3.12)

where dij =
⌊
φij−(−π)

2π/K

⌋
+ 1 and K is the number of bins to digitize the angle range

[−π, π). As a result, the element in the dataset D is then integer-encoded, dij ∈
{1, 2, · · · , K}. For a supervised learning task that approximates the mapping from

indepedent variables X to depedent variables y, its training data naturally consists of

data pairs (feature, label), where each pair stands for one data point, called a sample

or record. To prepare the dataset for the TEG model, a “sliding-window” method

is used to convert each row of D to multiple history records in X and y. Each row

in D produces N records in the training dataset X and y and the feature matrix X

is pre-padded with the dummy value 0. The feature sequence matrix X = [xij] has

shape of (MN,N − 1) and xij ∈ {0, 1, · · · , K}. The label matrix y = [yi] has shape

of (MN, 1) and yi ∈ {1, · · · , K}.

45



integer-encoding one-hot-encoding

0 [1, 0, 0, · · · , 0]
1 [0, 1, 0, · · · , 0]
2 [0, 0, 1, · · · , 0]
...

...
K [0, 0, 0, · · · , 1]

Table 3.4: Convert Integer-Encoded to One-Hot-Encoded

X =



0 · · · 0 0 0 0

0 · · · 0 0 0 d11

0 · · · 0 0 d11 d12

0 · · · 0 d11 d12 d13

...
...

...
...

...
...

d11 · · · d1,N−4 d1,N−3 d1,N−2 d1,N−1

...
...

...
...

...
...


, y =



d11

d12

d13

d14

...

d1,N

...


(3.13)

For each row of X, the model is expected to produce a probability vector

ŷ = [ŷ0, · · · , ŷk, · · · , ŷK ] (3.14)

like a histogram for the next discrete phase. Each floating number in the vector ŷk

then represents the likelihood for the next discrete phase being k. Obviously, all

floating numbers in ŷ have properties: 1) ŷk ≥ 0; and 2)
∑K

k=0 ŷk = 1. For a well-

trained model, the predicted probability vector ŷ should have large values at indices

that correspond to the digitized phases that are observed in y.

Since the dummy value is set to zero and it does not infer any relation with other

angles, the integer-encoded matrix X and y are suggested to convert to One-Hot-

Encoded as illustrated in Table 3.4 and Figure 3.6. Therefore, the dataset consists of

a One-Hot-Encoded matrix X with shape (MN,N−1, K+1) and a One-Hot-Encoded

vector y with shape (MN,K + 1).

Before sending the one-hot-encoded X and y to the model training process, the

dataset has to be split by rows into a training dataset (Xtrain, ytrain) and a validation

dataset (Xval, yval). The training process iteratively decreases the loss on the training

dataset and stops when the performance on the validation dataset worsens. This

training strategy is called early stopping as mentioned in Chapter II. For more details,
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Figure 3.6: One-hot-encoding process to convert a continuous phase angle to a binary
vector of length K + 1

Figure 3.7: TEG Architecture

refer to the subsection 3.2.5. A common split ratio for training and validation is listed

in Table 2.3.

3.2.4 Model Architecture

To recognize the complex nonlinear mapping from the generation history to the

probability vector, multi-layer LSTMs together with multiple dense layers are de-

signed. Figure 3.7 shows the concrete architecture of the TEG model.

The very bottom layer is the first LSTM layer that takes the generation history as

the feature sequence of length N − 1, where N is the number of Fourier components.

This LSTM layer produces an output sequence with the same length of N − 1 and

each output element in the sequence is a vector with the same size of the hidden

units.
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Layer (type) Output Shape

lstm 1 (LSTM) (N − 1, H)
lstm 2 (LSTM) (H, )
dense 1 (Dense) (D1, )
dense 2 (Dense) (D2, )
dense 3 (Dense) (K + 1, )

Table 3.5: Model architecture and output tensor shape

The output sequence from the first LSTM layer is taken as an input sequence

for the second LSTM layer. The hidden state vector at the very last element in

the sequence is then connected to multi-stage Dense (a.k.a Fully-Connected) layers

similar to the vanilla layer of the shallow nets shown in Figure 2.7.

The output vector produced by the last Dense layer is then converted to a prob-

ability vector of length K + 1 via the following softmax function

ŷk =
ezk∑K
k=0 e

zk
(3.15)

where z = (z0, · · · , zK) ∈ RK+1 is the output vector produced by the last Dense

layer. One property of the softmax function is it converts a real-valued vector into a

probability vector ŷ with properties: 1) ŷk ≥ 0; and 2)
∑K

k=0 ŷk = 1.

Table 3.5 lists the output shape after each layer in the model, where N is the

number of Fourier components, H is the number of cell states or hidden states in the

LSTM layers.

3.2.5 Model Training

Training a model is an optimization problem on model parameters such that the

loss (or cost) objective is minimized. As reviewed in Chapter II, forward propagation

calculates in the direction from the input side to the output side with the current

model parameters. Once the output (or prediction) is available, the loss is then

calculated by a loss (or cost) function between the prediction and the ground-truth

label. Once the loss is evaluated, backpropagation calculates the derivatives of the

loss with respect to the model parameters from the output side to the input side. The

derivatives calculated in the backpropagation step are then used by the optimization

algorithm to update the model parameters to decrease the loss.

For the TEG model, the input is the generated sequence of length N − 1, where

N is the number of Fourier components and the output is a vector representing

the estimated probabilities for the next element to be generated. The loss function
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between the probability vector and the label in the dataset is defined by a categorical

cross-entropy function

L(ŷ, y) = −
K∑
k=0

yk log(ŷk) (3.16)

where y = [y0, y1, · · · , yK ] is the one-hot-encoded label for one record in the training

dataset, and ŷ = [ŷ0, ŷ1, · · · , ŷK ] is the model output in a form of a probability vector.

A low probability at the index of the label therefore penalizes the prediction, leading

to a large loss.

The process going through forward propagation, loss calculation, backpropagation,

and model parameters update is called one iteration. For each iteration, a subset

of the whole dataset called a batch is passed through. Too small of a batch size

makes the training loss decrease non-smoothly and loses the performance speedup

from vectorization. Too large of a batch size takes a long time for calculation of one

iteration and utilizes more memory. The typical batch size for the TEG model is

from 102 to 103. One epoch is when the whole dataset is passed through one time.

Therefore, the number of iterations for one epoch of training data is calculated as

follows.

number of iterations/epoch =
number of records in the training dataset

batch size
(3.17)

The training process may need multiple epochs depending on the size of the train-

ing data and the batch size to see the loss convergence or reach the early stopping

condition. As mentioned earlier, the early stopping condition is often set when the

performance on the validation dataset becomes worse (in other words, the validation

loss increases). A safer condition is having a patience parameter p to stop training

when the performance on the validation dataset has not improved for p epochs.

The model parameters are updated once the derivatives of loss with respect to

these parameters are calculated. The general form of the gradient descent algorithms

is

w ← w − αfw(
∂L

∂w
) (3.18)

b← b− αfb(
∂L

∂b
) (3.19)
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Figure 3.8: Sample the TEG model for one phase vector (d1, d2, d3, · · · , dN)

where w and b are weights and biases parameters respectively, ∂L
∂w

and ∂L
∂b

are the

derivatives of the loss with respect to weights and biases parameters respectively, and

α is called the learning rate. Different optimization algorithms use different functions

fw and fb, and the discussion and comparison on the performance of the algorithms

are out of scope for this dissertation. The proposed models use the Adam algorithm

(Kingma and Ba, 2014) which is known for its fast and smooth convergence behavior.

3.2.6 Model Sampling

Once the model is trained, new samples in a format of a phase sequence can be

generated. The sampling process is similar to the preparation of sequential training

data using a sliding window. Recall that the model is able to produce the distribution

of the next element given the generation history of length N − 1, where N is the
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number of Fourier components. To sample one sequence, the generation history is first

initialized with all zeros. Therefore the model produces a probability vector of length

K+1, representing the probability of the “to-be-generated” discrete phase. Then the

next discrete phase is randomly sampled according to the produced probability vector.

The sampled discrete phase is then added to the tail of the generation history for the

model to sample the next phase. Once the phase sequence of length N is sampled, the

sampled sequence is finally returned to the user and the generation history is reset

with all zeros for the next sequence sampling. This process is illustrated in Figure 3.8.

3.2.7 Bootstrapping

By using the TEG model, the phases from different Fourier components can be

generated with their correlation similar to the given dataset. However, to train the

TEG model, the data for a high failure threshold is extremely limited as described by

the small probability of exceedance Pr(ηr > ζ). For example, one 4σ failure threshold

situation of a zero-mean Gaussian process requires conducting 1/(3.156 × 10−5) =

31576 MCS, not to mention that many situations are required to train the generative

model. Therefore, most of the phase sequences from the MCS lead to a response

smaller than the user-defined threshold and therefore are filtered out of the training

dataset for the TEG model resulting in a very high cost to obtain training data.

To address this lack-of-data challenge, an iterative bootstrapping strategy is pro-

posed. The idea is to train a series of models at different failure thresholds, and

the latter model is trained with filtered samples generated from the previous model.

This bootstrapping process is illustrated in Figure 3.9. Let D0 be the original phase

dataset. The resultant responses at the design time are then used to rank each phase

sequence in D0 and the top 1/q phase sequences form the dataset D1, where q is

defined as the bootstrapping stepsize. Then the phase dataset D1 is used to train a

TEG model and new samples from the trained model are denoted by D′1. The phase

sequences of the bootstrapped dataset D′1 are then ranked by running MCS, and again

the top 1/q phase sequences form the dataset D2. This procedure can be conducted

multiple times until the quantile boundary of the last dataset D′B is close to the user-

defined failure threshold. Finally, the phase sequences of D′B with responses larger

than the threshold are then returned to the user. Since the bootstrapped dataset D′i
is generated by the model which is trained on the dataset Di, they are expected to

share a similar distribution of phase sequences if the model is trained properly.
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Figure 3.9: Dataset bootstrapping
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Pr
Di

(φ1, · · · , φN) ≈ Pr
D′i

(φ1, · · · , φN), i ≥ 1 (3.20)

Moreover, since the dataset Di+1 is the top 1/q of the dataset D′i measured by the

design-time response, its dataset size is also expected to be 1/q of the dataset size of

D′i. To maintain the same dataset size between Di and Di+1 for training usage, the

model should generate q|Di| new samples as the bootstrapped dataset D′i.

|Di+1| = |D′i|/q, i ≥ 1 (3.21)

A theoretical analysis for a random process can provide the relation between

the number of bootstrapping iterations and the lower bound of the response for the

bootstrapped dataset. For a random process with the filter quantile q, the theoretical

lower bound ζi for dataset Di can be calculated via the CDF.

F (ζi) = 1− 1

qi
(3.22)

The number of iterations needed for bootstrapping relates to the failure threshold

by

B =
⌊
− logq[1− F (ζ)]

⌋
(3.23)

For the Gaussian CDF, F (·), is expressed in terms of the error function erf(·)

F (x) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]
(3.24)

where µ, and σ are the mean and the standard deviation of the Gaussian process

respectively. Table 3.6 lists the lower bound ζi change in each iteration for q = 2 and

q = 3 cases.

3.3 Computation Complexity

In this section, the cost of the proposed TEG model is calculated and compared

against the brute-force MCS for the response process. Let Nd be the desired number of

realizations associated with the failure threshold ζ. In other words, the user requests

Nd phase sequences for the large response environment setup. Therefore, for the

brute-force MCS, the total number of realizations Nt is calculated by
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iteration q = 2 q = 3

1 0.0 0.43
2 0.67 1.22
3 1.15 1.79
4 1.53 2.25
5 1.86 2.64
6 2.15 3.0
7 2.42 3.32
8 2.66 3.61
9 2.89 3.89
10 3.1 4.15
11 3.3 4.39
12 3.49 4.62
13 3.67 4.85
14 3.84 5.06
15 4.01 5.27
16 4.17 5.46
17 4.32 5.66
18 4.48 5.84
19 4.62 6.02
20 4.76 6.2

Table 3.6: ζi−µ
σ

VS. bootstrapping iteration

Nd

Nt

= 1− F (ζ) (3.25)

where F (·) is the CDF for the process. Therefore the total cost for the brute-force

MCS denoted by C1 is

C1 = NtC =
NdC

1− F (ζ)
(3.26)

where C is the simulation cost for one realization.

For the proposed TEG model, let Ntr be the number of realizations needed to

successfully train the TEG model. Hence, preparation ofD1 requires qNtr realizations,

where q is the bootstrapping constant. Let Ctr and Csp be the training cost and the

sampling cost to prepare the dataset D′1, where |D′1| = qNtr. To rank the phase

sequences in D′1 and filter the sequences to form D2, again qNtr MCS are conducted.

Therefore the cost for one bootstrapping step is as follows.

CB = qNtrC + Ctr + Csp (3.27)

After B bootstrapping steps, where B is calculated in Eq 3.23, the TEG model
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Figure 3.10: Cost comparison between C∗1 and C∗2 (Gaussian, q = 2)

is able to generate phase sequences leading to responses larger than ζB, listed in Ta-

ble 3.6. Hence, the expected number of sequence Ns to achieve the desired realizations

is

Nd

Ns

=
1− F (ζ)

1− F (ζB)
= qB[1− F (ζ)] (3.28)

Therefore, the total cost for the proposed bootstrapping TEG method is

C2 = BCB +NsC = B(qNtrC + Ctr + Csp) +
1

qB
NdC

1− F (ζ)
(3.29)

Define β1 = ζ−µ
σ

and β2 = qNtrC+Ctr+Csp
NdC

. For a Gaussian process, the non-

dimensional cost C∗1 is calculated by

C∗1 =
C1

NdC
=

1

1− FN (β1)
(3.30)

where FN (x) = 1
2

[
1 + erf

(
x√
2

)]
is the marginal CDF for the standardized Gaussian

process. The non-dimensional cost C∗2 is calculated by

C∗2 =
C2

NdC
= Bβ2 +

1

qB
1

1− FN (β1)
(3.31)

where B =
⌊
− logq[1− FN (β1)]

⌋
.

Figure 3.10 and Figure 3.11 plot the cost ratio in logarithmic versus non-dimensional

parameters β1 and β2 for cases q = 2 and q = 3.

As shown in Figure 3.10 and Figure 3.11, the cost ratio of applying the pro-

posed method compared to the brute-force MCS reduces at least exponentially as

55



Figure 3.11: Cost comparison between C∗1 and C∗2 (Gaussian, q = 3)

the threshold increases. Depending on how large the threshold is set β1 and how

expensive to train and sample the TEG model β2, users might decide whether to use

the proposed method. For a high threshold, for example β1 = ζ−µ
σ
> 4, the proposed

method can significantly reduce the cost and therefore is suggested to use. However,

if the threshold is relatively low and much more training data required for the TEG

model compared to the requested number of realizations, the proposed method is

more expensive compared to the brute-force method and therefore is not suggested

to use. The size of the training dataset is experimented and discussed in Section 3.4.

Another observation from the comparison between Figure 3.10 and Figure 3.11 is the

bootstrapping constant q plays theoretically little role in affecting the cost reduction.

However, a proper value of q is suggested in later sections based on the tests for

different example problems.

In the following section, examples including linear waves, nonlinear waves, and a

relatively complex ship roll motion are used to illustrate the proposed method, and

to compare to MCS results.

