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Abstract

As the volume and granularity of health data continue to increase, clinical decision-makers

are faced with two key questions: (Q1) How can large clinical datasets be used to gain

a patient-specific understanding of disease risk and disease progression? (Q2) How can a

data-driven understanding of patient-specific disease risk and disease progression be com-

bined with multiple stakeholders’ perspectives to optimize medical decision-making? These

challenges are especially pertinent to managing patients with concussion. Concussion, an

emergent public health issue, affects millions of people in the United States each year. Char-

acterized by wide-ranging symptoms and impairment in neurocognitive function, researchers

believe that improving concussion management can mitigate the long-term consequences as-

sociated with the injury. In this dissertation, we answer (Q1) and (Q2) by analyzing three

key aspects of concussion management: acute concussion assessment, diagnosis decisions,

and return-to-play (RTP) decisions. Throughout this dissertation, we develop, parameter-

ize, and validate our models using data from the Concussion Assessment, Research, and

Education (CARE) Consortium — a large dataset on concussion among collegiate athletes

from 29 universities and military service academies across the United States.

In our analysis of acute concussion assessment, we design predictive models to assess the

relationship between acute concussion and clinical assessments, individual risk modifiers

(e.g., age, sex, number of previous concussions), and time of injury characteristics (e.g., loss

of consciousness). This research provides valuable contributions in (1) quantifying the value

of a multi-dimensional approach to acute concussion assessment and (2) identifying specific

components of the Sport Concussion Assessment Tool which best identify acute concussion.

To analyze concussion diagnosis decisions, we formulate and solve the Two-Threshold

Problem (TTP): a data-driven stochastic programming approach to determine optimal diag-

nosis decision thresholds with risk estimation models. Using the personalized risk estimation

models from the first part of this dissertation as an input, we apply the TTP to acute concus-
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sion diagnosis and identify its implications for clinicians. The contributions of this research

include (1) the development of a novel data-driven framework for optimizing diagnosis deci-

sions, (2) an algorithmic approach to classifying the certainty in acute concussion diagnosis

decisions (i.e., Unlikely, Possible, Probable, and Definite concussion), and (3) the characteri-

zation of athletes who are most difficult to diagnose, i.e., Possible and Probable concussions.

The final part of this dissertation analyzes the timing of RTP from concussion. We first

formulate and solve a novel Behavior-Learning Multi-agent POMDP (BLM-POMDP): a

multi-agent, stochastic dynamic programming model which incorporates the patient’s and

doctor’s perspectives while accounting for uncertainty in the patient’s health and symptom-

reporting behavior. We then apply the BLM-POMDP to CARE Consortium data to estimate

the value of incorporating patient behavior in RTP decisions. The contributions of this work

include (1) the formulation and characterization of a novel dynamic programming framework

which naturally models patient-doctor interactions in sequential treatment planning regimes

and (2) the development and analysis of an optimal RTP policy which can be tailored to

each athlete and outperforms current practice.

In summary, this dissertation combines data analytics and operations research to address

major challenges in concussion management. Our modeling frameworks span the range

of predictive models for risk estimation to data-driven sequential decision-making under

uncertainty. While this research was motivated by and applied to concussion management

decisions, this research can be adapted to a broader range of application areas where data,

prediction, and decisions play a crucial role.
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Chapter 1

Introduction

Over the past decade, the Big Data movement — characterized by increasing volume, veloc-

ity, and variety of data — has revolutionized and transformed numerous industries includ-

ing retail, manufacturing, sports, and healthcare (Mcafee and Brynjolfsson, 2012). Within

healthcare, Big Data has presented the opportunity to develop new insights across several

facets of health systems, including healthcare operations, pricing of health services, drug

development, and medical decision-making (Bates et al., 2014). Yet, solely increasing the

amount of data and the availability of data is not enough to improve healthcare — new

data analytics techniques must be developed to transform these data into insights and these

insights into value (Lavelle et al., 2011). Two key questions which must be addressed to

transform these data into actionable and valuable information are:

1. How can large clinical datasets be used to gain a patient-specific understanding of

disease risk and disease progression?

2. How can a data-driven understanding of patient-specific disease risk and disease pro-

gression be combined with multiple stakeholders’ perspectives to optimize medical

decision-making?

While these challenges are universally important to many disease areas, they are especially

pertinent to the clinical assessment and management of concussion.
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1.1 Concussion Management

Concussion, the most common type of traumatic brain injury (TBI), affects millions of peo-

ple in the United States each year and has become a recent focal point in public health

(CDC, 2016; Langlois, Rutland-Brown, and Wald, 2006; McCrory et al., 2017). In the

short-term, concussion is associated with wide-ranging symptoms including headache, am-

nesia, sensitivity to light and noise, loss of neurocognitive function, and impaired balance

(Broglio et al., 2014; Giza et al., 2013; Harmon et al., 2013; McCrory et al., 2017). In the

long-term, concussion is associated with persistent post-concussion symptoms, Alzheimer’s

disease, dementia, depression, and neurodegenerative diseases such as chronic traumatic en-

cephalopathy (Daneshvar et al., 2011; De Beaumont et al., 2007; Kerr et al., 2018a; McCrory

et al., 2013).

Concussion management plays a critical role in mitigating these short- and long-term

consequences, especially in sports, which accounts for roughly 30% of concussions among

youth (Voss et al., 2015). While the specifics of the concussion management protocol continue

to evolve, two key components of the process include (1) concussion assessment and diagnosis

and (2) determining the timing of return-to-play (RTP) from concussion.

The accurate assessment and diagnosis of concussion is critical to initiating the concussion

management protocol. Delayed diagnosis can increase risks for secondary injuries, lengthen

recovery time, and exacerbate concussion symptoms (Asken et al., 2018; Asken et al., 2016).

However, achieving this combination of accuracy and timeliness in diagnosis is a major chal-

lenge for physicians and clinicians. First and foremost, a perfect diagnostic marker for con-

cussion does not yet exist. Therefore, clinicians must rely on available clinical measures and

assessments to determine whether athletes do or do not have concussion. To this end, while

several clinical assessments and assessment batteries have been developed in the few years

(McCrory et al., 2017), the exact combination of assessments which best detects concussion

for each type of athlete (e.g., by sex and concussion history) is unclear.

Once athletes have been diagnosed with concussion, they typically progress through a

“graded RTP protocol” in which they gradually increase their activity levels until deemed

fit to RTP (Kutcher and Giza, 2014). Over 25 distinct approaches to concussion assessment

and RTP decisions have been published since 2001. However, many of these guidelines

are based on expert consensus rather than scientific evidence (McCrea et al., 2005). Often
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relying on physician experience, these guidelines make it difficult to accurately determine

when a concussion has fully resolved. Further, athletes may under-report symptoms to

achieve earlier RTP (Williamson and Goodman, 2006). To this end, premature RTP is

associated with increased risks for secondary injury, post-concussion syndrome, and second

impact syndrome (Broglio et al., 2014; Harmon et al., 2013; Makdissi et al., 2010; McGrath,

2010) while late RTP can result in lost opportunities or decreased quality of life (Kutcher

and Giza, 2014; Schneider et al., 2013). Hence, determining the optimal timing for RTP is

a major challenge in concussion management.

By combining operations research and data analytics, this dissertation develops new

methodological frameworks in predictive analytics (i.e., data-driven prediction and estima-

tion of unknown information) and prescriptive analytics (i.e., data-driven decision-making in

the face of known and unknown information) to address these challenges within concussion

assessment and RTP decisions.

1.1.1 CARE Consortium Data

Throughout this dissertation, we develop our models and perform our analysis using data

from the National Collegiate Athletic Association-Department of Defense (NCAA-DoD) Con-

cussion Assessment, Research, and Education (CARE) Consortium (Broglio et al., 2017).

The CARE Consortium was established to study the natural history and neurobiological re-

covery of concussion to improve the overall management of concussion for military personnel

and student-athletes (i.e., participants). From evidence-based guidelines, the CARE Consor-

tium defines concussion as “a change in brain function following a force to the head, which

may accompanied by temporary loss of consciousness, but is identified in awake individuals

with measures of neurologic and cognitive function” (Carney et al., 2014).

CARE data were collected from varsity athletes at 30 NCAA universities and military

service academies who underwent preseason baseline evaluations during the 2014-2019 aca-

demic years. These player-seasons consisted of male (57.08%) and female (42.90%) partic-

ipants from 27 sports, including football (19.2%), cross country/track (11.4%), and soccer

(9.6%). Only non-varsity military service academy cadets were included in these data. These

data contained 38,379 player-seasons from 29,712 participants who completed a pre-season

baseline evaluation and 2,971 concussions across 2,628 participants. Participants diagnosed
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with concussion by the local institution’s medical staff obtained assessments within 6 hours

post-injury (<6h), 24-48 hours post-injury (24-48h), when cleared to begin the return-to-

play (RTP) protocol (asymptomatic), when cleared for unrestricted RTP, and 6 months

after the time of unrestricted RTP. RTP protocol decisions were made at the discretion of

the local medical staff at each institution based on the CARE Consortium study protocol

(Broglio et al., 2017). Some participants did not complete post-injury assessments at each

timepoint, leading to missingness in the data. All participants provided written consent that

was approved by their local institutional review board and the United States Army Human

Research Protection Office.

Throughout this dissertation, we updated the CARE Consortium data as new data became

available. Hence, each chapter may have used a different version of the CARE Consortium

Data. For example, the analysis in Chapter 3 was conducted more recently than that of

Chapter 2, explaining the differences in sample sizes.

1.2 Organization and Contributions

Figure 1.1 illustrates the organization of this dissertation, the descriptions of each chapter,

and the connections between chapters. This dissertation is divided into three parts. The first

part of this dissertation (Chapters 2 and 3) develops predictive models to estimate the risk of

acute concussion based on a combination of individual risk factors, injury characteristics, and

clinical measures. The second part of this dissertation (Chapters 4, 5, and 6) develops and

analyzes a data-driven stochastic programming framework which optimizes diagnosis decision

thresholds based on risk estimation models (like those developed in part 1). These decision

thresholds guide clinicians in determining which patients should be diagnosed as positive

or negative, or whether diagnosis decisions should be deferred due to elevated inaccuracy

inherent to the risk estimation model. In the third part of this dissertation (Chapter 7),

we formulate and analyze a novel multi-agent stochastic dynamic programming framework

which optimizes the timing of treatment decisions for potentially strategic patients. We now

briefly describe each chapter and its contributions.
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Figure 1.1: Organization of dissertation, connections between chapters, and connec-
tions between chapters and the concussion management protocol
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1.2.1 Part 1: Estimating the Risk of Acute Concussion

In Chapter 2, we develop univariate and multivariate logistic regression models to quan-

tify and analyze the association between acute concussion and several important clinical

variables, including individual risk factors, injury characteristics, and standard clinical as-

sessments. The main contributions of Chapter 2 are as follows.

� We establish quantitative evidence supporting the clinical utility of a multi-faceted

approach to acute concussion assessment.

� We show that measures of symptom presentation are the most important indicator of

acute concussion and removing them from an assessment battery can drastically reduce

its accuracy in assessing acute concussion.

� We quantify the marginal clinical utility of change scores for acute concussion assess-

ment, showing that acute concussion assessment can still be performed at clinically

acceptable levels of accuracy when baseline information is unavailable.

� This research was published in Sports Medicine (Garcia et al., 2018).

In Chapter 3, we extend our previous modeling framework in Chapter 2 by formulating

a mixed integer program (MIP) to identify the subset of SCAT symptom checklist, SAC,

and BESS components which best identifies acute concussion. The main contributions of

Chapter 3 are as follows.

� We developed models (with and without change scores) which take less time to admin-

ister the SCAT and can more accurately assess concussion compared to the SCAT’s

composite scores.

� We identified specific components of the SCAT symptom checklist, SAC, and BESS

which are highly associated with acute concussion.

� Our analysis provides additional quantitative support regarding the clinical utility of

change scores.

� We provide quantitative evidence that some of the SCAT’s components are simply

adding noise to the process of assessing acute concussion, suggesting the importance of
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identifying the components of the SCAT which are most pertinent for acute concussion

assessment.

� This research was accepted for publication in Neurosurgery (Garcia et al., 2020b).

1.2.2 Part 2: Optimization and Analysis of Diagnosis Decisions

In Chapter 4, we formulate the Two-Threshold Problem (TTP) as a data-driven stochastic

program to determine decision thresholds for diagnosis decisions with risk estimation mod-

els. Without making assumptions on the distribution of risk estimates, TTP provides clinical

guidance on whether a patient should receive a positive or negative diagnosis, or whether

the risk estimate for that patient is inconclusive. We then apply TTP to acute concussion

assessment and show that on a number of performance metrics, TTP outperforms an op-

timized single threshold approach as well as normative value comparison approaches from

clinical practice. The main contributions of Chapter 4 are as follows.

� We introduce a data-driven stochastic optimization framework to determine diagnostic

decision thresholds based on the application of a risk estimation model to patients from

a fixed population. Compared to previous methods, we avoid the need to estimate

outcome-based utilities or make distributional assumptions to account for uncertainty

in risk estimates.

� We show that the optimal solution to our proposed model can be characterized by

extreme-point solutions of a related linear program. Thus, our model can be solved

using quantile estimation — bypassing the need for advanced optimization software.

� We identify additional modeling frameworks, including utility-based and multi-class

classification frameworks, for which our analytical results can be applied. Specifically,

for our utility-based extensions, we formulate a model for which utilities such as quality-

adjusted life-years may be used. In our extensions to multi-class classification, we

develop frameworks for both multi-label and ordinal classification.

� Through an analytical study and numerical analysis using both real and simulated

data, we determine when two decision thresholds, which allow for a deferred diagnosis
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decision, will outperform a single decision threshold, which only allows for binary

classification.

� We perform extensive numerical analysis to determine how the modeling parameters

should be chosen based on the general characteristics of the population that undergoes

diagnostic testing. Our analysis also gives insight to guide the choice of data-driven

solution methodology based on sample size and the quality of the underlying risk

estimation model.

� We are one of the first groups to apply an optimization framework to develop data-

driven diagnostic thresholds for acute concussion based on data from the CARE Con-

sortium — a nationwide collaboration comprising 29 National Collegiate Athletic Asso-

ciation (NCAA) universities and military service academies. By incorporating feedback

from concussion experts across the CARE Consortium, we ensure that, in the case of

acute concussion assessment, our modeling framework outperforms methods which are

commonly used in practice. Furthermore, we provide a valuable framework which

quantifies the uncertainty in diagnosis decisions using real data rather than subjective

clinical experience. The models developed in this research have the potential to be

developed into tools which can supplement clinical decision-making.

� This research was accepted for publication in IISE Transactions (Garcia et al., 2020a).

In Chapter 5, we apply and extend the methodology from Chapter 4 to develop a data-

driven framework which classifies acute concussion based on diagnostic certainty, i.e., Un-

likely, Possible, Probable, and Definite concussion. We characterize the distribution of acute

concussions and normal performances within each risk category as well as analyze key dif-

ferences within and across athletes placed in each of these risk categories. The main contri-

butions of this chapter are as follows.

� We develop an objective and data-driven framework which stratifies acute concussion

assessment by diagnostic certainty. These risk categories lay the foundation for guiding

post-injury management decisions.

� We identify key characteristic which can be used to differentiate between acute con-

cussions and normal performances in each risk category.
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� We provide additional, quantitative support for the value of a multidimensional battery,

the use of change scores in acute concussion assessment, and the potential implications

for several demographic factors and time-of-injury characteristics in acute concussion

assessment.

� This research was published in the Journal of Neurotrauma (Garcia et al., 2020b).

In Chapter 6, we extend our analysis from Chapter 5 by applying cluster analysis to provide

a more granular analysis of Possible and Probable concussions. The main contributions of

this chapter are as follows.

� We provide a characterization of athletes whose concussions are most difficult to assess

(i.e., Possible and Probable concussions) — a subpopulation which is seldom analyzed

in the literature.

� We guide clinical decision-making by highlighting specific symptom groups which best

differentiate between acute concussions and normal performances among the Possible

and Probable concussions.

� We quantify the utility of objective assessments and change scores among Possible and

Probable concussions.

� This research will be submitted to a medical journal.

1.2.3 Part 3: Optimization and Analysis of RTP Decisions

In Chapter 7, we aim to develop a model which optimizes the timing of RTP while ac-

counting for symptom-reporting behavior. Specifically, we formulate the Behavior-Learning

Multi-agent POMDP (BLM-POMDP) — a multi-agent, multi-period, stochastic dynamic

programming model which incorporates uncertainty in the patient’s health and symptom-

reporting behavior. We apply the BLM-POMDP to optimize the timing of RTP from sports-

related concussion by incorporating CARE Consortium data and published values from the

literature to parameterize and validate our model. Compared to benchmark RTP policies

which fail to account for symptom-reporting behavior, the BLM-POMDP increase athlete’s

health utilities, reduces the likelihood of premature RTP, and increases their post-RTP
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athletic exposures — especially in the presence of symptom under-reporting. The main

contributions of this chapter are as follows:

� We formulate a novel BLM-POMDP framework, a multi-agent stochastic dynamic

programming model which naturally fits patient-doctor interactions in many healthcare

settings.

� We characterize the structure of the BLM-POMDP’s optimal value function and opti-

mal policy. Analyzing and solving the BLM-POMDP is a formidable task due to the

curse of dimensionality. Furthermore, by explicitly modeling patient-doctor interac-

tions, the BLM-POMDP negates classic results for the POMDP such as convexity of

the value function. Nevertheless, we leverage decomposition and Blackwell dominance

to derive structural properties of the BLM-POMDP which give way to an approxi-

mation solution method and reveal insights on optimizing treatment decisions with

potentially strategic patients.

� We are one of the first groups to approach RTP from concussion with a decision-

theoretic and data-driven approach by applying and evaluating the BLM-POMDP to

RTP from concussion among collegiate athletes.

� We provide a data-driven framework to tailor athlete-specific RTP criteria and demon-

strate its improvement over current practice.

� This research will be submitted to an engineering journal.
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Chapter 2

Quantifying the Value of

Multidimensional Assessment Models for

Acute Concussion

2.1 Introduction

In sporting environments, concussion diagnosis is critical for proper injury management and

must be both timely and accurate. To this end, many challenges remain for physicians

and athletic trainers. One major challenge lies in the simultaneous use and interpretation

of various concussion assessment tools. Multiple domestic and international organizations

recommend clinicians implement multiple tests to evaluate several domains to support the

clinical examination of the injured athlete (Broglio et al., 2014; Giza et al., 2013; Harmon

et al., 2013; McCrory et al., 2017). Commonly used assessments include the Standard

Assessment of Concussion (SAC), athlete-reported symptoms, and the Balance Error Scoring

System (BESS). Unfortunately, few studies have quantified the performance of these methods

to determine which are most accurate in identifying concussions alone or in combination.

Among the studies which have analyzed these assessments for the evaluation of concussion,

many of them consider only one assessment in isolation (Barr and McCrea, 2001; Broglio

et al., 2008; Broglio, Macciocchi, and Ferrara, 2007; Lovell et al., 2006; McCrea et al., 2005).

Moreover, most of these studies analyzed a small sample of male football athletes who have

experienced concussion, limiting the generalizability of the results across sexes and sports.
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Additionally, while it is widely accepted that combining multiple assessments (i.e., a testing

battery such as the Sport Concussion Assessment Tool 5th Edition (SCAT5) (Echemendia

et al., 2017)) improves concussion assessment capability (Broglio et al., 2014; Harmon et

al., 2013; McCrory et al., 2017), no method combines the results of multiple tests into

a single measure for guiding injury assessment – making the simultaneous interpretation of

test results difficult. Another challenge in acute concussion assessment lies in the importance

of change scores, i.e., the differences between an athlete’s performance prior to and following

injury. While many assessment methods require the use of change scores, these data may

not always be available to clinicians and when they are, their utility has been questioned

(Echemendia et al., 2012; Randolph, 2011; Schmidt et al., 2012). Similarly, another challenge

lies in determining which clinical measures can be used for concussion assessment when data

is unavailable or when self-reported symptoms are unreliable. Finally, while a number of

modifying factors (e.g., age (Covassin et al., 2012; Putukian et al., 2015; Valovich McLeod

et al., 2012), sex (Covassin, Buz Swanik, and Sachs, 2003; Covassin et al., 2012; Covassin,

Schatz, and Swanik, 2007; Shehata et al., 2009; Valovich McLeod et al., 2012), and concussion

history (Bruce and Echemendia, 2004; Covassin, Stearne, and Elbin, 2008; Guskiewicz et

al., 2003; Shehata et al., 2009)) have been suggested to influence concussion risk and affect

injury presentation, how to incorporate these risk modifiers in acute concussion assessment

remains unclear.

The goal of this study is to address these aforementioned challenges in acute concussion

assessment through a statistical modeling approach. Specifically, this study aims to: (1)

evaluate selected standard assessments for the evaluation of acute concussion; (2) determine

the assessments for which change score has more clinical utility than raw score for evaluating

acute concussion; (3) quantitatively evaluate concussion assessment under limited clinical

data or objective clinical measures. These aims are achieved by building, analyzing, and

validating logistic regression models using data from a nationwide and multi-site study on

sports-related concussions. This approach not only provides insight into which combinations

of standard assessments are most important in acute concussion assessment, but it also

combines these measures into a single risk estimate which can be used to guide clinical

decision-making in the evaluation of acute concussion.
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2.2 Methodology

This analysis used data from the CARE Consortium (see Section 1.1.1)

2.2.1 Study Measures

The timepoints considered in this study included baseline assessments and post-injury as-

sessments from <6 hours (<6h), 24-48 hours (24-48h), and at the time of unrestricted RTP.

Concussions without a baseline assessment prior to the injury were excluded from the anal-

ysis (n=62). Variables in this study include concussion risk modifiers (e.g., age and sex),

the SAC, the Standard Concussion Assessment Tool (SCAT) symptom evaluations, and the

BESS. The risk modifiers selected for this study have been previously identified as potential

indicators for increased risk of concussion. Similarly, the selected assessments have been

identified as practical and effective methods for evaluating concussion (Broglio et al., 2014;

McCrory et al., 2017; McCrory et al., 2013). Furthermore, the individual assessments consid-

ered in this study are also part of existing, widely-used, and easily available testing batteries

such as the SCAT5. Finally, as a clinical benefit, these study variables can also be obtained

within the time constraints of athletics – making them useful for sideline assessment. For the

SAC, SCAT symptom evaluations, and BESS, both raw score and change score were consid-

ered. Change score for a timepoint is defined as the difference between the raw score at that

timepoint and the raw score at baseline. That is, a positive change score implies that an

athlete scored higher post-injury compared to baseline and a negative change score implies

that an athlete scored lower post-injury compared to baseline. The variables considered in

this analysis are described in more detail below.

Select variables thought to influence concussion risk were selected for modeling. Younger

athletes, females, and those with previous concussions may be at higher risk for concussion

(Broglio et al., 2014; Guskiewicz et al., 2005; Harmon et al., 2013; McCrory et al., 2017).

Additionally, injury characteristics such as whether the athlete experienced loss of conscious-

ness (LOC), post-traumatic amnesia (PTA), and retrograde amnesia (RGA) are associated

with concussion (Broglio et al., 2014; Harmon et al., 2013; McCrory et al., 2017). Whether

the athlete was removed from play immediately and reported the injury immediately can

modify the symptom presentation at the time of assessment (Asken et al., 2016; Broglio

et al., 2014; Elbin et al., 2016; Harmon et al., 2013; McCrory et al., 2017).
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The SAC is an instrument which includes measures of orientation, immediate memory,

concentration, and delayed recall (McCrea et al., 1998). The SAC total score is considered

to provide a holistic measure of neurological status, so the SAC total score and change score

were considered in this study.

The SCAT symptom list is a standardized tool for evaluating symptom presentation among

injured athletes (Concussion in Sport Group, 2013). Hence, the total number of symptoms

reported and the total symptom severity score were included as variables, along with their

change scores.

The BESS is a physical examination consisting of a double-leg stance, single-leg stance,

and a tandem stance (Bell et al., 2011). Since impaired balance is believed to indicate

concussion, the BESS total score and change score were considered.

2.2.2 Data Analysis

Most study variables were missing at <6% across all timepoints. The BESS assessments

were missing at <10% for all timepoints except <6h, which was missing at 26.61%. Multiple

imputation by chained equations was used to fill missing data (Van Buuren, Boshuizen, and

Knook, 1999). This method is common in medical literature, including previous concussion

studies (McCrea et al., 2013; McCrea et al., 2003; McCrea et al., 2005). Imputation was

performed using the software R version 3.2.2.

2.2.3 Quantifying Differences Between Acute Concussions and Normal

Performances

The probability of belonging to the “acute concussion” group was estimated using logistic

regression. The “acute concussion” group consisted of post-injury assessments from <6h

or 24-48h and the “normal performance” group consisted of assessments from baseline and

unrestricted RTP. Separate models were created for the <6h and 24-48h timepoints. For

the baseline data, it was assumed that all change scores were 0, the injury was reported

immediately, the athlete was removed from play immediately, and the athlete did not ex-

perience LOC, PTA, or RGA. These assumptions were made since these variables were not

measured during baseline evaluations and values were needed for logistic regression. To

perform the analysis, all data, excluding baseline data, were randomly split into training
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(75%) and testing (25%) sets. Baseline data were excluded from the training set to prevent

model fitting from being influenced by baseline data assumptions. Five-fold cross-validation

was performed on the training set to select and parameterize the models. Models were first

validated using the testing set, which consisted of data from the unrestricted RTP group

and the appropriate acute concussion group. Then, baseline data were used to validate the

models separately.

Univariate logistic regression analysis was performed to understand how each study vari-

able, individually, is associated with acute concussion. Then, multivariate logistic regression

was performed using backward variable selection with Akaike Information Criteria (Boz-

dogan, 1987). The goal of the multivariate logistic regression was to understand how the

study variables, in combination, are associated with acute concussion (full models). If the

resulting variables contained both change score and raw score for the SAC, SCAT symptom

assessments, or BESS, then two models were created for each instance. One model contained

all variables resulting from backward variable selection except change score for that assess-

ment and the other model contained all variables except raw score. The model with better

performance measures on the training set was kept.

To assess multivariate model performance under limited data, full models were modified

to estimate the impact of deleting one variable (limited models). These limited models

highlight which variables most drastically affect the full model’s performance when certain

measures are unavailable. To create limited models, the full model was recreated on the

training set with all variables except one. This procedure was repeated until a limited model

was created for every variable in the full model. The impact on concussion assessment when

baseline data is unavailable was evaluated by creating models which replaced all change score

assessments in the full model with raw scores (raw score models).

Finally, since symptom under-reporting is a major concern within concussion management

(Williamson and Goodman, 2006), multivariate models were created to estimate model per-

formance without self-reported symptoms (objective models). Objective models were created

using the same procedure as the full model except SCAT total symptoms and SCAT symptom

severity were excluded from the initial set of variables. Models were created and analyzed

using Python 3.5.2.
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2.2.4 Performance Measures

Models were evaluated on sensitivity, specificity, and area under the curve (AUC). Sensi-

tivity is the percentage of acute concussions at <6h or 24-48h correctly classified as acute

concussions and specificity is the percentage of normal performance assessments from the

baseline or unrestricted RTP timepoints correctly classified as normal performance. AUC is

the likelihood that a model will estimate the probability of acute concussion to be higher for

a randomly chosen acute concussion than a randomly chosen normal performance. Addition-

ally, the limited models, raw score models, and objective models were compared to the full

models using a bootstrap test for AUC on the testing set (bootstrap test) (Pepe, Longton,

and Janes, 2009). A significant p-value suggests that a given model’s AUC is less than the

full model’s.

2.3 Results

The study data with respect to selected concussion risk modifiers and standard assessments

are summarized in Table 2.1. The groups do not differ significantly in terms of height, weight,

age, sex, and previous number of concussions. However, the raw scores for the groups at

<6h, 24-48h, and unrestricted RTP differ significantly from the baseline group (P<0.01).

16



Table 2.1: Characteristics of the study data with reference to selected variables by
timepoint

Variable Baseline <6h 24-48h Unrestricted RTP

n* 842 560 733 707

Days since injury (SD)* NA 0.39 (7.66) 0.92 (1.80) 14.47 (12.66)

Height in meters (SD)* 1.80 (0.12) 1.80 (0.10) 1.79 (0.12) 1.79 (0.12)

Weight in kg (SD)* 84.04 (21.77) 86.24 (22.80) 83.68 (21.93) 83.22 (21.57)

Age in years (SD) 19.40 (1.30) 19.37 (1.31) 19.33 (1.27) 19.37 (1.30)

Male Sex (% yes) 61.52% 64.46% 60.03% 59.83%

Number of previous concus-

sions (SD)

0.75 (1.02) 0.79 (1.04) 0.75 (1.05) 0.71 (0.95)

Report injury immediately?

(% yes)

NA 53.57% 39.29% 39.75%

Removed from play immedi-

ately? (% yes)

NA 56.07% 45.98% 47.52%

LOC? (% yes) NA 5.71% 4.50% 5.23%

PTA? (% yes) NA 11.79% 11.19% 11.32%

RGA? (% yes) NA 5.89% 6.14% 5.94%

SAC change score (SD) NA -0.83 (3.19) -0.42 (2.60) 0.96 (2.13)

SAC raw score (SD) 27.05 (2.01) 26.18 (2.92)** 26.61 (2.42)** 27.93 (1.75)**

SCAT symptom severity

change score (SD)

NA 23.47 (20.90) 19.53 (21.87) -4.92 (8.81)

SCAT symptom severity raw

score (SD)

5.08 (8.44) 28.79 (20.87)** 25.16 (21.64)** 0.63 (1.99)**

SCAT total symptoms

change score (SD)

NA 8.07 (5.96) 7.48 (6.59) -2.51 (4.02)

SCAT total symptoms raw

score (SD)

2.77 (3.82) 10.89 (5.42)** 10.49 (6.02)** 0.47 (1.40)**

BESS change score (SD) NA 3.68 (8.66) 1.43 (7.42) -2.31 (6.27)

BESS raw score (SD) 12.62 (6.29) 16.41 (8.74)** 14.32 (7.87)** 10.40 (5.76)**
n, number of data points; SD, standard deviation; NA implies that the measure was not taken at baseline;

LOC, loss of consciousness; PTA, post-traumatic amnesia; RGA, retrograde amnesia; SAC, Standard As-

sessment of Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error Scoring System;

Change score at a time point is computed as: raw score at time point - raw score at baseline; *variable was

not considered in the models; **P<0.01 when compared to mean value at baseline using t-test
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2.3.1 Univariate Logistic Regression Analysis

The relationships between individual variables and acute concussion are summarized in Table

2.2. These results address aim (1). For both <6h and 24-48h models, the SAC, SCAT

symptom assessment, and BESS had significant p-values (<0.05). In contrast, age and sex

both had p-values which were not significant (>0.05). Within the 24-48h univariate analysis,

the variables PTA, RGA, and LOC had negative coefficients suggesting that these factors

reduce one’s likelihood of having acute concussion when present. This contradictory finding

may be due to variance in the estimates; their p-values suggest that their coefficients are

not significantly different from 0. To avoid implications that PTA, RGA, and LOC are

“protective”, these variables were removed from multivariate analysis. The performance

measures for all univariate models are shown in Table 2.3. These results address aim (2).

For both <6h and 24-48h models, raw scores for SCAT symptom severity and SCAT total

number of symptoms resulted in the greatest combination of AUC and sensitivity. For the

SAC and BESS, the raw score univariate models performed similarly to their change score

counterparts.
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Table 2.2: Results of the univariate logistic regression for association between risk
factors and concussion for <6h and 24-48h hours

<6 hours 24-48h

Variable Intercept (SE) Coefficient (SE) p-value Intercept (SE) Coefficient (SE) p-value

Age in years -1.46 (0.98) 0.07 (0.05) 0.19 0.11 (0.91) 0.00 (0.05) 0.96

Male Sex -0.31 (0.11) 0.22 (0.14) 0.11 0.11 (0.10) -0.06 (0.13) 0.61

Number of previous

concussions

-0.24 (0.08) 0.10 (0.07) 0.14 0.04 (0.08) 0.04 (0.06) 0.56

Report injury imme-

diately?

-0.36 (0.09) 0.41 (0.13) 0.00 0.07 (0.08) 0.00 (0.13) 0.97

Removed from play

immediately?

-0.36 (0.10) 0.36 (0.13) 0.01 0.09 (0.08) -0.03 (0.12) 0.78

LOC? -0.18 (0.07) 0.14 (0.28) 0.62 0.08 (0.06) -0.12 (0.29) 0.69

PTA? -0.20 (0.07) 0.25 (0.20) 0.21 0.08 (0.06) -0.06 (0.19) 0.76

RGA? -0.17 (0.07) -0.04 (0.27) 0.88 0.08 (0.06) -0.17 (0.26) 0.50

Number of hours of

sleep last night?

-0.37 (0.33) 0.03 (0.04) 0.54 -1.16 (0.28) 0.16 (0.04) 0.00

SAC change score -0.12 (0.07) -0.25 (0.03) 0.00 0.13 (0.06) -0.25 (0.03) 0.00

SAC raw score 8.90 (0.93) -0.33 (0.03) 0.00 8.76 (0.92) -0.32 (0.03) 0.00

SCAT symptom

severity change score

-1.17 (0.11) 0.27 (0.02) 0.00 -0.59 (0.09) 0.20 (0.01) 0.00

SCAT symptom

severity raw score

-3.19 (0.21) 0.58 (0.04) 0.00 -2.18 (0.14) 0.50 (0.04) 0.00

SCAT total symp-

toms change score

-1.16 (0.12) 0.60 (0.04) 0.00 -0.67 (0.09) 0.46 (0.03) 0.00

SCAT total symp-

toms raw score

-3.30 (0.22) 0.94 (0.07) 0.00 -2.32 (0.15) 0.76 (0.05) 0.00

BESS change score -0.23 (0.07) 0.12 (0.01) 0.00 0.10 (0.06) 0.09 (0.01) 0.00

BESS raw score -1.70 (0.16) 0.12 (0.01) 0.00 -0.98 (0.14) 0.09 (0.01) 0.00

SE, standard error; LOC, loss of consciousness; PTA, post-traumatic amnesia; RGA, retrograde amnesia;

SAC, Standard Assessment of Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error

Scoring System; Change score at a timepoint is computed as: raw score at timepoint - raw score at baseline
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Table 2.3: Testing and training set estimates for performance measures of univariate
models at <6h and 24-48h hours

<6h 24-48h

Variable Sensitivity Specificity* AUC Sensitivity Specificity* AUC

Age in years 0.05 (0.04) 0.92 (0.95) 0.41 (0.52) 1.00 (0.95) 0.00 (0.03) 0.54 (0.49)

Male Sex 0.00 (0.00) 1.00 (1.00) 0.51 (0.53) 1.00 (0.87) 0.00 (0.12) 0.48 (0.49)

Number of previous concussions 0.07 (0.06) 0.93 (0.94) 0.50 (0.52) 1.00 (0.75) 0.00 (0.21) 0.48 (0.48)

Report injury immediately? 0.56 (0.42) 0.68 (0.66) 0.62 (0.55) 1.00 (1.00) 0.00 (0.00) 0.51 (0.47)

Removed from play immediately? 0.51 (0.21) 1.00 (0.80) 0.53 (0.54) 1.00 (0.90) 0.00 (0.08) 0.52 (0.46)

LOC? 0.00 (0.02) 1.00 (0.99) 0.50 (0.50) 0.95 (0.97) 0.06 (0.03) 0.51 (0.50)

PTA? 0.07 (0.13) 0.86 (0.93) 0.47 (0.51) 1.00 (0.93) 0.00 (0.05) 0.49 (0.48)

RGA? 0.00 (0.00) 1.00 (1.00) 0.50 (0.49) 0.92 (0.94) 0.04 (0.07) 0.48 (0.51)

Number of hours of sleep last night? 0.00 (0.01) 1.00 (1.00) 0.45 (0.48) 0.60 (0.62) 0.53 (0.45) 0.59 (0.58)

SAC change score 0.54 (0.47) 0.79 (0.76) 0.67 (0.66) 0.66 (0.65) 0.57 (0.55) 0.65 (0.66)

SAC raw score 0.48 (0.48) 0.78 (0.82) 0.69 (0.69) 0.55 (0.62) 0.70 (0.63) 0.66 (0.67)

SCAT symptom severity change score 0.83 (0.84) 0.97 (0.98) 0.95 (0.95) 0.75 (0.80) 0.98 (0.97) 0.92 (0.91)

SCAT symptom severity raw score 0.92 (0.91) 0.97 (0.97) 0.97 (0.98) 0.82 (0.87) 0.96 (0.95) 0.96 (0.96)

SCAT total symptoms change score 0.84 (0.87) 0.94 (0.97) 0.95 (0.95) 0.79 (0.82) 0.97 (0.96) 0.93 (0.92)

SCAT total symptoms raw score 0.93 (0.92) 0.95 (0.96) 0.97 (0.98) 0.83 (0.86) 0.96 (0.95) 0.96 (0.96)

BESS change score 0.57 (0.56) 0.74 (0.80) 0.71 (0.72) 0.63 (0.66) 0.51 (0.59) 0.62 (0.67)

BESS raw score 0.57 (0.53) 0.73 (0.80) 0.67 (0.72) 0.55 (0.57) 0.66 (0.65) 0.66 (0.65)

AUC, area under the receiver operating characteristic curve; LOC, loss of consciousness; PTA, post-traumatic

amnesia; RGA, retrograde amnesia; SAC, Standard Assessment of Concussion; SCAT, Sport Concussion

Assessment Tool; BESS, Balance Error Scoring System; All values are listed as: testing set estimate (training

set estimate); Change score at a timepoint is computed as: raw score at timepoint - raw score at baseline;

*Specificity estimates do not include the baseline data

2.3.2 Multivariate Logistic Regression Analysis

Final variables in each full model are summarized in Table 2.4. These results address aims

(1). Both full models contained sex, whether the injury was reported immediately, SAC

change score, SCAT symptom severity change score, and SCAT total symptoms raw score.

The <6h model contained BESS change score while the 24-48h model contained BESS raw

score. Every variable in the full model was significant except for whether the athlete was

removed from play immediately in the <6h model and the BESS raw score in the 24-48h

model.
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Table 2.4: Factors in multivariate logistic regression (full model) associated with acute
concussion at <6h and 24-48h

Variable <6 hours 24-48h

Coefficient (SE) p-value Coefficient (SE) p-value

Intercept -4.51 (0.53) 0.000 -2.67 (0.35) 0.00

Male Sex 1.02 (0.42) 0.01 0.56 (0.26) 0.03

Report injury immediately? 1.85 (0.44) 0.00 0.74 (0.24) 0.00

Removed from play immediately? -0.64 (0.41) 0.12 NA NA

SAC change score -0.16 (0.08) 0.04 -0.13 (0.05) 0.01

SCAT symptom severity change score 0.13 (0.03) 0.00 0.07 (0.02) 0.00

SCAT total symptoms raw score 1.01 (0.09) 0.00 0.73 (0.06) 0.00

BESS change score 0.09 (0.03) 0.00 NA NA

BESS raw score NA NA -0.01 (0.02) 0.73

SE, standard error; SAC, Standard Assessment of Concussion; SCAT, Sport Concussion Assessment Tool;

BESS, Balance Error Scoring System; Change score at a time point is computed as: raw score at time

point - raw score at baseline; NA implies that the variable was not included in the model

The sensitivity, specificity, and AUC for all multivariate models are summarized in Table

2.5 and Receiver Operating Characteristic (ROC) curves for selected models are shown in

Figure 2.1. These results address aims (2) and (3). Full models outperformed all univariate

models. The coefficients for the limited models, raw score models, and objective models are

presented in Table 2.6, Table 2.7, and Table 2.8, respectively. At <6h and 24-48h, removing

SCAT total symptoms raw score from the full model resulted in the greatest decrease in

performance. At <6h, removing whether the injury was reported immediately, whether the

athlete was removed from play immediately, or the BESS change score from the full model

does not reduce AUC significantly (P>0.10). Similarly, removing BESS raw score from the

full model at 24-48h does not reduce AUC significantly. Full models achieved greater AUC

than raw score models (P<0.001).
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Table 2.5: Testing set and training set estimates for performance measures of multi-
variate models at <6h and 24-48h

<6h

Model Sensitivity Specificity* AUC

Full model 0.93 (0.94) 0.96 (0.97) 0.98 (0.99)

Limited models: Full (-removed variable)

(-Male Sex)1 0.92 (0.94) 0.95 (0.97) 0.98 (0.99)

(-Report injury immediately?) 0.92 (0.93) 0.96 (0.97) 0.98 (0.99)

(-Removed from play immediately?) 0.92 (0.93) 0.96 (0.97) 0.98 (0.99)

(-SAC change score)1 0.93 (0.93) 0.96 (0.97) 0.98 (0.99)

(-SCAT symptom severity change score)1 0.91 (0.92) 0.96 (0.97) 0.97 (0.99)

(-SCAT total symptoms raw score)1 0.86 (0.88) 0.96 (0.97) 0.96 (0.95)

(-BESS change score) 0.93 (0.93) 0.95 (0.98) 0.98 (0.99)

Raw score model1 0.92 (0.93) 0.96 (0.97) 0.98 (0.98)

Objective model1 0.61 (0.60) 0.74 (0.81) 0.73 (0.76)

24-48h

Model Sensitivity Specificity* AUC

Full model 0.85 (0.88) 0.97 (0.96) 0.97 (0.97)

Limited models: Full (-removed variable)

(-Male Sex)2 0.86 (0.88) 0.96 (0.95) 0.97 (0.96)

(-Report injury immediately?)2 0.86 (0.88) 0.97 (0.95) 0.97 (0.96)

(-SAC change score) 0.84 (0.89) 0.96 (0.95) 0.97 (0.96)

(-SCAT symptom severity change score)2 0.85 (0.88) 0.95 (0.95) 0.96 (0.96)

(-SCAT total symptoms raw score)2 0.75 (0.81) 0.96 (0.94) 0.93 (0.91)

(-BESS raw score) 0.84 (0.88) 0.97 (0.96) 0.97 (0.97)

Raw score model2 0.84 (0.87) 0.95 (0.95) 0.97 (0.96)

Objective model2 0.60 (0.66) 0.70 (0.68) 0.68 (0.72)
All values are reported as: testing set estimate without baselines (training set estimate); AUC, area under the

receiver operating characteristic curve; SAC, Standard Assessment of Concussion; SCAT, Sport Concussion

Assessment Tool; BESS, Balance Error Scoring System; Change score at a time point is computed as: raw

score at time point - raw score at baseline; NA implies that the variable was not included in the model;
1P<0.001 in bootstrap test for AUC, <6h; 2P<0.001 in bootstrap test for AUC, 24-48h; *Specificity estimates

do not include the baseline data.
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(a) <6h

(b) 24-48h

Figure 2.1: Receiver operating characteristic curves for selected multivariate models
based on validation against testing sets at <6h and 24–48 hours. AUC, area under the
receiver operating characteristic curve; SCAT, Sport Concussion Assessment Tool
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Table 2.6: Association in limited models between risk factors and concussion for <6
hours and 24-48 hours

(a) <6 hours

Full model -

:

Male Sex Report injury

immediately?

Removed from

play immedi-

ately?

SAC change

score

SCAT symp-

tom severity

change score

SCAT total

symptoms raw

score

BESS change

score

Variable Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE)

Intercept -3.76 (0.40)* -3.84 (0.47)* -4.68 (0.53)* -4.55 (0.53)* -5.15 (0.51)* -1.45 (0.25)* -4.52 (0.52)*

Male Sex NA 1.08 (0.42)* 1.01 (0.42)* 0.99 (0.41)* 1.33 (0.39)* 0.01 (0.24) 1.11 (0.41)*

Report injury

immediately?

1.86 (0.43)* NA 1.57 (0.40)* 1.82 (0.44)* 1.90 (0.41)* 0.76 (0.25)* 1.75 (0.42)*

Removed

from play

immediately?

-0.60 (0.40) 0.14 (0.35) NA -0.54 (0.40) -0.42 (0.38) -0.04 (0.26) -0.69 (0.39)

SAC change

score

-0.15 (0.08)* -0.15 (0.08) -0.15 (0.08) NA -0.19 (0.07)* -0.09 (0.05) -0.18 (0.08)*

SCAT symp-

tom severity

change score

0.14 (0.03)* 0.13 (0.02)* 0.13 (0.03)* 0.14 (0.03)* NA 0.26 (0.02)* 0.13 (0.03)*

SCAT total

symptoms

raw score

0.98 (0.09)* 0.94 (0.08)* 1.00 (0.09)* 1.00 (0.09)* 1.04 (0.08)* NA 1.02 (0.09)*

BESS change

score

0.10 (0.03)* 0.08 (0.03)* 0.09 (0.03)* 0.10 (0.03)* 0.07 (0.03)* 0.10 (0.02)* NA

(b) 24-48 hours

Full model - Male Sex Report injury

immediately?

SAC change

score

SCAT symp-

tom severity

change score

SCAT total

symptoms raw

score

BESS raw

score

Variable Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE)

Intercept -2.30 (0.30)* -2.28 (0.32)* -2.79 (0.35)* -2.96 (0.34)* -0.97 (0.23)* -2.74 (0.29)*

Male Sex NA 0.55 (0.26)* 0.59 (0.26)* 0.66 (0.26)* -0.12 (0.18) 0.55 (0.26)*

Report injury

immediately?

