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ABSTRACT

The size and complexity growth of deep neural networks (DNNs), which is driven by the push

for higher accuracies and wider ranges of functionality, is outpacing the growth of hardware for

mobile systems. Thus, edge devices must collect and transmit sensory data for analysis on a

remote server. However, offloading the data to be processed on the backend server can be prob-

lematic due to the high cost/latency of wireless communication of the raw data as well as potential

privacy/security concerns.

Hence, there has been significant research interest to increase performance and energy effi-

ciency of deep learning computation on both mobile devices and servers. These techniques can

be divided into two major categories: input-invariant and input-variant. Input-invariant methods

leverage hardware and software techniques, such as pruning, to accelerate a single DNN for the

entire dataset. On the other hand, input-variant approaches focus on the fact that most of the inputs

do not require the entire computational power of the model to produce an accurate final output.

Consequently, they employ a combination of simple and complex models to dynamically adjust

the complexity of the DNN to input difficulty.

Both DNN pruning and intelligent combination of DNNs require machine learning expertise

and manual design, which makes them hard to implement and deploy. This thesis proposes tech-

niques to improve performance and applicability of both input-invariant and input-variant methods.

First, it introduces a new category of input-variant solutions to maximize energy efficiency and

minimize latency of DNNs by customizing systems of DNNs based on input variations. Instead

of conventional DNN ensembles, it proposes a data heterogeneous multi-NN system to divide the

xii



data space into subsets with one specialized learner for each subset. In addition, an intelligent hy-

brid server-edge deep learning system is introduced to dynamically distribute DNN computation

between the cloud and edge device based on the input data and environmental conditions. Further-

more, it suggests an input-driven synergistic deep learning system, which dynamically distributes

DNN computation between a more accurate big and a less accurate little DNN. At the end, it in-

troduces a noniterative double-shot pruning method, which takes advantage of both architectural

features and weight values to improve the simplicity and applicability of pruning.

Compared to the conventional approaches, on average, an energy consumption reduction up

to 91% and a performance improvement up to 12.3× are achieved, while maintaining the original

accuracy.
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CHAPTER 1

Introduction

In the last few years, due to the large and rapidly increasing quantities of available data, Deep

Neural Network (DNN) models trained on a large dataset significantly outperform traditional ma-

chine learning techniques in various domains [1], such as object detection, e.g. Fast R-CNN [2, 3],

image classification [4, 5], speech recognition, e.g. Microsoft Cortana [6], natural language pro-

cessing [7], and handwriting recognition [8].

Current mobile devices are capable of generating huge amounts of high-quality data in the form

of video and images to feed DNNs for various applications. Since DNNs are the state-of-the-art

algorithms for many mobile vision applications, they are becoming an essential part of using and

sharing photos and videos taken by smartphone cameras. However, the size and complexity of

DNNs are increasing rapidly to improve their accuracy and functionality [9, 10].

These massively complex models are not necessarily suited to low-power edge devices [11].

Therefore, traditional mobile devices offload DNN computation to the cloud, which may require

transferring large amounts of data to a remote server [12, 13]. However, this additional latency

and energy consumption are not tolerable by many time-sensitive applications on power-limited

devices. For instance, adding delay to image translation applications (Google image translate),

which are expected to respond immediately, decreases the user satisfaction. High-speed network

connectivity may also not always be available depending on location.

To overcome these problems, numerous approaches were proposed to improve performance

and energy efficiency of feedforward inference. These methods can be divided into input-invariant
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and input-variant techniques. The input-invariant approaches are further classified to two main

categories: hardware-based and software-based.

Hardware-Based: Because of the inherent parallelism, DNNs can be efficiently accelerated

with specialized hardware. Many recent hardware platforms have special features for DNN pro-

cessing, such as special vector instructions and reduced precision arithmetic support to perform

faster deep learning computation. In addition, there are various systems that are built specifically

for DNN processing, in the form of custom DNN servers and embedded System-on-Chips (SoCs).

These hardware-based approaches concentrate on utilizing intra- and inter-layer parallelism

to accelerate computation and improve energy efficiency, which is limited to layer-level designs

instead of considering the whole structure of DNNs.

Software-Based: Traditionally, DNN models were designed to maximize accuracy without

considering the underlying hardware. However, this approach can lead to designs that are complex

to implement and deploy. To address this problem, recently, there has been an increased interest in

maximizing energy efficiency and performance of DNNs while maintaining their original accuracy

or minimizing the accuracy loss.

DNNs are typically overparameterized, which results in a large amount of inherent redundant

computation per inference. Software-based methods focus on reducing the storage and computa-

tional resources required for DNNs by eliminating unnecessary information [14]. This redundancy

can be removed by reducing the precision of operations and operands (weights/activations), includ-

ing using fixed-point instead of floating-point, reducing the bitwidth, nonuniform quantization, and

weight sharing. In addition to precision reduction, there are various methods to reduce the number

of operations and model size, such as compression, pruning, compact network architecture design,

and knowledge distillation.

Many of these input-invariant approaches require rigorous hardware modifications or machine

learning expertise to heavily tune hyperparameters and are non-trivial to be extended to new archi-

tectures and various tasks. For example, magnitude based network pruning approaches [11] rely

on pretraining and expensive iterative prune – fine-tune cycles. In addition, both hardware- and
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software-based approaches try to improve the performance and efficiency of a single DNN for all

input instances existing in a dataset without considering their variations and dissimilarities.

Input-Variant: DNNs are usually overprovisioned and most of the inputs do not require the

entire computational power of the model to produce an accurate final output. Although very large

and computationally intensive models are necessary to correctly classify the hard inputs, much

smaller models would also work decently for most of the inputs [15]. Input-variant approaches

combine simple and complex models to run easy inputs efficiently on simple models and utilize

complex models only for hard inputs for maintaining the high accuracy.

DNNs with early exits, such as BranchyNet [16], combine multiple DNNs in a single DNN by

adding multiple branches to the model and terminating the computation as soon as the classification

confidence is high enough. Another group of approaches for taking advantage of input variations

augment DNNs with gating units to decide whether to bypass the subsequent layer based on the

previous layers [17].

All these input-variant approaches require machine learning expertise and manual design to

create DNNs with the desired behavior. For example, DNNs with early exits require the user to

determine the location of each exit and design the side branch classifiers. In addition, multiple exit

points result in multiple loss functions which make the training process more complicated.

This thesis addresses the limitations of the traditional DNN computation complexity reduction

techniques by customizing systems of DNNs based on input variations existing in datasets and

simplifying the use of pruning techniques for nonexpert users. We demonstrate that additional

energy efficiency and performance improvements could be achieved through input-variant accel-

eration techniques while eliminating the manual design by replacing a single DNN with multiple

off-the-shelf or automatically created DNNs, and offloading most of the computation on the simple

ones. In addition, we show that it is possible to obtain extremely sparse networks using nonitera-

tive pruning approaches with no additional hyperparameters or complex pruning schedules, while

maintaining the same accuracy as the existing baselines. Chapter 3 proposes a data heterogeneous

multi-NN system, which partitions the data space into subsets and employs one specialized learner
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for each subset. In Chapter 4 and 5, intelligent hybrid server-edge deep learning systems are in-

troduced to evaluate the input data and environmental conditions and dynamically divide DNN

computations between the cloud and edge device. Then, in Chapter 6, an input-driven synergistic

deep learning system is proposed. This system dynamically decides between activating a more

accurate big and a less accurate little DNN. Chapter 7 introduces a noniterative double-shot neural

network pruning method, which combines architectural insights and information about the impor-

tance of weight values to improve the simplicity and applicability of pruning approaches.

1.1 A Data Heterogeneous Multi-NN System

To reverse the energy trend, we take a counterintuitive approach to investigate ensemble methods.

Traditional ensemble methods use a group of weak learners operating collectively to create a strong

learner that is capable of achieving higher accuracy and supporting a wider range of functionality.

However, ensembles often suffer from high energy consumption due to the inherent inefficiencies

of activating multiple, often redundant, learners. We adapt the traditional approach by creating

a data heterogeneous multi-NN system. In contrast to traditional ensembles, data heterogeneous

multi-NNs divide the data space into subsets with one specialized NN for each group of data. For

inference, a selector identifies the input subset and activates the corresponding NN. To demonstrate

the feasibility of data heterogeneity, a systematic methodology is developed to replace an NN with

a set of automatically generated data specialized neural networks (dsNNs) and the corresponding

selector. By activating only one dsNN for each input instance and reducing the interference be-

tween different input behavior patterns, our technique provides lower energy consumption while

maintaining output accuracy. A multi-dsNN system comprised of two dsNNs is implemented and

evaluated across a microcontroller, a mobile CPU, and a mobile GPU.
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1.2 An Intelligent Hybrid Server-Edge Deep Learning System

In comparison to offloading CNN computations on the cloud, edge devices offer potential ad-

vantages of faster response time, lower energy consumption, continuous operation regardless of

wireless network conditions, and better privacy/security. To achieve frequent edge device exe-

cution, we propose SIEVE, Speculative Inference on the Edge with Versatile Exportation, which

dynamically distributes CNN computation between the cloud and edge device based on the input

data and environmental conditions to maximize efficiency and minimize latency. A speculative

version of the CNN is created through aggressive precision reduction techniques to run most of the

inferences on the edge device, while the unmodified CNN is run on the cloud server. A runtime

system directs each input to either the edge or cloud based on the input size and environmental

conditions. The runtime system also decides whether to accept speculative inferences made on the

edge or invoke recovery by replaying the inference on the cloud.

1.3 Extension of Cloud-Edge Hybrid Systems

To expand the applicability and design choices of intelligent hybrid server-edge deep learning sys-

tems, we propose deploying a pair of lightweight CNNs on the edge device to run most of the

inferences speculatively, instead of aggressively compressed speculative CNNs, while the unmod-

ified CNN is run either on cloud server or edge device depending on its complexity and network

connection speed. Same as the original proposed intelligent hybrid server-edge deep learning sys-

tem, A runtime system decides between running either on the edge or cloud based on the input size

and environmental conditions. And, the runtime system is also responsible for invoking recovery

when the output is not reliable.
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1.4 An Input-Driven Synergistic Deep Learning System

To combat the substantial computation and memory demands inherent to deep learning queries

and facilitate the efficient execution of complex models on cloud servers, we proposes Dynamic

Duo (DD), an input-driven synergistic deep learning system, which dynamically distributes CNN

computation between a more accurate big and a less accurate little CNN to achieve maximum per-

formance and efficiency. The most synergistic pair of CNNs is chosen through heuristic searches

in the model pool to run most of the inferences on the little CNN, while the big CNN is invoked

only when the little CNN has low confidence.

1.5 Double-Shot Neural Network Pruning

To improve the performance of single-shot network pruning approaches, which work on randomly

initialized weights to identify essential connections and ignore the importance of weight values,

we investigate the combination of architectural insights and information about the importance of

weight values. We propose a double-shot noniterative pruning approach. Our technique converts

the global sparsity rate to layer-wise local sparsity rates using single-shot approaches. Then, it

prunes the trained dense network utilizing local sparsity rates and connection importance metrics.

And at the end, it trains the sparse network in the same way as the dense one. Noniterative double-

shot pruning does not require any complex pruning schedule or additional hyperparameters, which

makes it easy-to-use for nonexpert users.
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CHAPTER 2

Background and Related Work

2.1 Neural Networks

Neural networks (NNs) consist of layers of neurons that have trainable parameters including

weights and biases. The output of each neuron (neuron activation), which is the dot product of

its inputs and weights followed by an optional nonlinear activation function, could be the input

of other neurons in other layers. Figure 2.1 shows the structure of a feedforward fully-connected

NN [18]. It is composed of layers of computational units (neurons), with connections between

every pair of neurons in adjacent layers. Each neuron combines its weighted inputs (Xi × Wi)

and bias value to determine the output (Y ) via the activation function (f ). These combination of

fully-connected layers could perform as a stand-alone NN to process the input or as a part of a

bigger NN to process the preprocessed data by other layers, such as convolutional layers.

NNs are capable of performing classification and regression tasks. For classification, the NN

receives an input instance, which is a vector of input elements, and computes the output vector

of K elements. By assigning a softmax ( ezj∑K
k=1 e

zk
) activation function on the output layer of the

NN, it estimates the probability of that the correct output is j (for j = 1, ..., K), which could be

interpreted as its confidence in each class.

Backpropagation is a common method of training artificial NNs used alongside an optimization

method such as gradient descent. In backpropagation, a loss function, typically cross-entropy loss

for classification problems, is used to measure the prediction quality of the NN. It calculates the
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Figure 2.2: A typical convolutional neural network for image classification containing convolu-
tional, activation, pooling and fully-connected layers.

gradient of the loss function with respect to all weights existing in the NN, and the gradient is fed

back through all the layers to update connection weights for minimizing the loss function. There

are two main problems in the training phase, model overfitting and model underfitting. Overfitting

occurs when the NN captures the irrelevant information (noise) of the training data, and underfitting

will occur if the NN cannot capture all behavior patterns of the training data.

2.2 Convolutional Neural Networks

There exist different kinds of neural networks (NNs) for various application domains, such as

fully-connected, convolutional and recurrent neural networks. Figure 2.2 shows the typical layers

including convolutional, activation such as ReLU, pooling for subsampling, and fully-connected,

in the architecture of feed-forward deep convolutional neural networks (CNNs). CNNs for image

recognition and classification are responsible for converting image pixels to class scores.

Figure 2.3 shows the top-5 accuracy and depth of NNs for top competitors of the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [19], which is a software image classification
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Figure 2.3: Accuracy vs. depth of NNs on ImageNet dataset. Deeper NNs require more computa-
tion and memory, which translates to lower performance and higher energy.

and object detection competition, from 2010 to 2015. As demonstrated, the depths of the DNNs are

increasing rapidly to achieve higher accuracies. Deeper NNs require more computational power

and memory, which results in lower performance and higher energy consumption.

2.3 Efficient Neural Networks

Various techniques for improving energy efficiency and performance of DNNs can be divided into

input-invariant and input-variant methods. The input-invariant approaches are further classified to

two main categories: hardware-based and software-based.

2.3.1 Input-Invariant Techniques

Hardware-based: Because of the inherent parallelism, DNNs can be efficiently accelerated with

specialized hardware [20, 21, 22, 23, 24, 25, 26, 27]. Moreover, many DNN applications are

implemented on mobile platforms to avoid the latency and power implications of connecting to

the cloud server [28, 29]. A neural processing unit (NPU) [30] is a hardware implementation of

DNNs, which is tightly integrated into the processor pipeline. Temam [31] exploits the error toler-

ance of DNNs to design a defect-tolerant and energy-efficient neural accelerator for heterogeneous

multi-cores. Merolla et al. [32] propose a fully digital implementation of DNNs which consists of

digital integrate-and-fire neurons and SRAM crossbar memory for synapses. FPGA-based hard-

ware accelerators are another category of neural accelerators [33, 34, 35]. Lei et al. [36] use Single
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Instruction Multiple Data (SIMD) architecture to speed up DNNs. Albericio et al. [37, 38] accel-

erate inference of the CNNs by eliminating all zero bits of the input activation and only process-

ing essential bits. DaDianNao [39] introduces a custom multi-chip machine-learning architecture

which enables high-degree parallelism of CNN/DNN based on their algorithmic characteristics.

Venkataramani et al. [40], Ovtcharov et al. [41] and Hauswald et al. [42] give architecture designs

on the servers and datacenters. RedEye [43] and ShiDianNao [44] place CNNs next to sensors.

PRIME [45] applies Processing-in-memory to DNNs. Cambricon [46] is an ISA designed for

DNNs. SCNN [47] proposes an accelerator for the compressed-sparse CNNs. Hill et al. [48]

introduce a GPU framework to address irregular computations and on-chip memory bandwidth

bottleneck by eliminating synapse vectors and using near-compute data fission.

Software-based: These methods focus on reducing the storage and computational resources

required for DNNs by eliminating unnecessary information [14]. Han et al. [49] prune the unim-

portant connections and fine-tune the weights. Distillation approaches transfer the knowledge

acquired by a large model to a single small model [50]. Nakkiran et al. [51] propose a rank-

constrained topology to compress a trained DNN with a low-rank approximation of the weights

associated with individual nodes in the first hidden layer. Yu et al. [52] propose SIMD-aware

pruning to improve the performance of pruned DNNs. Ding et al. [53] use FFT-based multiplica-

tions to reduce computational and storage complexity with negligible accuracy loss. Vanhoucke

et al. [54] utilize fixed-point representation of DNNs to reduce required computational resources.

Batched lazy computation is also introduced to utilize the temporal locality and exploit the trade-

off between computational efficiency and execution latency. Frame skipping [55] computes the

DNN once for a single input and uses the output for multiple consecutive inputs. Courbariaux et

al. [56] propose Binarized NNs to improve power-efficiency. Lavin et al. [57] suggest computing

small convolutions using Winograd’s algorithm. Attention algorithms help DNNs to focus on crit-

ical regions of the input [58, 59]. There are also some techniques to approximate the function of

layers [60].

Input-invariant approaches try to improve the efficiency and performance of a single DNN
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for the entire dataset. Consequently, most of the mentioned approaches are orthogonal to our

techniques and could be utilized to further optimize each DNN of our proposed systems.

2.3.2 Input-Variant Techniques

Although very large and computationally intensive models are necessary to correctly classify the

hard inputs, much smaller models would also work decently for most of the inputs [15]. Therefore,

DNNs with early exits, such as BranchyNet [16], combine multiple DNNs in a single DNN by

adding multiple branches to the model and terminating the computation as soon as the classification

confidence is high enough. On the other hand, SkipNet [17] augments residual networks with

gating units to decide whether to bypass the subsequent layer based on the previous layers. Another

example is SlowFast networks [61], which use low frame rate for spatial semantics and high frame

rate for temporal information because spatiotemporal orientations are not equally likely.

Adaptive DNNs [62, 63] train the partitioner and the networks at the same time from scratch.

Hence, they require a more sophisticated training approach than the single network and use more

complex loss functions. Such training complexity is time consuming and limits the applicabil-

ity scope of these approaches to only small datasets. BL-DNN [64] and IDK [65] are not able

to automatically select DNN configurations and use a single confidence threshold. Network cas-

cades [66, 67, 68, 69] are limited to detection tasks.

All these methods require machine learning expertise and manual design to create DNNs with

the desired behavior. For example, DNNs with early exits require the user to determine the location

of each exit and design the side branch classifiers. In addition, multiple exit points result in multiple

loss functions which make the training process more complicated. Conversely, our techniques

simply combine off-the-shelf or automatically developed DNNs and do not require redesign or an

expert to be involved. In fact, BranchyNets or MSDNets can be included as some of the DNNs

that our systems consider.
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CHAPTER 3

A Data Heterogeneous Multi-NN System

3.1 Introduction

To decrease energy consumption while maintaining high accuracy, we investigate ensemble meth-

ods [70, 71]. Conventional ensemble methods train multiple NNs and combine their outputs by

voting or weighted averaging to obtain accuracy improvements [72, 73, 74, 75]. There are two

major classes of methods to construct ensemble NNs. The first category, including bagging [76]

and boosting [77], change the distribution of the original training data to create explicitly different

training sets for different NNs. The second category, such as mixture of experts (MoE) [78], train

different NN experts on different subsets of the training data to create implicitly different training

sets [79]. The combination of multiple learners can reduce the impact of a single learner getting

stuck in local optima or suffering from overfitting. It can also expand the space of the representable

hypothesis. Therefore, it provides higher prediction accuracy.

Although traditional ensembles can enhance the accuracy of a learning algorithm, they are

counterproductive for our goal of energy efficiency. Ensemble methods require the activation of

more than one NN per input instance, which can multiplicatively increase energy consumption.

Boosting/bagging generally require large numbers of learners to achieve accuracy gains [80]. Even

with MoEs, subsets of training data should not be mutually exclusive to avoid limited local gener-

alization of experts, which results in complex and power-hungry gating NNs for data partitioning

This work is a collaboration with Salar Latifi, Jiecao Yu, Daya S Khudia and Mehrzad Samadi.
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and activation of multiple NNs during inference [81].

Instead of increasing accuracy by consuming extra energy, we take an opposing approach and

explore multi-NN systems where only one learner is activated per input instance to decrease energy

consumption and maintain accuracy. By carefully selecting the active learner, the prediction accu-

racy is not sacrificed, but at a fraction of the energy consumption of the monolithic NN. We term

this approach data heterogeneity wherein datasets are partitioned into subsets and a specialized

learner is created and optimized for each subset. The combination of specialized learners form a

data heterogeneous multi-NN system. Data heterogeneity differs from traditional heterogeneous

design that is computation focused, where processing elements are specialized for particular com-

putation tasks (e.g., an audio processor or h.264 decoder). Data heterogeneous learners all perform

the same task, but are optimized for different subsets of the data space.

To demonstrate the potential of data heterogeneity, we develop a systematic methodology to

create a heterogeneous system of data specialized neural networks (dsNNs), or multi-dsNN, with

different topologies and configurations to create an energy-efficient learner. Multi-dsNN systems

consume less energy than monolithic NNs, while their accuracy remains almost the same because

of three reasons. First, multi-dsNNs select and activate only a single dsNN per input instance,

thereby avoiding the multiplicative increase in energy consumption of ensemble methods. Second,

multi-dsNNs can employ stronger learners than conventional ensembles, thereby not leading to

model underfitting. Finally, weak learners of conventional ensembles are trained on the entire

training set, randomly sampled subsets or overlapped subsets. In contrast, multi-dsNN partitions

the training set systematically and trains each dsNN on a specific subset of the training set. Since

each subset contains instances with similar behavior patterns that are easier to learn, dsNNs tend

to be smaller with similar accuracies as monolithic and ensemble NNs. Moreover, these mutually

exclusive subsets of training data result in simple and power-efficient partitioning mechanisms.

This chapter makes the following contributions:

• We propose a multi-dsNN system that takes advantage of data heterogeneity to decompose

the input dataset into subsets and design a set of learners customized to each specific subset.
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For inference, the input is classified and the corresponding specialized learner is activated.

Multi-dsNNs improve energy efficiency and performance of monolithic NNs by utilizing

specialized designs.

• We demonstrate the feasibility of data heterogeneous designs by developing a systematic

approach to automatically create an optimized multi-dsNN from a baseline monolithic NN.

• A selector unit is designed to learn the behavior of the training set and predict the categories

of data instances in the test set. It is responsible for partitioning training and test sets into

smaller subsets based on the output error distribution of a monolithic NN and assigning a

dsNN to each subset. Surprisingly, multi-dsNNs are robust to moderate misclassification

rates of noncomplex lightweight selectors.

• We implement a multi-dsNN consisting of two automatically generated dsNNs, dsNNmain

and dsNNtail on three hardware platforms (ARM Cortex-M4 Microcontroller, Kryo 280

octa-core Mobile CPU and Adreno 540 Mobile GPU) to measure energy consumption re-

ductions and performance improvements across a set of three CNNs and six fully-connected

DNNs. In comparison to a monolithic NN, on average, multi-dsNN decreases energy con-

sumption by 61%, 53% and 55% and increase performance by 2.6×, 1.9×, and 1.8× on

microcontroller, mobile CPU and mobile GPU while maintaining 100% of the baseline pre-

diction accuracy.

3.2 Background and Motivation

Different input instances of the NN show different behavior patterns. Due to the limited size of the

NN, it is difficult for it to learn all behavior patterns across the input space, which is called model

underfitting. To decrease the impact of model underfitting, a common solution is to increase the

size of NNs to learn the behavior patterns of the entire input space. Figure 3.1a shows a typical

plot of the error rate against NN size (implementation cost). Each point represents a specific NN

14



Er
ro

r

Implementation cost
(a)

●
●

●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

E
rr

or

Number of NNs

(b)

Figure 3.1: Error versus implementation cost for (a) a monolithic NN and (b) an NN ensemble.

topology. The size of the NN increases much faster than the reduction of the output error rate.

Therefore, an NN with high accuracy will often have a high implementation cost which leads to

low performance and poor energy efficiency.

Another well-known approach to increase the accuracy is using NN ensembles [77, 76, 70, 71],

which train multiple NNs on different subsets of the training set and combine their result during

inference. An ensemble NN combines a group of low-bias high-variance NNs to form a low-bias

low-variance NN. Although NN ensembles result in higher accuracies, they worsen the problem of

high energy consumption and low performance. Figure 3.1b shows that increasing the number of

active NNs in the ensemble reaches a plateau in accuracy; however, increases the implementation

cost multiplicatively.

3.2.1 Data Specialization

To develop an intuition for preventing unnecessary growth of NNs while maintaining their ac-

curacy, we investigate various behavior patterns of input instances in MNIST dataset [82]. The

fully-connected NN design containing three hidden layers of 256 neurons is obtained from Min-

erva [21]. We measure the output error for all test input instances. Although misclassification rate

is used for measuring the accuracy of NNs, it is a binary value (correctly/wrongly classified) per

input instance. Hence, it is not a proper metric to measure output quality of the NN. To solve this

problem, we use 1.0 minus confidence for computing this error. As explained in Section 2.1, the

confidence of NN for each input instance is equal to the maximum output of the softmax layer and

is between 0.0 and 1.0. The high (low) error value means low (high) confidence and is interpreted
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Figure 3.3: Standard deviation of activations for third hidden layer of MNIST for two experi-
ments. (a) Train on complete training set and test on complete/easy/hard test set. (b) Train on
complete/easy training set and test on easy test set.

as hard (easy) to classify.

Figure 3.2 shows error distribution of all 10000 inputs for the test set of MNIST. The y-axis

represents errors, and the x-axis is inputs that are sorted from low to high error. Therefore, the

left part of the plot contains easy-to-classify inputs (e.g., high confidence), and as we move to

the right part, inputs become harder to classify (e.g., low confidence). We divide the test set into

two subsets: easy and hard, which contains 90% and 10% of the inputs, respectively. The same

mechanism is used on the training set, and the easy and hard subsets contain 90% and 10% of

inputs, respectively. The size of subsets is manually selected for this study, but we have a more

systematic approach for partitioning that is described in Section 3.3.3.

Figure 3.3a presents the activations for all neurons in the third hidden layer of the NN trained
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on the complete training set for three different test sets to demonstrate the behaviors on different

subsets of the test set. The x-axis of each plot shows neurons from 0 to 255. Colors represent

standard deviation of neuron activations for each test set. If the standard deviation of a neuron

activation is high, that neuron is more sensitive to different inputs and can be used to distinguish

and classify various inputs more effectively. In other words, the dark neurons in the plots are more

effective than the light ones.

The top graph represents the result of testing on the complete test set, the middle one on the

easy test set, and the bottom one on the hard test set. Neurons in all three plots have the same order

and are sorted based on the standard deviation of their activations in the top plot. As expected,

the top graph and the middle one are very similar because the easy part is the major subset of

the test set and contains low-error instances. On the other hand, the bottom graph has a smaller

subset of dark neurons, which means it contains less effective neurons. In addition, the distribution

of important neurons is very different from two other graphs. Hence, this NN is not properly

designed and trained for hard-to-classify instances.

Figure 3.3b has the same format as Figure 3.3a and compares the result of using the complete

and limited training sets to demonstrate the potential benefits of specializing an NN for a subset of

data. The top graph is related to training on the complete training set and testing on the easy test

set. And, the bottom graph represents training on the easy training set and testing on the easy test

set. As depicted, the light part of the bottom graph is considerably larger than the top one while

the dark part has almost the same size. In other words, the NN with easy training and test set has

more unimportant neurons but almost the same number of important ones. Therefore, it is possible

to reduce the NN size by omitting the unimportant neurons because their impact on the output is

minimal.

Summary: The subset of neurons that are important for classifying easy inputs is different

from the subset for hard ones. Consequently, to cover all the input space, a monolithic design

must grow. And, the larger NN is still not well-designed for the harder-to-classify inputs. On the

other hand, the monolithic model is an overdesigned NN for easy inputs, and we could classify
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Figure 3.4: Dividing input space based on the output error distribution to two different parts. The
main part is much dense and contains low-error instances. The tail part is sparse and contains
instances with high errors.

them by utilizing a smaller NN without any loss of accuracy. Therefore, partitioning datasets and

designing specialized NNs for each subset could help reduce the size of NNs while maintaining

their accuracy.

3.3 Data Heterogeneous Multi-NN

In this chapter, we propose an energy-efficient system of data specialized neural networks (dsNNs),

which leverages data heterogeneity to increase energy efficiency. After describing the concept of

data heterogeneity and the inherent potential of NNs for this technique, the main components of

a multi-dsNN system are described. Then, we go over various implementation decisions, design

choices, and parameters to come up with an automatic method of constructing dsNNs.

3.3.1 Multi-dsNN System

Figure 3.4 shows the error distribution of a typical NN on a dataset. The majority of the dataset

has a relatively small error. However, parts of the input set still suffer from high output errors.

As explained in Section 3.2.1, training a monolithic NN to learn all these behavior patterns results

in an unnecessary growth of the NN. This data heterogeneity is a great potential for replacing the

monolithic NN with an energy-efficient data heterogeneous multi-NN. In contrast to conventional

heterogeneous systems, which dedicate specialized processors to separate tasks, each NN of our

system is designed to focus on a subset of input data, which contains input instances with sim-
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Figure 3.5: Overview of a general multi-dsNN. It contains an optional preprocessing unit for
feature extraction. Then, the selector unit activates the most proper dsNN based on the features of
the current input.

ilar behaviors. All NNs are then combined to create a strong learner which has a lower energy

consumption.

Specializing NNs for different subsets of the input space provides a system with only one active

dsNN per input instead of a monolithic NN or a conventional NN ensemble. This multi-dsNN

system delivers the following potential benefits:

Lower cost: Each dsNN does not need to cover a broad range of data. Therefore, it can be

constructed with fewer layers and neurons per layers than a monolithic NN. One active dsNN

trained on mutually exclusive subsets of training data results in lower costs than conventional

ensembles.

Better performance: In addition, a smaller NN needs a lower amount of computation, thus it

will generally be higher performance depending on the specific hardware.

Higher accuracy: A single NN is no longer used for various inputs with different patterns.

Thus, in some cases a multi-dsNN gains accuracy improvements over a monolithic NN.

Figure 3.5 shows an overview of a general multi-dsNN which consists of three major compo-

nents: preprocessor, selector unit, and an array of dsNNs. The preprocessor extracts useful features

of input to provide the selector unit and dsNNs with more meaningful data for the classification

task. Instead of a monolithic NN, a set of dsNNs is available in the dsNN array. For each input,

the selector unit chooses the best dsNN to become active and sends the current input to that. Then,

the dsNN computes the final output of the system and sends the feedback to the selector unit for
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online modifications.

3.3.2 Preprocessor

The preprocessor is trained on the training set to become capable of extracting useful features of

the input. In other words, it is responsible for converting the original input to the practical input

for the selector and dsNNs. In our design, if the monolithic NN is a CNN, the convolutional part

will remain as the preprocessor unit, and the fully-connected part will be replaced by a selector

and an array of dsNNs. On the other hand, if the monolithic NN is a fully-connected DNN, the

multi-dsNN system will not use any preprocessor, and the original input data will be sent to the

selector and dsNNs.

3.3.3 Input Partitioning

The next step in implementation of a multi-dsNN is dividing the input dataset into subsets. First,

we need to define a mechanism for partitioning. Three alternatives are considered:

• Based on Input: The training dataset is expected to be representative of the test dataset.

Hence, we can extract the distinguishing features of the training inputs and use them to

partition the test inputs.

• Based on Output History: If the distinguishing features are extracted by examining the

exact training outputs, a record of limited number of previous test outputs will provide good

clues for partitioning the current test input.

• Based on Simultaneous Multiple Outputs: Another partitioning mechanism is running

multiple dsNNs per test input, comparing their outputs, and sending it back to the selector

unit as feedback. This feedback could be used to modify the behavior of the selector. If all

dsNNs converge to the same results, we can predict that current dsNNs are working properly,

else we need to substitute some of them with other available dsNNs.
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Although partitioning based on the output history produces acceptable results for applications

where there is a correlation between different input instances (such as different tiles of an image),

it does not necessarily work well for applications with isolated input instances. On the other hand,

partitioning based on simultaneous multiple outputs makes the system complex and inefficient

because activating multiple dsNNs per input instance is power hungry and makes the selector

more complicated. Consequently, partitioning based on input is chosen for the multi-dsNN.

After specifying the partitioning mechanism, it is necessary to determine the partitioning

granularity. Different input instances of a dataset or various input elements of an input instance

might participate in isolated computations and have different distributions. Our goal is to partition

them based on their features to use customized dsNNs for each subset. Input sets could be divided

to subsets based on two approaches:

• Element Partitioning: If we have N input elements per input instance, it will be possible

to form K groups in a way that each contains correlated elements. However, this approach

needs K active dsNNs for inference.

• Instance Partitioning: Each input instance consists of input elements, so input instances

could be classified based on their values. In contrast to element partitioning, this method

needs only one active dsNN for inference.

As we mentioned before, a single active dsNN is energy-efficient and could be handled by a

simple and low-cost selector unit. Consequently, we limit ourselves to instance partitioning which

results in design options that consist of one active dsNN for inference.

Partitioning input instances based on the output error distribution is an input-based instance

partitioning mechanism that is used by multi-dsNN for dividing training and test sets to multiple

subsets. After examining the error distribution of different output elements of various applications,

we find that in general the error is distributed similar to Figure 3.4. The distribution of the error

is composed of dissimilar parts, the main and tail. The main part contains lots of low-error data

points spread on a relatively limited interval. But the tail part is a wider range consisting of sparse
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high-error data points.

Using a monolithic NN is not a good solution because each part tries to modify the NN to

perform more accurately for its own data. In other words, the data instances in the main part might

change the weights of the NN in a way that decreases the quality of final answers for the tail part

and vice versa. Even in the case of using ensembles, each NN suffers from the same problem

because the training data is randomly sampled or subsets of training data have overlaps. Hence, an

input-based mechanism could partition data based on the error distribution to design one dsNNs

for each part. Dedicating specialized NNs to the tail and main part reduces the size of each dsNN

and possibly increases its accuracy. It is possible to find proper thresholds for dividing the error

distribution to different parts by examining the error distribution produced by different instances

of the training set. Then, we are able to divide the training set into subsets, and utilize them to train

different dsNNs. Finally, the same mechanism is used to dispatch test input instances to the proper

dsNN during inference.

3.3.4 Selector Unit

The selector unit uses a filter to choose the appropriate dsNN during inference for each test input.

The feature used for partitioning is the error distribution. However, computing the final error

for each input instance needs exact outputs, and computing exact outputs by NNs is impossible.

Therefore, we need to predict the amount of error based on input elements.

Since the selector unit should be active for all input instances, it is critical to utilize a lightweight

predictor. However, making this unit too simple might cause a high rate of misclassification which

means sending data to wrong dsNNs. High misclassification rates result in less accurate results and

more expensive dsNNs. After comparing different methods of classification, we find that using a

decision tree is the best fit for our system. A decision tree is cheap in terms of energy consump-

tion and accurate enough to keep misclassification rate low. The decision tree is trained using the

training data to predict the error for each test input instance and choose the most suitable dsNN in

the array to activate.
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Figure 3.6: Finding the optimal configuration of the multi-dsNN. The training data is sent to
the monolithic NN to obtain error values. Then, design space exploration uses error values and
training data to evaluate different partitioning thresholds and dsNN topologies. Finally, the best
configuration is selected considering available resources and limitations.

3.3.5 dsNN Array

In design space exploration, the most appropriate dsNN topology for each subset and its weights

are saved in the dsNN array. During inference, the selector examines each input and picks the most

suitable dsNN from the dsNN array. The activated dsNN processes inputs and computes the final

output.

3.4 Training and Inference

After designing a multi-dsNN, we need to configure and train it. Figure 3.6 depicts different stages

of configuring and training. First, we use the training dataset and monolithic NN to compute error

values for each training input instance. Then, different combinations of partitioning thresholds and

dsNN topologies are swept to identify all optimal design points. Each design point is a trade-off

between accuracy and energy consumption. At the end, we choose the design point which meets

the constraints of our problem such as maximum energy consumption and minimum output quality.

Note that the size of the design space can quickly explode, so a heuristic is used to limit the search

as described in Section 3.5.7.
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3.4.1 Error Calculation

We use the training dataset to train the monolithic NN based on the backpropagation method. Then,

we send back the training input to the monolithic NN to compute outputs for the training set. After

that, error values are computed based on the confidence of the NN for each input instance and

saved in an error file. Then, we send the training dataset augmented with error values to the next

stage as shown in the upper left portion of Figure 3.6.

3.4.2 Design Space Exploration

Threshold Queue: To find the best configuration, we need to sweep the design space. In addition

to the data provided from the previous stage, design space exploration needs partitioning thresholds

to divide the training set. All possible combinations of partitioning thresholds to divide training set

to N subsets for N dsNNs are predetermined in the threshold queue. We need to run the decision

tree training and data specialized NNs training steps for each entry of the queue.

Decision Tree Training: The thresholds are used to partition the training set ideally based on

the error file. Then, the training input and partitioning information are used to train a decision tree

with a proper depth as the selector unit.

Data Specialized NNs Training: For each threshold set, we try all different topologies for each

dsNN to find the optimal NN and train them. Although it seems more reasonable to train dsNNs

by the ideally partitioned data, this approach might cause each dsNN to become too specialized.

Considering the fact that the decision tree is not able to partition the test data perfectly, it is better

to use the trained decision tree to partition the training data. Then, use this imperfect classified

training data to train each dsNN to help the system in better tolerating the misclassification rate

of the selector unit. Ideal classification in the training phase might cause the system to react

undesirably to the misclassified test inputs.
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Figure 3.7: 2-way multi-dsNN with decision tree as the selector and two dsNNs trained on main
and tail parts of the training set.

3.4.3 Choosing the Best Configuration

After training each dsNN with its specific dataset, that dataset is reused to compute the accuracy of

the corresponding dsNN. At the next step, we compute the weighted sum of energy and accuracy of

the dsNNs to find out the final energy and accuracy for each combination of selector configuration,

dsNN topologies and partitioning thresholds. Finally, we plot the Pareto frontier of accuracy-

energy and pick the thresholds, related dsNN topologies, and decision tree configurations to meet

the energy and quality constraints of the application. In fact, the Pareto frontier provides users with

a wide range of trade-offs between energy efficiency and accuracy.

3.4.4 Inference

Figure 3.7 shows the inference of a 2-way multi-dsNN. During inference, the preprocessor trans-

forms input elements. Then, the selector predicts the category of the input instance and activates

the proper dsNN. The active dsNN processes the input data and provides the final outputs.

3.5 Evaluation

To maintain a simple design space, our experiments are limited to two dsNNs (i.e., single parti-

tioning threshold). A case study of exploring multi-dsNNs containing more than two learners is

explained in Section 3.5.6. We call one of the dsNNs, which is designed for low-error input in-
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stances, dsNNmain and the other one dsNNtail. We limit each dsNN to at most three hidden layers

and 4096 neurons per layer. In addition, the partitioning queue is occupied by nine different parti-

tioning thresholds. To limit the number of trainings required for designing our dsNNs, a heuristic

search is utilized instead of the exhaustive search for design space exploration. This heuristic is

explained in detail and compared to brute-force search in Section 3.5.7.

3.5.1 Experimental Methodology

Hardware Platforms: We evaluate multi-dsNN on three different hardware platforms: micro-

controller, mobile CPU, and mobile GPU. They represent different kinds of processors which are

widely used in embedded and mobile systems.

• Microcontroller: An ARM Cortex-M4 microcontroller available on STM32 Nucleo board,

which has 128KB of SRAM and 512KB of flash storage is used to run benchmarks. Matrix-

vector/matrix multiplication libraries from ARM are used to implement fully-connected lay-

ers.

• Mobile CPU: A Qualcomm Snapdragon 835 chipset is used which consists of four high

performance and four energy efficient Kryo 280 cores (semi-custom built cores based on

ARM license) and 4GB of DDR4 RAM. To run the benchmarks, we use CNNdroid [83]

library, which utilizes the Android Renderscript framework to accelerate matrix multiplica-

tions. Qualcomm’s Trepn Profiler is used for energy/performance measurements.

• Mobile GPU: An Adreno 540 GPU included in Snapdragon 835 is used for evaluation on

mobile GPUs. Similar to the mobile CPU, the CNNdroid library and Trepn Profiler are used

for implementation and analysis.

Benchmarks: For evaluating multi-dsNN, seven classification datasets from various domains

are used. A brief description of each benchmarks is presented in Table 3.1. The datasets consist

of ImageNet [84], CIFAR-10 [85], MNIST [82], 20NG [86], Forest [87], Reuters-21578 [88, 89]
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Table 3.1: Application, topology, and accuracy of baseline NNs.

Dataset Description Input Output Topology Accuracy(%)

C
N

N CIFAR-10 Image classification 1024 10 C1->C2->C3->64 80.48
ImageNet Image classification 9216 1000 C1->C2->C3->C4->C5->4096->4096 56.90
MNIST Handwritten digits recognition 800 10 C1->C2->500 99.19

FC

20NG Newsgroup posts for text classification 21979 20 64->64->256 82.00
CIFAR-10 Image classification 3072 10 4000->1000->4000 55.95
Forest Classifying the forest cover type 54 8 128->512->128 71.42
MNIST Handwritten digits recognition 784 10 256->256->256 98.31
R52 News articles for text categorization 2837 52 128->64->512 94.19
WebKB Web pages from different universities 3418 4 128->32->128 90.07

and WebKB [90]. For top three rows of Table 3.1, which are CNNs, input data is preprocessed

by convolutional layers of the monolithic NN, and the fully-connected part is replaced by a multi-

dsNN. For other six fully-connected DNNs, no preprocessing is required, and the input is directly

fed to the dsNN. AlexNet [91], ConvNet [92] and LeNet-5 [93] are our monolithic baseline CNNs.

And, monolithic NN topologies and accuracies for fully-connected DNNs are obtained from Min-

erva [21] and Lin et al. [94].

In Table 3.1, the input column represents the number of input elements in each input instance

after preprocessing. The output column specifies the number of classes. The topology column

shows the optimal topology of the baseline NN for each benchmark. For example, C1->C2->500

for MNIST states that the CNN has two convolutional layers (Convolution+Pooling+ReLU) and

one fully-connected layer of 500 neurons. The final column presents accuracy (100% minus mis-

classification rate) of the baseline NN after testing on the test dataset. Accuracy values could be

slightly different from prior work because they depend on many hyperparameters including random

initialization of weights, learning rate, weight decay, etc.

Training: We use Caffe [95] framework to implement, train and test our NNs. In addition, the

Scikit-learn [96] library is used for implementing, training and evaluating the decision tree as the

selector unit.

Output Accuracy: We use 100% minus misclassification rate to measure the accuracy of NNs.

To show the improvements over the baseline NN designs, we report accuracy for each benchmark

relative to its baseline from Table 3.1.

27



N
or

m
al

iz
ed

 E
ne

rg
y

CIFA
R−1

0

Im
ag

eN
et

M
NIS

T
20

NG

CIFA
R−1

0

Fo
re

st

M
NIS

T
R52

W
eb

KB

Geo
M

ea
n

0 %

20 %

40 %

60 %

80 %

100 %

Microcontroller − 100%
Microcontroller − 99%

Mobile CPU − 100%
Mobile CPU − 99%

Mobile GPU − 100%
Mobile GPU − 99%

Figure 3.8: Normalized energy of multi-dsNN on different hardware platforms for 99% and 100%
normalized accuracy.

3.5.2 Energy Consumption Reduction

To demonstrate energy savings of our approach, we evaluate two multi-dsNN designs per hard-

ware platform for each benchmark. The first design reduces energy consumption while maintain-

ing 100% accuracy of the monolithic NN. And, the second one relaxes the minimum acceptable

normalized accuracy to 99% for situations in which the user is willing to sacrifice a tiny amount

of accuracy for higher energy savings. The only exception is 20NG, for which there is no point on

the Pareto frontier between 99% and 100% accuracy. Hence, we only report the savings for 100%

accuracy.

Figure 3.8 demonstrates the energy consumption of the multi-dsNN designs for the nine bench-

marks on the three hardware platforms in the case of 99% and 100% accuracy. In each group, the

left bar represents microcontroller results, the middle bar reports the mobile CPU, and the right bar

shows the mobile GPU. All energy values are normalized to the energy of the monolithic NNs on

each platform. Except for 20NG, each bar consists of two overlapped bars: the bright bar, which

represents the energy of multi-dsNN for 100% accuracy, and the dark bar, which shows the energy

while accuracy is 99%. Hence, the visible bright part depicts additional energy savings by relaxing

accuracy constraints.

Based on Figure 3.8, multi-dsNN obtains energy savings for all benchmarks on all three hard-

ware platforms while maintaining 100% accuracy of the monolithic NN. These energy savings fall

into the range of 2% to 95%. On average, multi-dsNN decreases energy consumption to 39%,
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Figure 3.9: Normalized runtime of multi-dsNN on different hardware platforms for 99% and 100%
normalized accuracy.

47% and 45% for 100% accuracy and to 13%, 17% and 21% for 99% accuracy on microcontroller,

mobile CPU and mobile GPU, respectively. The main reason for these significant energy savings

is that the classification task is divided into two parts. First, the input instances are classified to

high-error and low-error. Then, the proper dsNN produces the final output. The first part is of-

floaded to a lightweight decision tree, which is much less energy consuming than the monolithic

NN. In addition, the second part is less complex than the original task, therefore requires a smaller

NN than the monolithic one for both main and tail for all benchmarks.

20NG achieves the lowest energy savings. Since the number of input elements in the 20NG

dataset is at least two times bigger than other benchmarks, multi-dsNN training cannot find an

accurate splitter and chooses a small decision tree to improve energy savings. The average height

of the tree for 20NG is about seven, which is the lowest in comparison to other benchmarks.

This decision tree sends a considerable number of high_error training inputs to dsNNmain and

vice versa. Therefore, subsets of training data become similar to the original training set, so both

dsNNmain and dsNNtail have almost the same size as the monolithic NN.

3.5.3 Performance Improvement

Figure 3.9 shows the normalized execution time of the multi-dsNN on the three hardware platforms

across the nine benchmarks for 99% and 100% accuracy using the same format as Figure 3.8. On

average, multi-dsNN reduces execution time to 39%, 53% and 56% of the monolithic NN for 100%
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accuracy and to 13%, 26% and 28% for 99% accuracy on microcontroller, mobile CPU and mobile

GPU, respectively. Replacing the monolithic NN by multi-dsNN improves performance for all

benchmarks on all hardware platforms even for 100% accuracy. The lowest speedup is 1.02×

while the highest one goes up to 21×.

By comparing the difference of bright and dark bars for different benchmarks, we can observe

that the dsNN related to CNN of MNIST achieves the highest performance improvement when

the accuracy requirement is relaxed from 100% to 99%. The monolithic NN for this benchmark

consists of a relatively small input layer connected to a relatively big hidden layer. The small input

layer helps the decision tree to partition the input accurately and efficiently, and the big layer pro-

vides more opportunities for reducing the size of each dsNN, resulting in considerable performance

gains. Another interesting observation is that WebKB’s performance is not very sensitive to this

constraint relaxation. As depicted, multi-dsNN with 100% accuracy results in the highest speedup,

which means the highest size reduction, for WebKB. Consequently, there is not much room for

reducing the size of dsNNs further when switching to 99% accuracy, and most of the performance

improvement comes from changing the partitioning threshold to send more input instances to the

smaller dsNN.

3.5.4 Comparison with NN Ensembles

In order to compare our proposed solution with traditional NN ensembles, we compare accuracy

and energy efficiency of the multi-dsNN with both boosting and MoE.

Monolithic Boosting: We use SAMME method [97], which is an extension of AdaBoost [98]

algorithm to multi-class cases, with NNs used as base learners [75, 99, 100]. The most common

choice for base learners of an ensemble is the monolithic baseline NN. Then, these learners are

trained sequentially on different subsets of the training set. Although this approach leads to accu-

racy improvements, adding each learner increases the overall energy of the system multiplicatively.

Energy-Conscious (EC) Boosting: Given our focus on energy efficiency, we compare multi-

dsNNs to NN ensembles with a limited computation budget. This budget is determined by the
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number of FLOPs of the monolithic NN inference per input instance. As a result, it is crucial to

choose weaker NNs as base learners so as not to exceed the predefined energy limits while adding

more learners.

Energy-Conscious (EC) MoE: We utilize a modified version of MoE which focuses on energy

efficiency rather than accuracy. There are two different approaches in order to come up with the

EC MoE. First, the size of each expert could be reduced to contain less number of neurons and

improve energy efficiency. Second, reducing the number of active experts in MoE helps decrease

energy consumption. Similar to the EC boosting, the energy budget is determined by the FLOPs

of the monolithic NN.

In our experiments for monolithic boosting, ensembles containing 2 to 100 base learners with

the same configuration as the monolithic NN are trained and evaluated. In this approach, the high-

est accuracy is chosen as the optimum design. On the other hand, the EC boosting method can

utilize any arbitrary NN architecture for the base learner as long as its overall number of FLOPs

stays lower than or equal to the monolithic NN. Consequently, the maximum number of learners

will be derived from the specified computation budget and the base learner’s configuration, capped

to 100. For the EC MoE experiment, the capacity of the model is increased by containing 100

experts. However, the number of active experts per input instance is determined by the compu-

tational budget, which is limited to the FLOPs of the monolithic network. To explore the design

space, the topology of each expert and the number of active experts are swept in a range that the

overall computational constraints are met.

Figure 3.10 shows comparison of multi-dsNN with monolithic boosting, EC boosting and EC

MoE for CNN of CIFAR-10 benchmark. The y-axis represents the accuracy of the learner nor-

malized by the accuracy of the monolithic NN. And, the x-axis is the average number of FLOPs

normalized by the baseline NN to compare energy consumption of different designs in a hardware-

agnostic manner. For multi-dsNNs, the amount of the dynamic energy consumption depends on

the size of each dsNN and the depth of the decision tree. Moreover, the partitioning threshold and

misclassification rate of the selector have an impact on the amount of energy because it determines
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Figure 3.10: Accuracy-computation trade-off for multi-dsNN, EC boosting, EC MoE versus and
monolithic boosting.

how many input instances run on each dsNN. The gray dashed line indicates accuracy of 99%.

Figure 3.10 consists of a Pareto frontier of the multi-dsNN depicted by circles, a Pareto frontier

of EC boosting plotted by triangles and a Pareto frontier of EC MoE plotted by diamonds. The

final plotted data is a single star point for monolithic boosting, which requires a discontinuity of

the x-axis to be displayed.

Based on the plot, multi-dsNN provides the most energy-efficient design. For 100% accuracy

of the monolithic NN, multi-dsNN reduces computation by 52% while EC boosting and EC MoE

does not generate any point with the same accuracy as baseline. Even if we decrease the minimum

acceptable accuracy threshold, multi-dsNN provides more efficient designs. If we relax the mini-

mum required accuracy of applications to 99%, multi-dsNN could reduce the average number of

FLOPs by 2% more than EC boosting and 27% more than EC MoE while adding only 0.94% error

in comparison to the monolithic NN.

Although the focus of multi-dsNN is improving energy efficiency for the same accuracy as

the monolithic NN, it provides more accurate design points than EC boosting and EC MoE. An

interesting observation is that monolithic boosting does not provide any accuracy improvement.

The problem is that by moving forward in monolithic boosting, the training set for each iteration

is a sample of the original training set, which does not even cover 10% of the training set in more

than half of the iterations. Considering the large number of input neurons in this benchmark, these
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Figure 3.11: Misclassification rate of the selector.

limited subsets of training data result in overfitting, which causes higher error rates.

3.5.5 Partitioning Quality

We use an incomplete decision tree with a maximum average depth of 79, limited to 18K nodes

and 18K-1 leaves, to partition the input dataset to two subsets. As with any machine learning tech-

nique, the output of this decision tree is not 100% accurate and causes some misclassifications. In

other words, during inference, some points might migrate from main to tail, and vice versa. These

migrations require more complex dsNNs to handle inputs from both parts, which result in less

energy savings. Furthermore, each dsNN might produce high errors for misclassified inputs be-

cause that dsNN is specifically designed for dealing with a part of input instances. However, since

the decision tree is active during training, dsNNs are trained to tolerate moderate misclassification

rates. Hence, replacing the decision tree with an oracle classifier does not change energy savings

by more than 10%.

A misclassification happens whenever, for an input instance, the decision tree sends the input

to one dsNN which classifies the input wrongly while the other dsNN is able to classify this input

instance correctly. We divide this number by the number of all input instances to calculate the mis-

classification rate for the decision tree. After running multi-dsNN with different misclassification

rates of the selector unit, we find that keeping this rate less than 15% helps our system to achieve

acceptable accuracy and improve energy efficiency. Figure 3.11 shows the misclassification rate

of the decision tree for each benchmark. As you can see, the maximum misclassification rate of
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Figure 3.12: Comparing accuracy and average FLOPs of 2-way multi-dsNNs and 3-way multi-
dsNNs for R52.

our system among all benchmarks is about 10%. And, the average misclassification rate is about

1.6%.

Although 20NG and ImageNet have the largest number of input elements among all bench-

marks, their misclassification rate is the lowest. As explained in Section 3.5.2, both dsNNmain

and dsNNtail are very similar to the monolithic NN for these benchmarks. Therefore, it is unlikely

for these similar NNs to produce different results for one input instance. Consequently, the mis-

classification rate goes down. The important conclusion is that even if the decision tree does not

work precisely for a benchmark because of its huge input layer, multi-dsNN training automatically

chooses complex NN topologies to decrease misclassification rate and maintain the prediction ac-

curacy while not consuming more energy than the monolithic NN.

3.5.6 More than Two dsNNs

A multi-dsNN is not necessarily limited to two dsNNs. Figure 3.12 depicts accuracy-computation

Pareto frontier of R52 for two different multi-dsNN systems. The first one contains two dsNNs,

and the second one consists of three dsNNs. The y-axis shows accuracy of each configuration

normalized to the baseline NN. The x-axis is the normalized average number of FLOPs for dif-

ferent configurations. The plot is limited to the normalized FLOPs less than 40%, where all the

demonstrated points need less computation than the monolithic NN. Based on the number of points
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on each Pareto, for R52, switching from two dsNNs to three dsNNs makes the multi-dsNN more

flexible, which enables the user to choose desirable designs at a finer granularity. Moreover, as de-

picted on Figure 3.12, for some points, adding the third dsNN makes the accuracy and efficiency of

the system slightly better. But, overall gains are negligible when the number of dsNNs is increased

beyond two. We confirmed that this trend held for a subset of the other benchmarks as well.

3.5.7 Heuristic Search

An exhaustive search for a 2-way multi-dsNN in our design space, which is limited to three hidden

layers of 4096 neurons and nine partitioning thresholds, requires more than 1012 different dsNNs

to be trained. Since it is not practical to train this many dsNNs, it is necessary to use heuristic

search techniques to explore the design space. Our approach is composed of two alternative search

strategies that are detailed below: energy and accuracy optimization. To select which heuristic to

use, the system designs dsNNs identical to the baseline NN but with half of the number of neurons

in the hidden layers. If the normalized accuracy of this multi-dsNN is more than 100%, energy

optimization continues. Otherwise, accuracy optimization is called.

For energy optimization, we modify the random-restart hill climbing technique [101]. The

initial point for the algorithm is a dsNN without any hidden layers. For each iteration, if the

accuracy is not improving by increasing the size of the dsNN, there is no hidden layer, or the

last hidden layer is full (has 4096 neurons), the algorithm will jump to another configuration.

Otherwise, it will take a normal step and multiply the number of neurons in the last hidden layer by

two. Instead of random-restarts, we use deterministic jumps. A jump is defined as multiplying the

number of neurons of the last nonfull hidden layer by two or adding a new hidden layer containing

one neuron after the input layer in the case that all hidden layers are full. When there are no more

jump options, then the search concludes.

Accuracy optimization uses the same approach as energy optimization with the following

changes. The initial point is the baseline dsNN. It will jump if the normalized accuracy goes

below 100% or the first hidden layer is empty. The normal step is reducing the number of neurons
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Figure 3.13: Comparison of exhaustive and heuristic search.

by 5% in the first hidden layer. A jump is reducing the number of neurons of the first nonempty

hidden layer that does not result in reducing normalized accuracy by more than 5%.

This algorithm reduces the number of trainings to less than 3000 dsNNs per benchmark. Fig-

ure 3.13 compares the accuracy-computation Pareto frontier obtained from our heuristic and an

exhaustive search for R52. As illustrated, the difference of these two plots is negligible for opti-

mum points on the top-left part of the figure, which have about 100% accuracy while requiring the

minimum FLOPs. Moreover, the heuristic does not generate the inefficient points on the top-right

part of the graph, which have about the same accuracy as the optimum points while using three to

four times more FLOPs.

3.6 Related Work

Meta learning and ensemble methods: These algorithms are proposed to combine different

learning algorithms to shape a stronger learning system. Generally, they can be classified to three

different groups [102]:

The first group targets the variations in data and includes bagging [76, 103] and boosting [99,

104, 100, 105, 66]. These methods use several learners, such as NNs, and train them on different

subsets of the dataset. For inference, all of the base learners are activated, and final output is

produced via a voting scheme. In bagging, each base learner is trained on a uniformly sampled
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version of the original dataset, while in boosting, the training set is sampled according to the

weaknesses of the previous learners. Because of high computation cost of this group, Zhou et

al. [99] try to eliminate unimportant NNs, but all remaining NNs are still active for inference.

The second group aims at variations of learners and consists of stacking [70], cascading [106,

107, 108, 109], delegating [110] and arbitrating techniques [111]. Similar to bagging and boosting,

stacking uses a number of learners, but instead of voting, another learner is used to predict the final

output based on the predictions of learners. Cascading is similar to boosting in the aspect of

training set sampling, but it deploys different learners with more complex topologies in further

steps. Delegating is similar to cascading with the difference that each learner is only trained on the

weaknesses of the previous learner. Arbitration also uses different learner topologies as cascading,

but all of them are trained on the original dataset.

The last group focuses on both data and learner variations and includes meta decision trees

(MDT) [112] and mixture of experts (MoE) [78]. Unlike the other groups which require activation

of all or a subset of the base learners, MDT deploys a decision tree to select the suitable classifier

for each test data. In MDTs, the training set is randomly partitioned into different groups using

stratified sampling, and each base learner is trained on different combinations of subsets to generate

the metadata for training of the decision tree. MoEs [113, 80, 114, 115] are based on conditional

computation methods [116, 117, 118] which assign an activation function per neuron or block of

neurons to activate only a part of the NN based on the input features. Hence, each NN is specialized

on a subset of input dataset. For inference, a classifier activates all or some of them to make the

prediction.

In all mentioned methods, either the computation cost is high due to the activation of multiple

learners, or the training is based on random sampling and does not fully exploit different inherent

patterns of the data space. In contrast, dsNNs are specialized learners and systematically trained

to exploit available data heterogeneity in the input space, which results in activating only a single

specialized learner and higher energy efficiency while maintaining the original accuracy.
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3.7 Conclusion

In this chapter, we propose a system of data specialized neural networks (dsNNs) to increase

energy efficiency of NNs. A multi-dsNN consists of multiple simple and specialized NNs, which

are customized for different subsets of the input space. In contrast to conventional NN ensembles,

multi-dsNN selects and activates a single dsNN per input instance dynamically, and that single

activated dsNN is not responsible for the entire range of input instances. Hence, each dsNN is less

complex than the monolithic NN, which results in considerable energy savings. In some cases, this

specialization can reduce the interference between different input behavior patterns to provide a

higher accuracy while consuming less energy. Compared to conventional monolithic NNs, a 2-way

multi-dsNN reduces the energy consumption by an average of 61%, 53% and 55% and increases the

performance by an average of 2.6×, 1.9× and 1.8× on microcontroller, mobile CPU and mobile

GPU with 100% accuracy of the baseline.
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CHAPTER 4

An Intelligent Hybrid Server-Edge Deep Learning

System

4.1 Introduction

Due to the prohibitive energy and latency of communicating data to cloud servers, there is a grow-

ing trend towards CNN execution on edge devices themselves. The processing power of modern

edge devices has increased to help them handle more computationally-intensive applications [119].

For example, the Qualcomm Snapdragon 835 with machine learning capabilities enables running

some trained models directly on the mobile device [120]. However, the size and complexity of

CNNs are increasing more rapidly to improve their accuracy and functionality than the hardware

capabilities, which results in computations with energy requirements beyond device’s battery con-

straints even with hardware accelerators [49].

To address the shortcomings of cloud-only and mobile-only approaches, two categories of hy-

brid cloud-edge systems have evolved, which partition the computation between cloud servers and

edge devices for maximizing performance and efficiency [121]. First, applications, such as Ap-

ple’s Siri [122], Google Assistant [123], Amazon Alexa [124], and Microsoft Cortana [6], consist

of specialized speech recognizers for keyword spotting on the device and automatic speech recog-

nition, natural language interpretation, and various information services on the cloud. In these

applications, the computation is partitioned manually during the design process, and servers and

This work is a collaboration with Salar Latifi, and Pedram Zamirai.
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devices are responsible for different tasks. In the second category, since the energy efficiency

and data transfer rates vary for different wireless technologies, edge devices dynamically decide

whether to offload and which parts of the computation need to be offloaded to maximize the en-

ergy efficiency and performance [125]. For example, MCDNN [126] utilizes Approximate Model

Scheduling to manage multiple DNN execution requests under resource constraints. It enables

trading off classification accuracy for resource use by reasoning about on-device/cloud execution

trade-offs. Another example is Neurosurgeon [127], which dynamically finds the best partition-

ing point at layer granularity by analyzing the CNN topology and network connection. Then, the

computation of the first set of layers is kept on the device and offloads the remaining layers to the

cloud.

Our analysis of prior CNN computation partitioning approaches reveals that they over utilize

the cloud because they are input data invariant. The partitioning decision is either hardwired or

dynamically changes only in response to the environment, e.g., network connectivity. In other

words, as long as the topology of the CNN and the data connection speed are constant for an

application running on the device, the partitioning decision remains unchanged. However, CNNs

are usually over provisioned and most of the inputs do not require the entire computational power

of the model to produce an accurate final output [16, 15, 128]. Consequently, we hypothesize that

efficiency improvements can be achieved through input-variant partitioning.

In this chapter, we take inspiration from traditional speculation-recovery techniques and present

SIEVE, Speculative Inference on the Edge with Versatile Exportation, which is input-variant and

dynamically distributes CNN computation between the cloud and mobile device to achieve max-

imum efficiency and minimum latency in various environments. SIEVE aggressively compresses

a CNN to form a small CNN that can speculatively perform inferences for a large fraction of the

inputs on the device. A runtime system sends each input to either the edge or cloud based on the

user preferences, input size and environmental conditions. In addition, the runtime system can se-

lectively invoke an unmodified original CNN on the cloud server to recover from misspeculation,

wherein the speculative CNN can only provide a low-confidence answer.
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SIEVE has four main advantages. First, the runtime system automatically adapts how and

where inferences are performed to the environment (network conditions and battery lifetime) in or-

der to reduce energy consumption on inferences. Second, relying on the original CNN for recovery

enables aggressive precision reduction of the speculative CNN, which increases the opportunities

of processing more complex CNNs efficiently on the edge device. Third, the average latency of

the system is improved in comparison to both cloud-only and mobile-only approaches because of

the elimination of the extra round trips to the server and the excessive complexity of CNNs for

marginal accuracy improvements. Last, not sending requests to the server for all inputs reduces the

load on the server and releases some resources to support more users on the cloud.

The contributions of this chapter are as following:

• We propose an intelligent hybrid cloud-edge CNN computation partitioning technique to

achieve efficiency and performance gains. A lightweight software runtime is designed to dy-

namically select between speculative inference on the edge device or inference on the server

using the original CNN. It models the latency and energy of the speculative and original

CNNs, available hardware on the edge device, data transfer latency, and speculative CNN

accuracy and its associated misspeculation recovery costs.

• We provide a misspeculation detector that dynamically determines a confidence threshold

on the speculative CNN output based on the distribution of correctable errors learned during

the training phase and the target output quality to detect potential faulty outputs, which are

sent to the original CNN for replay.

• We develop an automatic procedure to deterministically prune the design space, then search

for the most compressed floating-point format to represent weights and activations of indi-

vidual layers separately. A set of heuristics are used to combine those layers and form the

final speculative CNN design with maximum compression rate and minimum accuracy loss,

while not requiring any fine-tuning or retraining.

• We also introduce a lightweight (0.05% area overhead) hardware compressor and decom-
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Figure 4.1: Energy and latency of AlexNet for mobile-only and cloud-only. The optimum compu-
tation platform varies for different communication speeds and optimization goals. Data transmis-
sion is considerably energy- and time-consuming.

pressor unit responsible for efficient floating-point reformatting for the speculative CNN.

Our evaluation on a benchmark suite of nine CNNs shows that SIEVE on average reduces

mobile energy consumption by 91%, 57%, and 26% and improves latency by 12.3×, 2.8×, and

2.0× for 3G, LTE and WiFi connections in comparison to the cloud-only approach, without any

accuracy loss.

4.2 Background and Motivation

4.2.1 Mobile Deep Learning

As the energy-efficiency of CNN computation and computational power of mobile devices are in-

creasing, the popularity of running CNN applications on mobile devices (mobile-only) is growing.

However, the size and complexity of CNNs are increasing more rapidly, so it is difficult for mobile

devices to keep up. Hence, offloading CNN computation onto cloud servers (cloud-only) is another

widely-accepted approach.

Figure 4.1 compares the energy and latency for AlexNet inference on a Jetson TK1 mobile

platform [129] for mobile-only and cloud-only approaches, considering three different data com-

munication technologies: 3G, LTE and WiFi. As shown, the cloud-only result is heavily dependent

on the type of the wireless network. There are two key observations. First, the mobile-only results
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in lower end-to-end latency for all three types of connections. Second, although the mobile-only

consumes less energy than transferring data via LTE or 3G, the cloud-only, when using WiFi,

is the most energy-efficient approach. Therefore, previous work [127] proposes dynamic CNN

computation partitioning at layer granularity by analyzing the CNN topology, computation, and

communication characteristics to improve energy efficiency and performance. However, the pro-

posed hybrid techniques are data invariant and do not change the partitioning decision per input

when the CNN topology and wireless network remain unchanged.

4.3 SIEVE

To elevate CNN computation partitioning, we take inspiration from traditional speculation-recovery

techniques and propose SIEVE which is an intelligent hybrid deep learning cloud-edge system for

improving energy efficiency and performance in comparison to running complex CNNs on edge

devices or offloading the entire computation to cloud. First, we introduce our speculative hybrid

deep learning system and a new approach for dividing the labor between the server and mobile.

After that, each component of the runtime system is described.

4.3.1 System Overview

SIEVE is based on the hypothesis that inference energy on edge devices can be substantially re-

duced with an introspective software system that is both data and environmentally aware. As

reported in prior work, the availability of high speed networks have a large impact on whether of-

floading to the cloud is feasible and efficient [127, 130]. But, we also believe the characteristics of

individual inputs play an important role in how and where inference should be performed. A sim-

pler, lighter weight CNN is often capable of rendering accurate inferences for a significant fraction

of the inputs. Thus, an intelligent runtime system can examine the characteristics of the data to

help partition the computation. SIEVE is designed to partition computation between a lightweight

version of the CNN that runs on the edge device (speculative inference), and the original CNN on
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Figure 4.2: Overview of SIEVE. The camera provides the input to the runtime system to chooses
between the speculative CNN on the device and the original CNN on the cloud. The misspeculation
detector examines speculative CNN outputs and triggers the original CNN for recovery of faulty
ones.

the cloud, and to detect misspeculations on the edge device that must be replayed in the cloud.

By supporting data-aware partitioning, SIEVE enables a new level of efficiency gains that are not

possible with environmental-only partitioning methods [127, 130].

Figure 4.2 shows the major parts of a SIEVE system including a camera, runtime system,

mobile hardware and cloud server. At the beginning, the camera on the mobile device provides the

input to the runtime system, which consists of a CNN selector and a misspeculation detector. Then,

the CNN selector evaluates user preferences (accuracy requirements and privacy), environment

(network speed, available hardware, and server load), and the most recent speculation results to

dynamically route each input through either the original CNN on the cloud or the speculative

CNN on the device. The main purpose of this CNN selection process is to minimize the energy

and latency while meeting the accuracy requirements of the user. After CNN selection, if the

speculative CNN is selected, its outputs are sent to the misspeculation detector unit to identify

untrustworthy answers and initiate replay on the cloud. When the original CNN is selected, SIEVE

bypasses the speculative CNN and misspeculation detector and sends the inputs to the cloud and

downloads the results as with traditional cloud offloading.

SIEVE produces energy savings in two ways. First, successful speculation on the edge device

enables a lighter weight CNN to perform the inference and avoid data transfer costs. Second,

direct inference on the cloud because data transfer is actually cheaper than edge inference and

predicted misspeculation costs. Conversely, SIEVE requires more energy during misspeculations
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as inferences must occur on both the edge (speculative) and cloud (replay). Thus, it is important to

manage speculation carefully to ensure that it is profitable. We found in our evaluation that only

modest success rates are necessary for speculation to be useful, >60% is generally profitable. In

our results, we achieved a minimum of 80% success, which was well above the threshold.

Offline Training: During the training phase, SIEVE designs and trains the speculative CNN

and configures the runtime system units using the topology and parameters of the original CNN as

well as characteristics of the mobile hardware, cloud servers, and communication networks.

4.3.2 CNN Selection

Figure 4.3 shows the first major component of SIEVE runtime system, which is the CNN selector.

It tries to run most of the inputs speculatively on the device, however, there are various factors that

have effects on the final selection decision. It estimates and compares the efficiency of data com-

munication and local hardware to find the proper computation partitioning. Moreover, it takes into

account environmental conditions and regulates the number of requests to the server. In addition,

it considers user preferences by providing knobs to enable and disable different components of

SIEVE. Furthermore, the recent speculation history and temporal distance of images is considered

to identify similar ones.

Input Data and Environmental Conditions: To make the correct decision, SIEVE must es-

timate energy consumption and latency of the data transfer to the cloud (Et, Lt) and execution on

the mobile device (Em, Lm). Additionally, it requires the probability of initiating recomputation
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by the misspeculation detector (Pr).

SIEVE uses techniques from Huang et al. [131, 132] to estimate Et and Lt based on the size

of the data, communication technology and bandwidth. Since the computation on the cloud GPU

is much faster than the mobile GPU, the latency of the computation on the cloud is neglected in

the estimation of Lt. In addition, it trains a regression model, same as Neurosurgeon [127], to

estimate Em and Lm based on the number and size of input and output feature maps as well as the

characteristics of each layer including layer type, stride, kernel and group size for convolutional

and pooling layers. These models are CNN invariant. Hence they are trained once for a set of

CNNs and wireless connections, then they could be used for different CNN applications during

runtime. Pr is calculated by comparing the output difference of the speculative CNN and original

CNN on the validation set, which is explained in more detail in Section 4.4.

During runtime, it compares Et (Lt) and Em + Et × Pr (Lm + Lt × Pr) to pick between the

original and speculative CNNs for minimum energy (latency). In addition, if the difference of

these two numbers becomes larger than a defined threshold in a way that all inputs are sent to the

original CNN, it concludes that the speculative CNN is not proper for the current wireless network

speed and replaces it with another available topology.

Furthermore, it measures the round-trip time for each request and compares it with Et and Lt

estimations. A big difference between these two numbers indicates a high load on the server. Con-

sequently, SIEVE temporarily turns off the misspeculation detector to eliminate recovery requests

and keep the computation on the device. At the same time, it monitors the load on the server to

find an opportunity to get back to its normal operation. This mechanism sacrifices some accuracy

to maintain the constraints of time-sensitive applications when the server response time is low.

User Preferences: In addition to previous factors, CNN selector considers user preferences

and provides a knob for the user to switch among mission critical, power saving, private and

normal mode dynamically. The mission critical mode disables the speculative CNN and misspec-

ulation detector and offloads every input on the cloud to maximize the accuracy and robustness.

On the other hand, the private mode keeps the entire computation on the device and prevents any
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offloading to the cloud to increase privacy and security. And, the power saving mode relaxes the

speculative CNN and the misspeculation detector to sacrifice a marginal amount of accuracy to ob-

tain further energy and latency gains. Finally, the normal mode leaves the other units unchanged.

Speculation History: Since the input of SIEVE comes from the camera of a smartphone, if the

temporal distance of two inputs is very low, it is likely that they are similar images from the same

view. Consequently, CNN selector measures the temporal distance of two inputs and compares it

with a predetermined threshold to find the similar consecutive images. This strategy results in two

main benefits:

First, if the first image is sent to the server by the misspeculation detector for recovery and the

original CNN provides the same answer as the speculative CNN, SIEVE will process the second

image on the device without misspeculation detection and recovery, which provides energy and

latency savings.

Second, if the first image is misclassified by the speculative CNN and the original CNN pro-

vides a different output during recovery, SIEVE will bypass the speculative CNN and misspec-

ulation detector for the second image and send it directly to the server for energy and latency

reduction.

4.3.3 Misspeculation Detection

The second major component of the SIEVE runtime system is the misspeculation detector. Since

the speculative CNN is a simplified version of the original CNN and trades off some accuracy for

better energy efficiency and latency on the edge device, it is necessary to detect and recover errors

to bridge this accuracy gap to achieve the same accuracy as the baseline.

For classification tasks, CNNs convert an input instance (x) to an output vector of K elements

(K is the number of classes). Using a softmax ( ezj∑K
k=1 e

zk
) activation function after the output layer

provides the estimated probability of that the correct output is j for j = 1, ..., K (Pj = P (y =

j|x)). Consequently, max
16j6K

Pj represents the confidence level of the CNN in the final output.

Figure 4.4 illustrates the confidence of wrong outputs for LeNet-5 [93] CNN, compressed to
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Figure 4.5: Confidence of 4-bit compressed LeNet-5 on MNIST test set. The confidence threshold
for indicating correctable errors results in a limited number of recomputations.

4 bits per weights and activations, on MNIST [82] test set for handwritten digit recognition. The

circles represent correctable errors, which are wrong on the compressed CNN but correct on the

original CNN. And, the crosses indicate uncorrectable errors, which are wrong on both CNNs. If

we pick a threshold equal to 0.3, shown by the dashed line, the density of correctable errors is

much higher than the uncorrectable ones under that threshold.

On the other hand, Figure 4.5 shows the confidence of the same CNN on the entire test set, and

the 10000 images of the dataset are sorted from low to high confidence. As we can see, only 5.2%

of the images result in outputs with less than 0.3 confidence. Hence, it is possible to recover most

of the correctable errors by initiating the recomputation on the server for a small portion of inputs.

SIEVE determines the confidence distributions of the speculative CNN for correct, and cor-

rectable and uncorrectable wrong outputs on the validation set during training and saves them

in the misspeculation detector. During runtime, the misspeculation detector defines a confidence
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threshold by examining those distributions and considering the output target quality to minimize

the number of recomputations. Then, it compares the confidence of the speculative CNN with that

threshold for each inference to detect and recover possible errors and meet the output target quality.

4.4 Speculative CNN Design

An important component of SIEVE is deriving a lightweight speculative CNN from the original

CNN and making sure it performs faster and more efficiently than the mobile-only and cloud-only

approaches. There are various well-studied methods for reducing the computation and memory

accesses of CNNs for small or no accuracy reductions, such as pruning [49], compression [47, 11],

fixed-point computation [54] and precision reduction [33]. Although all these techniques could be

employed to design the speculative CNN, we prefer to minimize in-depth hardware modifications,

rigorous CNN modifications and fine-tuning iterations. Hence, our system combines the compres-

sion and custom floating-point representation techniques to design and implement an efficient and

high-performance speculative CNN on the mobile. To keep hardware modifications at the min-

imum level of complexity while gaining considerable improvements, SIEVE takes advantage of

custom floating-point formats for compressing weights and activations stored in the memory, but

performs the computation in full precision.

There are three advantages for this approach. First, since the numbers will be reformatted

to single-precision floating-point before the functional unit, it is not necessary to use the same

representation format for all numbers in the memory. Hence, weights and activations of differ-

ent layers could be compressed differently based on their required precision as explained in prior

work [133, 37, 134]. Second, the compression and decompression are basically reformatting be-

tween two different floating-point representations. Therefore, the hardware compressor and de-

compressor become very cheap and easy to implement. Third, since the computation is precise,

each layer could be compressed very aggressively to minimize the memory accesses. In this sec-

tion, first the opportunities for compressing CNNs are investigated. Then, we explain how SIEVE
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Figure 4.6: Distribution of activations and weights in AlexNet. Using single-precision variables
is extravagant. In addition, the range of numbers in different layers varies, so they need different
optimized representations.

prunes the design space and derives the speculative CNN from the original CNN. Lastly, we de-

scribe the hardware of the speculative CNN, including the compressor and decompressor.

4.4.1 Compression

Conventional hardware usually uses IEEE 754 32-bit base-2 floating-point variables for CNN ap-

plications. These variables consist of three parts: one sign (s) bit , eight exponent (e) and 23

mantissa (m) bits. In addition, the exponent uses a bias (b) equal to +127 to represent the range

from -126 to +127 by unsigned integer format (0 and 255 are interpreted specially). The value of

each number is computed as (−1)s × 2(e−b) × (1 +
∑23

i=1m23−i × 2−i). Therefore, this format

covers the huge range from −3.4× 1038 to +3.4× 1038.

However, the maximum and minimum of numbers even in very deep NNs are much smaller

than the range provided by single-precision floating-points. Figure 4.6 shows the distribution of
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Figure 4.7: Exponent histogram for AlexNet FC8 weights. Bias adjustment reduces the bitwidth
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weights and activations for the first convolutional (Conv1) and last fully-connected (FC8) layer of

AlexNet. The comparison of these four distributions results in three important observations. First,

the 32-bit floating-point is not the most suitable format to represent CNN numbers efficiently.

Second, the range of numbers in different layers is very different from each other. For instance,

the range of weights in Conv1 is about 7 times bigger than FC8. Third, the weights and activa-

tions of the same layer have very different distributions. In conclusion, it is necessary to pick the

most representative format for weights and activations of each layer separately to maximize the

compression rate.

It is very time consuming to sweep the entire design space and find the optimum number of bits

for weights and activation of layers separately. The exponent of floating-point numbers is the part

that determines the range of changes. Hence, defining the proper bitwidth for exponents is vital for

accuracy maintenance. Figure 4.7 shows the histogram of weight exponents for FC8 of AlexNet,

which change from -4 to -32. However, more than 99.5% of exponents are between -5 and -14.

Due to the natural error resiliency of CNNs [33], we can easily omit the outliers and reduce the

bitwidth ebw from 8 to 5, which covers the range between -14 to +15. Yet there is no need to

represent numbers higher than -4. To maximize the compression, SIEVE uses bias adjustment for

exponents. Since the histogram is not symmetric around zero, a bias equal to 2ebw−1−1 is wasteful.

The optimum bias is determined by b = 1 − min |e|. Then, there will be more room for bitwidth

reduction, ebw = dlog2 (max |e| − b− 2)e. For FC8, adjusting the bias to 15 reduces ebw to 4 bits

for a final range of -1 to -14.
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Figure 4.8: Correctable errors vs. recovery rate for 3 compressed LeNet-5s. Reducing the size
increases the recovery rate, but might be efficient for high-speed connections.

To pick the best representation for each layer, SIEVE runs the original CNN on the validation

set to gather exponent histograms. Then, for each set of numbers, it finds the best ebw, called emax,

and bias deterministically. After that, it sweeps ebw from emax to 2 bits, computes the bias that

maximizes the coverage and stops whenever the coverage is below 50%. For each iteration, it

sweeps the mbw from 6 to 0 bits, tests the CNN on the validation set while the other weights and

activations are using full precision, and stops whenever the normalized accuracy is below 99.8%.

Since the search space is considerably pruned, and there is no need for retraining or fine-tuning, the

design space exploration is fast enough to derive the speculative CNN in a few hours on a single

GPU even for huge CNNs on large datasets.

After that, our system picks the best configuration for each layer and finalizes the speculative

CNN design. Each explored CNN has a compressed layer and is a trade-off between efficiency

and accuracy. It is important to note that even combining layers of two 100% accurate compressed

CNNs will not necessarily result in a 100% accurate CNN with two layers compressed, because of

the aggregation of precision losses.

SIEVE chooses three different networks to use for different wireless connection speeds: exact,

accurate and approximate. The exact model contains the most accurate layers from the explored

CNNs. The accurate one, contains the most compressed layers with the accuracy not less than

100%. And the approximate one is the same as the accurate one, but with a threshold of 99.9%. If

there is no configuration to meet the threshold for a layer, that will use the most accurate explored

configuration.
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Figure 4.8 shows the trade-off between the number of correctable errors relative to the uncor-

rectable ones and the percentage of inputs that are recomputed on the server for the exact, accurate

and approximate speculative CNN on MNIST test set. Based on the trade-offs, the approximate

speculative CNN is suitable for the situations when the wireless communication is efficient, so we

can make the speculative CNN as compressed as possible by increasing the recovery frequency.

The CNN selector uses latency and energy models to convert these trade-offs to a single Pareto

frontier based on the wireless communication speed. Figure 4.9 shows this Pareto for the same

CNNs as Figure 4.8 using WiFi Internet connection. This Pareto helps the CNN selector to pick

the most efficient speculative CNN which meets the output quality target.

4.4.2 Hardware

Prior work [48] identifies that the key bottleneck for CNN execution on GPUs is the on-chip mem-

ory bandwidth. Hence, SIEVE keeps the weights and activations of the speculative CNN com-
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pressed in the entire memory hierarchy, and decompresses them right before writing to the register

file for computation. Since on-chip memory data compression at this level requires very frequent

data reformatting, a low-overhead hardware implementation of the compression/decompression

mechanism is mandatory. Figure 4.10 shows where the compressor and decompressor units are lo-

cated in the memory hierarchy of a GPU. The compressor (decompressor) unit contains the same

number of compressor (decompressor) engines as the number of load/store units in the SM. And,

each compressor (decompressor) engine is capable of processing one compressed (decompressed)

value per cycle.

Compressor Engine: Figure 4.11 shows the implementation of a compressor engine in detail.

This engine is responsible for both bitwidth reduction and bias adjustment. The output format is

dynamically configurable to use the same engine for different layers of the speculative CNN. In

addition to the 32-bit decompressed number, it is fed by several constant values including Min,

Min/2, Max, Sign Shift, Adjusted bias, Exponent Mask, Exponent Shift and Mantissa Shift. All

these constants are computed based on the target compression format by a constant calculator unit,

which is shared among all compressor units.

Decompressor Engine: Figure 4.12 demonstrates the hardware design of a decompressor en-
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Table 4.1: CNN information for different benchmarks.

Network Dataset Acc. Input Size MACs (G)
LeNet-5 [93] MNIST [82] 99.19% 1× 28× 28 0.002
ConvNet [92] CIFAR10 [85] 82.12% 3× 32× 32 0.01
NIN-CIFAR10 [136] CIFAR10 89.57% 3× 32× 32 0.2
AlexNet [91] ImageNet 56.90%3× 227× 227 0.7
SqueezeNet_1.0 [137] ImageNet 57.67%3× 227× 227 0.7
NIN-ImageNet [136] ImageNet [84] 56.34%3× 224× 224 1.1
GoogLeNet [138] ImageNet 68.92%3× 224× 224 1.6
ResNet-18 [139] ImageNet 66.62%3× 224× 224 1.8
VGG-16 [4] ImageNet 68.35%3× 224× 224 15.5

gine, which has similar characteristics to the compressor engine. In addition, all decompressor

engines share a constant calculator unit in the same way as the compressor engines.

Most of the computation in these two engines is limited to logical and, logical or, shift, integer

add and subtract, comparison and multiplex units, which are all cheap in terms of power and area.

To measure the overhead, we implemented and synthesized the compressor and decompressor

unit for an NVIDIA Tegra K1 mobile processor [135] using the ARM Artisan IBM SOI 45 nm

library. It has an area overhead of 0.06mm2 (0.05%), and an active power consumption of 0.23W

(2.06%). Moreover, the compression/decompression takes less than one clock cycle and could be

implemented as an additional pipeline stage. Considering the low branch misprediction rate of

CNN computation, the performance overhead is negligible.

4.5 Evaluation

4.5.1 Experimental Methodology

Benchmarks: We evaluate SIEVE using a benchmark suite of nine CNNs using three wireless

connection technologies: 3G, LTE and WiFi. A brief description of each benchmark is presented

in Table 4.1. For each row, the first column presents the name of the original CNN. Second column

is related to the dataset for providing training, validation and test data. We use a randomly sampled

subset of the training set as the validation set to configure our system (same size as the test set).
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Figure 4.13: Energy consumption of SIEVE vs. the mobile-only approach for 3G, LTE and WiFi
normalized by cloud-only results.

Third column contains the top-1 accuracy of the trained original CNNs obtained from Caffe Model

Zoo [140]. Fourth column shows the input size of each CNN, which is the amount of data to be

sent to the cloud in the case of cloud-only or recovery. And the last column is the number of

floating-point multiply and add (MAC) operations required to process a single input, which is a

good indicator of the complexity of the CNN.

Hardware platforms: The NVIDIA Jetson TK1 embedded development kit is used as our

mobile platform. It is built around NVIDIA Tegra K1 SoC: a quad-core ARM A15, a Kepler

mobile GPU with a single streaming multiprocessor and a 2 GB DDR3L memory. In addition, for

the server side, we use an NVIDIA TITAN X GPU [141].

Software framework: We use Caffe [95], an open-source deep learning library, and cuDNN [142],

NVIDIA’s GPU-accelerated library for DNNs, to build and test SIEVE.

SIEVE could be configured to prioritize efficiency (performance) improvements for maximum

gains, while still obtains latency (energy) savings. To demonstrate the supremacy of SIEVE, we

compare it with both cloud-only and mobile-only.

4.5.2 Energy Saving

Figure 4.13 shows the energy consumption of SIEVE compared to the mobile-only and the cloud-

only methods for different wireless connection speeds. In each plot, each group of bars is dedicated

to one of the nine benchmarks. In each group, the left bar represents the result of running the orig-

inal CNN on the mobile (mobile-only) and the right bar is dedicated to the energy breakdown of

SIEVE. Both bars are normalized by the cloud-only energy consumption result. The bottom part
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of the right bars is related to the amount of energy consumed for running the speculative CNN on

the mobile device. The middle part is dedicated to uploading the input data to the server and down-

loading the final result for two situations: when the CNN selector predicts that the data network is

more efficient than the speculative CNN, or when the misspeculation detector triggers the recovery

phase. The top shows the energy consumption of the decoder and encoder (reformatting).

On average, SIEVE reduces the energy consumption of the cloud-only approach by 91%, 57%

and 26% for 3G, LTE and WiFi, respectively. In contrast, the mobile-only approach increases the

energy consumption by 24% and 213% in comparison to when the cloud-only method uses LTE

and WiFi connection, respectively. In addition, for 3G connection, SIEVE results in 7% more

energy savings than the mobile-only.

As demonstrated, SIEVE is capable of decreasing the energy of the cloud-only by partitioning

the computation between the speculative and original CNNs, except when the complexity of the

baseline CNN is much higher than the input dimensions. For example, based on Table 4.1, the

number of MACs per input size for NIN_CIFAR10, ResNet-18, GoogLeNet and VGG-16 is one

and two orders of magnitude higher than other benchmarks. In other words, the complexity of

the baseline CNN for these two benchmarks is much higher than the input dimensions. Conse-

quently, when the internet connection is efficient (WiFi), the CNN selector correctly predicts that

the data transfer over the network connection for these benchmarks is more efficient than execut-

ing the speculative CNN. Another important observation is that the average energy consumption

of reformatting never exceeds 5% of the total system energy.

Another interesting observation is that SIEVE gets the same energy as the mobile-only for

AlexNet with 3G connection. The reason is that the number of MACs per input for AlexNet is

the third lowest after LeNet-5 and ConvNet. However, the baseline accuracy of AlexNet is much

lower than those two other CNNs. Hence, the same compression rate for AlexNet results in a

higher recovery rate than the other two CNNs, and these recoveries are relatively expensive for

3G connection. Therefore, the CNN selector correctly chooses the original CNN to run as the

speculative CNN in this situation.
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Figure 4.14: Latency of SIEVE vs. the mobile-only approach for 3G, LTE and WiFi normalized
by cloud-only results.

4.5.3 Latency Improvement

As explained in Section 4.5.2, another approach to take advantage of SIEVE is configuring the

system for latency improvements. This configuration forces the CNN selector to prioritize perfor-

mance over efficiency for picking the proper speculative CNN topology and selecting between the

speculative and original CNNs on various platforms with different hardware resources and data

connection speeds. In this section we show that SIEVE is capable of improving the performance

in comparison to both cloud-only and mobile-only approaches.

Figure 4.14 shows the latency of SIEVE versus the mobile-only approach normalized by the

end-to-end latency of the cloud-only technique in the same format as Figure 4.13. Each right bar

has two partitions. The bottom part indicates the latency of executing the speculative CNN on the

device. And, the top part is dedicated to the end-to-end latency of sending one input to the cloud,

processing that on the cloud GPU and downloading the final result for the cases that CNN selector

or misspeculation detector activates the original CNN. On average, SIEVE improves the latency

by 12.3×, 2.8× and 2.0× for 3G, LTE and WiFi, respectively.

SIEVE managed to reduce the latency for all benchmarks in comparison to the mobile-only

approach. On average, the mobile-only increases the latency by 31% and 143% for LTE and WiFi,

respectively. Even for 3G, SIEVE achieves 8% more latency reduction than the mobile-only.
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Figure 4.15: Energy improvements by SIEVE vs. Neurosurgeon normalized by cloud-only with
WiFi.

4.5.4 Comparison to Prior Work

In this section, we compare SIEVE with Neurosurgeon [127] to show benefits of input-variant

dynamic partitioning. Then, the comparison with DeftNN data fission [48] is presented to demon-

strate additional compression opportunities because of the cloud recovery mechanism. And finally,

we apply our technique on top of Scalpel node pruning [52] to show that our aggressive precision

reduction is orthogonal to mobile-only compression techniques, such as pruning. For all experi-

ments, we compare energy of SIEVE with other techniques using WiFi connection. Performance

improvements follow the same trend and are not shown because of space limitations.

Neurosurgeon dynamically finds the interesting partitioning points within a CNN at layer

granularity to reduce the data transfer to cloud by pushing as much computation as possible onto

the mobile device for performance and efficiency gains.

Figure 4.15 compares SIEVE and Neurosurgeon for three of our benchmarks that are shared

with Neurosurgeon. Each bar is normalized by the result of the cloud-only approach. In each

group, the left bar represents Neurosurgeon, and the right bar is related to SIEVE results. On

average, SIEVE outperforms Neurosurgeon by 20% more energy improvements. Both systems

successfully indicate that the input size of VGG-16 is very small relative to the amount of compu-

tation required for an inference of VGG-16. Hence, they find WiFi connection fast and efficient

enough to transfer this relatively small input to the cloud for energy savings over the mobile-only

approach.
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Figure 4.16: Energy improvements by SIEVE vs. DeftNN data fission normalized by full precision
mobile-only.

For LeNet-5, Neurosurgeon picks the mobile-only computation. Since it does not employ any

mechanism to optimize the part of the computation which is remained on the mobile device, SIEVE

provides higher savings by enabling aggressive precision reduction of the speculative CNN. For

AlexNet, Neurosurgeon is not able to partition the computation properly and offloads everything on

the cloud. However, SIEVE keeps most of the computation on the device by utilizing a compressed

and energy-efficient speculative CNN.

DeftNN demonstrates that GPU on-chip memory bandwidth is a key DNN execution bottleneck

and proposes near-compute data fission to scale down the on-chip data movement requirements by

efficiently packing on-chip memory.

Figure 4.16 compares the energy savings from non-aggressive precision reduction of applying

DeftNN data fission versus aggressive precision reduction, which is enabled by SIEVE. Each bar

is normalized by the result of mobile-only full precision baseline CNN. In each group, the left

bar represents energy breakdown of DeftNN, which consists of running DeftNN on the device

and reformatting overheads for compression and decompression. The right bar shows SIEVE

breakdown in the same format as Figure 4.13. On average, running speculative CNNs designed by

SIEVE requires 51% less energy than the CNNs designed by DeftNN, and the entire SIEVE results

in 38% more savings with 100% accuracy. Hence, SIEVE is capable of utilizing more compressed

and energy-efficient CNNs on the mobile device by relying on the cloud for recovery.

Scalpel customizes DNN pruning to the underlying hardware. For GPU, it proposes node

pruning to reduce computation without sacrificing the dense matrix format.
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Figure 4.17: Energy of pruned SIEVE vs. pruned mobile-only normalized by unpruned mobile-
only.
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Figure 4.18: The false negative of misspeculation detector.

We apply our technique on four node-pruned CNNs, which are shared between us and Scalpel.

Figure 4.17 shows the result of node-pruned SIEVE in comparison to mobile-only node-pruned

CNNs from Scalpel. Each bar is normalized by the result of mobile-only unpruned original CNN.

In each group, the left bar shows Scalpel results, and the right bar is related to the energy breakdown

of pruned SIEVE. On average, Scalpel reduces energy by 42% on the mobile device, and SIEVE

improves this result by 25% of additional energy savings without any accuracy loss. Consequently,

our intelligent hybrid technique could use aggressive precision reduction and speculative execution

with cloud recovery on top of mobile-only compression techniques, including pruning, for further

savings.

4.5.5 Misspeculation Detector

To evaluate the misspeculation detector, SIEVE is configured for energy optimization. On average,

it detects 6.3%, 3.8% and 3.4% of outputs as potential faulty results and sends them to the cloud to
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Figure 4.19: Energy improvement of SIEVE compared to the cloud-only by relaxing the target
output quality to maximum 1% additional error.

be recomputed on the original CNN for 3G, LTE and WiFi, respectively.

Figure 4.18 shows the false negative rate of the misspeculation detector. A false negative

happens when a complex input, which could be classified wrongly by the speculative CNN and

correctly by the original CNN, is not sent to the original CNN for recovery. The average false

negative rate is 0.7%, 0.8% and 0.4% for 3G, LTE and WiFi, respectively. SIEVE keeps the false

negative rate of all benchmarks below 2.0% to limit the accuracy loss in a compensable range. The

lost accuracy is compensated by speculation exclusive inputs and the low false positive rates. The

average false positive for all connections is below 0.5%.

4.5.6 Approximate speculative CNN

As explained in Section 4.4, there are different speculative CNNs available in the system. Hence,

the CNN selector is capable of choosing the best speculative CNN based on the available hardware

and data network resources, as well as target output quality. In other words, the CNN selector unit

is an available knob in the system to dynamically choose the target output quality. Therefore, there

is an opportunity for the user to sacrifice a marginal amount of accuracy to obtain further energy

and latency gains.

Figure 4.19 presents the energy breakdown of SIEVE with the output accuracy relaxed to 99%

of the baseline accuracy normalized to the cloud-only method. In comparison to the 100% accurate

SIEVE, the average energy saving for 3G, LTE and WiFi is increased by 3.7%, 7.7% and 6.8% for
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Figure 4.20: Speculation history for consecutive images helps SIEVE to reduce server activations
for ConvNet.

0.69%, 0.54% and 0.38% additional error.

4.5.7 Speculation History

To demonstrate the effect of considering the speculation history for consecutive images, we aug-

ment CIFAR10 dataset by randomly cropped and scaled images from the dataset, which emulate

images with low temporal distances from the same view. Then, the augmented dataset is used to

evaluate the ConvNet SIEVE system with and without speculation history. For similar images, if

the first image is run on the speculative CNN without recovery, speculation history will not have

any effect on the CNN selection of the second image. Hence, Figure 4.20 shows the distribution of

the host hardware for the second image in the cases that the first image requires recovery.

Without the history, 100% of inputs require speculative CNN activation and 30.6% of them

require recovery. However, only 3.9% of these complex inputs result in a correct output after re-

covery. Speculation history helps CNN selector to bypass the speculative CNN and misspeculation

detector for 27.4% of inputs and run the rest of the inputs on device with disabled misspeculation

detector. Consequently, the correct recoveries increases by 2.5% while server and device activation

decrease by 3.2% and 27.4%, respectively.

4.5.8 Realistic Model

In the evaluation section we use a simple model for transferring data to the cloud for both SIEVE

and the cloud-only approach. This simple model ignores compression and decompression of the
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Figure 4.21: Using realistic model to compare latency of SIEVE and the mobile-only approach for
3G, LTE and WiFi normalized by cloud-only results.

transferred data, handshakes required for uploading and downloading data, etc. We simply assume

the uncompressed bitmap image is transferred to the server. However, the real data transfer model

is more complicated. In this section, we use a more realistic model, which considers the latency of

handshakes and assumes a 4× lossless compression of input images before uploading to the cloud.

Figure 4.21 shows the latency of SIEVE versus the mobile-only approach normalized by the

end-to-end latency of the cloud-only technique in the same format as Figure 4.14. On average,

SIEVE improves the latency by 19.2×, 6.0× and 7.3× for 3G, LTE and WiFi, respectively. SIEVE

managed to reduce the latency for all benchmarks in comparison to the mobile-only approach. On

average, it achieves 5%, 30% and 21% more latency reduction than the mobile-only for 3G, LTE

and WiFi, respectively.

4.6 Related Work

Mobile Cloud Computing (MCC) is widely used to overcome the power, memory and compute

resources’ constraints in mobile systems [125, 143, 144]. MAUI [121] implements a fine-grained

energy-aware code offloading at methods granularity. COMET [145] develops a generalized of-

floading technique for applications with no offloading logic using Distributed Shared Memory

(DSM) system. Qian et al. [146] introduce Jade, which offloads computations to the server based

on program and device status. Odessa [147] offloads computations based on parallelism capa-

bilities and shows that their performance is about the same as offline partitioning performance.

CloneCloud [148] uses both static analysis and dynamic profiling in order to improve energy and
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execution time of unmodified programs using thread level offloading. By popularization of ma-

chine learning (ML) applications on mobile devices, researchers have designed ML specific MCC

infrastructures [149, 150] which can be divided into two categories:

Static: Ran et al. [151] characterize mobile-only and cloud-only approaches in terms of accu-

racy, latency and energy consumption. Hauswald et al. [152] evaluate different configurations of

computer-vision classification pipeline and shows that running the feature extraction stage on the

mobile device would be the best configuration.

Dynamic: Qi et al. [153] have developed an object detection system that switches the stream

of video data between cloud and mobile based on the quality of network connection. They have an

online model selector in their system, which selects between different pre-trained versions of DNN

models based on the destination hardware features. MCDNN [126] introduces Approximate Model

Scheduling (AMS) to manage heterogeneous DNN requests across both mobile and cloud devices

by trading off 1-4% of classification accuracy for higher resource utilization. DDNN [130] is a

hierarchical distributed design which has multiple exit points. Neurosurgeon [127] can partition

the computation to optimize its latency or mobile power consumption. In either case, it considers

different parameters, such as quality of the network, DNN model architecture and destination

hardware, in order to partition the computation.

SIEVE benefits from a dynamic partitioning algorithm. The key difference of SIEVE design

is that it uses input-variant partitioning and treats the cloud server as a backup resource. As a

result, it performs an aggressive compression on the model and generates a cost-effective model

(speculative CNN). In the case of error occurrence, accuracy will be preserved by offloading the

computation to the server.

4.7 Conclusion

CNN execution has traditionally been offloaded to the cloud, but there is a trend toward bringing

CNNs to edge devices with the emergence of powerful and efficient processors on mobile devices.
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However, the complexity of CNNs is growing much faster than the compute power and battery life

of these devices. In this chapter, we introduce SIEVE, a novel hybrid cloud-edge deep learning

system. It creates a heavily compressed CNN through aggressive precision reduction to enable

speculative inferences on the device. However, for a subset of inputs, the heavily compressed CNN

cannot yield confident predictions and is often wrong. Hence, a dynamic partitioning technique

is employed to push most of the computation to this speculative CNN while the data transfer

to original CNN is limited to recovery on low-confidence inferences. Compared to the cloud-

only approach, SIEVE reduces the energy consumption by an average of 91%, 57% and 26%

and increases the performance by an average of 12.3×, 2.8× and 2.0× for 3G, LTE and WiFi

connection with 100% accuracy of baseline.
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CHAPTER 5

Extension of Cloud-Edge Hybrid Systems

5.1 Introduction

Since the computational complexity of DNNs is becoming prohibitive, recent research pro-

posed new DNN architectures, such as MobileNets [154], which are specifically designed for

efficient inference, while offering the same accuracy level as complex models. Although these

models are much more efficient than conventional DNNs, they still use a single model for the en-

tire dataset. Hence, we propose M&MNet to extend the intelligent cloud-edge collaboration idea

from Chapter 4 to these efficient DNNs. M&MNet uses a lightweight software runtime to dis-

tribute the computation between the original network called Master and a pair of simpler networks

called Minions.

Our evaluation on a benchmark suite of eight CNNs shows that M&MNet on average increases

mobile execution performance by 3.9×, and 1.9× and reduces the energy consumption by 53.5%,

and 39.5% for LTE and WiFi connections in comparison to the cloud-only approach, without any

accuracy loss.

This work is a collaboration with Salar Latifi, and Pedram Zamirai.
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Figure 5.1: M&MNet overview. Selector decides based on the input, CNN architectures, user
preferences, environmental conditions and speculation history to run speculatively on Minions or
use the Master.

5.2 M&MNet

M&MNet is designed to partition computation between a pair of lightweight CNNs (Minions),

and the original CNN (Master), and to detect misspeculations of Minions that must be replayed

using Master. In addition, M&MNet decides to place the Master on the cloud server or device to

minimize the total latency. Minions and a misspeculation detector are always located on the device.

By supporting data-aware partitioning, M&MNet enables a new level of performance gains that are

not possible with environmental-only partitioning methods [127, 130].

Figure 5.1 shows the major parts of an M&MNet system including a selector, Minions and Mas-

ter. At the beginning, the camera on the mobile device provides the input to the runtime system.

Then, the selector evaluates user preferences (accuracy requirements and privacy), environment

(network speed, available hardware, and server load), CNNs topology and allocation and the most

recent speculation results to dynamically route each input through either Master or the speculative

Minions. The main purpose of this selection process is to minimize the latency while meeting the

accuracy requirements of the user. After selection, if the Minions are selected, their outputs are

sent to the misspeculation detector unit to identify untrustworthy answers and initiate replay on

Master. When Master is selected, M&MNet bypasses Minions and misspeculation detector and

processes the inputs directly on Master.

M&MNet produces performance improvement in two ways. First, allocating Master on the

proper host to minimize its latency. Second, successful speculation of Minions enables lighter
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Figure 5.2: Deciding between on-device computing and cloud offloading.

weight CNNs to perform the inference on the edge and avoids data transfer (cloud-only) or original

complex CNN execution (mobile-only) costs. However, M&MNet results in higher latency during

misspeculations as inferences must occur on Minions and Master. Thus, it is important to manage

speculation carefully to ensure that it is profitable.

Offline Training: During the training phase, M&MNet designs and trains the Minions and

configures the runtime system units using the topology and parameters of the original CNN as well

as characteristics of the mobile hardware, cloud servers, and communication networks.

5.2.1 Master Allocation

As explained in Section 4.2.1, even for a fixed CNN topology, there is no single approach between

mobile-only and cloud-only which always works best. Hence, as shown in Figure 5.2, M&MNet

dynamically determines the best host for Master based on its topology, input characteristics, current

network connection speed and available hardware on the device.

To make the correct decision, M&MNet must estimate latency of the data transfer to the cloud

(Lt) and execution on the mobile device (Lm). M&MNet uses techniques from Huang et al. [131,

132] to estimate Lt based on the size of the data, communication technology and bandwidth. Since

the computation on the cloud GPU is much faster than the device, the latency of the computation

on the cloud is neglected in the estimation of Lt. In addition, it trains a regression model, same

as Neurosurgeon [127], to estimate Lm based on the number and size of input and output feature

maps as well as the characteristics of each layer including layer type, stride, kernel and group size
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for convolutional and pooling layers. These models are CNN invariant. Hence they are trained

once for a set of CNNs and wireless connections, then they could be used for different CNN

applications during runtime. During runtime, M&MNet compares Lt and Lm to pick between

on-device execution and cloud offloading for minimum latency.

In case of offloading Master on the cloud, M&MNet measures the round-trip time for each

request and compares it withLm estimations. If the measured latency is higher thanLm, it indicates

a high load on the server. Consequently, M&MNet temporarily keeps Master computation on the

device. At the same time, it monitors the load on the server to find an opportunity to get back to its

normal operation.

5.2.2 Selection

The left part of Figure 5.1 shows one of the major components of M&MNet runtime system in

detail, which is the selector. It tries to run most of the inputs speculatively on Minions, however,

there are various factors that have effects on the final selection decision. It estimates and compares

the latency of data communication and local hardware to find the proper computation partitioning.

Moreover, it takes into account environmental conditions and number of requests to the server. In

addition, it considers user preferences by providing knobs to enable and disable different compo-

nents of M&MNet. Furthermore, the recent speculation history and temporal distance of images is

considered to identify similar ones.

Input Data and Environmental Conditions: M&MNet estimates latency of Master (LMaster)

and Minions (LMinion_1, LMinion_2) based on the regression models explained in Section 5.2.1. To

make the correct selection decision, it additionally requires the probability of initiating recompu-

tation by the misspeculation detector (Pr). Pr is calculated by comparing the output difference

of Minions and the original CNN on the validation set, which is explained in more detail in Sec-

tion 5.2.3.

During runtime, it compares LMaster and LMinion_1+LMinion_2+LMaster×Pr to pick between

Master and Minions for minimum latency. In addition, if the difference of these two numbers
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becomes larger than a defined threshold in a way that all inputs are sent to the Master, it concludes

that Minions are not proper for the current wireless network speed and replaces them with other

available topologies.

User Preferences: In addition to previous factors, the selector considers user preferences and

provides a knob for the user to switch among mission critical, power saving, private and normal

mode dynamically. The mission critical mode disables Minions and misspeculation detector and

offloads every input on Master to maximize the accuracy and robustness. On the other hand, the

private mode keeps the entire computation on the device and prevents any offloading to the cloud to

increase privacy and security. And, the power saving mode relaxes Minions and the misspeculation

detector to sacrifice a marginal amount of accuracy to obtain further energy and latency gains.

Finally, the normal mode leaves the other units unchanged.

Speculation History: Since the input of M&MNet comes from the camera of a smartphone,

if the temporal distance of two inputs is very low, it is likely that they are similar images from the

same view. Consequently, the selector measures the temporal distance of two inputs and compares

it with a predetermined threshold to find the similar consecutive images. This strategy results in

two main benefits:

First, if the first image is sent for recovery by the misspeculation detector and Master provides

the same answer as Minions, M&MNet will process the second image on Minions without mis-

speculation detection and recovery, which provides further latency and energy savings. Second, if

the first image is misclassified by Minions and Master provides a different output during recov-

ery, M&MNet will bypass Minions and misspeculation detector for the second image and send it

directly to the Master for latency and energy reduction.

5.2.3 Misspeculation Detection

The next major component of the M&MNet runtime system is the misspeculation detector. Since

Minions are less complex than the original CNN and trade off some accuracy for better latency

and energy efficiency, it is necessary to detect and recover errors to bridge this accuracy gap and
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Figure 5.3: Minions and misspeculation detector.

achieve the same accuracy as the baseline.

M&MNet determines the confidence distributions of Minions for correct, and correctable and

uncorrectable wrong outputs on the validation set during training and saves them in the misspec-

ulation detector. During runtime, the misspeculation detector defines a confidence threshold by

examining those distributions and considering the output target quality to minimize the number of

recoveries.

Figure 5.3 shows the runtime of misspeculation detector and Minions. Misspeculation detector

compares the confidence of Minions with the calculated threshold for each inference. If one of the

Minions is not confident in its output or the output of two Minions does not agree, possible error

is detected and sent to the Master for recovery to maintain the output target quality.

5.3 Minion Design and Pairing

An important component of M&MNet is deriving lightweight speculative Minions from original

CNNs and making sure they perform faster and more efficiently than the mobile-only and cloud-

only approaches. There are various well-studied methods for reducing the computation and mem-

ory accesses of CNNs for small or no accuracy reductions, such as pruning [49], compression [11],

fixed-point computation [54] and precision reduction [33]. Although all these techniques could

be employed to design Minions, we prefer to eliminate hardware modifications and rigorous CNN

modifications.
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Table 5.1: MobileNet width reduction.

Configuration Acc. MFLOPs Params
Mobilenet_V1_1.0_224 71.0% 569 4.2M
Mobilenet_V1_0.75_224 68.3% 325 2.6M
Mobilenet_V1_0.5_224 63.2% 149 1.3M
Mobilenet_V1_0.25_224 49.7% 41 0.5M

Hence, M&MNet uses two optimization techniques from MobileNets [154] to design, train and

implement high-performance and efficient Minions on the mobile.

In addition to creating a pool of candidate Minions from original CNNs, it is necessary to

design an automatic mechanism to pick the most proper pair of Minions for each Master.

5.3.1 CNN Width Reduction

The first optimization technique to construct smaller and less computationally expensive models is

using an extra hyperparameter, called width multiplier (α), during training. The width multiplier

is responsible for scaling the width (number of kernels) of a CNN uniformly at each layer. For a

given convolutional layer and width multiplier, the computational cost changes as following:

K ×K × αM × αN ×H ×W (5.1)

And for a depthwise convolutional layer, the computational cost changes as following:

K ×K × αM ×H ×W (5.2)

K ×K indicates the kernel size. M is the number of input feature maps, and N is the number

of output feature maps. H ×W represents the size of the output feature map.

Table 5.1 shows the accuracy, computational complexity and size trade offs of shrinking the

MobileNet_V1 architecture by sweeping the width multiplier from 0.25 to 1.0 by steps of 0.25.
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Table 5.2: MobileNet input downsampling.

Configuration Acc. MFLOPs Params
Mobilenet_V1_1.0_224 71.0% 569 4.2M
Mobilenet_V1_1.0_192 69.9% 418 4.2M
Mobilenet_V1_1.0_160 68.0% 290 4.2M
Mobilenet_V1_1.0_128 65.2% 186 4.2M

5.3.2 Input Downsampling

The second optimization method to reduce the computational cost of a CNN is input downsampling

by using another extra hyperparameter, called resolution multiplier (ρ). Resolution multiplier is

applied to the input image, which results in scaling internal representation of every subsequent

layer by the same multiplier. For a given convolutional layer, width multiplier and resolution

multiplier, the computational cost changes as following:

K ×K × αM × αN × ρH × ρW (5.3)

And for a depthwise convolutional layer, the computational cost changes as following:

K ×K × αM × ρH × ρW (5.4)

Table 5.2 shows the accuracy, computational complexity and size trade offs for applying input

downsampling on Mobilenet_V1 and sweeping the input size from 128 to 224 by steps of 32.

5.3.3 Minion Pairing

Both width reduction and input downsampling could be applied to any CNN of our model pool to

create new simpler CNNs as Minions. However, applying both techniques on the entire model pool

results in a huge Minion pool which has two main problems. First, each Minion requires training

from scratch, which increases the training time of the entire system. Second, the search space for

pairing Minions becomes huge and prohibitive. Hence, M&MNet uses a subset of original CNNs

to create Minions. This subset contains the original CNNs for which the on-device latency is lower
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Table 5.3: CNN information for different benchmarks.

Network Acc. Latency Input Size
MnasNet [155] 74.08% 19.4ms 224× 224

Mobilenet_V1 [154] 71.0% 24ms 224× 224

NASNet mobile [156] 73.9% 56ms 224× 224

Inception_V3 [157] 77.9% 249ms 299× 299

Inception_ResNet_V2 [158] 77.5% 422ms 299× 299

Inception_V4 [158] 80.1% 486ms 299× 299

ResNet_V2_101 [159] 76.8% 526ms 299× 299

NASNet large [156] 82.6% 1170ms 331× 331

than the latency of offloading their computation on the cloud using the fastest available network

connection speed.

After limiting the size of Minion pool, M&MNet uses the validation set to evaluate each pair

of candidate Minions for each Master. The sum of latency of these two Minions should be smaller

than Master to result in performance improvement and leave some room for the extra latency of

recoveries. In addition, the final M&MNet design should result in a moderate recovery rate to

allow performance and efficiency improvement.

5.4 Evaluation

5.4.1 Experimental Methodology

Benchmarks: We evaluate M&MNet using a benchmark suite of eight CNNs on the ImageNet [84]

dataset using two wireless connection technologies: LTE and WiFi. A brief description of each

benchmark is presented in Table 5.3. For each row, the first column presents the name of the origi-

nal CNN. Second column contains the top-1 accuracy of the trained original CNNs obtained from

TensorFlow Lite Hosted Models. Third column presents the model latency of processing a single

input on Google Pixel 3, which is a good indicator of the complexity of the CNN. And the last

column shows the input size of each CNN, which is the amount of data to be sent to the cloud in

the case of cloud-only or recovery. We use a randomly sampled subset of the training set as the
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validation set to configure our system (same size as the test set).

Hardware platforms: The Google Pixel 3 running on Android 10 is used as our mobile plat-

form. It is using Qualcomm’s Snapdragon 845 SoC with 4GB of RAM, and Qualcomm Kryo 385

octa-core CPU which is based on ARM A75 processor. In addition, for the server side, we use

NVIDIA TITAN X GPUs.

Software framework: We use the open-source library of TensorFlow, and cuDNN, NVIDIA’s

GPU-accelerated library for DNNs, to train and build the CNN models. After the models are

trained, they are converted to an appropriate format which can be used by TensorFlow Lite to

deploy them on mobile devices.

Energy estimation: We estimate the energy of running MobileNet and MnasNet models and

their compressed versions as Minion, based on the methodology used in previous work [160].

M&MNet could be configured to prioritize efficiency (performance) improvements for max-

imum gains, while still obtaining latency (energy) savings. To demonstrate the supremacy of

M&MNet, we compare it with both cloud-only and mobile-only.

5.4.2 Latency Improvement

Figure 5.4 shows the execution latency of M&MNet compared to the mobile-only and the cloud-

only methods for different wireless connection speeds. In each plot, each group of bars is dedicated

to one of the eight benchmarks. In each group, the left bar represents the result of running the

original CNN on the mobile (mobile-only) and the right bar is dedicated to the latency breakdown

of M&MNet. Both bars are normalized by the cloud-only latency numbers. The upper two parts of

the right bars is related to the amount of time consumed for running each Minion CNN in Minions

on the mobile device. The bottom part is dedicated to running Master CNN which depending on

where it is allocated can be equal to data transfer overhead, or running Master CNN on the mobile

device. Data transfer overhead is also composed of uploading the input data to the server and

downloading the final result. This happens in the situation that the data network is efficient and

Master allocator designates the server for Master computation and also the misspeculation detector
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Figure 5.4: Latency of M&MNet vs. the mobile-only approach for LTE and WiFi normalized by
cloud-only results.

triggers the recovery phase.

On average, M&MNet reduces the latency of the cloud-only approach by 74.5% and 48.3% for

LTE and WiFi, respectively. And, reduces the latency of the mobile-only approach by 33.1% and

137.5% using LTE and WiFi connection, respectively. All benchmarks in Figure 5.4 are offering

the exact accuracy level as baseline networks in Table 5.3, evaluated on the test set. Table 5.4 also

presents the configuration of M&MNet for the LTE network connection.

Figure 5.4 also demonstrates that in four of the benchmarks including Inception_V4, ResNet_V2_101,

Inception_ResNet_V2, and NASNet_large, mobile-only method results in higher latency com-
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Table 5.4: M&MNet lookup table

Master Minion_1 Minion_2
Inception_V4 Mobilenet_1.0_224 MnasNet_1.0_160
ResNet_V2_101 MnasNet_1.0_192 MnasNet_0.75_224
Inception_ResNet MnasNet_1.0_224 Mobilenet_1.0_192
Mobilenet_V1 MnasNet_1.0_128 MnasNet_1.0_96
Inception_V3 MnasNet_1.0_224 Mobilenet_1.0_192
NASNet mobile MnasNet_1.0_160 MnasNet_1.0_128
NASNet large MnasNet_1.0_224 Mobilenet_0.75_224

pared to the cloud-only solution regardless of network speed. Based on Table 5.3, these bench-

marks have higher accuracy compared to other benchmarks, and as a result, their network architec-

ture is more complex and requires a longer latency to execute them on mobile device. Therefore,

cloud-only approach is more efficient in the case of these benchmarks. On the other hand, as pre-

sented in Figure 5.4, M&MNet is able to reduce the average latency of these benchmarks even

compared to cloud-only approach. This gives us the opportunity to benefit from the higher accu-

racy of the more complex networks, while offering a lower latency compared to both mobile- and

cloud-only solutions.

M&MNet improves the runtime of all benchmarks in both LTE and WiFi except MnasNet_1.0_224

model. In this benchmark, the computation latency of M&MNet is equal to the mobile-only

method. MnasNet_1.0_224 is the smallest network with the lowest latency in our benchmark suite

according to Table 5.3. Therefore, when we are generating the Minion CNNs for this benchmark,

if the compression rate is not high enough, due to the assumption of serial execution of Minion

networks, the overall latency becomes higher than executing the Master network alone on mobile.

However, if the compression rate is too high, the accuracy gap between Minion and Master be-

comes too high. This results in a higher rate of recovery phase which increases the overall latency.

As a result, CNN selector correctly decides to only run Master which results in the same latency

number as the mobile-only approach.

In addition, if we compare the latency reduction between LTE and WiFi in Figure 5.4a and

Figure 5.4b, we can see higher rates of improvement in LTE connection. M&MNet reduces the
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Figure 5.5: Energy consumption of M&MNet compared to the most efficient baseline out of
mobile-only or cloud-only for LTE.

runtime by reducing the number of accesses required to the cloud, which as discussed in Sec-

tion 4.2.1 can be expensive. Therefore, the slower the network connection is, the overhead of data

transfer becomes higher, and there is a bigger opportunity for latency improvement by deploying

M&MNet. For the rest of the evaluation section, we will focus on the results based on LTE network

connection which has a wider availability. Performance improvement of WiFi follows the same

trend and is omitted because of space limitations.

5.4.3 Energy Saving

The latency improvements discussed in Section 5.4.2 also translates to lower energy consumption

of running CNNs on mobile platforms. Figure 5.5 shows the normalized overall energy consump-

tion of M&MNet on LTE connection, compared to the most efficient baseline out of mobile- or

cloud-only, depending on whichever consumes lower energy per benchmark.

Based on Figure 5.5, M&MNet managed to reduce the energy consumption for all benchmarks

except MnasNet_1.0_224, which is explained in Section 5.4.2. On average, the proposed solution

decreases the energy usage of the mobile device by 53.5% compared to the traditional solutions.
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Table 5.5: CNN information for different quantized benchmarks.

Network Acc. Latency Input Size
Mobilenet_V1_quant [161] 70.0% 13ms 224× 224

Inception_V1_quant [138] 70.1% 39ms 224× 224

Inception_V2_quant [157] 73.5% 59ms 299× 299

Inception_V3_quant [162] 77.5% 148ms 299× 299

Inception_V4_quant [158] 79.5% 268ms 299× 299
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Figure 5.6: Latency of quantized M&MNet vs. the mobile-only approach for LTE normalized by
cloud-only results.

5.4.4 Comparison to Network Quantization

In this section, we apply our technique on top of quantized networks to show that CNN compu-

tation partitioning is orthogonal to optimization techniques, including model compression, that

are proposed for more efficient mobile execution. For this goal, we use a quantization technique

that trains the baseline network using 8-bit fixed-point weights. Recent works [161] show that

this training method results in a similar accuracy level to baseline network, while having a much

smaller memory footprint and higher performance. Quantization technique is selected as an exam-

ple, while it can be replaced by other model compression techniques such as pruning.

Table 5.5 displays the benchmark suite used in this experiment. All model options for Minion

and Master are compressed by quantizing entire weights of the network to 8-bit fixed-point values.

Figure 5.6 presents the latency breakdown of quantized M&MNet. All bar graphs are nor-

malized to cloud-only approach for LTE network connection. As demonstrated, we can see ad-
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Figure 5.7: Latency improvement of M&MNet compared to the cloud-only by relaxing the target
output quality to maximum 1% additional error.

ditional latency reduction by partitioning quantized CNN computation for all benchmarks except

MobileNet_V1_quant, which can be explained similar to MnasNet_1.0_224 in Section 5.4.2.

Overall, CNN computation partitioning can introduce an extra 83.8% and 9.5% latency reduc-

tion on quantized models for cloud-only and mobile-only solutions, respectively.

5.4.5 Approximate speculative CNN

As explained in Section 5.3, there are different Minion designs available in the system. Hence,

the CNN selector is capable of choosing the best options based on the available hardware and data

network resources, as well as target output quality. In other words, the CNN selector unit is an

available knob in the system to dynamically choose the target output quality. Therefore, there is

an opportunity for the user to sacrifice a marginal amount of accuracy to obtain further energy and

latency gains.

Figure 5.7 presents the latency breakdown of M&MNet with the output accuracy relaxed to

99% of the baseline accuracy normalized to the cloud-only method. In comparison to the 100%

accurate M&MNet, the latency improvement for LTE is increased by 4.1% for 0.7% additional

error.
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5.5 Conclusion

CNN execution has traditionally been offloaded to the cloud, but there is a trend toward bringing

CNNs to edge devices with the emergence of powerful and efficient processors on mobile devices.

However, the complexity of CNNs is growing much faster than the compute power and battery life

of these devices. In this chapter, we introduce M&MNet, a novel hybrid cloud-edge deep learning

system. It creates heavily compressed CNNs to enable speculative inferences on the device. How-

ever, for a subset of inputs, the heavily compressed CNNs cannot yield confident predictions and

are often wrong. Hence, a dynamic partitioning technique is employed to push most of the compu-

tation to these speculative CNNs while the data transfer to original CNN is limited to recovery on

low-confidence inferences. Compared to the cloud-only approach, M&MNet reduces the energy

consumption by an average of 53.5% and 39.5% and increases the performance by an average of

3.9× and 1.9× for LTE and WiFi connection with 100% accuracy of baseline.

82



CHAPTER 6

An Input-Driven Synergistic Deep Learning System

6.1 Introduction

In addition to the growing popularity of CNN algorithms across many application domains, it is

observed that a single CNN implementation could be shared among various applications for their

vision tasks. Therefore, Web service providers can employ an approach of providing CNN as a

general datacenter service to be used by different products [42]. This approach helps Web service

companies to reduce the development overhead by centralizing CNN implementations and unifying

CNN optimization points. For example, the Google Brain project is a deep-learning service that is

used in over 30 different product teams across the company [163].

However, CNN inference queries require significant amounts of compute resources in compar-

ison to traditional text-based web services. Hence, there has been significant research interest to

leverage hardware [39] and software [11] techniques to accelerate deep learning on various plat-

forms, such as GPUs [48], CPUs [54], manycore co-processors [164], FPGAs [165] and custom

ASICs [27] to increase performance and energy efficiency.

All the aforementioned techniques are input-invariant and accelerate a single CNN for the entire

dataset. However, CNNs are usually overparameterized and most of the inputs do not require their

entire computational power to produce an accurate output. CNNs with early exits [15, 16] take

This work is a collaboration with Salar Latifi.
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advantage of the observation that features learned at earlier stages of a deep network can be used

to correctly infer a subset of the data population. By terminating the prediction of these samples at

earlier stages, they reduce the total required computation for inference.

However, CNNs with early exits cannot be automatically applied to off-the-shelf CNNs and

require machine learning expertise and manual design to address two main concerns. First, the

features in the early layers are not extracted to be directly used by the classifier. Second, the fea-

tures in different layers have different scales. Hence, adding early classifiers interferes with later

classifiers, which results in accuracy loss. Conversely, we hypothesize that additional performance

gains could be achieved through input-variant acceleration approaches while eliminating the man-

ual labor by employing multiple off-the-shelf CNNs in a system, instead of one, and offloading

most of the computation on the simple ones.

Conventional ensemble methods activate multiple NNs and combine their outputs to obtain

accuracy improvements for an extra latency and energy consumption [72, 73, 74, 75]. We explore

an opposing technique by taking inspiration from traditional speculation-recovery approaches and

present Dynamic Duo (DD), which is input-variant and dynamically distributes CNN computation

between a synergistic pair of a big and a little CNNs to achieve maximum performance and energy

efficiency while maintaining the target output quality. DD chooses a simple and less accurate CNN

as the little CNN and a complex and more accurate CNN as the big one. The little CNN is chosen

in a way that it is capable of performing inferences correctly for a significant fraction of inputs

while requiring less computation per input instance. To recover from unreliable outputs wherein

the little CNN can only provide a low-confidence output, the big CNN is selectively invoked.

This chapter focuses on servers because DD requires multiple CNNs available in the memory

to achieve performance gains, and these memory requirements could be beyond mobile devices’

limits. DD has three main advantages. First, replacing the complex CNN by a simple one for most

of the input instances reduces the server load and improves the throughput and average response

time. Second, the server load reduction releases hardware resources to serve more users on the

cloud platform. Third, the average latency and energy consumption of the system is improved in

84



comparison to single CNN approaches because the excessive complexity of CNNs for marginal

accuracy improvements is eliminated.

The contributions of this chapter are as following:

• We propose an intelligent hybrid CNN computation partitioning technique to achieve perfor-

mance and efficiency gains. DD takes advantage of the synergy between a pair of CNNs and

offloads most of the computation on the little one. The activation of the big CNN is limited

to recovering unreliable outputs of the little one.

• We develop a systematic methodology to find the most efficient synergistic pair of CNNs and

determine proper thresholds based on the distribution of outputs’ confidence learned during

training, for minimum recovery activation while meeting the output target quality.

• We utilize a lightweight confidence probe, which dynamically applies predefined confidence

thresholds on the little CNN output to detect potential faulty outputs and send them to the

original CNN for recovery. Surprisingly, DD is robust to moderate misprediction rates of

the confidence probe because of inputs that are classified correctly by the simple model but

misclassified by the complex one.

• We provide a set of heuristics to limit the performance overhead of searching for synergistic

pairs and confidence thresholds, which makes our technique applicable to huge model pools

containing numerous CNN models in a feasible time.

Our evaluation on a benchmark suite of 21 CNNs on ImageNet [84] dataset shows that DD on

average improves throughput by 2.1× and reduces average inference latency to 62% on an NVIDIA

TITAN X GPU in comparison to the traditional CNN as a service approach, while maintaining the

accuracy of the baseline.
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6.2 Background and Motivation

6.2.1 NN Ensembles

A well-known approach to increase NN accuracy is using ensembles [77, 76, 70, 71], which train

multiple NNs on different subsets of the training set and combine their results during inference.

There are two major classes of methods to construct ensemble NNs. The first category, including

bagging [76] and boosting [77], change the distribution of the original training data to create ex-

plicitly different training sets for different NNs. The second category, such as mixture of experts

(MoE) [78], train different NN experts on different subsets of the training data to create implicitly

different training sets [79]. The combination of multiple learners can reduce the impact of a single

learner getting stuck in local optima or suffering from overfitting. It can also expand the space

of the representable hypothesis. The net result is that ensembles can provide higher prediction

accuracy than a single NN.

Although NN ensembles result in higher accuracies, they worsen the problem of low perfor-

mance and high energy consumption. Ensemble methods require the activation of more than one

NN per input instance, which can multiplicatively increase the computation per inference. Even

with MoEs, subsets of training data should not be mutually exclusive to avoid limited local gener-

alization of experts, which results in complex gating NNs for input partitioning and activation of

multiple NNs during inference [81].

6.2.2 Input-Driven Synergy

Although ensemble methods combine NNs to improve accuracy for higher cost, it is not necessarily

the only way to take advantage of the synergy among CNNs. As demonstrated in Figure 2.3, the

size and accuracy of CNNs are changing drastically over the years. However, even the simplest

model classifies more than half of the input instances correctly. Hence, different input instances

show various behavior patterns, and it might not be required to activate the most complex model

for every single input to achieve the highest possible accuracy.
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24.47% 2.85%53.78%

resnet152
alexnet

Figure 6.1: Venn diagram of correct predictions for ResNet-152 and AlexNet. Only 24.47% of
inputs require the complex model. Ideally partitioning the input data between these two CNNs
results in improving ResNet-152 accuracy by 2.85%.

Figure 6.1 shows the Venn diagram of predictions for ResNet-152 and AlexNet with top-1

accuracy of 78.25% and 56.63%, respectively, on the ImageNet test set. Based on the diagram,

53.78% of inputs are classified correctly by both CNNs (common corrects). In addition, 18.9%

of inputs result in wrong answers regardless of the complexity of CNNs. And more surprisingly,

2.85% of inputs are classified correctly by the simple model but misclassified by the complex one

(odd corrects). Thus, only 24.47% of inputs require the complex model and the remaining inputs

could be processed by the simple one. Moreover, partitioning the input dataset to two subsets

and activating the proper CNN for each input could improve the top-1 accuracy of ResNet-152

by 2.85%. The common correct predictions and the additional accuracy benefit the system in two

ways. First, even by using a non-ideal partitioner with a moderate misclassification rate, it is

possible to offload part of the computation on a simpler CNN while achieving the same accuracy

as the complex one. Second, there is room to further decrease (less than 24.47%) the activation of

ResNet-152 and maintain its accuracy.

To expand the idea of synergistic CNN pairs, we investigate 21 different CNNs on ImageNet

dataset. For each experiment, a pair of a larger more accurate CNN (big) and a smaller less accurate

(little) CNN are chosen to form the similar diagram as Figure 6.1. Figure 6.2 shows the distribution

of the size of odd subsets for
(
21
2

)
possible pairs. The x-axis shows the big CNNs from the least
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Figure 6.2: Distribution of the size of odd subsets for pairing different CNNs out of 21 CNNs on
ImageNet test set. Even the least synergistic pair contains 2.7% of odd corrects.

accurate on the left to the most accurate one on the right. Since the little CNN should be smaller

and less accurate than the big one, it is not possible to pair each big CNN with all other 20 CNNs.

Consequently, there is no candidate for pairing with AlexNet, and the first column of the plot

is empty. As demonstrated, the odd subset could contain from 2.7% to 9.2% of inputs, which

indicates that there is some inherent potential synergy between any two CNNs out of these 21

single CNNs.

6.3 Dynamic Duo

We take inspiration from traditional ensemble NNs and speculation-recovery techniques to propose

Dynamic Duo (DD), which is an intelligent synergistic deep learning system for improving perfor-

mance in comparison to traditional CNN as a service system, which runs a single complex CNN

on servers per request. First, we introduce our input-driven synergistic deep learning system and a

new approach for exploiting the synergy between CNNs. After that, DD’s design and runtime are

described in detail.
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Figure 6.3: Overview of DD in comparison to the traditional approach. DD replaces the single
CNN with a pair of a big and a little CNN and employs the proper strategy to detect and recover
unreliable outputs of the little one.

6.3.1 Synergistic Deep Learning System

Due to CNNs’ high computational demands, many approaches have emerged to improve their

performance and efficiency while maintaining the accuracy, such as CNN hardware accelera-

tors [20, 23, 24], pruning [49], compression [47], fixed-point computation [54] and precision re-

duction [33]. However, these approaches are input-invariant and use the same set of optimizations

for the entire dataset without considering the diversity of input instances. In contrast, DD finds the

optimum CNN pair inside a model pool to process most of the inputs fast and energy-efficiently

on the simpler CNN and uses the complex one only for recovering the faulty results.

Overview: Figure 6.3 compares the overview of DD and a traditional CNN as a service system.

In traditional approach, the server selects the most efficient CNN among existing trained models

to meet the target output quality. After that, it allocates the minimum hardware resources to run

the model and satisfy the maximum response time restrictions. On the other hand, DD replaces the

single CNN with a pair of a big and a little CNN to improve performance and reduce energy con-

sumption while maintaining the minimum required accuracy considering the available hardware

resources. In addition, it adds a confidence probe to the system and configures it with the proper

strategy to detect and recover the unreliable outputs of the little CNN.

Design: Based on Section 6.2.2, a key component to exploit the inherent synergy between a

pair of CNNs is utilizing a proper input partitioning mechanism to offload most of the computation

on the little CNN. The partitioner requires to be activated for each input instance to select the proper

CNN for processing that input. If the little CNN is activated, the system will require to examine
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Figure 6.4: Runtime of DD. All inputs are run on the little CNN. The confidence probe examines
all outputs and triggers the big CNN for recovering the unreliable ones.

its output reliability and activate the big CNN for recovering the unreliable outputs. Since inputs

of CNN applications are usually non-trivial images, the partitioning task itself requires a CNN to

achieve acceptable results. Considering the complexity and overhead of designing, training and

running a partitioner per CNN pair, and the fact that an efficient DD design tends to run most of

the inputs on the little CNN, we decide to eliminate the partitioner and keep the little CNN and

the confidence probe always active. Consequently, the key component to exploit the synergy using

DD is utilizing a lightweight and accurate-enough confidence probe.

6.3.2 Runtime

Figure 6.4 shows the runtime overview of DD. For each input instance, DD activates the little and

efficient CNN, which is simpler than the big CNN and sacrifices the accuracy to achieve higher

performance. To bridge this accuracy gap, the confidence probe evaluates the reliability of the little

CNN output and sends the faulty ones to the big CNN for recovery.

As explained in Section 6.3.1, a lightweight and accurate confidence probe is necessary to

achieve performance improvements using DD. Since DD design eliminates the partitioner and

keeps the little CNN always active, we examine its output vector to predict the reliability of the

final output.

Output Confidence: For classification tasks, CNNs convert an input instance (x) to an output

vector of K elements (K is the number of classes). Using a softmax ( ezj∑K
k=1 e

zk
) activation function
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(a) Histogram of common corrects
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(b) Histogram of complex corrects

Figure 6.5: Confidence distribution of Inception-v3 when it is paired with ResNet-152. Using a
threshold of 0.6 separates most of the common corrects from the complex ones.

after the output layer provides the estimated probability of that the correct output is j for j =

1, ..., K (Pj = P (y = j|x)). Consequently, max
16j6K

Pj represents the confidence level of the CNN

in the final output.

To explore the idea of analyzing the confidence of the little CNN as an indicator of the output

reliability, we use Inception-v3 and ResNet-152 as the little and big CNNs of a DD system, respec-

tively. Then, the output confidence of Inception-v3 is measured for all 50000 images of ImageNet

test set.

Figure 6.5 shows the confidence distribution of Inception-v3 for different data subsets of Ima-

geNet test set. Figure 6.5a shows the histogram of confidences for common corrects, which could
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Figure 6.6: Cumulative histogram of all inputs. The threshold of 0.6 results in offloading 74% of
inputs on the little CNN and a recovery rate of 26%.

be classified correctly by both CNNs and do not need recovery. On the other hand, Figure 6.5b

demonstrates the histogram of confidences for complex corrects, which are classified correctly by

the big CNN and wrongly by the little one, so they need the activation of the big CNN for recovery.

As shown, Inception-v3 classifies most of the common corrects with high confidence. In con-

trast, the classification confidence for complex corrects is low. Comparison of these two plots

suggests that activating Inception-v3 as the little CNN and using a confidence threshold equal to

0.6 on the final output could distinguish these two types of correct outputs in most of the cases.

There are two types of outputs that can cause problems for this algorithm: low-confidence

common corrects and high-confidence complex ones. Low-confidence common corrects result

in unnecessary recoveries, which reduces performance and energy improvements but does not

have any effect on the final accuracy of the system. High-confidence complex corrects result in

false negatives for the confidence probe and degrade the final accuracy. However, as explained in

Section 6.2.2, high-confidence odd corrects could compensate for this accuracy degradation.

Figure 6.6 shows the cumulative histogram of confidences for all 50000 inputs. As demon-

strated, the threshold of 0.6 on the output confidence results in the solo activation of Inception-v3

for 74% of inputs and activating ResNet-152 only for 26% of inputs to recover the unreliable

outputs instead of running ResNet-152 for the entire dataset.

However, it is not necessary to limit the system to a single confidence threshold. In addition
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Figure 6.7: Switching from single threshold to 1000 thresholds reduces the recovery rate by 6.72%

to the confidence, there is another valuable piece of information provided by the little CNN during

runtime, which is the predicted class. Hence, it is possible to define a confidence threshold per

class. Figure 6.7 shows the threshold per class ID for both single threshold and multi-threshold

scenarios in the case of pairing ResNet-152 and Inception-v3. Class IDs are sorted from the highest

threshold on the left to the lowest one on the right. In addition to thresholds, this figure demon-

strates the recovery rate per class ID for both scenarios to achieve the same accuracy as ResNet-

152. As illustrated, switching to multi-threshold reduces the total recovery rate from 19.12% to

12.40%. Another interesting point is that for 381 out of 1000 classes there is no recovery required

at all.

confidence probe: Confidence probe is the dynamic and input-driven part of the system. Dur-

ing runtime, for each input instance, the lightweight confidence probe compares the output confi-

dence of the little CNN with predetermined thresholds to detect possible errors and activate the big

CNN for recovery.

6.4 Automatic System Setup

When a service request arrives, it is necessary to allocate hardware resources and load proper

CNN models and parameters to process the incoming inputs. DD is configured once and remains

the same for all inputs unless a service request with a new target output quality arrives. Based on
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Figure 6.8: Accuracy vs recomputation rate for pairing ResNet-152 and Inception-v3. Less than
20% of inputs require recovery to achieve the same accuracy as ResNet-152.

Figure 6.3, there are two main additional steps for setting up a DD system: CNN pair selection and

confidence probe configuration.

6.4.1 CNN Pair Selection

To achieve performance improvements by replacing a single CNN with DD, it is crucial to find the

most synergistic pair of CNNs existing in the model pool, which is able to meet the target output

accuracy.

During training, DD trains each single CNN separately. Then, evaluates them on the validation

set and saves the accuracy numbers and confidence distributions in the system. During runtime,

when a service request with a new target output quality arrives, DD estimates the final accuracy

for different recomputation rates based on the accuracy of the big and little CNNs and forms plots

similar to Figure 6.8 for all possible pairs.

Figure 6.8 shows the final accuracy for different recomputation rates when pairing ResNet-152

and Inception-v3. The y-axis shows the top-1 accuracy of DD and the x-axis shows the percentage

of inputs which are sent to the big CNN for recovery. As shown, it is possible to achieve the same

accuracy as ResNet-152 (78.25%) by solo activation of Inception-v3 for more than 80% of inputs.

Although it is possible to pick the optimum point for a fixed pair of CNNs, it is not possible to

compare the performance of two different pairs without converting the recomputation probability
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(Pr) to latency (L) and energy (E) numbers.

Latency and Energy Estimation: DD trains a regression model, same as Neurosurgeon [127],

to estimate energy and latency based on the number and size of input and output feature maps as

well as the characteristics of each layer including layer type, stride, kernel and group size for

convolutional and pooling layers, in addition to available hardware resources. These models are

CNN-invariant. Hence, they are trained once for a set of CNNs, then they could be used for

different CNN applications during runtime.

To select the most efficient pair, DD computes Epair = Elittle +Ebig ×Pr and Lpair = Llittle +

Lbig × Pr for each pair. After that, it chooses the pair which maximizes the latency and energy

reduction while meeting the output target quality.

6.4.2 Confidence Probe Configuration

Single Threshold: Since the confidence distribution of each CNN is saved in the system, it is

possible to convert back Pr to a confidence threshold on the little CNN after choosing the optimal

pair. For example, for Figure 6.8, the optimal Pr of 19.1% is converted to confidence threshold of

0.49 using the output confidence distribution of Inception-v3.

Multi-Threshold: When the optimal pair is selected, finding one threshold per class to mini-

mize the recovery rate while maintain the accuracy of the big CNN is a multiple-choice knapsack

problem [166], and DD uses the following heuristic to solve it. First, it finds the optimal threshold

per class which maximizes the number of correct predictions of that class. Then, it linearly reduces

all thresholds by equal steps until it achieves the point that the accuracy of DD is the same as the

accuracy of the big CNN. This threshold reduction reduces the number of recoveries and increases

the overall performance and efficiency.

6.4.3 Optimized CNN Pair Selection

The naive way for CNN pairing and confidence threshold selection is to exhaustively search the

entire design space for each request. The exhaustive search requires running the confidence thresh-
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Figure 6.9: Peak accuracies and size of odd subsets for pairing ResNet-152 with 20 other CNNs.
The odd subset size predicts the complementariness.

old selection algorithm for all
(
N
2

)
possible pairs (N is the number of existing CNNs in the model

pool). Nowadays, the number of available CNNs for a specific task is increasing rapidly which

results in huge design spaces. Hence, the overhead of the exhaustive search becomes prohibitive.

For example, there are 101 models available on [167] for image classification on ImageNet and

40 of them are introduced in 2019. Consequently, it is necessary to utilize heuristics to limit the

search space.

As explained in Section 6.2.2, there are two subsets of data which are beneficial for the synergy

between a pair of CNNs: common corrects and odd corrects. The odd corrects plus common

corrects equals to all correct predictions of the little CNN, which does not reveal any information

about the synergy between the little and big CNNs. In addition, the size of the common subset is

highly correlated to the accuracy of the little CNN. On the other hand, the size of the odd subset

is sensitive to both accuracy of the little CNN and how it complements the accuracy of the big

one. Consequently, the size of the odd subset could be measured to indicate the potential synergy

between a pair of CNNs.

To investigate this idea, we use the same 21 CNNs as Section 6.2.2. For this experiment,

ResNet-152 is fixed as the big CNN and other 20 CNNs are swept as the little one. Then, for

each pair, the peak accuracy of DD is measured on ImageNet test set by sweeping the confidence

threshold. Figure 6.9 shows the peak accuracy as well as the size of the odd subset for each pair.
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Table 6.1: CNN information for different benchmarks.

Model Parameters FLOPs Top-1 Acc.
AlexNet [91] 244 MB 727 MFLOPs 56.63 %
SqueezeNet1-0 [137] 5 MB 837 MFLOPs 58.00 %
SqueezeNet1-1 [137] 5 MB 360 MFLOPs 58.18 %
VGG-11 [4] 531 MB 8 GFLOPs 68.87 %
VGG-11-bn [4] 531 MB 8 GFLOPs 70.41 %
VGG-13 [4] 532 MB 12 GFLOPs 69.98 %
VGG-13-bn [4] 532 MB 12 GFLOPs 71.62 %
VGG-16 [4] 553 MB 16 GFLOPs 71.63 %
VGG-16-bn [4] 553 MB 16 GFLOPs 73.48 %
VGG-19 [4] 575 MB 20 GFLOPs 72.36 %
VGG-19-bn [4] 575 MB 20 GFLOPs 74.22 %
ResNet-18 [139] 47 MB 2 GFLOPs 69.64 %
ResNet-34 [139] 87 MB 4 GFLOPs 73.27 %
ResNet-50 [139] 102 MB 4 GFLOPs 76.01 %
ResNet-101 [139] 178 MB 8 GFLOPs 77.31 %
ResNet-152 [139] 240 MB 11 GFLOPs 78.25 %
Inception-v3 [157] 95 MB 6 GFLOPs 75.88 %
DenseNet-121 [168] 32 MB 3 GFLOPs 74.47 %
DenseNet-161 [168] 114 MB 8 GFLOPs 77.15 %
DenseNet-169 [168] 56 MB 3 GFLOPs 75.63 %
DenseNet-201 [168] 79 MB 4 GFLOPs 76.93 %

The x-axis represents the name of little CNNs, which is sorted from the smallest odd subset on the

left to the largest one on the right. As shown, the peak accuracies of DD systems with bigger odd

subsets are usually higher than other ones. Consequently, the size of the odd subset could be used

to predict how a pair of CNNs would complement each other.

Heuristic: For each output target quality adjustment, DD chooses the smallest CNN, which

has higher or equal accuracy as the target output accuracy, from the model pool as the big CNN.

Then, it uses the size of the odd subsets to indicate the top synergistic candidates for the little CNN.

Finally, CNN pairing and confidence threshold selection are run only for the top candidates to find

the most efficient little CNN and the corresponding confidence thresholds.
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6.5 Evaluation

6.5.1 Experimental Methodology

Benchmarks: We evaluate DD using a benchmark suite of 21 CNNs on ImageNet dataset. The

original validation set is divided into two subsets of 25000 images to be used as a validation set for

configuring DD and a test set for evaluation. A brief description of each benchmark is presented

in Table 6.1. For each row, the first column presents the name of the CNN. Second column shows

the amount of memory required to keep the parameters of the model, which indicates the size of

the CNN. Third column is the number of floating-point operations (FLOPs) required to process a

single input, which is limited to floating-point multiply and adds and indicates the computational

complexity of the model. The last column contains the top-1 accuracy of trained CNNs obtained

from pyTorch Torchvision package [169]. The end-to-end inference latency of each CNN is af-

fected by memory access patterns and the way the CNN gets scheduled on the actual hardware in

addition to FLOPs.

Software frameworks: We use PyTorch [170], an open-source machine learning library for

Python based on Torch, cuDNN [142], NVIDIA’s GPU-accelerated library for DNNs, and Big-

House [171], an open-source infrastructure for simulating datacenter systems, to implement and

test our system.

Hardware platform: The NVIDIA TITAN X GPU [141] is used as the processor on the server

to evaluate our approach. Although we use 32-bit floating-point representation for the evaluation, it

is possible to apply precision reduction to both baseline CNNs and DDs. Since precision reduction

is orthogonal to our approach, the performance improvements will have the same trend as full-

precision results.

6.5.2 Latency Improvement

Figure 6.10 shows the latency of DD normalized by the latency of the traditional CNN as a ser-

vice method for different benchmarks. For each experiment, DD uses the heuristic explained in

98



al
ex

ne
t

sq
ue

ez
en

et
1_

0
sq

ue
ez

en
et

1_
1

vg
g1

1
vg

g1
1_

bn
vg

g1
3

vg
g1

3_
bn

vg
g1

6
vg

g1
6_

bn
vg

g1
9

vg
g1

9_
bn

re
sn

et
18

re
sn

et
34

re
sn

et
50

re
sn

et
10

1
re

sn
et

15
2

in
ce

pt
io

n_
v3

de
ns

en
et

12
1

de
ns

en
et

16
1

de
ns

en
et

16
9

de
ns

en
et

20
1

ge
om

ea
n

0

20

40

60

80

100

No
rm

al
ize

d 
La

te
nc

y 
(%

)

Single Th
Little
Big

Figure 6.10: Average latency of DD with heuristic search for 100% of baseline accuracy.

Section 6.4.3 to find the most synergistic pair in the model pool, which contains all CNNs from Ta-

ble 6.1. The output target quality of each experiment is determined by the traditional single CNN

approach. Since the heuristic chooses the smallest network with higher or equal accuracy as the

output target quality for the big CNN of DD, for each experiment, the big CNN is the same network

as the baseline single CNN shown on the x-axis. Each bar demonstrates the latency breakdown

of DD. The bottom part is related to the normalized average latency of the big CNN on the entire

test set, which is the normalized average recovery time. And, the top part shows the normalized

latency of the little CNN. In addition, the cross indicates the normalized latency in the case of

single threshold DD.

On average, multi-threshold DD reduces the latency of the traditional method to 62% while the

target output quality is met. In addition, it increases the average latency savings by 7% in com-

parison to the single threshold scenario. Since the training and validation sets are representative

of the test set, and the odd corrects could compensate for accuracy degradations, DD meets the

target output quality for all 21 benchmarks. DD is capable of finding highly efficient and accurate-

enough solutions by pairing faster little CNNs with higher recovery rates and slower little CNNs

with more relaxed recovery policies.

As demonstrated, DD decreases the latency for all benchmarks except AlexNet and VGG-11.

Based on Table 6.1, AlexNet is the smallest and least accurate CNN, which requires the minimum

FLOPs for each inference. Therefore, DD is unable to find a CNN in the model pool as a candidate
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Table 6.2: Single threshold DD configuration.

Big CNN Little CNN Confidence Threshold
AlexNet AlexNet 0.00
SqueezeNet1-0 AlexNet 0.23
SqueezeNet1-1 AlexNet 0.25
VGG-11 VGG-11 0.00
VGG-11-bn VGG-11-bn 0.00
VGG-13 VGG-11-bn 0.04
VGG-13-bn VGG-11-bn 0.45
VGG-16 VGG-11-bn 0.42
VGG-16-bn ResNet-18 0.63
VGG-19 VGG-11-bn 0.48
VGG-19-bn ResNet-34 0.37
ResNet-18 VGG-11 0.23
ResNet-34 VGG-11-bn 0.53
ResNet-50 VGG-13 0.85
ResNet-101 ResNet-50 0.48
ResNet-152 ResNet-101 0.44
Inception-v3 VGG-19-bn 0.39
DenseNet-121 VGG-19-bn 0.20
DenseNet-161 ResNet-50 0.43
DenseNet-169 VGG-19-bn 0.44
DenseNet-201 ResNet-50 0.39

for the little CNN to be paired with AlexNet and reduce its latency. For VGG-11, there is a big gap

between its accuracy and smaller CNNs, however the latency gap is much smaller. Consequently,

pairing it with smaller CNNs results in considerable accuracy losses without performance gains.

DD successfully spots this limitation of the model pool and runs the single CNN for this case.

Table 6.2 shows the configuration of single threshold DD for different benchmarks in details.

In each row, the first column demonstrates the big CNN. The second column shows the little CNN

paired with the big one. And, the last column shows the threshold on the classification confidence

of the little CNN to activate the big one for recovering the outputs with confidences lower than the

threshold.
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Figure 6.11: Throughput of DD with heuristic search vs. the traditional approach for 100% of
baseline accuracy.

6.5.3 Datacenter Throughput Improvement

Improving the average latency per inference by DD, which is shown in Figure 6.10, provides

opportunities to increase the datacenter throughput. The goal is to maintain the same response

time as baseline while processing more queries per second (QPS), hence, improving the datacenter

throughput. The server load is increased for both baseline and DD to the point that the response

time values match the baseline latency. Then, we compute the throughput gains by comparing

the QPS values of these two solutions. In this section, we deploy the DD designs with 100% of

baseline accuracy, and each benchmark is evaluated in isolation in order to prevent the requests

from different benchmarks from interfering with each other.

The BigHouse [171] infrastructure is used to evaluate datacenter behaviors. Bighouse uses

the statistical models of task service times and user queries to simulate the expected performance

of datacenters in a more reasonable time compared to using detailed micro-architectural models.

To collect service times for each benchmark, we run each design multiple times with different

inputs and derive the overall distribution of their latencies. We also use Google web search query

distribution [172] for the query inter-arrival rate.

Figure 6.11 presents throughput gain of both single threshold and multi-threshold DD for each

individual benchmark. Based on these results, DD achieves higher performance in comparison to

the traditional approach whereas throughput gains change in a range of 1.0× to 4.7×, averaging
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in 2.1× for multi-threshold and 1.8× for single threshold. If DD was used to reduce the response

time of the baseline by K×, the maximum throughput improvement would be K×. However, the

goal is to maintain the same response time as baseline while processing more queries per second.

Hence, the throughput could improve more than K×.

The highest improvements are achieved by VGG-13-bn and VGG-16 benchmarks. In these

benchmarks, the difference between latencies of the big and little CNNs is high, and the recovery

frequency is relatively low. Therefore, there are more opportunities for throughput improvement.

On the other hand, no gains are observed for AlexNet and VGG-11. These two benchmarks are

explained as in Section 6.5.2. Another interesting observation is that for single threshold ResNet-

50, although DD obtains 7% reduction in latency as shown in Figure 6.10, the throughput gain is

insignificant. The main source of this result is that it needs to activate both little and big CNNs

for nearly 54% of queries. Therefore, more than half of the requests are experiencing tail latencies

leading to increased average of waiting times, hence, higher response times.

6.5.4 Approximation

Since DD design has more degrees of freedom than the traditional approach, the pair selection

algorithm and confidence thresholds could be used as knobs to dynamically choose target output

qualities other than the accuracy of a single CNN. Therefore, there is an opportunity for the user

to sacrifice a marginal amount of accuracy to obtain further performance and energy gains.

Figure 6.12 presents the latency breakdown of multi-threshold DD with the output accuracy

relaxed to 99% of the baseline accuracy in the same format as Figure 6.10. In comparison to the

100% accurate DD, the average latency is reduced further by 5% for 0.85% additional error.

6.5.5 Heuristic Coverage

An exhaustive search in a model pool of 21 single CNNs results in analyzing
(
21
2

)
= 210 pairs of

CNNs. Our heuristic chooses the big CNN based on the output target quality and limits the number

of options for the little CNN. We found that in our model pool, limiting little CNN search to top-3
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Figure 6.12: Average latency of DD with heuristic search vs. the traditional approach for 99% of
baseline accuracy.
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Figure 6.13: Average latency of DD with exhaustive search vs. the traditional approach for 100%
of baseline accuracy.

CNNs with highest odd subset sizes results in CNN pairs with negligible performance degradation

in comparison to exhaustive search.

Figure 6.13 shows the result of the same experiment as Figure 6.10 while using exhaustive

search instead of the heuristic. The full design exploration results in a 6% additional improvement

of the normalized latency. Another interesting point is that for 15 out of 21 cases, the heuristic

finds the exact same CNN pair and confidence thresholds as the exhaustive search.

103



al
ex

ne
t

sq
ue

ez
en

et
1_

0
sq

ue
ez

en
et

1_
1

vg
g1

1
vg

g1
1_

bn
vg

g1
3

vg
g1

3_
bn

vg
g1

6
vg

g1
6_

bn
vg

g1
9

vg
g1

9_
bn

re
sn

et
18

re
sn

et
34

re
sn

et
50

re
sn

et
10

1
re

sn
et

15
2

in
ce

pt
io

n_
v3

de
ns

en
et

12
1

de
ns

en
et

16
1

de
ns

en
et

16
9

de
ns

en
et

20
1

ge
om

ea
n

0

5

10

15

20

Ac
tiv

at
io

n 
(%

)

Figure 6.14: The percentage of outputs that are indicated by the confidence probe as being poten-
tially incorrect and sent to the big CNN for recovery.
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Figure 6.15: False positives of the confidence probe.

6.5.6 Confidence Examination

Figure 6.14 shows the percentage of outputs that the confidence probe detects them as potential

faulty results and sends them to the big CNN for recomputation. The average recovery rate is 9.5%.

The recovery rate for AlexNet and VGG-11 is zero because DD automatically decides to use the

single CNN approach for these benchmarks as explained in Section 6.5.2. Hence, the confidence

probe remains idle. For all benchmarks, the recovery rate is below 25%, which means more than

75% of the inferences are successfully offloaded on the little CNN.

Figure 6.15 shows the false positive rate of the confidence probe, which means the percentage

of odd corrects that are mistakenly sent to the big CNN for recovery. The average false positive
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Figure 6.16: False negatives of the confidence probe.

rate is 0.8%. The maximum false positive rate is 2.1%, and these low rates result in running most

of the odd corrects on the little CNN, which can increase the final accuracy of DD. Hence, there is

more room for relaxing other design restrictions to achieve higher performance while maintaining

baseline accuracy.

Figure 6.16 shows the false negative rate of the confidence probe, which means the percentage

of complex corrects that are not sent to the big CNN for recovery. DD keeps the false negative rate

of all benchmarks below 8.8% to limit the accuracy loss in a compensable range. The lost accuracy

is compensated by odd corrects. Since the big CNN is a more complex model, the cases that the

big one is correct and the small one is wrong are more common than when the small one is correct

and the big one is wrong. Hence, false positive is much lower than false negative. The low false

positive rates result in running most of the odd corrects on the little CNN and improving the final

accuracy.

6.5.7 Tail Response Time with Load Variation

In order to produce reliable outputs for all users in DD, a number of requests are required to go

through both little and big CNNs, which face a higher latency for computation than the traditional

single CNN approach and lead to higher tail response times. To evaluate the effect of recom-

putations for each benchmark, we use BigHouse infrastructure and collect the 95th percentile of
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Figure 6.17: Comparison of tail response time behavior under various server loads for traditional
approach and DD with 100% of baseline accuracy.

response times for different server loads.

Based on the results of this experiment, two kinds of behavior is observed in the benchmarks.

Figure 6.17 presents an example for each group: DenseNet-121 and ResNet-50. In these graphs,

x-axis represents the load on the server (QPS) and y-axis shows the corresponding tail response

time. To analyze these results, first, we need to consider the factors that affect the response time

including computation latency and waiting time. When the load on the server is low, the waiting

time is negligible and the response time depends on the computation latency. Therefore, the 95th

percentile response time results depend on the average rate of required recomputations. As a result,

for benchmarks that require less than 5% of requests to go through both little and big CNNs, such

as DenseNet-121, the tail response time of DD is lower than the baseline.

On the other hand and with heavy traffic, we observe that the tail response time of DD is

lower for all benchmarks. When the load on the server is increased, the waiting time plays a

vital role on the response time whereas the computation latency is still the same as the case with
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low traffic. Considering that the waiting time of request is correlated to the average computation

latency of active queries, and the average computation latency is lower for DD as presented in

Section 6.5.2, DD results in lower average of waiting times. The gap between waiting times of

traditional approach and DD is further increased by increasing the traffic. As a result, lower tail

response time is achieved by DD in higher loads.

6.6 Conclusion and Future Work

Traditional CNN as a service approaches employ either a single complex CNN or an ensemble

of multiple CNNs for all inputs of an application without considering the inherent diversity of

input instances. However, the complexity of CNNs is growing fast, and inference queries require

a significant amount of compute resources in comparison to traditional text-based web services.

In this chapter, we introduce Dynamic Duo (DD), a novel input-driven synergistic deep learning

system. It pairs an efficient less accurate CNN (little) with a complex more accurate CNN (big)

and offloads most of the computation on the little one. However, for a subset of the inputs, the

little CNN cannot yield confident predictions and is often wrong. Hence, a dynamic confidence

examination technique is employed to probe the outputs of the little CNN and invoke the big one

only for recovering the low-confidence inferences. Compared to the traditional approach, DD

improves the datacenter throughput by 2.1× and reduces the average inference latency by 38% on

an NVIDIA TITAN X GPU with 100% accuracy of the baseline.

Adding more CNNs to the system is left for future work. Using confidence threshold on all

smaller networks and activating multiple networks, instead of two, in cases which require recovery

might reduce the average latency savings. Moreover, it makes the tail response time worse. One

possible solution is applying multiple thresholds on the confidence of the smallest CNN and choos-

ing only one of the big CNNs for recovery based on the confidence, which means a DD system

with a fixed little CNN and multiple choices for the big CNN during runtime. The other chal-

lenge is expanding the pairing heuristic to determine a group of most synergistic CNNs because
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the exhaustive search grows exponentially by adding more CNNs. In addition, a theoretical way to

choose confidence thresholds could reduce the training time further and help to build systems with

more than two CNNs.

Expanding DD to other types of networks, such as recurrent neural networks, and other applica-

tions is another interesting direction for feature work. We chose CNNs because they use a softmax

layer at the end to produce probabilities for different classes, and we exploit these numbers to

predict the situations that require recovery.
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CHAPTER 7

Double-Shot Neural Network Pruning

7.1 Introduction

In recent years, DNNs have received lots of attention and achieved dramatic accuracy improve-

ments in many tasks. This success relies on DNNs with millions or even billions of parameters, and

the availability of GPUs with very high computation capability. In addition to inference, training

of these huge models to get reasonable performance is very time-consuming as well. For exam-

ple, one forward pass of ResNet50 [139] model requires 4 GFLOPs of computation and training

requires 1018 FLOPs, which takes 14 days on one state-of-the-art NVIDIA M40 GPU [173].

As larger NNs with more layers and nodes are getting popular, reducing their memory and

computational complexity becomes critical, especially for some real-time applications, such as

online learning, virtual reality, augmented reality and smart wearable devices. Many NNs are

overparameterized [174, 175], which enables the opportunity of compressing each layer [175, 11,

176] or the entire network [177] to reduce their size and complexity. These compression techniques

are necessary for alleviating the fundamental challenges in deploying deep learning systems on

portable devices with limited resources.

A well-known category of network compression technique is network pruning methods, which

are a set of techniques for removing weights, filters, neurons, or other structures from NNs. Prun-

ing relies on the fact that NNs are often found to be highly overparameterized, and redundant

parameters can be eliminated while preserving accuracy [178, 49].
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Most of the existing methods in prior work attempt to find a sparse network from the pretrained

reference network either based on a saliency criterion [179, 178, 49] or using sparsity enforcing

penalties to augment the loss function [180, 181]. However, these methods include pruning as a

part of an iterative optimization procedure, which results in several rounds of expensive prune –

fine-tune. In addition, these traditional pruning approaches require heuristic design choices with

additional hyperparameters, which makes them non-trivial to extend to new architectures and tasks

for a nonexpert user.

While pruning has been a standard practice for model compression, some recent efforts start

empirically linking it to a potential approach for more efficient training. Training sparse pruned

networks directly from scratch often fails and results in networks underperforming their dense

counterparts [182, 11]. However, the latest series of works [183, 184] reveal that dense, randomly-

initialized networks contain small sparse networks (winning tickets), which can match the accuracy

of original networks when trained in isolation. However, there is a major gap between the exis-

tence of winning tickets and more efficient training, since winning tickets were only identified by

iteratively pruning a fully trained dense network.

To alleviate the complexity and inefficiency of applying pruning techniques and training pruned

sparse networks, SNIP [185] introduces single-shot pruning, which uses a saliency criterion that

identifies important connections of a network for a given task in a data-dependent way before train-

ing. Then, the sparse pruned network is trained in the standard way. Hence, it eliminates the need

for pretraining, complex pruning schedules and additional hyperparameters. It does not require

machine learning expertise and can be applied to various architectures with no modifications.

Although SNIP claims that it retains connections which are indeed essential for a given task

by focusing only on architectural features of the network and forming the pruning algorithm based

on randomly initialized weights, we show that there is some opportunity to improve the perfor-

mance of SNIP by augmenting the architectural insights with information about the importance

of weight values. We propose a double-shot noniterative pruning approach, which translates the

global sparsity rate to layer-wise local sparsity rates using SNIP, then, prunes the trained dense
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network utilizing the local sparsity rate and connection importance metrics, and at the end, trains

the sparse network in the same way as the dense one.

Although our double-shot pruning method requires pretraining of the dense network in addition

to the training of the sparse network, it is still a noniterative pruning approach and does not require

any complex pruning schedule. Since our method requires no additional hyperparameters, and both

training of the dense and the sparse network are performed in the standard way, machine learning

expertise is not required for applying it to various architectures and different tasks.

We evaluate our method using seven different CNN architectures on MNIST and CIFAR-10

classification datasets. Furthermore, we investigate the effect of five different connection impor-

tance metrics on the performance of double-shot pruning. The most proper metric, on average,

improves the accuracy of SNIP by 0.79% while maintaining the same sparsity level for all tested

architectures.

7.2 Background and Motivation

7.2.1 Neural Network Pruning

Since, NNs are usually overparameterized, pruning techniques are proposed to eliminate unnec-

essary weights [178, 186, 49, 182]. These approaches are capable of reducing parameter-counts

by more than 90% without accuracy loss. It is possible to take advantage of these network size

reductions for improving energy efficiency and performance of inference [49, 50, 187, 188, 189].

Training a NN is an optimization problem, which could be formulated as follows:

min
w

L(w;D)) = min
w

1

n

n∑
i=1

`(w; (xi,yi)))),

s.t. w ∈ Rm.

(7.1)

D = {(xi,yi)}ni=1 represents the training dataset, w is the set of NN parameters, m is the total

number of parameters, and ` is the standard loss function (e.g., cross-entropy). It is possible to add
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‖w‖0 ≤ k to the above formula as a constraint to formulate pruning as a constrained optimization

problem. k indicates the sparsity rate, which means the number of non-zero parameters, and ‖ · ‖0

is the standard L0 norm.

There are two major groups of approaches to achieve a sparse NN by optimizing the above

problem. The first group prunes a NN based on some saliency criteria [49, 190, 178, 186]. These

methods measure the sensitivity of the loss with respect to the activations or weights, and try to

prune redundant neurons or connections. Since these criteria are heavily dependent on weight val-

ues, these methods are iterative (i.e., require pretraining and many expensive iterations of pruning

and fine-tuning.) and prohibitively slow.

The second group of methods augment the loss function with sparsity enforcing penalty terms [180,

191, 192, 181]. Then, during training, back-propagation effectively penalizes the weights, and

weights below a certain threshold may be deleted. These methods usually result in lower sparsity

than saliency-based techniques.

Both groups of methods require machine learning expertise to define the saliency criteria, spar-

sity enforcing penalty terms, additional hyperparameters and training schedule. In addition, they

require manual effort to tune hyperparameters to obtain acceptable results, which makes them

non-trivial to be extended to new architectures and different tasks. Furthermore, the architectures

uncovered by pruning approaches are harder to train from scratch and result in lower accuracy than

the original networks [183].

7.2.2 Single-Shot Pruning

To overcome these shortcoming, recent prior work proposes single-shot network pruning (SNIP),

which prunes a given network once at initialization before training [185]. It uses a saliency crite-

rion which identifies structurally important connections for the given task. Not only it eliminates

the need for pretraining and the complex pruning schedule, but also it is robust to architecture

variations. After pruning, it trains the sparse network in the standard way. Therefore, this method

does not require the expensive prune – retrain cycles.
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SNIP measures the importance of each connection independently of its weight by introducing

masks c ∈ {0, 1}m, which indicate whether each connection (w) is present or not. Hence, the

constrained optimization problem is modified as follows:

min
c,w

L(c�w;D)) = min
c,w

1

n

n∑
i=1

`(c�w; (xi,yi)))),

s.t. w ∈ Rm, c ∈ {0, 1}m , ‖c‖0 ≤ k,

(7.2)

where � represents the Hadamard product. Then, it uses one forward-backward pass and auto-

matic differentiation to compute ∂L/∂cj for all j st once, which approximates the influence of

connections on the loss. At the end, the top-k connections are retained and the remaining are

pruned.

Figure 7.1 shows the histogram of active masks for 100 experiments using SNIP to prune

LeNet-5 on MNIST dataset. For each experiment, weights are randomly initialized using variance

scaling initialization [193], then, SNIP is used to prune 90% of the weights. After that, each mask

is indicated as active (1) or inactive (0). After running the experiments, the masks of these 100

experiments are aggregated. Then, for each connection, we compute the number of experiments

in which the mask of that specific connection is active, which could be a number between 0 and

100. At the end, the histogram of mask activations per layer is plotted. As shown in the figure,

there is no single mask which is active for all 100 experiments. And, most of the masks are active

in less than 50% of experiments. Hence, although the network architecture, dataset and sparsity

rate are fixed, different weight initializations result in different pruned networks using SNIP. This

in contrast to the claim that SNIP retains connections which are indeed essential for the given task.

Consequently, we hypothesize that it is possible to enhance the performance of SNIP by paying

attention to both connection importance based on the network architecture and weight values.
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Figure 7.1: Histogram of active masks for 100 different weight initializations of LeNet-5 on
MNIST dataset using SNIP. Changing weights changes the connections pruned by SNIP.
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Figure 7.2: Distribution of weights before and after applying SNIP on different layers of LeNet-5
on MNIST dataset.
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7.3 Single-Shot vs. Random Pruning

Figure 7.2 shows the distribution of weights using variance scaling initialization before and after

applying SNIP with 90% sparsity rate on LeNet-5 network and MNIST dataset. As demonstrated,

applying SNIP has a significant effect on the distribution of initialized weights.
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Figure 7.3: Distribution of weights before and after applying random pruning on different layers
of LeNet-5 on MNIST dataset.

On the other hand, Figure 7.3 shows the distribution of weights for the same network, dataset,

weight initialization and sparsity rate but using random pruning instead of SNIP. The main ad-

vantage of random pruning in comparison to SNIP is maintaining the same distribution of weight

initialization, but the main disadvantage is completely ignoring the network architectural insights

extracted by SNIP.
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Figure 7.4: Histogram of active masks for 100 different weight initializations of LeNet-5 on
MNIST dataset using SNIP. Changing weights changes the connections pruned by SNIP.
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To augment the random pruning approach with some architectural insights, it is important to

analyze SNIP further and discover the effect architectural features of the network on the final sparse

network produced by SNIP. Based on Figure 7.1, we concluded that the position of connections in

the network are not important to SNIP, and one specific connection in a unique network might be

either pruned or retained for various random weight initializations. In contrast, if we look at the

sparsity rate of each layer for the same 100 experiments, sorted from the lowest sparsity in the left

to the highest sparsity in the right, as shown in Figure 7.4, it could be observed that the changes in

weight initialization do not change the sparsity rate of each layer drastically. Comparing plots of

different layers in Figure 7.4 results in two major observations.

First, although the global sparsity rate of the entire network is 90%, the local sparsity rate of

various layers is very different from each other. For example, the first layer (Conv1), which is

the closest to the raw input and contains important information, is on average pruned only 15%.

On the other hand, the first fully connected layer (FC1), which is in the middle of the network,

is on average pruned more than 92%. It is important to consider that FC1 is the largest layer of

the network, and the extra 2% of pruned parameters in this layer let other layers be less than 90%

sparse while the entire network is 90% pruned.

Second, although the masks themselves change a lot during these 100 experiments based on

Figure 7.1, the variance of the sparsity rate for each layer is not high. Hence, SNIP is capable

of defining local sparsity rates per layer based on the architectural features and the global sparsity

rate of the entire network regardless of weight initialization. Consequently, we obtain local sparsity

rates by applying SNIP, and then, apply local random pruning instead of global random pruning to

more fairly evaluate the connection selection algorithm of SNIP per layer versus random pruning.

Figure 7.5 compares the classification error of LeNet-5 on MNIST dataset using global ran-

dom, local random and SNIP pruning approaches for 90%, 95% and 98% sparsity rates. As demon-

strated, switching from global random to local random by borrowing local sparsity rates from SNIP

results in a considerable error reduction and produces very comparable results to SNIP. Hence, one

of the key advantages of SNIP over pure random pruning is breaking down the global sparsity
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Figure 7.5: Classification error of pruned LeNet-5 on MNIST dataset using global and local ran-
dom pruning and SNIP for different sparsity rates.

rate of the entire network and forming local sparsity rates for individual layers. Consequently, we

hypothesize that it should be possible to improve the performance of SNIP by borrowing local

sparsity rates as a conclusion of architectural features of the network, augment them with some

insights from weight values and form a new pruning approach.

7.4 Double-Shot Pruning

Since we want to augment SNIP with some insights from weight values, it is not possible to struc-

ture the entire approach based on untrained randomly initialized networks. In other words, the

information about weight values should be obtained from a trained or at least partially trained

network because initial weights are random and does not necessarily reveal any useful informa-

tion about the final values of weights. To satisfy this purpose, we propose a double-shot pruning

approach, which prunes a network based on both architectural information and weight values as

follows.

First the weights are randomly initialized using variance scaling initialization. Then, a mini-

batch of training data is sampled and provided to SNIP to compute gradients of loss with respect to

the masks. After that, the top-k (global sparsity rate provided by the user) gradients are considered

as potentially important connections, and the remaining connections are indicated as potentially
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unimportant ones. These classification of connections helps our algorithm to break down the global

sparsity rate properly and find the local sparsity rate per layer (kl1 , kl2 , ..., kln). Then, the dense

network is normally and fully trained. And, at the end, an importance metric is used to measure the

importance of each connection based on its weight value. For each layer lj , the importance value

of its connections are sorted from low to high, the top-klj connections with highest importance

values are retained, and the remaining connections are pruned. As the final step, the pruned sparse

network is regularly trained another time while the weights are initialized using the final values of

the trained dense network.

Although our double-shot pruning requires training of the dense network as pretraining and

training of the sparse network as the final training instead of a single training, it is still not an itera-

tive pruning approach and does not require any complex pruning schedule. Our method requires no

additional hyperparameters, and both training of the dense and the sparse network are performed

in the standard way. In addition, it is robust to architecture variations and can be applied to various

architectures with no modifications.

7.4.1 Connection Importance Metrics

A key part of double-shot pruning approach is defining a metric to measure the importance of each

connection in the trained dense network based on weight values and decide to keep or prune the

connection. We investigate five different importance metrics to figure out which of them are proper

candidates to complement SNIP. Each metric is defined as a function of the weight values both at

initialization (wi) and after training the dense network (wf ). For example, one well-known impor-

tance metric is the final weight magnitude, which means the weights with large final magnitude

will be kept and the remaining will be pruned. This metric could be formulated as |wf |.

Figure 7.6 shows our five different connection importance metrics along with their associated

equations: magnitude, movement, magnitude_increase, weighted_movement and weighted_magnitude_increase.

The first three metrics are introduced in [194], and the last two are designed by us based on some

inspiration from [195]. While magnitude pruning retains the connections with the maximum dis-
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Figure 7.6: Name, formula and 2D visualization of connection importance metrics. The x axis
represents wi and the y axis is wf . Weights with the largest scores (colored regions) are kept, and
weights with the smallest scores (white regions) are pruned.

Benchmark Dataset Dense Error (%) SNIP Error (%) Sparsity (%)
LeNet-5 MNIST 1.03 1.26 98.00
AlexNet CIFAR-10 13.48 15.21 90.00
VGG CIFAR-10 6.94 7.32 95.00

Table 7.1: Benchmark information.

tance from 0, movement and magnitude_increase select the connections with weights moving away

from 0. The main difference between magnitude_increase and movement is that movement is more

likely to keep weights which change sign than magnitude_increase. The last two metrics are de-

signed as hybrid metrics to combine both distance from 0 and moving away from 0. For each

metric, in addition to its equation, the visualization of the function as a set of decision boundaries

in a 2D space is illustrated. Each function segments the 2D space into regions corresponding to

mask values of one and zero. The ellipse represents the area occupied by the initial and final

weights from a given layer. Connections with the largest importance scores (colored regions) are

kept, and weights with the smallest scores (white regions) are pruned.

7.5 Evaluation

We evaluate our double-shot pruning technique with various importance metrics, which are sum-

marized in Figure 7.6, using seven network architectures obtained from [185]. Table 7.1 demon-

strates the detailed information of each benchmark. The first column shows the network architec-
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Figure 7.7: Comparison of dense, SNIP, local random and double-shot with importance metrics
based on the distance from 0. Everything is normalized by the accuracy of the dense network.

ture. The second column is the dataset used for training and inference. The third column contains

the absolute classification error values for trained dense networks. The fourth one is the absolute

classification error values of the sparse networks after applying SNIP. And, the last column shows

the global sparsity rate of each sparse network.

Figure 7.7 compares double-shot with importance metrics based on the distance from 0 (mag-

nitude), single-shot (SNIP and local random) and dense network. Each group of bars represents

the result of a single benchmark from 7.1. Each bar shows the accuracy of the classification task

normalized by the accuracy of the dense network. As shown, local random pruning, which obtains

the sparsity rates of layers from SNIP, provides comparable results to SNIP. On average it reduces

the normalized accuracy by only 0.32% in comparison to SNIP. On the other hand, double-shot

magnitude improves the accuracy of both SNIP and the dense network for AlexNet-s, VGG-C

and VGG-D, but performs worse than SNIP for LeNet-5. On average it improves the normalized

accuracy by 0.91% in comparison to SNIP.

Figure 7.8 compares double-shot with importance metrics based on moving away from 0

(movement and magnitude increase), single-shot (SNIP) and dense network in the same way as

Figure 7.7. As demonstrated, double-shot movement improves the normalized accuracy of LeNet-

300, LeNet-5, AlexNet-b and VGG-D in comparison to SNIP but performs worse than SNIP for

AlexNet-s, VGG-C and VGG-like. On average, it improves the normalized accuracy of SNIP by
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Figure 7.8: Comparison of dense, SNIP and double-shot with importance metrics based on moving
away from 0. Everything is normalized by the accuracy of the dense network.
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Figure 7.9: Comparison of dense, SNIP and double-shot with hybrid importance metrics. Every-
thing is normalized by the accuracy of the dense network.

0.16%. On the other hand, double-shot magnitude increase results in better normalized accuracy

than SNIP for all seven benchmarks and on average, improves SNIP result by 0.66%.

Figure 7.9 compares double-shot with hybrid importance metrics (weighted movement and

weighted magnitude increase), which combine moving away from 0 and the distance from 0,

single-shot (SNIP) and dense network in the same way as Figure 7.7. As shown, both hybrid

double-shot approaches improve the normalized accuracy of all seven benchmarks in comparison

to SNIP. On average, weighted movement and weighted magnitude increase improve the normal-

ized accuracy of SNIP by 0.79% and 0.66%, respectively. An interesting observation is that double-

shot weighted movement performs even better than the dense network for VGG-D and increases
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its normalized accuracy by 0.32%.

In conclusion, out of five introduced importance metrics, three of them (magnitude increase,

weighted movement and weighted magnitude increase) result in double-shot approaches with

higher accuracy than SNIP for all seven benchmarks. Among these three metrics, using weighted

movement for double-shot pruning results in the highest average accuracy. Hence, we pick weighted

movement as the importance metric of our double-shot pruning metric to ensure it supports differ-

ent network architectures and various tasks.

7.6 Related Work

Neural network pruning [178, 49] rely on the fact that networks are usually overparameter-

ized [196, 197, 198, 199, 50]. Traditional pruning approaches can be divided to two categories [200]:

1) augmenting the loss function with sparsity enforcing penalties; and 2) pruning based on some

saliency criterion. Methods from the first category [180, 191, 192] augment the loss function with

some sparsity enforcing penalty terms. Then, during training, back-propagation effectively penal-

izes the weight values. After that, weights below a certain threshold will be pruned. The second

category of methods includes the sensitivity of the loss with respect to the activations [179] or

the weights [201, 178, 186]. Traditional pruning approaches are heavily dependent on the weight

values, which requires many iterations of pruning and fine-tuning and makes them prohibitively

slow.

In recent years, extreme sparsity rates, without loss in accuracy, are achieved by using mag-

nitude of the weights as the criterion [49, 190, 181, 202]. The magnitude criterion still requires

machine learning expertise to heavily tune hyperparameters and are non-trivial to be extended to

new architectures and different tasks. Other main drawbacks of magnitude based approaches are

the reliance on pretraining and the expensive iterative prune – fine-tune cycles. [203] extends the

soft weight sharing in [204] to obtain a sparse network. [205] uses learned dropout rates to prune

the network.
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Single-shot pruning [185, 206] approaches try to replace the traditional iterative and complex

pruning approaches by faster and easier-to-apply methods for nonexpert users, which will im-

prove the applicability and popularity of network pruning while having the potential for faster and

more efficient training. SNIP [185] eliminates pretraining, the complex pruning schedule and it-

erative optimization procedure of the traditional pruning approaches by pruning the network once

at initialization prior to training and using saliency criterion based on connection sensitivity. In

addition, it does not require additional hyperparameters and the sparse network is trained in the

standard way. The lottery ticket hypothesis tackles the fact that the sparse pruned architectures are

difficult to train from scratch, which would improve training performance [183, 207, 208]. The lot-

tery ticket hypothesis proposes that the dense networks contain sparse networks that (when trained

in isolation) reach accuracy comparable to the original network. The main shortcoming of [183] is

that it uses iterative pruning to find the winning ticket, which is counterintuitive to the purpose of

efficient training. To alleviate this problem, drawing early-bird tickets [209] proposes a method to

identify the winning tickets at very early training stages. However, it still requires modifications to

the standard training procedure and is not trivial to apply for nonexpert users.

SNIP completely ignores the importance of weight values by forming the pruning algorithm

based on randomly initialized weights and assumes that architectural features of the network are

sufficient for identifying essential connections. In contrast, our double-shot noniterative pruning

approach improves the result of SNIP by combining the insights from both architectural features

and weight values, while keeping the network pruning fast, simple, easy-to-apply and not requiring

additional hyperparameters.

7.7 Conclusion

In this chapter, we propose a double-shot pruning approach, which is simple, fast and easy-to-

apply. It augments the architectural insights from the single-shot pruning method with information

about weight values to prune irrelevant connections for a given task in a noniterative way. We
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evaluate our method using seven network architectures on two classification datasets (MNIST and

CIFAR-10). After investigating the effect of five different connection importance metrics on the

performance of double-shot pruning, we show that the most proper metric, on average, improves

the accuracy of SNIP by 0.79% while maintaining the same global sparsity rate for all networks.
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CHAPTER 8

Summary and Conclusion

Deep Learning algorithms are the main focus of modern machine learning systems. As data vol-

umes keep growing, it has become customary to train complex neural networks with hundreds of

millions of parameters to obtain state-of-the-art accuracy. To get around the costly computations

associated with large models and data, the community is increasingly investing in two major cate-

gories of techniques: input-invariant and input-variant. Input-invariant methods, including network

pruning, take advantage of hardware and software techniques to accelerate a single DNN for the

entire dataset on various platforms. On the other hand, input-variant approaches rely on the fact

that DNNs are overprovisioned, and the entire computational power of the model is not required

for most of the inputs to produce accurate final outputs. Consequently, these techniques employ a

combination of simple less accurate and complex more accurate models to dynamically adjust the

complexity of the DNN based on input difficulty.

Although both categories contain numerous approaches to improve performance and efficiency

of DNNs, most of them require in depth hardware, software or network architecture modifica-

tions, which are not trivial for nonexpert users to implement and deploy. To overcome these

shortcomings, this thesis proposes techniques to improve performance and applicability of both

input-invariant and input-variant methods.

In Chapter 3, we propose a system of data specialized neural networks (dsNNs) to increase

energy efficiency of NNs. A multi-dsNN consists of multiple simple and specialized NNs, which

are customized for different subsets of the input space. In contrast to conventional NN ensembles,

127



multi-dsNN selects and activates a single dsNN per input instance dynamically. Compared to

conventional monolithic NNs, a 2-way multi-dsNN reduces the energy consumption by an average

of 61%, 53% and 55% and increases the performance by an average of 2.6×, 1.9× and 1.8× on

microcontroller, mobile CPU and mobile GPU, respectively, with 100% accuracy of the baseline.

In Chapter 4, we introduce SIEVE, a novel hybrid cloud-edge deep learning system. It creates a

heavily compressed CNN through aggressive precision reduction to enable speculative inferences

on the device. A dynamic partitioning technique is employed to push most of the computation

to this speculative CNN while the data transfer to original CNN is limited to recovery on low-

confidence inferences. Compared to the cloud-only approach, SIEVE reduces the energy con-

sumption by an average of 91%, 57% and 26% and increases the performance by an average of

12.3×, 2.8× and 2.0× for 3G, LTE and WiFi connection, respectively, with 100% accuracy of

baseline.

In Chapter 5, we introduce M&MNet, another hybrid cloud-edge deep learning system. Same

as SIEVE, it dynamically distributes the DNN computation between the server and mobile device.

However, instead of precision reduction, it deploys a pair of lightweight and efficient CNNs on

the device for speculation. Compared to the cloud-only approach, M&MNet reduces the energy

consumption by an average of 53.5% and 39.5% and increases the performance by an average of

3.9× and 1.9× for LTE and WiFi connection, respectively, with 100% accuracy of baseline.

In Chapter 6, we introduce Dynamic Duo (DD), a novel input-driven synergistic deep learning

system. It pairs an efficient less accurate CNN (little) with a complex more accurate CNN (big) and

offloads most of the computation on the little one. A dynamic confidence examination technique

is employed to probe the outputs of the little CNN and invoke the big one only for recovering

the low-confidence inferences. Compared to the traditional approach, DD improves the datacenter

throughput by 2.1× and reduces the average inference latency by 38% on an NVIDIA TITAN X

GPU with 100% accuracy of the baseline.

Finally, in Chapter 7, we propose a double-shot pruning approach, which is simple, fast and

easy-to-apply. It augments the architectural insights from the single-shot pruning method with
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information about weight values to prune irrelevant connections for a given task in a noniterative

way. We evaluate our method using seven network architectures on two classification datasets

(MNIST and CIFAR-10). After investigating the effect of five different connection importance

metrics on the performance of double-shot pruning, we show that the most proper metric, on

average, improves the accuracy of SNIP by 0.91% while maintaining the same global sparsity

rate for all networks.
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