3.4 Example: Linear Wave

In this section, the TEG model is applied to linear waves. Specifically, the method

is used to generate phase sequences that lead to elevations exceeding a threshold. The

linear wave elevation is evaluated at the origin location and zero time. In other words,

the method is expected to sample from the distribution
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Figure 3.12: Elevation histogram from MCS (Nfourier = 2)

Pr

(
φ1, · · · , φN

∣∣∣∣η =
N∑
i=1

ai cosφi > ζ

)
(3.32)

where φ1, · · · , φN are the phase random variables that are independently and uni-

formly distributed from −π to π, ai is the wave amplitude for the ith Fourier com-

ponent and ζ is the user-defined threshold. Though the phases are independently

and uniformly distributed globally, the threshold-posterior phases are correlated and

follow the conditional joint distribution, Pr(·|η > ζ) as discussed in section 3.1.

3.4.1 Bichromatic Wave

As a beginning of linear wave analysis, the wave is formulated by 2 Fourier com-

ponents with equal amplitudes and the threshold is set to be zero. Therefore, the

objective is to verify that the TEG model can learn and sample from the following

distribution.

Pr(φ1, φ2| cosφ1 + cosφ2 > 0) (3.33)

For the data preparation, the (φ1, φ2) pair is first independently sampled uniformly

from 2D space [−π, π)× [−π, π). Then the Fourier sum cosφ1 +cosφ2 is evaluated for

each phase pair. The pairs resulting in positive Fourier sum (or elevation) are collected

as phase vectors of length two in the dataset. Since the number of Fourier components

is two, which is much smaller for the Central Limit Theorem to be valid, the resultant

elevation is non-Gaussian distributed from boundaries −2 to 2. Figure 3.12 plots the

histogram of the resultant elevation (the histogram is non-dimensionalized so that

the area of the histogram is one).

The TEG is then trained on the corresponding phase pairs from the positive half
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Figure 3.13: Training history (Nfourier = 2)

of the histogram. As mentioned in the subsection 3.2.5, the dataset is split into

a training dataset and a validation dataset. To visualize the training history, the

performance of the model on both datasets is plotted against the number of epochs

in Figure 3.13.

After the model is trained, it is able to generate samples in the format of phase

pairs that follow the distribution of the provided dataset. Figure 3.14 compares the

marginal distribution for each phase component, which are Pr(φ1| cosφ1 +cosφ2 > 0)

and Pr(φ2| cosφ1 + cosφ2 > 0) between the given dataset (top) and the generated

dataset (bottom). As shown in the figure, by learning the joint distribution, the

model can generate new samples which also share similar marginal distributions of

the given dataset.

Figure 3.15 compares the distribution of resultant elevations between the given

dataset (red) and the generated dataset (blue). Though the given dataset has no

negative elevation, the generated dataset does have negative resultant elevations. In

general, the agreement is good, except near the threshold boundary. This mismatch

at the threshold boundary of the given dataset also appears in later examples. One

reason is that learning the discontinuity in the probability space is hard for the model.

However, this mismatch may not be an issue as long as the right tail matches properly

between the given dataset and the generated dataset since the post-filtering of the

generated dataset can help the situation.

Figure 3.16 compares the joint distribution of the phases between the given dataset

(left) and the generated dataset (right). The mismatch in the Figure 3.15 becomes the

blurry boundaries around the edges of the distribution in the Figure 3.16. As shown

in the right subplot, the model is able to generate pairs with the majority uniformly

distributed inside the square formed by (π, 0), (0, π), (−π, 0), (0,−π). Figure 3.17

visualizes the joint distribution in 3-dimensional space by plotting (φ1, φ2, cosφ1 +

58



Figure 3.14: Compare the histograms of φ1 and φ2 between the given dataset (top)
and the generated dataset (bottom)
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Figure 3.15: Comparison of the histograms of cosφ1+cosφ2 between the given dataset
(red) and the generated dataset (blue)

Figure 3.16: Comparison of the joint distribution (φ1, φ2) between the given dataset
(left) and the generated dataset (right)

cosφ2). As the results show, the TEG model succeeds in learning and sampling

the phase pair from the joint distribution. A linear wave consisting of 5 Fourier

components is analyzed in the next example, where the distributions of every 2-phase

pairs are compared.

3.4.2 Five Component Wave

In this example, a linear wave consisting of five Fourier components is considered.

The wave spectrum is a sea-state 8 JONSWAP with a significant wave height Hs of

15 m and the peak period Tp of 17 s. The lower and upper cut-off frequencies are

fp/1.5 and 1.5fp respectively, where fp = 1/Tp is the frequency corresponding to the

peak period. The spectral density values are calculated as follows.
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Figure 3.17: Comparison of the joint distribution in 3D (φ1, φ2, cosφ1 + cosφ2) be-
tween the given dataset (top) and the generated dataset(bottom)
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α =
0.0624

0.23 + 0.0336γ − 0.185/(1.9 + γ)
(3.34)

σ =

0.07 f < fp

0.09 otherwise
(3.35)

β = exp

[
−(f − fp)2

2σ2f 2
p

]
(3.36)

S(f) =
αH2

s f
4
p

f 5
γβ exp

[
−5

4

(
fp
f

)4
]

(3.37)

Figure 3.18 shows the discritized single-sided spectrum (left) and 5 Fourier am-

plitudes (right) evaluated on the discrete spectrum. The objective of this exam-

ple is to test whether the TEG model is able to learn and sample phase sequences

(φ1, φ2, φ3, φ4, φ5) from the distribution

Pr

(
φ1, φ2, φ3, φ4, φ5

∣∣∣∣ 5∑
i=1

ai cosφi > 0

)
(3.38)

The data is prepared in a similar way of the previous two-component case by

running the MCS. First sample the phases independently and uniformly from −π to

π. Then the resultant elevations are evaluated by
∑5

i=1 ai cosφi. Finally the phase

sequence

(φ1, φ2, φ3, φ4, φ5) (3.39)

is selected to form the given dataset if the corresponding elevation is positive. Fig-

ure 3.19 plots the histogram of the resultant elevation and the histogram is non-

dimensionalized so that the area of the histogram is one. The TEG model is trained

on the given dataset and sampled to form the generated dataset. The training his-

tory is plotted in Figure 3.20. Figure 3.22 compares the marginal distribution for

each phase component, which is

Pr(φi|
5∑
i=1

ai cosφi > 0), i = 1, 2, 3, 4, 5 (3.40)

between the given dataset (top) and the generated dataset (bottom). Similar to the

two component case, the model can generate new samples which also share similar

marginal distributions of the given dataset.
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Figure 3.18: Single-sided spectrum and discretized Fourier amplitudes

Figure 3.19: Elevation histogram from MCS (Nfourier = 5)

Figure 3.20: Training history (Nfourier = 5)
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Figure 3.21: Compare the histograms of
∑5

i=1 ai cosφi between the given dataset (red)
and the generated dataset (blue)

Figure 3.21 compares the histograms of the resultant elevation between the given

dataset (red) and the generated dataset (blue). The mismatch at the threshold still

appears in this case and the reasons are discussed in the previous example. The tail

distribution matches between the two datasets.

Since visualizing the joint distribution in 5D space is impossible, instead, the

pairwise joint distribution is compared in Figure 3.23. The left (red) 5 × 5 figure

displays the (φi, φj) joint distribution given positive elevation for the given dataset at

the (i, j) grid and the right (blue) 5×5 figure displays the conditional joint distribution

for the generated dataset. By comparing the subplot at (i, j) between the given

dataset and the generated dataset, it is verified that the model can learn and sample

the correct pairwise joint distribution. Since the second and the third amplitudes a2

and a3 are the top 2 high-energy Fourier components, their correlation matters most

and is successfully captured by the trained model by comparing sub-figures at grid

(2,3).

3.4.3 Thirty Component Wave

This example extends the number of Fourier components to 30. Since 30 is large

enough for the CLT to be valid, the resultant Fourier sum follows the Gaussian

distribution with mean value µ = 0 and the standard deviation σ calculated by

Eq 3.5.

The objective is to verify that the model can learn and sample from the distribu-

tion

Pr

(
φ1, · · · , φ30

∣∣∣∣η =
30∑
i=1

cosφi > 3σ

)
(3.41)
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Figure 3.22: Compare the marginal distribution of Pr(φi|
∑5

i=1 ai cosφi > 0), i =
1, 2, 3, 4, 5 between the given dataset (top) and the generated dataset
(bottom)
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Figure 3.23: Compare pairwise joint distribution Pr(φi, φj|
∑5

i=1 ai cosφi > 0) be-
tween the given dataset (left, red) and the generated dataset (right,
blue)

where 3σ is the threshold. The threshold is chosen such that the MCS can be con-

ducted with affordable cost to compare with the model results. Figure 3.24 plots

the discretized spectrum (left) and evaluated amplitudes of each Fourier components

(right). Again, by sampling the phases independently and uniformly from −π to π,

the resultant elevation η =
∑30

i=1 ai cosφi approximately follows a Gaussian distribu-

tion, as shown in Figure 3.25. The elevation in the histogram is non-dimensionalized

by the standard deviation σ and the histogram is normalized so that the area of the

histogram is one. As shown in Figure 3.25, the phase sequence (φ1, · · · , φ30) leading

to large elevation ζ = 3σ occurs rarely so that the TEG model has limited data to

directly learn the distribution in Eq 3.41. Therefore, the bootstrapping algorithm

discussed in section 3.2.7 is applied with bootstrapping constant q = 2.

As mentioned, the first dataset D1 consists of the phase sequences from the MCS

with resultant elevations ranked in the top half. The model learns the distribution of

the phase sequences and generates new phase sequences as dataset D′1. The sequence

in D′1 is then selected into the dataset D2 if the corresponding resultant elevation

is above the mean. To maintain the same size between D1 and D2, the number of

sampled sequences, |D′1|, is double the size of D1. Figure 3.26 compares the given

dataset D1 and the generated dataset D′1. Again, due to the high dimensional space

of the dataset, only the marginal distribution is compared in the figure. Note that the

symmetry of the distribution around zero is learned by the model and the height of

each bar in the histogram is nearly doubled since the model returns the new dataset
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Figure 3.24: Single-sided spectrum and discretized Fourier amplitudes

Figure 3.25: Elevation histogram from MCS (Nfourier = 30)

with twice the size.

The bootstrapping procedure is conducted seven times in total. After each boot-

strapping step, the phase distribution is compared between the given dataset Di and

the generated dataset D′i shown in Figures from 3.26 to 3.32. As shown in the fig-

ures, the phases become more clustered around the origin during the bootstrapping

iterations, resulting in larger resultant elevation.

The distributions of resultant elevations are compared between the given dataset

(red) Di and the generated dataset (blue) D′i for each bootstrapping iteration in

Figures from 3.33 to 3.39. The mismatch is observed at the lower boundary of the

red histograms since the dataset Di is prepared by filtering the dataset Di−1. However,

the tail behavior of the elevation histograms matches between the given dataset and

the generated dataset.

After seven iterations of bootstrapping, the model is able to efficiently generate

phase sequences leading to elevations greater than 3σ. The generated dataset is

selected if the elevation is above 3σ. The histogram of the filtered elevations is

plotted in blue in Figure 3.40. A brute-force MCS is conducted to generate 100 times
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Figure 3.26: Compare the marginal distribution of phases between the given dataset
(left) D1 and the generated dataset (right) D′1

Figure 3.27: Compare the marginal distribution of phases between the given dataset
(left) D2 and the generated dataset (right) D′2

Figure 3.28: Compare the marginal distribution of phases between the given dataset
(left) D3 and the generated dataset (right) D′3
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Figure 3.29: Compare the marginal distribution of phases between the given dataset
(left) D4 and the generated dataset (right) D′4

Figure 3.30: Compare the marginal distribution of phases between the given dataset
(left) D5 and the generated dataset (right) D′5

Figure 3.31: Compare the marginal distribution of phases between the given dataset
(left) D6 and the generated dataset (right) D′6
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Figure 3.32: Compare the marginal distribution of phases between the given dataset
(left) D7 and the generated dataset (right) D′7

Figure 3.33: Compare the distribution of resultant elevations between the given
dataset (red) D1 and the generated dataset (blue) D′1

more samples than D0. To compare, the histogram of the > 3σ elevations from the

MCS is plotted in red. As the figure shows, the tail decays exponentially since the

linear wave with thirty Fourier components follows the Gaussian distribution well.

Since the elevation follows the Gaussian distribution when enough Fourier com-

ponents are used, the tail behavior is also compared with the theoretical conditional

Gaussian PDF in Figure 3.41, where the conditional Gaussian PDF is calculated by

Pr(η|η > 3σ) =
Pr(η, η > 3σ)

Pr(η > 3σ)
(3.42)

The good match between the generated phase sequences and the theoretical ele-

vation distribution verifies the good performance of the model.

The generated phase sequences can be used to evaluate the wave elevation in a

window around the design time td = 0. The elevation time series are evaluated by
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Figure 3.34: Compare the distribution of resultant elevations between the given
dataset (red) D2 and the generated dataset (blue) D′2

Figure 3.35: Compare the distribution of resultant elevations between the given
dataset (red) D3 and the generated dataset (blue) D′3

Figure 3.36: Compare the distribution of resultant elevations between the given
dataset (red) D4 and the generated dataset (blue) D′4
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Figure 3.37: Compare the distribution of resultant elevations between the given
dataset (red) D5 and the generated dataset (blue) D′5

Figure 3.38: Compare the distribution of resultant elevations between the given
dataset (red) D6 and the generated dataset (blue) D′6

Figure 3.39: Compare the distribution of resultant elevations between the given
dataset (red) D7 and the generated dataset (blue) D′7
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Figure 3.40: Compare tail behavior of the distribution between the generated dataset
and the MCS

Figure 3.41: Compare tail behavior of the distribution between the generated dataset
and the theoretical conditional Gaussian PDF. (left: linear scale, right:
log-square scale)
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Figure 3.42: 1000 realizations of η(t) using generated phase sequences

η(t) =
30∑
i=1

ai cos(ωit+ φi) (3.43)

Figure 3.42 shows 1000 phase realizations generated by the model where all the

elevation at td = 0 exceeds the threshold 3σ.

In addition to the wave elevation η(0), the crossing velocity η̇(0) is also available

based on the generated phase sequences.

η(0) =
30∑
i=1

ai cosφi (3.44)

η̇(0) = −
30∑
i=1

aiωi sin(φi) (3.45)

3.4.4 Relation between the Conditional Phase Distribution and the Ex-

treme Value Distribution

The Extreme Value Distribution (EVD) describes the distribution of the extreme

value of a random process X(t) during an exposure time window T . In other words,

it is defined as the distribution of the random variable XT = max{X(t), 0 ≤ t ≤ T}.
Only knowing the elevation distribution Pr(X) is not enough to draw conclusions

on Extreme Value Distribution (EVD). In fact, knowing the distribution of crossing

velocity, Pr(Ẋ|X > ζ) is important to relate the marginal probability Pr(X) with

the EVD. As a trivial example shown in Figure 3.43, let X1(t) be a stationary

random process with the marginal probability Pr(X1) and the extreme value during

an exposure window is denoted by XT
1 . A derived random process X2(t) = X1(2t) has

the same marginal probability Pr(X1) but a larger extreme value XT
2 = X2T

1 ≥ XT
1 .

Therefore, crossing rate information given in the frequency domain also matters to
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Figure 3.43: Random process X1(t) and its derived process X2(t) (time-scaled from
X1) shares the same elevation fX(·)distribution but different Extreme
Value distribution fXT (·)

determine the EVD.

The non-exceedance probability of a threshold for a random process η(t) can be

calculated based on the Poisson assumption with a sufficiently large threshold by

FηT (ζ) = Pr(ηT < ζ) = e−
1
2
ν(ζ)T (3.46)

where FηT (·) is the CDF for the extreme value, ζ is the threshold, T is the exposure

time length, and ν(ζ) is the mean rate of ζ crossings. The mean rate of ζ crossings

counts the average number of times the process crosses the threshold per unit time

and it can be calculated for a ergodic stationary random process based on Rice’s

formula (Rice, 1945)

ν(ζ) =

∞∫
−∞

|s|fηη̇(ζ, s) ds (3.47)

where fη,η̇(·, ·) is the joint PDF of the elevation η and its derivative η̇.

Using the definition of conditional probability, Rice’s formula can be transformed

to relate to the marginal probability.

ν(ζ) =

∞∫
−∞

|s|fη̇|η(s|ζ) dsfη(ζ) = E[|η̇| |η = ζ]fη(ζ) (3.48)

where fη(·) is the marginal probability.
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Figure 3.44: Distributions of (η, η̇) for η > 3σ for the MCS results (left) and the
generated dataset (right)

Figure 3.44 compares the joint distribution of (η, η̇) for η > 3σ between the MCS

results (left) and the TEG generated dataset (right) from the thirty component wave

example.

The velocities η̇ with corresponding η ∈ [3σ, 3.05σ] are collected to estimate the

conditional expected absolute velocities E[|η̇| |η = ζ] ≈ 1.038 m/s.

As a comparison, the theoretical conditional velocities can be calculated for the

Gaussian process. For a Gaussian process, the elevation and its derivative are inde-

pedent, Pr(η, η̇) = Pr(η) Pr(η̇) and both follow the zero-mean Gaussian distribution

with different variance σ2
η and σ2

η̇. Hence, for a Gaussian process

E[|η̇| |η = ζ] = E[|η̇|] =

√
2

π
ση̇ (3.49)

where ση̇ = 1
2

∑∞
i=1(aiωi)

2. The theoretical value is calculated to be 1.094 m/s, which

is close to the estimated value calculated above.

Continuing with the mean crossing rate estimated from the generated dataset, the

non-exceedance probability of 3σ and window length T = 500 s is calculated using

Eq 3.46 to be 71.74%.

The non-exceedance probability calculated above can also be verified theoreti-

cally and numerically as shown in Figure 3.45. In Appendix A, the distribution of

the positive maxima for the Gaussian process can be calculated based on its energy

spectrum by Eqs A.2 and A.3, as plotted in blue solid line in the figure. The Extreme

Value PDF of the process corresponding to T = 500 s is also calculated based on the

order statistics of the positive maxima by Eqs A.5 and A.4, and is plotted in orange

solid line. These theoretical calculations can be verified by the MCS results that

are plotted as the green histogram in the figure. All realizations of the MCS have a
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Figure 3.45: Compare the theoretical Extreme Value PDF and the MCS results

time length of 500 s, which is smaller than the self-repeating period (Belenky , 2011)

Trepeat = 612 s of the discretized spectrum. Based on the theoretical calculation of

EVD, the non-exceedance probability is calculated to be 70.28%, which is close to

the estimation reported above.

Therefore, the TEG model can be used to successfully generate seaways that can

be used to explain the full time-domain story of Gaussian linear waves.

3.4.5 Experiment on the Size of Training Dataset

Since the data-driven model is trained on a dataset, the quantity of data matters

to the training process, performance, and cost of the model. The user needs to

consider how much data should be collected to train the proposed model. More data

tells a more complete story of the dynamical behavior but costs more. Fewer data

eases the collection cost but reduces the information that the model can learn from.

Therefore, users need to consider the tradeoff between the model performance and

data collection cost. Unfortunately, the tradeoff point in terms of amounts of collected

data is different from case to case. Generally speaking, more complex systems require

more training data to characterize their dynamics. As a starting point, the linear

wave example is analyzed to provide a general guide to determine the quantity of

data needed.

Multiple bootstrapping experiments are carried out with different sizes of datasets.

The bootstrapping approach is used in all experiments with seven steps to model large

(> 3σ) linear waves. Table 3.7 lists the different sizes of the initial dataset D0.

Once the bootstrapping steps are finished, the model generates large seaways that

are kept if the resultant elevation is larger than 3σ. The distributions of the resultant

elevation from different experiments are compared. Figure 3.46 shows the normalized
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Case ID Dataset size |D0|
1 2,000
2 5,000
3 6,000
4 7,000
5 8,000
6 9,000
7 10,000
8 20,000

Table 3.7: Experiment setting: different sizes of training data

Figure 3.46: Compare the histograms of the generated elevation from different exper-
iments, along with conditional Gaussian PDF.
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Figure 3.47: Compare the marginal distribution of phases across different experiments
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histograms from these experiments along with the conditional Gaussian PDF as a

comparison. The generated phase sequences from these experiments can also be

compared in terms of marginal probability, shown in Figure 3.47. The experiment

with 2,000 phase sequences produces a distribution that is considerably different when

compared to results from other experiments. As shown in the figure, less training

data produces a less accurate model. Note that the required training data should be

described relative to the number of Fourier components, or the number of random

parameters of the environment. For the current setting which is N = 30 Fourier

components and random phases discretized byK = 30 bins, a training dataset consists

of 10,000 to 20,000 phase sequences is enough for the TEG model to capture the joint

distribution and produce good bootstrapping results.

3.5 Example: Second Order Nonlinear Wave

In the previous example, the Gaussian irregular wave represented by a Fourier

series is studied. In this example, the second-order nonlinear wave is analyzed. More-

over, the nonlinear wave propagation is considered by allowing a nonzero design lo-

cation and design time. Due to the interaction among different Fourier components,

the resultant wave elevation for the current nonlinear wave is non-Gaussian.

Though the second-order nonlinear wave elevation is not directly represented as a

Fourier sum, the randomness of the irregular wave can still be specified by the phase

sequence of its linear dominant term. Let (φ1, · · · , φN) be the phase sequence of the

linear dominant term. The linear elevation profile is calculated by

η(1) =
N∑
n=1

an cos(knx− ωnt+ φn) (3.50)

where kn is the wave number for the nth Fourier component and the wave numbers

and their corresponding frequencies are related by the dispersion relation

ω2
n = g|kn| tanh(|kn|d) (3.51)

where d is the water depth and g is the gravitational constant.

Forristall (2000) gives the second-order correction η(2) to the irregular wave eleva-

tion by considering the interactions between different Fourier frequencies. Equations

from 3.52 to 3.60 calculate the second-order correction so that the final nonlinear

elevation is evaluated as η = η(1) + η(2). The correction term is calculated by
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η(2) =
1

4

N∑
i=1

N∑
j=1

aiaj{K− cos(ψi − ψj) +K+ cos(ψi + ψj)} (3.52)

where

K− = [D−ij − (kikj +RiRj)](RiRj)
−1/2 + (Ri +Rj) (3.53)

K+ = [D+
ij − (kikj −RiRj)](RiRj)

−1/2 + (Ri +Rj) (3.54)

D−ij =
(
√
Ri −

√
Rj){

√
Rj(k

2
i −R2

i )−
√
Ri(k

2
j −R2

j )}
(
√
Ri −

√
Rj)2 − k−ij tanh k−ijd

+
2(
√
Ri −

√
Rj)

2(kikj +RiRj)

(
√
Ri −

√
Rj)2 − k−ij tanh k−ijd

(3.55)

D+
ij =

(
√
Ri +

√
Rj){
√
Ri(k

2
j −R2

j )−
√
Rj(k

2
i −R2

i )}
(
√
Ri +

√
Rj)2 − k+

ij tanh k+
ijd

+
2(
√
Ri +

√
Rj)

2(kikj −RiRj)

(
√
Ri +

√
Rj)2 − k+

ij tanh k+
ijd

(3.56)

and

k−ij = |ki − kj| (3.57)

k+
ij = |ki + kj| (3.58)

Ri = |ki| tanh(|ki|d) = ω2
i /g (3.59)

ψi = kix− ωit+ φi (3.60)

The second-order correction makes the crest steeper and the trough flatter. More-

over, the correction becomes less important at large water depth. Hence, to illustrate

whether the model accounts for the nonlinearity, the water depth of 30 meters is used

in the example.

Different from the linear wave example where the design time and the design
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Figure 3.48: Histogram of the wave elevation at the design location and the design
time normalized by RMS of the linear components

location are set to zero, this example uses a more general setting. The design location

is set at xd = 2/kmin, where kmin is the smallest wave number among all Fourier

components. The design time is set at the time needed for the wave component with

the smallest group velocity to reach the design location, td = xd/(ω/k)min. For the

discretized spectrum used in the linear wave example, the design location and the

design time are calculated to be xd = 90.03 m, and td = 7.45 s. A MCS is conducted

to collect the elevations at the design time and the design location. Figure 3.48 is a

histogram of the collected elevations normalized by the standard deviation calculated

using the linear components. As shown in the histogram, the second-order correction

has tilted the histogram to be asymmetrical and non-Gaussian. Though the mean

elevation is still zero, a longer tail is observed for the positive elevation (or crest)

compared to the negative elevation (or trough).

The objective of the model is to generate phase vector (φ1, · · · , φN) that the user

can specify at the upstream so that a large elevation greater than 2σ will be observed

at the design location downstream and the design time. In other words, the model

generates phase vectors from the following distribution.

Pr(φ1, · · · , φN |η(td, xd) > 2σ) (3.61)

As before, the bootstrapping method is used to train the TEG model at a large

threshold. The bootstrapping procedures are conducted 3 times to make the model

generate phase sequences leading to elevations exceeding 2σ. Figures 3.49, 3.50, and

3.51 compare the marginal distribution of the phase sequences between the given

dataset (left) Di and their corresponding generated dataset D′i after each bootstrap-

ping step. The TEG model is again successful to recognize the joint distribution of the
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Figure 3.49: Compare the marginal distribution of phases between the given dataset
(left) D1 and the generated dataset (right) D′1

Figure 3.50: Compare the marginal distribution of phases between the given dataset
(left) D2 and the generated dataset (right) D′2

phases and present a matched marginal distribution. The marginal distribution is no

longer symmetric around zero for each phase since the wave propagates downstream.

Figures 3.52, 3.53, and 3.54 compare the histograms of the resultant elevations

η(td, xd) between the given phases (red) and generated phases (blue) after each boot-

strapping step. As before, the histograms are matched in the tail region and the

mismatch at the lower boundaries comes from the discontinuity of the filtered dataset.

After 3 bootstrapping steps, the model can generate phase sequences leading to

large enough elevations at the design time and the design location. The generated

phase sequences with elevations smaller than 2σ are removed, and the remaining

histogram is compared against the MCS result in Figure 3.55. Figure 3.56 compares

the marginal distribution of phases leading to η(td, xd) greater than 2σ between the

MCS (left) and the generated dataset (right) after being filtered. Again, all thirty
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Figure 3.51: Compare the marginal distribution of phases between the given dataset
(left) D3 and the generated dataset (right) D′3

Figure 3.52: Compare the distribution of resultant elevations between the given
dataset (red) D1 and the generated dataset (blue) D′1

Figure 3.53: Compare the distribution of resultant elevations between the given
dataset (red) D2 and the generated dataset (blue) D′2
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Figure 3.54: Compare the distribution of resultant elevations between the given
dataset (red) D3 and the generated dataset (blue) D′3

Figure 3.55: Compare tail behavior of the distribution between the generated dataset
and the MCS

histograms representing the marginal distribution are colored based on their first-

order amplitudes evaluated from the discrete spectrum.

One thousand phase sequences are simulated and their elevation time windows at

the design location are plotted in Figure 3.57. The realizations achieve large elevation

(> 2σ) at the design location td = 7.45 s. As the envelope shows, the nonlinear wave

has flatter troughs compared to the linear Gaussian wave.

Therefore, the proposed method succeeds in generating threshold exceedance non-

linear and non-Gaussian seaways.

3.6 Example: Nonlinear Ship Roll in Beam Wind and Waves

In this example, the roll motion of a large passenger ship is studied as an example

of applying the proposed method on a complex dynamical system under random

loading environments. The current example uses a similar setting from papers (Paroka
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Figure 3.56: Compare the marginal distribution of phases leading to η(td, xd) > 2σ
between the MCS (left) and the generated dataset (right) after being
filtered

Figure 3.57: 1000 realizations of η(t) using generated phase sequences
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and Umeda, 2006; Kogiso and Murotsu, 2008), where the ship roll is considered to

be a single degree of freedom described the following Ordinary Differential Equation

(ODE)

(Ixx + Axx)θ̈ +D(θ̇) + ∆GZ(θ) = Mair(t) +Mwave(t) (3.62)

where Ixx is the moment of inertia of the ship, Axx is the hydrodynamic coefficient of

the added inertia, D(θ̇) is the rolling damping moment, ∆ is the ship displacement,

and GZ(θ) is the righting arm, Mair(t) is the wind-induced moment, Mwave(t) is the

wave-induced moment, and θ(t) is the rolling angle of the ship.

The GZ curve of the ship is fit using a 7th-order polynomial with only odd power

of roll angle θ,

GZ(θ) = c1θ + c3θ
3 + c5θ

5 + c7θ
7 (3.63)

where c1, c3, c5, and c7 are the coefficients of the polynomial fit.

The damping moment is nonlinear by introducing an quadratic term θ̇|θ̇|

D(θ̇) = (Ixx + Axx)(2µθ̇ + βθ̇|θ̇|) (3.64)

where µ and β are linear and nonlinear coefficients of the damping moments respec-

tively.

The external moment comes from both wave and wind and each is assumed to

be a Gaussian process. For the wind-induced moment, the moment time series is

evaluated by

Mwind(t) =
1

2
ρairCm(Ū2

w + 2ŪwU(t))ALH (3.65)

where ρair is the air density, Cm is the aerodynamic drag coefficent, Ūw is the mean

velocity of the wind, U(t) is the time-varying velocity of the gusty wind, AL is the

lateral windage area, and H is the height distance between the center of the wind

force and the center of the hydrodynamic force. The time-varying component of

the wind-induced moment is modeled as a Gaussian process with its spectrum Sam

calculated by

Sam(ω) = (ρairCmŪwALH)2χ2(ω)Swind(ω) (3.66)

where the aerodynamic admittance of wind turbulence χ(ω) and the Davenport spec-

trum Swind are calculated below.
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χ(ω) =
1

1 +
(
ω
√
AL

πŪw

)4/3
(3.67)

Swind(ω) = 4K
Ū2
w

ω

X2
D

(1 +X2
D)4/3

(3.68)

where K = 0.003 and XD = 600 ω
πŪw

.

For the wave-induced moment, the Froude-Krylov exciting moment is calculated

by

Mwave(t) = ∆GMγΘ(t) (3.69)

where γ is the effective wave slope coefficient and Θ(t) is the wave slope time series.

The wave-induced moment is modeled by a Gaussian process with its spectrum Smw

calculated by

Smw(ω) = (∆GMγ)2Sα(ω) (3.70)

where the effective wave slope coefficient γ and the wave slope spectrum Sα(ω) are

calculated as follows.

γ =

0.777 ω ≤
√

4πg/Bs

0.0 otherwise
(3.71)

Sα(ω) =
ω4

g2
Swave(ω) =

A

g2ω
exp(− B

ω4
) (3.72)

The Pierson-Moskowitz spectrum is used with the model coefficients calculated as

follows.

A = 172.75
H2

1/3

T 4
01

(3.73)

B =
691

T 4
01

(3.74)

H1/3(Ūw) = −2× 10−5Ū3
w + 8.2× 10−3Ūw + 0.1456Ūw − 0.1599 (3.75)
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Symbols Units Values

ρair kg/m3 1.225
ρsw kg/m3 1.025× 103

V m3 4.241× 104

Bs m 32.25
AL m2 8814
H m 20.86
Cm 1.1137
K 0.003
ω0 rad/s 0.1794
T0 s 35.02
γ 0.777
GM m 1.06
Ūw m/s 29.50
µ 1/s 8.5× 10−3

β 1/rad 0.385
Ixx +Axx kg m2 1.4033× 1010

∆ kg 4.2608× 108

c1 1.06
c3 0.174
c5 −6.4269
c7 5.3323

Table 3.8: Environmental parameters and specification of the ship roll example
(Paroka and Umeda, 2006; Kogiso and Murotsu, 2008)

T01 = 3.86
√
H1/3 (3.76)

Table 3.8 lists the specifications of the current example. With the current setting,

Figure 3.58 shows the GZ curve versus the roll angle of the large passenger ship.

The angle of vanishing stability θv is evaluated as 0.7755 rad and the linear natural

frequency ω0 =
√
c1∆/(Ixx + Axx) = 0.1794 rad/s.

The wind-induced spectrum and the wave-induced spectrum are discretized in log

scale and plotted in Figure 3.59. Twenty Fourier components are used to discretize the

wind-induced moment spectrum and ten Fourier components are used to discretized

the wave-induced moment spectrum. More components are used for the wind-induced

moment spectrum since the natural frequency of the ship roll is in its effective range.

Therefore, the external moment M(t) = Mair(t) +Mwave(t) is described by

Mair(t) = Mstatic +

Nwind∑
i=1

aair,i cos(ωair,it+ φair,i) (3.77)
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Figure 3.58: GZ curve of the large passenger ship

Figure 3.59: Spectral density (left) and the corresponding amplitudes (right) for the
wind-induced (red) and wave-induced moment (blue)

where Mstatic = 1
2
ρairCmŪ

2
wALH, and

Mwave(t) =
Nwave∑
i=1

awave,i cos(ωwave,it+ φwave,i). (3.78)

The random phase sequence (φair,1, · · · , φair,Nwind
, φwave,1, · · · , φwave,Nwave) are sam-

pled independently and uniformly from −π to π to simuate a Gaussian loading

environment. To carry out the MCS, the dynamical roll has the initial condition

(θ0, θ̇0) = (θs, 0), where θs is the roll angle to balance the static wind moment.

c1θs + c3θ
3
s + c5θ

5
s + c7θ

7
s = Mstatic (3.79)

The MCS is carried out by solving the governing ODE starting with the same

initial condition and under different Gaussian loading environments. Each realization

has the same time length of 16 natural periods and is solved by a 4th-order Ruger-

Kutta numerical integration method.
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Figure 3.60: Time evolution of the distribution of θ(t)

Figure 3.61: Percentage of realizations that are stable versus time

To verify the design time td = 10T0 is chosen properly, the roll angle histogram

representing its distribution evolution versus time, θ(t), is plotted in Figure 3.60.

Since the stiffness moment approximation is not accurate for |θ| > θv, the simula-

tion is terminated once capsizing occurs and the timestamp when capsizing occurs

is recorded. Figure 3.61 shows the percentage of realizations that are stable (not

capsized) versus the simulated time length. As shown in the figure, the decay rate of

stable realizations is steady at the design time td = 10T0 = 350 s.

The number of Fourier components used to discretize the spectrum of the wind-

induced moment and wave-induced moment are also validated to balance the accuracy

of the marginal distribution of the roll angle and the computational cost. Table 3.9

lists 6 experiments with different discretization strategies (Nwind, Nwave).

Both the time-evolved distribution of θ(t) and the percentage of stable realizations

are found to be steady at the design time td = 10T0 for all 6 experiments. Figure 3.62

shows the convergence test on statistics θ(td) from experiment 1 to experiment 6. As

shown in the Figure, too few number of Fourier components results in no capsizing

in the MCS, and ends up with a low-variance distribution since the moment upper

bound, Mupper = Mstatic +
∑Nwind

i=1 aair,i +
∑Nwave

i=1 awave,i, is not large enough to excite

large roll. Inspired by the experiment results, the setting (Nwind, Nwave) = (20, 10) is

affordable and large enough to have converged statistics. Therefore, this setting is
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Case ID Nwind Nwave

1 5 5
2 10 5
3 10 10
4 20 10
5 30 15
6 40 20

Table 3.9: Determine the number of Fourier components used to discretize Sam and
Smw

Figure 3.62: Convergence test on the histogram of θ(td)

used throughout the example.

The external moment time series and the corresponding roll response for 20,000

realizations are plotted in Figure 3.63. The realizations which present roll angle larger

than the angle of vanishing stability during the simulation window are removed since

the polynomial fit of the GZ curve is no longer accurate.

The design time is set to be long enough with 10 natural periods (td = 10T0) so

that the statistical summary is fully developed at td. The roll angle at the design

time is a random variable with its distribution estimated by evaluating the MCS

results in Figure 3.64. The histogram is asymmetrical due to the static wind-induced

moment and non-Gaussian due to the nonlinearity of the dynamical system. Based

on the distribution, a roll angle of 0.4 or 0.5 rad is considered to be a large response.

Therefore, the objective of the proposed model is to provide a loading environment

by sampling from the distribution
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Figure 3.63: 20,000 realizations of the external moment M(t) (top) and corresponding
roll response θ(t) (bottom)

Figure 3.64: Histogram of the roll angle at the design time, θ(td)

Pr(φair,1, · · · , φair,20, φwave,1, · · · , φwave,10|θ(td;φair,1, · · · , φair,20, φwave,1, · · · , φwave,10) > ζ)

(3.80)

Among all 20,000 realizations at the design time, there are about 10.41% realiza-

tions having roll angle larger than 0.4 rad and there are about 1.32% realizations hav-

ing roll angle larger than 0.5 rad. Figure 3.65 shows the realizations with θ(td) > 0.4

rad and Figure 3.66 shows the realizations with θ(td) > 0.5 rad.

Though the phase angles come from two different environment sources, they are

regarded as a sequence of 30 elements that are sampled together (φ1, · · · , φ30) to
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Figure 3.65: MCS realizations external moment (top) and roll response (bottom) with
θ(td) > 0.4 rad

Figure 3.66: MCS realizations external moment (top) and roll response (bottom) with
θ(td) > 0.5 rad
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account for any possible correlation between two sources in large roll situations. The

dataset D0 consists of all the phase sequences where each element in the sequence is

independently and uniformly distributed from −π to π. The sequences with θ(td) >

µθ(td) are then selected to form dataset D1. As before, the TEG model takes the

dataset as input and learns the joint distribution among all Fourier components.

Once the model is trained, the phase sequence can then be sampled as many times as

the user desires. Figure 3.68 compares the marginal distribution of phases between

the given dataset (left) D1 and the generated dataset (right) D′1. As shown in the

comparison, the TEG model succeeds in recognizing the joint distribution among

phase angles in the measurement of the marginal distribution. Other observations can

also be summarized from both histograms. The phase angles for the wave component,

which has indices from 21 to 30 are almost uniformly distributed, and the most

nonuniform phase distribution comes from indices from 9 to 17. These phase angles

from the wind component play a more important role in roll angles at the design time.

This observation is reasonable since the Fourier components with indices from 9 to 17

have large amplitudes and frequencies closer to the natural frequency of the ship roll

compared to the wave Fourier components and the other wind Fourier components.

Therefore, though the wave components have larger amplitudes compared to the

wind components as they are colored in brighter yellow, the wind components in this

example produce more impact on the roll, which can be observed in many dynamical

systems.

As before, the bootstrapping method is used to gradually increase the lower bound

of the resultant roll angle of the dataset. Figures from 3.68 to 3.73 compare the

marginal distribution of the phases between the given dataset (left) Di and the gen-

erated dataset (right) D′i after each bootstrapping step. As shown, the TEG model

successfully learns the correlation among the Fourier components and generates new

phase sequences that follow a similar distribution. As the bootstrapping is carried

out, the observation above becomes more apparent. The phases from Fourier indices

from 9 to 17 deviate more from the uniform distribution, which also matches the

intuition that a larger roll angle is rarer.

In additional to the comparison of the marginal distribution of phases between

the given dataset and the generated dataset, Figures from 3.74 to 3.79 compare the

resultant roll angle at the design time between the given dataset (red) Di and the

generated dataset (blue) D′i after each bootstrapping step. Again, the match at the

tail of the distribution verifies the application of the bootstrapping method. The

lower bound of the given dataset gradually increases after each bootstrapping step,
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Figure 3.67: The marginal distribution of phases for the given dataset D1

Figure 3.68: Compare the marginal distribution of phases between the given dataset
(left) D1 and the generated dataset (right) D′1
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Figure 3.69: Compare the marginal distribution of phases between the given dataset
(left) D2 and the generated dataset (right) D′2

Figure 3.70: Compare the marginal distribution of phases between the given dataset
(left) D3 and the generated dataset (right) D′3

Figure 3.71: Compare the marginal distribution of phases between the given dataset
(left) D4 and the generated dataset (right) D′4
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Figure 3.72: Compare the marginal distribution of phases between the given dataset
(left) D5 and the generated dataset (right) D′5

Figure 3.73: Compare the marginal distribution of phases between the given dataset
(left) D6 and the generated dataset (right) D′6
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Figure 3.74: Compare the distribution of resultant rolls between the given dataset
(red) D1 and the generated dataset (blue) D′1

Figure 3.75: Compare the distribution of resultant rolls between the given dataset
(red) D2 and the generated dataset (blue) D′2

which means the model becomes more likely to generate large resultant roll angles at

the design time.

The generated datasets during the bootstrapping procedure are then filtered and

compared against the MCS result. For the generated dataset D′1, the phase sequences

leading to θ(td) larger than 0.4 rad are kept and compared against the MCS result in

Figure 3.80. The generated loading environments are then used to simulate the roll

motion. Figure 3.81 shows the time ensemble of the exciting moment (top) and the

corresponding roll angle (bottom). Comparing to the MCS time-domain results in

Figure 3.65, both the generated loading environments the corresponding roll response

have a good match and large roll which exceeds the threshold θ(td) > 0.4 occurs at

the design time labeled by a red dash line.

Similarly, the generated dataset D′3 is filtered by roll angle threshold ζθ(td) = 0.5

rad and compared against the MCS result in Figure 3.82. As shown in the com-

parison, the filtered generated dataset has a good match with the MCS result. The
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Figure 3.76: Compare the distribution of resultant rolls between the given dataset
(red) D3 and the generated dataset (blue) D′3

Figure 3.77: Compare the distribution of resultant rolls between the given dataset
(red) D4 and the generated dataset (blue) D′4

Figure 3.78: Compare the distribution of resultant rolls between the given dataset
(red) D5 and the generated dataset (blue) D′5
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Figure 3.79: Compare the distribution of resultant rolls between the given dataset
(red) D6 and the generated dataset (blue) D′6

Figure 3.80: Compare the distribution of Pr(θ(td)|θ(td) > 0.4) between the filtered
generated dataset (blue) and the MCS result (red)

Figure 3.81: Simulation with the generated loading environment, external moment
(top) and roll response (bottom) filtered with θ(td) > 0.4 rad
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Figure 3.82: Compare the distribution of Pr(θ(td)|θ(td) > 0.5) between the filtered
generated dataset (blue) and the MCS result (red)

generated loading environments are then also used to simulate the roll motion. Fig-

ure 3.83 shows the time ensemble of the exciting moment (top) and their roll angle

(bottom). Comparing to the MCS results in Figure 3.66, the generated environments

and corresponding rolls have similar patterns and large roll (θ(td) > 0.5 rad). More-

over, the model can efficiently generate conditional loadings. Compared to the MCS

results where a lighter time ensemble is plotted due to limited data, more realiza-

tions become possible for the proposed model, and therefore a denser and richer time

ensemble is plotted in the figure.

For dataset D′6, the phase sequences leading to θ(td) > 0.6 are kept and their

corresponding θ(td) are plotted as a histogram in Figure 3.84. Since the threhold

θ(td) > 0.6 is high and very few of simulation ends up roll angle larger than the

threshold, the histogram is not compared against the MCS results.
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Figure 3.83: Simulation with the generated loading environment, external moment
(top) and roll response (bottom) filtered with θ(td) > 0.5 rad

Figure 3.84: Histogram of resultant roll angle at the design time, Pr(θ(td)|θ(td) > 0.6)
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CHAPTER IV

Module II - Design Response Estimator

In this chapter, a data-driven module named Design Response Estimator (DRE)

is proposed to quickly predict the system output based on the system input. The

module is useful when the user lacks mathematical models that can describe the

complex nonlinear relationship in the marine systems. Thanks to the DRE module,

large amounts of data for a complex marine system can be quickly produced for TEG

use. Machine learning methods, especially a LSTM architecture, are used in the

DRE module. The example marine systems discussed in Chapter III are successfully

identified by the DRE module. Moreover, another two Computational Fluid Dynam-

ics (CFD) examples, tank sloshing and a floating object in waves, are also used to

illustrate how the DRE model can be applied.

4.1 Motivation

Data-driven models usually require a certain quantity of data to produce a model

of the desired accuracy. Generative models like TEG usually requires more data

since the distributions that they learn often have large dimensions. Enough train-

ing data for the TEG module has to be prepared by evaluating the system response

under various ocean environments. For simple systems whose dynamics have been

described often by their state-space equations, evaluation of the response under pre-

scribed loading environments is often fast. However, for complex systems where

high-fidelity simulations are often involved, evaluating the response may be expen-

sive. For example, solving the response of a ship in waves via CFD can take days for a

simulation time window of minutes. Hence the preparation of enough scenarios with

different environments for model training becomes unaffordable. On the other side,

high-fidelity simulations are valuable because modeling extreme events of nonlinear

systems requires accurate information about the response. Therefore, for complex
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systems, building models that approximate their dynamical behavior is valuable, as

long as the approximation properly represents the nonlinearity in the extreme state.

Moreover, it helps to better understand the statistical behavior of the system by run-

ning long-time simulations using the faster-running model, rather than being limited

to the quantity of data.

Building models for complex systems is often challenging. Reduced-order models

are often achieved by leveraging many assumptions to simplify the complex dynami-

cal behavior of the systems. For example, quasi-static or linear assumptions are often

used when the studied response is typically small so that the higher-order terms are

negligible. Due to the strong assumptions leading to simplified equations, closed-form

conclusions are sometimes available. For highly nonlinear systems, such assumptions

might fail to present important nonlinear behaviors including but not limited to the

dependency of initial conditions and chaos. Hence, more advanced mathematical

models like nonlinear ODEs or Partial Differential Equation (PDE)s are often se-

lected, and numerical simulations of mathematical models are used to explore the

response. However, there exist many real-world examples where mathematical mod-

els are often unaccessible and only observation of the system response is possible.

Successful characterization of the system based on observation becomes crucial to

system analysis and design. A data-driven model can also be helpful when the ex-

isting method is computationally expensive and the user is only interested in partial

results from the simulation. As an example, when the user would like to know the

ship response under various wave environments, a CFD simulation is often used to

calculate the whole flow field, including pressure, velocity for all discretized fluid cells

to predict its response. However, if the user is only interested in the ship’s motion,

most of the computation is unused. A more efficient approach is to directly map

the wave environments to the ship response without calculation of the entire fluid

domain.

The process to characterize the system given its inputs and outputs is called

System Identification (SI). The objective of SI is to build a model that can be used

to predict the system outputs under new inputs. Figure 4.1 shows the flowchart for a

SI problem. Many studies have been developed in nearly all engineering fields. Semi-

experimental models combine parameters and existing knowledge about the system.

The model parameters are estimated based on the observed inputs and outputs and

determined by solving an optimization problem. Models built from SI have been

successfully applied to real-world systems for decades. However, many models require

users’ intuition, domain knowledge, and intrinsic familiarity about the system. A new
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Figure 4.1: System Identification. Train a parametric model based on observed data
and predict on new inputs

family of models that utilize deep learning has recently emerged to accomplish this

task since their powerful and efficient model architectures outperform other existing

methods in solving the SI problems. Moreover, new methods are so general that users

need much less information about the systems to build the model.

In the module presented in this chapter, the LSTM model is introduced to solve

the SI problem. Many seakeeping dynamical and fluid-related problems are found

to be solved successfully with little cost. Once the model is built, it can be used as

an alternative to the original system for simulation usage. The cost of conducting

simulations with the new model is found to be much less than compared to the orig-

inal system. In the next section, details about the proposed method are discussed

including problem formulation, data preparation, model architecture, training, and

inference. The proposed method is supported by many examples from simple surro-

gate problems like linear waves to more complicated scenarios like CFD simulations.

Table 4.1 gives more details about what input signals and output signals are for each

example system.

4.2 Methodology

4.2.1 Regression Model

The objective of this module is to build a model that can predict the system

output given the system input. For a causal system, the current output depends

only on the input up to and including the current timestamp. Similar to the discrete

state-space representation, let xt and yt be the input and output signals at time index
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Example Input Output

Linear wave propagation upstream wave elevation downstream wave
elevation

Nonlinear wave propagation upstream wave elevation downstream wave
elevation

Nonlinear ship roll external moment roll angle
Sloshing tank (CFD) tank roll angle resultant force

and moment
Floating body in irregular waves (CFD) upstream wave elevation pitch angle

Table 4.1: Examples of applying the proposed method to marine systems

t respectively. A simple general equation that governs a discrete dynamical system is

st = f(st−1, st−2, · · · ;xt, xt−1, · · · ) (4.1)

yt = g(st, st−1, st−2, · · · ) (4.2)

where f and g are nonlinear mappings and s is the state variable.

The state variable for a 1-DoF simple spring-mass-damper system can be position

and velocity. However, a more general example can be a ship with 6-DoF motion

in waves. When only the heave response is collected, recorded, and asked to be

predicted, the state variable can be far more complex for the coupled nonlinear system.

Possible states may include input or response history, and any function of the history

(polynomial, sinusoidal, etc.). It is the machine learning model’s job to learn what

measurements to include in s, how to transfer s from time t − 1 to t, and the best

nonlinear mappings f and g. Hence, the machine learning algorithm takes in the

input series (x1, · · · , xT ) and the output series (y1, · · · , yT ), and produces out the

trained mapping f , g, and s. Once the model training is finished, it can predict the

system output series based on given new input series even with time length different

from that used in the training time series.

Predicting output time series in the form of a real number sequence (y1, · · · , yT )

is a regression problem. The model parameters are learned to minimize the differ-

ence between the ground-truth sequence (y1, · · · , yT ) and the sequence prediction

(ŷ1, · · · , ŷT ). As seen in the TEG module, the LSTM network is a reasonable choice

to conduct sequence modeling, though necessary changes are needed.
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4.2.2 Data Preparation

To train the model, both input and corresponding output in the format of discrete-

time series are prepared. It is suggested to have the training data in a similar sea

state with the test data. Otherwise, response behavior under one loading condition

might be different from another loading condition. As a result, the given output

in the training dataset provides limited and less information about the dynamical

behavior under the test condition. Some simulations or experiments are conducted to

collect the input-output pairs of time series. The input matrix and the output matrix

therefore have the shape of (M,T ) where M is the number of collected time series

and T is the sequence length of the discrete-time series. For many cases, the input

and output signals are stationary time series, which makes data normalization easier.

Let µx and σx be the mean and standard deviation for the input series and let µy and

σy be the mean and standard deviation for the output series. After standardizing

each time series using the respective µ and σ, the training dataset consisting of the

input matrix X and the output matrix y is formed as

X =


x11 x12 · · · x1T

x21 x22 · · · x2T

...
...

...
...

xM1 xM2 · · · xMT

 (4.3)

y =


y11 y12 · · · y1T

y21 y22 · · · y2T

...
...

...
...

yM1 yM2 · · · yMT

 (4.4)

As a general reference, Table 4.2 lists the dimensions of X or y for the example

cases. All time series are discretized uniformly with constant sampling frequency.

The length of the discrete sequence is given in the third column, labeled by T . Each

simulation is conducted with time length measured in terms of the peak period of the

input environment, Tp.

The collected dataset is split into training (80%) and test (20%) datasets. The

model is then trained using the training dataset and the model performance on the

test dataset is evaluated and reported.
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Example #Time Series #Time
Steps

time
length
(s)

Linear wave propagation 100 400 240
Nonlinear wave propagation 100 400 240
Nonlinear ship roll 10 800 560
Sloshing tank (CFD) 50 800 40
Floating object in irregular waves (CFD) 50 400 20

Table 4.2: Dimensions of X or y dataset for various examples

Layer (type) Output Shape

lstm 1 (LSTM) (None, H)
lstm 2 (LSTM) (None, H)
lstm 3 (LSTM) (None, H)
lstm 4 (LSTM) (None, H)
lstm 5 (LSTM) (None, H)
dense 1 (Dense) (None, 1)

Table 4.3: Model architecture and output tensor shape

4.2.3 Model Architecture

The model is built by stacking multiple LSTM layers vertically. Figure 4.2 shows

a network consisting of 5 layers in folded and unfolded view. The length of the input

sequence equals the length of the output sequence. The output from the top LSTM

layer is then connected to a dense layer with linear activation functions. Table 4.3

lists the output shape after each layer, where H is the number of hidden state units.

“None” in the output shape allows an arbitrary number of time steps in the time

series. A typical number of hidden units, H, is from 20 to 100 and H = 50 is used

for all examples discussed later.

4.2.4 Model Training

Model training is an optimization problem, which means finding the model pa-

rameters that minimize the loss (or cost) function between the prediction and the

ground-truth reference. Since each element in the output sequence y is real-valued,

the loss function for this regression task can be means of squared error measure av-

eraged over all time steps.

L(ŷ, y) =
1

T

T∑
t=1

(ŷt − yt)2 (4.5)
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Figure 4.2: DRE Architecture
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where ŷ is the prediction of the output sequence and y is the ground-truth sequence.

Therefore, the training process consists of the following steps to update the pa-

rameters of the model.

1) Forward propagation. The model computes from the input layer towards the

output layer for a batch of time series based on the current parameters.

2) Compute loss. The outputs from the model are compared to the provided

ground-truth sequences and the loss for the batch is calculated.

3) Backward propagation. The model computes the loss derivative with respect

to each parameter of the model. This computation is from the output layer to the

input layer.

4) Update parameters. The model updates its parameters based on the loss deriva-

tives calculated above.

The parameters are updated in form of gradient descent,

w ← w − αfw(
∂L

∂w
) (4.6)

b← b− αfb(
∂L

∂b
) (4.7)

where w and b are weights and biases parameters respectively, ∂L
∂w

and ∂L
∂b

are the

derivatives of the loss with respect to the parameters, and α is the learning rate.

Specific forms of fw and fb depends on the optimizer and again, the Adam optimizer

(Kingma and Ba, 2014) is used for the current examples.

Since the number of time series in the training datasetM is relatively small from 10

to 100, the batch size is selected to be M , which is also called Batch Gradient Descent.

With batch size M , the number of epochs equals to the number of iterations during

training. For all current examples, 500 iterations with the learning rate α = 0.001

are typically enough for the loss to converge.

4.2.5 Model Inference

Once the model is trained, it can predict the output sequence given any new input

sequence, following the same procedure from the forward propagation. The prediction

and the ground-truth output sequences are compared and error is computed. The

model performance is then evaluated based on the error for both the training dataset

and the test dataset.
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Symbol Description Value

Hs significant wave height 11.2 m
Tp peak period 12 s
Tmin smallest wave period after cutoff 8.075 s
Tmax largest wave period after cutoff 17.63 s
D water depth 30 m
λmin shortest wave length after cutoff 97.61 m
λmax longest wave length after cutoff 282.83 m
cp,min smallest phase velocity 12.09 m/s
cp,max largest phase velocity 16.04 m/s
xf = 2λmax distance between probes 565 m
Ts = Tp/20 sampling period 0.6 s
T = 20Tp simulation window length 240 s

Table 4.4: Linear Wave Environment Specifications

4.3 Example: Linear Wave

The first example shows applying the LSTM network to characterize the 2D linear

wave propagation system as a surrogate problem. Two wave probes are placed a

distance apart to record the wave elevation time series. The upstream wave elevation

is regarded as the system input and the downstream wave elevation is regarded as

the system output. The elevation of the irregular wave is a Gaussian process and

evaluated by

η(x, t) =
N∑
i=1

ai cos(kix− ωit+ φi) (4.8)

where N is the number of Fourier components and, ai, ki, ωi and φi are wave am-

plitudes, wavenumbers, wave angular frequencies, and wave phases respectively. Ta-

ble 4.4 lists the wave environment specifications.

The distance between two probes is 2λmax = 565 m. By uniformly and identically

sampling the phase angle φi from −π to π, a 100 wave scenarios are simulated.

Therefore, 100 input-output pairs of time series are collected. Each time series has

time window length of 240 s and is sampled by period of 0.6 s. The input dataset X

and output dataset y has the shape of (100, 400). Figure 4.3 shows one pair of input

(upstream elevation) and output (downstream elevation) time series. Both input and

output elevation series are then normalized by the mean and standard deviation, and

then are split into a training dataset (Xtrain, ytrain) and a test dataset (Xtest, ytest). The

model is trained on the training dataset for 500 iterations with the training history

plotted in Figure 4.4.
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Figure 4.3: Linear wave: one pair of input (upstream elevation) and output (down-
stream elevation) time series

Figure 4.4: Linear wave: loss on the training dataset decreases during model training

The performance of the trained model is evaluated by asking the model to predict

outputs based on inputs for both the training and test datasets. Three input examples

are selected from both the training dataset and the test dataset, and the model

predictions are compared against the ground-truth in Figure 4.5 (performance on the

training dataset) and Figure 4.6 (performance on the test dataset). As shown in the

Figure 4.6, the trained model succeeds in predicting the system behavior for new wave

scenarios except for the transient at the beginning.

Generally speaking, the prediction of the output is close to the ground-truth after

t = 45 s or so. The mismatch between the prediction and the ground-truth is expected

and can be explained in two perspectives. From the time domain point of view, the

situation happening at the upstream takes time to propagate to the downstream

location. Therefore, the current elevation at the upstream affects the downstream

elevation in the future. Moreover, the time spent to propagate the fresh information

from the upstream to the downstream is relative to the phase velocity, which is

calculated in the Table 4.4. The time delay is estimated by xf/cp,min = 46.7 s for the

slowest phase velocity to travel the distance between the probes. The mismatch at

the beginning can also be explained from the frequency point of view. Since the wave
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Figure 4.5: Linear wave: compare predictions (blue) of 3 training outputs and their
ground-truth (red)

114



Figure 4.6: Linear wave: compare predictions (blue) of 3 test outputs and their
ground-truth (red)
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Figure 4.7: Nonlinear wave: loss on the training dataset decreases during model train-
ing

elevation is evaluated by the Fourier series, the output prediction requires a specific

length of input clip before gathering frequency-domain information. This means the

model is useful after the transient window.

4.4 Example: Second-Order Nonlinear Wave

The same environment in the linear wave example is reused with the only difference

being the system is now a second-order nonlinear wave. In the Section 3.5, the second

order-nonlinear correction of the elevation is presented considering the interaction

among various wave frequencies. The probe distance is the same as the linear wave

example. Again, the system input is the upstream elevation and the system output

is the downstream elevation.

With the same architecture, the model can predict the output after 500 training

steps. Figure 4.7 shows the loss on the training data decreases during the training

process. The performance of the trained model is evaluated for both training and test

datasets. Figure 4.8 compares predictions of 3 training outputs and their ground-

truth. Figure 4.9 compares predictions of 3 test outputs and their ground-truth.

As shown in the figures, a similar mismatch is observed at the beginning of the

output series and it can be explained with the same analysis presented in the linear

wave example. The general matching between the prediction and the ground-truth

validates that the nonlinear wave propagation is successfully identified.

In the linear and nonlinear wave propagation examples, the downstream elevation

is nonzero when t = 0, which is equivalent to a nonzero initial condition of the system.

Hence, a difference between the predicted output and the ground-truth is observed

at the beginning of time. For a system starting from rest or with known initial
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Figure 4.8: Nonlinear wave: compare predictions (blue) of 3 training outputs and
their ground-truth (red)
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Figure 4.9: Nonlinear wave: compare predictions (blue) of 3 test outputs and their
ground-truth (red)
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Figure 4.10: Simulation results: 10 external moment series (top) and 10 roll response
series (bottom)

conditions, the performance of prediction at the transient time should be improved.

An example with known initial conditions can be a ship roll used in Section 3.6 and

is identified in Section 4.5.

4.5 Example: Nonlinear Ship Roll

The Ship roll angle is governed by the ODE in Equation 3.62. From the sys-

tem dynamic perspective, the system input is the external rolling moment M(t) =

Mair(t) +Mwave(t) and the system output is the roll angle of the ship, θ(t). A random

seed (φwind, φwave) is sampled uniformly and identically from −π to π, producing a

Gaussian external moment series with nonzero mean. The roll angle is simulated by

integrating the ODE using a Runge-Kutta scheme. There are 10 realizations simu-

lated, producing 10 pairs of M(t), θ(t). Refer to Section 3.6 for the specification of the

ship. The simulation window is 560 s, or 16 natural periods T0 of roll, and is sampled

with sampling period T0/50. Figure 4.10 shows the 10 external moment series (top)

and their 10 roll response series (bottom).

The external moment and roll response are normalized by their mean values and

standard deviations. For the dataset split, 8 input-output pairs are used as the

training dataset and 2 input-output pairs are used as the test dataset. Figure 4.11

plots the loss on the training dataset versus training epochs during 500 iterations.
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Figure 4.11: Ship roll: loss on the training dataset decreases during model training

Figure 4.12: Ship roll: compare predictions (blue) of rolls and their ground-truths
(red) for the training series

The trained model is asked to predict all 10 roll series given their external moment

series. For the training data, Figure 4.12 compares the prediction of roll and the

ground-truth. For the test data, Figure 4.13 compares the prediction of roll and the

ground-truths.

As shown in the comparison, the prediction is almost identical to the ground-truth

when predicting the system output. It is also worth noting in this example only a

small amount of data is needed to train the model with good prediction performance.

4.6 Example: Sloshing Tank

This example uses a 2D sloshing tank to show the effectiveness of the model in

characterizing complex systems. A water tank in Figure 4.14 is rolling with user-

defined motion and the forces produced by the water on the tank wall are collected.

Hence, the system input is the time series of the roll angle and the output is the

hydrodynamic force and moment. The roll angle θ(t) is generated by sampling a

zero-mean Gaussian process with a JONSWAP spectrum shown in Figure 4.15. The

peak period of the process is 2 s and the height of the spectrum is set such that rolling
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Figure 4.13: Ship roll: compare predictions of rolls and their ground-truths for test
series

standard deviation σθ is about 10 deg. Figure 4.16 shows one sampled roll motion

θ(t) with length of 40 s.

The system is complex due to the complex air-water interaction phenomenon

inside the tank. OpenFOAM, an open-source CFD simulation tool, is used to simulate

the fluid motion inside the tank. The water flow is assumed to be laminar and its

fields are solved by the provided multiphase solver, interFoam. A coarse grid is used

and grid refinement study is neglected since the current grid is enough to represent

irregularity and nonlinearity of the system. Figure 4.17 shows 4 snapshots during

its motion. As shown in the snapshots, complex fluid motion happens inside the

tank and makes its dynamics complicated. Postprocessing is conducted to calculate

hydrodynamic forces and moment on the wall, FY , FZ ,MX . Figure 4.18 shows the

hydrodynamic forces and moment versus time for the roll input in Figure 4.16.

Fifty simulations under different roll time histories are conducted. The simulation

results θ(t);FY (t), FZ(t),MX(t) then form the dataset for the modeling task. Each

time series is normalized by (µθ, σθ), (µFY , σFY ), (µFZ , σFZ ), (µMX
, σMX

). The dataset

is split with a ratio of 80%:20% to form the training dataset and the test dataset,

respectively. Each output dimension is treated separately and three models are built

independently. Hence, three models predict the force series in Y direction, the force

series in Z direction, and the moment series in X direction. All three models are

trained using the training dataset for 500 epochs (or iterations). Figure 4.19 shows
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Figure 4.14: Water tank geometry and computation grid

Figure 4.15: Roll angle spectrum

Figure 4.16: One sampled roll series θ(t)
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Figure 4.17: Snapshots of water in tank at time = 7, 8, 9, 15 s

their training histories.

After the loss on the training data converges after 500 iterations, all three models

are asked to predict the outputs using new input series from the test dataset. There-

fore, each model performs 10 (20% of 50 simulations) predictions, and the predictions

are compared with the simulation results, which are regarded as the ground-truth. As

an example, predictions of FY (t), FZ(t), and MX(t) for one test input are compared

with their ground-truth in Figure 4.20. As shown in the figure, all three models give

a reasonable prediction for the new inputs. Generally speaking, the model of MX(t)

has better performance in predicting the ground-truth than the other two models.

This might be due to the more smooth response of MX(t) compared to FY (t) and

FZ(t).

It is also possible to build a combined model to forecast FY (t), FZ(t),MX(t) at

one time instead of three separate models. The only difference between the com-

bined model and the separate model is the final output tensor of the response is a

3-component vector of (FY , FZ ,MX). The same data are prepared and used to train

the model. Figure 4.21 shows the training history during 500 iterations. Figure 4.22

compares the predictions of the combined model and the ground-truths for one test

scenario. No significant difference is found between the performances of the combined
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Figure 4.18: Hydrodynamic forces FY , FZ and moment MX for the given roll input
in Figure 4.16
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Figure 4.19: Training history during 500 iterations for FY (top), FZ (middle), and
MX (bottom)
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Figure 4.20: Compare predictions of FY (t), FZ(t),MX(t) series and their ground-
truths
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Figure 4.21: Training history during 500 iterations for the combined model

model and three separate models since the number of parameters of the combined

model is close to the number of parameters of three separate models put together.

4.7 Example: Floating Object in Irregular Waves

In the last example of the chapter, the proposed identification method is applied

to predict the motion of a floating object in irregular waves. The long-crest irregular

waves are generated in a 3D tank and induce a floating cube to move. The float-

ing object is constrained to 1-DoF rotation around the center of its bottom panel.

The system input is the upstream wave elevation and the system output is the pitch

angle of the object. To simulate this complex Fluid Structure Interaction (FSI) prob-

lem, olaFlow (Higuera et al., 2014, 2015), an extension of OpenFOAM (Greenshields ,

2015), is used. Figure 4.23 shows a snapshot during one simulation. The computation

domain consists of inlet, outlet, front, back, bottom, atmosphere, and floating object.

Figure 4.24 shows the computation grid with the total number of cells being 36,000.

The grid is coarse but enough to represent the nonlinearity of the system. Table 4.5

gives the specifications of the numerical tank and the floating object.

The waves are generated at the inlet by setting the domain boundary condition

based on wave theories. For irregular waves, the linear summation of Stokes compo-

nents is used, which is

η(x, t) =
N∑
i=1

ai cos(kix− ωit+ φi) (4.9)

where N is the number of Fourier components, and ai, ki, ωi, φi are the amplitude,

wave number, angular frequency, and phase angle for ith component. The JON-

SWAP spectrum is selected to generate the waves. Table 4.6 lists the environmental
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Figure 4.22: Compare predictions of FY (t), FZ(t),MX(t) series (the combined model
and 3 separate models) and their ground-truths

Dimension Value

tank length (x direction) 3 m
tank width (y direction) 1 m
tank height (z direction) 1.5m
water depth 1.0368 m
object length (x direction) 0.3 m
object width (y direction) 0.2 m
object height (z direction) 0.6 m
object draft 0.4368 m
object freeboard 0.1632 m
upstream distance 1.35 m
downstream distance 1.35 m
#cells (x direction) 40
#cells (y direction) 20
#cells (z direection) 45

Table 4.5: Wave Tank Dimension
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Figure 4.23: One snapshot during one simulation

Figure 4.24: CFD flow domain grid
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Symbol Description Value

Hs significant wave height 0.1 m
Tp peak period 1.0 s
N number of Fourier components 30
flower lower cutoff frequency 0.68 Hz
fupper upper cutoff frequency 1.49 Hz

Table 4.6: Specifications of Irregular Wave Spectrum (JONSWAP)

Figure 4.25: Discretized JONSWAP spectrum (left) and a(f) amplidue curve (right)

specifications for the spectrum, and Figure 4.25 plots the discretized spectrum and

amplitudes for the Fourier components.

Fifty wave environments are generated by sampling the phase angle from −π to

π. Figure 4.26 plots these fifty wave elevations η(t) at the inlet of the tank calculated

by Equation 4.9. All environment realizations are simulated with olaFlow for 20 s

and 50 pitch angle time series of the floating object are plotted in Figure 4.27. The

floating object starts from an upright position and the wave surface starts from the

calm water condition. The system under study consists of wave propagation and

rigid body motion. Therefore, to characterize the system from end to end, the wave

elevations at the inlet η(t) are regarded as system input and the simulated pitch

angles of the floating object η5(t) are regarded as system output.

Both the system input η(t) and the system output η5(t) are normalized by their

mean and their standard deviation (µη, ση) and (µη5 , ση5), respectively. Forty input-

output pairs are used as the training dataset and the remaining ten are used as the

test dataset. The model is trained for 500 iterations, and the training history shows

the loss decreases with respect to iterations as plotted in Figure 4.28.

Once the model is trained, the performance of the trained model is evaluated on

the training dataset and the test dataset. Figure 4.29 compares the model prediction
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Figure 4.26: Wave elevation at the inlet of the tank, η(t)

Figure 4.27: Pitch angle time series of the floating object under wave environments
in Figure 4.26

Figure 4.28: Training history of the model that characterizes the floating object under
waves
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Figure 4.29: Compare pitch prediction against the ground-truth for the training
dataset (3 of 40 time series shown)
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Figure 4.30: Compare pitch prediction against the ground-truth for the test dataset
(3 of 10 time series shown)
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with the CFD ground-truth for the training dataset. Figure 4.30 compares the model

prediction with the CFD ground-truth for the test dataset. As shown in the figures,

the model predicts an accurate pitch series based on the wave elevation series.

4.7.1 Training Data Size

An advantage of applying the DRE model to identify the system is the model does

not need large amounts of training data. In the sloshing tank and floating object

examples, forty pairs of input and output series are used as the training dataset for

these CFD applications. Generally speaking, more data is helpful for the model to

identify the system though it costs more. Hence, the user needs to balance between

the model performance and data collection cost. Unfortunately, there are no universal

guidelines on the size of the training data in need since the required size of the training

dataset depends on the complexity of the studied system.

In order to provide an intuition on the required size, an experiment with the

floating object example is conducted. The experiment uses different sizes of training

dataset (input-output pairs) ranging from 10 to 40 and 500 iterations are used during

the training process. The trained model is then evaluated on both training and test

dataset via the Root Mean Square Error (RMSE) measurement

RMSE(η̂5, η5) =

√√√√ 1

T

T∑
t=1

(η̂5,t − η5,t)2 (4.10)

where η5 is the CFD ground-truth of the pitch angle, η̂5 is the model prediction of

the pitch angle, and T is the number of time steps in the time series. To summarize

the whole performance on both datasets, the RMSE measure is averaged across all

pitch series within the dataset, that is

RMSE =
1

N

N∑
n=1

RMSE(η̂
(n)
5 , η

(n)
5 ) (4.11)

where N is the number of realizations in the dataset (40 for the training dataset,

10 for the test dataset), and η̂
(n)
5 , η

(n)
5 are the nth pitch prediction and ground-truth

respectively in the dataset.

Figure 4.31 shows the performance of these models on one of the training series.

Figure 4.32 shows the performance of these models on one of the test series. Fig-

ure 4.33 plots the RMSE scores against the data quantity. As shown in the figure,
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Figure 4.31: Performance on one training sample by the models trained with different
quantity of training data (10,20,30, and 40 from top to bottom)
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Figure 4.32: Performance on one test sample by the models trained with different
quantity of training data (10,20,30, and 40 from top to bottom)
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Figure 4.33: More collected data gives better identification of the system.

models trained by more data usually lead to lower RMSE score and perform better on

both training and test dataset. Therefore, collecting more data is helpful to identify

the system more successfully.
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CHAPTER V

An Example with both TEG and DRE

In this chapter, a floating block in irregular waves is discussed as a concrete

example to show how the proposed TEG and DRE models play roles and can be used

together in extreme pitch modeling. Specifically, the chapter solves the problem: For

a mild wave environment where the floating object undergoes small pitch (<< 5◦) in

most of the time, how are the wave scenarios that lead to large pitch angle (> 7◦)

distributed, and how to generate these dangerous cases?

5.1 Motivation

Since the TEG model is a generative model that often requires large amounts of

training data, efficiently scoring each wave seed in terms of system response is needed.

When the studied system is properly represented by the simplified model, efficient

simulation of the response behavior is therefore accessible, and the TEG model can be

easily applied as shown by the examples in Chapter III. However, when the simplified

model is unavailable due to system complexity or lack of insight, the DRE model can

be used as a data-driven alternative in the simulations and help to score the wave

seed.

Consider the example in Section 4.7 where a floating object in a long-crest irregular

wave is studied. CFD is used to simulate the flow domain and the object is free to

pitch under the wave-induced loadings. In order to apply the TEG model to generate

wave environments that lead to dangerous conditions, a large amount of training data

is needed. Specifically, a mapping from the wave random seeds (in the format of phase

angles) to the pitch angle at the design time must be established, which is

θ = η5(td;φ1, · · · , φN) (5.1)
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φ1 φ2 · · · φN θ
...

...
...

...
...

Table 5.1: Training data needed by the TEG model

where td is the design-time specified by the user and (φ1, · · · , φN) is the wave seed

vector that consists of N Fourier phases at the upstream boundary.

Direct CFD simulation of pitching in waves is expensive in this FSI problem.

Therefore, filling the table of training data for the TEG model via direct CFD is

cost-prohibitive, as shown in Table 5.1. A more efficient and fast approach is to

identify the system first via the DRE model, and then ask the trained DRE model to

estimate the function of θ column.

5.2 Procedure

Figure 5.1 shows how to integrate the DRE model and the TEG model. First,

a training dataset that consists of the time-domain input-output time series pairs

is collected to identify the system via the DRE model. After the DRE model is

trained, for any new input series (or environments), corresponding output series (or

response) can be predicted. Then the system output at the design time is regarded as

the ‘score‘ for the system input environment. This scoring process can be conducted

multiple times until enough training data is collected for the TEG model. Since

the trained TEG model is generative, new environments can be sampled from the

high-dimensional (N) probability space in order to produce environments that lead

to critical response.

Starting from the Section 4.7, the pitch motion of a floating object in an irregular

wave has been successfully identified by establishing the map from the upstream wave

elevation η(t) to pitch η5(t). Refer to Section 4.7 for the environmental parameters

and flow domain setup. The objective of this chapter is to generate seaways of the

JONSWAP spectrum that will lead the object to a large pitch angle at a design-time.

Specifically, seaways sampled from the following distribution are desired,

Pr(φ1, · · · , φN |θ > ζ) (5.2)

where θ is the pitch angle of the object at the design-time defined in Equation 5.1

and ζ is a threshold specified by the user. For the current example, design time is

selected to be 15 s, and the critical pitch threshold is 7 degrees.
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Figure 5.1: A diagram shows how to integrate both the DRE model and the TEG
model
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Figure 5.2: Recipe to generate desired seaways (td = 15 s, ζ = 7◦) using DRE and
TEG

Figure 5.2 shows the procedure of generating the desired seaways. First, all wave

phases are sampled uniformly and identically across Fourier components from −π to

π since no prior on dynamical behavior is given. The DRE model is then used to

score each wave scenario by estimating the pitch angle at the design-time. Once all

phase sets are scored, the phase sets ending with an estimated pitch angle greater

than 5 degrees are selected as the training dataset for the TEG model. The TEG

model learns the joint distribution among the phases in the training dataset and

generates new phase vectors that follow a similar distribution. The newly generated

phase vectors are then scored by the DRE model and those scenarios leading to large

pitch angles (7 degrees) are then available for use in CFD for simulation.

5.3 Results

In Section 4.7, the pitch angle for a given wave elevation has been identified by the

DRE model using fifty input and output (η(t), η5(t)) pairs. By simulating the DRE as
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Figure 5.3: Histogram of the estimated pitch θ̂ by the DRE model for all 200,000
scenarios

the reduced-order model, the pitch angle of the floating object at design-time td = 15

s can be estimated for any given wave scenarios (φ1, · · · , φ30).

As mentioned in the section above, the plain seed space is scored by the DRE

model. For the experiment, 200,000 phase vectors are sampled from [−π, π)30. All

200,000 scenarios are scored by the DRE model by returning the pitch angle at 15

s. Figure 5.3 shows the normalized histogram of the estimated pitch angles. Among

200,000 estimated pitch angles, 6,423 phase vectors have scores higher than 5 degrees.

Figure 5.4 shows the marginal distribution Pr(φi|θ > 5◦) from the 6,423 filtered phase

vectors. Note that it is not possible to perform 200,000 CFD simulations without a

great cost.

These phase vectors serve as the training data for the TEG model. Figure 5.5

plots the training history in terms of performance loss. The small increase of the loss

on the validation dataset after 30 epochs is due to the patience parameter during

training. A plain early stopping strategy is to stop the training process once the

validation loss increases. With the patience parameter, a delay is added so that the

training keeps going until no improvement is observed for a number of epochs. More

details are discussed in Section 3.2.5. After the model is trained, new phase vectors

can be sampled from the TEG model. Figure 5.6 shows the marginal distribution of

the new phases is well-maintained by comparing to Figure 5.4. The histograms of

the resultant pitch angle can also be compared between the given dataset and the

generated dataset in Figure 5.7. As shown in the figure, the difference occurs at the

boundary θ = 5◦ but the tail behavior is kept. The tail part of the histogram (> 7◦)

is also compared in Figure 5.8.

Ten phase vectors in the tail (θ̂ > 7◦) are randomly selected for further CFD

investigation. These ten phase vectors produce wave elevation series at the upstream
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Figure 5.4: Marginal distribution Pr(φi|θ > 5◦) for the given dataset

Figure 5.5: TEG model training history for the floating object example
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Figure 5.6: Marginal distribution Pr(φi|θ > 5◦) for the newly generated dataset

Figure 5.7: Compare histograms of the resultant pitch angle between the given
dataset (red) and the generated dataset (blue)

144



Figure 5.8: Compare tail of the histograms (> 7◦) between the given dataset (red)
and the generated dataset (blue)

boundary for ten CFD scenarios. Figure 5.9 plots all ten series of upstream wave

elevations together and the corresponding predicted pitch angle by the DRE model.

For the simulation results, Figure 5.10 compares the CFD simulated pitch angle for

all ten scenarios against the DRE predictions one by one.

As shown in the comparison, both predicted and the simulated pitch series achieve

a large angle around the design-time td = 15 s. It is also worth noting that DRE

model underpredicts the large absolute value of the pitch angle, especially at the

response crest and trough. The error can be explained by looking at the training

dataset for the DRE model in section 4.7. Most pitch angles in the dataset range

from 0◦ to ±5◦, which provides limited data on predictions on extreme scenarios in

this chapter, which are over ±7◦. It is worth noting that in the current setup the wave

spectrum used to train the DRE model is exactly the same with the desired spectrum

under extreme event study. However, these two spectrums can be different to improve

the results. The model trained with more severe wave scenarios should yield better

estimation when predicting large and rare response in mild seaways. Therefore, it is

suggested to use a more severe sea state to more accurately characterize the system

behavior in large response in order to reduce the gap when generating wave scenarios

in the TEG model. In the next section, the distribution within the training dataset

for the DRE module is discussed to improve the observed gap.

5.4 Effect of the Dataset Distribution on System Identifica-

tion

As shown in Figure 5.9, the DRE module underpredicts the pitch angle when

the pitch is large, compared to the CFD ground-truth. The under-estimation is
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Figure 5.9: Randomly selected ten series of upsteam wave elevation (input) and cor-
responding predicted pitch angle (output)

due to the distribution of the collected data for the DRE module. The nonlinear

system dynamics may not be characterized well at the extreme region (≈ 7◦) if most

collected data comes from a mild operating condition (<< 5◦). Therefore, in order

to accurately characterize the system for the extreme cases that are generated by the

TEG module, a more severe environment needs to be included in the DRE training

dataset.

To demonstrate the effect of the dataset distribution on the system identification,

the wave input is simply amplified in this section. Three experiments are conducted

with different scaling factors. Specifically, the amplitudes in the wave elevation are

increased by 10%, 20%, and 50%. For each experiment, fifty CFD simulations are

carried out to collect the training and test datasets for the DRE module. Each DRE

module is trained with 500 iterations. Figure 5.11 plots the performance of the trained

DRE modules on one test sample. As shown in the figure, the pitch increases as the

wave elevation is amplified. The performance on the unseen test dataset is good for all

three DRE modules, though the models identify the systems that operate in different

wave severities.

All three models are then asked to predict the extreme pitch events in Figure 5.9.

Figure 5.12, 5.13, and 5.14 show their predictions on the TEG generated extreme

scenarios. By comparing the three plots, the DRE model trained with the severe wave

produces a larger pitch since the distribution of their characterization data is biased
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Figure 5.10: Compare the resultant pitch angle between the CFD simulation result
(red) and the DRE prediction for each wave scenario

147



Figure 5.11: Compare the performance of DRE model trained with different wave
severities (top: 10%, middle: 20%, bottom: 50%)
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towards a larger response region. As shown in the figure, the DRE model trained in

the 20% amplified waves produces the closest prediction to the CFD ground-truth,

while the DRE models trained in the 10% and 50% amplified waves underpredict and

overpredict the pitch respectively. The comparison is better visualized in Figure 5.15,

where the predictions from all three models and the original DRE model are compared

against the CFD ground-truth for the first extreme test scenario.

A blended dataset is produced by combining all fifty original (without amplified)

scenarios, fifty 10%-amplified scenarios, and fifty 20%-amplified scenarios. A new

DRE model is trained using the blended dataset. The averaged RMSE scores from

all five DRE models are calculated by Equation 4.11 and plotted in Figure 5.16. As

shown in the figure, the DRE model characterizing the 20% amplified waves produces

the best prediction for the TEG generated extreme pitch.
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Figure 5.12: Compare the resultant pitch angle between the CFD simulation result
(red) and the DRE-10 prediction (blue) for each wave scenario
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Figure 5.13: Compare the resultant pitch angle between the CFD simulation result
(red) and the DRE-20 prediction (blue) for each wave scenario
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Figure 5.14: Compare the resultant pitch angle between the CFD simulation result
(red) and the DRE-50 prediction (blue) for each wave scenario
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Figure 5.15: Compare the predictions from all four DRE models (DRE, DRE-10,
DRE-20, DRE-50) against the CFD simulation result for one wave sce-
nario

Figure 5.16: Averaged RMSE score of the TEG generated pitch vs. characterization
wave condition used in DRE
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CHAPTER VI

Conclusion

In this thesis, a purely data-driven framework is proposed to study ship dynamics

problems suitable for extreme event analysis. In this chapter, the current research

work and the contributions are summarized, the future work is suggested.

6.1 Summary

For the conventional design of ships and marine units, rule-based approaches have

long been used by the designers and ship classification societies. Most of these ap-

proaches are developed based on simplified models. Strong assumptions are often

made during the analysis such that the closed-form or semi-experimental solutions

are available. However, these results may not accurately capture the response of the

ship, and this is especially true for the extreme (max) response. For example, marine

systems are often assumed to be linear and exposed to a Gaussian wave environment.

In fact, many marine systems are either weakly or even strongly nonlinear. Therefore,

to shorten the gap between the results of simplified models and real conditions, safety

factors, for example, dynamic loading factors, are often used. However, such rule-

based estimates are usually rough and lack of more completed case-by-case analysis.

Moreover, this situation becomes even worse for the extreme-related analysis since

the extreme events occur rarely and very few observations can be collected.

Due to the development of computational approaches, large-scale time-domain

simulations become more accurate to characterize the system dynamics than the

traditional methods. The geometry of the marine devices and complex interaction

between the fluid and structure can be better represented via computer-based meth-

ods. Nowadays, designers have access to high-performance cloud computing that

allows them to simulate the response of the device in various ocean environments.

The ocean environments that rarely occur in real life can now be well established in
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numerical simulations. Compared to the experimental methods, numerical methods

also generate large amounts of data for analysis. Due to the advantages of numeri-

cal simulations, designers and classification societies tend to validate the design and

make rules based on simulations. However, more severe ocean environments do not

necessarily produce a larger system response. Setting up ocean environments that

lead to extreme system response is usually difficult. Moreover, these environments

need to be sampled from the conditional distribution.

A data-driven framework is proposed to address the above challenge. Unlike

other methods found in the literature, the proposed framework contains the following

features:

• The framework can generate wave environments that lead to large system re-

sponse. By simulating the generated environments, the user can observe system

responses that exceed the user-defined threshold at the design time. With high-

fidelity simulations, a time-domain context for the designed extreme events can

be better understood. The user can closely investigate the design by checking

behaviors of different parts when the extreme event occurs. Necessary modifica-

tion can then be made to mitigate the response of interest. The framework can

generate as many environments as the user wants, and they follow the threshold

exceedance conditional probability. Therefore, an extreme event that is more

likely to occur appears in the generated scenarios with a larger chance.

• The framework can be used with few assumptions. The dynamical system of in-

terest can be nonlinear, and the prior ocean environments can be non-Gaussian.

To fully utilize the information embedded in the data, machine learning meth-

ods are heavily used in the proposed framework. As a result, the framework is

extremely useful when a complex system has no mathematical model or when

very limited insight about the system is available.

• For the extreme event modeling, observation of the events are usually rare,

which produces a challenge of limited data for many data-driven methods. Since

the framework is generative, it uses a novel “bootstrapping” strategy to address

the challenge as much as possible.

The proposed framework consists of two modules which are named Threshold Ex-

ceedance Generator (TEG) and Design Response Estimator (DRE). They can work

together or separately to return a collection of environment scenarios to the user.
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By simulating the design in the generated environments, the user can observe vari-

ous extreme responses that exceed a user-specified threshold of ζ at a user-specified

timestamp td. Mathematically, a random environment is specified by a seed vector

(φ1, · · · , φN). The proposed framework can generate a collection of seed vectors from

the distribution.

Pr(φ1, · · · , φN︸ ︷︷ ︸
TEG

| ηr(td;φ1, · · · , φN)︸ ︷︷ ︸
DRE

> ζ). (6.1)

where ηr(·;φ1, · · · , φN) is the time series of the system response according to the en-

vironment seed. The TEG module focuses on the generation aspect of the framework,

while the DRE module addresses the system identification aspect of the framework.

Intuitively, the TEG module comes up with a collection of environments that could

lead to large system responses, and the DRE module judges each TEG-generated

environment by estimating the system response and return the feedback to the TEG

for a next-round generation.

Many examples are used in the thesis to validate both TEG and DRE modules.

The examples of linear wave propagation, nonlinear wave propagation, nonlinear ship

roll, sloshing tanks, and floating object in irregular waves cover a wide range of

applications for the developed modules. The successful application of these examples

shows that the proposed framework can be used to linear or nonlinear, Gaussian

or non-Gaussian, environment or dynamical systems, and single-DOF or multi-DOF

dynamical systems. The efficient utilization of the data allows the framework to

model extreme events as accurately as possible.

6.2 Contribution

The proposed framework is unique and first of its kind in generating environments

for the marine extreme simulations from a machine learning perspective. The key

contribution of current research is listed as follows.

• The framework re-formulates the problem of generating extreme marine events

in a machine-learning perspective. The concepts in the marine dynamic field

are related to a data science task. Examples are abstracting the ocean environ-

ment randomness into the seed vector, converting the environment generation

problems into a generative machine-learning family.

• The framework can learn a conditional distribution that is spanned by the

Fourier phases in a high dimension space. Once the distribution is learned, the
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framework can sample the Fourier phases as a vector to establish the environ-

ment to model nonlinear extreme events.

• The framework relies on very few assumptions about the dynamical system and

the loading environment, which allows the user to apply it to a wide range of

problems. The framework is designed to be data-driven, and the data quantity

required to use the framework is also designed to be as little as possible to reduce

the cost. In the sloshing tank and floating object examples, the framework

achieves good results even when the collected CFD data is limited.

• Many methods and models are developed for the first time to address the chal-

lenge occurring in the marine extreme context. For example, limited observation

of extreme system response is addressed by a novel “bootstrapping” approach.

Model architectures are designed and implemented to achieve relatively accurate

results.

• By carrying out many experiments, the performance of the machine learning

models is measured and compared, which provides the user a guideline on var-

ious choices of setup. The cost of applying the proposed models is estimated

theoretically and numerically.

6.3 Future Work

Though the novel framework can produce useful results for several marine exam-

ples, there are still open questions that have not been answered in the current work.

Interesting questions are listed as follows.

• The DRE module is designed to identify a marine system. Though the results of

the examples are generally good, it may require more data and a more complex

model design to identify other system behavior. In the sloshing tank example,

predicting the hydrodynamic force is more difficult than predicting the hydro-

dynamic moment with the same model design. Hence, determining the amounts

of data required is still a case-by-case question.

• The proposed framework is designed without assuming the systems are linear.

Nonlinear systems have many complex phenomena that linear systems do not

usually have, like chaos and sensitivity of initial conditions. In the most exam-

ples discussed in the thesis, the extreme response is designed at a user-specified
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timestamp, called design-time td. In the current framework, the statistics of

the system response at the design time is assumed to be converged and steady.

Based on the assumption, all the large responses that the system may undergo

during its lifetime are expected to be possible to reconstruct within a short time

window [0, td]. However, such an assumption may not valid for all nonlinear sys-

tems.

• The Fourier phases for the wave environment are considered to be correlated

as a seed vector in the proposed framework. Learning the joint distribution for

the phases in a high-dimensional space is challenging. In most examples of this

thesis, the dimension of the seed vector (or the number of Fourier components)

is less than fifty. As the dimension increases, the joint distribution becomes

more complicated. Therefore, more data needs to be collected and the training

process takes more time. With the current framework design, a suggestion to

reduce this additional cost is to assume that there exists no correlation among

groups of phases. Based on the assumption, only the correlation within each

group is considered and the phases from different groups are assumed to be

uncorrelated. To determine the partition of the phase groups, statistical analysis

is needed.

• Since the framework is data-driven, the collected data and the learning process

can be random. Hence, the confidence intervals for the estimated quantities are

desired. A typical approach to measuring the confidence intervals is to conduct

the estimation process multiple times and the empirical distribution of the es-

timated quantities yields the confidence intervals. However, Monte Carlo tests

for the proposed framework is computationally expensive since each experiment

involves data collection, model training, and performance evaluation.

• As shown in the floating object example, different system operating conditions

can produce different distributions of the collected data. Therefore, a model that

successfully identifies the system in one operating condition may produce errors

when predicts the system response at another operating condition. To solve the

problem, a dynamic or adaptive system identification process is suggested to be

built. When the TEG is generating environments that lead to larger response

during the bootstrapping process, a subset of the environments are selected and

the DRE model is updated by re-training with these environments.
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APPENDIX A

Gaussian Process Results

Lindgren (1970) and Tromans et al. (1991) showed that the most likely wave

profile around an a priori maximum crest height is the autocorrelation curve scaled

by the crest height. Specifically, on the condition that the crest height a occurs at

t = 0, the expected wave elevation is given by

E[η(t)|η(0) = a, η̇(0) = 0] = aρ(t) (A.1)

where η(t) is the Gaussian elevation stochastic process, ρ(t) is the normalized auto-

correlation function of η(t), which relates to its energy density function by Wiener-

Khinchin theorem.

Cartwright and Longuet-Higgins (1956) gave the distribution of positive maxima

for narrowband or non-narrowband Gaussian process, normalized by the 0th spectral

moment

fH(h) =
2

1 +
√

1− ε2

[
ε√
2π
e−h

2/2ε2 +
√

1− ε2he−h2/2Φ

(√
1− ε2
ε

h

)]
(A.2)

and the corresponding cumulative distribution function (CDF) is

FH(h) =
2

1 +
√

1− ε2

[
− 1

2
(1−

√
1− ε2) + Φ(h/ε)

−
√

1− ε2e−h2/2Φ

(√
1− ε2
ε

h

)]
.

(A.3)

whereH is the non-dimensional positive maxima (0 ≤ H <∞) and ε =
√

1−m2
2/(m0m4)

is the bandwidth parameter of Gaussian spectrum, and mi is the ith moment of the

spectrum.
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Ochi et al. (1973) gave the expected number of positive maxima per unit time as

n =
1

4π

(
1 +
√

1− ε2√
1− ε2

)√
m2

m0

(A.4)

and applied Order Statistics Theory on local positive maxima to produce the

Extreme Value PDF associated with the exposure window.

fX(T )(x) = nfH(x)F n−1
H (x) (A.5)

As a result, the most probable extreme maxima in an exposure window T is given

by

H̄(T ) =

√
2 ln

(
T

2π

√
m2/m0

)
(A.6)

Equation A.6 is beautiful in connecting time domain, frequency domain, and

probability domain.
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APPENDIX B

Code Snippet

Python is selected as the major programming language for the current research

work. With the help of machine learning libraries, many building blocks in the pro-

posed framework can be implemented efficiently with good readability and perfor-

mance. Among many modern machine learning libraries, TensorFlow (Abadi et al.,

2015), powered by Google Inc, is widely used in academia and industry. On top

of TensorFlow, an open-source neural network library Keras (Chollet et al., 2015)

provides a user-friendly upper-level wrapper language for rapid prototyping, and is

selected for the modeling tasks. Other used libraries for data processing includes

Numpy (Oliphant , 2006), scikit-learn (Pedregosa et al., 2011), Pandas (McKin-

ney et al., 2010). The development of current research work is written in an interactive

format called Jupyter-Notebook (Kluyver et al., 2016). The results in the thesis

are plotted using Matplotlib (Hunter , 2007) and the illustrative diagrams are made

using Mathcha.

In this appendix, important code snippets are attached for illustrative use. A

repository of the notebooks is hosted on Github with complete implementation.

B.1 Threshold Exceedance Generator

B.1.1 Discretize the Fourier phases

def phase_cont2disc(Phi):

num_samples, seq_len = Phi.shape[0], Phi.shape[1]

res = np.digitize(Phi, phase_bin_edge) - 1

return res

def phase_disc2cont(Phi):

res = np.zeros(Phi.shape)

for i in range(len(Phi)):

res[i,:] = phase_bin_center[Phi[i,:]]

return res
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B.1.2 Sequence padding and One-Hot-Encoding

def gen_padded_sequences(dataset):

res = []

for seq in dataset:

for i in range(len(seq)):

res.append(seq[:i+1])

integer_encoded = np.array(pad_sequences(res, maxlen=n_fourier, padding=’pre’))

one_hot_encoded = keras.utils.to_categorical(integer_encoded,

num_classes=len(phase_bin_center)+1)

return one_hot_encoded

B.1.3 Model Architecture

model = Sequential()

model.add(LSTM(100, input_shape=(n_fourier-1, len(phase_bin_center)+1), return_sequences=True))

model.add(Dropout(0.1))

model.add(LSTM(100))

model.add(Dense(80, activation=’relu’))

model.add(Dense(len(phase_bin_center)+1, activation=’softmax’))

print(model.summary())

model.compile(loss=’categorical_crossentropy’, optimizer=’adam’, metrics=[’accuracy’])

B.1.4 Model Sampling

def sample_seqs_batch(model, batch_size):

res = np.zeros((batch_size, n_fourier))

seed = np.zeros((batch_size, n_fourier-1))

def sample_row(p):

return np.random.choice(np.arange(len(phase_bin_center)+1), p=p)

for idx in range(n_fourier):

encoded = keras.utils.to_categorical(seed, num_classes=

len(phase_bin_center)+1).reshape((batch_size, n_fourier-1, len(phase_bin_center)+1))

y_proba = model.predict_proba(encoded, verbose=0)

sampled_class = np.apply_along_axis(sample_row, 1, y_proba)

seed = np.roll(seed, -1, axis=1)

seed[:,-1] = sampled_class

res[:, idx] = sampled_class

return res

B.1.5 Model Training and Bootstrapping

def train_and_sample(dataset):

padded_seqs = gen_padded_sequences(dataset)

X, y = padded_seqs[:,:-1,:], padded_seqs[:,-1, :]

usualCallback = EarlyStopping(monitor=’val_loss’, min_delta=0, patience=5)

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=2020)

history = model.fit(X_train, y_train,
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validation_data=(X_val, y_val),

batch_size=int(1000),

epochs=3000,

callbacks=[usualCallback],

verbose=1)

bootstrapping_quantile = 0.5

n_samples = int(1.0/bootstrapping_quantile*dataset.shape[0])

samples_from_model = sample_seqs_batch(model, n_samples)

# assign all zero idx to 1

samples_from_model[samples_from_model == 0] = 1

dataset_cont = phase_disc2cont((dataset-1).astype(int))

dataset_evaluation = eval_phase(dataset_cont)

samples_from_model_cont = phase_disc2cont((samples_from_model-1).astype(int))

samples_evaluation = eval_phase(samples_from_model_cont)

quantile_boundary = np.quantile(samples_evaluation, 1 - bootstrapping_quantile)

return samples_from_model[samples_evaluation >= quantile_boundary, :].astype(int)

B.2 Design Response Estimator

B.2.1 Dataset Scaling

class MyScaler:

def __init__(self):

self.mean, self.std = None, None

def transform(self, dataset):

self.mean, self.std = np.mean(dataset), np.std(dataset)

return (dataset - self.mean)/self.std

def inverse_transform(self, dataset):

return dataset*self.std + self.mean

B.2.2 Dataset Reshaping

def reshape_into_input(dataset):

# reshape into [samples, time steps, features]

return dataset.reshape((dataset.shape[0], dataset.shape[1], 1))

def reshape_from_input(dataset):

return dataset.reshape((dataset.shape[0], dataset.shape[1]))

B.2.3 Model Architecture

model = Sequential()

model.add(LSTM(50, return_sequences=True, input_shape=(None, 1)))

model.add(LSTM(50, return_sequences=True))

model.add(LSTM(50, return_sequences=True))

model.add(LSTM(50, return_sequences=True))
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model.add(LSTM(50, return_sequences=True))

model.add(TimeDistributed(Dense(1, activation=’linear’)))

print(model.summary())

model.compile(loss=’mean_squared_error’, optimizer=’adam’)

B.2.4 Model Training

history = model.fit(X_train, y_train, epochs=500, batch_size=X_train.shape[0], verbose=1)

B.3 Dynamic-related

B.3.1 JONSWAP spectrum

class Jonswap:

def __init__(self, Hs, Tp):

fp = 1.0/Tp

f_lower = fp/1.5

f_upper = fp*1.5

nodefreq = np.linspace(f_lower, f_upper, n_fourier + 1)

# JONSWAP

gamma = 3.3

alpha = 0.0624 / (0.23 + 0.0336 * gamma - 0.185 / (1.9 + gamma))

sigma = np.ones((len(nodefreq))) * 0.07

sigma[nodefreq >= fp] = 0.09

beta = np.exp(-(nodefreq - fp)**2 / (2*sigma**2*fp**2))

nodeS = alpha * Hs**2 * fp**4 * nodefreq**(-5) * gamma**beta

* np.exp(-5.0/4.0*(fp/nodefreq)**4)

# bandwidth

m0 = np.trapz(nodeS, nodefreq)

m2 = np.trapz(nodeS*nodefreq**2, nodefreq)

m4 = np.trapz(nodeS*nodefreq**4, nodefreq)

bandwidth = np.sqrt(1 - m2**2/(m0*m4))

# return

self.freq = 0.5*(nodefreq[1:] + nodefreq[:-1])

self.amp = np.sqrt((nodeS[1:] + nodeS[0:-1]) * (nodefreq[1:] - nodefreq[0:-1]))

self.k = (self.freq*2*np.pi)**2 / 9.81

self.Hs = Hs

self.Tp = Tp

self.bandwidth = bandwidth

self.m0, self.m2, self.m4 = m0, m2, m4

B.3.2 Second-order nonlinear wave

def eval_phase(Phi, xf, time=[]):

R = (2*np.pi*jonswap.freq)**2 / 9.81

N = n_fourier
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K_plus = np.zeros((N, N))

K_minus = np.zeros((N, N))

freq, amp, k, depth = jonswap.freq, jonswap.amp, jonswap.k, jonswap.depth

for i in range(N):

for j in range(N):

# plus term

k_plus = np.abs(jonswap.k[i] + jonswap.k[j])

tmp1 = np.sqrt(R[j])*(k[i]**2 - R[i]**2)

tmp2 = np.sqrt(R[i])*(k[j]**2 - R[j]**2)

tmp3 = np.sqrt(R[i]) + np.sqrt(R[j])

tmp4 = np.sqrt(R[i]) - np.sqrt(R[j])

tmp5 = R[i]*R[j]

tmp6 = R[i] + R[j]

tmp7 = k[i]*k[j]

D_plus = tmp3 * (tmp1 + tmp2) + 2*tmp3**2*(tmp7 - tmp5)

if depth is None:

D_plus /= tmp3**2 - k_plus

else:

D_plus /= tmp3**2 - k_plus*np.tanh(k_plus * depth)

K_plus[i, j] = (D_plus - (tmp7 - tmp5))/np.sqrt(tmp5) + tmp6

if i == j:

continue

# minus term

k_minus = np.abs(k[i] - k[j])

D_minus = tmp4 * (tmp1 - tmp2) + 2*tmp4**2*(tmp7 + tmp5)

if depth is None:

D_minus /= tmp4**2 - k_minus

else:

D_minus /= tmp4**2 - k_minus*np.tanh(k_minus * depth)

K_minus[i, j] = (D_minus - (tmp7 + tmp5))/np.sqrt(tmp5) + tmp6

res = np.zeros((Phi.shape[0], len(time)))

time = np.array(time).reshape((1, -1))

k, freq, amp = k.reshape((N,1)), freq.reshape((N,1)), amp.reshape((N,1))

def score_phase(phase):

phase = phase.reshape((N,1))

psi = k * xf - 2*np.pi*freq * time + phase

eta1 = np.sum(amp * np.cos(psi), axis=0)

eta2 = np.zeros(eta1.shape)

for i in range(N):

for j in range(N):

eta2 += amp[i]*amp[j]*(K_minus[i,j]*np.cos(psi[i,:]-psi[j,:])

+ K_plus[i, j]*np.cos(psi[i,:]+psi[j,:]))

eta2 /= 4.0

return eta1 + eta2
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for idx in range(len(Phi)):

if idx > 0 and idx % (Phi.shape[0]/10) == 0:

print(f’evaluating dataset: {idx *100.0/Phi.shape[0]}%’)

res[idx,:] = score_phase(Phi[idx,:])

if res.shape[1] == 1:

return res[:,0]

else:

return res

B.3.3 Ship Roll Environment

params = {

’rho_air’: 1.225,

’rho_sw’: 1.025*10**3,

’V’: 4.241*10**4,

’Bs’: 32.25,

’AL’: 8814,

’H’: 20.86,

’Cm’: 1.1137,

’K’: 0.003,

’w0’: 0.1794,

’gamma’: 0.777,

’GM’: 1.06,

’Uw’: 29.50, # wind velocity

’mu’: 8.5*10**(-3),

’beta’: 0.385,

’alpha_e’: 8.607*10**(-2),

’zeta_e’: 0.2399,

’IAxx’: 1.4033*10**10,

’Delta’: 4.2608*10**8,

’c1’: 1.06,

’c3’: 0.174,

’c5’: -6.4269,

’c7’: 5.3323

}

class WaveMomentSpec:

def __init__(self):

nodew = np.logspace(-0.6, 0, n_fourier_wave + 1)

nodefreq = nodew/(2*np.pi)

Uw = params[’Uw’]

H13 = -2*10**(-5)*Uw**3 + 8.2*10**(-3)*Uw**2 + 0.1456*Uw - 0.1599

T01 = 3.86*np.sqrt(H13)

A = 172.75*H13**2/T01**4

B = 691/T01**4

g = 9.81

gamma = np.ones(nodefreq.shape)*params[’gamma’]

gamma[nodew > np.sqrt(4*np.pi*g/params[’Bs’])] = 0.0

Salpha = A/(g**2*nodew)*np.exp(-B/nodew**4)

Smw = (params[’Delta’]*params[’GM’]*gamma)**2*Salpha
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# return

self.freq = 0.5*(nodefreq[1:] + nodefreq[:-1])

self.amp = np.sqrt((Smw[1:] + Smw[:-1]) * (nodew[1:] - nodew[:-1]))

self.nodew = nodew

self.Smw = Smw

class WindMomentSpec:

def __init__(self):

nodew = np.logspace(-2, 0, n_fourier_wind + 1)

nodefreq = nodew/(2*np.pi)

Uw, AL, rho_air = params[’Uw’], params[’AL’], params[’rho_air’]

Cm, H = params[’Cm’], params[’H’]

K = 0.003

XD = 600*nodew/(np.pi*Uw)

Swind = 4*K*Uw**2/nodew*XD**2/(1 + XD**2)**(4.0/3.0)

Chi = 1.0/(1 + (nodew*np.sqrt(AL)/np.pi/Uw)**(4.0/3.0))

Sam = (rho_air*Cm*Uw*AL*H)**2*Chi**2*Swind

# return

self.freq = 0.5*(nodefreq[1:] + nodefreq[:-1])

self.amp = np.sqrt((Sam[1:] + Sam[:-1]) * (nodew[1:] - nodew[:-1]))

self.nodew = nodew

self.Sam = Sam

def cal_angle_of_vanishing_stability():

c1, c3, c5, c7 = params[’c1’], params[’c3’], params[’c5’], params[’c7’]

vanishing_angle = np.roots([c7, 0, c5, 0, c3, 0, c1, 0])

vanishing_angle = np.real(vanishing_angle[np.isreal(vanishing_angle) & (vanishing_angle > 0)])

return np.min(vanishing_angle)

rho_air, Cm, Uw, AL, H = params[’rho_air’], params[’Cm’], params[’Uw’], params[’AL’], params[’H’]

Mwind_static = 0.5*rho_air*Cm*AL*H*Uw**2

def cal_angle_of_equilibrium():

c1, c3, c5, c7 = params[’c1’], params[’c3’], params[’c5’], params[’c7’]

equilibrium_angle =

np.roots([c7, 0, c5, 0, c3, 0, c1, -Mwind_static/params[’Delta’]])

equilibrium_angle =

np.real(equilibrium_angle[np.isreal(equilibrium_angle) & (equilibrium_angle > 0)])

return np.min(equilibrium_angle)

B.3.4 Ship Roll Solver

def score_phase(phase_time_tuple):

phase, time = phase_time_tuple[0], phase_time_tuple[1]

c1, c3, c5, c7 = params[’c1’], params[’c3’], params[’c5’], params[’c7’]

mu, beta, IAxx, Delta = params[’mu’], params[’beta’], params[’IAxx’], params[’Delta’]

initial_disp, initial_velo = equilibrium_angle, 0.0

def dy(t, y):
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damping = ( 2*mu*y[1] + beta*y[1]*np.abs(y[1]) ) * IAxx

spring = ( c1*y[0] + c3*y[0]**3 + c5*y[0]**5 + c7*y[0]**7 ) * Delta

Mwind = np.sum(wind_spec.amp*np.cos(2*np.pi*wind_spec.freq*t + phase[:n_fourier_wind]))

Mwave = np.sum(wave_spec.amp*np.cos(2*np.pi*wave_spec.freq*t + phase[n_fourier_wind:]))

return [y[1], (Mwind_static + Mwind + Mwave - damping - spring)/IAxx]

sol = solve_ivp(dy, [0, time_length], [initial_disp, initial_velo], t_eval=time)

return sol.y[0,:]
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