0.73 (0.24)* NA 0.76 (0.24)* 0.80 (0.24)* 0.36 (0.17)* 0.75 (0.24)*

SAC change

score

-0.14 (0.05)* -0.14 (0.05)* NA -0.14 (0.05)* -0.12 (0.04)* -0.13 (0.05)*

SCAT symp-

tom severity

change score

0.08 (0.02)* 0.07 (0.02)* 0.07 (0.02)* NA 0.20 (0.01)* 0.07 (0.02)*

SCAT total

symptoms

raw score

0.71 (0.05)* 0.71 (0.06)* 0.72 (0.06)* 0.80 (0.06)* NA 0.72 (0.06)*

BESS raw

score

0.00 (0.02) -0.01 (0.02) -0.01 (0.02) -0.01 (0.02) 0.04 (0.01)* NA

SE, standard error; SAC, Standard Assessment of Concussion; SCAT, Sport Concussion Assessment Tool;

BESS, Balance Error Scoring System; Change score at a timepoint is computed as: raw score at timepoint

- raw score at baseline; NA implies that the variable was not included in the model; *This variable had a

p-value <0.05
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Table 2.7: Raw score analog of factors in multivariate logistic regression (raw score
model) associated with concussion diagnosis at <6 hours and 24-48 hours

<6 hours 24-48 hours

Variable Coefficient (SE) p-value Coefficient (SE) p-value

Intercept -2.01 (2.44) 0.41 -1.49 (1.76) 0.40

Male Sex 1.45 (0.42) 0.00 0.75 (0.26) 0.00

Report injury immediately? 1.67 (0.41) 0.00 0.82 (0.24) 0.00

Removed from play immediately? -0.38 (0.38) 0.31 NA NA

SAC raw score -0.13 (0.09) 0.14 -0.06 (0.06) 0.34

SCAT symptom severity raw score 0.33 (0.10) 0.00 0.16 (0.08) 0.05

SCAT total symptoms raw score 0.49 (0.17) 0.00 0.55 (0.13) 0.00

BESS raw score 0.03 (0.03) 0.30 -0.01 (0.02) 0.57
SE, standard error; SAC, Standard Assessment of Concussion; SCAT, Sport Concussion Assessment Tool;

BESS, Balance Error Scoring System; NA implies that the variable was not included in the model

Table 2.8: Objective factors in multivariate logistic regression (objective model) asso-
ciated with concussion diagnosis at <6 hours and 24-48 hours

<6 hours 24-48 hours

Variable Coefficient (SE) p-value Coefficient (SE) p-value

Intercept -3.59 (1.12) 0.00 8.35 (1.36) 0.00

Age in years 0.09 (0.06) 0.10 -0.03 (0.05) 0.59

Report injury immediately? 0.49 (0.15) 0.00 NA NA

SAC change score -0.22 (0.03) 0.00 NA NA

SAC raw score NA NA -0.28 (0.03) 0.00

BESS change score NA NA 0.08 (0.01) 0.00

BESS raw score 0.12 (0.01) 0.00 NA NA

SE, standard error; SAC, Standard Assessment Concussion; SCAT, Sport Concussion Assessment Tool;

BESS, Balance Error Scoring System; Change score at a timepoint is computed as: raw score at timepoint

- raw score at baseline; NA implies that the variable was not included in the model

The objective models for <6h and 24-48h contained the SAC and BESS assessments along

with age. Using objective models instead of full models can result in losses up to 0.34 in

sensitivity, 0.28 in specificity, and 0.29 in AUC. This loss in AUC is significant (P<0.001).
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Finally, all models were validated against baseline data. The best univariate models achieved

specificities ranging from 0.67-0.71 across <6h and 24-48h timepoints. Multivariate models

did not demonstrate improved performance.

2.4 Discussion

While logistic regression has been applied to other aspects of concussion management (Mee-

han et al., 2013; Sufrinko et al., 2017a; Sufrinko et al., 2017b), this analysis is among the

first applications to acute concussion assessment. This methodology combines individual

risk modifiers and standard assessments to detect the acute effects of concussion – provid-

ing a single measure to guide injury assessment. The variables in both full models can be

obtained within the time constraints of athletics, suggesting their potential application in

sideline concussion management. These models were trained and validated on a larger sam-

ple of concussed athletes (n=560 for <6h and n=733 for 24-48h) compared to similar studies

(n=40 to 166) (Broglio, Macciocchi, and Ferrara, 2007; Chin et al., 2016; McCrea et al.,

2005; Putukian et al., 2015; Register-Mihalik et al., 2013b; Resch et al., 2016).

The full models identify the effects of concussion more accurately than univariate models.

This result supports previous studies, demonstrating that testing batteries provide more util-

ity in acute concussion evaluation than any single assessment (Broglio, Macciocchi, and Fer-

rara, 2007; McCrea et al., 2005; Putukian et al., 2015; Register-Mihalik et al., 2013b; Resch

et al., 2016). Both full models contained SAC, SCAT symptom assessments, and BESS.

However, removing BESS from these models does not reduce AUC (P<0.001), suggesting

that it provides little additional value beyond the SAC and SCAT symptom assessments.

Conversely, removing SCAT total symptoms raw scores from each full model results in the

greatest reduction in model performance, suggesting that symptoms better indicate acute

concussion than neurological status and balance assessments. These results support previ-

ous studies which found that symptom assessments have higher sensitivity and specificity

compared to neurocognitive and postural stability assessments (Chin et al., 2016; McCrea

et al., 2005; Putukian et al., 2015; Register-Mihalik et al., 2013b; Resch et al., 2016).

These findings differ from Broglio, Macciocchi, and Ferrara, 2007, who found that neu-

rocognitive assessments had higher sensitivity than symptom assessments. These differences

may be attributed to methodology and sample size. Broglio, Macciocchi, and Ferrara, 2007
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used significant change from baseline (1 SD) to indicate concussion whereas this study used

the logistic regression’s estimates. The choice of 1 SD may create classification thresholds

having higher sensitivity but also higher false-positive rates. Conversely, logistic regression

models are optimized to minimize prediction error, leading to more balanced classification

thresholds. Furthermore, a neurological status examination (i.e., SAC) was used in this study

whereas Broglio, Macciocchi, and Ferrara, 2007 used computer-based neurocognitive exam-

inations (i.e., Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT),

HeadMinder Concussion Resolution Index), and a pencil-and-paper neurocognitive battery.

This study also used a 22-item SCAT symptom assessment compared to the 9-item symptom

assessment used by Broglio, Macciocchi, and Ferrara, 2007, potentially explaining differences

in sensitivity for symptom assessments. Finally, sensitivity estimates in this study are based

on a much larger sample compared to Broglio, Macciocchi, and Ferrara, 2007 (n=75).

Unfortunately, relying on self-reported symptoms raises concern for symptom under-reporting,

which may occur at rates up to 50% (Williamson and Goodman, 2006). To account for this

possibility in clinical settings, objective models were created by removing self-reported symp-

toms. Ultimately, these models were outperformed by all other multivariate models and the

univariate models for SCAT symptom assessments, emphasizing the need for objective clin-

ical measures which can better assess acute concussion. However, these findings may apply

only to acute concussions; other studies found that symptom presentation and severity de-

cline days after the injury while impairments in cognitive function and postural stability

remain (McCrea et al., 2013; McCrea et al., 2005). Differences in concussion presentation by

timepoint motivated the separate analyses at <6h and 24-48h. Nonetheless, both full models

were nearly identical so the time difference between <6h and 24-48h may be insufficient for

detecting changes in concussion presentation.

Change scores for SAC and SCAT symptom severity appeared in both full models, sug-

gesting their importance in a battery. Yet, BESS may be removed from full models with no

significant loss in AUC. Full models have significantly greater AUC than raw score models,

though this difference may not be practically significant. Univariate analysis showed similar

performance between raw score and change score for the SAC and BESS. However, SCAT

symptom assessment raw scores outperformed their change score counterparts. These results

provide some quantitative support for the notion that neuropsychological assessments can be

performed without baseline information (Randolph, 2011), as expressed in the most recent
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consensus statement on concussion in sport (McCrory et al., 2017). Overall, these results

mirror findings in similar studies. For instance, previous research has shown that incorpo-

rating baseline information leads to improved diagnostic accuracy on the SCAT battery, but

these batteries can still perform at clinically acceptable levels when baseline information is

unavailable (Chin et al., 2016; Putukian et al., 2015). Similar results were also found for

other concussion assessment batteries, where raw scores and change scores typically agreed

for acute concussion assessment (Echemendia et al., 2012; Schmidt et al., 2012). Clini-

cally speaking, these results imply that acute concussion assessment can still be performed

accurately if baseline information is unavailable. This point is echoed in the most recent con-

sensus statement (McCrory et al., 2017), which states that “baseline testing may be useful,

but is not necessary for interpreting post-injury scores.” While our results provide evidence

to support this statement at <6h and 24-48h, future studies should analyze the utility of

baseline information in concussion assessment at timepoints beyond the acute stage, e.g.,

1-2 weeks post-injury.

The analysis on age and number of previous concussions was largely inconclusive, as neither

variable was significant in univariate analysis nor included in the full model. However, male

sex was found to be significant in the full model (P<0.05) and removing this variable from

the full model results in reduced AUC (P<0.001), suggesting the importance of considering

sex differences in acute concussion assessment. The positive coefficient value associated with

male sex suggests that, all else held equal, males have increased risk of acute concussion.

Initially, this finding seems to contradict previous research which found female athletes to

be at higher risk for concussion (Covassin, Buz Swanik, and Sachs, 2003; Dick, 2009; Gessel

et al., 2007; Lincoln et al., 2011). However, a post-hoc analysis of sex differences in the

SAC, SCAT symptom assessments, and BESS at <6h and 24-48h (see Table 2.9) shows that

this result may instead suggest that males and females could achieve the same risk level

even if a male athlete reports “better” performance on the assessments considered in the

full model. For instance, the full model may consider a male athlete and female athlete to

have the same acute concussion risk level even if the male reported fewer symptoms with less

severity compared to the female. This interpretation supports previous findings which found

female athletes to exhibit a greater symptom onset and cognitive decline compared to male

athletes (Broshek et al., 2005; Chin et al., 2016; Covassin et al., 2012; Covassin, Schatz, and

Swanik, 2007; Dick, 2009). Clinically, these results suggest that males may still be concussed

28



despite reporting lower symptom presentation and closer-to-normal neurocognitive deficits

compared to females. This result also provides support for concussion assessment guidelines

which are tailored by sex, as has been suggested by previous studies (Broshek et al., 2005;

Covassin et al., 2012).

Table 2.9: Comparison of standard assessments for males and females at <6 hours and
24-48 hours

<6 hours 24-48 hours

Variable Male Female Male Female

n 361 199 440 293

SAC change score (SD)1 -1.01 (3.42) -0.50 (2.67) -0.49 (2.78) -0.32 (2.31)

SAC raw score (SD)1 25.89 (3.13) 26.72 (2.40) 26.52 (2.54) 26.75 (2.21)

SCAT symptom severity change score (SD)2 22.45 (21.22) 25.28 (20.19) 18.25 (21.55) 21.43 (22.19)

SCAT symptom severity raw score (SD)1,2 27.37 (21.20) 31.35 (19.99) 23.37 (21.03) 27.84 (22.25)

SCAT total symptoms change score (SD) 8.01 (6.17) 8.18 (5.55) 7.42 (6.76) 7.57 (6.33)

SCAT total symptoms raw score (SD)1,2 10.46 (5.57) 11.68 (5.05) 10.01 (6.04) 11.20 (5.92)

BESS change score (SD) 3.95 (9.06) 3.17 (7.84) 1.73 (7.83) 0.97 (6.72)

BESS raw score (SD)1,2 17.01 (9.02) 15.31 (8.09) 14.83 (8.21) 13.52 (7.25)

SD, standard deviation; SAC, Standard Assessment of Concussion; SCAT, Sport Concussion Assessment

Tool; BESS, Balance Error Scoring System; Change score at a timepoint is computed as: raw score at

timepoint - raw score at baseline; 1p-value <0.05 when comparing males and females at <6 hours; 2p-value

<0.05 when comparing males and females at 24-48 hours

Multivariate models classified normal performances from baseline less accurately than

those from unrestricted RTP. Symptom under-reporting during the RTP protocol may ex-

plain these results. Table 2.1 shows that mean SCAT symptom scores are higher at baseline

than at unrestricted RTP (P<0.01). Since the models were trained on unrestricted RTP

data, concussion probability was inflated for athletes reporting symptoms at baseline. Ad-

ditionally, Table 2.1 shows that mean SAC and BESS scores were “worse” at baseline than

at unrestricted RTP (P<0.01). Learning effects, i.e., improved performance from repetition,

might explain these findings (Barr and McCrea, 2001; Moreau, Langdon, and Buckley, 2014;

Valovich McLeod et al., 2004).
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2.5 Conclusion

This study demonstrates the value of multidimensional assessment models such as the

SCAT5, which incorporates the standard assessments considered in this study (Echemen-

dia et al., 2017). Logistic regression models were analyzed to determine which combinations

of standard assessments best assess acute concussion. These models also provide a means

to combine information from multiple concussion risk modifiers and standard assessments

into a single measure which can be used to supplement clinical assessment decisions. Results

suggest the importance of SCAT symptom assessments in acute concussion evaluation and

support the use of assessment batteries over isolated assessments, though the BESS’ value

may be limited when SAC and SCAT symptom assessments are available. Additionally,

change scores provide some clinical utility over raw scores, but acute concussion assessment

can still be performed with sufficient accuracy when baseline information is unavailable.

While further studies should generalize these models beyond NCAA athlete populations,

this analysis can aid the future design of data-driven concussion assessment.
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Chapter 3

Optimizing Components of the Sport

Concussion Assessment Tool for Acute

Concussion Assessment

3.1 Introduction

In Chapter 2, we developed models which quantified the value of multi-dimensional test-

ing batteries for acute concussion assessment. While such multi-faceted approaches are

supported by international guidelines (McCrory et al., 2017), the resulting batteries may

inadvertently incorporate low information elements, increasing total administration time.

Therefore, these batteries could be optimized by identifying critical subsets which maxi-

mizes diagnostic accuracy while eliminating low information elements, ultimately reducing

the time required to administer that battery (Patricios et al., 2017).

Among the most widely used assessment batteries is the Sport Concussion Assessment

Tool (SCAT) (Echemendia et al., 2017), which has been used to evaluate concussion in side-

line, clinic, and hospital settings (Lebrun et al., 2013; Yengo-Kahn et al., 2016). The SCAT

combines several assessments, including a 22-item graded symptom checklist, the Standard

Assessment for Concussion (SAC), and a modified Balance Error Scoring System (mBESS).

These components, initially chosen through consensus based on clinical experience and ex-

isting evidence, represent a robust combination of tests which are sensitive to concussion

(Guskiewicz et al., 2013). Since then, several studies confirmed that the SCAT can identify
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acute concussion with reasonable accuracy (Chin et al., 2016; Garcia et al., 2018; Resch

et al., 2016), but cannot be completed appropriately in under ten minutes (Echemendia

et al., 2017). Given the time-sensitive nature of athletics (Putukian et al., 2013) (e.g., time

limits within the rules of competition), the SCAT could be improved by identifying a subset

of components which could be administered more quickly than the current testing battery

without sacrificing its ability to detect acute concussion.

Therefore, our study aims to identify subsets of the SCAT symptom checklist, SAC, and

Balance Error Scoring System (BESS) which can accurately identify acute concussion when

baseline data are and are not available.

3.2 Methodology

3.2.1 Study Design

We analyzed data from the NCAA-DoD CARE Consortium (see Section 1.1.1).

3.2.2 Test Methods

To develop models which can generalize well, we only excluded participants who did not

complete a pre-season baseline assessment. Then, we analyzed the subset who experienced

concussion, focusing on their assessments (where available) at baseline, <6h, 24-48h, and

unrestricted RTP. We refer to assessments from the <6h and 24-48h timepoints as acute

concussions and those assessments taken at baseline as normal performances.

We included demographic features and standard assessment scores from the SCAT symp-

tom checklist, SAC, and BESS. While the SCAT contains additional assessments (e.g., Glas-

gow Coma Scale), the symptoms, SAC, and BESS are among the most useful for acute

concussion assessment (Echemendia et al., 2017). For these assessments, we included scores

from the time of assessment (i.e., raw score) and the difference between the scores obtained

at baseline and at the time of assessment (i.e., change score). For <6h and 24-48h, we com-

puted the change score as the post-injury raw score minus the score obtained at baseline.

For baselines, we computed the change score as the raw score at baseline minus the score

at unrestricted RTP. This approach mimics what we did in Chapter 2. Most variables were

missing at less than 5% except for the BESS Firm Score (15.2% at <6h; 7.1% at 24-48h),
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BESS Foam Score (24.5% at <6h; 10.2% at 24-48h), BESS Total Score (24.5% at <6h;

10.3% at 24-48h), and SCAT Trouble Falling Asleep (8.3% at <6h). Missing values for

study variables were filled using multiple imputation with chained equations (Royston et al.,

2009), which has been utilized in previous concussion research (Garcia et al., 2018; Garcia

et al., 2019; McCrea et al., 2013; McCrea et al., 2003; McCrea et al., 2005).Imputation

was performed using the statistical software R, Version 3.5.0 (R Foundation for Statistical

Computing, Vienna, Austria).

We included the age, sex, and the number of previous concussions in our analyses. In

previous studies, younger athletes, females, and those with greater concussion history were

suggested to be at increased risk for concussion (Broshek et al., 2005; Covassin, Buz Swanik,

and Sachs, 2003; Covassin et al., 2012; Covassin, Schatz, and Swanik, 2007; Gessel et al.,

2007; Kutcher and Eckner, 2010).

The SCAT symptom checklist is a 22-symptom graded checklist for evaluating symptom

presentation (Echemendia et al., 2017). Each symptom is rated on a scale of 0-6 based

on severity, where greater numbers indicate greater severity. We included raw and change

scores for each of the 22 symptoms, along with the total symptom severity score and the

total number of symptoms reported. We also included whether physical activity worsens

symptoms and whether mental activity worsens symptoms – both are yes/no questions.

The SAC is a brief neurocognitive assessment measuring impairments in orientation, im-

mediate memory, concentration, and delayed recall (McCrea et al., 1998). Each domain

except for immediate memory is scored from 0 to 5, with 5 indicating a perfect score. Im-

mediate memory is scored from 0 to 15, with 15 indicating a perfect score. We included

raw scores and change scores for orientation, immediate memory, concentration, and delayed

recall components, along with their total score.

The BESS is a measure of postural control that counts the number of “errors” committed

by an athlete across three stances. Although SCAT only includes an evaluation on a firm

surface (i.e., the mBESS), the CARE protocol includes both firm and foam surfaces (Rie-

mann, Guskiewicz, and Shields, 1999), allowing us to evaluate raw scores and change scores

for both surfaces, along with the sum of these scores.
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3.2.3 Statistical Analysis

We randomly divided our data into training (60%) and testing (40%) sets. The training set

was used to develop our models while the testing set was used to validate their performance.

Modeling variables were compared across training and testing sets, by timepoint, using

two-sample non-parametric bootstrap tests (Efron and Tibshirani, 1993). Effect sizes were

computed for significant differences using Cohen’s d. The following analysis was replicated

using 10-fold cross-validation to check the robustness of findings.

We used multivariate logistic regression to quantify the differences between acute con-

cussions and normal performances. Our analysis yielded 65 total modeling variables. To

determine which variables to include in our models, we applied Mixed Integer Programming

(MIP) to optimize variable selection (Sato et al., 2016). Let our training data be represented

by {(yi,xi)}Ni=1, where yi = 1 if data point i is a concussion and yi = −1 otherwise, xi ∈ Rp

is a vector of values for all p = 65 modeling variables associated with data point i, and N

is the total number of data points in our training set. Our optimal variable selection MIP

(VS-MIP) is given by

(VS-MIP) min
b,w,z

N∑
i=1

L(yi(w
>xi + b)) (3.1)

s.t. zj ≤Mwj (3.2)

zj ≥ −Mwj for all j = 1, ..., p (3.3)
p∑
j=1

zj ≤ k for all j = 1, ..., p (3.4)

zj ∈ {0, 1}, for all j = 1, ..., p (3.5)

where

� L(v) := 1 + e−v is the log-loss function,

� the decision variable b is the logistic regression model’s intercept term,

� the decision variables w ∈ Rp represent logistic regression coefficients for all p = 65

modeling variables,
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� the binary decision variable zj = 1 if variable j is included in the model and zj = 0

otherwise,

� the parameter k is the maximum size for the logistic regression model, and

� the parameter M is a large positive number.

In VS-MIP, the objective function (3.1) minimizes the log-loss of our logistic regression model

based on the training data. Constraints (3.2)-(3.3) ensure that wj = 0 if variable j is not

included in the model (i.e., zj = 0) while constraint (3.4) ensures that there are no more than

k variables in the model. Finally, constraint (3.5) ensures that the variables zj are binary.

We remark that the objective function (3.1) is nonlinear, although convex. To facilitate the

numerical solution of this MIP, we replace (3.1) with its piecewise linear approximation (see

Section 3.2 in Sato et al., 2016) during our implementation.

Optimization theory has mathematically proven that traditional variable selection meth-

ods based on information criteria (e.g., forward-backward selection) or regularization (e.g.,

Lasso) are suboptimal compared to MIP (Bertsimas and King, 2016; Bertsimas, King, and

Mazumder, 2016). MIP creates the logistic regression model which best fits the training

data using at most k modeling variables. We set k=4, 8, 12, and 16 to determine which

combination of 4, 8, 12, and 16 distinct variables best identify acute concussion. Variable

Inflation Factors (VIFs) were computed for all models to assess multicollinearity.

To assess which variables best identify acute concussion when baseline information is and

is not available, we performed two sets of analyses. First, we assumed that raw scores

and change scores could both be included in the models (i.e., Opt-k models). Second, we

assumed that only raw scores could be included (i.e., Opt-RS-k models). For example, Opt-4

refers to the optimized model with at most 4 variables and Opt-RS-8 refers to the optimized

model using only raw scores with at most 8 variables. For comparison, we created a model

composed of only the SCAT total symptom severity score, SCAT total number of symptoms,

SAC total score, and BESS total score, i.e., the Summary Scores model. We also assessed

a modified Summary Scores model which replaces the BESS total score with the BESS firm

surface score.

We evaluated our models against the testing set. First, we computed the Brier score (BS),

which ranges from 0 to 0.25 and measures a model’s classification error. A BS of 0 indi-

cates a perfect model while 0.25 indicates that a model is uninformative. We also evaluated
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models using the receiver operating characteristic (ROC) curve by reporting sensitivity and

specificity (at the threshold which maximizes their sum) and area under the ROC curve

(AUC). Statistical analyses were performed using Python 3.6.5 (Python Software Founda-

tion, Beaverton, Orgeon, USA).

3.3 Results

Study data are described in Table 3.1 and Table 3.2. Training (resp., testing) data consisted

of 1337, 876, and 1473 (resp., 841, 580, and 921) assessments at baseline, <6h, and 24-

48h, respectively. There were fewer assessments at baseline than 24-48h due to participants

with same-season concussions. Between training and testing sets, participants did not differ

significantly in age, sex, and previous concussions across timepoints. The only significant

differences between training and testing sets were pressure in head (P<0.05, d=0.11) at

<6h and BESS foam surface score (P<0.05, d=0.09) at 24-48h. Compared to baseline, the

<6h and 24-48h assessments were significantly different for each component of the SCAT

symptom checklist, SAC, and BESS except for SAC Concentration Score at <6h (P=0.17),

trouble falling asleep at <6h (P=0.33), and BESS foam surface score at 24-48h (P=0.05) in

the testing set.

3.3.1 Model Descriptions

The Opt-k models at <6h are described in Table 3.3. The Opt-4 model contained change

scores for SAC Concentration and headache, along with raw scores for dizziness and don’t

feel right (P<0.001 for all). The Opt-8 model added change scores for SAC Delayed Recall

and sensitivity to noise along with whether symptoms get worse with mental activity and

physical activity to the Opt-4 model. Change scores for SAC Delayed Recall (P=0.78) and

sensitivity to noise (P=0.11) were not significant. For Opt-12, change scores for pressure in

head and sensitivity to light, along with the raw score for blurred vision were added to the

Opt-8 model. The change score for sensitivity to light was not significant (P=0.68). Opt-16

was identical to Opt-12.
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Table 3.1: Characteristics of study data by timepoint
Training Testing

Baseline <6h 24-48h Baseline <6h 24-48h
mean SD mean SD mean SD mean SD mean SD mean SD

n 1337 876 1473 841 580 921
Height, m 1.79 0.11 1.79 0.11 1.79 0.12 1.78 0.12 1.79 0.11 1.78 0.11
Weight, kg 81.96 21.08 83.96** 22.08 82.9 21.88 82.33 22.07 84.84** 22.09 82.25 21.93
Age, years 19.1 1.3 19.2 1.3 19.1 1.3 19.1 1.3 19.2** 1.3 19.1 1.2
Male Sex, % yes 58.0% 63.5%* 58.7% 57.3% 62.2% 59.0%
Previous concussions 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.8 0.7 0.9 0.6 0.9
SCAT Symptom Raw Scores
Balance Problems 0.1 0.5 0.9* 1.3 0.6* 1.1 0.1 0.4 0.8* 1.3 0.6* 1.1
Blurred Vision 0.1 0.3 0.9* 1.4 0.6* 1.1 0.1 0.4 0.8* 1.3 0.7* 1.1
Difficulty Concentrating 0.3 0.8 1.7* 1.7 1.6* 1.6 0.4 0.9 1.6* 1.7 1.6* 1.6
Difficulty Remembering 0.2 0.7 1.0* 1.5 0.9* 1.3 0.2 0.8 0.9* 1.4 0.8* 1.3
Dizziness 0.1 0.5 1.6* 1.6 1.1* 1.4 0.1 0.5 1.5* 1.6 1.1* 1.4
Don’t Feel Right 0.2 0.7 2.4* 1.8 2.0* 1.7 0.2 0.6 2.3* 1.7 2.0* 1.7
Trouble Falling Asleep 0.3 0.9 0.5* 1.2 1.0* 1.6 0.3 0.9 0.4 1.0 1.0* 1.6
Drowsiness 0.5 1.2 1.5* 1.7 1.4* 1.6 0.5 1.1 1.4* 1.6 1.4* 1.5
More Emotional 0.2 0.7 0.7* 1.3 0.7* 1.3 0.2 0.8 0.7* 1.4 0.7* 1.2
Fatigue or Low Energy 0.9 1.3 1.7* 1.8 1.7* 1.6 0.9 1.3 1.6* 1.7 1.8* 1.7
Feeling Slowed Down 0.3 0.8 2.0* 1.8 1.8* 1.6 0.3 0.8 1.9* 1.7 1.8* 1.6
Feeling Like in a Fog 0.2 0.7 1.9* 1.8 1.6* 1.6 0.2 0.6 1.8* 1.7 1.6* 1.6
Headache 0.3 0.8 2.8* 1.6 2.4* 1.5 0.3 0.8 2.7* 1.5 2.4* 1.5
Irritability 0.2 0.8 0.7* 1.3 0.8* 1.3 0.2 0.8 0.6* 1.2 0.7* 1.3
Nausea 0.1 0.4 0.8* 1.3 0.7* 1.2 0.1 0.4 0.9* 1.4 0.7* 1.2
Neck Pain 0.3 0.7 1.1* 1.5 1.2* 1.5 0.3 0.8 1.0* 1.5 1.2* 1.6
Nervous or Anxious 0.3 0.9 0.6* 1.2 0.5* 1.1 0.4 1.0 0.6* 1.3 0.5** 1.1
Pressure in Head 0.3 0.7 2.5* 1.6 2.1* 1.6 0.3 0.7 2.3*� 1.6 2.1* 1.6
Sadness 0.2 0.7 0.6* 1.2 0.5* 1.1 0.2 0.8 0.5* 1.2 0.5* 1.1
Sensitivity to Light 0.1 0.5 1.3* 1.6 1.4* 1.5 0.1 0.5 1.3* 1.6 1.4* 1.4
Sensitivity to Noise 0.1 0.3 1.0* 1.4 1.2* 1.4 0.1 0.3 1.0* 1.4 1.1* 1.3
Total Severity Score 5.4 9.5 28.9* 21.5 26.3* 21.7 5.4 9.3 27.4* 20.5 26.2* 20.7
Total Number of Symptoms 2.9 4.0 10.9* 5.6 10.9* 5.9 2.9 3.9 10.6* 5.4 10.9* 6.0
Symptoms Worsen with
Physical Activity, % yes

2.8% 59.4%* 59.4%* 1.9% 60.0%* 60.4%*

Symptoms Worsen with
Mental Activity, % yes

2.6% 43.8%* 53.3%* 2.1% 42.2%* 53.7%*

SAC Raw Scores
Concentration Score 3.8 1.2 3.6* 1.2 3.9** 1.2 3.7 1.2 3.6 1.2 3.8** 1.2
Delayed Score 3.9 1.2 3.4* 1.4 3.4* 1.3 3.9 1.2 3.4* 1.4 3.5* 1.3
Immediate Memory Score 14.7 0.7 14.3* 1.4 14.4* 1.1 14.7 0.7 14.3* 1.6 14.4* 1.3
Orientation Score 4.9 0.3 4.7* 0.6 4.8* 0.5 4.9 0.4 4.7* 0.7 4.8* 0.5
Total Score 27.3 2.0 26* 3.0 26.5* 2.6 27.2 2.0 26* 3.1 26.5* 2.8
BESS Raw Scores
Firm Surface Score 3.4 3.2 5.3* 4.4 4.7* 4.2 3.4 3.2 5.5* 4.6 4.7* 4.0
Foam Surface Score 10.2 4.4 11.4* 5.5 10.7* 5.2 9.8 4.4 11.7* 5.8 10.3� 4.8
Total Score 13.6 6.4 16.7* 8.2 15.4* 8.2 13.2 6.3 17.2* 8.6 14.9* 7.5

n, number of data points; SD, standard deviation; SAC, Standard Assessment of Concussion; BESS, Balance
Error Scoring System; SCAT, Sport Concussion Assessment Tool; *P<0.01 **P<0.05 compared to baseline;
�p-value<0.01 �p-value<0.05 compared to training data at the same timepoint; Effect sizes (magnitude) for
significant differences between training and testing sets: Pressure in Head (d=0.11 at <6h); BESS Foam
Surface Score (d=0.09 at 24-48h)
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Table 3.2: Change scores for the SCAT symptom checklist, SAC, and BESS by time-
point

Training Testing
Baseline <6h 24-48h Baseline <6h 24-48h

mean SD mean SD mean SD mean SD mean SD mean SD
n 1337 876 1473 841 580 921
SCAT Symptom Checklist
Balance Problems 0.1 0.5 0.8* 1.4 0.5* 1.2 0.1 0.4 0.7* 1.4 0.5* 1.1
Blurred Vision 0.1 0.3 0.9* 1.4 0.6* 1.2 0.1 0.4 0.7* 1.3 0.6* 1.1
Difficulty Concentrating 0.3 0.9 1.4* 1.9 1.2* 1.9 0.3 0.9 1.3* 1.9 1.3* 1.8
Difficulty Remembering 0.2 0.7 0.8* 1.7 0.6* 1.5 0.2 0.8 0.7* 1.6 0.5* 1.5
Dizziness 0.1 0.4 1.5* 1.6 1* 1.4 0.1 0.5 1.5* 1.6 1.0* 1.4
Don’t Feel Right 0.2 0.7 2.2* 1.9 1.8* 1.8 0.2 0.6 2.2* 1.9 1.8* 1.8
Trouble Falling Asleep 0.3 0.9 0.1** 1.5 0.7* 1.8 0.3 1.0 0.0* 1.5 0.7* 1.8
Drowsiness 0.5 1.2 1.0* 2.0 0.9* 1.9 0.5 1.1 0.9* 2.0 0.9* 1.9
More Emotional 0.2 0.7 0.5* 1.5 0.5* 1.5 0.2 0.8 0.5* 1.5 0.5* 1.3
Fatigue or Low Energy 0.8 1.4 0.9 2.3 0.9 2.1 0.8 1.4 0.7 2.2 0.9 2.0
Feeling Slowed Down 0.3 0.8 1.8* 1.9 1.5* 1.8 0.2 0.8 1.7* 1.9 1.5* 1.7
Feeling Like in a Fog 0.2 0.7 1.7* 1.8 1.4* 1.7 0.2 0.6 1.6* 1.7 1.4* 1.7
Headache 0.3 0.9 2.5* 1.6 2.1* 1.7 0.3 0.8 2.5* 1.7 2.1* 1.6
Irritability 0.2 0.8 0.5* 1.4 0.5* 1.5 0.2 0.8 0.4** 1.5 0.5* 1.4
Nausea 0.1 0.4 0.7* 1.4 0.6* 1.3 0.1 0.4 0.8* 1.4 0.6* 1.2
Neck Pain 0.2 0.8 0.8* 1.6 0.9* 1.6 0.2 0.9 0.7* 1.6 0.9* 1.7
Nervous or Anxious 0.3 0.9 0.3 1.3 0.2* 1.4 0.4 0.9 0.3 1.5 0.1* 1.3
Pressure in Head 0.2 0.7 2.2* 1.7 1.8* 1.7 0.2 0.7 2.1* 1.7 1.9* 1.6
Sadness 0.2 0.7 0.4* 1.4 0.3** 1.3 0.2 0.8 0.3** 1.4 0.3** 1.1
Sensitivity to Light 0.1 0.5 1.2* 1.6 1.3* 1.6 0.1 0.5 1.2* 1.6 1.3* 1.5
Sensitivity to Noise 0.1 0.4 0.9* 1.4 1.1* 1.5 0.1 0.3 0.9* 1.4 1* 1.4
Total Severity Score 4.8 9.4 23.9* 22.2 20.8* 22.9 4.8 9.3 22.3* 22.1 20.9* 21.2
Total Number of Symptoms 2.5 4.0 8.2* 6.6 8.0* 6.8 2.5 3.8 7.9* 6.5 8.1* 6.5
SAC
Concentration Score -0.6 1.2 -0.2* 1.4 0.1* 1.2 -0.6 1.1 -0.1* 1.3 0.1* 1.3
Delayed Score -0.3 1.3 -0.5* 1.6 -0.5* 1.6 -0.3 1.3 -0.5* 1.7 -0.4** 1.5
Immediate Memory Score 0.0 0.9 -0.4* 1.5 -0.2* 1.2 0.0 0.9 -0.4* 1.7 -0.3* 1.5
Orientation Score 0.0 0.5 -0.2* 0.7 -0.1* 0.6 0.0 0.5 -0.2* 0.7 -0.1** 0.6
Total Score -0.8 2.0 -1.2* 3.1 -0.7 2.6 -0.9 2.0 -1.3** 3.4 -0.7 2.8
BESS
Firm Surface Score 0.8 3.7 2.1* 4.4 1.3* 4.3 0.8 3.7 2.2* 4.5 1.4* 4.0
Foam Surface Score 1.9 4.8 1.3** 6.1 0.5* 5.4 1.9 4.8 1.3 6.1 0.0*� 5.3
Total Score 2.7 6.6 3.4** 8.5 1.8* 8.2 2.7 6.6 3.5 8.5 1.4* 7.6

n, number of data points; Change score <6h and 24-48h computed as: raw score at time point - raw score at
baseline; Change score at baseline computed as: raw score at unrestricted RTP – raw score at baseline (un-
restricted RTP data not shown); SD, standard deviation; SAC, Standard Assessment of Concussion; BESS,
Balance Error Scoring System; SCAT, Sport Concussion Assessment Tool; *P<0.01 **P<0.05 compared to
baseline; �P<0.01 �P<0.05 compared to training data at the same timepoint; Effect sizes (magnitude) for
significant differences between training and testing sets: BESS Foam Surface Score (d=0.08 at 24-48h)
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Table 3.3: Model variables, coefficient values, and performance measures for Opt-k
models at <6h

Model k=4 k=8 k=12,16

Model Variables and Coefficients

Variable Coefficient (SE) 95% CI Coefficient (SE) 95% CI Coefficient (SE) 95% CI

Intercept -2.28 (0.10)* (-2.47, -2.09) -2.68 (0.11)* (-2.91, -2.46) -2.71 (0.12)* (-2.96, -2.51)

SAC Concentration CS 0.38 (0.06)* (0.26, 0.50) 0.40 (0.07)* (0.27, 0.53) 0.40 (0.07)* (0.26, 0.52)

SCAT Headache CS 0.85 (0.06)* (0.74, 0.96) 0.77 (0.06)* (0.65, 0.90) 0.67 (0.08)* (0.53, 0.83)

SCAT Dizziness RS 0.72 (0.10)* (0.52, 0.93) 0.53 (0.12)* (0.31, 0.76) 0.44 (0.12)* (0.15, 0.62)

SCAT Don’t Feel Right RS 0.77 (0.07)* (0.63, 0.91) 0.58 (0.08)* (0.43, 0.74) 0.54 (0.08)* (0.38, 0.69)

SAC Delayed Recall CS -0.02 (0.06) (-0.13, 0.09) -0.02 (0.06) (-0.13, 0.09)

SCAT Sensitivity to Noise CS 0.22 (0.14) (-0.05, 0.49) 0.21 (0.16) (-0.08, 0.53)

SCAT Symptoms Get Worse

with Mental Activity

1.75 (0.26)* (1.23, 2.27) 1.69 (0.27)* (1.15, 2.20)

SCAT Symptoms Get Worse

with Physical Activity

2.36 (0.23)* (1.90, 2.82) 2.35 (0.24)* (1.89, 2.82)

SCAT Pressure in Head CS 0.20 (0.09)*** (0.01, 0.35)

SCAT Blurred Vision RS 0.29 (0.13)*** (0.18, 0.76)

SCAT Sensitivity to Light CS -0.05 (0.12) (-0.28, 0.18)

Performance Measures

Brier Score 0.089 0.072 0.072

AUC 0.95 0.96 0.96

Sensitivity1 0.87 0.87 0.87

Specificity1 0.90 0.94 0.93

CS, change score; RS, raw score; SAC, Standard Assessment of Concussion; BESS, Balance Error Scoring

System; SCAT, Sport Concussion Assessment Tool; SE, Standard error; CI, Confidence Interval; AUC,

Area under the receiver operating characteristic curve; 1Sensitivity and specificity values reported in table

correspond to the threshold which maximizes the sum of sensitivity and specificity; *P<0.001 **P<0.01

***P<0.05 coefficient is significantly different from 0

The Opt-k models at 24-48h are described in Table 3.4. The Opt-4 model included the

change score for SAC Concentration, the raw score for headache, and whether symptoms get

worse with mental and physical activity (P<0.001 for all). For Opt-8, the change score for

SAC Delayed Recall and the raw scores for don’t feel right, pressure in head, and sensitivity

to noise were added to all the variables in Opt-4. Only the change score for SAC Delayed

Recall (P=0.76) was not significant. The Opt-12 model builds on Opt-8 by adding raw

scores for nausea, dizziness, and sensitivity to light. Raw scores for dizziness (P=0.36) and

sensitivity to light (P=0.08) were not significant. The Opt-16 and Opt-12 models were

identical. For the Summary Score model, all variables were significant (P<0.05 for all).
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Table 3.4: Model variables, coefficient values, and performance measures for Opt-k
models at 24-48h

Model k=4 k=8 k=12,16

Model Variables and Coefficients

Variable Coefficient (SE) 95% CI Coefficient (SE) 95% CI Coefficient (SE) 95% CI

Intercept -1.84 (0.08)* (-2.00, -1.68) -1.98 (0.09)* (-2.15, -1.81) -2.01 (0.09)* (-2.19, -1.84)

SAC Concentration CS 0.64 (0.06)* (0.53, 0.75) 0.65 (0.06)* (0.54, 0.77) 0.65 (0.06)* (0.54, 0.77)

SCAT Headache RS 1.05 (0.06)* (0.94, 1.17) 0.68 (0.08)* (0.53, 0.83) 0.70 (0.08)* (0.54, 0.85)

SCAT Symptoms Get Worse

with Mental Activity

2.13 (0.22)* (1.70, 2.56) 1.85 (0.23)* (1.40, 2.29) 1.82 (0.23)* (1.38, 2.27)

SCAT Symptoms Get Worse

with Physical Activity

2.41 (0.20)* (2.01, 2.80) 2.10 (0.21)* (1.68, 2.51) 2.17 (0.22)* (1.74, 2.59)

SAC Delayed Recall CS 0.01 (0.05) (-0.08, 0.10) 0.01 (0.05) (-0.08, 0.10)

SCAT Don’t Feel Right RS 0.46 (0.08)* (0.31, 0.60) 0.49 (0.08)* (0.34, 0.65)

SCAT Pressure in Head RS 0.23 (0.09)** (0.06, 0.40) 0.21 (0.09)** (0.04, 0.39)

SCAT Sensitivity to Noise RS 0.55 (0.13)* (0.29, 0.81) 0.54 (0.14)* (0.27, 0.82)

SCAT Nausea RS -0.56 (0.13)* (-0.81, -0.31)

SCAT Dizziness RS 0.11 (0.12) (-0.13, 0.35)

SCAT Sensitivity to Light RS 0.20 (0.11) (-0.02, 0.41)

Performance Measures

Brier Score 0.093 0.086 0.085

AUC 0.94 0.95 0.95

Sensitivity1 0.85 0.83 0.83

Specificity1 0.90 0.95 0.95

CS, change score; RS, raw score; SAC, Standard Assessment of Concussion; BESS, Balance Error Scoring

System; SCAT, Sport Concussion Assessment Tool; SE, Standard error; CI, Confidence Interval; AUC,

Area under the receiver operating characteristic curve; 1Sensitivity and specificity values reported in table

correspond to the threshold which maximizes the sum of sensitivity and specificity; *P<0.001 **P<0.01

***P<0.05 coefficient is significantly different from 0

The Summary Scores models at <6h and 24-48h are described in Table 3.5. All variables

were significant (P<0.05 for all) for both timepoints. The Opt-RS-k models at <6h and

24-48h are described in Table 3.6 and Table 3.7, respectively. All variables within Opt-k and

Opt-RS-k models at <6h and 24-48h had low-moderate multicollinearity (see Table 3.8).

3.3.2 Model Performance

Performance measures for the Opt-k models and the Summary Score model at <6h are

summarized in Table 3.3 and Table 3.5, respectively. Their ROC curves are plotted in

Figure 3.1a. The Opt-k models (BS=0.072-0.089) better identified concussion in the testing
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Table 3.5: Model variables, coefficient values, and performance measures for Summary
Scores models at <6h and 24-48h

Timepoint <6h 24-48h
Model variables and coefficients

Variables Coefficient (SE) 95% CI Coefficient (SE) 95% CI
Intercept 1.25 (0.72) (-0.16, 2.67) -0.25 (0.66) (-1.54, 1.04)
SAC Total Score RS -0.14 (0.03)* (-0.19, -0.09) -0.05 (0.02)*** (-0.10, -0.01)
BESS Total Score RS 0.03 (0.01)* (0.01, 0.04) -0.01 (0.01) (-0.02, 0.01)
SCAT Total Symptom Severity RS 0.02 (0.01)*** (0.01, 0.04) -0.03 (0.01)* (-0.04, -0.01)
SCAT Total Number of Symptoms RS 0.24 (0.03)* (0.18, 0.29) 0.37 (0.02)* (0.32, 0.41)

Performance Measures
Brier Score 0.14 0.15
AUC 0.89 0.87
Sensitivity1 0.79 0.74
Specificity1 0.85 0.86

RS, raw score; SAC, Standard Assessment of Concussion; BESS, Balance Error Scoring System; SCAT,
Sport Concussion Assessment Tool; SE, Standard error; CI, Confidence Interval; AUC, Area under the
receiver operating characteristic curve; 1Sensitivity and specificity values reported in table correspond to the
threshold which maximizes the sum of sensitivity and specificity; *P<0.001 **P<0.01 ***P<0.05 coefficient
is significantly different from 0

data than the Summary Scores model (BS=0.14). This result is supported by our analysis

of the ROC curve. Specifically, each Opt-k model (AUC=0.95-0.96) achieved a greater AUC

than the Summary Score model (AUC=0.89). Furthermore, Figure 1(a) shows that the

ROC curve for the Summary Scores model is “inside” the ROC curve for all Opt-k models,

indicating that the Opt-k models achieve greater sensitivity and specificity for every possible

cutoff used to designate acute concussion versus normal performance. The Opt-RS-k models

also achieved improved BS (BS=0.082-0.087) and AUC (AUC=0.93-0.95) over the Summary

Scores model (see Figure 3.2).

We summarize performance measures for the Opt-k and Summary Scores models at 24-48h

in Table 3.4 and plot their ROC curves in Figure 3.1b. The Opt-k models achieved a lower

BS (BS=0.085-0.093) and greater AUC (AUC=0.94-0.95) than the Summary Scores model

(BS=0.15, AUC=0.87). Figure 1(b) also shows that the ROC curve for the Summary Scores

model is dominated by the ROC curve for each Opt-k model, suggesting that the Opt-k

models can better identify acute concussion at 24-48h than the Summary Scores model. The

Opt-RS-k models also achieved lower BS (BS=0.095-0.099) and greater AUC (AUC=0.92-

0.93) than the Summary Scores model (see Figure 3.2).

A modified Summary Scores model (BS=0.14, AUC=0.89 at <6h; BS=0.15, AUC=0.87 at
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Table 3.6: Model variables, coefficient values, and performance measures for Opt-RS-k
models at <6h

Model k=4 k=8, 12, 16
Model Variables and Coefficients

Variable Coefficient (SE) 95% CI Coefficient (SE) 95% CI
Intercept -2.31 (0.09)* (-2.49, -2.11) -2.69 (0.11)* (-2.90, -2.48)
SCAT Dizziness RS 0.82 (0.11)* (0.61, 1.02) 0.44 (0.11)* (0.21, 0.66)
SCAT Don’t Feel Right RS 0.84 (0.07)* (0.70, 0.98) 0.55 (0.08)* (0.40, 0.70)
SCAT Symptoms Worsen
with Mental Activity

1.65 (0.24)* (1.18, 2.11) 1.52 (0.25)* (1.02, 2.01)

SCAT Symptoms Worsen
with Physical Activity

2.61 (0.21)* (2.20, 3.01) 2.31 (0.22)* (1.87, 2.75)

SCAT Blurred Vision RS 0.48 (0.14)* (0.21, 0.75)
SCAT Pressure in Head RS 0.75 (0.08)* (0.61, 0.90)
SCAT Sensitivity to Noise 0.20 (0.14) (-0.07, 0.47)

Performance Measures
Brier Score 0.087 0.082
AUC 0.93 0.95
Sensitivity1 0.83 0.88
Specificity1 0.93 0.90

RS, raw score; SAC, Standard Assessment of Concussion; BESS, Balance Error Scoring System; SCAT,
Sport Concussion Assessment Tool; SE, Standard error; CI, Confidence Interval; AUC, Area under the
receiver operating characteristic curve; 1Sensitivity and specificity values reported in table correspond to the
threshold which maximizes the sum of sensitivity and specificity; *P<0.001 **P<0.01 ***P<0.05 coefficient
is significantly different from 0
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Table 3.7: Model variables, coefficient values, and performance measures for Opt-RS-k
models at 24-48h

Model k=4 k=8, 12, 16
Model Variables and Coefficients

Variable Coefficient (SE) 95% CI Coefficient (SE) 95% CI
Intercept -1.65 (0.09)* (-1.79, -1.52) -2.02 (0.08)* (-2.18, -1.86)
SCAT Don’t Feel Right RS 0.79 (0.07)* (0.66, 0.92) 0.51 (0.08)* (0.36, 0.65)
SCAT Symptoms Get Worse
with Mental Activity

2.09 (0.21)* (1.68, 2.49) 1.83 (0.21)* (1.42, 2.25)

SCAT Symptoms Get Worse
with Physical Activity

2.42 (0.19)* (2.04, 2.79) 2.13 (0.20)* (1.73, 2.53)

SCAT Sensitivity to Noise 1.04 (0.13)* (0.78, 1.29) 0.62 (0.13)* (0.35, 0.88)
SCAT Dizziness RS -0.01 (0.11) (-0.23, 0.21)
SCAT Headache RS 0.76 (0.06)* (0.64, 0.88)

Performance Measures
Brier Score 0.099 0.095
AUC 0.92 0.93
Sensitivity1 0.81 0.84
Specificity1 0.94 0.92

RS, raw score; SAC, Standard Assessment of Concussion; BESS, Balance Error Scoring System; SCAT,
Sport Concussion Assessment Tool; SE, Standard error; CI, Confidence Interval; AUC, Area under the
receiver operating characteristic curve; 1Sensitivity and specificity values reported in table correspond to the
threshold which maximizes the sum of sensitivity and specificity; *P<0.001 **P<0.01 ***P<0.05 coefficient
is significantly different from 0
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(a) <6 hours

(b) 24-48 hours

Figure 3.1: Receiver operating characteristic curves for Opt-k models and Summary
Scores models at <6h and 24-48h. AUC, area under the receiver operating character-
istic curve
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(a) <6 hours

(b) 24-48 hours

Figure 3.2: Receiver operating characteristic curves for Opt-RS-k models and Sum-
mary Scores models at <6h and 24-48h. AUC, area under the receiver operating
characteristic curve
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Table 3.8: Variable Inflation Factors for Opt-k Models at <6h and 24-48h
Opt-k Models at <6h k=4 k=8 k=12,16 Opt-k Models at 24-48h k=4 k=8 k=12,16
Variable VIF Variable VIF
Intercept 1.67 1.75 1.75 Intercept 1.92 1.96 1.97
SAC Concentration CS 1.00 1.01 1.01 SAC Concentration CS 1.01 1.02 1.02
SCAT Headache CS 1.77 1.92 2.98 SCAT Headache RS 1.63 3.57 3.69
SCAT Dizziness RS 2.15 2.27 2.60 SCAT Symptoms Worsen

with Mental Activity
1.67 1.73 1.73

SCAT Don’t Feel Right RS 2.45 2.71 2.86 SCAT Symptoms Worsen
with Physical Activity

1.77 1.83 1.85

SAC Delayed Recall CS 1.02 1.02 SAC Delayed Recall CS 1.02 1.02
SCAT Sensitivity to Noise CS 1.60 2.03 SCAT Don’t Feel Right RS 2.49 3.02
SCAT Symptoms Worsen
with Mental Activity

1.56 1.59 SCAT Pressure in Head RS 3.74 3.78

SCAT Symptoms Worsen
with Physical Activity

1.81 1.83 SCAT Sensitivity to Noise RS 1.94 2.55

SCAT Pressure in Head CS 3.25 SCAT Nausea RS 1.66
SCAT Blurred Vision RS 1.75 SCAT Dizziness RS 2.32
SCAT Sensitivity to Light CS 2.22 SCAT Sensitivity to Light RS 2.88

VIF, variable inflation factor; CS, change score; RS, raw score; SAC, Standard Assessment of Concussion;
BESS, Balance Error Scoring System; SCAT, Sport Concussion Assessment Tool

24-48h) which resembles the SCAT performs similarly to the Summary Scores model. Results

reported in this section are consistent with results obtained using 10-fold cross-validation on

the entire data sample (see Appendix 3.A).

3.4 Discussion

Previous studies have shown that the SCAT has tremendous clinical utility (Chin et al.,

2016; Downey, Hutchison, and Comper, 2018; Garcia et al., 2018; Putukian et al., 2015).

Our results suggest that the SCAT’s symptom, SAC, and BESS composite scores may in-

advertently incorporate components which add noise or unnecessary information to acute

concussion assessment. Using only 4 variables and no change scores (i.e., Opt-RS-4), we

identified a combination of symptoms which outperformed the full SCAT battery (i.e., Sum-

mary Scores model). Although counterintuitive, this result highlights the importance of

focusing on the most critical components of the SCAT for acute concussion assessment

We identified specific symptoms and critical components of the SAC which can accurately

identify acute concussion. In nearly every model, the symptom don’t feel right was included,
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suggesting its importance for assessing acute concussion. At <6h and 24-48h, the symptoms

headache, dizziness, sensitivity to noise, physical activity makes symptoms worse, and mental

activity makes symptoms worse were included in most models. These variables align with

post-concussion symptoms identified in previous studies (Eisenberg, Meehan, and Mannix,

2014; Lovell et al., 2006; Randolph et al., 2009). Unfortunately, headache and dizziness are

often regarded as common but not specific to concussion (Putukian, 2011). Furthermore,

solely relying on symptoms can be problematic since athletes may under-report symptoms

(Kerr et al., 2014b; Kroshus et al., 2015b; Williamson and Goodman, 2006). To this end,

our results suggest that within the SAC, change scores for the Concentration and Delayed

Recall are particularly important. Additionally, the SAC and BESS were not included in

any Opt-RS-k model, suggesting that raw scores for the SAC and BESS lack clinical utility

compared to symptoms. This result resembles a previous study where, after performing

variable selection, the change score (instead of the raw score) for the SAC total score was

included in a multidimensional acute concussion assessment model (Garcia et al., 2018).

Finally, while Delayed Recall provides valuable information to acute concussion assessment, it

requires Immediate Memory to be completed beforehand and therefore, may only marginally

reduce the time to administer the SAC. In an auxiliary analysis using 10-fold cross-validation,

the change score for SAC Delayed Recall was included in every fold of every Opt-8, Opt-12,

and Opt-16 model at <6h and 24-48h (see Appendix 3.A). Yet, excluding this assessment

did not appear to alter the accuracy of the Opt-k models (see Appendix 3.B). Given these

mixed findings, future research should investigate the importance of Delayed Recall for acute

concussion assessment.

Our analysis provides quantitative support regarding the clinical utility of change scores.

The variables included in the Opt-k models suggest that baseline testing is most valuable for

the symptom checklist and the SAC while the utility of baseline assessments for the BESS

is unclear. Change scores for the BESS, however, are potentially important for a subset of

athletes who are difficult to assess for acute concussion (e.g., Possible and Probable concus-

sions (Garcia et al., 2019)), suggesting future studies should determine the assessment utility

for different athlete subpopulations. Finally, we found that models which included change

scores better identified acute concussion at both <6h and 24-48h post-injury compared to

models only containing raw scores. However, these differences in performance are modest,

coinciding with previous findings (Chin et al., 2016; Echemendia et al., 2012; Garcia et al.,
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2018; Putukian et al., 2015; Schmidt et al., 2012).

No component of the BESS was included in any Opt-k or Opt-RS-k model at <6h and 24-

48h. Previous studies have also found that among all SCAT assessments, the BESS has the

lowest sensitivity and specificity (Chin et al., 2016; Downey, Hutchison, and Comper, 2018;

Garcia et al., 2018; McCrea et al., 2005). Furthermore, previous research found that the

BESS could be removed from the SCAT without any statistically significant change in AUC

(Garcia et al., 2018). Coupled with our findings, the utility of the BESS for sideline screen-

ing is questionable. Excluding the BESS from this process could make sideline screening

more efficient by reducing noisy information and overall assessment time. However, current

best practices recommend the use of multidimensional testing batteries. Therefore, postural

control assessments should still be considered, e.g., Tandem Gait, which has demonstrated

greater sensitivity to concussion than the BESS (Oldham et al., 2018). Our findings, though,

may only apply to acute concussion assessment and the BESS may be valuable at later stages

of the concussion management process.

Surprisingly, demographic risk modifiers were not included in our models by the MIP algo-

rithm, suggesting that their importance is diminished under the presence of more sensitive

components of the SCAT. We also recognize that age may have been excluded from our

models due to the lack of variation within the study population. Yet, risk modifiers may

be of greater clinical importance beyond the acute concussion phase and should continue to

be incorporated in clinical decision-making. Nevertheless, this result gives promise that an

acute concussion screening tool could be developed which can be applied to all athletes.

3.4.1 Limitations

Currently, no perfect diagnostic marker for concussion exists and thus, our findings are based

on the clinical diagnosis of concussion. Unfortunately, this limitation cannot be addressed

until an objective method for diagnosing concussion is developed. Furthermore, our data only

included the SCAT symptom checklist, SAC, and BESS so future studies should consider

including other assessments (e.g. King-Devick test and Tandem Gait).
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3.5 Conclusion

Sideline assessment of acute concussion must be timely and accurate. We identified optimal

subsets of SCAT components which can accurately assess acute concussion. Our results

highlight the importance of focusing on the most important aspects of the SCAT. The

variables identified in this study build the foundation for modifying sideline screening tools.

While clinical examination should continue to be the gold standard for concussion diagnosis,

this research provides data-driven insights to guide the future development of concussion

assessment practices.
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3.A Analysis via 10-fold Cross-Validation

The results presented in Chapter 3 were based on a random split of the study data into a

training and testing set. In this supplemental analysis, we recreated our analysis using 10-

fold cross-validation on the combined dataset. By leveraging the entire dataset using 10-fold

cross-validation, we characterize the robustness of our findings from the original analysis.

Using 10-fold cross-validation to create the Opt-k models at <6h and 24-48h, we recorded

the frequency with which a modeling variable was included in an Opt-k model. These re-

sults are presented in Table 3.A.1 and Table 3.A.2 for the Opt-k models at <6h and 24-48h.

The frequencies at which modeling variables were included in Opt-RS-k models at <6h and

24-48h are presented in Table 3.A.3 and Table 3.A.4, respectively. Finally, estimated perfor-

mance measures for Opt-k and Opt-RS-k models at both <6h and 24-48h are presented in

3.A.5. From Tables 3.A.1-3.A.4, we find that the modeling variables identified in our original

analysis are consistent with the modeling variables identified in this supplemental analysis.

Furthermore, from Table 3.A.5, we find that our original estimates of model performance

are consistent with the estimates obtained using 10-fold cross-validation. Overall, this sup-

plemental analysis illustrates that the results obtained in our original analysis are robust to

changes in training and testing data.
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Table 3.A.1: Frequency of variables in Opt-k models at <6h using 10-fold cross-
validation

Variable Name Model

Opt-4 Opt-8 Opt-12 Opt-16

SAC Concentration CS 10 10 10 10

SAC Delayed Recall CS 10 10 10

SCAT Balance Problems CS 2 2

SCAT Blurred Vision CS 1 1

SCAT Feeling Slowed Down CS 1

SCAT Headache CS 10 10 10 10

SCAT Nausea CS 1 1

SCAT Pressure in Head CS 5 5

SCAT Sensitivity to Light CS 3 2

SCAT Sensitivity to Noise CS 8 7 6

SCAT Balance Problems RS 2 1

SCAT Blurred Vision RS 4 4

SCAT Dizziness RS 4 10 10 10

SCAT Don’t Feel Right RS 6 10 10 10

SCAT Nausea RS 1 1

SCAT Symptoms Worsen with Mental Activity 10 10 10

SCAT Symptoms Worsen with Physical Activity 10 10 10 10

SCAT Sensitivity to Light RS 2 2

SCAT Sensitivity to Noise RS 2 3 4
CS, change score; RS, raw score; BESS, Balance Error Scoring System; SAC, Standardized Assessment of

Concussion; SCAT, Sport Concussion Assessment Tool
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Table 3.A.2: Frequency of variables in Opt-k models at 24-48h using 10-fold cross-
validation

Variable Name Model

Opt-4 Opt-8 Opt-12 Opt-16

SAC Concentration CS 10 10 10 10

SAC Delayed Recall CS 10 10 10

SCAT Dizziness CS 1 1

SCAT In a Fog CS 1 1

SCAT Headache CS 2 2 2

SCAT Nausea CS 1 1

SCAT Pressure in Head CS 1 3 3

SCAT Dizziness RS 2 2

SCAT Don’t Feel Right RS 2 9 10 10

SCAT Feeling Slowed Down RS 4 4

SCAT In a Fog RS 3 3

SCAT Headache RS 3 8 8 8

SCAT Symptoms Worsen with Mental Activity 10 9 10 10

SCAT Symptoms Worsen with Physical Activity 10 10 10 10

SCAT Pressure in Head RS 2 6 6

SCAT Sensitivity to Light RS 6 10 10

SCAT Sensitivity to Noise RS 5 10 10 10
CS, change score; RS, raw score; BESS, Balance Error Scoring System; SAC, Standardized Assessment of

Concussion; SCAT, Sport Concussion Assessment Tool
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Table 3.A.3: Frequency of variables in Opt-RS-k models at <6h using 10-fold cross-
validation

Variable Name Model

Opt-RS-4 Opt-RS-8 Opt-RS-12 Opt-RS-16

BESS Firm Surface Score RS 1 1 1

BESS Foam Surface Score RS 8 9 9

SAC Concentration RS 1 1

SAC Delayed Score 1 1 1

SAC Immediate Memory RS 9 9 9

SAC Orientation RS 1 1 1

SCAT Dizziness RS 10 10 10 10

SCAT Don’t Feel Right RS 10 10 10 10

SCAT Headache RS 2 2 2

SCAT Symptoms Worsen with Mental Activity 10 10 10 10

SCAT Symptoms Worsen with Physical Activity 10 10 10 10

SCAT Sensitivity to Noise RS 10 10 10
CS, change score; RS, raw score; BESS, Balance Error Scoring System; SAC, Standardized Assessment of

Concussion; SCAT, Sport Concussion Assessment Tool
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Table 3.A.4: Frequency of variables in Opt-RS-k models at 24-48h using 10-fold cross-
validation

Variable Name Model

Opt-RS-4 Opt-RS-8 Opt-RS-12 Opt-RS-16

BESS Firm Surface Score RS 2 2 2

BESS Foam Surface Score RS 7 9 9

SAC Concentration RS 1 1 1

SAC Delayed Score 1 1 1

SAC Immediate Memory RS 9 9 9

SAC Orientation RS 1 1

SCAT Dizziness RS 1 1 1

SCAT Don’t Feel Right RS 10 10 10 10

SCAT Headache RS 7 7 7

SCAT Symptoms Worsen with Mental Activity 10 10 10 10

SCAT Symptoms Worsen with Physical Activity 10 10 10 10

SCAT Sensitivity to Light RS 6 6 6

SCAT Sensitivity to Noise RS 10 10 10 10
CS, change score; RS, raw score; BESS, Balance Error Scoring System; SAC, Standardized Assessment of

Concussion; SCAT, Sport Concussion Assessment Tool
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Table 3.A.5: Performance of Opt-k and Opt-RS-k models based on 10-fold cross-
validation

Timepoint Model Brier Score AUC Sensitivity Specificity

Mean SD Mean SD Mean SD Mean SD

<6h Opt-4 0.081 0.012 0.95 0.01 0.88 0.03 0.91 0.04

Opt-8 0.073 0.011 0.96 0.01 0.89 0.03 0.93 0.02

Opt-12 0.073 0.010 0.96 0.01 0.89 0.03 0.92 0.03

Opt-16 0.073 0.010 0.96 0.01 0.90 0.03 0.92 0.03

24-48h Opt-4 0.105 0.007 0.92 0.01 0.81 0.03 0.92 0.03

Opt-8 0.090 0.006 0.94 0.01 0.86 0.03 0.92 0.04

Opt-12, Opt-16 0.088 0.006 0.94 0.01 0.86 0.02 0.92 0.04

<6h Opt-RS-4 0.088 0.012 0.93 0.01 0.88 0.04 0.90 0.03

Opt-RS-8 0.085 0.014 0.94 0.02 0.89 0.03 0.90 0.03

Opt-RS-12, Opt-RS-16 0.085 0.014 0.94 0.02 0.89 0.03 0.90 0.03

24-48h Opt-RS-4 0.104 0.007 0.92 0.01 0.85 0.04 0.90 0.04

Opt-RS-8 0.099 0.010 0.93 0.01 0.84 0.02 0.92 0.04

Opt-RS-12, Opt-RS-16 0.100 0.010 0.93 0.01 0.84 0.01 0.92 0.04
SD, standard deviation; AUC, area under the curve

3.B Removal of SAC Delayed Recall

Based on our previous analysis, SAC Delayed Recall provides valuable information to acute

concussion assessment in the Opt-8, Opt-12, and Opt-16 models at both <6h and 24-48h.

However, Delayed Recall requires Immediate Memory to be completed beforehand and there-

fore, may only marginally reduce the time to administer the battery. In this supplemental

analysis, we aimed to determine whether removing or replacing SAC Delayed Recall from

the aforementioned models would change their accuracy in assessing acute concussion. To

perform this analysis, we recreated the Opt-8, Opt-12, and Opt-16 models without including

SAC Delayed Recall raw scores or change scores as a modeling variable. The results at <6h

are shown below in Table 3.B.1 and the results at 24-48h are shown below in Table 3.B.2.

These new models demonstrate similar levels of accuracy as those identified in our original

analysis. Altogether, these results indicate that SAC Delayed Recall can be replaced by other

assessments to reduce the time needed to administer the concussion assessment battery.
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Table 3.B.1: Modified Opt-8, Opt-12, and Opt-16 Models without SAC Delayed Recall
at <6h post-injury

Model k=8 k=12, 16

Model Variables and Coefficients

Variable Coefficient (SE) 95% CI Coefficient (SE) 95% CI

Intercept -2.69 (0.11)* (-2.91, -2.47) -2.78 (0.12)* (-3.01, -2.55)

SAC Concentration Score CS 0.40 (0.07)* (0.27, 0.54) 0.38 (0.07)* (0.25, 0.51)

SCAT Headache CS 0.66 (0.08)* (0.52, 0.81) 0.63 (0.07)* (0.49, 0.77)

SCAT Pressure in Head CS 0.21 (0.09)*** (0.04, 0.38)

SCAT Sensitivity to Noise CS 0.19 (0.14) (-0.09, 0.46) 0.19 (0.15) (-0.11, 0.48)

SCAT Dizziness RS 0.50 (0.12)* (0.28, 0.73) 0.32 (0.12)** (0.08, 0.56)

SCAT Don’t Feel Right RS 0.56 (0.08)* (0.40, 0.71) 0.57 (0.10)* (0.37, 0.76)

SCAT Symptoms Worsen with

Mental Activity

1.70 (0.27)* (1.18, 2.22) 1.67 (0.27)* (1.14, 2.21)

SCAT Symptoms Worsen with

Physical Activity

2.33 (0.24)* (1.87, 2.79) 2.22 (0.24)* (1.75, 2.69)

SCAT Difficulty Remembering

CS

-0.28 (0.08)* (-0.44, -0.12)

SCAT Balance Problems RS 0.05 (0.13) (-0.19, 0.30)

SCAT Blurred Vision RS 0.52 (0.15)* (0.23, 0.82)

SCAT Feeling Like in a Fog RS 0.04 (0.11) (-0.18, 0.25)

SCAT Pressure in Head RS 0.37 (0.09)* (0.19, 0.54)

Performance Measures

Brier Score 0.072 0.072

AUC 0.96 0.96

Sensitivity1 0.86 0.90

Specificity1 0.94 0.91
CS, change score; RS, raw score; SAC, Standard Assessment of Concussion; BESS, Balance Error Scoring

System; SCAT, Sport Concussion Assessment Tool; SE, Standard error; CI, Confidence Interval; AUC,

Area under the receiver operating characteristic curve; 1Sensitivity and specificity values reported in table

correspond to the threshold which maximizes the sum of sensitivity and specificity; *P<0.001 **P<0.01

***P<0.05 coefficient is significantly different from 0
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Table 3.B.2: Modified Opt-8, Opt-12, and Opt-16 Models without SAC Delayed Recall
at 24-48h post-injury

Model k=8 k=12, 16

Model Variables and Coefficients

Variable Coefficient (SE) 95% CI Coefficient (SE) 95% CI

Intercept -1.99 (0.09)* (-2.16, -1.82) -1.99 (0.09)* (-2.16, -1.82)

SAC Concentration Score CS 0.65 (0.06)* (0.54, 0.77) 0.66 (0.06)* (0.54, 0.77)

SCAT Dizziness RS -0.02 (0.12) (-0.25, 0.20) -0.03 (0.12) (-0.26, 0.20)

SCAT Don’t Feel Right RS 0.46 (0.08)* (0.31, 0.62) 0.45 (0.08)* (0.29, 0.61)

SCAT Headache RS 0.68 (0.08)* (0.53, 0.83) 0.67 (0.08)* (0.52, 0.82)

SCAT Symptoms Worsen with

Mental Activity

1.85 (0.23)* (1.40, 2.29) 1.83 (0.23)* (1.39, 2.28)

SCAT Symptoms Worsen with

Physical Activity

2.10 (0.21)* (1.68, 2.51) 2.07 (0.21)* (1.66, 2.49)

SCAT Pressure in Head RS 0.23 (0.09)** (0.06, 0.40) 0.22 (0.09)*** (0.05, 0.39)

SCAT Sensitivity to Noise RS 0.55 (0.13)* (0.29, 0.81) 0.48 (0.14)* (0.21, 0.76)

SCAT Sensitivity to Light RS 0.17 (0.11) (-0.05, 0.39)

Performance Measures

Brier Score 0.086 0.086

AUC 0.95 0.95

Sensitivity1 0.85 0.85

Specificity1 0.94 0.94
CS, change score; RS, raw score; SAC, Standard Assessment of Concussion; BESS, Balance Error Scoring

System; SCAT, Sport Concussion Assessment Tool; SE, Standard error; CI, Confidence Interval; AUC,

Area under the receiver operating characteristic curve; 1Sensitivity and specificity values reported in table

correspond to the threshold which maximizes the sum of sensitivity and specificity; *P<0.001 **P<0.01

***P<0.05 coefficient is significantly different from 0
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Chapter 4

Data-driven Diagnosis Decision

Thresholds for Risk Estimation Models

4.1 Introduction

In Chapter 2 and Chapter 3, we developed risk estimation models for acute concussion. In

this chapter, we show how these risk estimation models can be used to optimize diagnosis

decisions. More broadly, the growing availability of data has led to the rapid development of

risk estimation models in several industries including healthcare, finance, and manufacturing.

These models can be especially impactful in healthcare, where risk estimation models can be

used as decision aids to supplement medical diagnosis and treatment decisions. For example,

methods such as logistic regression, survival analysis, neural networks, and other machine

learning models have been used to assess emergency department admission risk (Peck et al.,

2012), estimate hospital readmission risk (Xue, Klabjan, and Luo, 2019), detect glaucoma

progression (Schell et al., 2014), predict adverse coronary heart disease events (Anderson,

1991), and aid diagnosis of cancer (Kourou et al., 2015). Yet, applying these models in clinical

practice is challenging (Degeling, Koffijberg, and IJzerman, 2017; Moons et al., 2009). One

way to bridge this gap between research and practice is by determining decision thresholds

to help clinicians interpret these models (Ebell, 2010).

In this research, we aim to determine suitable decision thresholds for risk estimation

models. For instance, if a model estimates that a patient has a 55% chance of having a

cancerous tumor, does that estimate provide sufficient evidence to diagnose the patient with
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cancer? What if the model estimates a 45% chance? When the consequences associated with

misdiagnoses are great, how one determines these decision boundaries is critical.

Determining appropriate decision thresholds is not straightforward. First, these decision

boundaries should reflect the decision-maker’s risk attitude, i.e., willingness to take on con-

sequences associated with misdiagnoses (Felder and Mayrhofer, 2014). While some patients

and physicians may be more willing to accept highly consequential outcomes, others may be

far more conservative in their decision-making (based on the perceived consequences asso-

ciated with each decision). Yet, traditional methods for interpreting risk estimates do not

reflect such risk attitudes (Degeling, Koffijberg, and IJzerman, 2017). Even worse, some

may provide arbitrary risk stratifications.

Another key issue is the application of these risk estimation models to populations for

which the underlying population does not match the population used to parameterize the

model (Royston et al., 2009). For example, consider risk scores from the Framingham Heart

Study (Wang et al., 2003), which was parameterized on a cohort of roughly 800 participants

from Framingham, Massachussettes between 1948 and 2000. This model has been used to

inform clinical practice for cardiovascular disease management, which is applied to popula-

tions which are far more diverse (Perk et al., 2012). Therefore, decision boundaries should

not only depend on the risk estimation model at hand but also on the population to which

it will be applied.

Furthermore, traditional binary classification models may not sufficiently address uncer-

tainty in diagnosis decisions. This sentiment is reflected in diagnosis guidelines for conditions

such as multiple sclerosis (McDonald et al., 2001), Alzheimer’s disease (AD) (McKhann et

al., 2011), diabetes (American Diabetes Society, 2016), and concussion (Kutcher and Giza,

2014), where diagnosis is divided into risk classifications rather than a dichotomous outcome.

For instance, for sports-related concussion, the diagnosis may be broken up into (1) Possible,

(2) Probable, and (3) Definite concussion depending on the clinician’s diagnostic certainty

(Kutcher and Giza, 2014). In guidelines which use such risk classifications, intermediate

risk classifications arise from conflicting diagnostic assessment results or a lack of definitive

evidence to make strong diagnostic conclusions. Analogously, there may be ranges along the

risk spectrum where a risk estimation model’s estimates are not “certain enough” and call for

more information before a diagnosis decision can be made. In particular, these intermediate

ranges reflect cases in which qualitative information, which may not be easily implemented
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in risk estimation models, should be used to guide diagnosis decisions. Since risk estimation

models are typically designed to supplement clinical diagnosis, identifying these ranges is

critical. Yet, few methods create decision boundaries which account for this risk estimation

uncertainty (Degeling, Koffijberg, and IJzerman, 2017).

This research aims to bridge the gap between risk estimation models and clinical appli-

cation by presenting a rigorous approach to determine diagnosis decision thresholds. These

thresholds (1) reflect the decision-maker’s risk attitude, (2) jointly depend on the risk esti-

mation model and patient population to which it is applied, and (3) identify ranges in the

risk continuum in which the risk estimation model is most and least accurate. We apply

our method to acute concussion assessment, a field where diagnostic decisions must be made

accurately and quickly to mitigate prolonged injury recovery and post-concussion symptom

severity (Asken et al., 2018).

The key contributions of this work are as follows:

1. We introduce a data-driven stochastic optimization framework to determine diagnostic

decision thresholds based on the application of a risk estimation model to patients from

a fixed population. Compared to previous methods (see Section 4.2), we avoid the need

to estimate outcome-based utilities or make distributional assumptions to account for

uncertainty in risk estimates.

2. In our analytical study, we show that the optimal solution to our proposed model can

be characterized by extreme-point solutions of a related linear program. Thus, our

model can be solved using quantile estimation — bypassing the need for advanced

optimization software. We also identify additional modeling frameworks, including

utility-based and multi-class classification frameworks, for which our analytical results

can be applied. Specifically, for our utility-based extensions, we formulate a model

for which utilities such as quality-adjusted life-years may be used. In our extensions

to multi-class classification, we develop frameworks for both multi-label and ordinal

classification.

3. Through an analytical study and numerical analysis using both real and simulated

data, we determine when two decision thresholds, which allow for a deferred diagnosis

decision, will outperform a single decision threshold, which only allows for binary

classification.
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4. We perform extensive numerical analysis to determine how the modeling parameters

should be chosen based on the general characteristics of the population that undergoes

diagnostic testing. Our analysis also gives insight to guide the choice of data-driven

solution methodology based on sample size and the quality of the underlying risk

estimation model.

5. We are one of the first groups to apply an optimization framework to develop data-

driven diagnostic thresholds for acute concussion based on data from the CARE Con-

sortium — a nationwide collaboration comprising 29 National Collegiate Athletic Asso-

ciation (NCAA) universities and military service academies. By incorporating feedback

from concussion experts across the CARE Consortium, we ensure that, in the case of

acute concussion assessment, our modeling framework outperforms methods which are

commonly used in practice. Furthermore, we provide a valuable framework which

quantifies the uncertainty in diagnosis decisions using real data rather than subjective

clinical experience. The models developed in this research have the potential to be

developed into tools which can supplement clinical decision-making.

The remainder of this chapter is organized as follows. In Section 4.2, we present a review

of related research literature. In Section 4.3, we present our modeling approach and the

analytical properties of this model, along with model extensions to utility-based and multi-

class classification frameworks. In Section 4.4, we present our data-driven solution methods

and in Section 4.5, we evaluate each of these solution methods using simulation. In Section

4.6, we apply our models to concussion assessment data. We perform sensitivity analysis

on the model parameters and analyze the performance of this model compared to existing

methods. Finally, we present managerial insights and other concluding remarks in Section

4.7.

4.2 Relevant Literature

This research falls within the domains of (1) operations research in disease screening and

diagnosis decisions and (2) determining diagnosis decision boundaries.
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4.2.1 Operations Research in Disease Screening and Diagnosis

Decisions

Operations Research has been applied to many areas of disease screening. Specifically, ap-

plications to cancer screening are reviewed extensively by Pierskalla and Brailer, 1994 and

Alagoz, Ayer, and Erenay, 2011 while more recent works include Ayer, Alagoz, and Stout,

2012; Ayer et al., 2016; Bertsimas, Silberholz, and Trikalinos, 2018; Erenay, Alagoz, and

Said, 2014; Güneş, Örmeci, and Kunduzcu, 2015; Lee et al., 2015; Li et al., 2014; Mail-

lart et al., 2008; McLay, Foufoulides, and Merrick, 2010; Tejada et al., 2015 and Barnett

et al., 2017. Other applications include obesity (Yang, Goldhaber-Fiebert, and Wein, 2013),

Glaucoma (Helm et al., 2015), Chlamydia (Teng, Kong, and Tu, 2015), Ebola (Jacobson,

Yu, and Jokela, 2016), blood screening (El-Amine, Bish, and Bish, 2018), and HIV (Deo

et al., 2015; Deo and Sohoni, 2015; Jónasson, Deo, and Gallien, 2017). Like our study,

these works consider the imperfect nature of diagnostic tests in their models. However, they

determine optimal strategies based on estimated utilities while we focus on diagnostic accu-

racy. Further, they focus on sequential decisions while we consider the immediate diagnosis

decision.

Operations Research has also been applied to medical diagnosis decisions, where such

problems typically optimize pre-diagnosis decisions or follow-up decisions after an initial

diagnostic test. For example, Bayati, Bhaskar, and Montanari, 2018 determine the least-

cost set of biomarker tests which allow for sufficient diagnostic power while Ayvaci, Alagoz,

and Burnside, 2012 and Zhang et al., 2012 optimize biopsy follow-up decisions for cancer.

However, our work focuses on the actual diagnosis decision at hand instead of pre- or post-

diagnosis decisions. To this end, Ayvaci et al., 2017 and Ahsen, Ayvaci, and Raghunathan,

2019 study when and how bias-inducing information should be incorporated in breast cancer

diagnostic decisions. Similarly to Ahsen, Ayvaci, and Raghunathan, 2019, we also study

the incorporation of clinical decision support systems in diagnostic decisions. However, they

focus on the design of such systems while we focus on the interpretation of these decision

support systems, i.e., a risk estimation model. Furthermore, their work focuses on balancing

two sources of information (i.e., mammogram risk and clinical-risk information) and deriving

one diagnostic threshold whereas our work focuses on a single source of information (i.e.,

risk estimates) and deriving two diagnostic decision thresholds.
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4.2.2 Determining Diagnosis Decision Boundaries

A number of methods have been developed to optimize a single decision threshold. In this

literature, it is typical to assign a utility to each possible diagnostic outcome and determine an

optimal threshold which maximizes utilities (Deneef and Kent, 1993; Felder and Mayrhofer,

2014; Giessen et al., 2018; Jund et al., 2005; Moons et al., 1997; Pauker and Kassirer, 1975).

For instance, Giessen et al., 2018 develop a stepwise method to optimize a risk threshold

based on multiple criteria, including quality-adjusted life-years, cost of treatment, and net

health benefit. However, the use of such utilities has been questioned (McGregor and Caro,

2006; Nord, Daniels, and Kamlet, 2009). To circumvent this difficulty, methods based on the

receiver operating characteristic (ROC) have been developed (Greiner, Pfeiffer, and Smith,

2000; Greiner, Sohr, and Göbel, 1995; Odetola et al., 2016; Somoza and Mossman, 1992;

Vermont et al., 1991). These methods typically optimize a single threshold based on measures

of diagnostic accuracy. However, single thresholds do not specify regions for which the risk

estimation models perform poorly, i.e., risk estimate ranges over which false-positive and

false-negative rates are especially high and diagnostic decisions should be avoided. Therefore,

we also review methods to determine multiple decision thresholds.

Utility-based methods for deriving multiple thresholds include Glasziou and Hilden, 1986;

Pauker and Kassirer, 1980 and Nease, Owens, and Sox, 1989. In contrast, Hartz et al., 1986

determine thresholds based on uncertainty in different physicians’ decision thresholds and

Mangasarian, Street, and Wolberg, 1995 apply linear programming to determine diagnostic

decision thresholds based on tumor characteristics. Zhu and Fang, 2016 and Si, Yakushev,

and Li, 2017 develop tree-based approaches which categorize diagnoses as positive, negative,

or uncertain, where those who are uncertain are not predicted well by their classification tree

and hence should be further evaluated. We apply this same classification scheme in our work

but we develop thresholds along the probability spectrum. Our work most closely relates

to Si, Yakushev, and Li, 2017 since we both employ optimization frameworks to determine

diagnosis thresholds based on ROC statistics. However, they determine decision boundaries

for each biomarker in a sequence of biomarkers, rather than a one-time threshold in probabil-

ity space which can potentially incorporate multiple biomarkers at once. Furthermore, they

assume that their biomarker readings follow a Gaussian distribution while we do not make

any assumptions on the distribution of risk scores. Additionally, in their treatment of non-

Gaussian biomarkers, they solve the optimization problem using an iterative approximation.
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In contrast, we solve tractable data-driven optimization problems to global optimality.

Several methods based on Bayesian decision theory have also been used to derive decision

thresholds (Sheppard and Kaufman, 2005; Weise et al., 2006; Yao, 2010; Yao and Zhou,

2016). Among these approaches, both Sheppard and Kaufman, 2005 and Weise et al., 2006

derive thresholds based on distributional information. Specifically, Sheppard and Kaufman,

2005 compare posterior likelihood ratios to determine whether a risk estimate is more likely

to come from a true-positive or a true-negative patient. However, this approach requires

estimation of the full distribution of risk estimates to compute, whereas we find that our

thresholds only depend on quantiles of these distributions. To this end, Weise et al., 2006 also

derive thresholds based on quantiles. However, they assume that these quantiles are derived

from a standard normal distribution whereas we do not make distributional assumptions.

Finally, the decision thresholds derived by Yao, 2010 and Yao and Zhou, 2016 are most

similar to our research since they explicitly aim to determine whether an object should be

classified as either positive, negative, or on the boundary (i.e., too uncertain to make a

decision). To this end, the thresholds derived in both Yao, 2010 and Yao and Zhou, 2016

are determined entirely by “risk” associated with each decision and do not rely on any

distributional information at all. Moreover, all of the aforementioned approaches determine

decision thresholds based on unconstrained optimization problems, whereas our approach

requires solving a constrained stochastic program.

Overall, our work differs from previous research in three ways: (1) we take a constrained

optimization approach, allowing us to simultaneously maximize sensitivity and specificity

while limiting false-positive and false-negative rates, (2) we limit false-positive and false-

negative rates based on the decision-maker’s risk attitude, creating personalized decision

thresholds, and (3) we consider uncertainty without making distributional assumptions. In

Section 4.3, we detail our stochastic programming approach to determining these decision

thresholds.

4.3 Modeling Approach

In this section, we describe our modeling approach, its related analytical properties, and sev-

eral modeling extensions. Specifically, we provide our general problem setting and notation

in Section 4.3.1 and the model formulation in Section 4.3.2. In Section 4.3.3, we develop an
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Table 4.1: Model notation

Notation Description
ξ+ ∼ P+, ξ− ∼
P−

Random risk estimate belonging to true-positives and true-negatives,
respectively, along with their corresponding distributions

t General diagnostic threshold
u, l Upper and lower diagnostic decision thresholds, respectively
se(u, ξ+) Event that a true-positive patient is correctly classified as positive

given upper threshold u and risk estimate ξ+ (sensitivity)
sp(l, ξ−) Event that a true-negative patient is correctly classified as negative

given lower threshold l and risk estimate ξ− (specificity)
fp(u, ξ−) Event that a true-negative patient is incorrectly classified as positive

given upper threshold u and risk estimate ξ− (false-positive)
fn(l, ξ+) Event that a true-positive patient is incorrectly classified as negative

given lower threshold l and risk estimate ξ+ (false-negative)
λ, φ Weighting parameters to balance sensitivity and specificity in TTP

and TTP∗, respectively
γfp, γfn Maximum levels of false-positive and false-negative rates, respectively

approximation to our stochastic programming model and in Section 4.3.4, we characterize

its optimal solution based on the extreme-point solutions of a related linear program. We

then identify conditions under which the optimal solution for the approximation is also op-

timal for the original stochastic programming model. In Section 4.3.5 and Section 4.3.6, we

formulate and analyze utility-based and multi-class diagnosis extensions, respectively, to our

modeling framework.

4.3.1 Problem Setting and Notation

A summary of our notation is provided in Table 4.1. We consider a patient population for a

chosen disease, which can be divided into two mutually exclusive populations of true-positives

(e.g., has a concussion) and true-negatives (e.g., does not have a concussion). A randomly

chosen patient is associated with the random variables (X, Y ). The random vector X ∈ X
represents a vector of patient characteristics (e.g., age, sex, concussion assessment results)

which have been transformed into a numerical representation (e.g., using one-hot encoding for

categorical variables). We let X ⊆ Rp denote the set of p-length numerical representations of

patient characteristics. The random variable Y ∈ {0, 1} represents the patient’s label, which
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indicates whether he or she is from the true-positive (i.e., Y = 1) or true-negative (i.e.,

Y = 0) population. A risk estimation model f : X → (0, 1) approximates the conditional

probability P(Y = 1|X). Such models include logistic regression, classification and regression

trees, and artificial neural networks.

Throughout the remainder of the chapter, we focus on the risk estimates ξ+ := f(X|Y =

1) and ξ− := f(X|Y = 0), which denote the risk estimates belonging to a patient from

the population of true-positives and true-negatives, respectively. Note that ξ+ and ξ− are

expressed as random variables since they are functions of X, a random vector. Therefore,

we also write that ξ+ ∼ P+ (i.e., ξ+ has distribution P+) and ξ− ∼ P−.

Given a diagnostic threshold t, a patient is classified as positive if his or her risk esti-

mate exceeds t. Otherwise, the patient is classified as negative. Let 1(·) denote the in-

dicator function. Then, given a threshold t and a true-positive patient with risk estimate

ξ+, we define sensitivity se(t, ξ+) := 1(ξ+ ≥ t) and false-negative fn(t, ξ+) := 1(ξ+ < t).

Similarly, given a threshold t and a true-negative patient with risk estimate ξ−, we define

specificity sp(t, ξ−) := 1(ξ− ≤ t) and false-positive fp(t, ξ−) := 1(ξ− > t). The conditional

expectations E[se(t, ξ+)] and E[sp(t, ξ−)] represent the expected sensitivity and specificity,

respectively, under threshold t based on each population’s risk estimates. The expected

false-positive rate, E[fp(t, ξ−)], and expected false-negative rate, E[fn(t, ξ+)], are defined

similarly.

4.3.2 Stochastic Programming Formulation

We consider an upper threshold u and lower threshold l such that any risk estimate above

u is classified as positive and any risk estimate below l is classified as negative. We aim to

determine the values of u and l which balance sensitivity and specificity while also limiting

the rate of false-positive and false-negative classifications. The region between u and l defines

a range of risk estimates for which diagnostic decisions may be deferred due to elevated risk

of false-positive or false-negative diagnoses. This region also reflects a range over which

risk scores were not estimated well and clinical judgment should be favored. Since we model

patient risk estimates as random variables, we formulate the Two-Threshold Problem (TTP)
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as the following stochastic program.

(TTP) max
u,l

λE[se(u, ξ+)] + (1− λ)E[sp(l, ξ−)] (4.1a)

s.t. E[fp(u, ξ−)] ≤ γfp (4.1b)

E[fn(l, ξ+)] ≤ γfn (4.1c)

0 ≤ l ≤ u ≤ 1. (4.1d)

The objective function (4.1a) uses the parameter λ ∈ (0, 1) to specify the relative importance

of sensitivity to specificity. Higher values of λ imply that greater importance is placed on

correctly classifying true-positives. Alternatively, setting λ equal to the proportion of true-

positives in the overall patient population equates (4.1a) to maximizing the probability of

making a correct diagnosis decision. The value of λ is chosen by the decision-maker and

making an appropriate choice can be difficult. Fortunately, we show, in Section 4.3.4, that

when it is optimal to use two distinct decision thresholds, the choice of λ does not affect

the optimal solution. The constraints (4.1b) and (4.1c) imply that, based on the thresholds

u and l, the false-positive and false-negative rates should not exceed the bounds γfp and

γfn, respectively, where γfp, γfn ∈ (0, 1). These parameters can reflect clinically acceptable

levels of diagnostic accuracy. We provide guidelines for choosing these parameters in Section

4.7.1. Finally, constraint (4.1d) ensures that the upper threshold u remains above the lower

threshold l, and that both are between 0 and 1.

4.3.3 Approximating the Two-threshold Problem

Very little can be said about the form of TTP’s objective function (4.1a), even if the distri-

butions P+ and P− are known exactly. For example, in general, (4.1a) may not be concave,

continuous, or differentiable everywhere. However, the functions se(u, ξ+) and sp(l, ξ−) are

monotone in u and l for every ξ+, ξ− ∈ (0, 1), respectively. Using these properties, we

approximate TTP with TTP∗:

(TTP∗) min
u,l

φu− (1− φ)l (4.2)

s.t. (4.1b)-(4.1d),
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where φ ∈ (0, 1) is also a weighting parameter which may not necessarily equal λ but also

serves the purpose of defining the relative importance of one threshold to the other. In

Section 4.3.4, we analyze TTP∗ and identify cases in which the optimal solutions to TTP

and TTP∗ coincide.

4.3.4 Structural Properties

In this section, we highlight structural properties which are useful in understanding TTP

through TTP∗. First, we show that by expressing the constraints (4.1b) and (4.1c) in terms

of quantiles, TTP∗ is equivalent to a linear program. Based on this linear program, we

show that the optimal solution to TTP∗ is either a two-threshold solution or a one-threshold

solution, and that the optimal solution can be characterized based on the parameters of

TTP∗. We then relate the optimal solution of TTP∗ with that of TTP, showing that a

two-threshold solution of TTP∗ is optimal in TTP, but not necessarily for one-threshold

solutions. These results indicate that TTP can be solved, in two-threshold cases, using

quantile estimation.

Throughout this section, we assume that probabilities of any true-positive or true-negative

risk estimate falling on a fixed threshold t is zero. That is,

A1 For any fixed t, P(t = ξ+) = 0 and P(t = ξ−) = 0.

Assumption A1 implies that the distributions P+ and P− are continuous which is not too

restrictive since most risk estimation models output risk scores along a continuum.

Now, we relate the optimal solution to TTP∗ with the parameters φ, γfp and γfn. Define

u(γfp) := inf{u ∈ [0, 1] : g1(u) ≤ γfp} and (4.3)

l(γfn) := sup{l ∈ [0, 1] : g2(l) ≤ γfn}, (4.4)

where we define g1(u) := E[fp(u, ξ−)] and g2(l) := E[fn(l, ξ+)] for notational convenience.

The quantity u(γfp) specifies the smallest value of u which ensures that the false-positive rate

is no more than γfp and similarly, l(γfn) denotes the greatest value of l such that the false-

negative rate is no more than γfn. Note that u(γfp) and l(γfn) are quantiles. Specifically,

u(γfp) is the (1−γfp)-quantile of P− and l(γfn) is the negative value of the (1−γfn)-quantile

68



of P+ (see Appendix 4.A). This fact forms the basis for the solution methodology described

in Section 4.4.1.

Now, by Theorem 7.48 in Shapiro, Dentcheva, and Ruszczyński, 2009, the functions g1(u)

and g2(l) are finite-valued and continuous over [0, 1], so the function g(u, l) := max {g1(u), g2(l)}
is finite-valued and continuous on [0, 1]2. The continuity of these functions along with the

fact that the interval [0, 1] is compact and convex implies that u(γfp) and l(γfn) are attained

on [0, 1]. Now, in Proposition 4.1, we show that TTP∗ is equivalent to a linear program with

constraints written in terms of u(γfp) and l(γfn).

Proposition 4.1. TTP∗ is equivalent to the following linear program.

min
u,l

φu− (1− φ)l

s.t. u ≥ u(γfp), l ≤ l(γfn), 0 ≤ l ≤ u ≤ 1.

Proof. It suffices to show the following equivalence:

u ≥ u(γfp) ⇐⇒ g1(u) ≤ γfp and l ≤ l(γfn)⇔ g2(l) ≤ γfn.

To see the first equivalence, we note that g1(u) is continuous and (weakly) decreasing in u.

It follows that u ≥ u(γfp) if and only if g1(u) ≤ γfp. The second equivalence can be similarly

shown, which completes the proof.

From Proposition 4.1, we can define the following polyhedron as the feasible region of

TTP∗.

Y =
{

(u, l) : u ≥ u(γfp), l ≤ l(γfn), 0 ≤ l ≤ u ≤ 1
}

(4.5)

Additionally, by recasting TTP∗ as a linear program, we can focus our analysis on the

extreme-point solutions of TTP∗. The following results characterize the types of optimal

solution to TTP∗.

Proposition 4.2 (Two-threshold Solutions). If φ ∈ (0, 1) and both γfp and γfn are chosen

such that u(γfp) > l(γfn), then
(
u(γfp), l(γfn)

)
is the unique optimal solution to TTP∗.
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Proof. For notational convenience, we write x = (u, l) and ψ(x) = φu − (1 − φ)l. There

exists an optimal solution to TTP* which is also an extreme point of its polyhedral feasible

region, denoted by Y , as described in (4.5). As u(γfp) > l(γfn), the extreme points of Y

are (u(γfp), l(γfn)), (u(γfp), 0), (1, l(γfn)), and (1, 0). Of all extreme points, (u(γfp), l(γfn))

results in the best objective function value and hence is optimal to TTP* because ψ(x) is

decreasing in u and increasing in l.

To show that this optimal solution is unique, suppose that there exists another optimal

solution x̄ = (ū, l̄) 6= (u(γfp), l(γfn)). Then, it must be the case that ū > u(γfp) or l̄ <

l(γfn) since otherwise, x̄ would be infeasible. However, if either case were true, we would

have ψ(x̄) > ψ((u(γfp), l(γfn))) which is a contradiction on the optimality of x̄. Thus,

(u(γfp), l(γfn)) is the unique optimal solution.

Proposition 4.2 implies that the parameter φ ∈ (0, 1) has no effect if the optimal solution

consists of two thresholds. Additionally, the conditions specified in Proposition 4.2 are

satisfied if both γfp and γfn are “low enough”. Finally, we have shown that the optimal

solution may be obtained without solving an optimization problem if the values u(γfp) and

l(γfn) can be computed exactly and the parameters γfp and γfn are chosen to satisfy the

sufficient conditions. However, the distributions P+ and P− are typically unknown, making

u(γfp) and l(γfn) difficult to ascertain.

While we have identified conditions on γfp and γfn for which the optimal solution will

consist of two separate thresholds, we also seek to determine conditions under which it is

optimal to have a single threshold, i.e., u∗ = l∗. We specify these conditions in Proposition

4.3.

Proposition 4.3 (One-threshold Solutions). If γfp and γfn are chosen such that u(γfp) ≤
l(γfn), then the optimal solution to TTP∗ consists of a single threshold, i.e., u∗ = l∗. Fur-

thermore,

(a) if φ > 0.5, the optimal threshold will be given by t∗ = u∗ = l∗ = u(γfp),

(b) if φ < 0.5, the optimal threshold will be given by t∗ = u∗ = l∗ = l(γfn), and

(c) if φ = 0.5, every t ∈ [u(γfp), l(γfn)] is optimal.
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Proof of Proposition 4.3. There exists an optimal solution to TTP* which is also an extreme

point of its polyhedral feasible region, denoted by Y , as described in (4.5). As u(γfp) ≤
l(γfn), the extreme points of Y are (u(γfp), u(γfp)), (l(γfn), l(γfn)), (u(γfp), 0), (1, l(γfn)),

and (1, 0). If φ ∈ (0.5, 1), then (u(γfp), u(γfp)) results in the best objective function value of

all these extreme points and hence is optimal to TTP*, because ψ(x) is decreasing in u and

increasing in l. Similarly, if φ ∈ (0, 0.5), then extreme point (l(γfn), l(γfn)) is the optimal

solution. If φ = 0.5, then extreme points (u(γfp), u(γfp)) and (l(γfn), l(γfn)) are equally

optimal. It follows that (t, t) is optimal to TTP* if and only if t ∈ [u(γfp), l(γfn)].

The implication of Proposition 4.3 is that if at least one of the bounds γfp or γfn is

“loose” enough, a one-threshold solution is better than a two-threshold solution. Therefore,

if it is desired to constrain just one of false-positive or false-negative rates, then a one-

threshold solution will be at least as good as two-threshold solutions. Alternatively, this

result can be interpreted to mean that using one decision threshold will not be optimal if

aiming to keep both false-positive and false-negative rates low while maximizing sensitivity

and specificity. Furthermore, Proposition 4.3 implies that in parameterizing TTP∗, one only

needs to consider the three choices of φ described. This characterization is extremely useful

in a practical sense, since choosing appropriate values for parameters is often challenging

when implementing such models in practice.

Based on the results established in Propositions 4.2 and 4.3, we can relate the optimal

solutions of TTP∗ and TTP based on the parameter choices.

Theorem 4.1 (Relation Between TTP∗ and TTP Optimal Solutions). Suppose that γfp and

γfn are chosen identically for TTP∗ and TTP.

1. If γfp and γfn are chosen such that u(γfp) > l(γfn), then, for any φ ∈ (0, 1), the

optimal solution to TTP∗ is also optimal in TTP for any λ ∈ (0, 1).

2. If γfp and γfn are chosen such that u(γfp) ≤ l(γfn), then the following statements

hold.

a) If φ > 0.5, then the optimal solution to TTP∗ is optimal in TTP with λ = 1,

b) If φ < 0.5, then the optimal solution to TTP∗ is optimal in TTP with λ = 0, and
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c) For any λ ∈ (0, 1), there exists a one-threshold optimal solution to TTP. Further-

more any one-threshold optimal solution to TTP is optimal in TTP∗ with φ = 0.5.

Proof. Statement 1: From Proposition 4.2, the optimal solution to TTP∗ is given by

(u(γfp), l(γfn)) for any φ ∈ (0, 1). Since the feasible region of TTP is identical to that

of TTP∗, (u(γfp), l(γfn)) is feasible in TTP. By the monotonicity of E[se(u, ξ+)] in u,

E[se(u(γfp), ξ+)] ≥ E[se(u, ξ+)] for any u ≥ u(γfp). Similarly, E[sp(l(γfn), ξ−)] ≥ E[sp(l, ξ−)]

for any l ≤ l(γfn). Thus,

λE[se(u(γfp), ξ+)] + (1− λ)E[sp(l(γfn), ξ−)] ≥ λE[se(u, ξ+)] + (1− λ)E[sp(l, ξ−)],

for any λ ∈ (0, 1) and (u, l) ∈ Y , where Y is the polyhedral feasible region defined in (4.5).

Therefore, the optimal solution to TTP∗ is also optimal in TTP for any λ ∈ (0, 1).

Statement 2: We begin by showing 2a. From Proposition 4.3, the optimal solution to

TTP∗ is given by (u(γfp), u(γfp)). Suppose that there exists another feasible solution (u′, l′),

to TTP which achieves greater objective function value. Since λ = 1, it must be the case

that E[se(u′, ξ+)] > E[se(u(γfp), ξ+)]. Yet, by the feasibility of (u′, l′), it must also be true

that u′ ≥ u(γfp), which implies that E[se(u(γfp), ξ+)] ≥ E[se(u′, ξ+)] by the monotonicity of

E[se(u, ξ+)] in u. We have reached a contradiction, so the optimal solution to TTP∗ is also

optimal in TTP. The proof for 2b is similar to that of 2a and has been omitted.

To show 2c, we first establish the existence of a one-threshold optimal solution. Let

(u′, l′) be any two-threshold solution to TTP. Then, since u(γfp) ≤ l(γfn), the one-threshold

solution (l̄, l̄) is also feasible for TTP, where l̄ := max{l′, u(γfp)}. Notice that by definition,

either l̄ > l′ or l̄ < u′, or both are true. By the monotonicity of E[sp(l, ξ−)] in l and

E[se(u, ξ+)] in u, (l̄, l̄) achieves at least as high an objective function value as (u′, l′). Hence,

there exists an optimal one-threshold solution to TTP. Now, let (t, t) be any one-threshold

optimal solution to TTP. Since (t, t) is feasible, it must be that u(γfp) ≤ t ≤ l(γfn). By

Proposition 4.3, this solution is optimal to TTP∗ for φ = 0.5, completing the proof.

From Theorem 4.1, we find that the optimal solution to TTP∗ is optimal for TTP in the

two-threshold case, regardless of how the parameters φ and λ are chosen. Specifically, for

two-threshold solutions, the optimal thresholds to TTP∗ at some initial value of φ are already
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tight on their constraints (4.1b)-(4.1c). Since changing the value of φ will not change the

direction of improvement for the objective function (4.2), the optimal thresholds will also

remain unchanged. Therefore, the optimal solution to TTP∗ does not depend on the value

of φ. Since the optimal solution to TTP∗ is optimal in TTP (regardless of λ) for the two-

threshold solution case, the optimal solution also does not depend on λ.

However, the one-threshold case for TTP∗ does not translate well to TTP. To derive

stronger results for the one-threshold case, we need additional assumptions regarding the

form of the objective function (4.1a). For instance, if (4.1a) is monotone over the interval

[u(γfp), l(γfn)], then the optimal solution will coincide with one of the endpoints. Unfortu-

nately, the form of (4.1a) is difficult to know a priori and it may be the case that (4.1a) has

many maxima over [u(γfp), l(γfn)]. However, if it is known that TTP has a one-threshold

solution, then it suffices to use existing one-threshold methods (see Section 4.2). Since such

instances are well-studied, we emphasize our analysis of TTP over two-threshold solutions.

Propositions 4.2 and 4.3 characterize the optimal solution to TTP∗ based on φ, γfp, and

γfn. Specifically, the optimal thresholds can be constructed if u(γfp) and l(γfn) are known

or estimated. Practically speaking, this result implies that one can solve TTP without so-

phisticated optimization software by using quantile estimation methods instead (see Section

4.4.1).

4.3.5 Utility-based Frameworks

Our formulation of TTP does not take into account any utilities because we aimed to deter-

mine a method which generalizes well across many applications, including those for which

utilities are poorly estimated. However, utilities are an important component of decision-

theoretic frameworks. In this section, we extend our analysis and analyze two utility-based

frameworks for identifying diagnosis decision thresholds. Specifically, in Section 4.3.5, we

provide a general set of conditions which ensure that the analytical results for TTP (as

derived in Section 4.3.4) still hold. Based on these conditions, we provide a specific utility-

based framework for TTP. Then, in Section 4.3.5, we study a utility-based objective function

which does not fit the conditions provided in Section 4.3.5. Nevertheless, we derive conditions

which must hold such that a two-threshold solution (e.g., one obtained by solving TTP∗) is

better than a fixed one-threshold solution.
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Utility-based Two-Threshold Problem

In this section, we identify a general class of objective functions and constraints which, when

used in the TTP framework, ensure that the structural results from Section 4.3.4 still hold.

Remark 4.1. The results shown in Section 4.3.4 hold for general optimization problems of

the form

max
u,l

g(E[se(u, ξ+)],E[sp(l, ξ−)])

s.t. h1(E[fp(u, ξ−)]) ≤ b1

h2(E[fn(l, ξ+)]) ≤ b2

0 ≤ l ≤ u ≤ 1,

where g(·) is non-increasing in u and non-decreasing in l over the feasible region, h1(·) is

non-increasing in u, h2(·) is non-decreasing in l, and b1, b2 > 0.

Through Remark 4.1, we now show how to incorporate utilities into the TTP framework.

Let

� q be the proportion of true-positives in the population,

� r+ > 0 and r− > 0 be the utilities associated with correctly classifying true-positives

and true-negatives, respectively,

� c+ > 0 and c− > 0 be the costs associated with false-negatives and false-positives,

respectively, and

� b+ > 0 and b− > 0 be the maximum allowable costs associated with false-negatives

and false-positives, respectively.

Examples of utilities for r+, r−, c+ and c− include quality-adjusted life-years — a common

utility measure used in medical decision-making and public health. Now, we can formulate
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the Utility-based Two-Threshold Problem (UTTP) as:

(UTTP) max
u,l

r+qE[se(u, ξ+)] + r−(1− q)E[sp(l, ξ−)]

s.t. c−(1− q)E[fp(u, ξ−)] ≤ b−

c+qE[fn(l, ξ+)] ≤ b+

0 ≤ l ≤ u ≤ 1.

UTTP aims to determine thresholds u and l which maximize the expected utility associ-

ated with correct classification without exceeding expected misclassification costs. Since the

monotonicity of the objective function and constraints for UTTP match the monotonicity

for TTP, Theorem 4.1 applies to UTTP.

Utility-based Cost Function

In this section, we consider a more general objective function than the one considered in

Section 4.3.5. For a fixed set of thresholds (u, l), define

p+(u, l) := P(Correct Classification|u, l) = E[se(u, ξ+)]q + E[sp(l, ξ−)](1− q)

p−(u, l) := P(Misclassification|u, l) = E[fn(l, ξ+)]q + E[fp(u, ξ−)](1− q)

pD(u, l) := P(Defer|u, l) = 1− p+(u, l)− p−(u, l),

where q specifies the proportion of people who are true-positives in the population subject

to diagnosis. Furthermore, consider three utilities c+, c−, and cD associated with a correct

classification, misclassification, and deferred diagnosis decision, respectively. We assume that

c+ ≥ cD ≥ c−, i.e., it is better to correctly classify a patient than to defer a patient and it

is better to defer a patient than to misclassify a patient. Given this ordering of utilities, we

can express cD as cD = δc− + (1− δ)c+ for some δ ∈ [0, 1]. Then, we can define an expected

utility function of the form

J(u, l) = p+(u, l)c+ + p−(u, l)c− + pD(u, l)cD. (4.6)

In general, J(u, l) does not satisfy the conditions in Remark 4.1. More specifically, J(u, l)

is not generally non-increasing in u and non-decreasing in l. We note that (4.6) is nearly
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identical to the regret-based framework in Section 5.1 of Shapiro, 1999, except we include

a utility associated with deferred diagnosis decisions. With the function (4.6), one may be

interested in comparing a fixed two-threshold solution (u, l) with a one-threshold solution

(t, t). In particular, how high must the utility cD be for (u, l) to be a better solution than

(t, t)? We provide intuitive conditions to answer this very question in Proposition 4.4.

Proposition 4.4. Consider a one-threshold solution (t, t) and a two-threshold solution (u, l)

such that pD(u, l) > 0. Then, J(u, l) ≥ J(t, t) if and only if

δ ≤ p−(t, t)− p−(u, l)

pD(u, l)
. (4.7)

Proof. We will first show the “ =⇒ ” direction. Suppose that δ satisfies (4.7). Then, we

have

J(u, l) = p+(u, l)c+ + p−(u, l)c− + pD(u, l)cD

= p+(u, l)c+ + p−(u, l)c− + pD(u, l)(δc− + (1− δ)c+)

=
(
p+(u, l) + pD(u, l)

)
c+ + p−(u, l)c− + δpD(u, l)(c− − c+)

≥
(
p+(u, l) + pD(u, l)

)
c+ + p−(u, l)c− + (p−(t, t)− p−(u, l))(c− − c+) (4.8)

=
(
p+(u, l) + pD(u, l) + p−(u, l)− p−(t, t)

)
c+ + p−(t, t)c−

= (1− p−(t, t))c+ + p−(t, t)c− (4.9)

= p+(t, t)c+ + p−(t, t)c− (4.10)

= J(t, t),

where (4.8) comes from the fact that c+ ≥ c− and δ satisfies (4.7), (4.9) comes from the fact

that p+(u, l)+pD(u, l)+p−(u, l) = 1, and (4.10) uses the fact that p+(t, t)+p−(t, t) = 1 since a

one-threshold solution has no deferred decisions. Thus, we have shown that J(u, l) ≥ J(t, t).

We will now show that “⇐= ” direction. Suppose that J(u, l) ≥ J(t, t). Then,

p+(u, l)c+ + p−(u, l)c− + pD(u, l)cD ≥ p+(t, t)c+ + p−(t, t)c−.

By expanding pD(u, l) and cD, rearranging terms, using the definition pD(u, l), and using the
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fact that p+(t, t) + p−(t, t) = 1, we have

δpD(u, l)(c− − c+) ≥ [p+(t, t)− p+(u, l)− pD(u, l)]c+ + [p−(t, t)− p−(u, l)]c− (4.11)

= [p+(t, t)− (1− p−(u, l))]c+ + [p−(t, t)− p−(u, l)]c−

= [p−(t, t)− p−(u, l)](−c+) + [p−(t, t)− p−(u, l)]c−

= [p−(t, t)− p−(u, l)](c− − c+). (4.12)

If c+ = c−, the inequality holds trivially. If c+ > c−, the desired inequality is shown by

dividing the LHS of (4.11) and (4.12) by pD(u, l)(c− − c+).

Proposition 4.4 provides insights in the trade-off between two-threshold and one-threshold

solutions. Let us first examine the expression on the right-hand side of (4.7). Note that the

numerator of (4.7) specifies the misclassifications which are saved by switching from (t, t)

to (u, l) and the denominator specifies the overall probability of being deferred under (u, l).

Thus, we can interpret the right-hand side of (4.7) as the proportion of deferred decisions

under (u, l) which consist of would-be misclassifications under (t, t). Therefore, Proposition

4.4 tells us that the utility associated with deferred decisions cD can only be as low as the

proportion of saved misclassifications by switching from (t, t) to (u, l). Furthermore, if we

interpret δ to be the expected proportion of deferred decisions which end up being misclas-

sified, Proposition 4.4 tells us that it is better to switch from (t, t) to (u, l) if the expected

proportion of misclassifications after a deferred decision is no more than the misclassifications

saved by switching from (t, t) to (u, l). To summarize, this analysis shows that two-threshold

solutions are particularly useful when either: (i) the utility cD is relatively high compared

to c+ and c−, (ii) if most of deferred decisions consist of would-be misclassifications, or (iii)

if ultimately, few deferred decisions end up being misclassified.

4.3.6 Extensions to Multi-class Diagnosis

In our formulation of TTP, we focused on the case in which the population consists of two

subpopulations. In this section, we extend our modeling framework to handle the case when

there are three or more subpopulations, i.e., multi-class diagnosis. We specifically focus on

the cases of (1) multi-label classification and (2) ordinal classification.
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Multi-label Classification via Binary Relevance

In this section, we extend TTP to address multi-label classification problems through the

Binary Relevance (BR) method. In multi-label classification through BR, one aims to deter-

mine which labels should be assigned to a patient given an estimate for the likelihood that

the patient should be assigned each label. Examples of this problem include determining

which concussion subtypes a patient may have based on a multi-dimensional clinical assess-

ment (Collins et al., 2014; Maruta, Lumba-Brown, and Ghajar, 2018) or determining which

chronic diseases a person may have based on electronic health record information (Zufferey

et al., 2015).

The specific problem setting is as follows. The patient population consists of patients who

may belong to any subset of K ≥ 2 classes. Hence, in this patient population, there are

2K mutually exclusive subpopulations. A randomly drawn patient from this population is

associated with random vectors (X, Y ), where X ∈ X consists of patient characteristics (and

X is the set of patient characteristics) and Y ∈ {0, 1}K is a vector where the kth entry yk

is equal to 1 if the patient is associated with class k and 0 otherwise. Furthermore, there

are K risk estimation models f1, ..., fK where each risk estimation model fk(X) : X → (0, 1)

approximates P(yk = 1|X). Examples of such models include multinomial regression, multi-

class support vector machines, and multi-class perceptrons. The BR method associates a

patient with class label k if fk(X) ≥ tk, where tk ∈ [0, 1] is a class k decision threshold.

Note that BR treats risk estimates for each class label as if they were independent of risk

estimates from all other class labels. This simplifying assumption is a known limitation to the

BR framework (Zhang et al., 2018), though it has been shown to outperform more intricate

modeling approaches for some applications (Zufferey et al., 2015). To this end, ensemble

learning methods have been developed which account for dependence between labels in the

creation of risk estimation models f1, ..., fk (Godbole and Sarawagi, 2004; Read et al., 2011;

Zhang and Zhang, 2010). These existing methods may be applied prior to determining each

of the k decision thresholds.

The performance of a set of thresholds t1, ..., tK can be evaluated similarly to the binary

classification problem which is the focus of this manuscript. For brevity, we denote class k
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risk estimates as

ξ+
k := fk(X|yk = 1) and

ξ−k := fk(X|yk = 0),

for each k = 1, ..., K. Given a patient with label yk = 1 and some threshold tk, we define

the functions

sek(tk, ξ
+
k ) := 1{ξ+

k ≥ tk}

fnk(tk, ξ
+
k ) := 1{ξ+

k < tk}

as class k sensitivity and false-negative, respectively. Similarly, for patients with yk = 0 and

a given threshold tk, we define

spk(tk, ξ
−
k ) := 1{ξ−k ≤ tk}

fpk(tk, ξ
−
k ) := 1{ξ−k > tk}

as class k sensitivity and false-positive, respectively.

In our extension to BR, we consider an upper threshold uk and lower threshold lk such that

a risk estimate above uk labels a patient as class k and below lk does not label a patient as

class k. For patients with risk estimates between uk and lk, their association with label k is

inconclusive. For each class k, we aim to determine the thresholds uk and lk by maximizing

the expected class k sensitivity and specificity, respectively, while restricting the expected

false-positive and false-negative rates. This problem can be represented with the Multi-label

Two Threshold Problem (MTTP), which we define as

(MTTP) max
u1,...,uK ,l1,...,lK

K∑
k=1

(
λkE[sek(uk, ξ

+
k )] + (1− λk)E[spk(lk, ξ

−
k )]

)
(4.13a)

s.t. E[fpk(uk, ξ
−
k )] ≤ γfpk for all k = 1, ..., K (4.13b)

E[fnk(lk, ξ
+
k )] ≤ γfnk for all k = 1, ..., K (4.13c)

0 ≤ lk ≤ uk ≤ 1, for k = 1, ..., K, (4.13d)
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where the parameters λk ∈ (0, 1) indicate the preference for sensitivity over specificity in

class k for all k = 1, ..., K. If we take λk to be the proportion of patients with yk = 1 in the

overall population, then the objective function (4.13a) can be interpreted as maximizing the

labeling accuracy.

Following the BR framework, the thresholds in each class k are treated independently of

thresholds in class j 6= k. Through this simplification, one could decompose MTTP into

solving TTP K times. Therefore, the results derived for TTP can be applied directly to

MTTP. Specifically, we show in Corollary 4.1 that the optimal solution can be written in

terms of the following quantiles:

uk(γ
fp
k ) := min{u : E[fp(u, ξ−k )] ≤ γfpk } for all k = 1, ..., K

lk(γ
fn
k ) := max{l : E[fn(l, ξkk)] ≤ γfnk } for all k = 1, ..., K.

Corollary 4.1. If uk(γ
fp
k ) > lk(γ

fn
k ) for all k = 1, ..., K, the optimal solution to MTTP is

given by u∗k = uk(γ
fp
k ) and l∗k = lk(γ

fn
k ) for all k = 1, ..., K.

Proof. Notice that since the thresholds (uk, lk) are not coupled with any other set of thresh-

olds (uj, lj), j 6= k, then MTTP can be decomposed into K TTP problems, where TTPk

denotes TTP for the kth class and is defined as follows:

(TTPk) max
uk,lk

λkE[se(uk, ξ
+
k )] + (1− λk)E[sp(lk, ξ

−)]

s.t. E[fpk(uk, ξ
−
k )] ≤ γfpk

E[fnk(lk, ξ
+
k )] ≤ γfnk

0 ≤ lk ≤ uk ≤ 1.

Now, since TTPk follows the form of TTP exactly, it follows from Theorem 4.1 that if

uk(γ
fp
k ) > lk(γ

fn
k ), then the optimal solution is given by

(
uk(γ

fp
k ), lk(γ

fn
k )
)

. Hence, the proof

is complete.

Remark 4.2. If it were the case that each patient belongs to only 1 of the K classes, then

this classification problem is no longer a multi-label classification problem. Instead, it is a

multi-class classification problem. To this end, the One-versus-All approach to multi-class

classification is similar to the BR approach studied in this section. Specifically, both methods
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create K risk estimation models f1, ..., fK with one model for each class. The key distinction

between these two methods is that in the One-versus-All framework, each patient may only

be assigned a single label. For example, one may wish to classify which type of skin lesion

a patient has among 7 different possibilities (Tschandl et al., 2019). While MTTP could

certainly be applied directly to this related problem, it may not be well-suited for this scenario

since there exists the possibility that MTTP recommends a patient for more than one class.

This result would be difficult to interpret and could limit its application in practice.

Ordinal Classification

In this section, we present a model similar to TTP which can be used to identify thresholds

for ordinal classification problems. Ordinal classification aims to determine which severity

level a patient belongs to for a certain disease. Currently, there is not consensus on severity

ratings for concussion, though one may try to predict whether a patient has no concussion, a

concussion with normal recovery, or a concussion with pro-longed recovery (Lau et al., 2011).

Another example of ordinal classification is in predicting a patient’s degree of recovery six

months after traumatic brain injury (Roozenbeek et al., 2011).

In this problem setting, there are K ≥ 2 mutually exclusive patient classes ordered by

severity. That is, class 1 is the least severe class and class K is the most severe. A randomly

chosen patient is associated with the tuple (X, Y ), where X ∈ X is a random vector of

patient characteristics from the set of patient characteristics X and the random variable

Y ∈ {1, ..., K} describes his or her class. Rather than directly estimating Y based on

patient characteristics X, ordinal classification methods estimate a continuous latent variable

ξ ∈ [0, 1]. Then, given K − 1 ordered thresholds t1, ..., tK−1 such that t0 := 0 ≤ t1 ≤ ... ≤
tK−1 ≤ tK := 1, a patient is classified as being in class k if tk−1 ≤ ξ ≤ tk. Specifically,

we assume that there is a severity score model f : X → [0, 1] which estimates the latent

variable ξ based on patient characteristics X. Such models include ordinal logistic regression

and ordinal support vector machines. Throughout the remainder of this section, we define

ξk := f(X|Y = k) to be the severity score for a random patient from class Y = k with

characteristics X.

We aim to identify the thresholds t1, ..., tK−1 which correctly classify as many patients as

possible into the correct severity class while limiting the number of patients misclassified

into lower and higher severity classes. Using the same functions defined in Section 4.3.1, we
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define the Ordinal Threshold Problem (OTP) as follows:

(OTP) max
t1,...,tK−1

K−1∑
k=0

λk+1E[se(tk, ξ
k+1)] (4.14a)

s.t. E[fp(tk, ξ
j)] ≤ γfpk,j for all j ≤ k, k = 1, ..., K − 1 (4.14b)

E[fn(tk, ξ
j)] ≤ γfnk,j for all j > k, k = 1, ..., K − 1 (4.14c)

tk ≤ tk+1 for all k = 1, ..., K − 2, (4.14d)

where t0 = 0 and the weight parameters λk ∈ (0, 1) satisfy
∑K

k=1 λk = 1. These weight

parameters can be interpreted as the relative importance of correctly classifying one class

to the others. In the objective function, we focus on modeling sensitivity — rather than

combining sensitivity and specificity — since there is generally more urgency in correctly

identifying conditions which are more severe compared to those which are less severe. For

example, this urgency may arise in classification of traumatic brain injury since the health-

related costs (resp., quality of life) for patients with mild or moderate traumatic brain injury

are estimated to be less (resp., greater) compared to patients with severe traumatic brain

injury (Andelic et al., 2009; Humphreys et al., 2013). The constraint parameters γfpk,j (resp.,

γfnk,j) specify the maximum expected false-positive rate (resp., false-negative rate) for class j

against threshold tk. We assume that for each k = 1, ..., K, the constraint parameters are

chosen such that γfpk+1,j ≤ γfpk,j for all j ≤ k and γfnk+1,j ≥ γfnk,j for all j > k. If these parameters

are not chosen in this way, then OTP is guaranteed to be infeasible.

We now show that, much like TTP, the optimal solution to OTP can be defined in terms

of quantiles. Specifically, for all k = 1, ..., K, we define the following quantiles:

tk(γfp) := min{t : E[fp(t, ξk)] ≤ γfp}

t̄k(γfn) := max{t : E[fn(t, ξk)] ≤ γfn}.

For ease of notation, we also define

tk := max
j≤k

tj(γfpk,j) (4.15)

t̄k := min
j>k

t̄j(γfnk,j), (4.16)
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for all k = 1, ..., K − 1. Notice that t̄k ≤ t̄k+1 and tk ≥ tk+1 based on how the parameters

γfpk,j and γfnk,j need to be chosen.

Now, we show that if OTP is feasible, the optimal solution to OTP can be stated in terms

of the quantiles defined in (4.15)-(4.16).

Theorem 4.2. OTP is feasible if and only if tk ≤ t̄k for all k = 1, ..., K. Furthermore, if

OTP is feasible, then the optimal solution is given by t∗k = tk for all k = 1, ..., K − 1.

Proof. We break this proof into two parts. In the first part, we show that OTP is feasible

if and only if tk ≤ t̄k for all k = 1, ..., K. Then, in the second part, we show that if OTP is

feasible, then the optimal solution is given by t∗k = tk for all k = 1, ..., K.

Part 1: “ =⇒ ”: Consider any tk ≥ tk. It follows that

tk ≥ tk = max
j≤k

tj(γfpk,j)

≥ tj(γfpk,j) for all j ≤ k

⇐⇒ E[fp(tk, ξ
j)] ≤ γfpk,j for all j ≤ k.

Similarly, any tk ≤ t̄k implies that E[fn(tk, ξ
j)] ≤ γfnk,j for all j > k. Therefore, if tk ≤ t̄k, we

can pick any tk ∈ [maxj≤k tj, t̄k] and it will satisfy constraints (4.14b)-(4.14c). Furthermore,

since we assume that γfpk,j ≥ γfpk+1,j for all j ≤ k, it follows that tk+1 ≥ tk for all k = 1, ..., K−1

and therefore, tk+1 ≥ tk for all k = 1, ..., K − 1 implying that constraint (4.14d) is satisfied.

Thus, OTP is feasible.

“ ⇐= ”: For any feasible solution to OTP, consider any threshold tk. It follows that

E[fp(tk, ξ
j)] ≤ γfpk,j for all j ≤ k, implying that tk ≥ tk. Similarly, E[fn(tk, ξ

j)] ≤ γfnk,j for all

j > k. Therefore, tk ≤ tk ≤ t̄k implying that tk ≤ t̄k for all k = 1, ..., K − 1.

Part 2:

Consider any feasible solution (t1, ..., tK). From Part 1, it follows that tk ≤ tk ≤ t̄k for all

k = 1, ..., K. Since the function E[se(t, ξk)] is decreasing in t for all k = 1, ..., K, it follows

that
K−1∑
k=0

λk+1E[se(tk, ξ
k+1)] ≥

K−1∑
k=0

λk+1E[se(tk, ξ
k+1)].

Since the set of thresholds (t1, ..., tK−1) is feasible for OTP, it must also be optimal.

Theorem 4.2 tells us that the optimal solution to OTP can be stated in terms of quantiles
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and therefore, computed via quantile estimation. Furthermore, OTP is guaranteed to be

feasible if we set γfnk,j = 1 for all j > k. Thus, this formulation of OTP actually emphasizes

constraints on the false-positive rate more than it does the false-negative rate. However, one

could also formulate OTP based on maximizing specificity with more emphasis on constrain-

ing false-negative rates. Specifically, if (4.14a) was replaced with

max
t1,...,tK

K∑
k=1

λkE[sp(tk, ξ
k)],

where tK = 1, then it is straightforward to show that the feasibility result in Theorem 4.2

holds and the optimal solution to this new problem is given by t∗k = t̄k for k = 1, ..., K − 1.

That is, with this alternative objective function, the constraints on false-negative rates are

emphasized. Using the results from Theorem 4.2 to develop solutions for OTP, we use

simulation to assess the performance of OTP in Section 4.5.4.

While restricting the objective function to containing only sensitivity (or specificity) was

motivated by practical reasons, it serves a technical purpose as well. Specifically, the objec-

tive function would no longer be monotone in the thresholds t1, ..., tK if both sensitivity and

specificity were included. As a result, little can be said about the form taken by the opti-

mal solution to OTP without making assumptions about the distributions of risk estimates

ξ1, ..., ξK . To this end, finding ways to incorporate both sensitivity and specificity in OTP

would be an interesting direction for future research.

4.4 Data-driven Solution Methods

In Section 4.3.4, we showed important analytical properties which relate TTP∗ and TTP.

In particular, TTP∗ provides an optimal solution to TTP if the optimal solution is a two-

threshold solution. However, solving TTP∗ is not straightforward since obtaining the func-

tions (4.1b) and (4.1c) may not be possible, even if the distribution P or P+,P− are known

exactly. On the other hand, data may be available which can be used to estimate (4.1b)

and (4.1c). In this section, we propose two data-driven methods for solving TTP∗ tractably:

quantile estimation and distributionally robust optimization.

In the remainder of this section, we denote a data sample of size N as P̂N = {ξ̂1, .., ξ̂N}.

84



Let the set P̂+
N = {ξ̂ ∈ P̂N : true-positive} = {ξ̂+

1 , ..., ξ̂
+
N+} be the part of the data sample

consisting of true-positives. Similarly, let P̂−N = {ξ ∈ P̂N : true-negative} = {ξ̂−1 , ..., ξ̂−N−}
be the true-negatives. The sets P̂+

N and P̂−N are mutually exclusive and P̂N = P̂+
N ∪ P̂

−
N , so

N+ +N− = N .

4.4.1 Quantile Estimation

In Section 4.3.4, we have shown that the optimal solution to TTP∗ is characterized by the

quantiles u(γfp) and l(γfn). Thus, we propose to solve TTP∗ using Harrell-Davis quantile

estimation (Harrell and Davis, 1982), as it has been shown to outperform the standard quan-

tile estimation method across various distributions. We also performed auxiliary analyses

and found that the Harrell-Davis quantile estimation method outperformed standard sample

average approximation techniques. Once we have estimated u(γfp) and l(γfn), we apply

Propositions 4.2 and 4.3 to estimate the optimal solution to TTP∗. We refer to this solution

as TTP∗-Q.

Remark 4.3. Different application needs may call for different quantile estimation methods.

For instance, if γfp or γfn are set very close to 0, it may be more appropriate to use a method

for estimating extreme quantiles (Dańıelsson and Vries, 1997).

An important factor in obtaining high out-of-sample feasibility for TTP∗-Q is the choice of

constraint parameters γfp and γfn. Specifically, solving TTP∗-Q with constraint parameters

γfpτ < γfp and γfnτ < γfn can improve its out-of-sample feasibility. However, choosing values

of γfpτ and γfnτ which are too small can result in overly conservative thresholds. In Section

4.4.3, we describe how the values of γfpτ and γfnτ can be calibrated using data.

4.4.2 Data-driven Distributionally Robust Optimization

A drawback to the quantile estimation approach in Section 4.4.1 is that it may require a

very large sample size N to sufficiently approximate the distribution P . However, obtaining

a large enough sample of data may not be possible, e.g., when data collection is very costly

or time-consuming. Hence, we consider the context in which the data samples P̂N do not

sufficiently represent the true population distribution P and we wish to create thresholds
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which are robust to the worst-case differences between P̂N and P . We consider the following

distributionally robust TTP∗ (TTP∗-DR) model:

(TTP∗-DR) min
u,l

φu− (1− φ)l

s.t. sup
Q−∈D−

EQ− [fp(u, ξ−)] ≤ γfp (4.17a)

sup
Q+∈D+

EQ+ [fn(l, ξ+)] ≤ γfn (4.17b)

0 ≤ l ≤ u ≤ 1,

whereD− (respectively, D+) represents a family of probability distributions that are plausible

candidates of P− (respectively, P+) and is termed the ambiguity set. For TTP∗-DR, we

propose to construct D− and D+ in a data-driven fashion by considering all distributions

which are “close” to the data sample P̂N based on the Wasserstein distance metric. We opt to

construct our ambiguity set based on the Wasserstein distance metric since such ambiguity

sets have been shown, under mild conditions, to satisfy strong finite sample guarantees,

asymptotic consistency, and tractability (Mohajerin Esfahani and Kuhn, 2018).

To define the Wasserstein-based ambiguity set, we must first define some preliminary nota-

tion. LetM(Ξ) represent the set of all probability distributions over the support Ξ = [0, 1],

i.e., all distributions which generate risk scores. Then, the Wasserstein distance between any

two distributions Q1,Q2 ∈M(Ξ) is defined by

W (Q1,Q2) := inf
Π∈Ξ×Ξ

{∫
Ξ2

|ξ − ξ′|Π(dξ, dξ′) :
Π is a joint distribution of ξ and ξ′

with marginals Q1 and Q2, respectively,

}
(4.18)

where ξ, ξ′ ∈ Ξ. Now, let P̂N be an empirical uniform distribution centered on the data

sample P̂N . Then, for any Wasserstein radius ε > 0, we define our ambiguity set as

Dε(P̂N) := {Q : W (Q, P̂N) ≤ ε}. (4.19)

The ambiguity set (4.19) represents the set of all probability distributions which are within

an ε distance, based on (4.18), to the data-driven empirical distribution P̂N . Intuitively,
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larger choices of ε lead to more robust (i.e., conservative) solutions. Now, let ε+ and ε−

denote chosen Wasserstein radii for the data samples P̂+
N and P̂−N , respectively. In Section

4.4.3, we detail a cross-validation scheme to calibrate the selection of Wasserstein radii ε+ and

ε− based on the data P̂+
N and P̂−N . Setting the data-driven ambiguity sets as D+ := Dε+(P̂+

N)

and D− := Dε−(P̂−N), TTP∗-DR becomes

min
u,l

φu− (1− φ)l

s.t. sup
Q∈D−

EQ[fp(u, ξ−)] ≤ γfp (4.20a)

sup
Q∈D+

EQ[fn(l, ξ+)] ≤ γfn (4.20b)

0 ≤ l ≤ u ≤ 1.

Due to the optimization problems embedded in the constraints (4.20a)-(4.20b), solving

TTP∗-DR is not straightforward. Furthermore, this optimization occurs over the space of

all probability distributions in D+ and D−. To this end, we show in Appendix 4.B that the

constraints (4.20a) and (4.20b) can be reformulated into tractable problems. Specifically,

when the thresholds u and l are fixed, these reformulations are linear programs which scale

in size based on the size of the data sample PN and can be handled efficiently by most

modern commercial solvers (e.g., GUROBI, AMPL, and MOSEK). However, since u and

l are not fixed in TTP∗-DR, the reformulations present bilinear constraints. Nevertheless,

since the left-hand sides of (4.20a) and (4.20b) are monotone in u and l, respectively, the

optimal values of u and l can still be determined in polynomial time using algorithms such

as bisection line search.

4.4.3 Model Calibration

In data-driven settings, it is important to calibrate the parameters of stochastic optimization

models to ensure that the model performs well against unseen data. First, we describe how

the parameters γfp and γfn can be calibrated for TTP∗-Q to ensure that the constraints are

satisfied a greater proportion of the time. Then, we describe how the Wasserstein radii ε+

and ε− can be calibrated based on the data samples P̂+
N and P̂−N so that the solutions to

TTP∗-DR are not overly conservative.
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Calibrating constraints for TTP∗-Q: For stochastic programming models, data-driven

solution methodologies (e.g., sample average approximation) have been shown to suffer in

out-of-sample feasibility when the data-driven problem is solved using the same constraint

parameters as the desired level of feasibility (Ahmed and Shapiro, 2008; Luedtke and Ahmed,

2008; Pagnoncelli, Ahmed, and Shapiro, 2009). To alleviate this issue for TTP∗-Q, we aim

to rewrite the right-hand sides of (4.1b) and (4.1d) as γfpτ := γfp− τ fp and γfnτ := γfn− τ fn,

respectively, where τ fp ∈ (0, γfp) and τ fn ∈ (0, γfn). In principle, the parameters τ fp and

τ fn act as safety factors for the constraints. Intuitively, larger values of τ fp and τ fn should

correspond to greater feasibility. To determine τ fn, we applied the following procedure.

1. Fix γfn and created a grid G = {0, ..., γfn} of |G| evenly spaced potential units between

0 and γfn.

2. Following the procedure for k-fold cross-validation, divide the data P̂+
N into k equally

sized subsets {P̂+
N,i}ki=1, where the ith fold involves a training subset P̂+,train

N,i :=
⋃
j 6=i P̂

+
N,j

and a held-out testing set P̂+
N,i.

3. For each i = 1, ..., k, set liτ = l(γfn− τ) for each τ ∈ G where the quantile l(γfn− τ) is

determined using the Harrell-Davis quantile estimator over the training data P̂+,train
N,i .

4. Evaluate the quality of liτ using

Lfni (liτ ) = E[sp(liτ , ξ
−)]− ρE[fn(liτ , ξ

+)],

where the first expectation is approximated by the data sample P̂−N , the second ex-

pectation is approximated by the held-out testing set P̂+
i , and the penalty term ρ is

set sufficiently high (e.g., ρ = 100) to ensure that infeasible solutions are generally

outperformed by feasible solutions.

5. For each fold i = 1, ..., k, set τ ∗i = arg maxτ Lfni (liτ ).

6. Set τ fn as the qth quantile of the set {τ ∗i }ki=1. Higher values of q correspond to more

conservative estimates of τ fn.

The procedure is similar for determining τ fp. The main differences are as follows.
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1. The maximum element in the grid is given by γfp.

2. Cross-validation is performed over P̂−N , with each fold i having a training subset

P̂−,train
N,i :=

⋃
j 6=i P̂

−
N,j and held-out testing set P̂−N,i.

3. For each τ ∈ G, we set uiτ = u(γfp − τ), where the quantile u(γfp − τ) is determined

by the Harell-Davis quantile estimator over the training data P̂−,train
N,i .

4. Each uiτ is evaluated under the function

Lfpi (uiτ ) = E[se(uiτ , ξ
+)]− ρE[fp(uiτ , ξ

−)],

where the first expectation is approximated by the data sample P̂+
N and the second

expectation by the held-out sample P̂−N,i.

Calibrating Wasserstein radii for TTP∗-DR: The choice of Wasserstein radii ε+ and

ε− can greatly influence the performance of TTP∗-DR. For example, setting ε+ equal to

ε+LD =
√

2/N+ log(1/(1− β))

guarantees that the ambiguity set D̂+
N(ε+LD) contains the true data-generating distribution P+

with probability 1−β (Mohajerin Esfahani and Kuhn, 2018). Unfortunately, in practice, this

choice of ε+ results in an overly conservative optimal threshold. Fortunately, cross-validation

can be used to calibrate the choice of ε+, resulting less conservative optimal thresholds. To

determine ε+, we apply the following procedure.

1. Fix γfn and created a grid G = {0, ..., ε+LD} of |G| evenly spaced potential radii between

0 and ε+LD.

2. Following the procedure for k-fold cross-validation, divide the data P̂+
N into k equally

sized subsets {P̂+
N,i}ki=1, where the ith fold involves a training subset P̂+,train

N,i =
⋃
j 6=i P̂

+
N,j

and a held-out testing set P̂+
N,i.

3. For each i = 1, ..., k, solve

liε = max

{
l ∈ [0, 1] :

(4.20b) is satisfied with

D+ = Dε(P̂+,train
N,i )

}
,
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where P̂
+,train

N,i is the empirical uniform distribution centered on P̂+,train
N,i .

4. Evaluate the quality of liε using

Lfni (liε) = E[sp(liε, ξ
−)]− ρE[fn(liε, ξ

+)],

where the first expectation is approximated by the data sample P̂−N , the second ex-

pectation is approximated by the held-out testing set P̂+
i , and the penalty term ρ is

set sufficiently high (e.g., ρ = 100) to ensure that infeasible solutions are generally

outperformed by feasible solutions.

5. For each fold, we set ε∗i = arg maxε Lfni (liε).

6. Set the Wasserstein radius as ε+ = 1/k
∑k

i=1 ε
∗
i .

The procedure is similar for determining ε−. The main differences are as follows.

1. The maximum radius in the grid is given by ε−LD =
√

2/N− log(1/(1− β)).

2. Cross-validation is performed over P̂−N , with each fold i having a training subset

P̂−,train
N,i :=

⋃
j 6=i P̂

−
N,j and held-out testing set P̂−N,i.

3. The upper threshold is determined by solving

uiε = min

{
u ∈ [0, 1] :

(4.20a) is satisfied with

D− = Dε(P̂−,train
N,i )

}
,

where P̂−,train
N,i is the empirical uniform distribution centered on P̂−,train

N,i .

4. Each uiε is evaluated under the function

Lfpi (uiε) = E[se(uiε, ξ
+)]− ρE[fn(uiε, ξ

−)],

where the first expectation is approximated by the data sample P̂+
N and the second

expectation by the held-out sample P̂−N,i.
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4.5 Simulation Analysis

In this section, we use simulation to analyze the performance of TTP and its extensions

under various conditions. Specifically, we first analyze the computational time required for

TTP∗-Q and TTP∗-DR in Section 4.5.1. Then, we analyze the feasibility and optimality of

TTP∗-Q and TTP∗-DR with respect to known distributions in Section 4.5.2. In Section 4.5.3,

we perform a numerical analysis to compare the performance of TTP∗-Q with an optimized

single threshold. Finally, in Section 4.5.4 we analyze the OTP model of Section 4.3.6.

4.5.1 Computational Time for TTP∗-Q and TTP∗-DR

In this section, we analyze the computational time required to solve TTP∗-Q and TTP∗-DR.

We assumed that P+ = Beta(55, 45) and P− = Beta(45, 55). This distributional setup is

equivalent to the distribution in Section 4.5.2 with AUROC = 0.922. For each sample size

N+ = N− ∈ {100, 500, 1000, 2000, 5000}, we solved TTP∗-Q and TTP∗-DR 100 times under

the constraints γfp = 0.10 and γfn = 0.05. Models were implemented using Python 3.6 and

optimization models were solved using Gurobi version 8.0. Computational times are based

on a computer with 16 GB of RAM and an Intel Xeon E3-1241 3.50 GHz CPU. The results

of this analysis are shown in Figure 4.1.

This analysis reveals that solving TTP∗-Q takes several orders of magnitude less compu-

tational time compared to TTP∗-DR. Specifically, even at 5000 samples, the median solution

time for TTP∗-Q is 0.04 seconds. In contrast, the computational burden of TTP∗-DR rises

sharply as the sample size increases. With only 100 samples, the median solution time

for TTP∗-DR is 0.64 seconds. As the sample size rises to 1000, the median solution time

increases to 9.45 seconds. At 5000 samples, the median computational time is 74.20 seconds.

4.5.2 Feasibility and Optimality of TTP∗-Q and TTP∗-DR

In this section, we use simulation to estimate the performance of TTP∗-Q and TTP∗-DR

under different underlying risk estimation distributions and sample sizes. We aim to identify

the situations for which each solution methodology performs well.

We performed our simulation analysis under the following settings.

Underlying risk estimation distributions: The Beta distribution is commonly used to
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Figure 4.1: Median log10(computational time in seconds) for solving TTP∗-Q and TTP∗-
DR. Shaded area represents the 5th and 95th percentiles.

simulate random variables with the support [0, 1] and its shape parameters can be manipu-

lated to change the distribution’s mean, variance, and skewness. Therefore, we assumed that

P+ = Beta(0.55v, 0.45v) and P− = Beta(0.45v, 0.55v) where v ∈ {1, 10, 50, 100}. Larger

values of v reflect a higher quality of risk estimation model as measured by area under the

receiver operating characteristic curve (AUROC). Specifically, v being equal to 1, 10, 50, and

100 is equivalent to an AUROC of 0.585, 0.680, 0.844, and 0.922, respectively.

Sample size: We assumed that N+ and N− are equal, with N+, N− ∈ {100, 500, 1000}.
For each scenario given by AUROC and sample size, we calibrated and solved TTP∗-Q

and TTP∗-DR 100 times under the constraints γfp = 0.10 and γfn = 0.05.

Since this simulation analysis utilized Beta distributions with known parameters, we were

able to compute the true optimal solution to TTP∗ for each simulation scenario. We then

compared these true optimal solutions to the solutions obtained by solving TTP∗-Q and

TTP∗-DR. Specifically, we compared these methods on the basis of optimality and feasibility.
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To measure optimality, we computed the optimality gap, which we define by

1− E[se(u, ξ+)] + E[sp(l, ξ−)]

E[se(u∗, ξ+)] + E[sp(l∗, ξ−)]
, (4.21)

where (u, l) denotes a candidate solution from TTP∗-Q and (u∗, l∗) denotes the true optimal

solution. From (4.21), it can be seen that a set of thresholds (u, l) achieving a positive

optimality gap near 0 indicates near-optimal performance and near 1 indicates poor perfor-

mance. By definition, optimality gaps below 0 imply that the thresholds are infeasible to

the true underlying distribution.

To measure feasibility, we computed the maximum constraint violation, which is defined

by

max

{
E[fp(u, ξ−)]− γfp,E[fn(l, ξ−)]− γfn

}
. (4.22)

From (4.22), it can be seen candidate thresholds (u, l) are feasible for the true problem only

if their maximum constraint violations are non-positive. For both TTP∗-Q and TTP∗-DR,

we plot joint distribution of optimality gap and maximum constraint violation in Figure 4.2.

Several insights can be drawn from this analysis. For TTP∗-Q, we find that its optimality

and feasibility vary greatly based on sample size and AUROC. Specifically, TTP∗-Q has

low feasibility when the sample size is small (i.e., 17%-34% of solutions are feasible when

N+, N− = 100). However, feasibility greatly improves when the sample size reaches 500

(i.e., 78%-87% of solutions are feasible) and 1000 (i.e., 93%-95% of solutions are feasible).

For fixed sample sizes, we find that feasibility is the lowest when the AUROC is 0.585 and

rises as AUROC increases to 0.680. However, additional increases in AUROC do not result

in additional improvements in feasibility. Additionally, we find that the optimality gap

(regardless of whether it is conditional on being feasible or not) decreases as the AUROC

increases. On the other hand, increasing sample size does not seem to provide a noticeable

decrease in the optimality gap.

The feasibility of TTP∗-DR is largely driven by sample size. Specifically, 76%-96% of

solutions are feasible when N+, N− = 100 and the feasibility rises between 96%-100% once

the sample size increases to 500 and 1000. AUROC does not have a discernible effect on

feasibility but much like for TTP∗-Q, the optimality gap for TTP∗-DR decreases as AUROC

increases. When AUROC is at least 0.680, the optimality gap decreases as the sample size
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Figure 4.2: Distribution of optimality gap and maximum constraint violation under
varying quality of risk estimation model (AUROC) and sample size (N+, N−).

increases.

Comparing the two solution methods, TTP∗-DR achieves a greater level of feasibility

than TTP∗-Q in every combination of AUROC and sample size tested. Furthermore, the

difference in feasibility between the two approaches is greatest when the sample size is small.

Conditional on being feasible, TTP∗-Q achieves a smaller optimality gap than TTP∗-DR

when the sample size is small and the AUROC is low. However, as the sample sizes increase

and the AUROC increases, results are mixed in terms of optimality gap. However, the two

methods appear to achieve similar optimality gaps as the AUROC and sample size increase.

Overall, sample size and AUROC play an important role in feasibility and optimality.

Increasing sample size greatly improves feasibility, especially for TTP∗-Q. Increasing AU-

ROC decreases the optimality gap for both methods, and may slightly improve feasibility

for TTP∗-Q. TTP∗-DR appears to be superior to TTP∗-Q for small sample sizes due to

its greater rate of feasibility. Since both methods perform similarly for large sample sizes

and sufficiently high AUROC, computational time can be an important deciding factor in

choosing which method to employ in practice. In Section 4.5.1, we found that TTP∗-DR
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is several orders of magnitude higher in computational time compared to TTP∗-Q. While

the overall computation time is not prohibitive for small sample sizes, TTP∗-DR takes a

median time of 74.20 seconds once the sample size reaches 5000 (compared to 0.04 seconds

for TTP∗-Q). Hence, TTP∗-Q appears to be more practical for large sample sizes given the

need to solve each model several times through the calibration procedure and their similar-

ity in out-of-sample performance at large sample sizes. While our simulation study assumed

that the underlying distributions for P+ and P− were Beta distributions, we performed the

same analysis under different distributional assumptions and found that similar trends follow

(see Appendix 4.C). However, this auxiliary analysis does suggest that the variance of the

distributions P+ and P− play an important role in the feasibility of TTP∗-Q.

4.5.3 Comparing One- and Two-threshold Classification Schemes

In this section, we use simulation to compare the accuracy of a one-threshold classification

scheme and the two-threshold classification scheme determined by TTP∗. Specifically, we

obtain an optimal one-threshold solution (denoted 1T∗) by using sample average approxi-

mations to solve

(1T∗) max
t
λE[se(t, ξ+)] + (1− λ)E[sp(t, ξ−)], (4.23)

where λ ∈ (0, 1) plays the same role as the λ used in the objective function of TTP. Notice

that (4.23) is the same as solving an unconstrained version of TTP. Furthermore, the resulting

threshold from solving (4.23) is akin to one chosen from the ROC curve, as is commonly

done in practice (see Section 4.2). We evaluated both of these models based on classification

accuracy, which can be interpreted as the probability of correctly classifying a randomly

chosen patient. Specifically, we define accuracy as

q

(
E[se(u, ξ+)] + η+(u, l)

)
+ (1− q)

(
E[sp(u, l)|ξ−] + η−(u, l)

)
,

where q represents the proportion of true-positives in the overall population and the func-

tions η+(u, l) and η−(u, l) denote the probabilities of correctly classifying a true-positive and

true-negative patient, respectively, after they are deferred based on the thresholds u and l.

Without the functions η+(u, l) and η−(u, l), 1T∗ would always have a higher accuracy since
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no proportion of the population is deferred. Note that η+(t, t) = 0 and η−(t, t) = 0 for 1T∗

since the upper and lower thresholds are equal.

Throughout this simulation analysis, we set

η+(u, l) :=

∫ u

l

L+

k,ξ+0
fP+(ξ+)dξ+ and η−(u, l) :=

∫ u

l

L−
k,ξ−0

fP−(ξ−)dξ+,

where fP+ and fP− are density functions based on the Beta distributions specified in Section

4.5.2 and the logistic functions

L+
k,ξ0

=

(
1 + exp

(
− k(ξ+ − ξ0)

))−1

and L−k,ξ0 =

(
1 + exp

(
− k(ξ0 − ξ−)

))−1

are parameterized by scale k ≥ 0 and centers ξ+
0 , ξ

−
0 ∈ [0, 1]. We use L+

k,ξ0
(resp., L−k,ξ0)

to approximate the likelihood of correctly classifying a deferred true-positive (resp., true-

negative) patient given risk estimate ξ+ (resp., ξ−).

In our analysis, we solved TTP∗-Q with γfp = γfn = 0.10 and 1T∗ with λ = 0.5 by

sampling from each distribution specified in Section 4.5.2 with sample sizes N+ = N− =

1000. To compute accuracy, we set q = 0.5 and parameterized the functions Lk,ξ+0 and Lk,ξ−0
with fixed centers ξ+

0 = 0.45, ξ−0 = 0.55 and varying k ∈ [0, 20]. Higher values of k indicate

greater likelihood of correctly classifying a patient after they are initially deferred.

The results of our simulation analysis are shown in Figure 4.3. In all cases, the accuracy

of TTP∗-Q increases quadratically in k, indicating that small improvements in the accuracy

of post-defer classification will initially result in large gains of overall accuracy. However,

there is an inflection point at which there are diminishing returns on the gains in overall

accuracy. To this end, the inflection point appears to be increasing in the AUROC of the

underlying risk estimation model. This result implies that the marginal value of increasing

the accuracy of post-defer classification remains high for risk estimation models which are

already accurate. Practically speaking, if the underlying risk estimation model is accurate,

then increasing the accuracy of post-defer classification has high utility if the marginal cost

of increasing post-defer accuracy is low (e.g., ordering low-cost lab tests).

Comparing TTP∗-Q and 1T∗, our results indicate that when few patients are correctly

classified after they are first deferred (i.e., k is near 0), 1T∗ achieves a greater classifica-

tion accuracy. However, as the likelihood of correctly classifying deferred patients increases,
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TTP∗-Q begins to achieve a greater level of accuracy than 1T∗. To this end, the minimum

classification accuracy for deferred patients (i.e., k) needed such that TTP∗-Q outperforms

1T∗ also increases in the quality of the underlying risk estimation model (i.e., AUROC)

improves. This result indicates that if the underlying risk estimation model can already

distinguish between true-positives and true-negatives with high accuracy, more effort is re-

quired in ensuring that deferred patients can actually be correctly identified after they are

initially deferred. Practically speaking, a one-threshold classification scheme may be more

useful when the underlying risk estimation model is already accurate and there is a high

cost associated with increasing the accuracy of classifying patients who are deferred (e.g.,

ordering assessments which require expensive equipment). This analysis illustrates that the

utility of TTP increases as the accuracy of a risk estimation model decreases. This result

stems from the fact that the underlying advantage to using TTP is its ability to identify

patients who cannot be accurately diagnosed using the risk estimation model. Therefore,

these patients are better served by the expert judgment of clinicians.

4.5.4 Analysis of Ordinal Threshold Problem

In this section, we use simulation to analyze the performance of the Ordinal Threshold

Problem (OTP) model derived in Section 4.3.6 for an ordinal classification problem with three

different populations. We performed our simulation analysis under the following settings.

Underlying severity score distributions: Let Pk denote the distribution of the sever-

ity scores for class k, k = 1, 2, 3. We assumed that P1 = Beta(0.25v, 0.75v), P2 =

Beta(0.50v, 0.50v) and P3 = Beta(0.75v, 0.25v) where v ∈ {10, 50, 100}. Larger values of

v reflect a higher quality of severity score model. That is, there is a larger degree of “sepa-

ration” between the distributions as v increases, reflecting a severity score model which can

better discriminate between the three populations.

Sample size: We assumed that the sample sizes of class 1, 2, and 3 (denoted by N1, N2,

and N3, respectively) are equal, with N1, N2, N3 ∈ {100, 500, 1000}.
We solved OTP using quantile estimation under each of these settings 100 times under

different parameterizations. Specifically, we set γfnk,j = 1 for all k = 1, 2 and j = 2, 3 to

guarantee feasibility. We also tested all combinations of γfp1,1 ∈ {0.01, 0.03, ..., 0.13}, γfp2,1 ∈
{γfp1,1, ..., 0.13} and γfp2,2 ∈ {0.01, ..., 0.13}. For a given set of thresholds t1 and t2, we measured
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Figure 4.3: Comparison of overall accuracy between one-threshold (1T∗) and two-
threshold (TTP∗-Q) classification schemes under varying quality of risk estimation
model (AUROC) and post-defer classification accuracy (k). AUROC, area under the
receiver operating characteristic curve.
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the performance of OTP based on accuracy, which is defined as

1

3

(
P(ξ1 < t1) + P(t1 < ξ2 < t2) + P(ξ3 > t2)

)
. (4.24)

Accuracy can be interpreted as the proportion of patients who are correctly identified based

on the thresholds t1 and t2 (e.g., ξ1 < t1). Values of accuracy close to 1 indicate near-perfect

classification. We also computed mean squared error (MSE), which is defined as(
P(t1 < ξ1 < t2) + P(ξ2 < t1) + P(ξ2 > t2) + P(t1 < ξ3 < t2)

)

+ 4

(
P(ξ1 > t2) + P(ξ3 < t1)

)
.

(4.25)

MSE is a measure of classification error which more harshly penalizes greater deviations

from the true class. For example, patients from class 1 who are classified as class 2 (i.e.,

t1 < ξ1 < t2) are penalized less harshly than those who are classified as class 3 (i.e., ξ1 > t2).

Thus, higher values of MSE imply a greater degree of misclassification.

Based on (4.24) and (4.25), we compared OTP to Equidistant Thresholds (ET) which

assume that all thresholds are the same distance apart. In general, ET assumes that tk = t1+

(k− 1)δ for all k. Such models are commonly referred to as Rating Scale Models (Andersen,

1977) and are practically useful because they only require one to determine the values of

t1 and δ. To vary the parameters of ET, we tried every combination of t1 and δ such that

t1 = min{t : fp(t, ξ1) ≤ γfp} for γfp ∈ {0.01, 0.03, ..., 0.13} and δ ∈ {0.10, 0.15, 0.20, 0.25}.
Figure 4.4 illustrates the comparison between OTP and ET, with only the pareto optimal

parameter combinations shown for clarity.

In general, we find that the performance of OTP in terms of accuracy and MSE improve

as both the quality of the underlying severity score model (i.e., v) and the sample size (i.e.,

N1, N2, N3) increase. However, improving the quality of the severity score model has a much

greater effect. In comparing OTP to ET, we find that several parameter settings for OTP

which achieve an equal or similar accuracy level as ET at lower levels of MSE. This result

seems to hold across all simulation settings.
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Figure 4.4: Comparison of accuracy and mean squared error in ordinal classification
for the Ordinal Threshold Problem (OTP) and Equidistant Thresholds (ET)

4.6 Case Study: Acute Concussion Assessment

In this section, we present numerical results based on the application of TTP∗ to concussion

assessment data. We first describe our data and choice of risk estimation model. Then, we

define three efficiency measures and analyze the relationship between modeling parameters

and these efficiency measures. Finally, we compare the performance of TTP∗ to (1) an

optimized one-threshold solution which is commonly used to determine decision thresholds

for risk estimation models and (2) a normative value comparison method which is commonly

used in acute concussion assessment.

4.6.1 Concussion Assessment Data

Our numerical analysis uses multi-center longitudinal data provided by the CARE Consor-

tium (see Section 1.1.1). We focus on evaluations from < 6 hours, which we denote as

“concussion” (i.e., true-positive), and the first time at which the athlete is cleared to return

to play, which we denote “non-concussion” (i.e., true-negative).
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Data was received in two batches. Because some data were missing at the < 6 hours time-

point, the first batch (i.e., training data) contained 560 concussions and 707 non-concussions.

Similarly, the second batch contained 539 concussions and 629 non-concussions. We used a

randomly chosen 40% of the training data to form a risk estimation model and the remaining

60% to solve TTP∗ using each method in Section 4.4. We validated our thresholds and as-

sessed out-of-sample performance using the second batch of data (i.e., validation data). We

summarize this data in Table 4.1 for males and females in the training and validation set with

respect to the Standard Assessment of Concussion (SAC), the Sport Concussion Assessment

Tool (SCAT) symptom assessments, and the Balance Error Scoring System (BESS).

Table 4.1: Description of training and validation data

Training Data
Male Female

Concussion Non-concussion Concussion Non-concussion
(n=361) (n=423) (n=199) (n=284)

Mean SD Mean SD Mean SD Mean SD
SAC Total Score 25.90 3.12 27.87 1.85 26.74 2.42 28.00 1.60
SCAT Symptom Severity 27.33 20.88 0.43 1.55 31.67 20.02 0.93 2.46
SCAT Total Number of Symptoms 10.53 5.50 0.33 1.17 11.81 5.02 0.67 1.65
BESS Total Score 16.58 8.88 10.92 5.93 14.86 7.90 9.86 5.78

Validation Data
Male Female

Concussion Non-concussion Concussion Non-concussion
(n=332) (n=340) (n=207) (n=289)

Mean SD Mean SD Mean SD Mean SD
SAC Total Score 25.52 3.52 28.07 1.91 26.38 2.86 28.31 1.62
SCAT Symptom Severity 27.42 21.54 0.29 0.92 30.31 21.2 0.69 2.24
SCAT Total Number of Symptoms 10.62 5.75 0.22 0.70 11.03 5.17 0.51 1.46
BESS Total Score 17.86 8.97 11.12 5.02 16.99 8.67 10.76 5.73

SAC, Standard Assessment of Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error
Scoring System; SD = standard deviation

4.6.2 Risk Estimation Model

Multivariate logistic regression can be used to create a risk estimation model of the form

f(x) =
1

1 + exp(−xTb)
,
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where f(x) is a risk estimate, x is a vector of patient characteristics, and b is a vector

of corresponding coefficients. We used the multivariate logistic regression model developed

in Chapter 2 for acute concussion assessment, in which the relevant patient characteristics

include sex, whether the injury was reported immediately, whether the athlete was removed

from play immediately, and scores from the SAC, SCAT symptom assessment, and BESS.

These variables are described in Chapter 2.

4.6.3 Example Solution and Post-hoc Analysis

We solved TTP∗-Q and TTP∗-DR using the training data and evaluated their optimal solu-

tions against the validation data. For various choices of γfp and γfn, we found that TTP∗-Q

generally remains feasible. In some cases (e.g,. γfp = 0.01 and γfn = 0.03), TTP∗-Q vio-

lated one of its constraints — though the magnitude of this violation was generally small

(i.e., less than 0.006). In contrast, TTP∗-DR was feasible against the validation data in

every parameter combination tested. Figure 4.1 shows an example optimal solution from

TTP∗-Q obtained by setting γfp = 0.028 and γfn = 0.02. In this example, u∗ captures many

of the true-positives (sensitivity= 0.91) while maintaining a low false-positive rate (false-

positive= 0.016). On the other hand, l∗ captures fewer true-negatives (specificity= 0.74) but

also maintains a low false-negative rate (false-negative= 0.015). Only 16.7% of the validation

data fell between u∗ and l∗. That is, only 16.7% of those undergoing diagnosis would result

in deferred diagnosis.

In practice, it may be of interest to perform post-hoc analysis on athletes who were ul-

timately deferred. For example, in Table 4.2, we characterize the deferred athletes based

on their risk estimates and clinical assessment variables. We also compare them to athletes

who were correctly diagnosed. It can be seen that risk estimates were lower for deferred

athletes with concussion compared to those that were correctly diagnosed. Likewise, risk

estimates were higher for deferred athletes without concussion compared to those who were

correctly diagnosed. We also identified statistically significant differences in the SAC total

score, SCAT symptom severity, and SCAT total number of symptoms between deferred ath-

letes and their correctly diagnosed counterparts. Practically speaking, these results confirm

just how different the “easy” and the “hard” cases are. Furthermore, these characterizations

can be used to inform future clinical decisions. For example, deferred athletes with higher
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Figure 4.1: Optimal upper threshold (u∗) and lower threshold (l∗) when solving TTP∗-
Q with γfp = 0.028 and γfn = 0.020. Risk estimates > u∗ are classified as true-positives
while risk estimates < l∗ are classified as true-negatives. Diagnosis decisions are de-
ferred for risk estimates between u∗ and l∗. True positives (+) and true-negatives (x)
from validation data are shown with estimated kernel densities.

symptom presentation are more likely to have concussion than those with lower symptom

presentation. However, as these clinical variables were already included in our risk estimation

model, it may be of greater value to consider additional assessments (e.g., vestibular/ocular-

motor screening) for the group of deferred athletes.

4.6.4 Analyzing The Efficiency of Two-threshold Solutions

In practice, decision thresholds which defer too many diagnosis decisions can be problematic.

For example, if the necessary treatment following a diagnosis decision must be performed in a

timely manner, then deferring too many decisions can cause a delay in receiving that treat-

ment. Additionally, if the action following a deferred decision requires valuable resources

(e.g., performing additional diagnostic tests), then deferring too many decisions could put

potentially strain those resources. Thus, we evaluated TTP∗-Q for acute concussion assess-

ment based on three efficiency measures:

e1 =
p+(u, l)

pD(u, l)
, e2 =

p−(u, l)

pD(u, l)
, e3 =

p+(u, l)

p−(u, l)
,
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Table 4.2: Comparison of athletes who were correctly diagnosed and deferred under
example TTP∗-Q solution

True Outcome Concussion No Concussion
Diagnosis Decision Positive Defer Negative Defer

n=490 n=41 n=465 n=154
Mean SD Mean SD Mean SD Mean SD

Risk Estimate†,‡ 0.98 0.06 0.28 0.16 0.01 0.01 0.14 0.10
SAC Total Score †,‡ 25.71 3.36 27.24 2.25 28.26 1.73 27.97 1.85
BESS Total Score†,‡ 18.02 8.92 13.00 6.19 10.60 5.10 11.88 5.86
SCAT Total Symptom Severity†,‡ 31.04 20.83 3.85 3.35 0.14 0.57 0.88 1.68
SCAT Total Number of Symptoms†,‡ 11.64 5.01 2.37 1.84 0.11 0.42 0.69 1.27

†Mean value is significantly different (p < 0.05) between concussions with positive and deferred diagnosis
decisions using two-sample Student’s t-test; ‡Mean value is significantly different (p < 0.05) between non-
concussions with negative and deferred diagnosis decisions using two-sample Student’s t-test; SAC, Standard
Assessment of Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error Scoring System;
SD, standard deviation

where the p+(u, l), p−(u, l) and pD(u, l) are defined in Section 4.3.5. The measure e1 is

the rate of correct classifications per deferred decision, e2 is the rate of misclassifications

per deferred decision, and e3 is the rate of correct classifications per misclassification. We

computed each of these measures for various parameter combinations. We excluded any

results with single-threshold solutions, since we would have pD(u, l) = 0 and thus, e1 and

e2 cannot be computed. We also varied the proportion of true-positives in the population

undergoing acute concussion assessment, q.

From this efficiency analysis, we found that when there is a high proportion of true-

positives in the testing population (i.e., q is high), parameter combinations which allow

for higher false-positive rates and ultimately end up with high sensitivity result in greater

efficiency in terms of correct classifications per misclassification (i.e., e1) and deferred decision

(i.e., e3). Similarly, when most of the testing population is composed of true-negatives (i.e., q

is low), parameter combinations which allow for higher false-negative rates result in greater

specificity. These parameter combinations are also more efficient in terms of e1 and e3.

Likewise, parameter combinations which have low false-positive rates tend to have lower

misclassification rates per deferred decision (i.e., e2) when there are fewer true-negatives in

the population (i.e., q is lower). Parameter combinations with low false-negative rates are

more efficient in terms of e2 when there are more true-positives in the population (i.e., q is
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Figure 4.2: (a) q = 0.2. (b) q = 0.4. (c) q = 0.6. (d) q = 0.8. Rate of correct classifications
per deferred decision (e1) vs. Rate of correct classifications per misclassification (e3)
for TTP∗-Q under various parameter combination and proportion of true-positives, q.
Pareto optimal (circles) and dominated (crosses) parameter combinations are shown.
Labels are shown only for parameter combinations which are Pareto optimal for at
least two values of q. These labels correspond to parameter combinations in Table 4.3.

higher).

We also consider the tradeoff between e1 and e3 since decision makers may aim to correctly

classify as many patients as possible, while minimizing deferred and incorrect classifications.

We plot the values of e1 and e3 at different values of q for various combinations of γfp and

γfn in Figure 4.2.

Certain parameter combinations are only Pareto optimal for one value of q, suggesting the

importance of choosing the parameters γfp and γfn based on the proportion of true-positives

in the testing population rather than the underlying population. In contrast, a few parameter

combinations were relatively unaffected by changes in q, i.e., parameter combinations which
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Table 4.3: Selected Pareto Optimal parameter combinations for efficiency analysis

Parameters Opt Solution Out-of-sample Performance
Label γfp γfn u∗ l∗ Sensitivity Specificity False-positive False-negative

0 0.01 0.01 0.94 0.02 0.83 0.57 0.01 0.01
1 0.01 0.02 0.94 0.05 0.83 0.74 0.01 0.01
2 0.01 0.03 0.94 0.12 0.83 0.89 0.01 0.04
3 0.01 0.04 0.94 0.22 0.83 0.95 0.01 0.05
12 0.02 0.01 0.73 0.02 0.89 0.57 0.02 0.01
13 0.02 0.02 0.73 0.05 0.89 0.74 0.02 0.01
14 0.02 0.03 0.73 0.12 0.89 0.89 0.02 0.04
15 0.02 0.04 0.73 0.22 0.89 0.95 0.02 0.05
16 0.02 0.05 0.73 0.31 0.89 0.97 0.02 0.06
21 0.03 0.02 0.54 0.05 0.91 0.74 0.02 0.01
23 0.03 0.04 0.54 0.22 0.91 0.95 0.02 0.05
24 0.03 0.05 0.54 0.31 0.91 0.97 0.02 0.06
25 0.03 0.06 0.54 0.38 0.91 0.97 0.02 0.07
29 0.04 0.02 0.40 0.05 0.93 0.74 0.03 0.01
30 0.04 0.03 0.40 0.12 0.93 0.89 0.03 0.04
31 0.04 0.04 0.40 0.22 0.93 0.95 0.03 0.05
32 0.04 0.05 0.40 0.31 0.93 0.97 0.03 0.06
33 0.04 0.06 0.40 0.38 0.93 0.97 0.03 0.07
35 0.05 0.02 0.32 0.05 0.94 0.74 0.03 0.01
36 0.05 0.03 0.32 0.12 0.94 0.89 0.03 0.04
39 0.06 0.02 0.27 0.05 0.95 0.74 0.04 0.01
41 0.06 0.04 0.27 0.22 0.95 0.95 0.04 0.05

remained on the Pareto optimal frontier for at least 2 different values of q. These parameter

combinations are summarized in Table 4.3. From this analysis, we find that parameter

combinations with low values of γfp (e.g., labels 1, 2, 3) tend to do well when the proportion

of true-positives is low, i.e., q = 0.2 and q = 0.4. The opposite seems to hold as well —

parameter combinations with low γfn (e.g., labels 12, 30, 39) tend to do well when the

proportion of true-positives is high, i.e., q = 0.6 and q = 0.8. Some parameter combinations

performed well for at least 3 values of q (e.g., labels 0, 1, 21). These parameter combinations

strike a balance between γfp and γfn, though this pattern may not always hold (e.g., label

13). We also find that more conservative parameter combinations, i.e., low γfp and γfn

such as labels 0 and 1, will achieve more correct classifications for each misclassification. In

contrast, less conservative parameter combinations, i.e., higher values of γfp and γfn such

as labels 33 and 41, will have more correct classifications for each deferred decision.
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4.6.5 Comparing TTP∗ Performance To Existing Methods

We evaluated the model performance for TTP∗-Q and TTP∗-DR under different parameter

combinations, i.e., φ, γfp, and γfn. We considered the following performance criteria:

(i) False-positive vs. false-negative rate satisfying minimum levels of sensitivity,

(ii) Sensitivity vs. false-positive rate satisfying maximum levels of false-negative rate, and

(iii) Probability of correct classification vs. probability of misclassification,

where the probabilities in criterion (iii) correspond to the definitions of p+(u, l) and p−(u, l)

in Section 4.3.5. We computed p+(u, l) and p−(u, l) at different values of q to evaluate

criterion (iii). Furthermore, we compared the performance of these two-threshold solutions

against two baseline cases: an optimal one-threshold solution (1T∗) and normative value

comparison.

Optimal One-Threshold Solution: Applying sample average approximation on the

training set of data (i.e., N+ = 560 and N− = 706), we estimated the solution to 1T∗ as

defined in (4.23). We compare TTP to this threshold since the resulting threshold is akin

to one chosen from the ROC curve as is commonly done in determining decision thresholds

(see Section 4.2).

Normative Value Comparison: While the clinical examination remains to be the

golden standard for concussion diagnosis, clinicians commonly use Normative Value Com-

parison (NC) as an initial acute concussion screening tool (Broglio et al., 2008; Chin et al.,

2016; Hänninen et al., 2016; Zimmer et al., 2015). In NC, the clinician compares the perfor-

mance of an athlete suspected of concussion on various standard assessments, e.g., the SAC,

SCAT symptom checklist, and BESS. If the athlete’s performance is too many standard de-

viations (SD) away from a given normative (i.e., mean) value, then the athlete is treated as

concussed and otherwise non-concussed. Using the normative values for the training data in

Table 4.1, we analyzed a number of one-threshold and two-threshold NC schemes by varying

the number of SD away from the normative value (from 0.5 to 3 in increments of 0.25) on the

SAC, SCAT symptom checklist, and the BESS. For example, we considered the case where

an athlete is assessed as non-concussed if his or her performance on at least one assessment

is within 1 SD of the normative value, concussed if beyond 2 SD, or deferred otherwise.

107



The results of our analysis for criteria (i) and (ii) are presented in Figure 4.3. Only

Pareto optimal parameter combinations for TTP∗-Q and TTP∗-DR are shown. From Figure

4.3(a), we see that, for TTP∗-Q and TTP∗-DR, at least one of the Pareto optimal parameter

combinations achieves a lower false-positive and false-negative rate than 1T∗ and NC while

maintaining the same minimum level of sensitivity. However, when the sensitivity must be

≥ 0.96, TTP∗-DR is too conservative and cannot produce a solution which satisfies this

requirement. Furthermore, no solution from 1T∗ or NC is able to achieve at least 0.96

sensitivity while maintaining false-positive and false-negative rates below 0.15.

In Figure 4.3(b), we find that different parameter combinations for TTP∗-Q and TTP∗-

DR are able to achieve similar or better levels of discrimination (i.e., high sensitivity and

low false-positive rates) compared to 1T∗ and NC while keeping lower false-negative rates.

Specifically, we point out that when the false-negative rate is constrained to be ≤ 0.01, no

1T∗ solution is able to achieve a similar performance to TTP∗-Q and TTP∗-DR. However,

several TTP∗-Q and TTP∗-DR solutions still satisfy the maximum false-negative limit. We

also point out that while NC is able to produce a solution with good discrimination at low

false-negative rates, it is dominated by the TTP∗ solutions. That is, TTP∗-Q and TTP∗-DR

are able to achieve similar levels of sensitivity and false-negative rates at lower false-positive

rates.

The results for criterion (iii) are presented in Figure 4.4. We find that 1T∗ is able to

match the performance achieved by TTP∗-Q and TTP∗-DR for one parameter combination.

However, TTP∗ offers solutions with lower probability of misclassification compared to 1T∗.

Similarly to the analysis of criterion (ii), we find that the TTP∗ solutions dominate NC in

terms of performance. That is, for the same probability of misclassification, each of the TTP∗

methods achieve a higher probability of correct classification. This finding demonstrates the

utility of two-threshold solutions in combination with risk estimation models compared to

traditional methods.

Overall, these results suggest that TTP∗ outperforms both 1T∗ and NC when comparing

across multiple criteria. In particular, the two-threshold solutions are able to maintain high

diagnostic accuracy while maintaining low levels of false-positive and false-negative rates.
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Figure 4.3: (a) False-positive vs. false-negative rate satisfying minimum levels of sensi-
tivity. (b) Sensitivity vs. false-positive rate satisfying maximum levels of false-negative
rate. Comparison of Pareto optimal parameter combinations for TTP∗-Q, TTP∗-DR,
optimal single-threshold solutions (1T∗), and normative value comparison (NC).
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Figure 4.4: (a) q = 0.2. (b) q = 0.4. (c) q = 0.6. (d) q = 0.8. Probability of correct clas-
sification vs. probability of misclassification for varying proportions of true-positives,
q, and Pareto optimal parameter combinations of TTP∗-Q , TTP∗-DR, optimal single-
threshold solutions (1T∗), and normative value comparison (NC).
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4.7 Conclusion

In conclusion, we have designed and analyzed a data-driven method for optimizing an upper

and lower threshold for diagnosis decisions. This method (1) reflects the decision maker’s risk

attitude, (2) determines data-driven thresholds based on risk estimates specific to a certain

risk estimation model and target population, and (3) identifies a range of risk estimates

for which the risk estimation model faces elevated false-positive and false-negative rates.

Through data-driven solution approaches, we avoid needing assumptions on the distribution

of risk estimates.

4.7.1 Managerial Insights

Our analysis provides insight into the nature of our modeling framework and its application

to acute concussion assessment.

When should two diagnosis decision thresholds be used instead of one? Since

the advantage of using two decision thresholds is in its ability to defer patients, the benefit

of using two thresholds (instead of one) depends on the risk estimation model’s accuracy

and the accuracy of the assessments which follow a deferred diagnosis decision. Specifically,

if a risk estimation model is inaccurate and patients who are deferred can eventually be

diagnosed with sufficient accuracy, then two decision thresholds should be used. We also

find that two diagnosis decision thresholds are needed (e.g., possible, probable, or definite

concussion) when it is important to restrict both the false-positive and false-negative rates.

However, if it is only important to limit either the false-positive or false-negative rate, then

a single decision threshold (e.g., concussion or no concussion) suffices. Fortunately, for

acute concussion assessment, the added conservatism by restricting misclassification rates

does not drastically reduce sensitivity and specificity. Furthermore, two thresholds should

be used if the cost associated with misdiagnosis is sufficiently high compared to a deferred

diagnosis decision. Alternatively, if the majority of deferred decisions consists of patients

who ultimately would have been misdiagnosed or if very few deferred decisions are ultimately

misdiagnosed, then two decision thresholds should be used instead of one.

How does one choose parameters which generate good thresholds? For TTP,

the decision-maker only needs to consider the constraints on false-positive and false-negative

rates, since the relative importance of sensitivity to specificity is trumped by these constraints
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in two-threshold solutions. To this end, the degree to which false-positive and false-negative

rates are constrained should reflect the relative “cost” associated with each type of misdiag-

nosis. Furthermore, the false-negative rate should be further constrained if the proportion of

true-positives in the testing population is high. However, if the proportion of true-positives

is low, then the false-positive rate should be constrained instead. In the case of acute concus-

sion assessment, our efficiency analysis demonstrated that balanced constraints (i.e., γfp and

γfn are both low and nearly equal) can be robust for different proportions of true-positives

in the testing population.

Given the similarities between TTP and MTTP, similar principles can be applied in choos-

ing parameters for MTTP. However, choosing parameters for OTP can be challenging. In our

analysis of OTP, we found that the parameters γfpk,j and γfnk,j must satisfy certain conditions

in order for OTP to be feasible. To this end, when using the sensitivity-based formulation

of OTP (i.e., the objective function is given by (4.14a)), one can satisfy these conditions

by setting γfnk,j = 1 for all j > k and focus on choosing appropriate values for γfpk,j for all

j ≤ k. In our analysis, we found that the performance of different parameter choices were

sensitive to the underlying quality of the risk estimation model. For example, when the risk

estimation model was poor, choosing high values of γfpk,j (e.g., 0.11-0.13) was imperative to

attaining high accuracy and low mean squared error — regardless of sample size. On the

other hand, parameter sets which had low values for γfpk,j (e.g., 0.01-0.05) achieved high ac-

curacy at low mean squared error when the risk estimation models were high quality. Given

these guiding principles, one can construct a set of viable parameters and then use methods

such as cross-validation to evaluate the performance of different parameter choices.

Which data-driven solution method should be used? In our simulation analysis,

we analyzed the performance of each solution method under different sample sizes and the

quality of the underlying risk estimation model. If the available sample size is small and

the underlying risk estimation model is poor, then TTP∗-DR should be applied if ensuring

feasibility is important to the application. Additionally, TTP∗-DR can be useful when the

available sample of data is suspected to be quite different from the distribution generated by

the population. However, as sample sizes get larger, the computational burden of TTP∗-DR

increases to the point where it may not be practical to implement. To this end, TTP∗-Q can

be executed much more quickly at large sample sizes and performs similarly to TTP∗-DR.

Hence, TTP∗-Q should be used once the sample size is large enough and the underlying
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quality of the risk estimation model is reasonably accurate.

How does this methodology compare to existing methods? For acute concussion

assessment, combining two-threshold solutions with risk estimation models allows for both

greater diagnostic accuracy and lower likelihood of misdiagnoses. In particular, given the

same risk estimation model, one-threshold solutions are adept at providing higher sensitivity

and specificity but at the cost of greater misclassification rates compared to two-threshold

solutions. Compared to common clinical practice such as normative value comparison, com-

bining risk estimation models with data-driven thresholds can drastically improve diagnostic

accuracy. Therefore, this modeling framework should be transformed into a clinical decision

aid to facilitate its implementation in practice.

In our extensions of TTP to multi-class classification, we found that OTP outperforms a

common method for determining decision thresholds in ordinal classification. Specifically,

OTP attained higher accuracy and lower mean squared error than a commonly used equidis-

tant threshold method. This improvement in performance can be owed to the fact that OTP

has greater flexibility in optimizing thresholds given that it does not require thresholds to

be equidistant. However, this improved performance comes at a cost of requiring more pa-

rameters. To this end, we have identified some principles to guide the choice of parameters

for OTP.

How does this work impact diagnosis decisions in clinical practice? It is natural

for clinicians to have varying levels of certainty in their diagnosis decisions based on their

initial evaluation of a patient. For instance, consider concussion diagnosis, for which no “gold

standard” objective test currently exists, common concussion symptoms are sometimes slow

to evolve and not necessarily specific to concussion, and clinical presentation of concussion

may vary largely from one patient to the next (Kutcher and Giza, 2014). While the clinical

exam remains the standard in this field, our research can provide valuable decision support

to clinical judgment by quantifying this uncertainty with real data. Our modeling frame-

work provides a more objective and data-driven way to guide risk-based diagnosis decisions

by identifying “easy” cases which can be diagnosed immediately and “hard” cases which

may require further evaluation before diagnosing. We believe that our modeling framework

permits clinicians to blend their expertise with quantitative evidence; while it does not rec-

ommend a next step for patients who are deferred, it has the flexibility to incorporate clinical

judgment when necessary. Directing the expertise of clinicians to those patients who most
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need it can have a great impact in improving patient care while reducing unnecessary work-

load for clinicians. To facilitate the use of TTP and its extensions in clinical practice, the

models developed in this research may initially undergo a pilot in clinic. After sufficient

validation, it may eventually be incorporated into a mobile application or integrated with

electronic health records. For example, MTTP can be paired with electronic health records

to alert clinicians when patients may be at relatively high risk for developing any number of

new conditions. By supplementing clinical decision-making, this research has the potential

to improve diagnosis decisions, patient care, and health outcomes.

4.7.2 Limitations and Future Work

This research can be extended to address limitations in our current modeling framework.

First, this work only determines two thresholds but some risk classifications may fall into

many more categories. Consider the diagnosis of pulmonary hypertension, where patients

may be classified into 1 of 5 groups (Galie et al., 2009). In this case, 2 thresholds may not be

enough. While we have shown that TTP can be extended or modified to fit multi-label and

ordinal classification frameworks, the extension to other types of multi-class classification

(e.g., one-vs-all classification) is not so straightforward due to the potential for conflicting

results.

The impact of time has been absent in our model formulations and analyses. However,

in time-critical applications, it is important to consider whether deferring decisions is still

a plausible action to take. Therefore, our modeling framework can be extended to consider

the impact that this additional factor would have on our results.

Throughout this work, we assume a fixed risk estimation model. However, one may

wish to jointly optimize a risk estimation model and its accompanying decision thresholds.

Particularly, when the same data is used to formulate the risk estimation model and the

thresholds, one may need to optimize the proportion of data used for the risk estimation

model and the threshold problem.

In practice, differences between sample data and the true population distribution can act

as barriers to implementing risk estimation models in practice. While our distributionally

robust formulation is useful for dealing with such situations, one may obtain decision thresh-

olds which are too conservative to be practically useful. Future research can investigate the
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utility of different ambiguity sets for such scenarios.

Finally, this model was motivated by medical diagnosis problems, but may be applied to

other application domains where the determination of a dichotomous outcome is critical.

Examples of such applications include bankruptcy prediction or natural disaster forecasting.

As medical data continues to become more readily available, methods which can incorpo-

rate these data to supplement medical decisions become increasingly relevant. While several

extensions can be made to our work, the framework we have developed in this research

provides a promising baseline for applying and understanding data-driven risk estimates in

diagnosis decisions. Through future implementation and validation in clinical practice, it is

our hope that this modeling framework ultimately leads to an improved quality of healthcare

delivery.
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4.A Quantile Estimation Representations of TTP

We first show that we can rewrite the constraints (4.1b) and (4.1c) as chance constraints.

That is,

E[fp(u, ξ−)] ≤ γfp ⇐⇒ P(u ≥ ξ−) ≥ 1− γfp and

E[fn(l, ξ+)] ≤ γfn ⇐⇒ P(l ≤ ξ+) ≥ 1− γfn.

Now, we show that the values u(γfp) and l(γfn) are quantiles. To show this result, we

require a preliminary definition. For any α ∈ (0, 1), define the α-quantile θX (α) for the

random variable X with distribution PX as

θX (α) := inf {x ∈ R : α ≤ PX (X ≤ x)} . (4.26)

From the definition of u(γfp) and the chance constraint representation of TTP∗, we have

u(γfp) = inf
{
u ∈ [0, 1] : E[fp(u, ξ−)] ≤ γfp

}
= inf

{
u ∈ [0, 1] : P(ξ− ≥ u) ≤ γfp

}
= inf

{
u ∈ [0, 1] : 1− γfp ≤ P(ξ− ≤ u)

}
= θP−(1− γfp).

Thus, u(γfp) is the (1− γfp)-quantile of P−. Similarly, we can show that

l(γfn) = sup
{
l ∈ [0, 1] : E[fn(l, ξ+)] ≤ γfn

}
= sup

{
l ∈ [0, 1] : 1− γfn ≤ P(ξ+ ≥ l)

}
= − inf

{
−l ∈ [−1, 0] : 1− γfn ≤ P(−l ≥ −ξ+)

}
= −θP̃+(1− γfn),

where P̃+ represents the probability distribution of −ξ+. Thus, l(γfn) can be taken to be

the negative value of the (1− γfn)-quantile of P̃+.
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4.B Reformulating TTP∗-DR Constraints

In this section, we show the tractable reformulations for the constraints (4.20a) and (4.20b)

based on the reformulations derived in Mohajerin Esfahani and Kuhn, 2018. First, suppose

that the thresholds u and l are fixed and let ε be a chosen Wasserstein radius. Then,

(a) the false-positive constraint (4.20a) can be reformulated as the following set of con-

straints:

λε+
1

N−

N−∑
n=1

sn ≤ γfp (4.27a)

(zn,1 − vn,1)u+ 1 + vn,1 − zn,1ξ̂−n ≤ sn, n = 1, ..., N− (4.27b)

(zn,1 − vn,1)u+ 1− zn,1ξ̂−n ≤ sn, n = 1, ..., N− (4.27c)

vn,2 − zn,2ξ̂−n ≤ sn, n = 1, ..., N− (4.27d)

−zn,2ξ̂−n ≤ sn, n = 1, ..., N− (4.27e)

zn,1 − vn,1 ≤ 0, n = 1, ..., N− (4.27f)

zn,2 − vn,2 = 0 n = 1, ..., N− (4.27g)

zn,k ≤ λ, n = 1, ..., N−, k = 1, 2 (4.27h)

−zn,k ≤ λ, n = 1, ..., N−, k = 1, 2. (4.27i)

(b) the false negative-constraint (4.20b) can be reformulated as the following set of con-
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straints:

λε+
1

N+

N+∑
n=1

sn ≤ γfn

(zn,1 − vn,1)l + 1 + vn,1 − zn,1ξ̂+
n ≤ sn, n = 1, ..., N+

(zn,1 − vn,1)l + 1− zn,1ξ̂+
n ≤ sn, n = 1, ..., N+

vn,2 − zn,2ξ̂+
n ≤ sn, n = 1, ..., N+

−zn,2ξ̂+
n ≤ sn, n = 1, ..., N+

zn,1 − vn,1 ≥ 0, n = 1, ..., N+

zn,2 − vn,2 = 0 n = 1, ..., N+

zn,k ≤ λ, n = 1, ..., N+, k = 1, 2

−zn,k ≤ λ, n = 1, ..., N+, k = 1, 2.

We now derive the reformulation for (4.20a). Fix the choice of upper threshold u and let

`(ξ−) = max{`1(ξ−), `2(ξ−)}, where

`1(ξ−) =

1 u ≤ ξ−,

−∞ otherwise,

`2(ξ−) = 0.

(4.29)

Over the support Ξ = [0, 1], it can be seen that `(ξ−) = fp(u, ξ−) for u ∈ [0, 1) and

u 6= ξ−. However, under assumption A1, the case where u = ξ− is no difficulty. In addition,

we can always set (4.20a) to be equal to 0 when u = 1. Now, notice that the set Ξ is

convex and closed. Furthermore, the functions −`1 and −`2 are proper, convex, and lower
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semicontinuous. Therefore, by Theorem 4.2 in Mohajerin Esfahani and Kuhn, 2018, we have

sup
Q∈D−

EQ[fp(u, ξ−)] =

inf
λ,sn,zn,k,vn,k

λε+
1

N−

N−∑
n=1

sn

s.t. [−`k]∗(zn,k − vn,k) + σΞ(vn,k)− zn,kξ̂−n ≤ sn, n = 1, ..., N−, k = 1, 2 (4.30)

||zn,k||∗ ≤ λ n = 1, ..., N−, k = 1, 2, (4.31)

where the functions

[−`k]∗(z) = sup
ξ∈R

zξ + `k(ξ),

σΞ(v) = sup
ξ∈Ξ

vξ,

||z||∗ = sup
|ξ|≤1

zξ = |z|,

are defined in Mohajerin Esfahani and Kuhn, 2018.

Based on our choices for `1 and `2, we have

[−`1]∗(z) = sup
ξ≥u

zξ + 1 =

+∞ z > 0

zu+ 1 z ≤ 0,
(4.32)

[−`2]∗(z) =

0 z = 0

+∞ otherwise
. (4.33)

Additionally, since Ξ = [0, 1], we have

σΞ(v) = sup
ξ∈[0,1]

vξ = max{v, 0}. (4.34)

Substituting (4.32) - (4.34) into (4.30) and using the following equivalence for (4.34)

v+
n,1 ≤ sn ⇐⇒

vn,1 ≤ sn

0 ≤ sn
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gives us (4.27b)-(4.27g). Furthermore, reformulating (4.31) as

||zn,k||∗ = |z| ≤ λ ⇐⇒

zn,k ≤ λ

−zn,k ≤ λ

gives us (4.27h)-(4.27i). Thus we have shown the reformulation for (4.20a). To show the

reformulation for (4.20b), let

`1(ξ+) =

1 l ≥ ξ+,

−∞ otherwise,
(4.35)

and define `(ξ+) to be the same as in (4.29). The remainder of the derivation follows similarly

as was shown for (4.20a).

4.C Simulation Analysis of Section 4.5 With Trapezoidal

Distribution

In this section, we replicate our simulation analysis in Section 4.5 under different distribu-

tional assumptions. Specifically, we performed our simulation analysis under the following

settings.

Underlying risk estimation distributions: Let

P+ = Trapezoidal(a+, b+, c+, d+) and P− = Trapezoidal(a−, b−, c−, d−),

where the parameters a+ = a− = 0 and b+ = b− = 1 to ensure that the distributions P+,P−

have support [0, 1]. We varied the parameters (c+, d+) ∈ {(0.6, 0.7), (0.7, 0.85), (0.85, 0.95)}.
For each pair (c+, d+), we set c− = 1−d+ and d− = c−+(d+−c+). Each of these distributional

set-ups resulted in an area under the receiver operating characteristic curve (AUROC) of

0.649, 0.748, and 0.810, respectively.

As was done in Section 4.5, we solved TTP∗-Q and TTP∗-DR 100 times with γfp =

0.10,γfn = 0.05 under varying sample sizes N+, N− ∈ {100, 500, 1000}. Both models were

evaluated based on optimality gap and maximum constraint violation, as defined in (4.21)
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and (4.22), respectively.

Our results are illustrated in Figure 4.C.1.

Figure 4.C.1: Distribution of optimality gap and maximum constraint violation under
varying quality of risk estimation model (AUROC) and sample size (N+, N−). AUROC,
area under the receiver operating characteristic curve.

In this analysis, we find that sample size and AUROC play an important role in both

feasibility and optimality compared to the true optimal solution. For TTP∗-Q, feasibility is

low (18%-24%) at a sample size of 100. Once the sample size increases to 500, feasibility

increases above 80%, though we find that increasing the sample size to 1000 does not further

increase feasibility. Furthermore, increasing AUROC does not correspond to an increase in

feasibility until the sample size is 1000. However, increasing AUROC does correspond to a

decrease in optimality gap once the sample size is at least 500.

TTP∗-DR is largely feasible (83%-86%) at a sample size of 100 and this feasibility in-

creases above 94% for larger sample sizes. Much like TTP∗-Q, increasing AUROC does not

correspond with an increase in feasibility for TTP∗-DR. Unlike TTP∗-Q, both increases in

AUROC and sample size correspond with decreases in optimality gap for TTP∗-DR. When

the sample size is at least 500 and AUROC is at least 0.748, we find that TTP∗-Q and
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TTP∗-DR have similar optimality gaps, though TTP∗-DR has much greater feasibility.

Comparing this analysis with the one performed in Section 4.5, we find that the proportion

of TTP∗-Q instances which are feasible is generally higher when the risk estimates follow

a Beta distribution instead of a Trapezoidal distribution, even if both distributions have a

similar AUROC. For example, with a sample size of 1000, when the risk estimates follow a

Beta distribution with an AUROC of 0.680, 95% of the instances were feasible. In contrast,

when the risk estimates follow a Trapezoidal distribution with an AUROC of 0.649, only 79%

of instances are feasible. We suspect that these differences may be caused by the variance

of the distributions used. That is, the Trapezoidal distribution has a higher variance than

the Beta distribution with a similar AUROC. Larger sample sizes are needed to accurately

estimate optimal thresholds when the risk estimates have distributions with high variance.
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Chapter 5

Data-driven Approach to Unlikely,

Possible, Probable, and Definite

Concussion

5.1 Introduction

In this chapter, we apply the framework from Chapter 4 and risk estimation model from

Chapter 2 to develop a certainty-based framework for acute concussion diagnosis. In par-

ticular, we extend the framework proposed by Kutcher and Giza, where they recommended

incorporating diagnostic certainty to the assessment of concussion (Kutcher and Giza, 2014).

That is, rather than a binary diagnosis paradigm (i.e., concussion or no concussion), Kutcher

and Giza suggested that concussion diagnosis should be relayed across a spectrum of risk

categories (e.g., Possible, Probable, and Definite concussion), with each category reflecting

the degree to which a concussion diagnosis is certain. Similar risk-based categories have

been used for classifying diagnosis decisions for other diseases, including multiple sclerosis

(McDonald et al., 2001), Alzheimer’s disease (McKhann et al., 2011), and diabetes (Ameri-

can Diabetes Society, 2016). Compared to traditional binary diagnosis, risk-based diagnosis

frameworks account for the evolution of the injury over time and allows for more flexibility

in the post-injury management of concussion. Specifically, incorporating certainty in the

assessment of concussion can help to determine whether an athlete should be managed as

if he or she has a concussion, ultimately improving the quality of patient care. However,
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the guidelines developed by Kutcher and Giza were based on clinical experience rather than

objective data.

Therefore, the goal of our study is to create a data-driven modeling framework to identify

concussed and non-concussed athletes who are Unlikely to have concussion and classify the

remaining athletes as having Possible, Probable, or Definite concussion, with each category

reflecting increasing diagnostic certainty. While experienced clinicians may be able to quickly

synthesize the likelihood of concussion and ultimately identify a post-injury management

plan for athletes, our data-driven framework provides a more objective approach which can

ultimately benefit those clinicians who may be inexperienced in managing concussion. We

then aim to validate our framework to identify how athletes are distributed across each risk

classification and identify differences in demographics, time-of-injury characteristics, and

standard assessment scores between athletes under each risk classification.

5.2 Materials and Methods

5.2.1 Study Population and Design

To develop our methodology for classifying athletes as Unlikely, Possible, Probable, or Defi-

nite concussion, we used data from the CARE Consortium (see Section 1.1.1).

5.2.2 Sample Selection

In our analysis, we focused on the timepoints at baseline, <6h, 24-48h, and unrestricted

RTP. We only included baseline data which could be matched with post-injury data. The

assessments at <6h and 24-48h were denoted “acute concussion” and those from baseline

and unrestricted RTP were denoted “normal performance”. We consider those from the

unrestricted RTP timepoint to demonstrate a normal performance because they have been

cleared for RTP by each institution’s local medical staff. We analyzed <6h and 24-48h

separately.
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5.2.3 Study Variables

For each participant in the study data, we obtained demographic information along with raw

scores on the Standard Assessment of Concussion (SAC), Standard Concussion Assessment

Tool (SCAT) symptom survey, and the Balance Error Scoring System (BESS) at baseline.

For those diagnosed with concussion, we obtained time-of-injury characteristics along with

raw scores for SAC, SCAT symptoms, and BESS scores at each post-injury evaluation time-

point. We computed the change score for these athletes by subtracting the raw score at

baseline from the raw score at each post-injury timepoint. A positive change score indicates

an increase in the measure compared to baseline, whereas a negative change score indi-

cates a decrease compared to baseline. We also filled missing data elements using multiple

imputation by chained equations (Royston, 2004). Our modeling variables include:

� Demographic variables: age, sex, and number of previous concussions

� Time of injury characteristics: whether the athlete experienced loss of conscious-

ness (LOC), post-traumatic amnesia (PTA), retrograde amnesia (RGA), whether the

athlete was removed from play immediately, and whether the injury was reported im-

mediately

� Standard concussion assessments: SAC total score, SCAT total number of symp-

toms, SCAT total symptom severity, and BESS total score.

These variables are previously described in Chapter 2.

5.2.4 Data Analysis

Our overall framework for classifying Unlikely, Possible, Probable, or Definite concussion is

summarized in Figure 5.1. To create and evaluate our models, we divided our post-injury

data into a training set and a validation set. The training set consisted of all data collected

between January 23, 2014 and November 29, 2016 while the validation data consisted of all

data collected after that date (i.e., November 30, 2016 to October 2, 2017). The CARE

Consortium protocol for concussion diagnosis along with assessments performed at baseline

and post-injury remained unchanged during this period and thus, rater drift was minimal,

if any. We used our training set to develop the models to determine which athletes should
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be classified under each risk category. Then, we applied our models to the validation data

to evaluate and analyze our framework. We describe each of the steps in our methodology

in more detail below.

5.2.5 Model Calibration

Using a randomly chosen 40% of the training data, we created a logistic regression model

for estimating risk scores. For any athlete, risk scores are a scalar between 0 and 1, where

greater risk scores indicate higher likelihood of acute concussion. We used the multivariate

logistic regression model (i.e., the raw score model) from Chapter 2 to estimate risk scores

associated with athletes at <6h and 24-48h. We used the raw score models since change

scores could not be computed for baseline data and may not always be available for acute

concussion assessments in clinical settings. Since time-of-injury characteristics were not

available for baselines but were part of these previous models, we assumed in this logistic

regression analysis only that for baseline data, injuries were reported immediately and that

participants were removed from play immediately.

With the remaining 60% of the training data, we determined risk score thresholds to

identify Unlikely and Definite concussions. We first applied our logistic regression models to

this subset of training data to obtain risk scores for each athlete. Then, we used these risk

scores as the input for the data-driven optimization algorithm of Chapter 4 to determine risk

score thresholds. Athletes with risk scores below the lower threshold represent those whose

concussion probability was low and thus would be identified as Unlikely concussion. Similarly,

athletes with risk scores above the upper threshold are most likely to have concussion and

would be classified as Definite concussion. In designing these thresholds, we favored higher

sensitivity over lower false-positive rates and lower false-negative rates over higher specificity.

After determining the upper and lower risk score thresholds, we identified athletes in the

training set with risk scores between Unlikely and Definite thresholds and used them to

determine how athletes should be classified as Possible or Probable, as these cases could

not be easily distinguished by our logistic regression model. Categorization of these cases

was approached using a classification and regression tree (CART) (Breiman et al., 1984)

analysis. CART is a non-parametric statistical modeling technique which produces a decision

tree for prediction and is capable of handling categorical variables and continuous variables.
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Figure 5.1: Illustration of methodological framework for developing data-driven models
which were used to classify athletes as Unlikely, Possible, Probable, or Definite con-
cussion based on certainty of acute concussion. CART, Classification Tree; ADASYN,
Adaptive Synthetic Sampling
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Compared to other predictive modeling methods (e.g., generalized linear models), CART

is advantageous in its interpretability and ability to model highly non-linear relationships

between variables. Due to the higher proportion of normal performances to acute concussions

in our data, we applied Adaptive Synthetic Sampling (ADASYN) to mitigate data imbalance

issues before creating a CART (He et al., 2008). Additionally, for this CART, we restricted

the resulting decision tree to include only variables which were available for all timepoints.

That is, the resulting decision tree did not include time-of-injury characteristics and change

scores for the SAC, SCAT symptom assessments, and the BESS since they were not available

for baseline data. Athletes who were predicted to be acute concussions by this CART were

classified as Probable concussions while those who were predicted to be normal performances

were classified as Possible concussions.

5.2.6 Model Validation

To implement our models, we applied our logistic regression models to the validation data

to obtain risk scores for each athlete. Then, we compared these risk scores to the upper and

lower thresholds we generated using our optimization algorithm in the model calibration

phase. Athletes with risk scores below the lower threshold were classified as Unlikely con-

cussions, while athletes with risk scores above the upper threshold were classified as Definite

concussions. We then applied our CART to any athlete with a risk score between these

thresholds to classify them as Possible or Probable concussion.

5.2.7 Model Evaluation

After implementing our models on the validation data, we performed additional analysis to

evaluate the performance of our classification framework. The goals of this analysis were to

(1) analyze how our models classified acute concussions and normal performance throughout

each risk category and (2) identify interclass differences (i.e., across different risk classifica-

tions) and intraclass differences (i.e., within the same risk classification) in demographics,

time-of-injury characteristics, and standard assessment scores for acute concussions and nor-

mal performances among the risk classifications.

To achieve the first goal, we determined the percentage of acute concussions and normal

performances within each risk classification at both <6h and 24-48h. Ideally, data captured
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in the acute post-injury state should place the athlete in greater risk classifications (i.e.,

Definite or Probable), while data captured at baseline should place the athlete into lower risk

classifications (i.e., Unlikely or Possible). We compared the distribution of acute concussions

and normal performances using the Kolmogorov-Smirnov test. A significant p-value for this

test implies that the distribution of acute concussions and normal performances among the

risk classifications is dissimilar.

Since our diagnosis scheme consisted of 4 risk categories instead of 2, we also computed

a modified sensitivity and specificity. Our modified computation was founded in recom-

mendations by Kutcher and Giza who indicated that Probable and Definite concussions

should be managed as concussions, while Possible concussions should be managed based on

clinical judgment. Furthermore, we assume that Unlikely concussions are managed as non-

concussions. Therefore, we provide a sensitivity range where the lower bound reflects the

proportion of acute concussions that are correctly classified as Probable and Definite and

the upper bound reflects the proportion of acute concussions correctly classified as Possi-

ble, Probable and Definite. We also provide a range for specificity, where the lower bound

reflects the case where no Possible concussions are treated as non-concussed and an upper

bound which reflects the case where all Possible concussions are treated as non-concussed.

In practice, the true sensitivity and specificity should fall between these bounds depending

on how Possible concussions are managed.

To achieve the second goal, we first identified interclass differences in the study variables

across each risk classification for acute concussions and normal performances using analysis

of variance (ANOVA) tests with Tukey’s post-hoc comparisons. For example, we determined

if athletes with acute concussion who were classified as having a Probable concussion had

any differences in SAC, SCAT symptoms, or BESS compared to acute concussions who

were classified as Definite concussions. Next, using Student’s t-test, we identified intraclass

differences in the study variables between acute concussions and normal performances within

each risk classification. All models were created and analyzed using Python 3.5.2 (Python

Software Foundation, Beaverton, Oregon, USA).
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5.3 Results

In Table 5.1, we summarize the study data at each timepoint with respect to the study vari-

ables. Across all timepoints, there were significant differences between training and validation

data in height (P=0.0082-0.047), weight (P=0.012-0.047), and number of previous concus-

sions (P<0.001 for all). There were also significant differences in age at baseline (P=0.0012)

and 24-48h (P=0.021) and the proportion of males at unrestricted RTP (P=0.013). Among

post-injury assessments, there were significant differences between SAC raw scores at baseline

(P=0.00085), <6h (P=0.038), and at unrestricted RTP (P=0.0038), SCAT total symptoms

raw score at unrestricted RTP (P=0.027), and BESS raw score at <6h (P=0.048) and 24-48h

(P=0.00098).

5.3.1 Multivariate Logistic Regression

The model variables and corresponding coefficient values for the multivariate logistic regres-

sion models at <6h and 24-48h are shown in Table 5.2. At <6h, all variables were significant

except for whether the injury was reported immediately (P=0.16), SAC raw score (P=0.13),

and BESS raw score (P=0.080). At 24-48h, all variables were significant except for SAC raw

score (P=0.23) and BESS raw score (P=0.94).

Table 5.2: Multivariate logistic regression coefficients at <6h and 24-48h post-injury

<6h 24-48h

Study Variable Coefficient SE p-value Coefficient SE p-value

Intercept -0.57 1.71 0.74 -0.37 1.46 0.80

Male Sex 0.71 0.27 0.01 0.45 0.22 0.04

Report injury immediately? -0.46 0.33 0.16 -1.37 0.22 <0.01

Removed from play immediately? -0.91 0.35 0.01 NA NA NA

SAC raw score -0.09 0.06 0.13 -0.06 0.05 0.23

SCAT symptom severity raw score 0.06 0.03 0.02 -0.05 0.02 0.02

SCAT total symptoms raw score 0.28 0.07 <0.01 0.47 0.05 <0.01

BESS raw score 0.03 0.02 0.08 0.00 0.02 0.94
SE, standard error; SAC, Standard Assessment of Concussion; SCAT, Sport Concussion Assessment Tool;

BESS, Balance Error Scoring System; NA, variable not included in this model
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Table 5.1: Data characteristics of training and validation data with respect to each
timepoint

Normal Performance
Baseline Unrestricted RTP

Training Validation Training Validation
n 751 884 716 629
Height in meters (SD) 1.79 (0.11)** 1.78 (0.12) 1.79 (0.12)* 1.78 (0.12)
Weight in kg (SD) 83.75 (21.65)** 81.95 (21.25) 83.33 (21.4)** 80.74 (21.01)
Age in years (SD) 19.43 (1.30)* 19.24 (1.32) 19.37 (1.30) 19.27 (1.32)
Male Sex (% yes) 60.80% 57.58% 60.06%** 54.05%
Number of previous concussions (SD) 0.73 (1.0)* 0.59 (0.83) 0.70 (0.93)* 0.52 (0.77)
Report injury immediately? (% yes)1 41.2%** 47.22%
Removed from play immediately? (% yes)1 48.60% 45.31%
LOC? (% yes)1 5.45% 4.77%
PTA? (% yes)1 11.45%* 7.63%
RGA? (% yes)1 5.59% 4.13%
SAC change score (SD)1 0.97 (2.13)* 0.51 (1.99)
SAC raw score (SD) 27.05 (2.01)* 27.38 (1.96) 27.93 (1.75)* 28.19 (1.76)
SCAT symptom severity change score
(SD)1

-4.87 (8.8) -5.12 (9.71)

SCAT symptom severity raw score (SD) 5.16 (8.54) 5.25 (9.71) 0.63 (1.97) 0.46 (1.67)
SCAT total symptoms change score (SD)1 -2.48 (4) -2.55 (3.83)
SCAT total symptoms raw score (SD) 2.81 (3.85) 2.77 (3.89) 0.47 (1.39)** 0.34 (1.09)
BESS change score (SD)1 -2.35 (6.32) -2.39 (5.9)
BESS raw score (SD) 12.7 (6.32) 12.78 (6.21) 10.46 (5.81) 10.84 (5.36)

Acute Concussion
<6h 24-48h

Training Validation Training Validation
n 546 539 719 694
Height in meters (SD) 1.80 (0.12)** 1.79 (0.11) 1.79 (0.12)* 1.78 (0.12)
Weight in kg (SD) 86.01 (22.45)** 83.32 (21.39) 83.94 (22.08)** 81.33 (20.85)
Age in years (SD) 19.36 (1.32) 19.23 (1.36) 19.34 (1.27)** 19.2 (1.33)
Male Sex (% yes) 64.47% 61.60% 60.08% 56.34%
Number of previous concussions (SD) 0.78 (1.03)* 0.57 (0.78) 0.74 (1.03)* 0.58 (0.82)
Report injury immediately? (% yes) 55.31%** 60.67% 40.47%** 46.54%
Removed from play immediately? (% yes) 57.51% 56.77% 46.18% 47.26%
LOC? (% yes) 5.86% 5.01% 4.45% 4.76%
PTA? (% yes) 12.27%** 9.09% 11.4%** 8.65%
RGA? (% yes) 5.86% 5.57% 5.84% 5.33%
SAC change score (SD) -0.82 (3.19)* -1.76 (3.58) -0.4 (2.61)* -1.11 (2.72)
SAC raw score (SD) 26.18 (2.94)** 25.83 (3.33) 26.63 (2.41) 26.48 (2.77)
SCAT symptom severity change score (SD) 23.22 (20.75) 23.45 (22.76) 19.48 (21.68) 20.62 (23.27)
SCAT symptom severity raw score (SD) 28.64 (20.83) 28.58 (21.52) 25.21 (21.54) 26.04 (21.93)
SCAT total symptoms change score (SD) 8.01 (5.93) 8.03 (6.43) 7.49 (6.58) 8.05 (6.88)
SCAT total symptoms raw score (SD) 10.86 (5.42) 10.77 (5.57) 10.53 (6.03) 10.91 (6.18)
BESS change score (SD) 3.58 (8.64) 4.02 (8.52) 1.5 (7.48)** 2.58 (8.19)
BESS raw score (SD) 16.35 (8.78)** 17.36 (8.38) 14.42 (7.87)* 15.82 (8.1)

1variable not available for baseline data; Change score at a time point is computed as: raw score at timepoint
- raw score at baseline; *P<0.01 **P<0.05 Significantly different from validation data at same time point
based on Student’s t-test; n, number of data points; SD, standard deviation; SAC, Standard Assessment of
Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error Scoring System
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5.3.2 Classifying Unlikely, Possible, Probable, and Definite Concussion

We obtained risk score thresholds after applying the training data to our optimization algo-

rithm. At <6h, the lower threshold was 0.047 and the upper threshold was 0.33. At 24-48h,

the lower threshold was 0.07 and the upper threshold was 0.46. The CART we developed

for <6h and 24-48h are shown in Figure 5.1.

We now provide an example to illustrate how these risk thresholds and CART can be used

to determine whether an athlete should be classified as an Unlikely, Possible, Probable, or

Definite concussion.

Consider a 19 year-old female athlete who is being assessed for acute concussion 24-48h

after injury. She did not report the injury immediately and in her post-injury assessments,

obtained total scores of 30 and 12 on the SAC and BESS, respectively. On the SCAT

symptom assessment, she reported 4 total symptoms with a total severity of 6. Using the

logistic regression model for 24-48h, her risk score is equal to 0.36. Since her risk score is

less than the upper threshold of 0.46 and greater than the lower threshold of 0.07 at 24-48h,

she is not classified as a Definite or Unlikely concussion. To determine if she is a Possible

or Probable concussion, one would refer to the CART for 24-48h. Since her SCAT symptom

severity raw score is not 0, her SAC raw score is greater than 25, and her SCAT total

symptoms raw score is greater than 1, she would be classified as a Probable concussion.

To provide an additional example, consider a 21 year-old male athlete who was assessed

for concussion within 6 hours of a suspected injury. His injury was not reported immediately

and he was not removed from play immediately. His SAC raw score and BESS raw score

were 24 and 12, respectively. He also reported 1 symptom with a severity of 1. Based on

these values, his risk score is equal to 0.22. Since his risk estimate is between the lower and

upper thresholds of 0.047 and 0.33 at <6h, respectively, then he must either be a Possible or

Probable concussion. Since his SCAT symptom severity raw score is ≤4, the CART analysis

at <6h would classify him as a Possible concussion.

5.3.3 Distribution of Acute Concussions and Normal Performances

The distribution of acute concussions and normal performances within each risk classifica-

tion is shown in Table 5.3. At <6h, 434 (80.52%) of acute concussions were classified as

Definite concussion while only 14 (2.60%) were classified as Unlikely concussion. Among
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(a) <6h

(b) 24-48h

Figure 5.1: Classification trees for determining Possible and Probable concussions at
<6h and 24-48h post-injury
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Table 5.3: Distribution of acute concussions and normal performances among risk
classifications at <6h and 24-48h post-injury

Unlikely Possible Probable Definite
n % n % n % n %

Acute concussion* 14 2.60% 31 5.75% 60 11.13% 434 80.52%
Normal performance 696 46.00% 526 34.77% 189 12.49% 102 6.74%

<6h (Unrestricted RTP)** 282 44.83% 329 52.31% 15 2.38% 3 0.48%
(Baseline) 414 46.83% 197 22.29% 174 19.68% 99 11.20%

Total 710 34.60% 557 27.14% 249 12.13% 536 26.12%
Acute concussion* 21 3.03% 41 5.91% 110 15.85% 522 75.22%
Normal performance 714 47.19% 397 26.24% 309 20.42% 93 6.15%

24-48h (Unrestricted RTP)** 275 43.72% 312 49.60% 36 5.72% 6 0.95%
(Baseline) 439 49.66% 85 9.62% 273 30.88% 87 9.84%

Total 735 33.30% 438 19.85% 419 18.99% 615 27.87%
*Distributions of acute concussions and normal performances within risk classifications are significantly
different at P<0.001 using Kolmogorov-Smirnov test **Distributions of Unrestricted RTP and Baseline
timepoints within risk classifications are significantly different at P<0.01 using Kolmogorov-Smirnov test

the remaining acute concussions, 31 (5.75%) were classified as Possible concussion and 60

(11.13%) were classified as Probable concussion. When the <6h algorithm was applied to

normal performance data (i.e., baseline and unrestricted RTPs), 696 (46.00%), 526 (34.77%),

189 (12.49%), and 102 (6.74%) were classified as Unlikely, Possible, Probable, and Definite

concussion respectively. With the 24-48h algorithm, 522 (75.22%) acute concussions were

classified as Definite concussion while 21 (3.03%) were classified as Unlikely concussion.

There were 41 (5.91%) and 110 (15.85%) acute concussions classified as Possible and Proba-

ble concussion, respectively. Among the normal performances, 714 (47.19%), 397 (26.24%),

309 (20.42%), and 95 (6.15%) were classified as Unlikely, Possible, Probable, and Definite

concussion, respectively. With both <6h and 24-48h algorithms, the distributions among

risk classifications were different between acute concussions and normal performances based

on the Kolmogorov-Smirnov test (P<0.001). Additionally, the distribution of baselines and

unrestricted RTPs across the risk classifications were also significantly different at both <6h

and 24-48h (P<0.001).

Using our modified calculation for sensitivity and specificity, we obtained a sensitivity

range of 91.65-97.40% with the <6h algorithm and 91.06-97.00% with 24-48h algorithm. We

also obtained a specificity range of 46.00-80.77% with the <6h algorithm and 47.19-73.43%

with the 24-48h algorithm, respectively.
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As an ancillary analysis, we performed our analysis without the unrestricted RTP data

(data not shown). The resulting logistic regression model, risk score thresholds, and CART

models led to a distribution with a sensitivity of 89.42%-98.52% and a specificity of 23.21%-

71.60% at <6h. At 24-48h, the sensitivity and specificity ranged from 85.73%-95.67% and

41.52%-71.60%, respectively.

5.3.4 Interclass Differences

The interclass differences for acute concussions and normal performances are shown in Table

5.4 and Table 5.5, respectively. Among acute concussions, all mean raw and change scores for

SCAT symptom assessments at Unlikely and Possible concussions are significantly different

from Definite concussion at both <6h and 24-48h (P<0.001 for all). Among the SAC and

BESS at <6h, only the SAC change score is not significantly different between Definite and

Unlikely concussions. In contrast, at 24-48h, only BESS raw score is significantly different

between Definite and Unlikely concussions (P=0.021). Possible and Probable concussions

are significantly different in SCAT total symptoms raw score at <6h and 24-48h (P=0.0027-

0.0082). They are also significantly different in SAC change score (P=0.013), SAC raw score

(P<0.001), and SCAT total symptoms change score (P=0.012) at 24-48h.

For normal performances, the mean raw scores for the SAC, SCAT symptom severity,

SCAT total symptoms, and the BESS among Definite and Probable concussions are signif-

icantly different from Unlikely concussion (P<0.001 for all), except for SAC raw score at

24-48h. At <6h and 24-48h, Possible and Probable concussions were significantly different

in SCAT symptom severity raw score and SCAT total symptoms raw score (P<0.001 for

all). At 24-48h, Possible and Probable concussions are also significantly different in SAC

raw score and BESS raw score (P<0.001 for all).

5.3.5 Intraclass Differences

The intraclass differences are highlighted in Table 5.4 and Table 5.5. Among those classified

as Possible concussions, acute concussions and normal performances are significantly different

in SCAT symptom severity (P<0.001 at <6h, P=0.016 at 24-48h) and SCAT total symptoms

raw score (P<0.001 at <6h, P=0.0019 at 24-48h). There are also significant differences in

SAC raw change scores (P=0.0026) and raw scores (P=0.046) for acute concussions and nor-
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Table 5.4: Comparison of study variables for acute concussions classified as Unlikely,
Possible, Probable, and Definite concussion at <6h and 24-48h post-injury

<6h
Unlikely Possible Probable Definite

n 14 31 60 434
Age in years (SD) 19.93 (0.80)* 19.42 (1.48) 19.23 (1.28) 19.19 (1.37)*
Male Sex (% yes) 78.57%* 74.19% 43.33% 62.67%
Number of previous concussions (SD) 0.43 (0.62) 0.55 (0.87) 0.60 (0.82) 0.56 (0.77)
Report injury immediately? (% yes) 100.00%*1 67.74%*1 83.33%* 55.76%
Removed from play immediately? (% yes) 100.00%*1 64.52%*1 76.67%* 52.07%
LOC? (% yes) 14.29% 6.45%* 5.00% 4.61%*
PTA? (% yes) 7.14% 3.23%* 3.33% 10.37%*
RGA? (% yes) 21.43% 6.45%* 0.00% 5.76%*
SAC change score (SD) 0.14 (1.46) -0.97 (2.86)1 -0.55 (2.10) -1.76 (3.51)
SAC raw score (SD) 28.57 (1.18)1 26.61 (2.88)1 27.48 (1.80) 25.49 (3.42)*
SCAT symptom severity change score (SD) -2.79 (5.83)1 -0.48 (9.08)1 5.18 (7.17)*1 28.49 (21.94)*
SCAT symptom severity raw score (SD) 0.71 (1.33)1 2.74 (1.24)*1 8.70 (3.00)*1 34.01 (20.29)*
SCAT total symptoms change score (SD) -1.21 (3.41)1 0.42 (3.98)1 2.60 (3.51)*1 9.63 (5.85)*
SCAT total symptoms raw score (SD) 0.57 (0.90)1,2 2.06 (1.08)*1,2 4.73 (1.42)1 12.57 (4.53)*
BESS change score (SD) -1.93 (8.92)1 3.97 (7.45) 2.87 (6.39)* 4.94 (9.41)
BESS raw score (SD) 11.64 (6.00)1 15.00 (6.51)1 13.83 (7.34) 18.40 (9.02)*

24-48h
Unlikely Possible Probable Definite

n 21 41 110 522
Age in years (SD) 19.38 (1.29) 19.20 (1.40) 19.15 (1.29) 19.20 (1.33)*
Male Sex (% yes) 61.90% 73.17%*2 49.09% 56.32%
Number of previous concussions (SD) 0.52 (0.73) 0.66 (0.95) 0.53 (0.72) 0.58 (0.82)*
Report injury immediately? (% yes) 100.00%*1 51.22%*1,2 76.36%* 37.74%
Removed from play immediately? (% yes) 90.48%*1 51.22%*1 62.73%* 41.95%
LOC? (% yes) 9.52% 4.88%* 3.64% 4.79%*
PTA? (% yes) 9.52% 7.32% 5.45% 9.39%
RGA? (% yes) 9.52%* 2.44% 7.27% 4.98%*
SAC change score (SD) -0.52 (2.32) -1.59 (2.56)*1,2 -0.15 (1.63) -1.28 (2.76)*
SAC raw score (SD) 27.29 (1.72) 25.66 (2.69)*1,2 27.76 (1.33) 26.24 (2.90)*
SCAT symptom severity change score (SD) -3.81 (7.40)1 -1.00 (10.92)1 4.38 (8.40)*1 26.42 (23.33)*
SCAT symptom severity raw score (SD) 0.90 (1.72)*1 3.24 (4.11)*1 7.15 (5.47)1 32.88 (20.95)*
SCAT total symptoms change score (SD) -2.05 (2.87)1,2 -0.54 (3.79)1,2 2.63 (3.47)*1 10.21 (6.14)*
SCAT total symptoms raw score (SD) 0.33 (0.56)*1,2 1.59 (1.56)*1,2 4.28 (1.79)*1 13.47 (4.74)*
BESS change score (SD) 0.62 (5.60) 0.83 (5.92) 1.46 (6.73)* 3.52 (8.40)*
BESS raw score (SD) 11.62 (5.62)1 13.17 (6.29)1 14.07 (7.18)1 16.89 (8.61)

Change score at a timepoint is computed as: raw score at timepoint - raw score at baseline; *Significantly
different (P<0.05) from normal performances in the same risk classification and timepoint based on Stu-
dent’s t-test; 1Significantly different (P<0.05) from Definite concussion at the same timepoint based on
Tukey’s post-hoc pairwise comparisons; 2Significantly different (P<0.05) from Probable concussion at the
same timepoint based on Tukey’s post-hoc pairwise comparisons; n, number of data points; SD, standard
deviation; LOC, loss of consciousness; PTA, post-traumatic amnesia; RGA, retrograde amnesia; SAC, Stan-
dard Assessment of Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error Scoring
System
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Table 5.5: Comparison of study variables for normal performances classified as Un-
likely, Possible, Probable, and Definite concussion at <6h and 24-48h post-injury

<6h
Unlikely Possible Probable Definite

n (% baseline) 696 (59.48%) 526 (37.45%) 189 (92.06%) 102 (97.06%)
Age in years (SD) 19.28 (1.27)* 19.33 (1.37) 19.13 (1.32) 18.86 (1.30)*1
Male Sex (% yes) 48.13%* 72.24%1 41.80%2 53.92%
Number of previous concussions (SD) 0.55 (0.81) 0.53 (0.76) 0.58 (0.86) 0.70 (0.84)
Report injury immediately? (% yes)** 84.75%* 14.89%* 53.33%* 33.33%
Removed from play immediately? (% yes)** 84.40%* 11.85%* 46.67%* 33.33%
LOC? (% yes)** 7.45% 2.43%* 6.67% 0.00%*
PTA? (% yes)** 7.09% 7.90%* 13.33% 0.00%*
RGA? (% yes)** 6.03% 2.43%* 6.67% 0.00%*
SAC change score (SD) 0.85 (1.93) 0.54 (2.13) 0.13 (1.82) -0.33 (1.89)
SAC raw score (SD) 28.11 (1.60) 27.35 (2.25)1 27.40 (1.90)1 27.27 (1.93)1
SCAT symptom severity change score (SD) -4.98 (8.37) -5.13 (10.12) -8.33 (18.17)* -8.67 (14.27)*
SCAT symptom severity raw score (SD) 0.41 (1.02) 1.02 (1.41)* 8.22 (3.23)1,2 25.65 (15.51)*1,2
SCAT total symptoms change score (SD) -2.63 (3.51) -2.54 (3.90) -1.73 (5.96)* -1.67 (4.64)*
SCAT total symptoms raw score (SD) 0.28 (0.64) 0.81 (1.16)*1 4.84 (1.59)1,2 11.41 (3.99)*1,2
BESS change score (SD) -2.72 (6.03) -1.64 (5.68) -1.60 (5.55)* -0.33 (3.68)*
BESS raw score (SD) 10.74 (5.14) 12.96 (5.97)1 13.20 (7.05)1 16.41 (7.77)1,2

24-48h
Unlikely Possible Probable Definite

n (% baseline) 714 (61.48%) 397 (21.41%) 309 (88.35%) 93 (93.55%)
Age in years (SD) 19.36 (1.31) 19.16 (1.30) 19.24 (1.35) 18.86 (1.29)*1
Male Sex (% yes) 56.16% 59.19%* 54.05% 49.46%
Number of previous concussions (SD) 0.54 (0.78) 0.51 (0.80) 0.61 (0.82) 0.76 (0.88)*
Report injury immediately? (% yes)** 100.00%* 2.88%* 30.56%* 33.33%
Removed from play immediately? (% yes)** 77.09%* 18.59%* 33.33%* 50.00%
LOC? (% yes)** 8.73% 0.96%* 8.33% 0.00%*
PTA? (% yes)** 8.73% 6.41% 8.33% 16.67%
RGA? (% yes)** 5.09%* 3.21% 5.56% 0.00%*
SAC change score (SD) 0.85 (2.03) 0.54 (2.07)* 0.28 (1.74) 1.17 (2.19)*
SAC raw score (SD) 27.88 (1.82) 27.30 (2.39)*1 27.92 (1.40)2 27.34 (2.02)*
SCAT symptom severity change score (SD) -5.09 (8.96) -4.99 (8.71) -5.75 (17.90)* -12.83 (16.08)*
SCAT symptom severity raw score (SD) 0.34 (0.96)* 0.99 (2.29)* 6.64 (5.50)1,2 24.75 (16.6)*1,2
SCAT total symptoms change score (SD) -2.61 (3.64) -2.68 (3.73) -1.06 (4.52)* -2.50 (6.85)*
SCAT total symptoms raw score (SD) 0.20 (0.49)* 0.66 (1.37)*1 3.85 (1.82)*1,2 11.87 (3.85)*1,2
BESS change score (SD) -2.06 (6.19) -2.08 (5.50) -3.06 (6.42)* -0.83 (3.02)*
BESS raw score (SD) 11.76 (5.68) 11.28 (5.46) 13.38 (6.76)1,2 15.56 (7.67)*1,2

Change score at a timepoint is computed as: raw score at timepoint - raw score at baseline; *Significantly
different (P<0.05) from acute concussions in the same risk classification and timepoint based on Student’s
t-test **Variable not available for baseline data; 1Significantly different (P<0.05) from No concussion at
the same timepoint based on Tukey’s post-hoc pairwise comparisons; 2Significantly different (p<0.05) from
Possible concussion at the same timepoint based on Tukey’s post-hoc pairwise comparisons; n, number
of data points; SD, standard deviation; LOC, loss of consciousness; PTA, post-traumatic amnesia; RGA,
retrograde amnesia; SAC, Standard Assessment of Concussion; SCAT, Sport Concussion Assessment Tool;
BESS, Balance Error Scoring System
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mal performances classified as Possible concussion at 24-48h. Among probable concussions

at <6h and 24-48h, acute concussions and normal performances are significantly different

in change scores for SCAT symptom severity (P=0.0012-0.0077), SCAT total symptoms

(P=0.0093 at <6h, P<0.001 at 24-48h), and BESS (P=0.0074 at <6h, P<0.001 at 24-48h).

They are also significantly different in SCAT symptom severity raw score at <6h (P<0.001)

and SCAT total symptoms raw score at 24-48h (P<0.001).

To illustrate how these intraclass differences can be used to inform clinical decision-making,

we revisit the examples from the Classifying Unlikely, Possible, Probable, and Definite Con-

cussion subsection. Consider the first athlete (19 year-old female) and suppose that her

change scores for the SAC, SCAT symptom severity, SCAT total symptoms, and BESS are

0, 6, 4, and -5, respectively. Based on intraclass differences identified in this study for 24-

48h, there were significant differences between acute concussions and normal performances

for the SCAT symptom severity change score, SCAT total symptoms change score, SCAT

total symptoms raw score, and the BESS change score. Comparing this athlete’s assessments

with the mean values for Probable concussions presented in Table 4 and Table 5, we find

that the athlete is more comparable to acute concussion in terms of change scores for the

SCAT symptom severity and total number of symptoms. Conversely, she is more comparable

to the normal performances in terms of the BESS change score. Following the conservative

decision-making approaches that are recommended for concussion management, one could

treat this athlete as if she has an acute concussion.

Now, consider the 21 year-old male athlete and suppose that his change scores for the

SAC and BESS were 0 and 5 respectively. Additionally, his SCAT symptom severity and

total symptoms both decreased by 4 compared to baseline. Based on intraclass differences

identified in this study for the Possible concussion group at <6h, there were significant dif-

ferences between acute concussions and normal performances in the SCAT symptom severity

and SCAT total symptom raw scores. Comparing this athlete’s values in these measures (of

1 symptom reported with a severity of 1) to the mean values obtained in our analysis, we

find that this athlete more closely resembles the normal performances within the Possible

concussions – despite the low SAC raw score and high BESS change score. These results

could potentially indicate that additional assessments should be performed on this athlete

to confirm the possibility that this athlete is not concussed.
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5.4 Discussion

Kutcher and Giza proposed a risk-based classification framework for diagnosing acute con-

cussion developed from clinical experience (Kutcher and Giza, 2014). Compared to tradi-

tional binary diagnosis, this framework allows the assessment of acute concussion to reflect

the physician’s diagnostic certainty. Furthermore, taking this approach allows the injury

diagnosis to evolve as the injury evolves and more information becomes available. How-

ever, while they provided clinical guidelines for each risk classification, they did not provide

specific criteria with respect to commonly recommended and implemented concussion as-

sessment tools. In this research, we designed and evaluated a novel data-driven method for

classifying athletes evaluated for acute concussion as either Unlikely, Possible, Probable, and

Definite concussion. The major contributions of our research are as follows:

� We develop an objective and data-driven framework which stratifies acute concussion

assessment by diagnostic certainty. These risk categories lay the foundation for guiding

post-injury management decisions.

� We identify key characteristic which can be used to differentiate between acute con-

cussions and normal performances in each risk category.

� We provide additional, quantitative support for the value of a multidimensional battery,

the use of change scores in acute concussion assessment, and the potential implications

for several demographic factors and time-of-injury characteristics in acute concussion

assessment.

The variables used in our logistic regression and CART models are parts of standard con-

cussion assessment batteries, giving foundation for our framework to be used in sporting

environments. To our knowledge, we are the first to combine predictive modeling techniques

(i.e., logistic regression and CART) and optimization algorithms to classify athletes into

concussion risk categories. Erring in the direction of minimizing false negatives, our frame-

work classified most acute concussions (91.07-91.65%) into the higher risk categories (i.e.,

Probable and Definite concussion) and most normal performances (73.43-80.77%) into the

lower risk categories (i.e., Unlikely and Possible concussion). Additionally, few acute con-

cussions were classified as Unlikely concussion (2.60-3.03%) and few normal performances

were classified as Definite concussion (6.15-6.74%).
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Our most important finding was that athletes classified as Definite concussion had lower

SAC, higher SCAT symptom, and higher BESS scores compared to the other risk categories.

In comparing these risk groups, Definite concussions exhibited noticeably more symptoms

and greater symptom severity compared to the other risk categories while the Unlikely con-

cussions exhibited mean symptom severities and mean total symptoms close to 0. Definite

concussions also had much higher BESS raw scores and lower SAC scores compared to Un-

likely concussions. These findings demonstrate the ability of our framework to separate the

“easy” cases from the “hard” cases and are consistent with previous research demonstrating

symptoms are typically the most sensitive to acute concussion (Chin et al., 2016; Garcia

et al., 2018; McCrea et al., 2005; Register-Mihalik et al., 2013b; Resch et al., 2016). Our

findings also provide support for the utility of using neurocognitive assessments and postu-

ral control measures for acute concussion assessment, as demonstrated by previous research

(Barr and McCrea, 2001; Broglio, Macciocchi, and Ferrara, 2007; Buckley, Munkasy, and

Clouse, 2017; Covassin, Schatz, and Swanik, 2007; Guskiewicz, 2001; Guskiewicz, Ross, and

Marshall, 2001; McCrea et al., 2005; Riemann and Guskiewicz, 2000; Sufrinko et al., 2017a;

Valovich McLeod et al., 2004)

However, among those classified as Possible or Probable concussions, raw scores for SCAT

symptom severity and total symptoms are significantly less for acute concussions in the

Possible concussion group compared to all baselines (P<0.01 for both measures at <6h and

24-48h using Student’s t-test). Additionally, there are no significant differences in the SCAT

symptom severity or total symptoms between acute concussions and normal performances

in the Probable risk category. These findings demonstrate the difficulty in identifying all

acute concussions using symptom raw scores alone. Fortunately, there were some significant

differences between acute concussions and normal performances in the Possible and Probable

risk categories for change scores in the SAC, SCAT symptom severity, SCAT total symptoms,

and the BESS. This result suggests that change scores, which require baseline assessments,

have added value when evaluating Possible and Probable concussions and is an important

finding regarding the utility of the baseline assessment.

In our analysis, we also sought out to identify differences in athlete demographics and

time-of-injury characteristics across and within risk classifications. There were statistically

significant differences in age, sex, and number of previous concussions between acute con-

cussions and normal performances within some risk categories. For example, among those
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classified as Definite concussions, the athletes were, on average, older than those providing

normal performances at both <6h and 24-48 hour. Outside of age, there were no other

consistent demographic differences and risk categories. For time-of-injury variables among

acute concussions, a larger proportion of those classified as Unlikely concussion reported the

injury immediately and were removed from play immediately compared to those who were

classified as Definite concussions. This result suggests that those athletes who were removed

from play immediately or assessed immediately after injury may be in the earliest stages of

an evolving injury whereby neurocognitive declines, increased symptoms, worsening postural

control emerge over time (Guskiewicz et al., 2003; Makdissi et al., 2010; McCrea et al., 2003).

However, we note that very few acute concussions were classified as Unlikely concussion, and

due to this small sample size, this point may require further investigation.

We also found that baselines comprised most normal performances within the Probable and

Definite risk categories. Despite varying parameter settings to balance the sensitivity and

specificity of our results, we were unable to drastically improve on the proportion of baselines

in these upper risk categories. This finding may be due to performance differences between

baseline and unrestricted RTP timepoints. Specifically, the baseline data showed lower

SAC scores, higher SCAT symptom assessment scores, and higher BESS scores compared

to unrestricted RTP data (P<0.001 for all measures and in both training and validation

sets). As a result, our logistic regression model categorized the baseline performance of some

athletes into the higher risk categories. The performance discrepancy between baseline and

unrestricted RTP timepoints is consistent with previous studies (Garcia et al., 2018; McCrea

et al., 2013; McCrea et al., 2003; Piland et al., 2010; Shehata et al., 2009) and may be

attributed to comorbidities (Lovell et al., 2006) or learning effects from multiple assessments

prior to return to play (Moreau, Langdon, and Buckley, 2014; Valovich McLeod et al.,

2004). Future works may be able to address this shortcoming by incorporating individual

items from the SAC, SCAT symptom assessments, and the BESS instead of using total

scores. Regardless, this finding highlights the need for clinicians to interpret the administered

assessments in the context of the injury, such as an observed mechanism, and differentiate

from other injuries and conditions with similar signs and symptoms (Bruce et al., 2017;

Kutcher and Giza, 2014; McCrory et al., 2017; Zuckerman et al., 2016)

To account for clinical judgment in our methodology, we used a modified range-based

computation for sensitivity and specificity, which provided a 6% sensitivity increase and
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¿34% specificity increase in Possible concussion management. Furthermore, the sensitivity of

our algorithm mirrors those reported in previous studies (80.0-100.0%) evaluating concussion

testing batteries for acute concussion assessment (Broglio, Macciocchi, and Ferrara, 2007;

McCrea et al., 2005; Putukian et al., 2015; Resch et al., 2016). Methodological differences

between our study and these aforementioned studies account for some differences, including

the test battery assessments. For example, both Broglio, Macciocchi, and Ferrara, 2007

and Resch et al., 2016 used the Sensory Organization Test (SOT) for balance assessment

instead of the BESS. While both the SOT and BESS reveal similar post-concussion trends

in postural control deficits (Guskiewicz, 2001), the SOT has less clinical applicability given

its size and cost. Additionally, the diagnosis criteria differed greatly across each study.

Broglio, Macciocchi, and Ferrara, 2007; McCrea et al., 2005 and Putukian et al., 2015 used

different measures of significant change to indicate concussion while Resch et al., 2016 used

both predictive discriminant analyses and clinical interpretation guidelines. In comparison,

we paired a data-driven optimization framework with predictive modeling methods (i.e.,

logistic regression and CART) to classify athletes into risk categories. By using predictive

modeling methods, we were able to simultaneously incorporate demographic information and

time-of-injury characteristics, along with SAC, SCAT symptoms, and BESS results. Finally,

the concussed sample used in the present study (n=1085 for <6h and n=1413 for 24-48h) is

much larger than those in the aforementioned studies (n=32-166).

From a clinical perspective, previous studies have discussed the importance and value of

taking a heterogeneous and targeted approach to concussion management (Collins et al.,

2016; Collins et al., 2014; Ellis et al., 2016). However, since the focus of this study was

on identifying acute concussion, it does not address injury heterogeneity by accounting for

potential concussion subtypes or clinical profiles. However, our work lays the foundation to

do so using clustering or clinically determined approaches.

Our study is not without limitations. First, we acknowledge that our framework does

not provide a recommendation for post-injury management for athletes classified in each

risk category. These post-injury decisions are beyond the scope of our study and are an

important topic for future research. To this end, clinicians can still benefit from knowing

the degree of certainty in a diagnosis decision before determining the next course of action.

Second, our study treats all concussions in the CARE data as truly concussed, regardless

of the medical staff certainty. Thus, there is the possibility that our models were trained
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and validated on athletes who were not actually concussed but were labeled so. Third, the

differences between our training and validation data in important clinical measures such as

PTA or LOC may have caused differences in the presentation of concussion between those

two groups, potentially explaining some of the prediction errors in our models. Determining

training and validation data using random subset selection instead of by a time-based cut-

off could lead to a more homogeneous division in data and ultimately, improved modeling

results. Fourth, since our study data only included athletes aged 18-22, we cannot directly

apply our results to populations beyond this group. Therefore, future studies should focus

on other population groups, such as youth sports and professional athletes, to determine the

generalizability of our results beyond our study population. Fifth, we were limited in our

ability to include change scores and time-of-injury characteristics in our models, as these

measures were not available for baseline data. Finding ways to incorporate such variables

in future analysis may improve our results. Furthermore, our analysis focused on the SAC,

SCAT symptom assessments, and the BESS. Data limitations precluded our ability to include

assessments such as the Sensory Organization Test, computer based neurocognitive testing,

the King-Devick test, and/or the Vestibular/Ocular Motor Screening Assessment that have

shown promise in other investigations (Anzalone et al., 2017; Kontos et al., 2016; Mucha et

al., 2014; Pearce et al., 2015). Finally, as there is no gold standard for concussion diagnosis,

we did not have a comparative mechanism for our results.

The objective, algorithmic approach we proposed and developed for risk-based classifi-

cation of athletes undergoing acute concussion assessment extends the original framework

proposed by Kutcher and Giza, 2014. By applying predictive modeling and optimization

methods, our work provides a promising first-step in taking an evidence-based approach

to acute concussion assessment stratification. While the clinical examination remains the

gold standard for concussion diagnosis, the models we have designed and analyzed have the

potential to provide valuable decision support for clinicians.
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Chapter 6

Cluster Analysis of Possible and Probable

Concussions

6.1 Introduction

In Chapter 5, we applied the methods developed in Chapters 2 and 4 to create a data-driven

framework for acute concussion diagnosis which incorporates the degree of uncertainty in

that diagnosis (i.e., Unlikely, Possible, Probable, or Definite concussion). This prior analysis

focused primarily on comparisons based on composite scores for the Standardized Assessment

of Concussion (SAC), full Balance Error Scoring System (BESS), and the Sport Concussion

Assessment Tool (SCAT) symptom checklist. However, providing a more granular charac-

terization of athletes with Possible and Probable concussions would be of additional use for

clinicians.

Hence, the goal of this research is to characterize performance on the SAC, full BESS, and

SCAT symptom checklist for athletes identified as having Possible and Probable concussions.

We achieve this goal by first using our previously developed framework to classify athletes

as having Possible and Probable concussion and then applying extensive cluster analysis to

identify variables which can best separate the concussions and normal performances within

the Possible and Probable concussions. The results and insights generated in this research

provide a reference for clinicians to use when assessing athletes for whom a diagnosis decision

is unclear.
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6.2 Materials and Methods

6.2.1 Study Population and Design

To perform our cluster analysis, we used data from the CARE Consortium, as described in

Section 1.1.1.

6.2.2 Sample Selection

Since our analysis aimed to characterize Possible and Probable concussions at the acute con-

cussion stage, we focused on assessments performed at <6 hours (n=1456) and 24-48 hours

(n=2394). As a point of comparison, we also included assessments at baseline (n=2587) and

unrestricted RTP (n=2178) in our analysis, although baseline data were used only to com-

pute change scores (defined below) for the SAC, BESS, and symptom checklist. Therefore,

we only included baseline data which could be matched to an athlete’s post-injury assess-

ment(s). We denoted the assessments at <6h and 24-48h as “acute concussion” and those

from the unrestricted RTP timepoint as “normal performance.” We performed separate

analyses for the <6h and 24-48h timepoints.

6.2.3 Study Variables

Within the study data, we obtained the athlete’s sex along with baseline scores on the SAC,

BESS, and SCAT symptom checklist. The SAC (McCrea et al., 1998), BESS (Riemann,

Guskiewicz, and Shields, 1999), and SCAT symptom checklist (Concussion in Sport Group,

2013) are considered to be among the most useful tools for evaluating acute concussion

(Echemendia et al., 2017). To facilitate our analysis, we first aggregated symptoms into

symptom groups based on previous work by Kontos et al., 2019 (see Table 6.1). These

symptom groups have shown strong reliability and validity for concussion screening (Kontos

et al., 2020; Kontos et al., 2019). Note that although “neck pain” is included in the SCAT

symptom checklist, we excluded this symptom from our analysis since it is regarded as a

concurrent symptom with concussion and not necessarily a specific symptom of concussion

(King, McCrea, and Nelson, 2020). We obtained the score for each symptom group by taking

the sum of the severity of the symptoms within each group. In our analysis, we included
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the raw score and change score for each symptom group along with the total number of

symptoms reported.

Table 6.1: Symptom groups

Symptom Group Symptoms
Ocular-Vestibular blurred vision, dizziness, balance problems, nausea or vomiting
Cognitive-Fatigue feeling like “in a fog”, difficulty concentrating, difficulty remembering, feeling

slowed down, fatigue, drowsiness, confusion, “don’t feel right”
Post-traumatic
Migraine

headache, trouble faling asleep, “pressure in the head”, sensitivity to light,
sensitivity to noise

Anxiety-Mood nervous or anxious, sadness, more emotional, irritability

Since previous research has identified sex differences in symptom burden and neurocog-

nitive measures post-injury (Covassin et al., 2012; Covassin et al., 2018; Covassin, Schatz,

and Swanik, 2007; Dick, 2009; Moran et al., 2020), separate analyses were carried out for

male athletes and female athletes. For athletes who sustained concussions, we obtained raw

scores for the SAC, BESS, and SCAT symptom checklist at <6h, 24-48h, and unrestricted

RTP. For each of the post-injury assessments, we computed a change score by taking the

difference between the raw score obtained at the time of post-injury assessment and the score

obtained during the baseline assessment for that athlete. A positive change score indicates

an increase in that measure compared to baseline and vice versa. Therefore, positive change

for the SAC indicates “better” performance for the SAC, whereas a positive change score for

symptoms and the BESS indicate “worse” performance. For assessments at each timepoint,

all missing data elements were filled using multiple imputation by chained equations with

imputation performed within each timepoint (e.g., only data from <6h was used to impute

missing data at <6h) (Royston, 2004). Most variables were missing at less than 5% except

for BESS total score at baseline (5.4%), <6h (24.5%), and 24-48h (10.3%). Imputation was

performed using the software R, Version 3.2.2.

6.2.4 Data Analysis

The purpose of our analysis was to identify characteristics which could be useful in determin-

ing which athletes have a true diagnosis of concussion among those athletes who are most

difficult to assess. Our analysis was carried out in three stages, as illustrated in Figure 6.1.
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Figure 6.1: Illustration of data analysis procedure

In the first stage of our analysis, we randomly divided the data into a training set (60% of

data) and testing set (40% of data). Given the non-normality of our modeling variables, we

used two-sample non-parametric bootstrap t-tests (Efron and Tibshirani, 1993) to compare

training and testing sets, with a significance level of α = 0.05 indicating significant differ-

ences. We also computed Cohen’s d to quantify the effect size of these differences. Then, we

applied our methodology from Chapter 5 on the training set to classify athletes suspected

of concussion as Unlikely, Possible, Probable, or Definite concussions. We then applied this

algorithm to our testing set to identify Possible and Probable concussions.

In the second stage of our analysis, we performed k-means clustering on this subset of

Possible and Probable concussions to identify potential clusters which could describe the

difference between those who were likely to have concussion and those who were unlikely to

have concussion. Briefly, k-means clustering will place each athlete into one of k different

clusters based on which cluster the athlete is “closest” to. To perform this analysis, we first

separated the Possible and Probable concussions into four subsets by sex and timepoint:

male <6h, female <6h, male 24-48h, and female 24-48h. In early stages of cluster analysis,

147



we found that extreme values from change scores in SCAT total symptom severity and

total number of symptoms were largely influencing our result. Since k-means clustering is

known to be sensitive to the presence of outliers (Jain, 2010), we removed a small subset

of athletes (n=14-21 athletes at each sex and timepoint) from our analysis whose change

score in SCAT total symptom severity or total number of symptoms was greater than 2.5

standard deviations from the mean value within the same sex and timepoint. We remark

that closer investigation of these outliers indicate that these athletes scored significantly

better post-injury than at baseline (i.e., total symptom severity is much higher at baseline).

Using a two-sample non-parametric bootstrap t-test, we identified significant differences for

all modeling variables across each subset of Possible and Probable concussions by sex and

timepoint. For all variables, we used Cohen’s d to quantify effect sizes for all differences.

To perform the cluster analysis, we specified the number of clusters and the variables on

which to cluster (i.e., a subset of the modeling variables in Section 6.2.3). To maximize the

interpretability of our results, we focused on cluster analysis which divided the data into two

cluster groups. Additionally, work by Formann, 1984 recommends between 2m to 5×2m data

samples when clustering on m variables. Hence, due to our sample sizes, we could only test

clustering groups which were clustered on at most 7 variables. Therefore, in our analysis,

we tested every combinations of variables with up to 7 variables resulting in 63,003 clusters

at both <6h and 24-48h. Hereafter, we refer to each group of clusters formed by a specified

set of variables as a cluster set.

In the third stage of our analysis, we evaluated the cluster sets for each subset of Possi-

ble and Probable concussions (by sex and timepoint) by computing their silhouette scores

(Rousseeuw, 1987) and sample-weighted Gini indices (Cowell, 2000). Silhouette scores range

from -1 to 1 and measure the dissimilarity between clusters in a cluster set, where greater

Silhouette scores indicate greater dissimilarity. Gini indices range from 0 to 1 and measure

the purity of clusters within a cluster set. Cluster sets with lower Gini indices are purer,

implying that one cluster will contain mostly acute concussions and the other will contain

mostly normal performances. We restricted our attention to the cluster sets which had a

Silhouette score of at least 0.1 and a Gini index within the lowest 200 of all Gini indices (ap-

proximately best 0.32% of all clusters). With these 200 sets of clusters, we analyzed which

variables were used in clustering and which of these variables were significantly different

(based on a non-parametric bootstrap t-test) between the two clusters in each cluster set.
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Finally, we analyzed the cluster sets with the lowest Gini index in each of the four cluster

subsets to illustrate the differences between the two purest clusters.

6.3 Results

6.3.1 Characteristics of Study Data

In Table 6.1 and Table 6.2, we summarize the characteristics of normal performances and

acute concussions, respectively, with respect to modeling variables. There were very few

significant differences between the training and testing data. For assessments performed

at the unrestricted RTP timepoint, the mean number of previous concussions (P=0.0085,

d=0.11), total number of symptoms raw score (P=0.038, d=0.09), and the Anxiety-Mood

symptom group raw score (P=0.031, d=0.09) were significant.

6.3.2 Characteristics of Possible and Probable Concussions

We used the data-driven framework of Chapter 5 to identify Possible and Probable con-

cussions in the testing data. We describe the Possible and Probable concussions at <6h

in Table 6.3 and at 24-48h in Table 6.4. For males at <6h, mean values were significantly

different between the concussed and normal performance groups for most modeling vari-

ables (P<0.05 for all, d=0.51-3.09) except for the SAC raw score (P=0.10, d=0.21), BESS

raw score (P=0.20, d=0.20), and Anxiety-Mood raw score (P=0.27, d=0.14) and change

score (P=0.37, d=0.14). For females at <6h, there were significant differences between

the concussed and normal performance groups in mean values for the BESS change score

(P=0.001, d=0.54), total number of symptoms raw score (P=0.0005, d=3.05) and change

score (P=0.002, d=1.04), Ocular-Vestibular raw score (P=0.001, d=2.00) and change score

(P=0.0005, d=1.34), Cognitive-Fatigue raw score (P=0.0005, d=2.25), and Post-traumatic

Migraine raw score (P=0.0005, d=3.29) and change score (P=0.0005, d=1.63). At 24-48h, all

variables were significantly different between males with acute concussion and normal perfor-

mance except for Ocular-Vestibular change score (P=0.59, d=0.10), and Anxiety-Mood raw

score (P=0.27, d=0.23) and change score (P=0.95, d=0.01). For females at 24-48h, mean

values were significantly different between the concussed and normal performance groups for
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Table 6.1: Characteristics of normal performances by timepoint

Baseline Unrestricted RTP
Variable Training Testing Training Testing
n 1623 964 1346 832
Male Sex (% yes) 58.1% 60.79% 56.98% 58.89%
Age, years (SD) 19.10 (1.25) 19.16 (1.30) 19.12 (1.25) 19.12 (1.29)
Height, m (SD) 1.79 (0.11) 1.79 (0.12) 1.78 (0.11) 1.79 (0.12)
Weight, kg (SD) 82.33 (21.55) 83.12 (21.97) 81.78 (21.24) 82.62 (21.97)
Number of previous concussions (SD) 0.60 (0.88) 0.62 (0.88) 0.64 (0.88) 0.54 (0.81)**
SAC RS (SD) 27.30 (1.95) 27.22 (1.98) 28.11 (1.68) 28.11 (1.75)
SAC CS (SD) 0.83 (2.03) 0.78 (2.04)
BESS RS (SD) 13.31 (6.28) 13.74 (6.64) 10.81 (5.65) 10.70 (5.73)
BESS CS (SD) -2.91 (6.23) -2.59 (6.51)
SCAT total symptoms RS (SD) 2.79 (3.84) 2.82 (3.95) 0.40 (1.29) 0.30 (0.98)*
SCAT total symptoms CS (SD) -2.47 (3.94) -2.51 (3.85)
Vestibular RS (SD) 0.28 (0.99) 0.27 (1.04) 0.01 (0.12) 0.01 (0.15)
Vestibular CS (SD) -0.25 (0.96) -0.25 (1.09)
Ocular RS (SD) 0.08 (0.42) 0.07 (0.41) 0.01 (0.14) 0.00 (0.05)
Ocular CS (SD) -0.06 (0.41) -0.04 (0.37)
Cognitive-Fatigue RS (SD) 2.52 (4.83) 2.41 (4.54) 0.22 (1.06) 0.15 (0.70)
Cognitive-Fatigue CS (SD) -2.35 (4.80) -2.60 (5.41)
Post-traumatic Migraine RS (SD) 1.03 (2.13) 1.13 (2.18) 0.18 (0.74) 0.13 (0.55)
Post-traumatic Migraine CS (SD) -0.90 (2.14) -0.92 (2.15)
Anxiety-Mood RS (SD) 1.00 (2.48) 0.98 (2.48) 0.07 (0.52) 0.03 (0.38)*
Anxiety-Mood CS (SD) -0.97 (2.48) -0.96 (2.62)
Cervical RS (SD) 0.25 (0.70) 0.27 (0.76) 0.05 (0.27) 0.05 (0.31)
Cervical CS (SD) -0.23 (0.78) -0.22 (0.81)

n, sample size; RS, raw score; CS, change score; SD, standard deviation; SAC, Standard Assessment of
Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error Scoring System; *P<0.05
**P<0.01 ***P<0.001 Significantly different from training data at same timepoint using 2-sample
non-parametric bootstrap t-test; Effect sizes (Cohen’s d) for significant differences: Number of previous
concussions at Unrestricted RTP, d=0.11; SCAT total symptoms RS, d=0.09; Anxiety-Mood RS, d=0.09

SAC raw score (P=0.0125, d=0.42) and change score (P=0.024, d=0.35), SCAT total symp-

toms raw score (P=0.0005, d=2.68) and change score (P=0.0005, d=1.22), Ocular-Vestibular

raw score (P=0.013, d=0.87), Cognitive-Fatigue raw score (P=0.0005, d=1.54) and change

score (P=0.0015, d=0.48), and Post-traumatic raw score (P=0.0005, d=2.13) and change

score (P=0.0005, d=1.36).
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Table 6.2: Characteristics of acute concussions by timepoint

<6h 24-48h
Variable Training Testing Training Testing
n 831 625 1432 962
Male Sex (% yes) 62.33% 63.84% 57.96% 59.98%
Age, years (SD) 19.23 (1.34) 19.23 (1.31) 19.06 (1.25) 19.07 (1.24)
Height, m (SD) 1.80 (0.11) 1.79 (0.12) 1.79 (0.11) 1.79 (0.12)
Weight, kg (SD) 84.67 (22.23) 83.84 (21.89) 82.50 (21.77) 82.86 (22.09)
Number of previous concussions (SD) 0.65 (0.91) 0.68 (0.90) 0.59 (0.86) 0.66 (0.93)
SAC RS (SD) 26.01 (2.96) 25.87 (3.21) 26.56 (2.67) 26.52 (2.61)
SAC CS (SD) -1.10 (3.05) -1.35 (3.33) -0.66 (2.73) -0.77 (2.64)
BESS RS (SD) 17.11 (8.47) 16.69 (8.38) 15.13 (7.80) 15.13 (8.15)
BESS CS (SD) 3.58 (8.57) 3.15 (8.52) 1.59 (8.12) 1.64 (8.08)
SCAT total symptoms RS (SD) 10.52 (5.64) 11.07 (5.45) 11.01 (6.03) 10.83 (5.78)
SCAT total symptoms CS (SD) 7.95 (6.42) 8.01 (6.61) 8.06 (6.66) 7.85 (6.80)
Vestibular RS (SD) 3.26 (3.37) 3.38 (3.37) 2.51 (3.10) 2.29 (2.85)
Vestibular CS (SD) 3.00 (3.52) 3.01 (3.44) 2.20 (3.17) 1.97 (3.12)
Ocular RS (SD) 0.84 (1.31) 0.96 (1.41) 0.67 (1.16) 0.60 (1.05)
Ocular CS (SD) 0.77 (1.34) 0.87 (1.37) 0.58 (1.29) 0.50 (1.19)
Cognitive-Fatigue RS (SD) 12.56 (10.66) 13.18 (10.54) 11.77 (10.26) 11.32 (9.78)
Cognitive-Fatigue CS (SD) 10.10 (11.80) 10.25 (11.77) 9.01 (10.91) 8.55 (10.83)
Post-traumatic Migraine RS (SD) 7.66 (5.20) 8.05 (5.43) 8.17 (5.99) 7.74 (5.49)
Post-traumatic Migraine CS (SD) 6.70 (5.31) 6.94 (5.55) 7.10 (6.06) 6.63 (5.67)
Anxiety-Mood RS (SD) 2.44 (4.07) 2.57 (4.16) 2.58 (4.12) 2.27 (3.73)
Anxiety-Mood CS (SD) 1.68 (4.57) 1.38 (4.85) 1.56 (4.56) 1.26 (4.25)
Cervical RS (SD) 0.99 (1.42) 1.09 (1.55) 1.21 (1.57) 1.15 (1.49)
Cervical CS (SD) 0.75 (1.52) 0.79 (1.64) 0.95 (1.65) 0.86 (1.62)

n, sample size; RS, raw score; CS, change score; SD, standard deviation; SAC, Standard Assessment of
Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error Scoring System; *P<0.05
**P<0.01 ***P<0.001 Significantly different from training data at same timepoint using 2-sample
non-parametric bootstrap t-test

6.3.3 Clustering Variables

In Figure 6.1, we illustrate the frequency by which each variable was clustered on among

the 200 sets of clusters with the lowest Gini Indices by sex and timepoint. At <6h, the

modeling variables most frequently clustered on for males were Post-traumatic Migraine raw

score (136/200) and change score (162/200), and the total number of symptoms raw score

(190/200) and change score (145/200). Similarly, the most frequently clustered on variables

for females at <6h were Post-traumatic Migraine raw score (200/200) and change score

(149/200), as well as total number of symptoms (163/200) and Cognitive-Fatigue raw score
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Table 6.3: Characteristics of Possible and Probable concussions at <6h
Male Female

Variable Normal Performance Concussed Normal Performance Concussed
n 322 71 226 39
SAC RS (SD) 27.67 (1.90) 27.28 (1.77) 28.17 (1.65) 28.13 (1.69)
SAC CS (SD) -0.76 (2.15) 0.35 (2.31)*** -0.72 (2.06) -0.23 (2.34)
BESS RS (SD) 11.55 (5.23) 12.62 (6.35) 10.49 (5.49) 11.97 (4.83)
BESS CS (SD) 2.20 (6.19) -1.06 (7.32)** 2.51 (6.74) -0.97 (4.84)***
SCAT total symptoms RS (SD) 0.26 (0.85) 4.13 (2.34)*** 0.39 (1.07) 4.72 (2.67)***
SCAT total symptoms CS (SD) 1.71 (2.65) -2.69 (3.32)*** 2.19 (2.70) -0.95 (4.49)**
Ocular-Vestibular RS (SD) 0.01 (0.08) 0.82 (1.30)** 0.01 (0.11) 1.62 (2.09)***
Ocular-Vestibular CS (SD) 0.11 (0.71) -0.52 (1.52)** 0.20 (0.79) -1.23 (2.06)***
Cognitive-Fatigue RS (SD) 0.15 (0.67) 2.52 (2.89)*** 0.18 (0.66) 2.46 (2.14)***
Cognitive-Fatigue CS (SD) 1.59 (2.86) -1.13 (4.40)*** 1.85 (2.98) 0.74 (4.48)
Post-traumatic Migraine RS (SD) 0.11 (0.52) 3.37 (2.91)*** 0.19 (0.61) 3.79 (2.47)***
Post-traumatic Migraine CS (SD) 0.52 (1.38) -2.94 (3.22)*** 0.83 (1.82) -2.64 (3.43)***
Anxiety-Mood RS (SD) 0.02 (0.25) 0.06 (0.23) 0.06 (0.64) 0.41 (1.23)
Anxiety-Mood CS (SD) 0.48 (1.31) 0.30 (1.55) 0.86 (2.11) 1.13 (2.90)

n, sample size; RS, raw score; CS, change score; SD, standard deviation; SAC, Standard Assessment of
Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error Scoring System; *P<0.05
**P<0.01 ***P<0.001 Significantly different from normal performance of the same sex using 2-sample non-
parametric bootstrap t-test; Effect sizes (Cohen’s d) for significant differences for males at <6h: SAC CS,
d=0.51;BESS CS, d=0.51; SCAT total symptoms RS, d=3.09; SCAT total symptoms CS, d=1.58; Ocular-
Vestibular RS, d=1.46; Ocular-Vestibular CS, d=0.70; Cognitive-Fatigue RS, d=1.74; Cognitive-Fatigue CS,
d=0.85; Post-traumatic Migraine RS, d=2.47; Post-traumatic Migraine CS, d=1.88; Effect sizes (Cohen’s d)
for significant differences for females at <6h: BESS CS, d=0.54; SCAT total symptoms RS, d=3.05; SCAT
total symptoms CS, d=1.04; Ocular-Vestibular RS, d=2.00; Ocular-Vestibular CS, d=1.34; Cognitive-Fatigue
RS, d=2.25; Post-traumatic Migraine RS, d=3.29; Post-traumatic Migraine CS, d=1.63

(103/200).

For males at 24-48h, we found similar results to males at <6h. The variables most fre-

quently clustered on were the total number of symptoms raw score (200/200) and change

score (99/200), along with the Post-traumatic Migraine change score (145/200) and BESS

change score (101/200). Among females at 24-48h, the most frequently clustered vari-

ables were the total number of symptoms raw score (200/200) and change score (93/200),

Cognitive-Fatigue change score (103/200), and Anxiety-Mood change score (102/200).

6.3.4 Analysis of Significant Differences

In Figure 6.2, we illustrate the frequency by which each variable was significantly differ-

ent between the two cluster groups among the 200 sets of clusters with the lowest Gini

Indices by sex and timepoint. For males at <6h, the variables which were most often sig-
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Table 6.4: Characteristics of Possible and Probable concussions at 24-48h
Male Female

Variable Normal Performance Concussed Normal Performance Concussed
n 236 87 182 54
SAC RS (SD) 27.86 (1.93) 27.03 (2.23)** 28.34 (1.63) 27.65 (1.71)*
SAC CS (SD) -0.74 (2.13) 0.38 (2.14)*** -0.66 (2.00) 0.02 (1.84)*
BESS RS (SD) 11.24 (6.44) 13.10 (7.50)* 10.69 (6.24) 11.67 (5.09)
BESS CS (SD) 2.17 (6.29) -1.71 (8.67)*** 2.38 (7.05) 1.44 (5.95)
SCAT total symptoms RS (SD) 0.31 (0.88) 2.95 (1.74)*** 0.42 (1.04) 3.85 (1.88)***
SCAT total symptoms CS (SD) 1.55 (2.59) -1.26 (3.29)*** 2.24 (2.77) -1.31 (3.41)***
Ocular-Vestibular RS (SD) 0.01 (0.09) 0.16 (0.48)* 0.01 (0.10) 0.30 (0.66)*
Ocular-Vestibular CS (SD) 0.10 (0.63) 0.18 (1.38) 0.19 (0.83) 0.00 (1.17)
Cognitive-Fatigue RS (SD) 0.18 (0.75) 1.48 (2.02)*** 0.18 (0.62) 1.85 (1.98)***
Cognitive-Fatigue CS (SD) 1.44 (2.80) 0.11 (4.04)** 2.11 (3.67) 0.35 (3.49)**
Post-traumatic Migraine RS (SD) 0.13 (0.57) 2.29 (2.38)*** 0.21 (0.67) 2.94 (2.41)***
Post-traumatic Migraine CS (SD) 0.52 (1.44) -1.71 (2.75)*** 0.77 (1.69) -2.06 (3.06)***
Anxiety-Mood RS (SD) 0.03 (0.30) 0.14 (0.73) 0.08 (0.72) 0.46 (1.55)
Anxiety-Mood CS (SD) 0.44 (1.25) 0.43 (1.65) 0.91 (2.25) 0.26 (2.36)

n, sample size; RS, raw score; CS, change score; SD, standard deviation; SAC, Standard Assessment of
Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error Scoring System; *P<0.05
**P<0.01 ***P<0.001 Significantly different from normal performance of the same sex using 2-sample non-
parametric bootstrap t-test; Effect sizes (Cohen’s d) for significant differences for males at 24-48h: SAC
RS, d=0.41;SAC CS, d=0.52; BESS RS, d=0.28; BESS CS, d=0.55; SCAT total symptoms RS, d=2.25;
SCAT total symptoms CS, d=1.01; Ocular-Vestibular RS, d=0.59; Cognitive-Fatigue RS, d=1.06; Cognitive-
Fatigue CS, d=0.42; Post-traumatic Migraine RS, d=1.63; Post-traumatic Migraine CS, d=1.18 Effect sizes
(Cohen’s d) for significant differences for females at 24-48h: SAC RS, d=0.42; SAC CS, d=0.35; SCAT total
symptoms RS, d=2.68; SCAT total symptoms CS, d=1.22; Ocular-Vestibular RS, d=0.87; Cognitive-Fatigue
RS, d=1.54; Cognitive-Fatigue CS, d=0.48; Post-traumatic Migraine RS, d=2.13; Post-traumatic Migraine
CS, d=1.36
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Figure 6.1: Frequency of clustering variables among cluster sets in the lowest 200 Gini
Indices by sex at (a) <6h post-injury and (b) 24-48h post-injury
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nificantly different between the clusters in each cluster set were total number of symptoms

raw score (150/200) and change score (145/200), as well as Post-traumatic Migraine change

score (148/200) and Cognitive-Fatigue change score (141/200). Among females at <6h, the

most frequently significantly different variables were total number of symptoms change score

(148/200), Post-traumatic Migraine raw score (137/200) and change score (145/200), and

Ocular-Vestibular change score (145/200). For males at 24-48h, total number of symptoms

raw score (153/200) and change score (153/200) as well as the Post-traumatic Migraine raw

score (150/200) and change score (150/200) were most often significantly different between

clusters in each cluster set. Across females at 24-48h, the variables that were most often

significantly different between clusters were total number of symptoms raw score (152/200)

and change score (155/200), and Post-traumatic Migraine raw score (147/200) and change

score (149/200).

6.3.5 Analysis of Clusters with the Lowest Gini Index

We show the cluster sets which had the lowest Gini Index for males and females at <6h

in Table 6.5 and at 24-48h in Table 6.6. For males at <6h (Gini Index=0.224), the first

cluster contained 334 athletes (4.49% with concussion) and the second cluster contained

59 athletes (94.92% with concussion). Mean values for all variables were significantly dif-

ferent between the two clusters except for SAC raw score (P=0.42, d=0.10), BESS raw

score (P=0.81, d=0.04), and Anxiety-Mood raw score (P=0.21, d=0.19). For females at

<6h (Gini Index=0.176), the first cluster had 228 athletes (2.19% with concussion) and the

second cluster had 37 athletes (91.89% with concussion). Between the two clusters, mean

values for all variables were significantly different except for SAC raw score (P=0.83, d=0.04)

and change score (P=0.50, d=0.13), BESS raw score (P=0.055, d=0.34), Cognitive-Fatigue

change score (P=0.053, d=0.50), and Anxiety-Mood raw score (P=0.10, d=0.67) and change

score (P=0.97, d=0.01). For males at 24-48h (Gini Index=0.362), the first cluster had 81

athletes (82.72% with concussion) and the second cluster had 242 athletes (8.26% with con-

cussion). Mean values for all variables were significantly different between the two clusters

except for SAC raw score (P=0.09, d=0.21), BESS raw score (P=0.083, d=0.04), Ocular-

Vestibular change score (P=0.84, d=0.04), and Anxiety-Mood raw score (P=0.16, d=0.36)

and change score (P=0.93, d=0.01). Finally, for females at 24-48h (Gini Index=0.299), the
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Figure 6.2: Frequency of significant differences in study variables among cluster sets
in the lowest 200 Gini Indices by sex at (a) <6h post-injury and (b) 24-48h post-injury
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first cluster contained 179 athletes (4.47% with concussion) and the second cluster contained

57 athletes (80.70%) with concussion. Between the two clusters, mean values for all vari-

ables were significantly different except for SAC change score (P=0.09, d=0.25), BESS raw

score (P=0.57, d=0.08) and change score (P=0.57, d=0.08), Ocular-Vestibular change score

(P=0.49, d=0.13), and Anxiety-Mood raw score (P=0.056, d=0.75).

Table 6.5: Two-cluster cluster sets with the lowest Gini index for males and females
at <6h

Male Female
Variable Cluster 1 Cluster 2 Cluster 1 Cluster 2
n 334 59 228 37
% concussed 4.49% 94.92% 2.19% 91.89%
SAC RS (SD) 27.63 (1.93) 27.44 (1.55) 28.18 (1.64) 28.11 (1.78)
SAC CS (SD)1 0.71 (2.19) -0.27 (2.22)** 0.68 (2.09) 0.41 (2.19)
SCAT total symptoms RS (SD)1,2 0.27 (0.81) 4.85 (1.93)*** 0.33 (0.84) 5.35 (2.28)***
SCAT total symptoms CS (SD)1 -1.72 (2.59) 3.64 (2.88)*** -2.25 (2.76) 1.51 (3.92)***
BESS RS (SD) 11.71 (5.29) 11.92 (6.37) 10.45 (5.44) 12.30 (5.07)
BESS CS (SD) -1.96 (6.27) 0.37 (7.58)* -2.43 (6.74) 0.68 (5.00)***
Ocular-Vestibular RS (SD)1 0.01 (0.09) 0.97 (1.38)*** 0.01 (0.09) 1.73 (2.09)**
Ocular-Vestibular CS (SD)2 -0.11 (0.70) 0.64 (1.63)*** -0.22 (0.80) 1.43 (1.94)***
Cognitive-Fatigue RS (SD)2 0.15 (0.64) 2.97 (3.01)*** 0.13 (0.49) 2.89 (2.01)***
Cognitive-Fatigue CS (SD)1 -1.58 (2.81) 1.61 (4.69)*** -1.92 (2.97) -0.30 (4.46)
Post-traumatic Migraine RS (SD)1,2 0.10 (0.42) 4.10 (2.73)*** 0.19 (0.59) 4.03 (2.35)***
Post-traumatic Migraine CS (SD)1,2 -0.56 (1.33) 3.83 (2.87)*** -0.80 (1.84) 2.65 (3.52)***
Anxiety-Mood RS (SD) 0.02 (0.25) 0.07 (0.25) 0.04 (0.60) 0.54 (1.32)
Anxiety-Mood CS (SD) -0.51 (1.38) -0.12 (1.19)* -0.90 (2.11) -0.92 (2.97)

n, sample size; RS, Raw Score; CS, Change Score; SD, standard deviation; SAC, Standard Assessment of
Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error Scoring System; 1Cluster
variable for males 2Cluster variable for females *P<0.05 **P<0.01 ***P<0.001 Significantly different from
Cluster 1 of the same sex and timepoint using two-sample non-parametric bootstrap t-test; Effect sizes
for significant differences for males at <6h: SAC CS, d=0.45; SCAT total symptoms RS, d=4.34; SCAT
total symptoms CS, d=2.04; BESS CS, d=0.36; Ocular-Vestibular RS, d=1.78; Ocular-Vestibular CS,
d=0.84; Cognitive-Fatigue RS, d=2.16; Cognitive-Fatigue CS, d=1.01; Post-traumatic Migraine RS, d=3.57;
Post-traumatic Migraine CS, d=2.66; Anxiety-Mood CS, d=0.29; Effect sizes for significant differences
for females at <6h: SCAT total symptoms RS, d=4.37; SCAT total symptoms CS, d=1.28; BESS CS,
d=0.48; Ocular-Vestibular RS, d=2.21; Ocular-Vestibular CS, d=1.59; Cognitive-Fatigue RS, d=3.16;
Post-traumatic Migraine RS, d=3.73; Post-traumatic Migraine CS, d=1.60
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Table 6.6: Two-cluster cluster sets with the lowest Gini index for males and females
at 24-48h

Male Female
Variable Cluster 1 Cluster 2 Cluster 1 Cluster 2
n 81 242 179 57
% concussed 82.72% 8.26% 4.47% 80.70%
SAC RS (SD) 27.32 (1.95) 27.75 (2.07) 28.35 (1.65) 27.67 (1.66)**
SAC CS (SD)1 -0.09 (2.04) 0.61 (2.21)* 0.63 (2.03) 0.14 (1.80)
SCAT total symptoms RS (SD)1,2 3.56 (1.34) 0.17 (0.46)*** 0.23 (0.60) 4.25 (1.43)***
SCAT total symptoms CS (SD)1 1.60 (3.34) -1.60 (2.49)*** -2.37 (2.74) 1.53 (3.09)***
BESS RS (SD) 13.02 (7.53) 11.31 (6.47) 10.80 (6.17) 11.26 (5.50)
BESS CS (SD) 1.88 (8.89) -2.13 (6.26)** -2.03 (7.03) -2.60 (6.16)
Ocular-Vestibular RS (SD)1 0.19 (0.50) 0.00 (0.06)* 0.00 (0.00) 0.32 (0.66)**
Ocular-Vestibular CS (SD)2 -0.15 (1.42) -0.11 (0.62) -0.17 (0.80) -0.05 (1.22)
Cognitive-Fatigue RS (SD)2 1.96 (2.10) 0.05 (0.28)*** 0.09 (0.36) 2.04 (1.92)***
Cognitive-Fatigue CS (SD)1 0.23 (3.97) -1.52 (2.82)** -2.18 (3.68) -0.21 (3.35)***
Post-traumatic Migraine RS (SD)1,2 2.64 (2.33) 0.07 (0.32)*** 0.15 (0.53) 3.00 (2.30)***
Post-traumatic Migraine CS (SD)1,2 2.07 (2.60) -0.58 (1.42)*** -0.74 (1.69) 1.81 (3.16)***
Anxiety-Mood RS (SD) 0.19 (0.79) 0.02 (0.26) 0.00 (0.00) 0.70 (1.92)
Anxiety-Mood CS (SD) -0.42 (1.66) -0.44 (1.25) -0.96 (2.16) -0.14 (2.57)*

n, sample size; RS, Raw Score; CS, Change Score; SD, standard deviation; SAC, Standard Assessment
of Concussion; SCAT, Sport Concussion Assessment Tool; BESS, Balance Error Scoring System; 1Cluster
variable for males 2Cluster variable for females *P<0.05 **P<0.01 ***P<0.001 Significantly different from
Cluster 1 of the same sex and timepoint using two-sample non-parametric bootstrap t-test; Effect sizes for
significant differences for males at 24-48h: SAC CS, d=0.32; SCAT total symptoms RS, d=4.33; SCAT total
symptoms CS, d=1.17; BESS CS, d=0.57; Ocular-Vestibular RS, d=0.70; Cognitive-Fatigue RS, d=1.78;
Cognitive-Fatigue CS, d=0.56; Post-traumatic Migraine RS, d=2.16; Post-traumatic Migraine CS, d=1.49;
Effect sizes for significant differences for females at 24-48h: SAC RS, d=0.41; SCAT total symptoms RS,
d=4.59; SCAT total symptoms CS, d=1.38; Ocular-Vestibular RS, d=0.98; Cognitive-Fatigue RS, d=1.96;
Cognitive-Fatigue CS, d=0.55; Post-traumatic Migraine RS, d=2.35; Post-traumatic Migraine CS, d=1.19;
Anxiety-Mood CS, d=0.36

6.4 Discussion

In this research, we extend our prior work from Chapter 5 using cluster analysis to char-

acterize the Possible and Probable concussions. To our knowledge, this analysis is one of

the few which focuses specifically on the subgroup of athletes whose concussions are most

difficult to categorize both clinically and based on the algorithm we developed. The findings

in this research provide valuable guidance for clinicians by identifying key components of

the SAC, BESS, and SCAT symptom checklist which best separate concussions and normal

performances among the Possible and Probable concussion groups.
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Similarly to our initial analysis, we found that the total number of symptoms was an

important differentiator between concussions and normal performances among the algorith-

mically classified Possible and Probable concussions. To this end, the present study performs

a more detailed analysis of symptoms among these subpopulations by incorporating symp-

tom groups which have been previously identified as being useful for the assessment and

treatment of concussion (Kontos et al., 2019). For males and females at both <6h and

24-48h, our analysis identified the Post-traumatic Migraine symptom group (both raw and

change scores) as an important differentiator between athletes with acute concussion and

those without. To a lesser degree, both raw scores and change scores for the Cognitive-

Fatigue symptom group as well as raw scores for the Cervical group (i.e., neck pain) were

also frequently clustered on and significantly different between the best-performing cluster

groups for males and females at 24-48h. However, the same trend does not hold for these

symptom groups at <6h. This result aligns with the findings by Kontos et al., 2019, who

quantified the diagnostic utility of a clinical profile-based approach and found that, compared

to all symptom groups, the Post-traumatic Migraine symptom group could most accurately

discriminate between concussed athletes and controls. In contrast, they found that the Ocu-

lar and Vestibular symptom groups had the second and third highest discriminative ability,

respectively, among all symptom groups. In our analysis, the Ocular-Vestibular group played

a small role in our analysis. This difference may be attributed to differences in sample selec-

tion, where they consider a sample of athletes aged 12-19 years whereas we select a subset of

collegiate athletes who were algorithmically difficult to identify as having concussion. Finally,

we did note that the Anxiety-Mood symptom group was rarely clustered on or significantly

different among the cluster sets which best separated between normal performances and

acute concussions. This result mimics the findings of Kontos et al., 2019, who found that

the Anxiety-Mood symptom group was the worst-performing symptom group among those

which we studied in our analysis.

In previous studies analyzing concussion assessment batteries, the SAC and BESS have

been found to perform similarly for identifying concussion in collegiate athletes (Chin et al.,

2016; Downey, Hutchison, and Comper, 2018; Garcia et al., 2018; McCrea et al., 2005). Our

analysis extends this literature by characterizing the clinical utility of the SAC and BESS

among Possible and Probable concussions. Among males at <6h and 24-48h, we found that

SAC change score seemed to play a more important role than BESS raw score or change
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score in differentiating between acute concussions and normal performances. However, for

females, this trend is reversed. That is, the BESS raw score and change score seemed to be

more important than the SAC raw and change scores. Overall, the SAC and BESS appear

to play a moderately important role in identifying concussion among Possible and Probable

concussions, although they remain overshadowed by the total number of symptoms and the

Post-traumatic Migraine symptoms. Given that the SAC and BESS were included in the

initial models (see Table 5.2) but not found to be significant, our findings in the current

study might suggest that the SAC and BESS could have more utility across the smaller,

albeit important subset of athletes whose concussions are difficult to assess. This finding

bears similarity to the results by Broglio et al., 2019, whose analysis of the SCAT using a

classification and regression tree approach found that increased symptoms typically indicate

concussion. However, the SAC and/or BESS would be beneficial to ascertain the concussion

assessment for athletes who report low symptom levels or no symptoms — suggesting the

importance of a stepwise approach to concussion assessment and diagnosis. Overall, these

findings also provide additional support for a multidimensional approach to concussion as-

sessment.

Previous studies have attempted to quantify the value of change scores for the clinical as-

sessment of acute concussion, generally finding that they only have a small marginal benefit

over raw scores or a standard normative reference Chin et al., 2016; Echemendia et al., 2012;

Garcia et al., 2018; Putukian et al., 2015; Randolph, 2011; Schmidt et al., 2012. However,

none of these studies specifically examined the utility of change scores within the subgroup

of athletes who are most difficult to assess for concussion. This analysis provides sup-

port regarding the clinical value of change scores among Possible and Probable concussions.

Specifically, change scores for the total number of symptoms and Post-traumatic Migraine

symptom group were frequently used as clustering variables across males and females at <6h

and 24-48h. Similarly, change scores for the total number of symptoms, Post-traumatic Mi-

graine symptom group, and Cognitive-Fatigue symptom group were frequently found to be

significantly different between concussed and normal performance groups for males and fe-

males at both <6h and 24-48h. These results suggest that among athletes whose assessments

were not immediately indicative of a concussion, those who displayed elevated cognitive and

migraine symptoms compared to baseline were more likely to have concussion.

Differences in concussion presentation by sex have been identified in previous research
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(Covassin et al., 2012; Covassin et al., 2018; Covassin, Schatz, and Swanik, 2007; Dick, 2009;

Moran et al., 2020). While our analysis presented some sex-related differences, we found that

there were more similarities within timepoints than within sex with regard to the variables

which were most frequently clustered on and significantly different. For example, the total

number of symptoms, the Post-traumatic Migraine symptom group, and Cognitive-Fatigue

symptom group were consistently important between both males and females. While further

investigation is warranted to support our findings, these initial results suggest that, within

the same timepoint, similar injury assessment approaches can potentially be taken for male

and female athletes with Possible/Probable concussion.

This study is not without limitations. First, this study focused on a collegiate athlete pop-

ulation and additional studies would be needed to support whether our findings translate to

other patient and athlete populations. Second, this study only included analysis of the SAC,

BESS, and SCAT symptom checklist. Future studies could investigate the utility of other

assessment methods such as the Vestibular/Ocular-Motor Screening (VOMS), King-Devick

or Tandem Gait tests. Third, our cluster analysis only considered two-cluster groups. There

could potentially be clusters of three or more variables which can better describe differences

between Possible and Probable concussions. Fourth, this work served to characterize Possi-

ble and Probable concussions and our methodology was not explicitly designed to develop

clinical guidelines. Future work can extend our research by operationalizing our findings,

which would facilitate its implementation in clinical settings. Finally, there is no perfect

diagnostic marker for concussion and hence, our results relied on clinical judgment to deter-

mine which patients had concussion. To this end, this limitation cannot be improved upon

until an objective marker for concussion is developed.

To facilitate the assessment and post-injury management of athletes, previous researchers

have proposed a certainty-based diagnosis framework (i.e., Possible, Probable, and Definite)

for concussion based on clinical experience (Kutcher and Giza, 2014). The present study

builds on our analysis in Chapter 5, which aimed to develop a data-driven approach to quan-

tifying these injury designations, paying particular attention to the subset of athletes whose

injuries are most difficult to assess, i.e., Possible and Probable concussions. From our previ-

ous work, we found that those athletes with high symptom loads are likely to have concussion

(i.e., Definite concussion). However, when overall symptoms are low, clinicians should specif-

ically direct their attention to the presence of Post-traumatic Migraine or Cognitive-Fatigue
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symptoms, as well as the SAC and BESS evaluations. While these findings can facilitate the

assessment of athletes with acute concussion, the clinical exam remains the gold standard

for concussion diagnosis.
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Chapter 7

Estimating the Value of Incorporating

Patient Behavior in Return-to-play

Decisions

7.1 Introduction

Chapters 2-6 focused on the assessment and diagnosis of concussion. Once athletes are

diagnosed with concussions, they typically progress through a return-to-play protocol until

a clinician determines it is safe for them to return-to-play. In this chapter, we develop a

general modeling framework for optimizing treatment cessation decisions which accounts for

uncertainty in patient behavior and then apply this model to the problem of optimizing the

timing of return-to-play from concussion.

In both clinical research and practice, experts have been increasingly advocating for

patient-centered care (Epstein and Street, 2011). Patient-reported outcomes (PROs), such

as symptom presentation, are a critical component of patient-centered care. PROs help

physicians assess a patient’s health status and make treatment decisions (Deshpande et al.,

2011). One major challenge in incorporating PROs is the potential for patients to pur-

posely present misleading information (Lohr and Zebrack, 2009). For example, in a recent

study, between 60% and 80% of participants reported that they had intentionally withheld

clinically relevant information from their physicians (Levy et al., 2018). For physicians, in-

accurate PROs can complicate the process of accurately assessing a patient’s health, leading
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to erroneous treatment decisions or wasted clinical resources.

Patients may inaccurately report PROs for several reasons including poor memory, poor

questionnaire or survey design, lack of knowledge, or the desire to respond in socially ac-

ceptable ways (Levy et al., 2018; Newell et al., 1999). However, in some cases, patients may

be strategic. That is, strategic patients have different objectives than their doctors and con-

sequently, they deliberately misrepresent PROs to influence the doctor’s health assessment

or treatment decisions. For example, strategic patients may malinger, i.e., exaggerate their

symptoms, for the purpose of “avoiding military duty, avoiding work, obtaining financial

compensation, evading criminal prosecution, or obtaining drugs” (Bass and Halligan, 2014).

Strategic patients might also intentionally under-report symptoms. For example, high school

and collegiate athletes who are assessed for sports-related concussion may under-report symp-

toms in an effort to return-to-play (RTP) more quickly (Conway et al., 2018; Kerr et al.,

2014b; Register-Mihalik et al., 2013a). While the impact of strategically reported PROs has

been studied in different epidemiological and psychological contexts, research on its impact

in medical practice has been limited (Barsky, 2002).

In spite of the potential issues associated with strategically reported PROs, there is also a

danger in assuming all patients exhibit strategic reporting behavior; for example, physician

biases about strategic or deceptive behavior can hamper open communication between the

doctor and patient, leading to a damaged doctor-patient relationship and negative health

outcomes. Furthermore, these issues disproportionately affect patients from marginalized

groups (Dehon et al., 2017; Perloff et al., 2006), potentially due to biased expectations or

negative stereotypes associated with these patients. Such consequences can be potentially

mitigated when treatment planning occurs over several visits, wherein physicians have an

opportunity to dynamically adjust their beliefs about the patient’s PRO-reporting behavior

as they continue to interact over time. To this end, the operations research community has

explored sequential treatment planning in many settings including chronic disease manage-

ment (Denton et al., 2009; Helm et al., 2015; Kazemian et al., 2019; Mason et al., 2014;

Mason et al., 2012; Schell et al., 2019), cancer treatment (Ayer, Alagoz, and Stout, 2012;

Ayer et al., 2016; Ayvaci et al., 2017; Cevik et al., 2018; Lavieri et al., 2012; Lee, Lavieri,

and Volk, 2018; Zhang et al., 2012), and weight-loss management (Aswani et al., 2018),

among others. Yet, few of these modeling approaches consider the impact and uncertainty

in a patient’s PRO-reporting behavior. To ensure the highest quality of patient care and
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health outcomes, it is critical to develop medical decision-making models which can learn

and incorporate patient behavior while optimizing treatment decisions.

With these challenges in mind, the goals of this chapter are two-fold. Our first goal is to

formulate and solve an optimal sequential decision-making model which jointly

captures uncertainty in a patient’s health and PRO-reporting behavior. To ad-

dress this goal, we formulate a novel Behavior-Learning Multi-agent Partially Observable

Markov Decision Process (BLM-POMDP). In this framework, the doctor dynamically op-

timizes the timing of treatment cessation while learning the patient’s behavior type and

evolving health state through a combination of (potentially strategically) reported symp-

toms and objective clinical measures. We find that key theoretical properties for Partially

Observable Markov Decision Processes (POMDPs) do not hold for the BLM-POMDP, mak-

ing its theoretical analysis and numerical solution challenging. Nevertheless, we characterize

the BLM-POMDP in terms of Behavior-Aware Multi-agent POMDPs (BAM-POMDP) in

which the patient’s behavior is known exactly. Then, we leverage the relationship between

BAM-POMDPs and POMDPs to provide intuition about the nature of optimal treatment

decisions for strategic patients and derive a tractable approximate solution algorithm. Our

second goal is to estimate and quantify the Value of Incorporating Patient Behav-

ior (VoIPB). To address this goal, we apply the BLM-POMDP to a case study on RTP

from sports-related concussion. In this case study, we parameterize and validate the BLM-

POMDP using a large multi-site dataset on concussion among collegiate athletes as well as

values from sports medicine literature. Drawing on recent estimates for symptom-reporting

behavior across collegiate athletes, we estimate lower and upper bounds on the VoIPB in

terms of total discounted health utility by comparing our BLM-POMDP with a POMDP

and two practice-based approaches which do not account for patient behavior. We further

contextualize the VoIPB by considering its impact in terms of (1) reducing the likelihood

of premature RTP and (2) increasing each athlete’s total health-adjusted athletic exposures

after RTP.

From a theoretical perspective, we make the following contributions.

1. We formulate a novel BLM-POMDP framework. Overall, the BLM-POMDP

builds on existing modeling approaches for multi-agent POMDPs. In comparison to

existing approaches, we consider the case in which agents perform actions sequentially

in each decision period (i.e., they do not perform actions simultaneously) and may not
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be in cooperation (i.e., the patient may be strategic). Compared to previous modeling

frameworks in the medical decision-making literature, the BLM-POMDP explicitly

models the interaction between the patient and doctor, including their anticipation of

each other’s actions. This framework extends POMDPs in a way that naturally fits

patient-doctor interactions in many healthcare settings.

2. We characterize the structure of the BLM-POMDP’s optimal value function

and optimal policy. Solving the BLM-POMDP is a formidable task since it general-

izes POMDPs which are generally intractable (i.e., PSPACE-Complete) and its state

space is expressed as the product space of several probability simplexes. To this end, we

prove that the BLM-POMDP can be decomposed into several Behavior-Aware Multi-

agent POMDPs (BAM-POMDPs) — a special case of the BLM-POMDP in which

the patient’s behavior type is known perfectly. However, because the BAM-POMDP

models interactions between the doctor and patient, classic results for POMDPs (i.e.,

convexity of the value function) do not hold, in general, for the BAM-POMDP. Never-

theless, we leverage Blackwell dominance and characterization of the patient’s behavior

to establish connections between the POMDP and BAM-POMDP. These structural re-

sults lead to insights for managing strategic patients and approximating the optimal

policy.

We also make the following practical contributions to the management of sports-related

concussion.

3. We are one of the first groups to approach RTP from concussion with a

decision-theoretic and data-driven approach. With concussion identified as a

major public health issue, management of sports-related concussion has undergone

significant changes in the last decade. Both national and international guidelines are

shifting from primarily expert consensus-based best practices to data-driven guidelines

grounded in the most recent research. To this end, the criteria for determining RTP

continues to be left to clinical judgment. We extend the development of data-driven

RTP guidelines by applying and evaluating the BLM-POMDP to RTP from concussion

among collegiate athletes.

4. We provide a data-driven framework to tailor athlete-specific RTP crite-

ria and demonstrate its improvement over current practice. By leveraging
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multi-center data from the CARE Consortium and injury rates derived from the liter-

ature, we tailor optimal RTP criteria for male collegiate football players with different

concussion histories. This framework, which can be generalized to across a broader

range of athlete types, accounts for differences in health-related utilities, symptom-

reporting behavior, injury presentation over time, pre-RTP recovery trajectories, and

sport-specific injury risks. On a variety of clinically relevant performance measures, our

numerical analysis demonstrates a marked improvement of these tailored RTP criteria

over existing approaches.

The remainder of this chapter is organized as follows. In Section 7.2, we review the related

literature. In Section 7.3, we present our problem setting and BLM-POMDP modeling

framework to optimize the timing of treatment cessation for potentially strategic patients.

In Section 7.4, we derive structural results for the BLM-POMDP and related managerial

implications. These structural results allow us to derive a grid-based approximation to the

BLM-POMDP in Section 7.5. In Section 7.6, we apply the BLM-POMDP to optimize the

timing of RTP from sports-related concussion. Finally, in Section 7.7, we provide a discussion

of our findings and concluding remarks.

7.2 Literature Review

Overall, this research builds upon the medical decision-making literature in which modeling

frameworks incorporate patient behavior. Previous work in this area primarily focused on

patients’ adherence to optimized treatment decisions. For example, research by Shechter

et al., 2008 and Barnett et al., 2017 assumed that patient adherences were known problem

parameters whereas Mason et al., 2012 and Ayer et al., 2016 assumed that adherence was

unknown but unaffected by a patient’s health state or treatment decisions. Patient adherence

has also been modeled as a function of medication cost (Schell et al., 2019) or the use of

adherence-improving interventions (Lobo et al., 2017). While adherence affects treatment

decisions, adherence does not modify a doctor’s interpretation of health assessments. For

example, in the work by Ayer et al., 2016, the likelihood of seeing a positive or negative

mammogram result depends only on the patient’s underlying health and not their adherence

type. In contrast, a patient’s PRO-reporting behavior changes the likelihood that they

would report different symptom levels. Hence, a patient who reports “high” symptom levels
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could signal different health statuses depending on their behavior type. This aspect of PRO-

reporting behavior couples the patient’s behavior type with their health, thereby prohibiting

the application of well-established modeling frameworks such as POMDPs and requiring the

development of new modeling frameworks such as the BLM-POMDP.

In contrast to the literature focusing on adherence to medication, others have developed

modeling frameworks where the patient’s behavior is derived from his or her own objectives.

Schottmüller, 2013 models a patient-doctor interaction in which the patient knows that the

doctor has financial incentives to recommend certain treatment decisions. In this paper,

the author develops and analyzes a single-period cheap talk model to derive the patient’s

symptom-reporting behavior. In contrast, our modeling framework incorporates a modified

cheap talk framework into a larger, multi-period treatment decision problem. To this end,

Aswani et al., 2018; Mintz et al., 2017, and Mintz et al., 2019 develop multi-period frame-

works in which the decision-maker must determine appropriate weightloss interventions or

incentives for patients with obesity. The patient’s behavior (i.e., exercise and diet levels) is

determined by the solution to his or her own utility-maximization problem which is solved

independently of the doctor’s response to their actions. In contrast, we focus on the case

in which the patient considers the doctor’s potential response in determining a symptom-

reporting strategy. Finally, work by Zhang, Wernz, and Hughes, 2018 presents a stochastic

game analysis in which a patient and doctor jointly determine chronic disease management

activities. While we both model patient-doctor interactions in a multi-period stochastic set-

ting, their model considers a perfectly observable state space and “switching” structure in

their actions. That is, only the patient can perform actions in some states and only the

doctor can perform actions in other states. In contrast, our model considers a partially ob-

servable state space and leader-follower structure in the actions where both parties perform

actions in every period.

Our modeling framework also bears similarity to approaches developed in multi-agent

POMDP literature. The classic multi-agent POMDP (MPOMDP) considers the problem of

coordinating decisions among cooperative and independent agents with imperfect knowledge

of the state space (Messias, Spaan, and Lima, 2011; Pynadath and Tambe, 2002). In this

setting, the agents share their observations amongst each other without noise (i.e., honestly)

or costs. The MPOMDP was generalized into the Decentralized POMDP (DEC-POMDP)

in which only subsets of agents communicate (Amato et al., 2013). Finally, the Interac-
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tive POMDP (I-POMDP) presents a modeling framework in which autonomous agents (who

may not coordinate) account for other autonomous agents in their decision-making pro-

cesses (Gmytrasiewicz and Doshi, 2005). In contrast to the MPOMDP, DEC-POMDP, and

I-POMDP, we model agents with potentially conflicting objectives who perform actions se-

quentially. Furthermore, we assume that the patient can add noise (i.e., strategically report)

to the doctor’s observations. To this end, some multi-agent POMDP frameworks take a

leader-follower approach (Chang, Erera, and White, 2015; Krishnamurthy, 2012; Zhuang,

Bier, and Alagoz, 2010), i.e., in each decision period, the leader performs an action and

the follower observes that action and chooses their own action accordingly. Among these

modeling approaches, the work by Krishnamurthy, 2012 is most similar to ours. They model

an optimal stopping time problem in which the global decision-maker observes the actions of

a local decision-maker and uses these observations to make an estimate of the system state

and determine whether to stop the system or not. In contrast to their modeling approach,

the local decision-maker in our model (i.e., the patient) considers the resulting action taken

by the global decision-maker (i.e., the doctor) whereas in their model, the local agents act

independently of the global agent.

7.3 Modeling Framework

In this section, we describe our problem setting and model formulation for optimizing the

timing of treatment cessation with potentially strategic patients. This framework can be

modified easily to fit the treatment initiation context.

7.3.1 Problem Description

The problem setting we consider is illustrated in Figure 7.1 and proceeds as follows. A patient

(him) is recovering from a diagnosed disease and is undergoing a fixed treatment regimen.

He meets periodically with a doctor (her). In each meeting, the patient observes a measure

which he later reports to his doctor (i.e., a PRO). To simplify exposition, we refer to this

measure and PRO as the observed symptom level and reported symptom level, respectively.

The patient, who may be strategic, acts according to his own objectives. That is, he reports

a symptom level which could be different from what he has actually observed in an effort
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Figure 7.1: Illustration of BLM-POMDP Treatment Cessation Decision Process

to manipulate the doctor’s treatment decision. The doctor then performs separate clinical

evaluations on the patient (i.e., objective assessments). Based on the reported symptoms

and the objective assessments, the doctor assesses the patient’s health, updates her belief

about the patient’s behavior type, and determines whether to cease treatment. If treatment

ceases, then the decision process ends. Otherwise, the patient’s health evolves stochastically

and the decision process repeats in the next meeting between the two. This decision process

continues indefinitely until treatment ceases or the patient dies.

In this setting, the patient’s recovery depends on receiving treatment and thus, premature

treatment cessation could result in adverse health outcomes for the patient. Conversely,

delayed treatment cessation may also have consequences, e.g., side effects and costs related

to unnecessary treatment. We now describe the components of this model in more detail.

7.3.2 Patient’s Health Dynamics

For each decision period t = 1, 2, ... we model the patient’s health, its progression over

time, and its corresponding observations as a stationary discrete-time Hidden Markov Model

(HMM). For clarity, we use a subscript t to denote the status of an HMM component during

a specific decision period. The components of this HMM are as follows.
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Core Health States: Let H := {0, ..., H} be the ordered set of unobservable core health

states. The health state h = 0 represents the state in which the patient has fully recovered

from the disease while health states h = 1, ..., H represent diseased states in increasing

severity. For example, in the case of concussion, the health states can be modeled such

that h = 0 represents no concussion, h = 1 represents asymptomatic concussion, and h = 2

represents symptomatic concussion. Without loss of generality, death can be modeled by

setting H as an observable absorbing state.

State Transition Probabilities: The initial state distribution is given by the vector

π0 :=
[
P(h0 = 0) · · · P(h0 = H)

]>
. The patient’s health state evolves at the start of

each period t according to a transition probability matrix P with components P (h′|h) :=

P(ht+1 = h′|ht = h) for all h, h′ ∈ H. Because h is not directly observable by the patient or

doctor, it must be inferred from symptoms and objective health assessments (i.e., objective

observations).

Symptom observations: After the patient’s health state evolves to h at the start of

period t, the patient observes a symptom level s ∈ S := {0, ..., S} where all s ∈ S are

ordered in increasing severity. Only the patient observes s in each period. The likelihood of

observing st depends on ht and is summarized in an observation probability matrix QS with

entries QS(s|h) := P(st = s|ht = h) for all s ∈ S and h ∈ H. After observing s, the patient

reports s̄ ∈ S to the doctor according to his strategy, which we formally define in Section

7.3.4.

Objective observations: After the patient reports s̄ to the doctor, she performs an

additional clinical assessment (e.g., a blood biomarker or neurocognitive exam) which cannot

be strategically manipulated by the patient. The results of this assessment are denoted by

the objective observation o ∈ O := {0, ..., O}, where all o ∈ O are ordered in increasing

severity. The likelihood of observing ot depends on ht. These probabilities are summarized

in an observation probability matrix QO with components QO(o|h) := P(ot = o|ht = h) for

all o ∈ O and h ∈ H. We assume that P(ot = o, st = s|ht = h) = QOt (o|h)QSt (s|h).

We next describe the doctor’s treatment cessation problem (Section 7.3.3) and the patient’s

symptom-reporting problem (Section 7.3.4).
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7.3.3 Doctor’s Treatment Cessation Problem

In this section, we formulate the doctor’s treatment cessation problem. We denote by B :=

{0, 1, ..., B} the set of all patient behavior types. Each b ∈ B dictates a symptom-reporting

strategy fb which we detail in Section 7.3.4. In addition, each patient knows his own behavior

type b0 ∈ B. We begin this section by formulating the Behavior-Aware Multi-agent POMDP

(BAM-POMDP) which assumes that the patient’s behavior type b0 is also known by the

doctor. Then, we generalize the BAM-POMDP by formulating the Behavior-Learning Multi-

agent POMDP (BLM-POMDP) in which the doctor learns the patient’s behavior type over

time.

BAM-POMDP Formulation

When b0 = b ∈ B is known, the doctor’s treatment cessation problem is given by a BAM-

POMDP with the following components.

Health state beliefs: Prior to beginning the decision process, the doctor has an initial

health state belief π0 ∈ Π where π0 has components π0(h) = P(h0 = h) for all h ∈ H and

Π := {π ∈ R|H|+ :
∑

h∈H π(h) = 1} is the |H|−1 probability simplex. Before making a decision

in period t, the doctor’s information state is given by the tuple (π0, b0, s̄1, ..., s̄t, o1, ..., ot). If

the patient reported symptoms honestly (i.e., s̄t = st for all t), a sufficient statistic for the

doctor’s information state is the health belief state πbt ∈ Π with components πbt (h) = P(ht =

h|π0, b0 = b, s̄1, ..., s̄t, o1, ..., ot) for all h ∈ H. Given πbt−1 = π, ot = o, and s̄t = st = s,

πbt = Ū(π, o, s) :=
DOo D

S
s̄ P
>π

C̄(π, o, s)
, (7.1)

where

C̄(π, o, s) := 1>DOo D
S
s̄ P
>π

DOo := diag(QO(o|0), ..., QO(o|H))

DSs̄ := diag(QS(s̄|0), ..., QS(s̄|H)).

However, if the patient reports symptoms strategically, then a sufficient statistic for her

information state can only be constructed if the patient’s strategy fb can be recovered.
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Therefore, we assume that the patient has limited private memory, i.e., at the beginning of

period t, his information state is given by (π0, b0, s̄1, ..., s̄t−1, o1, ..., ot−1, st). Limited private

memory implies that the patient no longer remembers the actual symptoms that he observed

in the past but has access to any previous observations which were shared between him and

the doctor (e.g., via medical records). This assumption may be reasonable when there is low

reliability and accuracy in patient recall of medical history and symptoms (Cohen and Java,

1995; Simon and Gureje, 1999; Van Den Brink, Bandell-Hoekstra, and Huijer Abu-Saad,

2001). Within this class of patient strategies and known behavior type b0 = b, the doctor’s

belief state is updated according to

πbt = Ub(π, o, s̄) :=
DOo D̄

π,b
s̄ P>π

Cb(π, o, s̄)
, (7.2)

where Cb(π, o, s̄) := P(ot = o, s̄t = s̄|πt = π, b0 = b) = 1>DOo D̄
π,b
s̄ P>π, D̄π,b

s̄ := diag(P(s̄|π, b, h =

0), ...,P(s̄|π, b, h = H)), and P(s̄|π, b, h) =
∑

s∈S fb(s̄|π, s)QS(s|h). In (7.2), the likelihood of

observing s̄ depends on the patient’s strategy fb, which depends on πbt−1 = π. This interde-

pendence between πbt , fb, and πbt−1 links the doctor’s decisions with the patient’s reported

symptoms.

Actions: After observing s̄t and ot in decision epoch t, the doctor must choose an action

a ∈ A := {0, 1}. If she chooses a = 0, the decision process continues in the next period.

Otherwise, choosing a = 1 ceases treatment and the decision process ends.

Rewards: After performing an action, the doctor immediately receives a reward based

on her reward function rd : H × A → R+, where rd(·, 0) describes the reward received for

continuing treatment and rd(·, 1) describes a large lump sum reward received for ceasing

treatment. For convenience we denote rda :=
[
rd(0, a) · · · rd(H, a)

]>
for all a ∈ A.

Optimality Equations: The doctor aims to determine a stationary policy µ : Π → A
which maximizes her expected total discounted reward. The optimal value function Vb can

be determined by solving the following Bellman equation for all π ∈ Π:

Vb(π) = max
a∈A

π>rd0 + ρ
∑

o∈O
∑

s̄∈S Cb(π, o, s̄)Vb(Ub(π, o, s̄)) a = 0

π>rd1 a = 1
, (7.3)

and the optimal policy µ∗b(π) corresponds to the maximizing action for Vb(π).
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BLM-POMDP Formulation

The BAM-POMDP assumes that b0 = b is known to the doctor. In practice, it is not

typically known which type of behavior a patient exhibits. Instead, the doctor forms a belief

over the patient’s behavior type which she can update dynamically during their interactions.

The BLM-POMDP generalizes the BAM-POMDP in this regard. We now describe the main

differences between the BLM-POMDP and BAM-POMDP.

Health state and behavior type beliefs: When the patient’s behavior type is unknown

to the doctor, her information state at time t is given by (π0, φ0, o1, ..., ot, s̄1, ..., s̄t), where

φ0 ∈ Φ is an initial behavior belief vector with components φ0(b) = P(b0 = b) for all b ∈ B
and Φ := {φ ∈ R|B|+ :

∑
b∈B φ(b) = 1} represents the |B| − 1 probability simplex. We can

summarize her information state by the tuple (πt, φt), where πt = (π0
t , ..., π

B
t ) consists of

health beliefs for all b ∈ B and the vector φt is the doctor’s behavior belief vector in period

t with components φt(b) = P(b0 = b|π0, φ0, o1, ..., ot, s̄1, ..., s̄t). Given the previous state

(πt−1 = π, φt−1 = φ) and current observations ot = o, s̄t = s, the behavior belief vector is

updated according to

φt = UΦ(π, φ, o, s̄) :=
Dπ
o,s̄φ

CΦ(π, φ, o, s̄)
, (7.4)

where

CΦ(π, φ, o, s̄) := P(ot = o, s̄t = s̄|πt = π, φt = φ) = 1>Dπ
o,s̄φ

Dπ
o,s̄ = diag(C0(π0, o, s̄), ..., CB(πB, o, s̄)).

Additionally, the collection of health state belief vectors is updated according to πt =

U(π, o, s̄) = (U0(π0, o, s̄), ..., UB(πB, o, s̄)).

Optimality Equations: In this setting, the optimal value function V is obtained by

solving the following Bellman Equations for all π and φ

V (π, φ) = max
a∈A


∑

b∈B φ(b)(πb)>rd0

+ρ
∑

o∈O
∑

s̄∈S CΦ(π, φ, o, s̄)V (U(π, o, s̄), UΦ(π, φ, o, s̄))
a = 0

∑
b∈B φ(b)(πb)>rd1 a = 1

(7.5)
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and the optimal policy µ∗(π, φ) corresponds to the maximizing action for V (π, φ). When

φ = eb for some b ∈ B (where eb denotes a vector of 0s with a 1 in the bth component), we have

V (π, eb) = Vb(π
b). That is, the BAM-POMDP is a special case of the BLM-POMDP. Given

that the BLM-POMDP’s state space, Π|B|×Φ, is the Cartesian product of several probability

simplexes, it is apparent that the BLM-POMDP suffers from the curse of dimensionality. To

this end, our analytical study in Section 7.4 gives way to a numerical solution approach for

approximating µ∗.

7.3.4 Patient’s Symptom-reporting Problem

We now formulate the patient’s symptom-reporting problem (PSRP) for a patient of behavior

type b0 = b through a modified cheap talk framework. In addition to our assumption

of limited private memory, we assume that the patient is myopic, i.e., he follows a myopic

decision rule and assumes that the doctor does so as well. This assumption is reasonable since

patients have been shown to heavily discount future health or monetary utilities (Chapman

and Elstein, 1995). Furthermore, previous medical decision-making literature has validated

myopic patient models in the context of weight-loss intervention (Aswani et al., 2018; Mintz et

al., 2017; Mintz et al., 2019). In our model, the patient also assumes that the doctor is naive,

i.e., the doctor assumes that the patient is honest and her belief update is given by (7.1). This

model of symptom-reporting results in greater information transmission compared to the

classic cheap talk model, more closely resembling cheap talk behavior identified in empirical

studies (Kawagoe and Takizawa, 2009). Hereafter, we refer to the doctor in the PSRP as

the naive doctor to distinguish her from the actual doctor.

At the start of period t, the patient’s belief about his own health is summarized by the

tuple (πbt−1, st). His strategy fb maps his pre-observation belief πbt−1 and observed symptom

st to the symptom he will report. More precisely, fb(s̄|π, s) = 1 if the patient reports s̄t = s̄

given πbt−1 = π and st = s. To determine fb, he maximizes his expected reward, where his

reward function is given by rp : H×A× B → R+. Thus, for any (π, s), the PSRP is given

by

max
s̄∈S

Eh,o[rp(h, α(π, o, s̄), b)|π, s], (7.6)

where α is the naive doctor’s action. Based on the patient’s assumptions about the naive
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doctor,

α(π, o, s̄) := arg max
a∈A

Eh[rdM(h, a)|π, o, s̄] =

1 Ū(π, o, s̄)>r̄dM ≥ 0

0 Ū(π, o, s̄)>r̄dM < 0
, (7.7)

where the post-observation belief state is given by (7.1), the function rdM : H×A → R+ is the

naive doctor’s myopic reward function, and r̄dM := rdM(h, 1)−rdM(h, 0). We now proceed with

our derivation of fb. Let S∗b (π, s) be the set of symptoms which maximizes (7.6). Notice that

|S∗b (π, s)| may be greater than 1, e.g., if α(π, o, s̄) = 0 for all o ∈ O and s̄ ∈ S, the patient’s

expected reward constant for every s̄ ∈ S. To this end, we assume that the patient has a

tie-breaking function δ such that δ(S∗b (π, s)) admits a single s̄ ∈ S∗b (π, s). In our analysis,

we take

δ(S∗b (π, s)) = arg min
s′∈S∗b (π,s)

|s− s′|. (7.8)

We show in Section 7.4.3 that (7.8) is a viable tie-breaking rule (i.e., admits a unique s̄)

with minimal assumptions. Further, (7.8) has a desirable interpretation; it implies that the

patient will only under-report or over-report symptoms as much as is needed to obtain his

desired outcome. With this construction, the patient’s strategy is given by the function

fb : Π×S × S → {0, 1}, where fb(s̄|π, s) = 1 if δ(S∗b (π, s)) = s̄ and fb(s̄|π, s) = 0 otherwise.

7.4 Analytical Results

In this section, we provide a theoretical characterization of the BLM-POMDP, BAM-POMDP,

and PSRP. In Section 7.4.1, we show that the BLM-POMDP can be decomposed into sev-

eral BAM-POMDPs. In light of this result, we analyze the structure of the BAM-POMDP

in Section 7.4.2. This analysis characterizes the optimal solution to the BAM-POMDP

through comparisons between the POMDP and BAM-POMDP and gives way to the solu-

tion methodology presented in Section 7.5. Finally, in Section 7.4.3, we characterize the

patient’s symptom-reporting behavior as modeled by the PSRP. The following definitions

and modeling assumptions are used throughout this section.

Definition 7.1 (First-order Stochastic Dominance (FOSD)). Let π1, π2 denote two pmfs

over a discrete set X . Then π1 stochastically dominates π2 in the first-order sense (denoted
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π1 �S π2) if ∑
i≥x

π1(i) ≥
∑
i≥x

π2(i) for all x ∈ X .

Definition 7.2 (Monotone Likelihood Ratio (MLR)). Let π1, π2 denote two pmfs over a

discrete set X . Then π1 MLR dominates π2 (i.e., π1 �R π2) if π1(j)π2(i) ≥ π1(i)π2(j) for

all j < i.

The notion of FOSD is related to MLR dominance since π1 �R π2 implies π1 �S π2, though

the reverse is not generally true. However, when |X | = 2, FOSD and MLR dominance are

equivalent.

Definition 7.3 (Supermodular). A function of two variables f(x, y) is said to be supermod-

ular if for every x′ > x and y′ > y, f(x, y′) + f(x′, y) ≥ f(x, y) + f(x′, y′).

Assumption 7.1. The doctor’s reward function rd(h, a) and patient’s rp(h, a, b) are super-

modular in (h, a) and non-increasing in h for all a ∈ A.

Assumption 7.1 implies that the total benefit from ceasing treatment on time and contin-

uing treatment when necessary exceeds the utility gained in delayed or premature treatment

cessation. In practice, this assumption is easily satisfied since delayed and premature treat-

ment cessation are associated with costs rather than benefits. Additionally, the assumption

regarding monotonicity in health states implies that the patient and doctor receive more

benefit when the patient is healthier.

Definition 7.4 (Totally Positive of Order 2 (TP2)). A matrix M is TP2 if all of its second-

order minors are non-negative.

MLR dominance provides an equivalent definition for TP2 matrices. Specifically, a tran-

sition or observation kernel M is TP2 if the i + 1th row MLR dominates the ith row, i.e.,

Mi+1 �R Mi.

Assumption 7.2. The matrices P , QO, and QS are TP2.

Assumption 7.2 implies that sicker patients are more likely to remain sick or die than

healthier patients. Furthermore, sicker patients are more likely to present more “severe”

assessments and symptoms than healthier patients.
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Throughout this section, we denote by F π,b an S ×S matrix with components F π,b(s̄|s) =

fb(s̄|π, s). Note that we can express the observation probability matrix for reported symp-

toms as Q̄S(π, b) = QSF π,b with entries P(s̄t = s̄|ht = h, πt = π, b0 = b). Additionally, D̄π,b
s̄

in (7.2) can be expressed as D̄π,b
s̄ = diag(QSF π,b

s̄ ), where F π,b
s̄ is the s̄th column of F π,b.

7.4.1 Analysis of the BLM-POMDP

The BLM-POMDP suffers from the curse of dimensionality since its state space, Π|B| × Φ,

is given by the product of multiple probability simplexes. In the main result of this section,

we show that V and µ∗ can be constructed from |B| independently solved BAM-POMDP

models. We begin with the following Lemma.

Lemma 7.1. The BLM-POMDP value function V (π, φ) is linear in φ.

Proof. We prove this result by induction on the value iteration algorithm. The base case

holds trivially. Now, suppose that Vn(π, φ) is linear in φ for n = 0, 1, ..., N − 1. For n = N ,

consider each of the following cases.

� Case 1: Suppose that VN(π, φ) =
∑

b∈B φ(b)(πb)>rd1. Clearly, VN(π, φ) is linear in φ.

� Case 2: Suppose that

VN(π, φ) =
∑
b∈B

φ(b)(πb)>rd0 +
∑
o∈O

∑
s̄∈S

CΦ(π, φ, o, s̄)VN−1(U(π, o, s̄), UΦ(π, φ, o, s̄))

Since the immediate reward term
∑

b∈B φ(b)(πb)>rd0 is linear in φ, it suffices to show

that the expected value to go term
∑

s̄∈S CΦ(π, φ, o, s̄)VN−1(U(π, o, s̄), UΦ(π, φ, o, s̄))

is linear in φ. Take any o ∈ O and s̄ ∈ S. Since VN−1 is linear in φ by the induction
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hypothesis, we have

CΦ(π, φ, o, s̄)VN−1(U(π, o, s̄), UΦ(π, φ, o, s̄))

= CΦ(π, φ, o, s̄)VN−1

(
U(π, o, s̄),

∑
b∈B

Cb(π
b, o, s̄)φ(b)

CΦ(π, φ, o, s̄)
eb

)

= CΦ(π, φ, o, s̄)
∑
b∈B

Cb(π
b, o, s̄)φ(b)

CΦ(π, φ, o, s̄)
VN−1(U(π, o, s̄), eb)

= CΦ(π, φ, o, s̄)
∑
b∈B

Cb(π
b, o, s̄)φ(b)

CΦ(π, φ, o, s̄)
V b
N−1(Ub(π

b, o, s̄))

=
∑
b∈B

φ(b)Cb(π
b, o, s̄)V b

N−1(Ub(π
b, o, s̄)),

where V b
N−1(πb) = VN−1(π, eb) is the value function estimate on iteration N − 1 for a

BAM-POMDP with a patient whose behavior type is b. Hence, we have

VN(π, φ) =
∑
b∈B

φ(b)
(

(πb)>rd0 + ρ
∑
o∈O

∑
s̄∈S

Cb(π
b, o, s̄)V b

N−1(Ub(π
b, o, s̄))

)
,

which is linear in φ.

Since VN(π, φ) is linear in φ, Vn(π, φ) is linear in φ for any positive integer n. Furthermore,

V (π, φ) is linear in φ since limn→∞ Vn(π, φ) = V (π, φ).

Now we show the main result.

Theorem 7.1. The value function for the BLM-POMDP can be reformulated as

V (π, φ) = max
a∈A


∑

b∈B φ(b)
(

(πb)>rd0 + ρ
∑

o∈O
∑

s̄∈S Cb(π
b, o, s̄)Vb(Ub(π

b, o, s̄))
)

a = 0∑
b∈B φ(b)(πb)>rd1 a = 1

.

(7.9)

Proof. From Lemma 7.1, it follows that

CΦ(π, o, s̄)V (U(π, o, s̄), UΦ(π, φ, o, s̄)) =
∑
b∈B

φ(b)Cb(π
b, o, s̄)Vb(Ub(π

b, o, s̄)),
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for all o ∈ O and s̄ ∈ S. By performing this substitution, rearranging sums, and grouping

like terms, we have

V (π, φ) = max
a∈A


∑

b∈B φ(b)(πb)>rd0

+ρ
∑

o∈O
∑

s̄∈S CΦ(π, φ, o, s̄)V (U(π, o, s̄), UΦ(π, φ, o, s̄))
a = 0

∑
b∈B φ(b)(πb)>rd1 a = 1

= max
a∈A


∑

b∈B φ(b)
(

(πb)>rd0 + ρ
∑

o∈O
∑

s̄∈S Cb(π
b, o, s̄)Vb(Ub(π

b, o, s̄))
)

a = 0∑
b∈B φ(b)(πb)>rd1 a = 1

.

Hence, V (π, φ) has the desired form in (7.9).

Theorem 7.1 implies that the expected rewards for each action is a weighted sum of the

expected reward for all |B| BAM-POMDPs. This result suggests that doctors need not

consider those behavior types that have been ruled out. For example, if a patient begins to

report symptoms that are too low for an over-reporting type of patient, then the doctor can

treat the patient as if he were an under-reporting or honest type of patient. Moreover, it

follows that if µ∗b(π
b) = 1 (resp., µ∗b(π

b) = 0) for all b such that φ(b) > 0, then µ∗(π, φ) = 1

(resp., µ∗(π, φ) = 0). Therefore, if it is optimal to cease treatment (resp., continue treatment)

for all remaining plausible patient behavior types (i.e., φ(b) > 0), then it is optimal to cease

treatment (resp., continue treatment) for a patient whose behavioral type is not known with

certainty.

7.4.2 Analysis of the BAM-POMDP

Since the BLM-POMDP can be decomposed into |B| independent BAM-POMDPs, we char-

acterize the BAM-POMDP’s optimal policy. We suppress b from our notation throughout

this section to simplify exposition. If patients are honest, i.e., F π = I for all π ∈ Π, the

BAM-POMDP reduces to the POMDP. We denote by V̄ and µ̄∗ the optimal value function

and policy associated with this POMDP. We can immediately establish the following results.

Theorem 7.2. If the patient is honest, the following properties hold.

1. Let Π̄1 := {π ∈ Π : µ̄∗(π) = 1} denote the set in which it is optimal to cease treatment.
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Then, Π̄1 is convex and µ̄∗ is characterized by a switching curve on the boundary of

Π̄1.

2. Define

rdL := rd1 − (rd0 + ρPrd1)

ΠL :=
{
π ∈ Π : π>rdL ≥ 0

}
Π=
L :=

{
π ∈ Π : π>rdL = 0

}
.

For each h ∈ H, let

νh := {π ∈ Π=
L : π(j) = 0 for j 6= 0, h} =

{
π ∈ Π : π(0) =

−rdL(h)

rdL(0)− rdL(h)
, π(h) = 1−π(0)

}
,

define the vertices in which Π=
L intersects the faces of Π. If(

DOOD
S
SP
>νi

)>
rdL ≥ 0 for all i ∈ H, (7.10)

then Π̄1 = ΠL, i.e., µ∗(π) = 1 if π>rdL ≥ 0 and µ̄∗(π) = 0 otherwise.

Proof. We prove these results under the general assumption that F π is TP2 and constant in

π.

1. This result follows from Lovejoy, 1987b.

2. We show this proof in three parts.

Part 1: First we show that if condition (7.10) holds, then the set ΠL is closed under

belief updating. Take any π ∈ ΠL and let `0 denote the line connecting the vertex e0

with π. Since π ∈ ΠL, we can extend `0 past π until it intersects the hyperplane Π=
L

at some belief state π. Clearly, π �R π. Furthermore, we can express π as a convex

combination of the vertices {νi}i∈H. Hence, we have(
DOo D

S
s̄ P
>π
)>
rdL ≥

(
DOo D

S
s̄ P
>π
)>
rdL ≥

(
DOOD

S
SP
>π
)>
rdL =

∑
i∈H

λi

(
DOOD

S
SP
>νi

)>
rdL ≥ 0,

181



where the λi ∈ [0, 1] satisfy
∑

i λi = 1 and
∑

i∈H λiνi = π, the inequalities leverage

MLR dominance and the fact that the vector rdL is nonincreasing in h, and the last

inequality follows from condition (7.10). Therefore, Ū(π, o, s̄) ∈ ΠL.

Part 2: We prove by induction on the value iteration algorithm that if π ∈ ΠL, then

V̄ (π) = π>rd1 which implies that µ∗(π) = 1. For the base case, arbitrarily assume that

V̄0(π) = π>rd1 for all π ∈ Π. Hence, the base case holds trivially. Now, assume that

V̄n(π) = π>rd1 for all π ∈ ΠL, n = 0, 1, ..., N − 1. For n = N , take any π ∈ ΠL. Since

U(π, o, s̄) ∈ ΠL for any π ∈ ΠL, we have

V̄N(π) = max
{
π>rd0 + ρ

∑
o∈O

∑
s̄∈S

C̄(π, o, s̄)V̄N−1(Ū(π, o, s̄)), π>rd1

}
= max

{
π>rd0 + ρ

∑
o∈O

∑
s̄∈S

C̄(π, o, s̄)Ū(π, o, s̄)>rd1, π>rd1

}
= max

{
π>rd0 + ρ

∑
o∈O

∑
s̄∈S

(
DOo D

S
s̄ P
>π
)>
rd1, π>rd1

}
= max

{
π>
(
rd0 + ρPrd1

)
, π>rd1

}
= π>rd1.

Hence, VN(π) = π>rd1. Since limn→∞ V̄n(π) = V̄ (π), it follows that V̄ (π) = π>rd1 and

µ̄∗(π) = 1.

Part 3: We now show that if π /∈ ΠL, then µ∗(π) = 0. For any π /∈ ΠL, we have

π>rd1 < π>
(
rd0 + ρPrd1

)
= π>rd0 + ρ

∑
o∈O

∑
s̄∈S

C̄(π, o, s̄)
(DOo DSs̄ P>π
C(π, o, s̄)

)>
rd1

≤ π>rd0 + ρ
∑
o∈O

∑
s̄∈S

C̄(π, o, s̄)V̄ (Ū(π, o, s̄)).

Hence, µ∗(π) = 0.

Theorem 7.2 characterizes the BAM-POMDPs optimal policy for honest patients. Namely,

there is a (potentially non-linear) threshold such that it is optimal for the doctor to cease

treatment for patients who are healthier than that threshold. We note that the interpretable

decision policy in Property 2 is better known as the myopic one-step look ahead policy
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Figure 7.1: The BAM-POMDP’s value function is not piecewise linear and convex in
π like the POMDP’s.

(Yasuda, 1988). This policy states that it is optimal to cease treatment in the current period

if treatment cessation yields a greater reward than waiting one period and ceasing treatment

in the following period.

Remark 7.1. If the patient’s strategy is independent of π, i.e., F π = F for all π ∈ Π,

then the likelihood of observing any reported symptom s̄ is also independent of π and can

be summarized by the observation probability matrix Q̄S = QSF . In this case, the BAM-

POMDP also reduces to a POMDP and if F is TP2, Theorem 7.2 applies.

When patients are strategic and their strategies depend on π, the BAM-POMDP’s value

function, in general, is not piecewise linear and convex in π as it for POMDPs (see Figure 7.1).

This technical challenge implies that typical approaches to establishing structural results for

POMDPs cannot be taken for the BAM-POMDP. To this end, we begin our analysis by

establishing the connection between treatment cessation for honest and strategic patients.

Proposition 7.1. For any patient strategy f , the following inequalities hold:∑
s̄∈S

C(π, o, s̄)V̄ (U(π, o, s̄)) ≤
∑
s̄∈S

C̄(π, o, s̄)V̄ (Ū(π, o, s̄)) for any o ∈ O and π ∈ Π (7.11)

V (π) ≤ V̄ (π) for all π ∈ Π. (7.12)

Proof. We begin our proof with the following preliminary result.
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Lemma 7.2. The POMDP value function V̄ (π) is convex in π.

Proof. Since this result holds for finite horizon POMDPs (Smallwood and Sondik, 1973),

induction on the value iteration algorithm implies that the result holds for infinite horizon

POMDPs.

We now show the desired result in two parts.

Part 1: To show that (7.11) holds, we utilize the following relationship between the belief

update functions U(·) and Ū(·):

U(π, o, s̄) =
∑
s∈S

Ū(π, o, s)
C̄(π, o, s)

C(π, o, s̄)
f(s̄|π, s)

C(π, o, s̄) =
∑
s∈S

C̄(π, o, s)f(s̄|π, s).
(7.13)

Now, for any o ∈ O and π ∈ Π, we have

∑
s̄∈S

C(π, o, s̄)V̄ (U(π, o, s̄)) =
∑
s̄∈S

C(π, o, s̄)V̄

(∑
s∈S

Ū(π, o, s)
C̄(π, o, s)

C(π, o, s̄)
f(s̄|π, s)

)
(7.14)

≤
∑
s̄∈S

C(π, o, s̄)
∑
s∈S

C̄(π, o, s)

C(π, o, s̄)
f(s̄|π, s)V̄ (Ū(π, o, s)). (7.15)

Note that the equality in (7.14) follows from (7.13). The inequality in (7.15) follows from

the application of Jensen’s Inequality (since V̄ (π) is convex in π by Lemma 7.2) and the fact

that the expression C̄(π,o,s)
C(π,o,s̄)

f(s̄|π, s) induces a probability distribution over s. Furthermore,

∑
s̄∈S

C(π, o, s̄)
∑
s∈S

C̄(π, o, s)

C(π, o, s̄)
f(s̄|π, s)V̄ (Ū(π, o, s)) =

∑
s̄∈S

∑
s∈S

f(s̄|π, s)C̄(π, o, s)V̄ (Ū(π, o, s))

≤
∑
s∈S

C̄(π, o, s)V̄ (Ū(π, o, s)),

since f(s̄|π, s) ∈ {0, 1} for all s̄ ∈ S. Hence, we have shown that the inequality (7.11) holds.

Part 2: Now, we show that (7.12) holds by induction on the value iteration algorithm.

By setting V0(π) = π>rd1 for all π ∈ Π, it is obvious that V0(π) = π>rd1 ≤ V̄ (π). Now,

assume that for iterations n = 1, ..., N − 1, we have Vn(π) ≤ V̄ (π) for all π ∈ Π. Take
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any arbitrary π ∈ Π. If VN(π) = π>rd1, then we have our desired result. If VN(π) =

π>rd0 + ρ
∑

o∈O
∑

s̄∈S C(π, o, s̄)VN−1(U(π, o, s̄)), we have

V̄ (π) ≥ π>rd0 + ρ
∑
o∈O

∑
s̄∈S

C̄(π, o, s̄)V̄ (Ū(π, o, s̄))

≥ π>rd0 + ρ
∑
o∈O

∑
s̄∈S

C̄(π, o, s̄)VN−1(Ū(π, o, s̄)) (7.16)

≥ π>rd0 + ρ
∑
o∈O

∑
s̄∈S

C(π, o, s̄)VN−1(Ū(π, o, s̄)), (7.17)

where (7.16) follows from the induction hypothesis and (7.17) follows from (7.11). Therefore,

by induction, this inequality Vn(π) ≤ V̄ (π) holds for all n. Since limn→∞ Vn(π) = V (π), it

follows that V (π) ≤ V̄ (π), which completes the proof.

Proposition 7.1 shows that the doctor’s performance is no better with a strategic patient

than it would be with an honest patient. This result can be explained by the notion of

Blackwell dominance (Blackwell, 1953). Since Q̄S(π) = QSF π, symptoms reported by a

strategic patient are less informative than those reported by an honest patient, making the

doctor’s decision process more challenging. Nevertheless, we can leverage (7.11) and (7.12)

to characterize µ∗.

Theorem 7.3. For any f , the doctor’s optimal policy µ∗ satisfies the following properties.

1. It is optimal to wait one more period if π>rdL < 0.

2. If it is optimal to cease treatment assuming that the patient will be honest in the next

period, then it is optimal to cease treatment. That is, µ̄∗(π) = 1 implies µ∗(π) = 1.

Proof. The proof for each property follows.

1. This result is identical to the proof of Property 2 in Theorem 7.2.

2. Take any π ∈ Π̄1. Then,

π>rd1 ≥ π>rd0 + ρ
∑
o∈O

∑
s̄∈S

C̄(π, o, s̄)V̄
(
Ū(π, o, s̄)

)
(7.18)

≥ π>rd0 + ρ
∑
o∈O

∑
s̄∈S

C(π, o, s̄)V
(
U(π, o, s̄)

)
, (7.19)
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where (7.18) follows from the fact that π ∈ Π̄1 and (7.19) follows from Proposition 7.1.

From (7.19), it follows that µ∗(π) = 1, as desired.

Figure 7.2: (a) Theorem 7.3 implies that Γ̄1 ⊆ Γ1 ⊆ ΓL with µ∗(π) = 1 in all shaded
regions and µ∗(π) = 0 in all non-shaded regions. (b) Illustration of variable-resolution
grid regions in Section 7.5 based on Theorem 7.3. Allocation of grid points should be
prioritized in R3, followed by R1 and R2.

(a) (b)

Theorem 7.3 implies that Γ̄1 ⊆ Γ1 ⊆ ΓL (see Figure 7.2a), where Γ1 = {π ∈ Π : µ∗(π) = 1}.
This characterization guides our allocation of grid points for approximating µ∗ as described in

Section 7.5 (see Figure 7.2b). Furthermore, µ∗ inherits some important structural properties

of µ̄∗(π). For example, Π1 contains a convex subset since Π̄1 is convex. Therefore, µ∗ contains

a (potentially non-linear) threshold for which it is optimal to cease treatment for all patients

believed to be healthier than that threshold. We can also establish necessary conditions

which guarantee that µ∗ is characterized by an interpretable linear decision threshold.

Corollary 7.1. If (7.10) holds, then µ∗(π) = 1 if π>rdL ≥ 0 and µ∗ = 0 otherwise.

Proof. Since (7.10) is satisfied, Π̄1 = ΠL by Theorem 7.2. Since Theorem 7.3 implies that

Π̄1 ⊆ Π1 ⊆ ΠL, it follows that Π1 = ΠL.

The beauty of Theorem 7.3 and Corollary 7.1 is that these results hold without requiring

any knowledge of the patient’s strategy f . Furthermore, the conditions required for these

results can be verified using only the problem data. It might be tempting, then, to suggest
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that the patient’s strategy can be ignored with little consequence. This assertion is wrong;

it is critical that the patient’s strategy is incorporated in health state belief updates. Given

the same prior belief π and observations (o, s̄), a doctor who anticipates symptom under-

reporting (resp., over-reporting) from the patient will update her belief about the patient’s

health more conservatively (resp., aggressively) than a doctor who believes that the patient

is reporting symptoms truthfully.

Proposition 7.2. Suppose that arg maxs̄ f(s̄|π, s) is non-decreasing in s.

1. If F π is lower triangular, then F π is TP2 and U(π, o, s̄) �R Ū(π, o, s̄).

2. If F π is upper triangular, then F π is TP2 and Ū(π, o, s̄) �R U(π, o, s̄).

Proof. We begin with the following lemma.

Lemma 7.3. Suppose that for every π ