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ABSTRACT

Network representations are now ubiquitous across science. Indeed, they are

the natural representation for complex systems—systems composed of large num-

bers of interacting components. Occasionally systems can be well represented by

simple, regular networks, such as lattices. Usually, however, the networks them-

selves are complex—highly structured but with no obvious repeating pattern. In

this thesis I examine the effects of correlation and interdependence on network

phenomena, from three different perspectives.

First, I consider patterns of mixing within networks. Nodes within a network

frequently have more connections to others that are similar to themselves than to

those that are dissimilar. However, nodes can (and do) display significant hetero-

geneity in mixing behavior—not all nodes behave identically. This heterogeneity

manifests as correlations between individuals’ connections. I show how to identify

and characterize such patterns, and how this correlation can be used for practical

tasks such as imputation.

Second, I look at the effects of correlation on the structure of networks. If edges

within a relational data set are correlated with each other, and if we construct

a network from this data, then several of the properties commonly associated

with real-world complex networks naturally emerge, namely heavy-tailed degree

distributions, large numbers of triangles, short path lengths, and large connected

components.

Third, I develop a family of technical tools for calculations about networks. If

viii



you are using a network representation, there’s a good chance youwish to calculate

something about the network—for example, what will happen when a disease

spreads across it. An important family of techniques for network calculations

assume that the networks are free of short loops, whichmeans that the neighbors of

any given node are conditionally independent. However, real-world networks are

clustered and clumpy, and this structure undermines the assumption of conditional

independence. I consider a prescription to deal with this issue, opening up the

possibility for many more analyses of realistic and real-world data.
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CHAPTER 1

Introduction

The study of networks is now a well established field, complete with dedicated
textbooks, journals, international conferences, popular writings, and research cen-
ters [1–14]. Networks are used across scientific disciplines including in biology,
neuroscience, public health and medicine, ecology, sociology, political science, en-
gineering and economics [15–33]. In this thesis I will present contributions I have
made over the last four years to the theoretical study of networks.

First, we should discuss what a network actually is. Central to the concept of
a network is the mathematical notion of a graph [34]. A graph is a mathematical
object constructed from a set of nodes (or vertices), and a set of edges between nodes.
One writes � = (+, �) to represent that graph � contains the nodes in set + , and
the edges in �. An example of a graph is shown in Fig. 1.1.

0

1

2

3

Figure 1.1: An example graph. The node set is + = {0, 1, 2, 3} and the edge set is
� = {(0, 1), (0, 2), (0, 3), (1, 2)}.
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A graph has an associated adjacency matrix [1–4],

�8 9 =


1 if nodes 8 and 9 are connected;

0 otherwise.
(1.1)

For the graph of Fig. 1.1 this would be

� =

©­­­­­«
0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

ª®®®®®¬
. (1.2)

There are countless ways in which we can decorate graphs with extra structure
[1–3]. Particularly important among these: We could allow there to be multiple
distinct types of node, or distinct types of edge; Edges could be assigned weights
so that not all edges are equal; We could allow (or forbid) more than one edge
between any pair of nodes; Or, edges could be imbued with a direction, so that if 0
connects to 1 it does not necessarily follow that 1 connects to 0.

The word “network” is often used as a synonym for “graph”, but usually carries
a different connotation. Instead, “network” usually connotes some system, object,
or thing, that is both naturally and usefully represented as a graph. The internet is a
network—a network of computers. It can be quite naturally represented as a graph
whose nodes are computers and edges are connections between them. Brains are
networks. They can be represented as graphs in which nodes are neurons and
edges are synaptic connections. Likewise for man-made infrastructure, proteins,
ecosystems, societies, and so forth [1–3,15–33].

Empirical network science involves the study of specific real-world networks.
Theoretical network science involves the study of models and synthetic data, de-
signed to emulate some aspect of real-world networks or network phenomena. In
the chapters that follow, we will consider the effect of correlation and interdepen-
dence within networks. We will develop theoretical insight and practical tools for
understanding the rich structure of interdependence within networks.

1.1 Why study networks?

The fact that a lot of effort has been put in to understanding networks isn’t, in and
of itself, a particularly compelling motivation as to why we should study them.

2



Likewise, the observation that many interesting things—brains, food webs, social
interactions, etc.—can be conceptualized as networks isn’t, in and of itself, an
argument that we should study networks qua networks. No doubt networks (or
graphs) are useful data structures, but are they more than this? Should scientists
be devoting time and effort to study networks in their own right?

One argument that we should appeals to perceived similarities between the
networks of disparate systems. Isn’t it remarkably curious if the structure of the
brain and the structure of social interactions are, in some sense, similar to one
another? Real-world network structure is certainly not random, but why would it
be similar across domains? Such questions were instrumental to the ratcheting up
of network science in the late 1990s [2].

But perhaps more important than the universal properties of networks are
the particular differences. For many processes the specific details of the network
structure actually matter. To make this claim less abstract let’s consider a concrete
example. Particularly salient at the time of writing (spring/summer 2020) is the
spread of infectious disease, so let’s consider this.

1.1.1 Example: Modeling the spread of disease

The SIR model provides a simple but instructive framework for understanding
the spread of disease [35, 36]. At any given time (according to the model) an
individual is either: Susceptible; Infectious; or Recovered.1 The model assumes
that reinfection is not possible and thus an individual either remains in state (
indefinitely, or progresses through (→ � → '.

The standard analysis assumes we are studying a large population and tracks
the proportion of people in each state [35,36]. People who are currently susceptible
become infected through contact with infectious individuals, and we assume the
population is “well-mixed”, i.e. that everyone has a fixed probability of coming into
contact with anyone else. Thus, the rate at which susceptible people are infected
is proportional to the current number of infectious people—the more infectious
people there are, the more likely you are to come into contact with one. We
also assume that infectious people recover (or are removed) at some constant rate.

1' may also be used to refer to the rather more ominous “removed” and includes the dead.
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Formally,

3(

3C
= −��( (1.3)

3�

3C
= ��( − �� (1.4)

3'

3C
= �� , (1.5)

where (, �, and ' are the proportion of people who are currently susceptible,
infectious, and recovered.2 These differential equations describe the evolution of
the epidemic.

Theparameters � and � control the rate atwhich infections are passed on and the
rate at which people recover, respectively. Their absolute values set the timescale
on which the epidemic progresses. From a mathematical perspective this is not
hugely consequential. We can decide to measure time in seconds or in years; the
math doesn’t much care. More important is their ratio. The ratio

'0 =
�

�
(1.6)

is hugely consequential, and makes the difference between a local outbreak and
a global pandemic [35, 36]. This number, '0, corresponds to the average number
of secondary infections due to an initial infection. If '0 < 1 then we expect only
isolated outbreaks. But, if '0 > 1 then we expect the disease to spread across a
sizable fraction of the population.

To see this mathematically, consider what happens at the very start of the
outbreak. Initially almost everyone is susceptible, ( ≈ 1, and the rate of change of
the number of infectious individuals is

3�

3C
=

(
� − �

)
�. (1.7)

The disease spreads if this rate of change is positive, i.e if � > �, or equivalently if
'0 > 1. The point at which '0 = 1 represents the epidemic threshold—if '0 is any
larger then we expect to see an epidemic, but if it is smaller, we don’t.

This is all well and good but of course provides a hugely simplified picture.
The biological details of the disease have been completely swept under the rug.
For example, we have assumed that the recovery process is well described by a

2Since these are proportions, we necessarily have ( + � + ' = 1.
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single recovery rate, �, andwe have not accounted for differences in the population
(maybe in the real-world, recovery depends strongly on age). Just as important an
oversight, however, are the completely unrealistic sociological assumptions.

The canonical SIR model assumes a well-mixed population, i.e. that anyone in
the world is equally likely to come into physical contact with anyone else. This is
obviously wrong—and it matters. To improve upon the well-mixed assumption,
let’s assume that there is some network of physical contact between people [37].
Since the disease requires physical contact to spread it can only spread along edges
of this physical contact network. The model is otherwise much the same. A
susceptible person can catch the disease from any of its infectious contacts, and this
happens at some fixed rate 1. Infectious people recover at a fixed rate, 6.

The equations that describe the evolution of the epidemic are nowmore compli-
cated but it’s straightforward to run simulations [37,38]. For the sake of argument,
let’s consider a population of 10 000 people and assume that, on average, people
come into close physical contact with 16 other people. In Fig. 1.2 we show the
results of simulating the disease on three randomly generated networks that match
these assumptions.

First, we consider an entirely randomnetwork, in which everyone has exactly 16
randomly chosen contacts [39]. From a sociological perspective this is only a small
improvement on thewell-mixed assumption. Rather than catching the disease from
anyone, you can now only catch the disease from a small number of people with
whom you are in regular physical contact. However, the structure of this random
network is completely unrealistic.

One feature of this first network that is particularly unrealistic is that everyone
has exactly 16 close physical contacts. In reality there will be a significant degree of
heterogeneity in the number of contacts people have [1,2]. Some people, for exam-
ple people who work from home, may come into close contact with substantially
fewer people. Others will come into contact with substantially more—possibly
hundreds or even thousands. The second network we consider respects this ob-
servation [40]. On average people still have 16 contacts, but now the most well
connected person has 454 while the most common number of connections is 8.

Another unrealistic feature of both the first and second networks is that they
contain extremely few triangles. Ifwe randomly choose twopeople, fromanywhere
in the world, it is of course extremely unlikely that they will be in direct physical
contact with one another. If we pick two of your friends, however, then it’s quite
likely they will be in contact. The fact that two of your contacts are more likely

5
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Figure 1.2: Simulations of the SIRmodel on a network. We set the disease transmis-
sion rate 1 = 5/64 and recovery rate 6 = 1. We considered three different networks.
A random regular graph, in which all people have precisely 16 randomly selected
connections [39]. A network created by preferential attachment, in which people on
average have 16 connections, but some individuals have many more [40]. And a
small world network (aWatts-Strogatz network), which has a lot of triangles [41]. We
show the percentage of people currently infected and the total percentage of people
who have ever been infected, plotted against time (in arbitrary units). Results are
averaged over 500 simulations of the disease spreading on each of the 3 different
networks. Each simulation starts with 40 random infections in the population.
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to be in contact with each other corresponds to a large number of triangles in the
contact network: if three people are all mutually connected, they form a triangle
of connections. So, the third network we consider in Fig. 1.2 has a large number of
triangles [41].

If you are not already familiar with networks, and you have understood the
results of Fig. 1.2, you should find them surprising. We have run simulations of the
exact same disease spreading on three networks. All three networks are exactly the
same size and have the exact same density of physical contact. Further, the disease
itself is extremely simplistic, devoid of any biological complexity whatsoever. And
yet, the disease behaves radically differently in each case.

In one case (random regular), new infections continue to occur, slowly but
steadily, throughout the whole simulation. If we make the network more realistic
by adding variation to the number of contacts (preferential attachment), we see a
colossal spike of infections and over 40% of the population infected at some point.
On the other hand, when we make the network more realistic in a different way—
by adding triangles (small world)—the disease simply can’t take hold and dies out
almost immediately.

The result is that any epidemic threshold—any measure such as '0 that seeks
to predict whether a disease will spiral into a devastating epidemic—cannot be
constructed from properties of the disease and contact density alone. Instead, the
microscopic details of the network appear to matter. Precisely who is connected
to whom actually matters. This realization gets to the heart of deep problems in
network science and hopefully provides the reader with sufficient justification that
network structure matters.

We have looked at infectious disease as a case study, but the same concerns
generalize. Network structure is important for the robustness and optimality of
infrastructure [31], brain function [17], the health of ecosystems [21], and social
and political power [42], among other things. In fact, networks are useful because
structure often matters. They are used precisely because assumptions such as the
well-mixed hypothesis are often inappropriate.

But if we conclude that the exact details of network structure are important,
are we now at a loss? Is there anything we can say in general? Or, must we con-
sign ourselves to running detailed simulations anew, for each and every network?
Thankfully, we do not.

One route to progress is to develop solutions (or approximate solutions) for
problems on general networks. Sticking with epidemics for now, a mean-field

7



analysis exposes the intimate relationship between the largest eigenvalue of the
adjacency matrix and disease spreading [37]. A refinement to this calculation
clarifies that it is not actually the eigenvalue of the adjacency matrix that matters,
but that of the closely related non-backtracking matrix [43]. In Ch. 5, we will further
refine these calculations.3

Mathematical analyses allow us to connect particular properties of networks
(such as associated eigenvalues) to phenomena of interest. Thus, while the details
of network structure do matter we can often summarize the relevant features suc-
cinctly. This is welcome news. Grasping a handful of numbers is something we are
good at; directly comprehending a large graph is not. Accordingly, significant effort
in network science has been dedicated to the development of useful metrics and
summary statistics. Such statistics communicate key information about structure
while remaining intelligible.

1.2 Measures and metrics

Measures of centrality are particularly widely used [1, 46, 47]. These metrics assign
scores to nodes (or more rarely edges, e.g. [48]) in order to characterize how central
or important they are to the network. Different metrics correspond to different
notions of what it means to be central or important.

The simplest centrality measure is degree centrality [1]. The degree of a node
is the number of edges it has. The degree of node 8 is often denoted :8 where

:8 =
∑
9

�8 9 . (1.8)

When we use degree to measure centrality, the implicit assumption is that nodes
that have lots of connections are more prominent or central. This view, however,
counts all connections equally and doesn’t consider to which nodes a node is
connected.

An alternative logic of centrality relies on a positively circular definition. What
does it mean to be an important person? Well, one could argue that an important
person is anyone who is well connected to the important people. This might seem
inadequate to a lexicographer but we can make good sense of it mathematically.
For example, the eigenvector centrality [49] assumes that the centrality of a node is

3We will not explicitly consider epidemics, but rather the mostly equivalent problem of bond
percolation. See [44, 45] for discussion of the equivalence.
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proportional to the sum of its neighbors’ centralities. Node 8’s centrality, G8 , is thus

G8 =
1
�

∑
9

�8 9G 9 . (1.9)

Assuming this centrality score isn’t negative, Eq. (1.9) has a single solution: x is
the leading eigenvector of the adjacency matrix, �. Variations on this theme are
the centrality of Katz [50], the HITS algorithm [51], or the PageRank algorithm of
Google [52].

Many further alternatives exist for defining centrality, for example those based
on flows or paths (see [1, 47]). Such centrality measures are focused on ranking
the centrality of individual nodes (or edges), but taking a wider view leads to the
idea of a dense core of a network, in contrast to its periphery [53]. A network may be
extremely large, but perhaps only a fraction of it is well connected, while the rest is
naught but hangers-on. By precisely defining a metric this can be quantified and
cores can be identified and studied [54–56].

Regardless of precisely how we define the notion of a densely connected core,
we will have in mind some notion of density for moderately sized subsections
of the original network. However, we can also consider density from a more
local perspective. As we have already discussed, any two of your friends are
relatively more likely to be friends with each other. A simple measure of this
is the transitivity or clustering coefficient. You, along with every pair of your
friends, can potentially form a triangle. The transitivity coefficient is the fraction
of these possible triangles that actually exist [1]. Or, we can apply this same
concept to individual nodes and assign eachnode its own local clustering value [41].
High clustering scores correspond to networks that are locally dense. To make this
connection clear, consider just the small network made up of you and your friends.
Ifmany of your friends are also friendswith each other then therewill be a relatively
large number of edges in this local network.

Themeasures listed abovemerely quantify differences in centrality and density,
but variations in density generally aren’t random. Rather, they often display sys-
tematic patterns. Networks frequently display assortative mixing or homophilywhere
significantly more network connections occur between nodes that are alike in some
manner than between those that aren’t [57,58]. For example, while high schools in
America are no longer segregated in theory, they may be somewhat segregated in
practice. Even within ethnically diverse schools students disproportionately form
within-group friendships; mixed schools need not be particularly well mixed [59].
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Class structure, 1st grade Class structure, 4th grade Class structure, 8th grade

Figure 1.3: Moreno’s sociograms, taken from [60]. These drawings show the
structures of a 1st, 4th, and 8th grade class. Boys are marked with triangles,
girls with circles. Sorting by gender is weak in the youngest children and increases
significantly before decreasing again as they become teenagers.

Modularity and the assortativity coefficient provide popular measures to quantify
such effects [1, 58].

Analyses of mixing are foundational to network science. We have presented
mixing as simply oneofmany things onemaywish tomeasure in anetwork. Amore
historical presentation might give the reverse impression: networks were actually
developed in order to study social patterns ofmixing. JacobMoreno’s sociograms are
arguably the first appearance of networks in the scientific literature [60]. Figure 1.3
shows examples of these sociograms, visually displayingpatterns of gendermixing.
Despite this long history, less attention has been paid to mixing from the viewpoint
of individuals, a point to which we shall return in Ch. 2.

We have been brief in our overview of network measures. Overviews of promi-
nent measures can be found in [1, 61]. Less prominent ones abound. While a lot
of effort has been expended in developing metrics, many are ultimately ad-hoc,
codifying particular intuitions of researchers. Some are considerably more prin-
cipled, for example centrality measures defined with respect to specific dynamic
processes [62]. But ultimately, metrics are not explanatory. We can rank how cen-
tral each node is in any given network, but why are some nodes more central than
others? Are there really significant differences, or are we investing effort into the
study of statistical noise? If we dutifully collate network data sets and tabulate
their properties, a general understanding of networks is unlikely to jump out at
us. Instead, for theoretical enlightenment we need to model network structure
itself—model how this or that structure might arise.
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1.3 Models of networks

Network models specify how network structure itself is generated. We have, in
fact, already used three: the random regular graph, preferential attachment, and
the Watts-Strogatz model. Modeling the structure of complex networks dates back
to at least the 1950s with the work of Solomonoff and Rapoport [63].

The work of Erdős and Rényi [64, 65] is particularly well known.4 The model
starts from the assumption that we want a network with = nodes and < edges.
To construct such a network, we simply place the < edges uniformly at random
between nodes. This model is (unsurprisingly) fairly boring, but not entirely so.

The first interesting property of this model is the component structure. A
component in a network is a set of nodes that are reachable from one another. If
someone is a friend of a friend of a friend. . . of a friend of yours, they are in your
component. Unless you have literally no friends, you can probably reach most
people in the world through chains of this sort.

When< is extremely small, Erdős-Rényi networks are composed of many small
fragments that are disconnected from one another. However, once< > =/2 wewill
generally observe a large connected component—a significant fraction of nodeswill
be reachable from each other. And, once < > = log =, this large component will
most likely contain every single node. For comparison, there are

(
=
2
)
= (=2 − =)/2

possible locations for an edge, a quantity that is much larger than either =/2 or
= log = (for large =). These results show that even fairly sparse networks (networks
with relatively few edges) are generally well connected—most nodes can generally
reach most others through some chain of connection.

A second interesting property of these networks is how short these chains
actually are. Any node in the large component can typically reach any other in
only a few hops. Specifically, the number of hops needed grows logarithmically
with the number of nodes, which gives rise to a six degrees of separation effect [1].
If it is true that we can reach anyone in the world through only six links, then in
a galactic empire with ten billion times the population of Earth, the Erdős-Rényi
model predicts we would still only need twelve. Whatever the exact numbers turn
out to be, short paths are not surprising once we have studied the Erdős-Rényi
model.

While the Erdős-Rényi model is generally quite bad at modeling real-world

4The model itself is almost equivalent to the models of Solomonoff and Rapoport [63], and
Gilbert [66].
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networks, variants improve it significantly. The first model we used in our earlier
discussion—what we called random regular—is a simple variant. Instead of only
fixing the number of edges in the network we also fixed the exact number of edges
each node had. We chose this to be the same for each and every node, but in general
this may vary, which leads to the configuration model [39,67]. In the configuration
model, we connect nodes at random, but insist on precisely fixing the number of
edges that each node has. Analysis of this model allows us to understand the
generic effects of differently distributing the edges between nodes [68].

Another important variant is the stochastic block model (or planted partition
model) [69, 70]. In this model we imagine nodes are sorted into blocks or groups,
and the number of edges within and between groups is adjusted. This serves as
a basic tool for understanding the effects of different mixing rates. Or, we can
combine both the configurationmodel and the stochastic blockmodel, and account
for both an uneven distribution of edges and non-trivial mixing patterns [71].

The secondmodel we used in our earlier discussion—preferential attachment—
has a more mechanistic flavor [40, 72]. This model starts with an arbitrary small
network and then sequentially adds to it. Nodes are introduced one at a time, and
each new node chooses some number of old nodes to connect to. However, instead
of choosing totally at random, nodes preferentially attach to nodes that already have
lots of edges—a “rich get richer” effect. In the standard formulation, new nodes
connect to old nodes proportional to their degree.

Preferential attachment leads to a handful of nodes with an extremely large
number of edges, while most nodes have only a few. The distribution of edges (the
degree distribution) follows a power law. The probability that a node has degree
:, for large :, is

?: ∝ :−3. (1.10)

Among other things, this provides an explanation for why some scientific papers
receive thousands of citations while others (of seemingly similar quality) may
receive almost none [72, 73].

The Watts-Strogatz network [41], the third model we used earlier, doesn’t posit
a mechanism per se but is built from a highly ordered structure. We start by lining
up the nodes, one after another, and then connect each node to those close by. Each
node is initially connected to the : nodes closest to it—:/2 to the left, and :/2 to
the right. This produces a highly ordered network that is locally dense. Suppose
that you are one of the nodes in this network, connected to the :/2 nodes to your
right, and :/2 to your left. The node directly to your right will also be connected
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to all of your other neighbors on your right, and all but one of those on your left.
This leads to lots of triangles—the friends of your friends are statistically likely to
be friends.

However, such anordered lattice is extremelyunlike a real-world social network.
In particular, you would need a large number of hops to reach most other nodes
in the network. To rectify this we randomly re-wire some of the edges. Watts and
Strogatz noticed that with just a small amount of random re-wiring, we achieve
networks with short distances between nodes, and lots of triangles (a situation that
had once seemed theoretically puzzling [74]). Two of the most striking properties
of real-world networks can be simultaneously produced by a large degree of order
and a small sprinkling of randomness.

As for measures and metrics, there are too many network models to cover in
any single review. The most prominent models are covered in detail in [1–3]. New
models are posted weekly (or even daily) to arXiv. Modeling, however, is not
merely a theoretical tool for understanding. It also allows us to infer things about
data that are not otherwise directly observed or observable.

1.4 Inference

The topic of inference is well illustrated by example. As we have discussed, net-
works often display assortative mixing—nodes that are similar connect to each
other at higher rates than those that are dissimilar. The modularity metric mea-
sures the extent to which this is true—it measures the extent to which a network
breaks apart into tight-knit communities of similar nodes—but this assumes we
already know which nodes are in which groups. If we don’t already know the
division of nodes into groups, we can turn modularity on its head and use it to
discover a division of the nodes into groups. Instead of considering the group of
each node to be some fixed property, we can consider many different assignments
of groups to the nodes. By picking an assignment that maximizes modularity we
find a good division of the network nodes into communities [75, 76]. This pro-
cedure (maximizing the modularity) is simply one of many community detection
methods [77].

Today, the go-to method for rigorous community detection is built on the
stochastic block model, and uses statistical tools such as maximum likelihood es-
timation [69, 71, 77].5 The stochastic block model can fit arbitrary mixing patterns,

5Modularity maximization was initially motivated by intuition. It was later put on a firm footing
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and by fitting the model to data we can make principled inferences about what we
have observed.

The general form of these inference procedures is as follows. The model under
consideration (be it the stochastic block model or any other one), assigns a prob-
ability to observing adjacency matrix � given some parameters �. This is written
%(�|�). Our job is tomake inferences about �. Themethod ofmaximum likelihood
tells us to estimate � by maximizing %(�|�). Alternatively, we can use Bayes’ rule
to infer a distribution for � ,

%(� |�) = %(�|�)%(�)
%(�) (1.11)

(see Ref. [79] for an overview of these ideas).
By working with well defined statistical models we are able to make full use

of modern inferential statistics. For example, it is usually unclear a priori how
many communities one should look for in a network. By framing our problem as
a statistical inference, we can make principled decisions and develop methods that
automatically detect how many communities there are [80,81]. Such inferences al-
low us to performmore advanced data analyseswhich both helps uncover relations
that are otherwise obscure, and quantifies our confidence in such results.

Inference problems are also often interesting in their own right. For example,
they may display phase transitions. For one set of model parameters the inferences
may be easy, while for another, theymay be impossible [82]. For the stochastic block
model, it has been shown that unless the network has sufficiently strong community
structure, recovering the groups is impossible [83]. This impossibility is quite
profound. If people do, in fact, preferentially form within-group attachments, but
if these within-group attachments are not considerably more prevalent than out-
group attachments, then no network process would ever know the difference—the
communities might as well not exist.6

For narrative simplicity, we have mostly focused our discussion of inference on
the problem of community detection. However, inference in networks is a broad
and growing field. Other inference tasks that have received considerable attention
are: missing data, hierarchy, latent space, edge prediction, spreading processes,

by demonstrating its equivalence to maximum likelihood estimation of a particular variant of the
stochastic block model [78].

6This result relies on the assumption that all individuals within a group are statistically identical.
In Ch. 3 we’ll return to this and show a more nuanced picture arises once one allows for individual
variation.
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network evolution, and even inferring the network itself [84–90].

1.5 Contributions of this thesis

Before outlining my own contributions, it is appropriate to consider oversights
of the network science literature. Time and again, models and theoretical tools
neglect the highly correlated nature of networks. For example, in the stochastic
block model nodes are randomly assigned to groups. Once these groups have
been assigned all edges are statistically independent. This leads to networks that
look completely different to real-world networks. Independence assumptions are
almost never plausible and are made not on the basis of sound scientific arguments
but for mathematical convenience.

Well aware of the implausibility of independence assumptions, sociologists
frequently use a class of models—exponential random graph models [91,92]—that
can easily introduce correlations. Unfortunately, these have significant flaws and
have largely been abandoned by theoretical network science [93–95].

The more mechanistic models, such as preferential attachment, do not usually
entail independence and produce networks with strong but subtle interdepen-
dence. However, these models tend to be mathematically intractable and thus
aren’t actually useful for analyzing real data (or at least, we don’t yet know how
to do this). Recently, some progress has been made with new computational tech-
niques, although these still require massive computational power (e.g. [89, 96]).

Not only do the models of network science assume independence, so too do
the mathematical tools. Mean-field analyses along with more advanced tools such
as message passing methods, entail strong independence assumptions that break
down in the presence of triangles. Key results of theoretical network science—such
as calculations for the spectra of networks [97]—break down with the introduction
of triangles, the most simple non-trivial structure.

As a general theme, this thesis presents work that takes correlation and inter-
dependence seriously. We will develop measures, models, and mathematical tools
that proceed from an assumption of interdependence. By embracing correlation,
rather than neglecting it, we hope to narrow the gap between networks in theory
and networks in the real-world.

In Ch. 2 we return to the study of mixing patterns but reject the conditional
independence underlying many measures. Instead, we allow for the fact that oth-
erwise similar nodes may systematically differ in their behavior—individual nodes
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may connect to others at higher (or lower) rates than expected. Such systematic
differences correspond to correlations between the connections of any individual.
Our analyses of these correlations provide principled estimates of mixing, at both
a global and individual level, along with confidence intervals on our estimates.
In contrast, most previous measures either over-fit the data or simply average out
any diversity. This chapter is based on previously published work with Mark
Newman [98].

In Ch. 3 we push these analyses of mixing further. We show how our insights
aboutmixing can be used to recovermissing data or perform community detection.
While traditional methods (based on the stochastic block model) only performwell
at these tasks when the mixing is sufficiently (dis-)assortative, our methods may
still work even in the total absence of assortative structure. We locate a phase
transition for inference when individuals’ choices are correlated and show that
such patterns actually make recovery tasks easier. Thus, so long as individuals are
not all exactly alike, the pessimistic results based on the stochastic block model do
not necessarily carry over to the real world. The results presented in this chapter
are currently not published elsewhere.

In Ch. 4 we consider a very simple null model for networks. We start from
the quite reasonable assumption that our data is drawn from amultivariate normal
distribution, with one free parameter (a covariance parameter). Then, we create the
network by simply thresholding this data: large values correspond to edges, while
small values are non-edges. This is almost the simplest model for how a network
data-set might be constructed, and yet we find the introduction of correlations
leads to several of the properties commonly associated with complex networks:
namely heterogeneous degree distributions, short geodesic paths, and relatively
large numbers of triangles. The work presented in this chapter was conducted
with Yanchen Liu, Ben Maier, Alice Schwarze, Carlos Serván, Jordan Snyder, and
Guillaume St-Onge, and has been published [99].

In Ch. 5, we turn our attention away from networkmodels and towards theoret-
ical tools. Message passing, a fundamental technique for performing calculations
on networks and graphs, has long been recognized to work poorly on networks
that contain short loops. We develop a framework to address this issue and create
methods thatwork on arbitrary networks. We exemplify thiswith two applications.
First, wederive new results for bondpercolation onnetworks—aprocess that serves
as a basic model of the spread of disease. Second, we show how to approximate
the spectral density of a sparse matrix extremely efficiently—heuristic arguments
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suggest O(= log =) time. This chapter is again based on previously published work
with Mark Newman [100].

Following on, inCh. 6, we showhow these same insights can be used to compute
partition functions for high-dimensional complexmodels. Wederive a factorization
for probability distributions defined on networks andwedemonstrate how to apply
this with the Ising model as a case study. The method is broadly applicable, and
should help future analysis of network models to escape from “locally tree-like”
assumptions. In this chapter I make use of currently unpublished work with Alec
Kirkley and Mark Newman.

Finally, in Ch. 7, I conclude with some reflections on the field and its future
direction.
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CHAPTER 2

Mixing Patterns and Individual Differences

This chapter is adapted from the published results of G. T. Cantwell and
M. E. J. Newman,Mixing patterns and individual differences in networks.
Physical Review E 99(4), 042306 (2019) [98].

As we discussed in the introduction, a common feature of many networks is as-
sortative mixing, the tendency of network nodes to be connected to others that are
similar to themselves in some way [57, 58, 101, 102]. On the World Wide Web, for
instance, onemight expect web pages to link to others written in the same language
more than they do to ones in different languages. In friendship networks (where
the phenomenon is also known as homophily) many individuals have a preference
for friends who are similar to themselves in terms of age, race, educational level,
and other characteristics [57–59,101]. One can also encounter disassortativemixing,
the tendency for nodes to connect to unlike others [58, 102].

Assortative mixing has been studied widely. Researchers have examined and
quantified assortativity as it occurs in a wide variety of real-world networks [57,58,
101] and createdmathematicalmodels such as theplantedpartitionmodel [103,104]
and the stochastic block model [69] that can mimic both assortative and disassor-
tative behaviors. These methods and models, however, capture only the average
mixing behavior of nodes, the average preference formembers of one group to forge
connections with another. There can be, and in many cases is, substantial variation
about the average; all members of a group do not necessarily behave exactly alike.

As an example, networks of romantic interaction between individuals aremostly
disassortative by gender: a majority of individuals have a preference for romantic
engagements with members of the opposite sex. On the other hand, some people
prefer romantic engagements with the same sex. Standard measures of overall
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assortative mixing would thus say that the average individual has a small fraction
of same-sex relationships and the rest are opposite-sex. But this is misleading:
in fact, many individuals have strong preferences for one or the other, so the
“average preference” does not, in this case, provide a gooddescription of individual
behaviors.

Furthermore, there can be interesting mixing patterns even when there is little
or no average assortativity in a network. For example, a recent study of friend
networks on Facebook showed little to no gender assortativity on average, yet some
people do appear to have preferences [105, 106]. Some individuals on Facebook
strongly prefer either male or female friends—it is only when we average over
the whole population that we see no effect. Thus, traditional measures of average
assortativity do not tell the whole story.

There has been some previous literature discussing these phenomena and ad-
vocating a move beyond average measures of assortativity. In the study of Face-
book mentioned above, Altenburger and Ugander [106] introduced the concept of
monophily, the extent to which people’s friends are similar to one another, while
Peel et al. [107] define a variant assortativity coefficient that characterizes assorta-
tivity within a local neighborhood in a network. Other approaches have defined
an assortativity coefficient at the level of individual nodes [108,109].

In this chapter we demonstrate that inferring and quantifying individual differ-
ences in mixing is not trivial, in practice or in principle, an observation that bears
emphasizing. The difficulty is not simply due to a lack of data. Even for arbitrarily
large networks naive approaches will fail. To address these issues we introduce
a principled and general method for analyzing mixing patterns in networks that
does not require large amounts of data or lengthy computations. Our solution
employs a generative stochastic model of individual-level mixing, showing how it
can be used to model and analyze empirical network data. Crucially, the model
allows for arbitrary mixing patterns and does not assume that individuals behave
in accordance with the average within their group. By fitting the model to data
using statistical methods we infer quantities that have straightforward interpreta-
tions and can thus be used to characterize mixing patterns, in much the same way
that the parameters of a normal distribution characterize mean and variance.

The model we study is conceptually similar to others that have been studied
previously. It shares with the well-known stochastic block model [69] the ability
to represent arbitrary mixing patterns at the group level, but also goes further,
allowing for individual variation within the groups. A model for individual varia-
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tion was introduced previously in [106], but it does not allow for arbitrary mixing
patterns, nor was a direct method proposed to fit the model to data. Variation
within groups can be approximated with mixed membership models [110, 111], in
which network nodes can be members of multiple groups and inherit the mixing
patterns of all of their groups. Two nodes in a given group might, for instance, be
in different other groups and hence need not mix equivalently. This approach is of
little use, however, when group memberships are already known or the categories
are known to be distinct and non-overlapping. If we want to model individual
differences in the social mixing patterns of men and women, for instance, we are
not at liberty to re-assign genders so that our model fits.

As a demonstration of our methods, we apply them to two example networks,
a friendship network of high school students and a linguistic network of word
adjacencies in English text. We find that there is indeed substantial individual
variation in mixing patterns in both networks, implying that traditional average
measures of mixing offer an incomplete description of network structure.

2.1 Individual preferences and patterns of connection

We consider networks in which the nodes are divided into a number of discrete,
non-overlapping groups, types, or categories, and where individual nodes have
preferences about the types of the nodes with which they have network connections.
We will focus on labeled networks, meaning ones in which the type of every node
is known in advance—we are told the sex of each individual in a social network, for
example, or the language that each web page is written in. Our network could be
directed or undirected, but we will concentrate primarily on the directed case here,
treating the undirected one as the special case when all edges are reciprocated.

In the context of such labeled network data, how should one define preference?
By any reasonable definition, if a node has a strong preference to connect to others
of a certain type then we should expect there to be a relatively large number of
edges to that type. Let us denote the number of edges from node 8 to nodes of
type B by :8B and the total number of edges from 8 to nodes of all types by :8 =

∑
B :8B .

Then the ratio :8B/:8 is the fraction of edges from node 8 to nodes of type B.
This ratio, however, is not necessarily an accurate guide to 8’s preference for

connections to type B. We should expect there to be some statistical fluctuations in
the network formation process, so that high or low values of :8B could occur just by
chance. Let us define a quantity G8B to represent 8’s underlying preference for nodes

20



of type B, which will be equal to the expected value of the ratio :8B/:8 , averaged
over these fluctuations:

G8B = �[:8B/:8], (2.1)

where we restrict ourselves to nodes 8 with non-zero degree (the value of G8B is not
well-defined when :8 = 0). Note that G8B as defined is automatically normalized
so that

∑
B G8B = 1. Note also that the ratio :8B/:8 is, by definition, an unbiased

estimator of G8B , though it is not necessarily a good estimator. In fact, as we
demonstrate below, for many purposes it is highly misleading.

One way to think about Eq. (2.1) is to imagine creating the same network
many times over and averaging over the randomness in the creation process to
calculate G8B . Unfortunately, in the real world we normally get to observe a network
only once and hence we cannot perform the average. This is the root cause of the
difficulty with estimating preferences that we mentioned above.

To proceed any further we need to know more about the nature of the fluctua-
tions in the values of the :8B . If we can define a sensiblemodel for these fluctuations
then we can make progress estimating G8B using the tools of statistical inference.

2.1.1 Preference-based network model

How is :8B generated? We could imagine that node 8 considers every other node in
turn and connects to those in group B with some probability �8B , which measures
8’s affinity for group B. Then the edges of the network would be Bernoulli random
variables with means �8B , which in standard statistical notation would be written
�8 9 ∼ Bernoulli(�8 69 ), where �8 9 is an element of the adjacencymatrix, having value
one if there is an edge from 8 to 9 and zero otherwise, and 69 is the group or type
label of node 9.

This, however, is unsatisfactory for two reasons. First, as is often the case, it
is simpler to use a Poisson rather than Bernoulli distribution: �8 9 ∼ Poisson(�8 69 ).
In a sparse network where �8B � 1 the two distributions are nearly identical,
but the Poisson distribution offers significant technical advantages. Second, and
more importantly, many networks have broad degree distributions that are not
well captured by either the simple Bernoulli or Poisson model. This issue can
be dealt with by “degree-correction” [70, 71, 77], which in this context involves
the introduction of two additional parameters )8 and �8 for each node 8, which
respectively control the in- and out-degrees of the node. (In an undirected network,
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the two would be equal )8 = �8 .) With

ΦB =

∑
8∈B

)8 (2.2)

denoting the sum of all )8 for nodes in group B, we let

�8 9 ∼ Poisson
(
�8) 9G8 69
Φ69

)
. (2.3)

This definition does not unambiguously set the values of the parameters, since we
can multiply the values of all the ) by any constant factor without affecting the �8 9
or any other property of the model. One can fix this by choosing a normalizing
condition for the )8 , such as requiring that they sum to 1, but this will not be
necessary for any of the calculations presented here.

Note that the choice of a Poisson rather than a Bernoulli distribution in Eq. (2.3)
implies that the network may have multiedges—there may be two or more edges
running between the same pair of nodes, so that�8 9 > 1. On a sparse network, how-
ever, this happens vanishingly often andmultiedges can normally be neglected [71].

For a better intuition on the role of the parameters in the model, it is instructive
to consider the distributions of the quantities :8B and :8 . Given that the �8 9 are
independent Poisson random variables and that a sum of Poisson variables is itself
Poisson, the distributions for :8B and :8 are also Poisson:

:8B ∼ Poisson
(
�8G8B

)
, (2.4)

and
:8 =

∑
B

:8B ∼ Poisson (�8) . (2.5)

Thus �8 is equal to the expected out-degree at node 8, independent of the node’s
preferences. A simple further computation verifies that G8B is indeed the expected
value of :8B/:8 , consistent with the definition of preference, given in Eq. (2.1).

We favor this model for the intuitive interpretation of its parameters along with
the mathematical simplicity of the Poisson distribution.
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2.1.2 Inferring individual preferences

Given the types of the nodes, we can now write down the probability of observing
any given pattern of connections at node 8:

%(G8 |x8 , 6, �, )) =
∏
9

%(�8 9 |x8 , 6, �, ))

= 4−�8
∏
9

(
�8) 9G8 69
Φ69

)�8 9 1
�8 9!

, (2.6)

where G8 denotes the 8th row of the adjacency matrix and x8 is the vector with
elements G8B . The probability of observing the whole network is then the product

%(�|G, 6, �, )) =
∏
8

%(G8 |x8 , 6, �, )). (2.7)

The terms in Eq. (2.7) that depend on � and ) can be factored out from those that
depend on G and thus one can write

%(�|G, 6) = 1
/

∏
8 ,B

G
:8B
8B

(2.8)

where / is a constant that depends on � and 6 but not G.
Given both the categories and the network structure, we can use the model

to infer the preferences x8 . A tempting approach is to use maximum-likelihood
estimation. However, maximization of Eq. (2.8) with the constraint that

∑
B G8B = 1

just leads back to the estimate Ĝ8B = :8B/:8 . As we now argue, if we want to learn
about the distribution of preferences, these estimates may be misleading.

Consider, for illustrative example, the case in which all nodes in a group have
the same parameter values. (This case is equivalent to the stochastic block model.)
Even though all nodes have the same preferences, :8B/:8 will not be the same for
every node, since it is a random variable. Worse, it will often have significant
variation. Figure 2.1 shows an example of this situation.

Things are not too bad if we only want to measure the average preferences in a
group: we can average over the values of :8B/:8 for all 8 in the group in question
and the fluctuations will average out. For anything beyond average-level behavior,
however, we are not so lucky. As demonstrated in Fig. 2.1, even something as
simple as the variance of G8B is not straightforward to estimate from :8B/:8 .
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Figure 2.1: Histogram for :8B/:8 in the model of Eq. (2.3). We set �8 = 6 and
G8B =

2
3 . The dashed line is at 2

3 , the true value of G8B . For an arbitrarily large
network with these parameters, the dashed line is the true distribution of prefer-
ences, while the histogram corresponds to the inferred distribution, if we used the
maximum-likelihood estimator Ĝ8B = :8B/:8 . The distribution of :8B/:8 is clearly a
poor approximation for the true distribution %(G).

The root of the problem is the sparsity of the network. When we only have a
handful of connections for each node, the ratio :8B/:8 will be broadly distributed
even when all G8B are the same. This is not due to our networks being too small.
The amount of network data we have grows larger as the network does, but so too
does the number of parameters we are estimating, and it is straightforward to show
that the expected variation of the individual estimates :8B/:8 will not vanish even
in the large size limit.

To get around this issuewe need someway to accurately characterize individual
preferences that does not require an extensive number of parameters. Here we do
this by inferring the underlying distribution from which the x8 are generated. We
describe this procedure in the next section.

2.2 Distributions of preferences

Suppose the preference variables G8B for nodes in group A are drawn from a distri-
bution %(x |"A), where "A is a set of parameters for the distribution. If we know
this distribution then we can integrate over the unobserved preferences in Eq. (2.8)
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and compute the likelihood of the network thus,

%(�|
, 6) = 1
/

∏
8

∫ (∏
BG

:8B
B

)
%(x |"68 ) 3x. (2.9)

Rather than infer the individual preferences directly we can, using this likelihood,
infer their distribution by fitting the parameters 
.

The only constraints on x are that GB > 0 for all B and
∑
B GB = 1, meaning that

the vector x lies on the standard unit simplex and %(x |"A) can be any distribution
on the simplex. Here we make the simple and common assumption that %(x |"A) is
a Dirichlet distribution [79]. For a network with 2 groups the Dirichlet distribution
takes the form

%(x |") = 1
�(")

2∏
B=1

G

B−1
B , (2.10)

where 
B > 0 for all B and �(") is the multi-dimensional beta function

�(") =
∏

B Γ(
B)
Γ(
Σ)

, (2.11)

with 
Σ =
∑
B 
B and Γ(
) being the gamma function. The Dirichlet distribution

is a convenient and flexible distribution that allows us to vary the weight placed
on each of the GB independently. In the case of two groups, 2 = 2, the Dirichlet
distribution is equivalent to the beta distribution. The expected value of x within
the distribution is "/
Σ, and 
Σ controls the width of the variation about that
value. In the limit of large 
Σ the variance tends to zero and the distribution of x
is tightly clustered around the mean. Conversely, as 
Σ tends to zero almost all the
probability density is in the corners of the simplex, as far away as possible from
the mean.

We allow each group or type B to have a different distribution of preferences
and hence a different set of Dirichlet parameters "B , so that the prior on x8 is

x8 ∼ Dirichlet("68 ). (2.12)

This is a natural choice: one canwell imagine, for instance, that themen andwomen
within a population have different preferences for male and female friends.
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With this choice we can now complete the integrals in Eq. (2.9) and we find that

%(�|
, 6) = 1
/

∏
8

�("68 + k8)
�("68 )

, (2.13)

where k8 is the vector with elements :8B . Estimates for the 
 parameters can now
be obtained by maximizing this likelihood.

Under certain circumstances, Eq. (2.13) may lack a well-defined maximum. To
deal with this one can add a regularization term. The full details are given in
Appendix A.1, but the end result is that one determines the estimated value ĤAB by
maximizing

!(H) =
∑
8

[
ln�(4y68 + k8) − ln �(4y68 )

]
− �

∑
A,B

H2
AB , (2.14)

where� is a small positive constant, andour estimate of 
AB is givenby 
̂AB = exp ĤAB .
From a Bayesian perspective the quadratic regularization term is equivalent to a
log-normal prior on 
AB .

Our reasoning up to this point can be summarized as follows. When we try to
directly infer node preferences we find that the distribution of our estimates does
not in general resemble the true underlying distribution, even for arbitrarily large
networks. In contrast, maximization of Eq. (2.14) should give accurate estimates
of 
, at least for large networks, and to the extent that the underlying distribution
can be well fit by the hypothesized Dirichlet distribution, these parameters will
describe the shape of that distribution. Thus, it is now possible to infer preference
distributions accurately so long as the network is sufficiently large.

In the real world we don’t have arbitrarily large networks and so a different
source of error could arise: the inability to make accurate estimates of 
 because
our data are limited. One way to get around this problem is to take a Bayesian
approach.

Bayes’ theorem states

%(
 |�, 6) =
%(�|
, 6)%(
)

%(�|6) . (2.15)

The distribution %(
) is the prior distribution for the parameters, which we have
to choose. Since the regularization term introduced in Eq. (2.14) is equivalent to a
log-normal prior for 
AB , we propose using this form as a prior. More details are

26



given in Appendix A.1.
A posterior distribution on 
 as above allows us to make estimates of quantities

of interest without having to estimate 
 itself—we can average over it instead. In
the next section we define some useful metrics that can be evaluated within the
posterior distribution, and can thus be inferred in a parameter-free way.

2.3 Measures of assortativity and variation of prefer-
ences

In the previous section we described a procedure for inferring preference distribu-
tions in networks. The full multi-dimensional distribution, however, is difficult to
interpret, so simple summary statistics are also useful. In this section we propose
two specific measures that quantify the average assortativity in the network and
the variation of preferences around that average.

Assortative mixing occurs when nodes have a preference for connecting to
others of the same type. A natural measure of assortativity is the expected value of
the in-group preference parameters. As discussed in Section 2.2, the expected value
of the preference parameter G8B describing the preference of a node 8 in group A

for connections to group B is 
AB/
AΣ where 
AΣ =
∑
B 
AB . The expected in-group

preference of nodes in group A—their preference to connect to other members of
the same group—is then equal to 
AA/
AΣ, and the average in-group preference
over all nodes in all groups is

0 =
∑
A

?A

AA

AΣ

, (2.16)

where ?A is the fraction of nodes that fall in group A.
In a perfectly assortative network all nodes connect only to their own group

and 0 = 1, while in a perfectly disassortative network 0 = 0. For most real-world
networks we expect the value to lie between these extremes, with higher values
indicating more assortativity. A natural question to ask is what kinds of values do
we expect to see? What constitutes a “high” value of 0? One way to answer this
question is to calculate the expected value within a null model.

A suitable null model in this case is one inwhich nodes are connected according
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to their expected degrees,

�8 9 ∼ Poisson
( :8:in9
<

)
, (2.17)

where :8 denotes the out-degree of node 8, as previously, :in8 denotes the in-degree,
and < =

∑
8 :8 is the expected number of edges in the network. This is in essence

just a directed version of the standard random network model in which we fix the
expected degrees of all nodes, sometimes called the Chung–Lu model after two of
the first researchers to examine its properties [112].

Applying the definition of preference from Eq. (2.1), all nodes in group B have
the same preference in this null model, G8B =  B/<, where  B =

∑
8∈B :

in
8
. Hence in

this model the average in-group preference is

0null =
∑
A

?A
 A

<
. (2.18)

The difference between the observed value of 0, Eq. (2.16), and the expected
value within the null model is then

0 − 0null =
∑
A

?A

(

AA

AΣ
−  A
<

)
. (2.19)

When this quantity is greater than zero the preferences are more assortative than
we would expect by chance. When it is less than zero the preferences are less
assortative (or more disassortative) than expected. If we wish, we can normalize
the difference so that it takes a maximum value of 1 at perfect assortativity, and
thus define a preference assortativity coefficient

'(
) =
∑
A ?A(
AA/
AΣ −  A/<)∑

A ?A(1 −  A/<)
. (2.20)

The range of allowed values is ' ∈ ['<8= , 1], where in general '<8= ≠ −1 and
dependson thenetwork inquestion. (A similar behavior is seen for the conventional
coefficient of assortativitydefined in [58],which is essentially aPearson correlation.)

In order to estimate the value of', we needfirst to estimate the 
 parameters. As
discussed in the previous section, we could do this bymaximizing the likelihood of
Eq. (2.13), but thismaygivepoor estimates in cases, such as smaller networks,where
the amount of available data is limited. An alternative approach is to compute the
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expected value of ' in the posterior distribution of Eq. (2.15), thus:

' =

∫
'(
)%(
 |�, 6) 3
. (2.21)

We can also compute the standard deviation of ' in the posterior which makes it
easy to state estimates with error bars. More details on this calculation are given
in Appendix A.2.

The quantity ', however, only measures traditional assortativity. As we have
said, our main purpose is to examine variation of individual preferences about
group means. The variance of a Dirichlet distribution can be quantified by the
mean-squared distance from its average. In group A this is

�2
A = �A

[ (
x − �A[x]

)2
]
=

1 −∑
B(
AB/
AΣ)2

AΣ + 1 . (2.22)

As discussed in Section 2.2, the maximum value of the variance occurs when

AΣ → 0, which gives �2

A = 1 −∑
B(
AB/
AΣ)2. One can divide by this maximum to

give a normalized variance

+A =
�2
A

1 −∑
B(
AB/
AΣ)2

=
1


AΣ + 1 , (2.23)

which lies between zero and one and also has the nice property of being inde-
pendent of the mean. Finally, we define an overall normalized variance coefficient
by

+(
) =
∑
A

?A+A =
∑
A

?A


AΣ + 1 , (2.24)

which also lies between zero and one. + can be estimated in the same way as '
by averaging its value in the posterior distribution. See Appendix A.2 for further
details of this calculation.

The quantity + represents the normalized mean-square distance between the
preferences and their group means, averaged over all groups. When + is close
to zero every node in every group has preferences close to the group mean. If
preferences are homogeneous in this way then the network is well described by the
group average mixing parameters and individuals’ preferences are well described
by simply stating which group they belong to. Such a finding could be informative
for instance in a social network: it would tell us a lot about a population if we found
that their preferences were entirely determined by, say, gender or race.
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Network ' +

College football [75] 0.60 ± 0.015 0.01 ± 0.004
Karate club [113] 0.72 ± 0.063 0.07 ± 0.059
Political books 0.72 ± 0.028 0.12 ± 0.034
Political blogs [114] 0.80 ± 0.010 0.15 ± 0.012
High school race or ethnicity [115] 0.55 ± 0.012 0.16 ± 0.011
Provisional IRA affiliation [116] 0.62 ± 0.025 0.22 ± 0.026
Word adjacency [117] −0.27 ± 0.018 0.30 ± 0.024

Table 2.1: Estimates of normalized preference assortativity ' and preference vari-
ance + for a selection of networks with known group assignments. Results are
computed from the posterior distribution and stated as �- ± �- . Numbers in
brackets indicate references for each network, except for the network of political
books, which was compiled by Valdis Krebs and is currently unpublished.

At the other extreme, when+ approaches one, node preferences are as far away
from the groupmean as possible, and nodes, even within the same group, are very
unlike each other in their preferences. In this scenario mixing is poorly described
by average rates, since virtually no nodes behave according to the average for their
group.

2.4 Examples

Table 2.1 shows results for the preference assortativity and variance measures,
' and + , for a selection of previously studied networks with known group as-
signments, listed in order of increasing variance. As the table shows, all of the
networks are highly assortative by our measure, except for the word adjacency
network, which is disassortative.

The normalized variances + take a range of values from zero up to 0.3. Recall
that low normalized variance indicates a network in which themembers of a group
have similar preferences; high variance indicates that they have widely varying
preferences. Thus, for instance, the “karate club” network,which is a social network
of university students, appears to have no significant variance, meaning it shows
traditional community structure inwhich themembers of a community are roughly
alike in their preferences. The network of high school students, on the other hand,
which one might expect to be similar, shows higher variance. We discuss the high
school and word networks in more detail below.
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Asian Black

Hispanic White

Figure 2.2: Friendship preferences by race or ethnicity in a US high school. We
show separate results for Asian, Black, Hispanic, andWhite students. For each race
or ethnicity the histogram (in green) shows the observed distribution of :8 68/:8 , the
naive estimate of within-group preference. The red dashed line is the inferred
preference distribution from a point estimate of 
, found by maximizing Eq. (2.14).
The gray vertical line is where the average preference would be, in the absence of
assortativity.
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2.4.1 High school friendships and ethnicity

The network denoted “High school race or ethnicity” in Table 2.1 is a network
of self-reported friendships between students in a US high school, taken from
the National Longitudinal Study of Adolescent to Adult Health [115] (commonly
known as the “Add Health” study). The node labels in this case represent the
(self-identified) ethnicities of the students, which take values “Asian,” “Black,”
“Hispanic,” “White,” “other,” and“missing.” Inour analysiswediscard the “other”
and “missing” categories and focus on the remaining four. The particular school
we look at is chosen for its diverse racial and ethnic composition.

The value of' = 0.55±0.012 for this network indicates that the school is strongly
assortative by race, meaning that students hadmorewithin-group friendships than
would be expected by chance. However, the groups also display differences in the
inferred distributions of their preferences, which are plotted in Fig. 2.2. Hispanic
students, for instance, show a larger range of preferences than others. Note that
this doesn’t necessarily imply that Hispanic students individually have diverse
friendship groups—some of them do, but others show a strong preference for
having mainly Hispanic friends, or for having few.

Also shown in Fig. 2.2 are histograms of the naive preference estimates :8B/:8 ,
which look quite different from the inferred distributions. This discrepancy is
expected: as discussed in Section 2.1, the distribution of naive estimates is an
unreliable indicator of the true preference distribution.

2.4.2 Word adjacencies

The Brown corpus is a widely used data set consisting of samples of written English
text compiled by researchers at Brown University in the 1960s [117]. Words in the
data set are labeled with their part of speech—noun, adjective, verb, etc. Working
from the fiction text contained in the corpus, we create a directed word adjacency
network in which nodes represent words (limited to nouns, adjectives, and verbs)
and there is a directed edge from word 8 to word 9 if word 8 is followed by word 9
at any point in the text.

Figure 2.3 shows the inferred distributions of preferences within this network
for nouns, verbs, and adjectives to be followed by nouns. For example, since
adjectives normally come before nouns in English we would expect adjectives to
have a preference for being followed by nouns. And indeed this is what we see—
the red curve in the third panel of Fig. 2.3 shows that most adjectives have a high
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Figure 2.3: “Preferences” of different parts of speech to be followed by nouns. Each
word is followed by a noun some proportion of the time, and this proportion is
different for different words. For each type of word the histogram (in green) shows
the observed distribution of :8 ,noun/:8 , the naive estimate of noun preference. The
red dashed line is the inferred preference distribution from a point estimate of

, found by maximizing Eq. (2.14). The three plots represent the distributions for
nouns, verbs, and adjectives from the fiction portion of the Brown corpus of English
text [117].

preference for being followed by nouns. Nouns, on the other hand, aren’t usually
followed by other nouns, although they can be: the distribution (shown in the
first panel of the figure) takes its most likely value around a preference of zero,
but is spread across the whole range and there is still a relatively large density
around preference 1, which is to say that some nouns strongly prefer to be followed
by other nouns. Classic examples are titles such as “Mr.” and “Mrs.,” which are
almost always followed by proper nouns. Likewise, although most verbs prefer
to be followed by nouns, there are a handful that have a strong preference to be
followed by another verb. These are typically auxiliary verbs, such as “has” and
“was”, in sentences like “He was sleeping.”

2.5 Discussion

In this chapter we have considered the problem of characterizing mixing patterns
in networks. Average mixing patterns have a long history of study and can be
quantified using standard methods, but anything beyond the average requires
additional machinery for its description. We analyze within-group variation in
mixing using a model of individual preferences in networks, showing how to
fit the model to data using Bayesian methods. The parameters of the fit have
simple interpretations and we use them to define coefficients that quantify the
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average assortativity and variation of preferences. The method is computationally
efficient, with running time growing linearly in the size of the data set, which puts
applications to large networks within reach.

We have given applications of our methods to a range of social and informa-
tion networks. We find that some, though not all, of these networks do display
significant within-group variation in their mixing patterns, and that where such
variation is present the mixing is not well described by traditional community
structure. Even when there is little or no variation in preferences the analysis is
still informative, since it implies that preferences are well described solely bywhich
group a node belongs to.

A limitation of our approach is the assumption that the preferences are drawn
fromaDirichlet distribution,which rules outmultimodal distributions for example.
One natural avenue of extension for the approach would be to experiment with
other choices of distribution. Instead of a single Dirichlet distribution, for example,
one could use a mixture (i.e., a linear combination) of two or more. This would
allow us to model more complex behaviors, at the expense of a more complicated
fitting procedure. So far, we have also considered only the case in which the label
or group membership of every node is known. In the next chapter we generalize
our methods to deal with cases in which all or some of the data are unknown.
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CHAPTER 3

Inference and Individual Differences

In the previous chapter we considered how mixing patterns may vary at an indi-
vidual level. We assumed that nodes in a network had assigned categories (such
as gender or ethnicity) and we wanted to characterize how nodes with different
properties intermingled. Typically, one only has a small quantity of data for each
individual and so naive metrics of individual mixing are liable to significantly
over-fit data. To circumvent this issue we introduced a flexible model of mixing,
but of course, flexible models are also liable to over-fit sparse data. However, our
model was carefully constructed so that we could (analytically) integrate out most
parameters and efficiently perform Bayesian analyses.

A full statistical model brings further benefits. While we previously assumed
the nodes’ categories were known, this assumption is not necessary. Rather, we can
use the model to estimate the categories. In this chapter we explore this possibility
further.

We build on our model for individual mixing and derive a semi-Bayesian
method for recovering missing data and performing community detection. We
show that allowing for individualized differences in mixing can lead to a signifi-
cant performance increase over traditional methods that assume all nodes within
each group mix identically.

We then provide a theoretical justification for this improvement. Traditional
models of mixing undergo a detectability phase transition: unless mixing patterns
are sufficiently strong (sufficiently assortative or disassortative), community de-
tection is not possible [83, 118, 119]. We locate a similar phase transition in the
individual mixing model. However, in this case detection is only impossible if the
network lacks both assortativity and variation. Perhaps counter-intuitively, when
mixing rates randomly vary between people, we obtain a picture with more signal
and less noise.
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3.1 Missing data and community detection

The individual mixing model allows each node to mix at its own rate. Each node
has an associated group or label, from a discrete set of 2 options. We use 68 ∈
{1, 2, . . . , 2} to denote the group of node 8 and say that node 8 connects to group A
at rate G8A . To each node we assign parameters �8 and )8 to control the expected
out- and in- degree, and define ΦA to be the sum of all ) parameters for nodes in
group A,

ΦA =

∑
8∈A

)8 . (3.1)

Finally, we assume a Poisson model for network edges,

�8 9 ∼ Poisson
(
�8) 9G8 69
Φ69

)
. (3.2)

The probability for a network, given the parameters, is

%(�|G, 6, �, )) =
∏
8

©­«4−�8
∏
9

(
�8) 9G8 69
Φ69

)�8 9 1
�8 9!

ª®¬ . (3.3)

If, as before, we assume a Dirichlet prior for the G’s we can integrate this expression
and obtain

%(�|
, 6, �, )) =
(∏

8

4−�8�:8
8
)
:in
8

8

) (∏
8

�("68 + k8)
�("68 )

) (∏
A

Φ
− A
A

)
. (3.4)

As before, in this expression �(x) is the multivariate Beta function, k8 counts the
number of edges from node 8 to members of each group, i.e. :8A =

∑
9 �8 9�A,69 , and

 A counts the total edges to group A,  A =
∑
8 :8A . These expressions all assume the

groups are fixed and known, and exactly match the results of Ch. 2.
Now, however, instead of assuming the groups are fixed and knownparameters,

let’s assume the groups are part of the data, drawn from a categorical distribution,

68 ∼ Categorical (0) . (3.5)

From this we get

%(�, 6 |
, �, ),�) = %(�|
, 6, �, ))
∏
A

�=AA (3.6)
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where =A is the number of nodes in group A. If some or all of the group assignments
are unknown we can use the joint data likelihood of Eq. (3.6): To simultaneously
infer parameters and recover the missing data, we maximize this quantity while
summing over the values of the unknown data.

Let us denote by 6′ the set of known groups, which we will now assume to be
a subset of the set 6 of all group data. The remaining assignments are unknown.
The joint likelihood of the known data given the model parameters is

%(�, 6′|
, �, ),�) =
∑
6∉6′

%(�, 6 |
, �, ),�), (3.7)

where the sum is over all group labels 6 that are not in 6′, i.e. all unknown labels.
Our procedure to estimate the parameters will be to maximize Eq. (3.7),


̂, �̂, )̂, �̂ = arg max

,�,),�

%(�, 6′|
, �, ),�)

= arg max

,�,),�

∑
6∉6′

%(�, 6 |
, �, ),�) (3.8)

where %(�, 6 |
, �, ),�) is given by Eqs. (3.4) and (3.6). The terms in this maxi-
mization that involve � and ) do not depend on 6 and we find

�̂8 = :8 (3.9)

)̂8 = :
in
8 . (3.10)

To estimate the remaining parameters, 
 and �, we need to maximize


̂, �̂ = arg max

,�

∑
6∉6′

%(�, 6 |
, �̂, )̂,�). (3.11)

To do this directly, one needs to differentiate the sum, which leads to a com-
plicated implicit equation that is not easy to solve, even numerically. Instead,
therefore, we borrow a trick from the statistics toolbox and apply Jensen’s inequal-
ity, which states that for any distribution of a positive random variable - we have
ln(�[-]) ≥ �[ln-]. Applying this inequality to the log of Eq. (3.7) yields

ln
∑
6∉6′

%(�, 6 |
, �, ), ?) ≥
∑
6∉6′

@(6) ln
%(�, 6 |
, �, ), ?)

@(6) , (3.12)
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where @(6) is any probability distribution over 6 satisfying
∑
6∉6′ @(6) = 1. One

particularly useful choice of @(6) is

@(6) =
%(�, 6 |
, �, ), ?)∑
6∉6′ %(�, 6 |
, �, ), ?)

, (3.13)

which makes the left- and right-hand sides of (3.12) exactly equal, and hence
also maximizes the right-hand side of Eq. (3.12) with respect to @(6). A further
maximization with respect to the parameters 
 and � will then give us the answer
we seek. To put that another way, a double maximization of the right-hand side
with respect to both @(6) and the parameters is equivalent to maximization of the
left-hand side, which is the maximization we need to perform.

This leads us to an iterative algorithm for estimating the parameters, known
as an expectation–maximization (or EM) algorithm [79, 120, 121], in which we per-
form the double maximization by simply maximizing alternately over @(6) (using
Eq. (3.13)) and then over the parameters, repeating until the numbers converge. In
detail the algorithm is as follows:

1. Set�8 = :8 , )8 = :in8 andmakean initial guess 
(0),�(0) for theotherparameters
(for instance the uniform choice 
(0)AB = 1, �(0)A = 1/2). Set C = 1.

2. Set

@(6) =
%(�, 6 |
(C−1), �, ),�(C−1))∑
6∉6′ %(�, 6 |
(C−1), �, ),�(C−1))

.

3. Set

(C),�(C) = arg max


,�

∑
6∉6′

@(6) ln%(�, 6 |
(C−1), �, ),�(C−1)).

4. Increase C by 1.

5. Repeat steps 2 to 4 until convergence is achieved.

The most difficult step of the algorithm is step 3, since the sum over groups often
has too many terms to be evaluated exactly. Nevertheless, good approximations
can be made by Monte Carlo sampling using a standard Metropolis–Hastings
algorithm [120,122].
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3.1.1 Monte Carlo algorithm to sample from @(6)
The Metropolis–Hastings Monte Carlo algorithm for sampling from @(6) proceeds
as follows. Let * = {8 : 68 = unknown} be the set of nodes for which we do not
know 68 , and initialize 6 by choosing 68 ∼ Categorical(0) for each 8 ∈ * . Then
carry out the following steps:

1. Pick an 8 uniformly at random from* .

2. Propose a new group 6′
8
for 8, uniformly at random from the set of all groups.

3. Accept the move with probability @(6′)/@(6), otherwise reject it. If the move
is accepted 8 is moved to group 6′

8
; if it is rejected 8 remains in its current

group for this Monte Carlo step.

4. Repeat from step 1.

This process continues until a suitable number of independent samples have been
drawn from the distribution of group assignments. Like most Monte Carlo algo-
rithms, the “suitable” number of samples is not rigorously defined, but one samples
until fluctuations become sufficiently small [122, 123].

To update the estimates for 
 and �, we need to maximize the expected value of
ln%(�, 6 | 
, �, ),�). To do this, we compute the following three averages within
the Monte Carlo sample:

@8A =
〈
�68A

〉
, (3.14)

-A: =
〈∑

8

�68A�:8 :
〉
, (3.15)

.AB: =
〈∑

8

�68A�:8B :
〉
, (3.16)

where 8 is a node label, A and B are group labels, and : is a node out-degree, with
values running from 0 to the maximum out-degree for the network. Once we have
estimates for these quantities, our estimates for � and 
 are:

�̂A =
1
=

∑
8

@8A , (3.17)

"̂A = arg max
"A

!A("A), (3.18)
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where !A("A) represents the terms in the expected log-likelihood that depend on "A :

!A("A) =
2∑
B=1

:max∑
:=0

.AB: lnΓ(
AB + :) −
:max∑
:=0

-A: lnΓ(
A0 + :) −
=∑
8=1

@8A ln �("A). (3.19)

The full EMalgorithmconsists of initializing� and 
 to uniformvalues�A = 1/2,

AB = 1, then iteratively updating @8A , -A: , and .AB: by Monte-Carlo sampling then
fixing �̂A = 1

=

∑
8 @8A and "̂A by numerical optimization (e.g. Newton’s method),

using Eq. (3.19).
In principle, this iterative process should be repeated until ! no longer increases.

At this point, we should be at a (local) maximum and we will not be able to further
improve our estimates. In practice, noise from the Monte Carlo algorithm may
cause ! not to increase before we reach a maximum. To account for this, we do not
terminate the procedure after the first iteration in which ! fails to increase. Instead,
we proceed until ! fails to increase for 5 consecutive iterations.

Once the EM algorithm converges, not only does it provide estimates for the
parameters but also the values of the unknown group labels 6, since, fromEq. (3.13)

@(6) =
%(�, 6 |
, �, ), ?)
%(�, 6′|
, �, ), ?) = %(6 |�, 6

′, 
, �, ), ?). (3.20)

In other words, @(6) is precisely the posterior distribution over the unknown group
labels. The quantities @8A from the Monte Carlo samples provide the posterior
probability that node 8 is in group A.

Even in cases where all of the group assignments are unknown, the algorithm
will still return best estimates of their posterior distribution, effectively functioning
as a kind of community detection algorithm [77]. This scenario is the standard use
for the stochastic blockmodel [71]. Like the individual mixingmodel we have been
studying, the stochastic block model assumes all nodes in a network are in one of
2 distinct groups. Nodes connect to each other probabilistically—nodes in group A
connect to those in group B at a rate $AB . In the degree-corrected stochastic block
model [71] network edges are also Poisson,

�8 9 ∼ Poisson
(
�8) 9$68 69

)
. (3.21)

Comparing this with Eq. (3.2) makes it clear that the stochastic block model is
simply the special case of the individual mixing model in which all nodes within
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any given group have identical preferences. Thus, the stochastic block model is a
natural model to compare the individual mixing model against.

In contrast to Ch. 2, the algorithm above is not fully Bayesian. Our estimates of
the mixing parameters, 
, are maximum likelihood estimates. However, we have
still integrated out the individual mixing rates and so we only need to estimate a
small number of parameters. Thus we have still avoided the major pitfall of a naive
individualized mixing model, which could easily end up with more parameters
than data. If there are 2 groups, we only estimate 2 × 2 parameters. Even on sparse
networks, so long as the number of nodes = � 2, this should be doable.

3.1.2 Performance

To test the EM algorithm described above, we performed cross-validation experi-
ments on four real-world and two synthetic network data sets. The data sets we
chose contained additional (non-network) data about the properties of nodes, such
as their gender or ethnicity. The networks all displayed conventional (dis-)assort-
ative mixing for the properties we considered but they also displayed individual
differences in this behavior. In terms of the coefficients developed in Ch. 2, this
means assortativity ' ≠ 0 and variation + > 0, where

' =

∑
A =A(
AA/
AΣ −  A/<)∑

A =A(1 −  A/<)
(3.22)

and
+ =

∑
A

=A/=

AΣ + 1 . (3.23)

For the cross-validation experiments we randomly removed group labels for
1/8th of the nodes. Then, we attempted to recover these groups using either the
stochastic blockmodel or the individualmixingmodel. The twoalgorithmsprovide
(different) posterior probabilities for each node to be in each group. We measured
the performance of the two models by computing the posterior probability for
nodes to be in their correct group. In other words, we measure performance by

�(@) =
∑
8∈*

@8 ,68 . (3.24)

If �(@) is close to 1 then the model is very good. Conversely, if �(@) is close to
1/2 (where 2 is the number of groups) then we are doing no better than random
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Network grouping n ' + SBM IM
Lawyers [125] status 71 -0.13 0.08 0.57 0.73
Word adjacency [117] part of speech 1089 -0.24 0.35 0.60 0.73
High school [115] ethnicity 1603 0.55 0.16 0.71 0.72
Facebook [126] gender 27785 0.10 0.06 0.64 0.72
Synthetic 1 — 4000 0.20 0.23 0.67 0.86
Synthetic 2 — 4000 0.20 0.01 0.67 0.67

Table 3.1: Missing data recovery for six example networks. For each networkwe list
the number of nodes =, the assortativity ', the mixing variance + , and stochastic
block model (SBM) and individual mixing (IM) recovery performance. For each of
the four real-world networks and two synthetic networks, we randomly removed
1/8th of the data then attempted to recover it. Recovery performance is measured
using the mean posterior probability for a node to be in its correct group, i.e.∑
8 @8 68 . Across all examples, the individual mixing model performs equally to or

better than the conventional block model.

guessing. Each cross-validation experiment was run 100 times for each network,
and results were averaged over these runs.

The results of the cross-validation experiments are presented in Table 3.1. We
find that the individual mixing model consistently performs as well as or better
than the stochastic block model. This demonstrates that the individual mixing
model is a promising candidate for real-world inference problems.1

The key result of our cross-validation experiments is that the individual mixing
model appears to systematically outperform the stochastic blockmodel. In the next
section we present a theoretical analysis of why this is the case.

3.2 Theoretical analysis

In the previous section we showed that allowing for individualized mixing rates
can improve data recovery. This is not totally surprising. The individual mixing
model is substantially more flexible than a conventional block model. By integrat-
ing out the individual mixing rates we achieve this flexibility without increasing
the number of parameters. A more flexible model with the same number of pa-

1This task is different to traditional data imputation tasks [124]. Traditional techniques for
imputation exploit correlations between different attributes. For example, we might use someone’s
age andprofession to predict their salary. In contrast, we have not usedpeople’s knownproperties to
predict their unknown ones. Instead, we have used the network to recover the unknown properties.
If accuracy was of primary importance, a more sophisticated procedure could make use of both
network structure and correlations between attributes. However, we do not explore that possibility
here.
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rameters seems like an obvious improvement. Still, the model introduces another
source of random noise—individual preferences are now assumed to be randomly
distributed. It is not immediately obvious why more randomness helps data recov-
ery.

Intuitively, the variation helps because it strengthens correlations between sec-
ond neighbors (people who share a mutual friend). If there is little to no assortativ-
ity on average, and there is no variation, then each and every individual will have
roughly uniform preferences. However, even if there is no assortativity on average,
variation implies that many individual nodes do display (dis-)assortative mixing.
If a node has strong preferences then all of its neighbors are likely to be similar,
and we can use this fact to make classifications (see [106] for a discussion of this
phenomenon).

In this section we make this intuition more rigorous. Specifically, we analyze
the community detection task and consider under what circumstances we can
reliably recover communities. The stochastic blockmodel undergoes a detectability
phase transition [83,118,119]. Unless the networks are sufficiently (dis-)assortative,
recovering the underlying groups from the network alone is impossible. For weak
to moderately assortative networks, it is impossible to even beat random guessing.

Since the stochastic block model is a special case of the individual mixing
model—the case in which all preferences within each group are identical—the
individual mixingmodel must undergo the same phase transition when there is no
variation in mixing, when + = 0. When + > 0, as it usually will be, the behavior
is less obvious. We will see that when the variance is larger than the reciprocal
of degree, + > 1/�, detection is always possible—there is only one phase. For
intermediate values we precisely locate the phase transition using stability analysis
of the belief propagation equations.

To simplify the analysis we will only consider the two-block2 fully symmetric
case. We set

�8 = )8 = � (3.25)

�0 = �1 = 1/2 (3.26)

" =

(

 �

� 


)
(3.27)

andwewill assume that we know the true values of the parameters. Aswewill see,

2We will label the two groups as group 0 and group 1 (rather than 1 and 2). This will lead to
some simplifications to the later equations.

43



recovering the groups is often not possible evenwhenwe know the parameters, and
so it is surely impossible when we don’t. This is the definition of the undetectable
phase. We locate the transition byderiving a belief propagation algorithm to recover 6
and then perform a stability analysis to precisely locate the phase transition.

3.2.1 Derivation of the belief propagation

Assuming all other parameters are known, and consequently dropping them from
the notation, the posterior distribution for 6 is

%(6 |�) ∝
∏

8 �("68 + k8)/�("68 )
Φ
 0
0 Φ

 1
1

. (3.28)

(This is simply Eq. (3.6) with the parameters from Eqs. (3.25), (3.26), and (3.27)
inserted.)

Our goal is to compute the posterior distribution for each node,

%(68 = A |�) =
∑
6

%(6 |�)�68 ,A . (3.29)

Unfortunately, evaluating this sum directly is practically impossible. However,
sinceEq. (3.28) is a product of “factors”, we canuse belief propagation [120,127,128].
Although the equations (derived below) are somewhat involved, we can interpret
the procedure as each node repeatedly asking their neighbors “based on what you
currently know, what do you think the probability is that I’m in group -?” Once
this iterated procedure converges we are left with a consistent set of probabilities
that correspond to marginal distributions.

To derive the belief propagation, we associate each node 8 with a factor

58(6) =
�("68 + k8)
�("68 )

(3.30)

and one final factor is defined for the terms involving Φ,

�(6) = Φ− 0
0 Φ

− 1
1 (3.31)

where bothΦA = )
∑
8 �68 ,A and  A =

∑
8 �68 ,A :

in
8
have implicit dependence on 6. We
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call these terms factors since Eq. (3.28) is proportional to a product of these terms

%(6 |�) = 1
/
�(6)

∏
8

58(6) (3.32)

where / is a constant that ensures
∑
6 %(6 |�) = 1.

Each factor 58 is a function that only depends on a small subset of the groups.
Specifically, 58 is a function of the group of node 8 and the groups of all nodes
that 8 connects to. One refers to the functions 58 as factors, since they are factors
of the relevant distribution, and the 68 as variables since they are variables of the
factors. Belief propagation computesmarginal distributions by “passingmessages”
between factors and variables (see [127]).

To derive the belief propagation, we need two sets of messages, one from the
factors to variables and another from variables to factors. The message equations
simply follow a standard formula [127, 128]. In full, the messages from factors to
variables are

�8→9(69) ∝
∑
6(\9)

58(6)�8→8(68)
∏
:∈#8\9

�8→:(6:) (3.33)

�8→8(68) ∝
∑
6(\8)

58(6)
∏
:∈#8

�8→:(6:) (3.34)

��→9(69) ∝
∑
6(\9)

�(6)
∏
8≠9

��→8(68) (3.35)

where #8 is the set of nodes that node 8 connects to

#8 = { 9 : �8 9 = 1} (3.36)

and
∑
6(\8) is the sum over all groups other than node 8’s,

∑
6(\8)

=

1∑
61=0
· · ·

1∑
68−1=0

1∑
68+1=0
· · ·

1∑
6==0

. (3.37)
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The messages for variables to factors are

�8→9(69) ∝ ��→9(69)�9→9(69)
∏
:∈" 9\8

�:→9(69) (3.38)

�8→8(68) ∝ ��→8(68)
∏
:∈"8

�:→8(68) (3.39)

��→9(69) ∝ �9→9(69)
∏
:∈"9

�:→9(69) (3.40)

where "8 is the set of nodes that connect to 8,

"8 = { 9 : � 98 = 1}. (3.41)

Finally, the one-node marginal distributions are

�9(69) ∝ ��→9(69)�9→9(69)
∏
:∈" 9

�:→9(69). (3.42)

So long as the network is locally tree-like, i.e. so long as it does not contain many
short cycles, these equations will be correct [127].

The factors 58 represent the strong couplingbetweenneighboringnodes. Where-
as, the factor � represents the weak coupling between all pairs of nodes. This fully
connected weak coupling is an ideal candidate for mean-field approximation [127],
and we do exactly that. In a mean-field approximation one replaces quantities by
their expected values. The relevant equation is Eq. (3.35),

��→9(69) ∝
∑
6(\9)

�(6)
∏
8≠9

��→8(68)

≈ 〈Φ0〉
−〈 0〉69
69 〈Φ1〉

−〈 1〉69
69 (3.43)

where we have introduced the notation 〈G〉69 for expectation in the distribution∏
8≠9 �8(68). Hence,

〈ΦA〉69 = �69 ,A) +
∑
8≠9

�8(A)) (3.44)

〈 A〉69 = �69 ,A :
in
9 +

∑
8≠9

�8(A):in8 . (3.45)

Using the mean-field approximation we can combine the belief propagation equa-
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tions into two sets of equations,

�8→9(69) ∝
∑
6(\9)

(
58(6)

∏
:∈#8\9

�8→:(6:)
) ( ∏

:∈"8

�:→8(68)
)
�8(68) (3.46)

�8→9(69) ∝
∑
6(\9)

(
59(6)

∏
:∈#9

�9→:(6:)
) ( ∏

:∈"9\8
�:→9(69)

)
�9(69), (3.47)

and the equations are only defined along edges of the network, 8 → 9. Themarginal
distribution for a single node is

�9(69) ∝
∑
6(\9)

(
59(6)

∏
:∈#9

�9→:(6:)
) ( ∏

:∈"9

�:→9(69)
)
�9(69). (3.48)

For each equation, most of the sums in
∑
6(\9) =

∑1
61=0· · ·

∑1
69−1=0

∑1
69+1=0· · ·

∑1
6==0

are trivial. For example, in Eq. (3.46) the only values of 6: that appear in the
summand are for nodes : that are successors of node 8. If node 8 has out-degree
:8 then in principle there are 2:8 terms to sum over. A trick using discrete Fourier
transforms can compute this sum extremely efficiently.

3.2.2 Fourier transform and convolutions

In Eqs. (3.46) and (3.47)we average 58 and 59 respectively over all group assignments
for the nodes in the neighborhood of 8 and 9. The factor 58(6) only depends on 68 ,
and the number of successor nodes of 8 that are in group 1. If 68 = 0 then 58 is

58(6 |68 = 0) =
�(
 + :8 − :8 ,1, � + :8 ,1)

�(
, �) (3.49)

for 68 = 1 one simply makes the replacement 
↔ �.
We can thuswrite 58 as a function of 68 and an integer 3, the number of successor

nodes of 8 in group 1,

58(3, 68) = �68 ,0
�(
 + :8 − 3, � + 3)

�(
, �) + �68 ,1
�(� + :8 − 3, 
 + 3)

�(
, �) . (3.50)
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Re-writing Eq. (3.46) leads to

�8→9(69) ∝
1∑

68=0

[( :8−1∑
3=0

58(3 + �1,69 , 68)
1∑

6;1=0
· · ·

1∑
6;:8

=0
�
(∑

;∈#8\9 6; , 3
) ∏
;∈#8\9

�8→;(6;)
)

×
( ∏
:∈"8

�:→8(68)
)
�8(68)

]
=

1∑
68=0

( :8−1∑
3=0

58(3 + �1,69 , 68)%�8→9 (3)
) ( ∏

:∈"8

�:→8(68)
)
�8(68) (3.51)

where %�8→9 (3) is the convolution

%�8→9 (3) =
1∑

6;1=0
· · ·

1∑
6;:8

=0
�
(∑

;∈#8\9 6; , 3
) ∏
;∈#8\9

�8→;(6;), (3.52)

and from the convolution theorem

%�8→9 (3) = ℱ −1
[ ∏
;∈#8\9

ℱ
[
�8→;

] ]
(3.53)

where ℱ is the discrete Fourier transform [129]. This can be computed efficiently
using fast Fourier transform algorithms [130].

An exactly analogous argument leads to

�8→9(69) ∝
©­«
: 9∑
3=0

59(3, 69)%�8→9 (3)
ª®¬ ©­«

∏
:∈"9\8

�:→9(69)
ª®¬ �9(69) (3.54)

with
%�8→9 (3) = ℱ −1

[ ∏
;∈#9

ℱ
[
�9→;

] ]
. (3.55)

3.2.3 Verification of the belief propagation

To verify the correctness of this belief propagation we ran tests on synthetic net-
works. We found excellent agreement between the estimates from belief propaga-
tion and those using the Monte Carlo algorithm of Sec. 3.1. An example is shown
in Fig. 3.1, which shows a scatter plot of the one-node marginal probabilities esti-
mated using the two algorithms. On these synthetic networks with two groups the
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Figure 3.1: Test of the belief propagation algorithm of Sec. 3.2.1. A synthetic
network was created with = = 4, 000, 
 = � = 1, and � = ) = 5. We show estimates
of the one-node marginal posterior probability of being in group 1. Estimates from
the belief propagation algorithmare plotted against estimates from theMonteCarlo
algorithm. Disagreement is small and the '2 is almost 1.

belief propagation is considerably faster than the Monte Carlo algorithm. How-
ever, the belief propagation has a potentially fatal short-coming that leads us not
to recommend its use for real-world data: the equations assume a locally tree-like
network [127].3 While this assumption is true for networks that are generated from
the model it is frequently violated in the real-world, where networks often have
large number of short cycles such as triangles [1]. In contrast, the Monte Carlo
algorithm is guaranteed to sample correctly from the posterior distribution (once
it equilibrates).

Our reason for deriving this belief propagation, however, was not to develop a
new efficient algorithm. Rather, these equations lead to theoretical insight of the
model—we can now perform stability analysis to locate the phase transition.

3.2.4 Symmetry breaking phase transition

In the fully symmetric case that we have been considering, the true marginals are
(trivially) symmetric. For each group assignment 6 there is an opposite assignment

3In Ch. 5 we will examine this short-coming of message passing algorithms in depth.
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¬6,

¬68 =


0 if 68 = 1

1 if 68 = 0
(3.56)

and %(6 |�) = %(¬6 |�). This codifies the fact that the group labels themselves
(i.e. “group 0” or “group 1”) are arbitrary names. A simple consequence of this
symmetry is that the true one-node marginal distribution for each node is simply

%(68 = 0|�) = %(68 = 1|�) = 1
2 . (3.57)

This, however, is not the answer that we want. It is a trivial answer, true for all
networks, and says nothing about any given network’s structure.

One method to deal with this symmetry, and thus to arrive at an interesting
answer, is to arbitrarily fix the label of one node. If we insist that 61 = 1, i.e.
that “group 1” will always refer to the group containing node 1, the symmetry is
broken and we might find interesting structure. Usually, however, this purposeful
breaking of the symmetry isn’t necessary. Rather, it will occur quite naturally.

For example, in a Metropolis-Hastings style algorithm that samples group as-
signments 6 from%(6 |�), these sampleswill be clustered in somebasin of attraction
around some assignment we can call 6′. An exactly equivalent basin also exists
around the opposite assignment, ¬6′, but moving between these two basins will
take an extremely long time. In other words, the Monte Carlo algorithm will
automatically break the symmetry.4

Spontaneous symmetry breaking also manifests in the belief propagation. By
the same symmetry arguments as before, the belief propagation equations have a
trivial fixed point at

�8→9(0) = �8→9(1) = 1/2 (3.58)

�8→9(0) = �8→9(1) = 1/2. (3.59)

However, this fixed point may or may not be stable to small perturbations. If
it is unstable then the belief propagation will automatically break the symmetry
between groups 0 and 1 and the equations will converge to a non-trivial fixed point
(assuming they converge at all).

So, to precisely locate the phase transition we should find the point at which the

4This is analogous to spontaneous symmetry breaking in the Ising model [123,131].
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trivial fixed point of the belief propagation switches from being stable to unstable.
To this end, let’s assume small perturbations to the fixed point, viz.

�8→9(69 = 1) = 1
2 + &8→9 (3.60)

�8→9(69 = 1) = 1
2 + �8→9 . (3.61)

How will these perturbations change after one iteration? Assuming that & and �

quantities are arbitrarily small the updated equations will read

�8→9(69) =
∑
6(\9)

(1
2 +

∑
:∈"8

&:→8(68) +
∑
:∈#8\9

�8→:(6:)
)
58(6), (3.62)

�8→9(69) =
∑
6(\9)

(1
2 +

∑
:∈" 9\8

&:→9(69) +
∑
:∈#9

� 9→:(6:)
)
59(6). (3.63)

After some algebra, Eqs. (3.62) and (3.63) lead to

&8→9 =

(

 − �

 + �

) ∑
:∈"8

&:→8 +
(

(
 + 1) + �(� + 1) − 2
�
(
 + �)(
 + � + 1)

) ∑
:∈#8\9

�8→: (3.64)

�8→9 =

∑
:∈" 9\8

&:→9 +
(

 − �

 + �

) ∑
:∈#9

� 9→: . (3.65)

The quantities involving 
 and � are closely related to assortativity and variation
of mixing coefficients, ' and + ,


 − �

 + � = ' (3.66)


(
 + 1) + �(� + 1) − 2
�
(
 + �)(
 + � + 1) = '2(1 −+) ++. (3.67)

These equations tell us how small perturbations affect the messages after one
iteration. To analyze the stability of the whole system of equations, we should
consider how these perturbations propagate through multiple iterations.

To this end, consider the ; neighborhood around a randomly chosen node, that
is, the subgraph induced by all nodes a distance ; or less from our random node.
Such neighborhoods will be loop free up to ; ∼ $(log =), and so in the limit of
large network size we will have a tree. We will imagine perturbing the incoming
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messages on the leaves of this tree, and calculate the effect on the root.
The root node will, on average, have � out-edges and � in-edges. Each one of

these edges will lead to, on average, a further � out-edges and � in-edges. Ignoring
the directions for now, we have a Poisson branching process [132] with an average
of 2� offspring for each node. On average there will be (2�); nodes in the ;th
generation.

We will displace the messages on the leaves by a small, random, mean-zero
displacement, (

Δ�8
Δ�8

)
=

(
&8
�8

)
. (3.68)

How these perturbations propagate to the root node will depend on the direction
of the edges. Each edge in the tree will point up with probability 1/2 or down
with probability 1/2. Any specific order of directions from a leaf to the root
(e.g. ↑, ↑, ↓, . . . , ↑) will occur with probability 1/2; . The perturbation will grow (or
shrink) dependent on this order, and the transitions are

↑, ↑ :

(
&

�

)
→

(
'&

0

)
(3.69)

↑, ↓ :

(
&

�

)
→

(
0
&

)
(3.70)

↓, ↑ :

(
&

�

)
→

(
('2(1 −+) ++)�

0

)
(3.71)

↓, ↓ :

(
&

�

)
→

(
0
'�

)
. (3.72)

An example illustrating these rules is shown in Fig. 3.2.
The transitions can be summarized with the transition matrix

Z1 =

(
' '2(1 −+) ++
1 '

)
. (3.73)

The average aggregate effect on the root due the the leaves’ perturbations is

〈&root〉 =
〈∑

8

1
2 ;

Z ;1

(
&8
�8

)〉
= �; 〈Z ;1 &8〉 =

(
0
0

)
(3.74)
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Figure 3.2: Propagation of a small message perturbation. An example neighbor-
hood shown to ; = 3. In (a) we draw the neighborhood of a node up to distance 3.
Arrows mark the directions of edges in the directed network. In (b) we consider
a small perturbation to one of the leaf messages. We show how a small

(&
�

)
per-

turbation will propagate towards the root, in accordance with the transition rules
of Eqs. (3.69–3.72). Once it reaches the root the pertubation is

( 0
'&

)
. Note, for this

example the edges are in the order ↑, ↓, ↓. A similar thought experiment is used to
locate the phase transition. To do this, we imagine perturbing all of the leaves and
compute the aggregate effect on the root node.
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where the sum is over all (2�); leaves, indexed by 8. In expectation the effect on
the root is zero because 〈&8〉 = 〈�8〉 = 0. However, the variance of the perturbations
need not vanish.

To compute the variance, 〈&2
root〉, we again sum over all contributions from each

leaf, and all possible configurations for the edge directions. This time, however, we
pick up two factors of each coefficient on each transition (two because we square
the result), and the transition matrix is

Z2 =

(
'2 (

'2(1 −+) ++
)2

1 '2

)
. (3.75)

The final aggregate effect on the root, summed over all leaves is

〈&2
root〉 = �;

〈
&)8 Z

;
2 &8

〉
≈ �;�; 〈&2

8 + �2
8 〉 (3.76)

where � is the largest eigenvalue of Z2

� = 2'2 ++(1 − '2). (3.77)

Thus, perturbations grow in magnitude if

2'2 ++(1 − '2) > 1/�. (3.78)

In Fig. 3.3 we verify that Eq. (3.78) correctly locates the phase transition. Note,
the stochastic block model is the special case in which all nodes have identical
preferences and so+ = 0. In this case Eq. (3.78) becomes '2 > 1/(2�), in agreement
with standard results [83].

What is the implication of Eq. (3.78)? The key point is that individual differ-
ences—non-zero +—have the effect of shifting the detectability transition down.
In the stochastic block model one requires sufficiently large ', sufficiently strong
(dis-)assortative mixing, in order for recovery to be possible. Once we allow for
individual differences the required strength of assortative patterns decreases. In
fact even when ' = 0, when the network is completely non-assortative at the
population level, recovery is still possible so long as + > 1/�, which is not a
particularly stringent requirement.

Formany cases of interest neither ' or+ will be zero [98] and the non-zero value
of + makes detection easier than it would otherwise be. This comports with the
observations in Table 3.1 that recovery in the individual mixing model is superior
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to conventional block models.

3.3 Discussion

In this chapter we have derived algorithms for missing data recovery and com-
munity detection in the presence of individualized mixing rates. When networks
are only partly labeled, or completely unlabeled, the individual mixing model can
be used to recover unknown node characteristics and we present an expectation–
maximization algorithm for doing so. We have demonstrated the effectiveness of
our methods with applications to a selection of networks, including real-world ex-
amples and synthetically generated benchmarks. We have shown that ourmethods
workwell evenwhen averagemixing patterns areweak, so long as there is variation
between individuals.

We derived a belief propagation and used stability analysis to locate a phase
transition in community detection. In contrast to results from the stochastic block
model, we find that community detection is possible at zero assortativity, so long as
there is sufficient variation. Since the assumption that all members of a group have
exactly identical preferences is dubious in the real-world, the stochastic blockmodel
gives an overly pessimistic view of detectability. Instead, we can actually harness
individual differences to help classification—allowing for more randomness in
individual preferences actually increases the overall signal. Intuitively, the reason
for this is that edges are often strongly correlated and knowledge of one edge
can provide significant clues about the others. In other words, it is possible to
recover more information than conventional independence assumptions allow—
such assumption are not benign technicalities.
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Figure 3.3: Performance in the group label recovery task with synthetic data. In (a)
we show the result of simulations for different values of assortativity ' and vari-
ance + . Color (brightness) at each point in the '+-plane corresponds to average
recoverability. Bright regions indicate high performance, dark regions poor perfor-
mance. Performance is measured using 1

=

∑
8 �8(68), the mean posterior probability

for nodes to be in their true group. The white hyperbola-like shape indicates the
theoretical location of the phase transition, given by Eq. (3.78). Inside the shape
recovery is not possible, outside it is often straightforward. In (b) we plot recovery
performance and convergence time (number of iterations until convergence) for
different values of ', at + = 0.001. In this regime (as + → 0) the model is equiv-
alent to the conventional stochastic block model. At the phase transition (dashed
vertical line), the convergence time of the belief propagation diverges. In (c) we
again plot recovery performance and convergence time, this time with ' = 0 and
varying + . In this regime there is no aggregate community structure whatsoever
yet we can still recover the groups so long as +� > 1. Sample networks contain
2000 nodes and we set the degree parameters � = ) = 5. In all cases the theoretical
predictions match the simulated results excellently.
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CHAPTER 4

Edge Correlation and Thresholding

This chapter is adapted from the published results of G. T. Cantwell, Y.
Liu, B. F. Maier, A. C. Schwarze, C. A. Serván, J. Snyder, and G. St-Onge,
Thresholding normally distributed data creates complex networks. Phys-
ical Review E 101(6), 062302 (2020) [99]. All authors made contributions to
this project. G.T.C. and B.F.M. wrote the published manuscript.

Real-world networks tend to be complex—structured, but lacking any obvious re-
peating pattern. Common features of such complex networks are: heavy-tailed
degree distributions, large numbers of triangles, large connected components, and
short paths between nodes. These properties are observed in disparate networks,
such as friendship networks, metabolic networks, and the World Wide Web [1].
Despite commonalities, it is clear that the details of these systems differ consid-
erably. Quite naturally one may wonder: Why do different processes lead to the
same network properties? Researchers have speculated that theremay be universal
network mechanisms or some form of universality at play.1

In this chapter we will explore the effect of edge correlations on network struc-
ture. Our key finding is that some of the “universal” properties of complex net-
works arise when edges are correlated. However, to explore the effect of correla-
tion, by and of itself, we need an appropriate mathematical laboratory. The correct
framework for studying edge correlations in networks is not immediately obvious.

Simple random graph models, such as Erdős and Rényi’s [64,65], assume edges
are independent (i.e. uncorrelated), and so are clearly inappropriate for studying

1In this context, universality is presumably supposed to invoke the concept from statistical
physics. Near a critical point, the exact details of a system are often irrelevant to its behavior.
Instead, the behavior depends only on the (i) symmetry; (ii) dimensionality; (iii) nature of critical
point [131]. In network science, however, the use of this term generally seems vague [133].
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the effect of correlation. More complex models, however, generally introduce fur-
ther structure and assumptions. As a result, most existing models—even those
that imply edge correlations—are inappropriate for studying correlations. For
example: attachment or copying models assert specific mechanisms [40, 72, 134];
configuration models assert degree heterogeneity by fiat [39], and thus can’t ex-
plain it; stochastic block models assume community structure [69];2 Watts-Strogatz
networks assume an underlying regular lattice [41], and so forth.

The two-star model [92, 95] is a seemingly promising option. Derived from
the principle of maximum entropy [135], the two-star model rigorously introduces
precisely one effect—the effect of edge correlations—into otherwisemaximally ran-
dom graphs. To derive the model, one assumes there may be non-zero correlations
between edges that “touch”. That is to say, the existence of edge (8 , 9) might be
correlated with the existence of edge (9 , :), since the edges touch at node 9. The
probability of any particular adjacency matrix, %(�), is determined by maximizing
the entropy of this distribution, subject to density and correlations constraints. The
result of such a procedure is

%(�) = 1
/

exp
(
�
∑
8≠9

�8 9 + �
∑
8≠9≠:

�8 9� 9:

)
(4.1)

where / is a constant that ensures
∑
� %(�) = 1. The parameter � controls the

network density by encouraging (or discouraging) edges. Whereas, the parameter
� controls the strength of correlations between edges that touch.

While the two-star model of Eq. (4.1) appears to be theoretically well justified,
further analysis demonstrates that it too is inappropriate for studying correlation.
The problem is that if one attempts to introduce even moderate correlations, one
ends up with a “degenerate” distribution: almost all the the probability mass in
%(�) is clustered around either the complete graph or the empty graph. In other
words, our attempt to introduce moderate correlations leads to a run-away process
that says either all the edges must be present, or none of them [95]. Attempts have
beenmade to fix this by introducing further constraints (involving larger structures,
e.g. in Ref. [136]) but these are ultimately ad hoc and introduce further parameters.

In contrast to previous studies, we will take a step back and consider how
network data sets are created. Instead of modeling the underlying structure as

2Arguably the stochastic block model doesn’t even correlate edges. Community assignments
are fixed before the network is generated, and conditional on community assignment all edges are
independent. The model essentially corresponds to multiple Erdős-Rényi style random graphs.

58



a discrete simple graph, we consider continuous relational data—all nodes may
interact but with differing strengths. A network is created from this continuous
data by thresholding (or dichotomizing)—strong interactions correspond to edges,
weak interactions to non-edges. Our basic model for the underlying continuous
data will be very simple: data is assumed to be normally distributed. Despite this
simplicity, after thresholding we find the data indeed display properties associated
with complex networks.

Our decision to study thresholded real-valued data is not without justification.
In many real-world settings, interactions are indeed indicated by real-valued data
and so creating a simple network often requires a process of thresholding, which
may take several forms [137–146]. The most obvious case is when a continuous
valued data set is explicitly thresholded by deciding what level of interaction is
sufficiently strong to count as an edge in the network.

Amore subtle case of thresholding is when it occurs due to experimental limita-
tion: interactions that exist but are veryweak or raremay not be observed. Even for
binary valued data sets, the sampling method may hide an implicit thresholding
mechanism. For example, one commonly uses a combination of a yeast two-hybrid
screen and biochemical assays to detect and verify edges in protein-protein in-
teraction networks. These methods typically do not detect weak protein-protein
interactions [147] and are thus equivalent to applying a threshold on the edge
strength in protein-protein interaction networks. Likewise, most everyday interac-
tions between people are presumably not strong enough to constitute friendship.
At what point does an acquaintance cross over to the category of friend? When
people list their friends, in a survey for instance, they will implicitly apply some
criteria to filter the friends from the acquaintances.

Our basic model for relational data will be derived from three assumptions:

1. nodes are statistically identical;

2. correlations are local;

3. underlying relational data are normally distributed.

All three of these assumptions—which are no doubt violated in the real-world—
are quite natural for a null model. Assumption 1, that all nodes are identical,
severely constrains what correlation structures are admissible. In fact, only two
free parameters remain in the covariance matrix once this assumption is made:
a local correlation strength between edges that touch, and a global correlation
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strength between edges that do not. Assumption 2 sets the second of these to
zero—edges that do not touch are uncorrelated. Our remaining freedom is to pick
a distribution that is consistent with the required correlation matrix. The most
obvious and simple choice is assumption 3, the multivariate normal (Gaussian)
distribution.

The thresholding procedure will also be very simple: any of the relational data
that falls above some threshold, C, will be said to constitute an edge in the network,
and any that falls belowwill not. The threshold value C is a parameter of themodel.

Our network ensemble on = nodes is thus defined by two parameters: the
threshold, C, and a local correlation coefficient, �. Despite the simplicity of the
model—the underlying relational data are normally distributed—we nonetheless
find a number of the behaviors typically observed in complex networks, such as
heavy-tailed degree distributions, short average path lengths, and large numbers
of triangles. These properties are thus a natural consequence of correlated rela-
tional data. The networks do not, however, possess non-vanishing clustering or
community structure in the large = limit and so cannot account for this observation
in real-world data sets.

This chapter has two main parts. In Sec. 4.1 we define and justify the network
model and in Sec. 4.2 we study the properties of the ensemble. We look at the
density of edges, triangles and clustering, the degree distributions, shortest path
lengths, and the giant component.

4.1 Model specification

4.1.1 Thresholding locally correlated data

A network can be represented by its adjacency matrix, G, where �8 9 = 1 if node
8 and 9 are connected and �8 9 = 0 otherwise. We consider networks created by
thresholding underlying relational data, ^ , adding an edge between 8 and 9 if

-8 9 ≥ C (4.2)

(see Fig. 4.1a). To fully specify the model we need to pick a distribution for ^ .
Assuming that all nodes are statistically identical—exchangeable in the parlance of
statistics—constrains our choice of distribution.

If nodes are identical then the marginal distribution for -8 9 must be the same
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Figure 4.1: Thresholding relational data to obtain networks. Panel (a) shows a
general procedure to obtain unweighted networks from edge weights. Each edge
weight is hypothesized to have been drawn from a specific distribution, generating
an undirected weighted network. An unweighted network is then produced by
assigning an edge whenever an edge weight -8 9 is greater than a threshold C. In
panel (b) we show how edge weights are correlated in the model of Sec. 4.1 by
covariance matrix � (Eq. (4.5)). Edge weights for edges which connect through
a node have covariance Cov[-8 9-8:] = �, while edge weights not connected by a
node have zero covariance.
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for all (distinct) pairs 8 and 9. Further, by a linear transform we can always set
�[-8 9] = 0 and Var[-8 9] = 1. So long as the appropriate transformation is made
to C, this shift will have no effect on the thresholded network. For this reason we
will always assume -8 9 has mean 0 and variance 1. Exchangeability puts further
constraints on the covariance matrix, whose entries can take only three values. For
8 , 9 , :, ; all distinct, these are

Var[-8 9] = Σ(8 , 9),(8 , 9) = 1,

Cov[-8 9 , -8:] = Σ(8 , 9),(8 ,:) = �,

Cov[-8 9 , -:;] = Σ(8 , 9),(:,;) = �, (4.3)

where Cov[-,.] denotes covariance. We will assume that � = 0 since this quanti-
fies the correlation between two edges that do not share a node, i.e. two edges that
do not touch (see Fig. 4.1b). This leaves us with two free parameters, C and �. The
remaining task is to pick a distribution with the required covariance matrix, �.

In principle anydistribution could be used, but the obvious choice is amultivari-
ate normal distribution. In standard notation a multivariate normal distribution
(MVN) is denoted N(-,�). The probability density function of an #-dimensional
MVN is

% (x) = 4−
1
2 (x−-))�−1(x−-)√
(2�)#det(�)

. (4.4)

The normal distribution has many points in its favor. Famously it arises in the
central limit theorem, which makes it a plausible model for many random pro-
cesses. If the relational data ^ arises due to the aggregation of many independent
processes then the central limit theorem implies ^ will be multivariate normally
distributed. Further, the normal distribution is the maximum entropy distribution
with the required covariancematrix, Eq. (4.3), and so could be justified as the “least
informative distribution”—the model that makes the fewest extra assumptions be-
yond the correlation structure. We can also appeal to simple pragmatism: the
multivariate normal distribution is well-studied and has convenient mathematical
properties.

A concise statement of the model is as follows: given the freely chosen param-
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eters C ∈ R, � ∈
[
0, 1

2
]
, and the number of nodes =, let � be the matrix

Σ(8 , 9),(8 , 9) = 1,

Σ(8 , 9),(8 ,:) = �,

Σ(8 , 9),(:,;) = 0. (4.5)

Then draw a random variable ^ with

^ ∼ N(0,�), (4.6)

and create the network by thresholding ^ ,

�8 9 =


1 if -8 9 ≥ C ,
0 otherwise.

(4.7)

Note, we constrain 0 ≤ � ≤ 1
2 so that � is positive semi-definite.3

Even if we have good reason to believe that themarginal distributions for-8 9 are
not normal, the model may still be applicable. Consider an arbitrary cumulative
distribution function, �(G), and let Φ(G) denote the standard normal cumulative
distribution function. If we sample ^ from amultivariate normal distribution, and
then apply the function �−1(Φ(G)) to each -8 9 we will have transformed the edge
weights to the arbitrary distribution �. So long aswe apply the same transformation
to C, however, the resulting network after thresholding will be identical.

The upshot is that our model can be adapted for any marginal distribution,
and no network properties change—the assumption that the edge weights have
normally distributed marginals is of no real consequence. What is important is
the assumption that there is some transformation of the data such that the joint
distribution is multivariate normal. While this assumption is a limitation, the
above procedure is actually one of the standard methods for creating multivariate
distributions with arbitrary marginals.

3To see why � > 1
2 is problematic, consider the marginal distribution for four edges, say

-8 9 , -9: , -:; , -8; . A simple calculation shows that the covariance matrix has a negative eigen-
value for � > 1

2 . Similarly, since Var
[
Σ9-8 9

]
must be greater than zero, � must be greater than

−1/(= − 2) and so negative correlations can be vanishingly weak at most.
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4.1.2 Sampling from the model

We now describe a simple algorithm to sample from the model. This algorithm
also provides an intuitive model interpretation.

Let /8 be = i.i.d. variables,N(0, 1). Let.8 9 be
(
=
2
)
i.i.d. variables,N(0, 1). Then

let
,8 9 =

√
1 − 2�.8 9 +

√
�

(
/8 + / 9

)
. (4.8)

Note that,8 9 is normally distributed with mean zero and further

Var
[
,8 9

]
= 1,

Cov
[
,8 9 ,,8:

]
= �,

Cov
[
,8 9 ,,:;

]
= 0. (4.9)

Hence,] is distributed identically to ^ . So, to sample from the model:

1. Sample z, a length n vector of i.i.d. standard normal variables.

2. For 8 < 9, generate H ∼ N(0, 1), and if

H >
C − √�

(
I8 + I 9

)√
1 − 2�

(4.10)

add edge (8 , 9) to the network.

If � = 1
2 , generating H is unnecessary and one can simply add edge (8 , 9) if√

1/2(I8 + I 9) ≥ C.

A Python package to generate networks along with scripts for the figures in this
chapter is publicly available [148].

In order to achieve the required correlations, the algorithm above separates -8 9
into node and edge effects. Each node is given a value /8 and -8 9 is created by
a linear combination of /8 and / 9 plus i.i.d. random noise .8 9 . We can interpret
the /’s as latent variables that control the propensity for individual nodes to have
edges and � controls the relative strength of the noise process. When � = 1/2 edges
are entirely determined by the values of /, while at � = 0 edges are entirely random
and independent.

Despite this equivalent formulation, our model should not be primarily un-
derstood as a latent variable model since it was not constructed as one. Rather,

64



the equivalent latent variable model is derived and used for algorithmic conve-
nience. In fact, the existence of this latent variable interpretation is not surpris-
ing. As = → ∞ our model is in a class of models known as exchangeable random
graphs [149, 150]. The Aldous-Hoover theorem implies that all exchangeable ran-
dom graphs have an equivalent latent variable model [149–151].

4.2 Network properties

We now turn our attention to properties of the networks created by the model.

4.2.1 Edge density

Edges in the network exist whenever the corresponding weight -8 9 is greater than
C. Themarginal distribution for -8 9 is simply a standard normal distribution. Thus,

�[�8 9] = %[�8 9 = 1] = %[-8 9 ≥ C] = 1 −Φ(C), (4.11)

where Φ(G) is the cumulative distribution function for the standard normal dis-
tribution N(0, 1). When � = 0 all edges exist independently and the model is
equivalent to the random graph, �=,? , with ? = 1 −Φ(C).

The mean degree is equally simple to compute. For all �

�[:8] =
∑
9≠8

�[�8 9] = (= − 1)(1 −Φ(C)). (4.12)

If we want to pick C for a desired mean degree 〈:〉, it is easy to invert this to obtain

C = Φ−1
(
1 − 〈:〉

= − 1

)
. (4.13)

4.2.2 Triangles, clustering, and degree variance

Many complex networks are observed to have large numbers of triangles. The
clustering coefficient or transitivity is one way to quantify this. We can quantify
the clustering with the probability that a triangle is closed, given that two of its
edges already exist,

� = %[�8: = 1|�8 9 , �9: = 1] =
%[�8: , �8 9 , �9: = 1]
%[�8 9 , �9: = 1] . (4.14)
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The numerator of this equation corresponds to the density of triangleswhile the de-
nominator corresponds to the density of two-stars (which also determines the vari-
ance of the degree distribution). Note that for simplicity we shorten the logical con-
nective “and” (or “∧”) using commas, e.g. %[�8 9 = 1 ∧ � 9: = 1] ≡ %[�8 9 , �9: = 1].

The marginal distributions of a MVN are themselves MVN, and are found by
simply dropping the unwanted rows and columns in the correlation matrix �.
Thus, (-8 9 , -8:)) will be bivariate normally distributed and (-8 9 , -8: , -9:)) will be
trivariate normally distributed, both with correlation coefficient �. Introducing the
Hermite polynomials �# (G) as defined in Appendix B.1, one finds that

%[-8 9 , -8: ≥ C] =
∞∑
#=0

�#

# !
[
)(C)�#−1 (C)

]2 (4.15)

for the density of two-stars and

%[-8 9 , -8: , -9: ≥ C] =
∞∑
#=0

#∑
8=0

#−8∑
9=0

�#) (C)3

8! 9! (# − 8 − 9)!�#−1−8 (C)�#−1−9 (C)�8+9−1 (C)

(4.16)

for triangles. Both sums converge for � ≤ 0.5, and we can estimate them accurately
with a finite number of terms [152]. Noting that there are

(
=−1

2
)
potential triangles

for each node, the expected number of triangles per node is simply
(
=−1

2
)
times their

density

) =

(
= − 1

2

)
%[-8 9 , -8: , -9: ≥ C]. (4.17)

Plots of these functions are shown in Fig. 4.2. We find that) is much larger in these
networks than in the random graph �=,?—larger by multiple orders of magnitude.
In fact, while ) goes to zero in the large = limit for the random graph, in this
model we find that ) increases with = for large values of �. On the other hand, the
clustering coefficient � decreases with growing number of nodes for all parameter
values. This leads to a slightly paradoxical result for large �: in the limit = → ∞
the expected number of triangles at each node goes to infinity, and the clustering
coefficient still goes to zero! The reason for this is that the number of two-stars
diverges faster than the number of triangles.

Equation (4.15) can also be used to compute the variance of the degree distribu-
tion. To see this note that a node of degree : has

(
:
2
)
two-stars. Further, noting that
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Figure 4.2: Clustering � and triangles per node ) for thresholded normal data.
Values are computed using the equations of Sec. 4.2.2. Clustering decreases with
increasing number of nodes, however the number of triangles per node increases
with growing number of nodes = for large values of �. Clustering increases both
with increasing mean degree 〈:〉 and local edge weight correlation �. In panel (a)
and (c) we chose = = 100 000 and in panel (b) and (d), we fixed 〈:〉 = 4.

there are
(
=−1

2
)
potential two-stars (the same number of potential triangles) we find

1
2

(
〈:2〉 − 〈:〉

)
=

(
= − 1

2

)
%[-8 9 , -8: ≥ C]. (4.18)

Combining this with Eq. (4.12) the variance of the node degree : can be written

Var[:] = (= − 1)Φ(C) [1 −Φ(C)] + (= − 1)(= − 2)
∞∑
#=1

�#

# !
[
)(C)�#−1 (C)

]2
. (4.19)

The first term is simply the variance of a binomial distribution. For � = 0 the
second term vanishes and we recover the correct result for the random graph �=,? .
For � > 0 the sum is positive and monotonically increases with � as illustrated in
Fig. 4.3.

4.2.3 Degree distribution

In the previous two subsections we gave expressions for the mean and variance of
the degrees. Here we give expressions for the full distribution of degrees.

The degree distribution ?: is the probability that a node has : edges. Letting

5:(H) = : ln
[
1 −Φ(H)

]
+ (= − : − 1) ln

[
Φ(H)

]
− 1

2

(
C −

√
1 − �H
√
�

)2

, (4.20)
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Figure 4.3: The variance of degree for thresholded normal data. The variance,
Eq. (4.19), increaseswith �, the local edgeweight correlation. With increasingmean
degree 〈:〉, even small correlations � produce networks of significantly broader
degree distribution than the random graph �=,? .

the degree distribution for this model is

?: =

(
= − 1
:

)√
1 − �
2��

∫ ∞

−∞
4 5:(H)3H. (4.21)

This result is derived in Appendix B.2.
The integral in Eq. (4.21) can be computed numerically to high precision using

Gauss-Hermite quadrature, centered at the maximum of 5:(H). Increasing the
order of Gauss-Hermite quadrature (i.e. incorporating more points) increases the
accuracy. The full details are in Appendix B.2.

We can also approximate the integral using Laplace’s method [153], an asymp-
totic approximation for integrals of this form (equivalent to a first order Gauss-
Hermite quadrature). The idea of the method is to replace the function 5:(H) by a
second order Taylor series around its maximum. For large =, the last (quadratic)
term in 5: will be negligible and for 0 < : < = − 1, the maximum will be at

H0,: = Φ
−1

(
1 − :

= − 1

)
. (4.22)

Combining this with Stirling’s approximation for the binomial coefficient, we find

?: ∼
1

= − 1

√
1 − �
�

exp

[
−

(
1 − 2�

2�

)
H2

0,: +
(
C
√

1 − �
�

)
H0,: −

C2

2�

]
. (4.23)
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Figure 4.4: Degree distributions for thresholded normal data. We show degree
distributions computed using Eq. (4.21) for = = 100 000 and 〈:〉 = 100 for increasing
local edge weight correlation � in log-log (a) and linear scales (b). We also compare
them to the asymptotic approximation Eq. (4.23). Note that large values of �
produce broad degree distributions which could be easily mistaken for log-normal
or power-law distributions.

Together with the closed form approximation for Φ−1, given in Appendix B.3,
Eq. (4.23) provides a closed form approximation for the degree distribution.

Figure 4.4 shows some example degree distributions, computed to high preci-
sion using Eq. (4.21) along with the asymptotic approximation, Eq. (4.23), where
we chose = = 100 000 and 〈:〉 = 100.

To illustrate how these degree distributions compare to the degree distributions
of real networks, we chose three data sets fromdifferent domains, and fit themodel.
The first data set is a network of friendships between students at a U.S. high school
(= = 2587) [115], the second data set is a co-authorship network of researchers
(= = 16726) [154], and the third network describes interactions between proteins
(= = 6327) [155].

Given a number of nodes = the model under study has two free parameters, C
and �. A simple procedure to fit themodel to the data is to choose C and � so that the
mean and variance of the model’s degree distribution match the observed values.
We use Eq. (4.13) to fix C and subsequently Newton’s method to solve Eq. (4.19) for
�.

The results of this exercise are shown in Fig. 4.5. The networks were chosen
for their different degree distributions—note the different scales on the axes: lin-
ear, log-linear, and log-log—and the threshold model can qualitatively ape these
distributions. Nevertheless, the similarity of the degree distribution should not
be over-emphasized. As discussed, this model has vanishing clustering so cannot
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Figure 4.5: Degree histograms for three real-world networks. The networks intro-
duced in Sec. 4.2.3 are compared against fitted distributions from the thresholded
normal model. We show (a) a high school friendship network, (b) a co-authorship
network between scientists, and (c) a protein–protein interaction network.

account for this observation of real-world networks.
While the degrees in the thresholded networks, :8 =

∑
9 �8 9 , in general follow a

complicated distribution, the underlying degrees 38 =
∑
9 -8 9 are always normally

distributed. When � = 0, 38 is Gaussian and :8 is binomial, or Poisson in the
sparse limit. When � > 0, 38 is still Gaussian, but :8 now follows a heavy-tailed
distribution. Thus, the heavy-tailed distribution observed in the model is due to
the combination of correlation and thresholding. Without positive correlation we
observe Poisson distributions; without thresholding we observe Gaussian distribu-
tions.

4.2.4 Giant component

A well studied problem in the theory of random graphs is the formation of a large
connected (giant) component. At very low densities only a handful of nodes can
be reached from any other node but at some critical point a macroscopic number
of nodes will be connected. For the random graph this transition occurs at a mean
degree of 〈:〉 = 1 [1, 65, 156].

To explore the effects of � > 0 we sampled from the model as described in
Sec. 4.1.2 andmeasured the size of the second largest component as a susceptibility
parameter for the phase transition. The maximum of this susceptibility parameter
is used to find the transition lines in Fig. 4.6a.

We find that as � or = increases, the transition occurs at lower values of themean
degree. This result is in line with the configuration model for which the transition
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Figure 4.6: Giant component phase transition for thresholded normal data. Sim-
ulations with 1 000 ≤ = ≤ 30 000, mean degree 10−3 ≤ 〈:〉 ≤ 10, 0 ≤ � ≤ 0.45.
1000 samples were taken for each of the parameter combinations. Panel (a) shows
the points of transitions for increasing number of nodes =. To the left of the line
the network does not possess a giant component, while to the right it does. The
transition point was computed using the mean size of the second largest compo-
nent as a susceptibility parameter. Panel (b) shows an example of the susceptibility
parameter for = = 10 000.

point decreases with increasing variance in the degree distribution. For � = 0 we
recover the standard result for the random graph.

For the other limit case, � = 1/2, recall that all edge weights can be considered
to arise from node “propensities”, /8 , with -8 9 =

√
1/2(/8 + / 9). This implies that

all nodes that are connected to any other nodes must also be connected to the node
with maximum propensity /max. The size of the largest component is then given
by this node’s degree plus 1, :max+1. The second largest component is then always
of size 1. We therefore omit � = 1/2 in the numerical analysis.

4.2.5 Shortest path lengths

Another phenomenon well established in the complex networks literature is that
randomly chosen nodes often have surprisingly short paths between them. This
is often referred to as the “six degrees of separation” or “small-world” phe-
nomenon [1, 41]. By a common definition, network models are considered to
demonstrate this property if the average shortest path length

〈
38 9

〉
between nodes

grows logarithmically (or slower) as the number of nodes increases [1].
Using themethod described in Sec. 4.1.2, we sampled from the thresholdmodel

to verify that it displays this property. We looked at networks with between 100
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Figure 4.7: Average shortest paths in thresholded normal data. Panel (a) shows the
scaling of the average shortest path in the largest connected component with the
number of nodes, =. We fix the mean degree 〈:〉 = 5 and each point is averaged
over 200 samples. For � = 0 we recover the result for the random graph �=,? where〈
38 9

〉
∝ log =. For non-zero correlation, the average shortest path length increases

slower than logarithmically. In panel (b) we show the average shortest path length
for different mean degrees and values of � for networks with = = 10 000, again
sampled 200 times for each parameter combination.

and 30 000 nodes, with mean degree 〈:〉 = 5, and investigated the influence of
increasing edge weight correlation �. After sampling a network from themodel we
computed the average shortest path length

〈
38 9

〉
on the largest (giant) component.

For each parameter combination we computed the mean by averaging 200 sampled
networks.

The results are shown in Fig. 4.7a. Since it is well known that the random
graph �=,? has short shortest paths [1, 157] it is unsurprising that the threshold
model does also (recall, for � = 0 they are equivalent, and we see the standard〈
38 9

〉
∝ log = scaling behavior). For � > 0 we see that average shortest path lengths

grow significantly slower than logarithmically, a behavior sometimes referred to as
“ultra small-world” and often related to networks with power-law degree distri-
bution [158, 159]. In our model, the effect appears despite the fact that the degree
distribution does not follow a power-law.

As discussed, when � = 1/2 all edge weights can be considered to arise from
node propensities /8 , such that -8 9 =

√
1/2(/8 + / 9). All nodes are then either dis-

connected or part of the giant component, and the nodewithmaximumpropensity
/max is connected to all nodes in the giant component. Hence, all nodes in the gi-
ant component are either directly connected or can reach each other in two steps
through the maximum-degree node. So, when � = 1/2 the average shortest path
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length must be 1 ≤
〈
38 9

〉
< 2.

4.3 Discussion

In this chapter we studied the effects of correlation on relational data. We started
with a simple model of multivariate normally distributed data, with only one free
parameter, �, controlling local correlations. We then demonstrated that thresh-
olding this normally distributed correlated data reproduces many of the prop-
erties commonly associated with complex networks. In particular, we find that
the combined effects of correlation and thresholding leads to heavy-tailed degree
distributions, relatively large numbers of triangles, and short average path lengths.

The underlying data, ^ , in the model we introduce would not usually be con-
sidered complex. It is generated from a highly symmetric multivariate normal
distribution with only one free parameter. Since every pair of nodes has some
level of interaction, the graphical interpretation for ^ would be a weighted com-
plete graph, with all edge weights (and linear combinations thereof) normally dis-
tributed. For example, the “degrees”, 38 =

∑
9 -8 9 , are normally distributed. And

yet, after thresholding the networks show several properties commonly associated
with complex networks.

One way to think about these results is in the context of the central limit the-
orem. Whenever interaction strengths are the aggregate result of a large number
of processes then we expect ^ to be normally distributed. Constructing a simple
graph from these data can lead to complex networks. This provides one simple
explanation for the ubiquity of complex networks—they can arise as a consequence
of the central limit theorem.

Of course, for most scientific questions of interest the exact details of the mech-
anisms and structure are what matter. In a social network, for example, answering
the question "who influences whom, and why?" is far from trivial and the fact that
the network has certain commonly observed properties is usually incidental.

In summary, straightforward assumptions lead to several of the properties as-
sociated with complex networks. If a network arises by a simple thresholding
procedure then finding that it is “complex” need be no more surprising than find-
ing a bell-shaped curve in a regular data set.
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CHAPTER 5

Message Passing for Complex Networks

This chapter is adapted from the published results of G. T. Cantwell and
M. E. J. Newman, Message passing on networks with loops. Proceedings
of the National Academy of Sciences 116(47), 23398–23403 (2019) [100].

Message passing [127, 160, 161], also known as belief propagation or the cavity
method, is a fundamental technique for the quantitative calculation of awide range
of network properties, with applications to Bayesian inference [161], NP-hard com-
putational problems [127,162], statistical physics [43,127,163], epidemiology [164],
community detection [83], and signal processing [165, 166], among many other
things. Message passing can be used both as a numerical method for performing
explicit computer calculations and as a tool for analytic reasoning about network
properties, leading to new formal results about percolation thresholds [43], algo-
rithm performance [83], spin glasses [167], and other topics. Many of the most
powerful new results concerning networks in recent years have been derived from
applications of message passing in one form or another. Indeed, in Ch. 3 we used
the formalism to provide analytic insight into data recovery tasks.

Despite the central importance of the message passing method, however, it
also has a substantial and widely discussed shortcoming: it only works on trees,
i.e., networks that are free of loops [127]. More generously, one could say that it
works to a good approximation on networks that are “locally tree-like,” meaning
that they may contain long loops but no short ones, so that local neighborhoods
within the network take the form of trees. However, most real-world networks
that occur in practical applications of the method contain short loops, often in
large numbers. When applied to such “loopy” networks the method can give poor
results, and in the worst cases can fail to converge to an answer at all.
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In this chapter, we consider a remedy for this problem. We present a series of
methods of increasing elaboration for the solution of problems on networks with
loops. The first method in the series is equivalent to the standard message passing
algorithm of previous work, which gives poor results in many cases. The last in the
series gives exact results on any network with any structure, but is too complicated
for practical application in most situations. In between lies a range of methods
that give progressively better approximations, and which can be highly accurate in
practice, as wewill show, yet still simple enough for ready implementation. Indeed
even the second member of the series—just one step better than the standard
message passing approach—already gives remarkably good results in real-world
conditions. We demonstrate our approach with two example applications. The
first is to the solution of the bond percolation problem on an arbitrary network,
including the calculation of the size of the percolating cluster and the distribution
of sizes of small clusters. The second is to the calculation of the spectra of sparse
symmetricmatrices, wherewe show that ourmethod is able to calculate the spectra
of matrices far larger than those accessible by conventional numerical means.

A number of approaches have been proposed previously for message passing
on loopy networks. The most basic of these, which goes by the name of “loopy
belief propagation,” is simply to apply the standard message passing equations,
ignoring the fact that they are known to be incorrect in general. While this might
seem rash, it gives reasonable answers in some cases [166] and there are formal
results showing that it can give bounds on the true value of a quantity in others [43,
127]. Perturbation theories that treat loopy belief propagation as a zeroth-order
approximation have also been considered [168]. Broadly, it is found that these
methods are suitable for networks that contain a sub-extensive number—and hence
a vanishing density—of short loops, but not for networks with a non-vanishing
density.

Some progress has been made for the case of networks that are composed of
small subgraphs or “motifs” which are allowed to contain loops but which on a
larger scale are connected in a loop-free way [169–171]. For such networks one
can write down exact message passing equations that operate at the higher level of
the motifs and which give excellent results for problems such as structural phase
transitions in networks, network spectra, and the solution of spin models [163,169–
172]. While effective for theoretical calculations on model networks, however, this
approach is of little use in practical situations. To apply it to an arbitrary network
one would first need to find a suitable decomposition of the network into motifs,
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and no general method for doing this is currently known, nor even whether such a
decomposition exists.

A third approach is the method known as “generalized belief propagation,”
which has some elements in commonwith themotif-based approach but is derived
in a different manner, from approximations to the free energy [173, 174]. This
method, which is focused particularly on the solution of inference problems and
related probabilistic calculations on networks, involves a hypergraph-like extension
of traditional message passing that aims to calculate the joint distributions of three
or more random variables at once, by contrast with the standard approach which
focuses on two-variable distributions. Generalized belief propagation was not
originally intended as a method for solving problems on loopy networks but can
be used in that way in certain cases. It is, however, quite involved in practice,
requiring the construction of a nested set of regions and sub-regions within the
network, leading to complex sets of equations.

Here, we take a different approach. In the following sections we directly for-
mulate a message passing framework that works on real-world complex networks
containingmany short loops by incorporating the loops themselves directly into the
message passing equations. In traditional message passing algorithms each node
receives a message from each of its neighbors. In our approach they also receive
messages from nodes they share loops with. By limiting the loops considered to a
fixedmaximum length, we develop a series of progressively better approximations
for the solution of problems on loopy networks. The equations become more com-
plex as loop length increases but, as we will show, the results given by the method
are already impressively accurate even at shorter lengths.

5.1 Message passing with loops

Message passing methods calculate some value or state on the nodes of a network
by repeatedly passing information between nearby nodes until a self-consistent
solution is reached. The approach we propose is characterized by a series of
message passing approximations defined as follows. In the zeroth approximation,
which is equivalent to the standard message passing method, we assume there are
no loops in our network. This implies that the neighbors of a node are not connected
to each other, which means they have independent states. It is this independence
that makes the standard method work. In the next approximation we no longer
assume that neighbors are independent. Instead, we assume that any correlation

76



can be accounted for by direct edges between the neighbors, which is equivalent
to allowing the network to contain triangles, the shortest possible kind of loop.
In the next approximation after this, we assume that neighbor correlations can be
accounted for by direct edges plus paths of length 2 between neighbors. Generally,
in the Ath approximation we assume that correlations between neighbors can be
accounted for by paths of length A and shorter.

These successive approximations can be thought of as expressing the properties
of nodes in terms of increasingly large neighborhoods and the edges they contain.
The zeroth neighborhood # (0)

8
of node 8 contains 8’s immediate neighbors and the

edges connecting them to 8, but nothing else. The first neighborhood # (1)
8

contains
8’s immediate neighbors and edges plus all length one paths between neighbors of 8.
The second neighborhood # (2)

8
contains 8’s neighbors and edges plus all length one

and two paths between neighbors of 8, and so forth. Figure 5.1 shows an example
of how these neighborhoods are constructed.

Just as the conventional message passing algorithm is exact on trees, our algo-
rithms will be exact on networks with short loops. We define a primitive cycle of
length A starting at node 8 to be a cycle such that at least one edge is not on a shorter
cycle beginning and ending at 8. Then our Ath approximation is exact on networks
that contain primitive cycles of length A + 2 or less only. For networks that contain
longer primitive cycles it will be an approximation, although as we will see it may
be a good one.

5.2 Applications

Our approach is best demonstrated by example. In this section we derive message
passing equations on loopy networks for two specific applications: the calculation
of cluster sizes for bond percolation and the calculation of the spectra of sparse
matrices.

5.2.1 Percolation

Consider the bond percolation process on an undirected network of = nodes, where
each edge is occupied independently with probability ? [175,176]. Occupied edges
form connected clusters and we wish to know the distribution of the sizes of these
clusters and whether there exists a giant or percolating cluster that occupies a
non-vanishing fraction of the network in the limit of large network size.
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(a)

(b) (c) (d)

Figure 5.1: Constructing A-neighborhoods. (a) A node (open circle) and its im-
mediate surroundings in a network. (b) In the zeroth (tree) approximation the
neighborhood we consider consists of the neighbors of the focal node only. (c) In
the first approximation we also include all length 1 paths between the neighbors.
(d) In the second approximation we include all paths of length 1 and 2, and so
forth.

Let us define the Ath neighborhood # (A)
8

of node 8 as previously, then define a
random variable Γ8 for our percolation process to be the set of nodes within # (A)

8

that are reachable from 8 by traversing occupied edges only. Our initial goal will
be to compute the probability �8(B) that node 8 belongs to a non-percolating cluster
of size B. We will do this in two stages. First we will compute the conditional
probability �8(B |Γ8) of belonging to a cluster of size B given the set of reachable
nodes. Then we will average over Γ8 to get the full probability �8(B).

Suppose that node 8 belongs to a cluster of size B. If our network contains no
primitive cycles longer than A + 2, then the set of nodes Γ8 would become discon-
nected from one another were we to remove all edges in the neighborhood # (A)

8
—

the removal of these edges removes any connections within the neighborhood and
there can be no connections via paths outside the neighborhood since such a path
would constitute a primitive cycle of length longer than A + 2. Hence the sizes B 9 of
the clusters to which the nodes in # (A)

8
would belong after this removal must sum

to B − 1 (the Bth and last node being provided by 8 itself). We can thus relate �8(B)
to the quantities �8←9(B), the probability that node 9 is in a cluster of size B once the
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edges in # (A)
8

are removed. The resulting formula is

�8(B |Γ8) =
∑
{B 9 :9∈Γ8}

[∏
9∈Γ8

�8←9(B 9)
]
�
(
B − 1,

∑
9∈Γ8 B 9

)
. (5.1)

We can now write a generating function for �8(B |Γ8),

�8(I |Γ8) =
∞∑
B=1

�8(B |Γ8) IB

=

∞∑
B=1

IB

{ ∑
{B 9 :9∈Γ8}

[∏
9∈Γ8

�8←9(B 9)
]
�(B − 1,

∑
9∈Γ8 B 9)

}
= I

∏
9∈Γ8

∞∑
B 9=1

IB 9�8←9(B 9). (5.2)

To calculate the full probability �8(B) we average �8(B |Γ8) over sets Γ8 to get �8(B) =〈
�8(B |Γ8)

〉
Γ8
, with the average weighted according to the sum of the probabilities

of all edge configurations that correspond to a particular Γ8 . The probability of
any individual edge configuration is simply ?:(1 − ?)<−: , where ? is the edge
occupation probability as previously, < is the number of network edges in the
neighborhood # (A)

8
, and : is the number that are occupied. Performing the same

average on (5.2) gives us

�8(I) =
∞∑
B=1

�8(B) IB = I�8
(
H8←(I)

)
, (5.3)

where �8(y) =
〈∏

9∈# (A)
8

H
F8 9

9

〉
Γ8
is a generating function for the random variable F8 9 ,

which takes the value 1 if 9 ∈ Γ8 and 0 otherwise, and H8←(I) is the vector with
elements �8←9(I) for nodes 9 in # (A)8 .

To complete the calculation we need to evaluate �8←9(I), whose computation
follows the same logic as for �8(I), the only difference being that in considering
the neighborhood of node 9 we must remove the entire neighborhood of 8 first, as
described above. Doing this leads to

�8←9(I) = I�8←9

(
H9←(I)

)
, (5.4)

where �8←9(y) is the equivalent of �8(y)when # (A)
8

is removed. (A detailed deriva-
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tion of (5.4) is given inAppendix C.1.) If we can solve this equation self-consistently
for H9←(I), we can substitute the solution into (5.3) to compute the full cluster size
generating function. The message passing method involves solving (5.4) by simple
iteration: we choose suitable starting values, for instance at random, and iterate the
equations to convergence.

From the cluster size generating function we can calculate a range of quantities
of interest. For example, the probability that node 8 belongs to a small cluster (of any
size) is �8(1) =

∑
B �8(B). If it does not belong to a small cluster then necessarily it

belongs to the percolating cluster and hence the expected fraction ( of the network
taken up by the percolating cluster is

( = 1 − 1
=

∑
8

�8(1). (5.5)

Similarly, the average value of B8 is

〈B8〉 =
∞∑
B=1

B�8(B) = �′8 (1)

= �8(1) +
∑
9∈# (A)

8

�′8←9(1) %9�8(H8←), (5.6)

where �′ is the derivative of � and %9�8 is the partial derivative of �8 with respect
to its 9th argument. �′

8←9
(1) can be found by differentiating (5.4) and setting I = 1

to give the self-consistent equation

�′8←9(1) = �8←9(1) +
∑
:∈# (A)

9\8

�′9←:(1) %:�8←9

(
H9←

)
, (5.7)

where # (A)
9\8 denotes the neighborhood #

(A)
9

with # (A)
8

removed.
While these equations are straightforward in principle, implementing them in

practice presents some additional challenges. Computing the generating func-
tions �8(y) and �8←9(y) can be demanding, since it requires us to perform an aver-
age over the occupancy configurations of all edges within the neighborhoods # (A)

8

and #
(A)
9\8 , and the number of configurations increases exponentially with neigh-

borhood size. For small neighborhoods, such as those found on low-dimensional
lattices, it is feasible to average exhaustively, but for many complex networks this
is not possible. In such cases we instead approximate the average by Monte Carlo
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sampling of configurations—see Appendix D for details. A nice feature of the
Monte Carlo procedure is that the samples need be taken only once for the entire
calculation and can then be reused on successive iterations of the message passing
process.

In practice the method gives excellent results. We show example applications
to two real-world networks in Fig. 5.2, the first a social network of coauthorship
relations between scientists in the field of condensed matter physics [154] and
the second a network of trust relations between users of the Pretty Good Privacy
(PGP) encryption software [177]. Both networks have a high density of short
loops. For each network the figure shows, as a function of ?, several different
estimates of both the average size 〈B〉 of a small cluster and the size ( of the
percolating cluster as a fractionof =. Firstwe showanestimatemadeusing standard
message passing (dashed line)—the A = 0 approximation in our nomenclature—
which ignores loops and is expected to give poor results. Second, we show the
next two approximations in our series, those for A = 1 and A = 2 (dotted and solid
lines respectively), with �8(y) and �8←9(y) estimated by Monte Carlo sampling
as described above. We use only eight samples for each node 8 but the results
are nonetheless impressively accurate. Third, we show for comparison a direct
numerical estimate of the quantities in question made by conventional simulation
of the percolation process.

For both networks we see the same pattern. The traditional message passing
method fares poorly, as expected, giving estimates that are substantially in dis-
agreement with the simulation results, particularly for the calculations of average
cluster size. The A = 1 approximation, on the other hand, does significantly better
and the A = 2 approximation does better still, agreeing closely with the numerical
results for all measures on both networks. In these examples at least, it appears
that the A = 2 method gives accurate results for bond percolation, where standard
message passing fails.

The message passing algorithm is relatively fast. For A ≤ 1 each node receives
a message from each neighbor on each iteration, and so on a network with mean
degree 2 there are 2= messages passed per iteration. For A ≥ 2 the number of
messages depends on the network structure. On trees the number of messages
remains unchanged at 2= as A increases but on networks with loops it grows and
for large numbers of loops it can grow exponentially. In the common sparse case
where the size of the neighborhoods does not grow with =, however, the number
of messages is linear in = for fixed A and hence so is the running time for each
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Figure 5.2: Percolation simulations and equation based results. Percolating cluster
size (× symbols) and average cluster size (+ symbols) for two real-world networks.
Top: the largest component of a coauthorship network of 13,861 scientists [154].
Bottom: a network of 10,680 users of the PGP encryption software [177].
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iteration. It is not known in general how many iterations are needed for message
passingmethods to reach convergence, but elementary heuristic arguments suggest
the number should be on the order of the diameter of the network, which is
typically O(log =). Thus we expect overall running time to be O(= log =) for sparse
networks at fixed A.

This makes the algorithm quite efficient, although direct numerical simulations
of percolation run comparably fast, so the message passing approach does not
offer a speed advantage over traditional approaches. However, the two approaches
are calculating different things. Traditional simulations of percolation perform a
calculation for one particular realization of bond occupancies. If we want average
values over many realizations we must perform the average explicitly, repeating
the whole simulation for each realization. The message passing approach, on the
other hand, computes the average over realizations in a single calculation and no
repetition is necessary, making it potentially the faster method in some situations.

In the next section we demonstrate another example application of our method:
the calculation of the spectrum of a sparse matrix. For this application traditional
and message passing calculations differ substantially in their running time, the
message passing approach being much faster, making calculations possible for
large systemswhose spectra cannot be computed in any reasonable amount of time
by traditional means.

5.2.2 Matrix spectra

For our second example applicationwe show how themessage passingmethod can
be used to compute the eigenvalue spectrum of a sparse symmetric matrix. Any
= × = symmetric matrix can be thought of as an undirected weighted network on
= nodes and we can use this equivalence to apply the message passing method to
such matrices.

The spectral density of a symmetric matrix A is the quantity

�(G) = 1
=

=∑
:=1

�(G − �:), (5.8)

where �: is the :th eigenvalue of A, and �(G) is the Dirac delta function. Following
standard arguments [178], we can show that the spectral density is equal to the
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imaginary part of the complex function

�(I) = − 1
=�

=∑
:=1

1
I − �:

= − 1
=�

Tr(II −A)−1

= − 1
=�I

=∑
8=1

∞∑
B=0

- B
8

IB
, (5.9)

where - B
8
= [AB]88 is the 8th diagonal element of AB , and I = G + 8� and we take

the limit as �→ 0 from above. The imaginary part � acts as a resolution parameter
that broadens the delta-function peaks in (5.8) by an amount roughly equal to its
value.

The quantities - B
8
= [AB]88 can be related to sums over closed walks in the

equivalent network. If we consider the “weight” of a walk to be the product of the
matrix elements on the edges it traverses, then - B

8
is the sum of the weights of all

closed walks of length B that start and end at node 8.
A closed walk from 8 need not visit 8 only at its start and end, however. It can

return to 8 any number of times over the course of the walk. We will call the the
simplest case, where it returns just once at the end of thewalk, an excursion. Amore
general closed walk that returns to node 8 exactly < times can be thought of as a
succession of < excursions. Such a walk will have length B if those < excursions
have lengths B1 . . . B< with

∑<
D=1 BD = B.

With this in mind, let .B
8
be the sum of the weights of all excursions of length B

that start and end at node 8. Then the sum - B
8
over closed walks of length B can be

written in terms of .B
8
as

- B
8 =

∞∑
<=0

[ ∞∑
B1=1
· · ·

∞∑
B<=1

�
(
B,

∑<
D=1BD

) <∏
D=1

.
BD
8

]
. (5.10)

Using this result, and defining the function

�8(I) =
∞∑
B=1

.B
8

IB−1 , (5.11)

we find after some algebra that

�(I) = − 1
=�

=∑
8=1

1
I − �8(I)

. (5.12)
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Figure 5.3: An example of an excursion. An excursion from the central node (open
circle) is equivalent to an excursion inside the neighborhood, shown with green
arrows, plus closed walks to regions outside of the neighborhood, shown in blue.

(See Appendix C.2 for a detailed derivation.) Thus, if we can calculate �8(I) then
we can calculate �(I). This we do as follows.

Consider the neighborhood #
(A)
8

around 8. If there are no primitive cycles
of length longer than A + 2 in our network then all cycles starting at 8 are already
includedwithin the neighborhood,whichmeans that any excursion from 8 takes the
form of an excursion F within the neighborhood plus some number of additional
closed walks outside the neighborhood each of which starts at one of the nodes
in F and returns some time later to the same node—see Fig. 5.3. The additional
walks must necessarily return to the same node they started at since if they did
not they would complete a cycle outside the neighborhood, of which by hypothesis
there are none.

Let the length of the excursion F be ; + 1, meaning that it visits ; nodes 91 . . . 9;
(not necessarily distinct) within the neighborhood other than the starting node 8,
and let B 9 be the length of the external closed walk (if any) that starts at node 9, or
zero if there is no such walk. The total length of the complete excursion from 8 will
then be ; + 1+∑

9∈F B 9 and the sum of the weights of all excursions of length B with
F as their foundation will be

|F |
∑
{B 9 :9∈F}

�
(
B, ; + 1 +∑

9∈F B 9
) ∏
9∈F

-
B 9

8←9
, (5.13)

where |F | is the weight of F itself and - B
8←9

is the sum of weights of length-B walks

from node 9 if the neighborhood # (A)
8

is removed from the network. By a similar
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argument to the one that led to (5.10), we can express - B
8←9

in terms of the sum.B
8←9

of excursions from 9 thus:

- B
8←9 =

∞∑
<=0

[ ∞∑
B1=1
· · ·

∞∑
B<=1

�
(
B,

∑<
D=1BD

) <∏
D=1

.
BD
8←9

]
. (5.14)

And the quantity .B
8
appearing in (5.11) can be calculated by summing (5.13) first

over the set of excursions of length ; + 1 in the neighborhood of 8 and then over ;.
This allows us to write (5.11) as

�8(I) =
∑
F∈,8

|F |
∏
9∈F

1
I − �8←9(I)

, (5.15)

where,8 is the complete set of excursions of all lengths in the neighborhood of 8
and we have defined

�8←9(I) =
∞∑
B=1

.B
8←9

IB−1 . (5.16)

Following an analogous line of argument for this function we can show similarly
that

�8←9(I) =
∑
F∈,9\8

|F |
∏
:∈F

1
I − �9←:(I)

. (5.17)

Equation (5.17) defines our message passing equations for the spectral den-
sity. By iterating these equations to convergence from suitable starting values we
can solve for the values of the messages �8←9(I), then substitute into Eqs. (5.12)
and (5.15) and to get the spectral density itself.

As with our percolation example, the utility of this approach relies on our
having an efficient method for evaluating the sum in (5.17). Fortunately there is
such a method, as follows. Let v8←9 be the vector with elements E8←9 ,: = � 9: if
nodes 9 and : are directly connected in # (A)

9\8 and 0 otherwise. Further, let A8←9 be
the matrix of the neighborhood of 9 with the neighborhood of 8 removed, such that

�
8←9

:;
=

{
�:; for :, ; ≠ 9 and edge (:, ;) ∈ # (A)

9\8 ,

0 otherwise,
(5.18)

and let D8←9(I) be the diagonal matrix with entries � 8←9

::
= I −�9←:(I). As shown
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in the Appendix C.2, (5.17) can then be written

�8←9(I) = � 9 9 + v)8←9

(
D8←9 −A8←9

)−1v8←9 . (5.19)

Since the matrices in this equation are the size of the neighborhood, each message
update requires us to invert only a small matrix, which gives us a linear-time algo-
rithm for each iteration of the message passing equations and an overall running
time of O(= log =) for sparse networks with fixed neighborhood sizes, or for the
equivalent sparse matrices.

As an example of this method, we show in Fig. 5.4 spectra for the same two
real-world networks that we used in Fig. 5.2. To demonstrate the flexibility of
the method we calculate different spectra in the two cases: for the coauthorship
network we calculate the spectrum of the graph Laplacian; for the PGP network
we calculate the spectrum of the adjacency matrix. For each network the black
curve in the figure shows the spectral density calculated using themessage passing
method with A = 1. We also calculate the full set of eigenvalues of each network
directly using traditional numerical methods and substitute the results into (5.9)
to compute the spectral density, shown as the shaded areas in the figure. As we
can see, the agreement between the two methods is excellent for both networks.
There are a few regionswhere small differences are visible but in general they agree
closely. Extending the calculation to the next (A = 2) approximation gives a modest
further improvement in the results.

The O(= log =) running time of themessage passing algorithm significantly out-
strips that of traditional numerical diagonalization. Complete spectra are normally
calculated using the QR algorithm, which runs in time O(=3) and is consequently
much slower as system size becomes large. The Lanczos algorithm is faster, but
typically gives only a few leading eigenvalues and not a complete spectrum—it
takes time O(A=) to compute A eigenvalues of a sparse matrix. The kernel polyno-
mial method [179] is capable of computing complete spectra for sparse matrices,
but requires Monte Carlo evaluation of the traces of large matrix powers which has
slow convergence and is always only approximate, even in cases where ourmethod
gives exact results.

This opens up the possibility of using our approach to calculate the spectral
density of networks andmatrices significantly larger than those that can be tackled
by traditional means. As an example, we have used the message passing method
to compute the spectral density of one network with 317 080 nodes. This is sig-
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Figure 5.4: Matrix spectra for two real-world networks. We show the same two
networks thatwere used in Fig. 5.2. Top: the spectrumof the graph Laplacian of the
coauthorship network. Bottom: the spectrum of the adjacency matrix of the PGP
network. The shaded areas show the spectral density calculated bydirect numerical
diagonalization. The black lines show the A = 1 message-passing approximation.
The broadening parameter �was set to 0.05 in the top panel and 0.01 in the bottom
panel.
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nificantly larger than the largest systems that can be diagonalized using the QR
algorithm, which on current (non-parallel) commodity hardware is limited to a few
tens of thousands of nodes in practical running times.

5.3 Discussion

In this chapter we have described a class of message passing methods for per-
forming calculations on networks that contain short loops, a situation in which
traditional message passing often gives poor results or may fail to converge en-
tirely. We derive message passing equations that account for the effects of loops
up to a fixed length that we choose, so that calculations are exact on networks with
no loops longer than this. In practice we achieve excellent results on real-world
networks by accounting for loops up to length three or four only, even if longer
loops are present.

We have demonstrated our approach with two example applications, one to
the calculation of bond percolation properties of networks and the other to the
calculation of the spectra of sparse matrices. In the first case we develop message
passing equations for the size of the percolating cluster and the average size of
small clusters and find that these give good results, even on networks with an
extremely high density of short loops. For the calculation of matrix spectra, we
develop a message passing algorithm for the spectral density that gives results in
good agreement with traditional numerical diagonalization but in much shorter
running times. Where traditional methods are limited to matrices with at most a
few tens of thousands of rows and columns, our method can be applied to cases
with hundreds of thousands at least.

There are a number of possible directions for future work on this topic. Chief
among them is the application of the method to other classes of problems, such as
epidemiological calculations, graph coloring, or spin models. In the next chapter,
we explore how these ideas can be applied to evaluating entropy and partition
functions for high dimensional models. Many other extensions of the calculations
in this chapter are also possible, including the incorporation of longer primitive
cycles in the message passing equations, development of more efficient algorithms
for very large systems, and applications to individual examples of interest such
as the computation of spectra for very large graphs. Finally, while our example
applications are to real-world networks, the same methods could in principle be
applied to model networks, and in particular to ensembles of random graphs,

89



which opens up the possibility of additional analytic results about such models.
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CHAPTER 6

Entropy and Partition Functions of Complex
High-Dimensional Models

The partition function is one of the most important quantities associated with
a model in statistical physics. Indeed, an analytic calculation of the partition
function is considered to provide a solution for the model—models for which we
can calculate the partition function are “solved” [180, 181]. A model is defined by
its set of allowedmicrostates,X = {x}, and an associated energy for each one,�(x).
In the canonical ensemble, the probability for the system to be in any particular
microstate is

%(x) = 4−��(x)

/
, (6.1)

where � = 1/:�) is the inverse temperature. The normalizing constant / is the
partition function,

/ =
∑
x∈X

4−��(x). (6.2)

The partition function relates to most quantities of interest. For example, the
internal (average) energy is

* =

∑
x

�(x)%(x) = − 1
/

%/

%�
. (6.3)

However, when x is high-dimensional, as it usually is, directly evaluating the sum
(or integral) in Eq. (6.2) is practically impossible.

In statistics and machine learning, a quantity equivalent to / frequently arises,
and is used for rigorous model fitting and model selection. In this setting, a model
is defined by a probability distribution, %(D|x), that corresponds to the probability
of observing data, D, given the value of some parameters, x. To determine the
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parameters we apply Bayes’ rule

%(x |D) = %(D|x)%(x)
%(D) . (6.4)

The denominator,
%(D) =

∑
x

%(D|x)%(x), (6.5)

is an important quantity known as the marginal likelihood or the model evidence
[79, 128, 182]. Again, calculating the sum (or integral) in %(D) is often highly non-
trivial, exactly analogous to /.1 Safe in the knowledge that these problems are
essentially similar, in this chapter we will use the language of statistical physics.

Closely related to the partition function is the entropy,

( = −
∑
x

%(x) ln%(x). (6.6)

Second only to energy, entropy is a central concept of statistical physics and is
arguably just as fundamental—the concept of entropy transcends thermal physics
and has been applied across science (for example [183–186]). However, for the
same reasons that computing / can be difficult, computing ( can be also. For the
canonical distribution of Eq. (6.1) we have the relation

ln/ = ( − �*, (6.7)

and thus calculating both the entropy and energy, ( and * , is at least as hard as
calculating /.

So far we have been general but vague about the supposed difficulties in cal-
culating these quantities, /, (, and * . Let’s now explore this in more detail. The
microstate, x, encodes a detailed description of each relevant component in the
system. Its entries (G1, G2, . . . ), for example, might encode the magnetic moments
of atoms in a lattice. In general, each component 8 has an associated variable, G8 .

In the simplest case, components do not interact with one another and the
energy (i.e. the Hamiltonian) is a sum over constituent parts. In this case, the

1Setting −��(x) = ln%(�, x)makes this equivalence obvious.
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probability of Eq. (6.1) factorizes as

%(x) =
∏

8 4
−��8(G8)∑

x′
∏

8 4
−��8(G8′)

=

∏
8

4−��8(G8)∑
G8′ 4
−��8(G8′)

=

∏
8

4−��8(G8)

/8
=

∏
8

%(G8) (6.8)

where /8 is a partition function for component 8 and %(G8) is the probability for
component 8 to be in state G8 . This result simply states a well-known fact: the
probability for independent events to co-occur is the product of their individual
probabilities. From this factorization both ( and* are trivial to compute,

( = −
∑
8

∑
G8

%(G8) ln%(G8) (6.9)

and
* =

∑
8

∑
G8

�8(G8)%(G8). (6.10)

The next simplest case, conceptually, is one in which components interact in
pairs. A prototypical example is the Ising model, whose Hamiltonian is

�(2) = −
∑
8 , 9

�8 9�8�9 −
∑
8

ℎ8�8 , (6.11)

where each variable takes values �8 ∈ {−1,+1}. The matrix �8 9 encodes the inter-
action strength between component 8 and 9, and ℎ8 is an external field applied to 8.
Pairwise interactions naturally correspond to a network—we think of components
as nodes, and P as the (potentially weighted) adjacency matrix. While it is concep-
tually simple, the introduction of pairwise interactions completely changes both
the physics, and our ability to solve these models. Importantly, once interactions
are present we generally lose the ability to factorize %(x) in a convenient form.

Methods to solve the Isingmodel (andvariants) have been in active development
for a century [187, 188]. A lot of this work has focused on very stylized instances,
for example assuming the network of interactions has a specific lattice structure.
Typically, these methods rely on ingenious insights about the specific structure
and symmetry of the problem they solve. Solutions are hard to come by and
celebrated—even on a 2-dimensional square lattice the problem has only been
rigorously solved when there is no external field.

In practice, a more useful approach for solving problems is to accept some
level of approximation. Mean-field approximations would usually be the first port
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of call [128, 131, 180, 181]. These approximations replace certain variables in the
Hamiltonian with their expected values, so that we can approximate the system
by an ensemble of non-interacting components. This is generally well justified
when components interact with many others, and the law of large numbers per-
mits us to replace random quantities by their expected values. Thus, mean-field
approximations should be good for problems associated with dense networks.

In the sparse case—where each node or component only has a handful of
interactions—naive mean-field approximations often give substantially incorrect
answers. A significant improvement can be made, however, by making use of a
tree ansatz [181, 189, 190]. In this approach, one starts from the assumption that
the network of interactions form a tree. One derives equations that would solve
the problem on a tree, and then applies these same equations to the network of in-
terest, regardless of whether the real network is a tree or not. This approach gives
generally excellent results so long as there is not a high density of short cycles.
Because of this assumed lack of short cycles, these approximations are referred to
as “locally tree-like” approximations, and are usually considered exact on locally
tree-like networks in the thermodynamic limit (i.e. = →∞).

Many problems of interest, however, sit at the awkward barrier between the
domains of applicability of the mean-field and locally tree-like approximations.
Networks are often sparse in the sense of having low average degree, and thus
outside the realm of mean-field theory. Nevertheless, they are often dense with
short loops (e.g. large numbers of triangles or squares [1, 191]), and thus outside
the realm of locally tree-like approximations. In this chapter we shall address such
cases head on, by developing the neighborhood formalism of Ch. 5. This will
provide us with a sequence of increasingly sophisticated approximations, indexed
by A. Formally, as A → ∞ the equations will be exact on any network. However,
for the common case of globally sparse but locally dense networks, the approximation
may be highly accurate even for small values of A.

The structure for the rest of this chapter is as follows. In Sec. 6.1, we will
expound the logic of the tree ansatz for factorizing distributions and computing
/. This approach reduces calculations to 1- and 2-point marginal distributions,
and we will discuss how these marginal distributions can be efficiently evaluated
using a technique known as belief propagation [127, 128, 192]. All of this covers
well established ground. In Sec 6.2, however, we will consider the case of very
non-tree like networks, which may arise due to loops of 2-point interactions, or
due to higher order interactions. We will introduce formulas approximating / in
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this case, and consider a belief propagation method for computing the required
marginal distributions.2 We will also discuss the connections to the Kikuchi free
energy and generalized belief propagation [174, 193, 194], to which our approach is
related.

6.1 Tree ansatz

Suppose we have some network of interactions, �, and each node 8 ∈ � has an
associated variable G8 . Let x� denote a full assignment of these variables. The
object of present interest, then, is the distribution %(x�). The tree ansatz assumes
we can factorize %(x�) as

%(x�) =
4−��(xM)

/
=

∏
(8 , 9)∈� %(G8 , G 9)∏
8∈� %(G8)38−1 (6.12)

where (8 , 9) ∈ � denotes the edges of �, 8 ∈ � the nodes, and 38 the degree of
node 8. %(G8) and %(G8 , G 9) are the one- and two-node marginal distributions. Why
does Eq. (6.12) correspond to a tree ansatz? The reason is that such a form is correct
on a tree.

To convince ourselves that Eq. (6.12) is correct on a tree we can prove the result
inductively. Suppose that Eq. (6.12) is true for all trees with fewer than = nodes,
and consider an arbitrary tree � with = nodes. For an arbitrarily chosen node 8, it’s
straightforward to write

%(x�) = %(G8)%(x�\8 |G8) (6.13)

where � \ 8 is the network that arises once node 8 is removed from �. Since � was
a tree, removing node 8 will split � into one or more subtrees, each with fewer than
= nodes. Let �8→9 denote the sub-tree that contains node 9. We can then write

%(x�) = %(G8)
∏
9∈#8

%(G 9 |G8)%(x�8→9 |G 9)

= %(G8)
∏
9∈#8

%(G8 , G 9)
%(G8)

%(x�8→9 )
%(G 9)

(6.14)

2Methods for the required belief propagations are being developed with Alec Kirkley and Mark
Newman. These, along with other formal results Alec Kirkley is developing, are expected to appear
in A. Kirkley, G. T. Cantwell, and M. E. J. Newman, Probabilistic models on networks with loops.
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and since each �8→9 has fewer than = nodes, by the inductive hypothesis we have

%(x�) = %(G8)
∏
9∈#8

%(G8 , G 9)
%(G8)

∏
(:,;)∈�8→9

%(G: , G;)∏
:∈�8→9

%(G:)3:−1

=

∏
(8 , 9)∈� %(G8 , G 9)∏
8∈� %(G8)38−1 , (6.15)

as required. The base case, a tree with a single node, is trivial.
How does all this help us to compute the partition function /, or the entropy, (?

Assuming interactions are pairwise and Eq. (6.12) is valid, we have for the entropy

( = −
∑
(8 , 9)∈�

∑
G8 ,G 9

%(G8 , G 9) ln%(G8 , G 9) +
∑
8∈�
(38 − 1)

∑
G8

%(G8) ln%(G8) (6.16)

and energy

* =

∑
(8 , 9)∈�

∑
G8 ,G 9

%(G8 , G 9)�(G8 , G 9) +
∑
8∈�

∑
G8

%(G8)�(G8) (6.17)

where �(G8 , G 9) are the interaction terms in �(x�) between 8 and 9, and �(G8) are
the terms that only involve G8 . If we can calculate the one- and two-point marginal
distributions (by any method), both the entropy, (, and the energy,* , are simple to
evaluate, and hence also the partition function. In the next subsection we discuss
how these marginal distributions can be derived using belief propagation.

6.1.1 Evaluating one- and two-point marginal distributions with
belief propagation

By definition, the one-point marginal is

%(G8) =
1
/

∑
x�\8

4−��(x�) (6.18)

and because the network is a tree the terms factorize

%(G8) =
1
/
4−��(G8)

∏
9∈#8

∑
x�8→9

(
4−��(G8 ,G 9)4

−��(x�8→9
)
)
. (6.19)
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To evaluate %(G8), we only need its value up to a constant factor, since we can easily
enforce the normalization condition

∑
G8 %(G8) = 1. Noting this we can write

%(G8) ∝ 4−��(G8)
∏
9∈#8

∑
G 9

4−��(G8 ,G 9)@ 9→8(G 9) (6.20)

where by definition,

@ 9→8(G 9) =
1

/ 9→8

∑
x�8→9\9

4
−��(x�8→9

) (6.21)

is the probability for node 9 to be in state G 9 in the system composed of the sub-
tree �8→9 . Since this is again a one-node marginal in a tree, we can use the same
argument to evaluate @ 9→8(G 9), and get

@ 9→8(G 9) ∝ 4−��(G 9)
∏
:∈#9\8

∑
G:

4−��(G 9 ,G:)@:→9(G:). (6.22)

This provides a set of self-consistent equations, whose solutions provide us the
necessary quantities to evaluate the one-node marginals.

Solving the equations of Eq. (6.22) might seem daunting. If the network has
< edges then we have a system of 2< nonlinear equations. In practice, however,
solving these equations numerically is straightforward. First, one makes an initial
guess, for example set each @ 9→8(G 9) to a randomvalue. Then, one simply iteratively
updates the @’s using Eq. (6.22) until the whole system converges to a fixed point.

Once we have the @’s, the two-point marginals are also simple to compute. A
quick calculation establishes

%(G8 , G 9) ∝ 4−��(G8 ,G 9)@8→9(G8)@ 9→8(G 9). (6.23)

These equations are exactly correct for trees, and the iterative update algorithm
to solve Eq. (6.22) is known as belief propagation. Although it is not strictly correct,
itwill usually givegood results for non-treeswithout short cycles [127,128]. Perhaps
this is as good a justification as needed: the approximations are justified because
they work.

Amore theoretical justification for the approach relies on a variational argument
[174,193]. If we cannot compute %(x�) exactly, we can try to approximate it by some
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function in the form in Eq. (6.12),

&(x�) =
∏
(8 , 9)∈� &(G8 , G 9)∏
8∈� &(G8)38−1 . (6.24)

Minimizing the Kullback–Leibler divergence between & and %, while enforcing∑
G 9 &(G8 , G 9) = &(G8) and

∑
G8 &(G8) = 1, leads to a solution for & that matches the

belief propagation. However, since this procedure does not enforce the normaliza-
tion of &(x�) the argument is not fully rigorous.

6.1.2 Example: the Ising model

For the Ising model Eq. (6.22) becomes

@ 9→8(�9) ∝ 4�ℎ�9
∏
:∈#9\8

(
4−���9 @:→9(−1) + 4���9 @:→9(+1)

)
(6.25)

and the normalization condition is

@ 9→8(+1) + @ 9→8(−1) = 1. (6.26)

To demonstrate the accuracy of this approach we compare results based on
these equations to Monte Carlo simulations in Fig. 6.1. The first example network
contains a low density of short loops and the tree ansatz is clearly in excellent
agreement with the full simulations. However, the second example network has a
more realistic structure and the tree ansatz is fairly inaccurate. We rectify this in
the next section.

6.2 Neighborhood ansatz

Let us turn our attention to the neighborhood approach of Ch. 5, in order to
systematically improve upon the tree ansatz. Just as the locally tree-like approach
began with a factorization, we do the same again here. Assuming that the network
has no primitive cycles longer than A + 2, we can factorize %(x�) as

%(x�) =

∏
8∈� %(x# (A)

8

)∏
(8 , 9)(A)∈� %(x∩(A)

8 9

)2/|∩
(A)
8 9
|

(6.27)
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Figure 6.1: Bethe ansatz for the Ising model. Comparison of Eq. (6.25)—denoted
“Bethe”—toMonte Carlo simulations. We show results for two different networks.
Panel (a) and (b) show entropy and specific heat for a network with a low density
of short cycles. This network has 10 000 nodes and its clustering co-efficient [1]—a
measure of the density of short loops—is only 3.5 × 10−4. Panel (c) and (d) show a
networkwith amore realistic structure (courtesy of Alec Kirkley). This network has
9, 447 nodes and a clustering co-efficient of 0.103, in line with real-world networks
[1]. For the Bethe solution, we estimate the entropy with Eq. (6.16) and the specific
heat from thefirst derivative of Eq. (6.17). Derivativeswere computed automatically
using standard software [195]. For the network with a low density of short cycles—
panel (a) and (b)—we see excellent quantitative agreement. However, with a more
realistic structure—panel (c) and (d)—we see significant errors. While the entropy
showsdecent qualitative agreement, its derivatives (closely related to heat capacity)
are clearly wrong. Standard Monte Carlo methods were used for the simulations
[122,123].
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Figure 6.2: Neighborhoods and various related quantities for node 8 in an example
network. For this example we assume that A = 2 is sufficient to capture all primitive
cycles and thus calculations at A = 2 are exact. In (a) we show the neighborhood,
#8 = #

(2)
8
, which contains the edges and nodes shown in solid black. In (b)we show

the two distinct intersections at node 8. We show ∩8< = #8 ∩#< and ∩8 9 = #8 ∩#9 .
Note that all intersections between nodes in ∩8 9 are identical. In this particular
example we have ∩8 9 = ∩8: = ∩8; = ∩9: = ∩9; = ∩;: . In (c) we indicate the graphs
�8→9 and �8→< , two of the disconnected components formedwhen the edges of #8

are removed.

where ∩(A)
8 9
= #

(A)
8
∩ # (A)

9
and (8 , 9)(A) are pairs of nodes that are contained in each

other’s A-neighborhood, i.e. nodes 8 and 9 such that 8 ∈ # (A)
9

and 9 ∈ # (A)
8
. The

marginal distribution %(x
#
(A)
8

) is the marginal distribution for all variables in the
neighborhood of node 8. For convenience, in the following calculations we shall
assume the neighborhood size A has already been chosen correctly and frequently
drop it from the notation, hence # (A)

8
= #8 .

Before proving Eq. (6.27), it’s instructive to study Fig. 6.2, which illustrates the
relevant sets. In particular, as demonstrated in panel (b), many of the intersections
∩8 9 will be equivalent. In fact, for any pair :, ; ∈ ∩8 9 we have ∩8 9 = ∩:; . As a result
of this, we can write

%(x∩8 9 ) =
∏
(:,;)∈∩8 9

%(x∩8 9 )
1/(|∩8 9 |2 ) =

∏
(:,;)∈∩8 9

%(x∩:; )1/(
|∩:; |

2 ) (6.28)

where the product is over all
( |∩8 9 |

2
)
pairs (:, ;) ∈ ∩8 9 .

A proof of Eq. (6.27) can be achieved with the same inductive logic as before.
Assume that the formula is correct for all networks with fewer than = nodes and no
primitive cycles longer than A + 2. If � is a network with = nodes and no primitive
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cycles longer than A + 2 then

%(x�) = %(x#8 )
∏
9∈#8

%(x#9 |x#8 )%(x�8→9 |x#9 )

= %(x#8 )
∏
9∈#8

%(x#9 )
%(x∩8 9 )

%(x�8→9 |x#9\#8
), (6.29)

where the sub-graphs �8→9 are the resulting networks once the edges of #8 have
been removed (see Fig. 6.2). Since the subgraphs �8→9 have fewer than = nodes
and no primitive cycles longer than A + 2, we can use the inductive hypothesis and
Eq. (6.28) to arrive at

%(x�) = %(x#8 )
∏
9∈#8

1∏
(:,;)∈∩8 9 %(x∩:; )

1/(|∩:; |2 )
©­«

∏
:∈�8→9

%(x#:
)∏

(:,;)(A)∈�8→9
%(x∩:; )2/|∩

(A)
:;
|
ª®¬

=

∏
8∈� %(x# (A)

8

)∏
(8 , 9)(A)∈� %(x∩(A)

8 9

)2/|∩
(A)
8 9
|

(6.30)

as required. The base case is again trivial.
This factorization, Eq. (6.27), is correct whenever the network does not have

primitive cycles longer than A + 2. It can be further simplified by noting that

%(x
#
(A)
8

) = %(G8)
∏
9∈# (A)

8

%(x∩(A)
8 9

|G8)
1

|∩(A)
8 9
|−1

= %(G8)
∏
9∈# (A)

8

©­«
%(x∩(A)

8 9

)

%(G8)
ª®¬

1
|∩(A)
8 9
|−1

. (6.31)

Defining the quantities

,
(A)
8 9
= 1 −

∑
(; ,<)(A)∈�

1( |∩(A)
;<
|

2
) 1{(8 , 9)∈∩(A)

;<

} (6.32)

with 1{... } being the indicator function and

�
(A)
8
= 1 −

( ∑
9∈# (A)

8

1
| ∩(A)

8 9
| − 1

)
−

( ∑
9∈# (0)

8

,
(A)
8 9

)
, (6.33)
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insertion of Eq. (6.31) into Eq. (6.27) yields

%(x�) =
( ∏
(8 , 9)(A)∈�

%(x∩(A)
8 9

)1/(
|∩(A)
8 9
|

2 )
) ( ∏
(8 , 9)∈�

%(G8 , G 9),
(A)
8 9

) (∏
8∈�

%(G8)�
(A)
8

)
. (6.34)

Equation (6.34) will be exactly correct when there are no primitive cycles longer
than A+2. In this case, all, (A)

8 9
will be zero. When the factorization is not exact—i.e.

when there are primitive cycles we have not accounted for—then the %(G8 , G 9),8 9

termsensure each edgegets correctlyweighted in the factorization. These equations
are identical to the conventional tree approximation when A = 0.

Just as before, if we know the appropriate marginal distributions we can com-
pute ( and * from the factorization, and thus also evaluate /. For the entropy, (,
we have

( =
∑
(8 , 9)(A)∈�

1( |∩(A)
8 9
|

2

) 〈 − ln%(x∩(A)
8 9

)
〉
+

∑
(8 , 9)∈�

,
(A)
8 9

〈
− ln%(G8 , G 9)

〉
+

∑
8∈�

�
(A)
8

〈
− ln%(G8)

〉
(6.35)

and for the energy,

* =

∑
(8 , 9)(A)∈�

1( |∩(A)
8 9
|

2

) 〈�(x∩(A)8 9 )〉 + ∑
(8 , 9)∈�

,
(A)
8 9

〈
�(G8 , G 9)

〉
+

∑
8∈�

�
(A)
8

〈
�(G8)

〉
. (6.36)

A belief propagation can be used to evaluate the required marginal distributions,
as we describe in the next section.

6.2.1 Evaluating the neighborhood marginal distributions with
belief propagation

Assuming that the network does not contain long primitive cycles, removing the
neighborhood of node 8 will split the network into one or more sub-networks. As
before, we can thus trace over the degrees of freedom in each of these sub-networks
to arrive at

%(G8) ∝ 4−��(G8)
∑
x#8

∏
9∈#8

4−��(G8 ,G 9)@ 9→8(G 9) (6.37)

where
@ 9→8(G 9) =

1
/ 9→8

∑
x�8→9\9

4
−��(x�8→9

)
. (6.38)
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And as before, this quantity corresponds to the probability that node 9 would take
the value G 9 in the system defined by �8→9 . The same argument demonstrates

@ 9→8(G 9) ∝ 4−��(G 9)
∑
x#9\#8

∏
:∈#9\#8

4−��(G 9 ,G:)@:→9(G:) (6.39)

which defines a complete set of self-consistent equations. Neighborhoodmarginals
can be evaluated with

%(x#8 ) ∝ 4−�(�(G8)+�(x#8 ))
∏
9∈#8

@ 9→8(G 9) (6.40)

and the intersection marginals can be found from

%(x∩8 9 ) ∝ 4
−��(x∩8 9 )@8→9(G8)

∏
:∈∩8 9\8

@:→8(G:). (6.41)

In the next sub-section we again turn to the Ising model to explore the accuracy
of these approximations.

6.2.2 Example: the Ising model

For the Ising model, the equations we must solve are

@ 9→8(�9) ∝ 4�ℎ�9
∑
2#9\#8

∏
:∈#9\#8

4���9�: @:→9(�:), (6.42)

and again
@ 9→8(+1) + @ 9→8(−1) = 1. (6.43)

Figure 6.3 compares the solutions to these equations to the results of full Monte
Carlo simulations.

So long as the neighborhoods are not too large, the sum in Eq. (6.42) can be
evaluated directly. Unfortunately, if the neighborhoods are even moderately sized
(larger than around 10 nodes) then even this summay be too costly to evaluate. Al-
though we will not consider such cases here, future work should address methods
for approximating the sum, for example using Monte Carlo methods like we did
for percolation in Ch. 5.
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Figure 6.3: Neighborhood ansatz for the Ising model. Comparison of the A = 2
neighborhood calculation of Eq. (6.42) withMonte Carlo simulations. The example
network is identical to Fig. 6.1(c) and (d), and has a realistically high density of
short cycles. Equation (6.42) is iterated to convergence, and then the values are
used to compute the entropy from Eq. (6.35) and specific heat from the derivative
of Eq. (6.36). Again, standard software is used for derivatives [195] and standard
Monte Carlo techniques are used for the simulations [122, 123]. We see excellent
agreement between the equation based results and the simulations.

6.3 Discussion

We have considered factorizations of probability distributions, based on A-neigh-
borhoods. From these factorizations we are able to compute quantities such as the
partition function or entropy of a model.

Our approach is broadly applicable and will be most useful for complex, het-
erogeneous networks. It does not explicitly rely on any particular symmetry or
structure of the problem at hand and so in principle can be applied to arbitrary
problems. Of course, this generality has a downside: any highly symmetric and
regular problem can probably be significantly simplified, which our approach will
not do automatically.

While the method is formally correct for any network with A →∞, it is only of
practical use for small values of A, say A ≤ 4. For the approximations to be accurate
at small A we require the problem to have a specific structure. For B > A we require
either sufficiently few primitive cycles of length B + 2, or correlations along paths
of length B to be neglectable.

The schemewe have described is closely related to a general framework, known
as region based approximations [174, 193]. In this approach one first defines basic
regions of the network, and then constructs a region graph (see [174]). The general
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framework, however, does not come with a prescription by which to choose the
basic regions in complex networks.

One method by which region based approximations can be constructed is the
Kikuchi cluster variation method [174, 194]. In the Kikuchi framework, the tree
ansatz (Bethe free energy) corresponds to picking basic regions that contain two
connected nodes—every pair of connected nodes form a region. The obvious
refinement to this is to enlarge basic regions to each contain three connected nodes,
or four nodes, or so forth. Applying such a prescription to complex networks,
however, is not necessarily wise. In networks with large numbers of short loops,
the number of equations one needs to solve will grow exponentially and many
regions will substantially overlap with many others.

The neighborhood framework we’ve discussed can be interpreted as a reason-
able prescription to choose regions in complex networks. On networks without
long primitive cycles, one should take the intersections of neighborhoods to form
basic regions. Then, the general formulation for the Kikuchi free energy provides
an equivalent expression to the one we derive. However, in most real scenarios—
when the neighborhood ansatz is only an approximation—there are deviations
between our formula and the Kikuchi free energy. In this case intersections will
have non-trivial overlaps and directly inserting these regions into the Kikuchi free
energy would lead to significant complications, with new equations for the inter-
sections of intersections, and the intersections of the intersections of intersections,
and so forth.

Our general approach should work well on clustered, complex networks, which
are densewith short cycles but donot otherwise appear to have lattice like structure.
Applying the approach in practice, however, may take some finesse. The key
equation, Eq. (6.39), may be computationally expensive to evaluate, yet the utility
of the method relies critically on fast evaluation of this quantity. Still, we only need
to be able to evaluate these equations quickly on neighborhood-sized networks.
Thus, even if we employ a naive (exponentially slow) algorithm, one full iteration
of the belief propagation will still scale linearly with the number of nodes in the
network.

Future work should be focused on two open problems. First, for real-world net-
works we should establish the relation between the approximation level A and the
accuracy of the calculations. Our hope is that the accuracy of these approximations
increases monotonically, but we have only provided some heuristic justification for
this and the assumption may be substantially in error. Second, we should explore
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efficient schemes for evaluating or approximating themessage equations, Eq. (6.39).
In principle, this is a fairly straightforward problem. All we need is an algorithm
that is fast on small networks—we need not worry about whether it scales effi-
ciently. In practice, of course, highly optimizing calculations takes considerable
engineering prowess.
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CHAPTER 7

Conclusion

In this thesis we have critically considered the role of correlation in complex net-
works. We have approached the topic from multiple angles.

In Chs. 2 and 3 we noted that the behavior of individual nodes is often con-
siderably more consistent than conventional independence assumptions assume.
Within our everyday lives, this observation is practically trivial. If all of your
previous romantic partners were men, it is not a tremendous insight to note that,
statistically speaking, the next one is also likely to be a man. As trite as this “in-
sight” may seem, common network tools fail to account for this phenomenon. In
Ch. 2 we proposed measures to accurately characterize these effects, and in Ch. 3
we explained how this mode of thinking improves data recovery and community
detection in networks.

In Ch. 4 we considered the bare effects of correlated edge data. Assuming
that networks represent some underlying set of relations, and that the strength of
these relations are correlated, we find that several commonly observed properties
of complex networks naturally emerge. As a result, the ubiquity of these properties
should not be surprising—they are a natural consequence of correlation.

In Chs. 5 and 6 we shifted focus away from the effect of correlation on network
structure. Instead, we considered the network structure to be fixed and given
and studied the effect of this structure on network calculations. If networks are
clustered and loopy—as they almost always are—the independence assumptions of
standardmessage passing techniques break down. We considered a procedure that
accounts for correlations due to network structure and applied it to three examples:
percolation, the eigenvalue spectrum of sparse matrices, and partition functions.

Each chapter of this thesis concluded with a discussion of extensions to the re-
sults therein. We shall not repeat those remarks here. Rather, it is now appropriate
to consider a more holistic view.
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This thesis began with some general thoughts as to why we should study net-
works at all. A keypoint that I hope to have communicated, both in the introduction
and throughout the thesis, is that analysis of "who is connected to whom?" (and
equally, who is not connected to whom) leads to an intricate and unique web of
structure. Accepting that the particulars of structure matter puts us in an awkward
position. While training in theoretical physics exhorts one to strive for “theory”,
any theory of networks must abate two opposing forces. First, it must be general
enough to account for the particularities of any real-world situation. Second, it
must be specific enough to entail real consequences. As things stand, I find it dif-
ficult to even picture what such a general theory would look like, at least “theory”
in the physicist’s sense. A better prospect, perhaps, is to look for a framework—
a mathematical formalism that is able to fit arbitrary data once problem specific
assumptions are added.

On the face of it, exponential random graphs [91,196] appear to be a reasonable
candidate for such a general network framework. They are able to account for
arbitrary patterns and can be tested directly against data. Currently, however,
their significant technical problems [93–95] seem like an insurmountable barrier.
Exchangeable random graphs [149, 150] are an alternative candidate. They also
face significant technical issues, but there has been recent progress [197]. Still,
exchangeability is a somewhat contrived theoretical property, closely related to
the assumption of “independent and identically distributed” data [150]. Whether
exchangeability assumptions can really make sense of the rich interdependence of
real-world complex systems is an open question. Future work should consider
the suitability of exponential random graphs, exchangeable random graphs, or any
other attractive options for a general framework.

Perhaps therewon’t be a fully general andwell justified framework for networks,
but neither is this a necessary prerequisite for their utility. The important point
is that for networks to achieve a broad and lasting impact, a tighter connection
between theory and data is necessary. To date, a significant portion of the field has
concerned itself with modeling the structure and formation of networks but such
work is usually detached from serious empirical experimentation and is instead
more concerned with the mathematical properties of the models. In stark contrast,
another sub-field is at essentially the opposite end of the spectrum, developing
networks as a practical tool for data analysis. Insights gained from studying simple
rules for constructing complex networks are often difficult to apply directly to data
and for all their influence on the field, it is still not really clear how to directly
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apply the work of Barabási and Albert [40] or Watts and Strogatz [41]. Conversely,
practicalmethods for specific data analysis tasks do little for general understanding.
Brin and Page’s PageRank [52] is a useful innovation, but as scientists, what do we
learn from it?

As crude as graphs may be for representing real-world complex systems, they
turn out to be mathematically subtle. Even correctly accounting for triangles is no
simple task, and in the short term I believe triangles should remain a significant
area of focus. Howeverwemove forward, wemust be comfortablewith the fact that
by their very nature, networks are strongly interdependent objects. Contributing
to a general ease and familiarity with correlation and interdependence has been a
goal of this thesis, but the project is far from complete.
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APPENDIX A

Estimating Mixing Parameters

A.1 Point estimates for 


The maximum likelihood estimate for "A is given by the location of the maximum
of

!A("A) =
∑
8∈A

[
ln �("A + k8) − ln �("A)

]
. (A.1)

Here ln �(x) is the log of the multivariate beta function,

ln �(x) = − lnΓ(GΣ) +
∑
B

lnΓ(GB), (A.2)

with GΣ =
∑
B GB . Both the Jacobian and Hessian of !A are straightforward to

compute, so in principle one could perform the maximization using optimizers
such as Newton’s method that require second derivatives.

There are however some technical complications with direct maximization
of (A.1). First, one must impose the constraint 
AB > 0, which can be done by
re-parameterizing with HAB = ln 
AB and writing

!A(yA) =
∑
8∈A

[
ln �(4yA + k8) − ln �(4yA )

]
. (A.3)

An unconstrained maximization with respect to yA then achieves the desired goal.
Second, and more important, under some circumstances the maximum is not

guaranteed to exist and !A can increase as HAB → ±∞. For a well-defined estimate
we must insist on a maximum at a finite value of HAB . A simple way to do this is to
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add a quadratic regularization term to the likelihood thus:

!A(yA) =
∑
8∈A

[
ln �(4yA + k8) − ln �(4yA )

]
− �

∑
B

H2
AB , (A.4)

where � is a small positive constant.
From a Bayesian perspective this quadratic regularization corresponds to plac-

ing a normal prior on HAB with mean zero and variance (2�)−1, or equivalently a
log-normal prior on 
AB . As �→ 0 the prior on HAB becomes uniform, so any small
fixed value of � should give acceptable results. We use � = 2−7, equivalent to � = 8,
which implies that 
AB falls roughly between the 3� bounds 10−10 and 1010.

To find the maximum of Eq. (A.4) one can use any numerical optimization
technique. For techniques that make use of the Jacobian and/or Hessian, the
Jacobian is given by

%!A
%HAB

= 4HAB
∑
8∈A

[
#(4HAB + :8B) − #

(∑
C 4

HAC + :8
)
− #(4HAB ) + #

(∑
C 4

HAC
) ]
− 2�HAB ,

(A.5)

where #(G) = Γ′(G)/Γ(G) is the so-called digamma function. The Hessian is given
by

%2!A

%H2
AB

= 4HAB
%!A
%HAB

+ 42HAB
∑
8∈A

[
#′(4HAB + :8B)−#′

(∑
C 4

HAC + :8
)

− #′(4HAB ) + #′
(∑

C 4
HAC

) ]
− 2�,

%2!A
%HAB%HAC

= 4HAB+HAC
∑
8∈A

[
#′

(∑
C 4

HAC
)
− #′

(∑
C 4

HAC + :8
) ]
, (A.6)

where #′(G) is the trigamma function.

A.2 Bayesian estimates for ' and +

To compute an estimate of any quantity that depends on 
, we can average its value
over the posterior distribution. For any function 5 (
) the average is given by

〈 5 〉 =
∫

5 (
)%(
 |�, 6) 3
, (A.7)

111



which can also be written

〈 5 〉 =
∫
5 (H) exp

[∑
A!A(yA)

]
3H∫

exp
[∑

A!A(yA)
]
3H

, (A.8)

where HAB = ln 
AB and !A(yA) is defined by Eq. (A.4).
Both ' and + , as we have defined them, are averages over the groups, ' =∑

A ?A'A and + =
∑
A ?A+A . For any such function we can compute the averages for

the individual groups separately

〈�〉 =
∑
A

?A 〈�A〉 =
∑
A

?A

∫
�A(y) exp

[
!A(y)

]
3y∫

exp
[
!A(y)

]
3y

. (A.9)

Integrals of this form can be approximated using Laplace’s method, which in this
case gives

〈�A〉 '
√

det�∗A
det�A

exp
[
!∗A(ŷ∗A) − !A(ŷA)

]
, (A.10)

where
!∗A(y) = !A(y) + ln �A(y), (A.11)

ŷA = arg max
y

{
!A(y)

}
, (A.12)

ŷ∗A = arg max
y

{
!∗A(y)

}
, (A.13)

and �∗A and �A are minus the inverse of the Hessians of !∗A and !A at ŷ∗A and ŷA . In
this ratio form some errors cancel and Laplace’s approximation has only an $(=−2)
error [198].

Estimates for ' and + can now be computed from Eqs. (A.9) and (A.10) with

�(') =
∑
A

?A
4HAA∑
B 4

HAB
, (A.14)

�(+) =
∑
A

?A
1

1 +∑
B 4

HAB
. (A.15)

The values of ŷA and ŷ∗A along with the Hessians can be computed from Eqs. (A.5)
and (A.6). Error estimates can also be computed from estimates of '2 and +2.

Software to compute estimates of ' and + is available [199].

112



APPENDIX B

Technical Details for Normal Distributions

B.1 Multivariate normal integrals and Hermite poly-
nomials

The probability of a two-star existing with nodes 8 , 9 and : as constituents is given
by

%[-8 9 , -8: ≥ C] =
1

2�
√

1 − �2

∫ ∞

C

∫ ∞

C

4
− 1

2

(
G2−2�GH+H2

1−�2

)
3G3H. (B.1)

Direct computation of the integral is not straightforward but we can compute it
quickly using the Hermite polynomials [152]. A quick outline of this method: for
= ≥ 0, define the Hermite polynomials as

�=(G) = (−1)=4 G
2
2
3=

3G=
4−

G2
2 . (B.2)

As thename suggests, theHermite polynomials are in fact polynomials, for example
�0(G) = 1, �1(G) = G, �2(G) = G2 − 1, and so on. For notational convenience also
define

�−1(G) =
1 −Φ (G)
) (G) . (B.3)

Using the Hermite polynomials, we can expand Eq. (B.1) as an infinite sum and
integrate term by term. The final result is given by Eq. (4.15). The same trick is
used for the 3-dimensional integral to give Eq. (4.16).
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B.2 Degree distribution

Since, byassumption, all nodes in thismodel are equivalent,wewill simply consider
the one-nodemarginal to compute the degree distribution. Let[ be all the terms in
^ that are associated with node 0, i.e. * 9 = -09 . Then, [ is multivariate normally
distributed, N(0,�(0)), where �(0) has ones along the diagonal and � everywhere
else

Σ
(0)
9:
= Σ(0, 9),(0,:) =


1 for 9 = :,

� otherwise.

The focal node will have degree : when exactly : terms in [ are larger than the
threshold C. There are

(
=−1
:

)
different ways this can happen and each is equally

likely. So, to compute ?: we can compute the probability that the first : terms in[

are larger than C and all others are smaller, and then multiply by
(
=−1
:

)
to obtain

?: =

(
= − 1
:

)
% [*1, . . . , *: ≥ C;*:+1, . . . *=−1 < C] . (B.4)

To solve this integral we use a standard trick [200]. First, we note that if /0, /1, . . . ,

/=−1 are i.i.d. N(0, 1) then

((
√

1 − �/1 +
√
�/0), . . . , (

√
1 − �/=−1 +

√
�/0))) (B.5)

will be distributed identically to [ . Further, once we know the value of /0 then
all the terms are independent, and the probability that any one of them is greater
than C is the probability that /1 ≥

C−√�I√
1−�

. Given /0 = I, the probability that exactly

: values will be greater than C and the rest less than C is(
= − 1
:

) [
1 −Φ

(
C − √�I√

1 − �

)] :
Φ

(
C − √�I√

1 − �

)=−1−:

. (B.6)

Averaging this quantity over I then provides us with the correct expression,

?: =

(
= − 1
:

) +∞∫
−∞

[
1 −Φ

(
C − √�I√

1 − �

)] :
Φ

(
C − √�I√

1 − �

)=−1−:

)(I)3I︸                                                           ︷︷                                                           ︸
=�=,:

(B.7)

114



where �=,: is the integral. A change of variables allows us to write

�=,: =

√
1 − �
2��

∫ ∞

−∞
4 5:(H)3H (B.8)

where

5:(H) = : ln
[
1 −Φ(H)

]
+ (= − : − 1) ln

[
Φ(H)

]
− 1

2

(
C −

√
1 − �H
√
�

)2

.

(B.9)

A standard approach to approximate such an integral is to useLaplace’smethod.
In this approach one expands 5 about its maximum and then neglects higher order
terms, 5 (H) ≈ 5 (H0) − | 5

′′(H0)|
2 (H − H0)2. Having done this, the integral reduces

to a standard Gaussian integral. While this approach is asymptotically correct
(in the large = and : limit), we can improve the approximation by including more
terms using Gauss-Hermite quadrature. Re-writing the integral again, andmaking
another change of variables:

�=,: =

√
1 − �

2��| 5 ′′
:
(H0)|

4 5:(H0)
∫ ∞

−∞
4
− G2

2 +':

(
G√
| 5 ′′
:
(H0)|
+H0

)
3G (B.10)

where ': is the remaining terms of 5: after expansion:

':(H) = 5:(H) − 5:(H0) +
| 5 ′′
:
(H0)|
2 (H − H0)2. (B.11)

Now we can approximate the integral using Gauss-Hermite quadrature:

�=,:(#) =
√

1 − �
2��| 5 ′′

:
(H0)|

4 5:(H0)


#∑
8=1

F84
':

(
G8√
| 5 ′′
:
(H0)|
+H0

) , (B.12)

where G8 are the points for which �# (G8) = 0 and the weights F8 are

F8 =
# !
√

2�
#2 [�#−1 (G8)]2

. (B.13)
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Note that �=,:(1) is Laplace’s approximation, i.e. Laplace’s approximation is a first
orderGauss-Hermite quadrature at themaximumof 5: , while �=,:(#) approximates
the remainder terms with increasingly high order polynomials and so we expect
�=,:(#) → �=,: as # increases.

B.3 Approximation of inverse cumulative distribution
function

The normal distribution’s inverse cumulative distribution function, Φ−1 (G), can be
approximated [201] for 0 < G ≤ 0.5 as

Φ−1 (G) ≈ 00 + 01B

1 + 11B + 12B2 − B (B.14)

with
B =

√
−2 ln (G) (B.15)

and

00 = 2.30753, 11 = 0.99229, (B.16a)

01 = 0.27061, 12 = 0.04481. (B.16b)

For 0.5 < G ≤ 1 we use Φ−1(G) = −Φ−1(1 − G).
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APPENDIX C

Derivation of the Message Passing Equations

Below we provide some additional details of the derivation of the fundamental
message passing equations, Eqs. (5.4) and (5.19).

C.1 Percolation

The derivation of Eq. (5.4) follows similar lines to that of Eq. (5.3). By analogy with
Eq. (5.2) we can write a generating function for �8←9(B |Γ9\8) thus:

�8←9(I |Γ9\8) =
∑
B

�8←9(B |Γ9\8) IB

=

∑
B

IB

{ ∑
{B: ::∈Γ9\8}

[ ∏
:∈Γ9\8

� 9←:(B:)
]
�(B − 1,

∑
:∈Γ9\8 B:)

}
= I

∏
:∈Γ9\8

∑
B:

IB:� 9←:(B:)

= I
∏
:∈Γ9\8

�9←:(I)

= I
∏
9∈# (A)

9\8

[
�9←:(I)

]F 9\8 ,: , (C.1)

where in the last line we have introduced the random variable F 9\8 ,: which takes
the value 1 if : ∈ Γ9\8 and 0 otherwise. In other words, F 9\8 ,: = 1 if there is a path of
occupied edges from 9 to : in # (A)

9\8 . To compute the generating function for �8←9(B)
we simply average Eq. (C.1) over the possible realizations of Γ9\8 , which leads to the
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message passing equations

�8←9(I) =
∑
B

�8←9(B) IB

=

〈∑
B

�8←9(B |Γ9\8) IB
〉
Γ9\8

= I
〈∏
:∈# (A)

9\8

�9←:(I)F 9\8 ,:
〉
Γ9\8

= I�8←9

(
H9←(I)

)
, (C.2)

as stated in the main text.

C.2 Spectrum

The derivation of themessage passing equations formatrix spectra ismore complex
than for percolation and is given only in abbreviated form in the main text. Here
we give the full derivation including intermediate algebraic steps.

As described in the main text, the spectral density of a symmetric matrix A is
given by

�(I) = − 1
=�I

∞∑
B=0

=∑
8=1

- B
8

IB
, (C.3)

where - B
8
is the sum of the weights of all closed walks of length B that start and

end at node 8. This sum can be expressed in terms of the sum .B
8
of the weights of

all excursions of length B by Eq. (5.10), which we repeat here for convenience:

- B
8 =

∞∑
<=0

[ ∞∑
B1=1
· · ·

∞∑
B<=1

�
(
B,

∑<
D=1BD

) <∏
D=1

.
BD
8

]
. (C.4)

Substituting this expression into (C.3) we get

�(I) = − 1
=�I

=∑
8=1

∞∑
<=0

<∏
D=1

[ ∞∑
B=1

.B
8

IB

]
, (C.5)

and, defining the function

�8(I) =
∞∑
B=1

.B
8

IB−1 , (C.6)
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we find that

�(I) = − 1
=�I

=∑
8=1

∞∑
<=0

[
�8(I)
I

]<
= − 1

=�

=∑
8=1

1
I − �8(I)

, (C.7)

as stated in the main text.
The function �8(I)we calculate from Eq. (5.15), which tells us that

�8(I) =
∞∑
;=0

1
I ;

∑
F∈, ;

8

|F |
∏
9∈F

∞∑
<=0

<∏
:=1

∞∑
B=1

.B
8←9

IB
=

∑
F∈,8

|F |
∏
9∈F

1
I − �8←9(I)

, (C.8)

where,8 is the set of excursions of all lengths in the neighborhood of 8, |F | is the
weight of excursionF (i.e., the product of thematrix elements along the excursion),
and

�8←9(I) =
∞∑
B=1

.B
8←9

IB−1 . (C.9)

By an equivalent line of argument we can also show that

�8←9(I) =
∑
F∈,9\8

|F |
∏
:∈F

1
I − �9←:(I)

. (C.10)

This last expression defines the message passing equations for the spectral density
calculation. For any given value of I they can be iterated to calculate the spectral
density via Eqs. (C.7) and (C.8).

As discussed, the efficiency of this approach relies crucially on being able to
perform the sum over excursions F from node 9 efficiently, which we do as follows.
If excursion F returns to 9 after just a single step (via a self-loop) then it has weight
|F | = � 9 9 . Otherwise, if it takes two or more steps for a total of ; + 1 steps, visiting ;
(not necessarily distinct) nodes :1, :2, . . . , :; along the way (other than the starting
node), then the weight is

|F | = � 9 ,:1

(
;−1∏
<=1

�:< ,:<+1

)
�:; , 9 . (C.11)
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Inserting these values into (C.10) we get

�8←9(I) = � 9 9 +
∞∑
;=1

∑
F∈, ;

9\8

� 9 ,:1

I − �9←:1(I)

(
;−1∏
<=1

�:< ,:<+1

I − �9←:<+1

)
�:; , 9 (C.12)

where , ;
9\8 is the set of all excursions of length ; + 1 in #9\8 . The sum over

excursions is equivalent to a sum over all possible sets of ; nodes :1 . . . :; within
the neighborhood, so we can write

�8←9(I) = � 9 9 +
∞∑
;=1

∑
:1

· · ·
∑
:;

� 9 ,:1

I − �9←:1(I)

(
;−1∏
<=1

�:< ,:<+1

I − �9←:<+1

)
�:; , 9 . (C.13)

Definingv8←9 to be the vectorwith elements E8←9 ,: = � 9: if nodes 9 and : are directly
connected in # (A)

9\8 and 0 otherwise, A8←9 to be the matrix for the neighborhood of 9
with the neighborhood of 8 removed, such that

�
8←9

:;
=

{
�:; for :, ; ≠ 9 and edge (:, ;) ∈ # (A)

9\8 ,

0 otherwise,
(C.14)

and D8←9(I) to be the diagonal matrix with entries � 8←9

::
= I − �9←:(I), we then

have

�8←9(I) = � 9 9 +
∞∑
;=1

∑
:1

∑
:;

E8←9 ,:1

(
�
8←9

:1 ,:1

)−1 [
A8←9

(
D8←9

)−1
] ;−1

:1 ,:;
E8←9 ,:;

= � 9 9 +
[ (

D8←9
)−1 v8←9

]) [
I −A8←9

(
D8←9

)−1]−1v8←9

= � 9 9 + v)8←9

(
D8←9 −A8←9

)−1 v8←9 , (C.15)

as stated in the main text.
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APPENDIX D

Monte Carlo Algorithm for Percolation
Message Passing

In the message passing equations for bond percolation, Eqs. (5.3) and (5.4), the
quantity �8(y) is a generating function encoding the probability that we can reach
nodes in the neighborhood # (A)

8
of a given node 8 by following occupied edges. It

is defined by
�8(y) =

〈 ∏
9∈# (A)

8

H
F8 9

9

〉
Γ8

, (D.1)

where F8 9 is a binary (zero/one) random variable indicating whether node 9 is
reachable from node 8 and the average is performed over all possible sets Γ8 of
reachable nodes, each weighted by the sum of the probabilities of all edge configu-
rations that can give rise to that particular set. The number of such configurations
can become large as the size of the neighborhood grows, making exhaustive av-
erages difficult to perform numerically. For larger neighborhoods, therefore, we
employ a Monte Carlo averaging scheme as follows.

Suppose that node 8 has degree :8 and that there are :8 + " edges in the
neighborhood # (A)

8
, with :8 of them directly connected to 8 and" additional edges

that complete cycles between 8’s neighbors. For locally tree-like networks there
are no cycles and " = 0, but in general " ≥ 0. Let �8(y|<) be the value of
�8(y)when exactly < of the" additional edges are occupied, which happens with
probability

(
"
<

)
?<(1 − ?)"−< . Then we can write �8(y) itself in the form

�8(y) =
"∑
<=0

�8(y|<)
(
"

<

)
?<(1 − ?)"−< . (D.2)

Our algorithm works by making a Monte Carlo estimate of �8(y|<) using a
version of the algorithm of Newman and Ziff [202] and then applying (D.2). The
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basic idea is to occupy edges one by one and keep track of the connected percolation
clusters using an efficient union-find data structure based on pointers [202]. Using
this data structure the algorithm is able to determine whether two nodes belong to
the same cluster, or to join two clusters together, in (very nearly) constant time. To
compute �8(y|<) itself, the algorithmmaintains a record of two quantities for each
cluster, a real value G and a probability @. In detail the algorithm works as follows.

The clusters we consider are the sets of nodes in the neighborhood, other than 8,
that are connected via occupied edges in #8(A) but not via node 8 itself, i.e., via the
" additional edges mentioned above. Initially none of the " edges is occupied
and each node is a cluster in its own right. For each of these one-node clusters 9
we assign G 9 = H 9 and we set @ 9 = 1 − ? if node 9 is a direct neighbor of 8 or @ 9 = 1
otherwise. We also compute the quantity

D0 =
∏
9

(
@ 9 +

(
1 − @ 9

)
G 9

)
. (D.3)

Now we occupy the " edges one by one in random order. Let 91 and 92 be the
nodes at the ends of the <th edge occupied. If 91 and 92 are already part of the
same cluster before the edge is added (which, as we have said, we can determine
in time O(1)), then we set

D< ← D<−1. (D.4)

Otherwise, if 91 and 92 are in different clusters A and B, then the addition of the <th
edge joins A and B together (which again we can achieve in O(1) time) to make a
larger cluster which, without loss of generality, we will label A. At the same time
we set

D< ←
D<−1

[@A +
(
1 − @A

)
GA][@B + (1 − @B)GB]

, (D.5)

GA ← GAGB , (D.6)

@A ← @A@B , (D.7)

D< ← D<
[
@A + (1 − @A)GA

]
. (D.8)

After all " edges have been occupied, the " + 1 quantities D< with < = 0 . . . "
give us an estimate of �8(y|<), and �8(y) can be calculated from (D.2) as

�8(y) '
"∑
<=0

D<

(
"

<

)
?<(1 − ?)"−< . (D.9)
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The calculation of �8←9(y) is identical except for the replacement of the neighbor-
hood by # (A)

9\8 . Finally, we average the results over repeated runs of the algorithm
to get our estimate of the generating functions. We find surprisingly good results
with averages over a relatively small number of runs—we used just eight runs for
each neighborhood to generate the results shown in Fig. 5.2.

Note that the sequence of edges added and cluster joins performed does not
depend on the values of either y or ?, which means we can use the same sequence
to calculate �8(y) for many different y and ?. We can also use the same sequence
on successive iterations of the message passing process, which has the benefit of
removing any statistical fluctuations between iterations and is useful when estimat-
ing convergence of the message passing process, which can otherwise be difficult
to do.

As is often the case for Monte Carlo calculations, it is not easy to say exactly
how many runs will be required to get good results. Note, however, that if we
perform ( runs for each neighborhood then, because neighborhoods are sampled
independently, we effectively generate (= configurations of the whole network, and
this number can become very large for large = evenwhen ( is small. Thuswe expect
to get good answers even with quite modest values of (, and indeed this is what
we see in the calculations reported in this thesis.
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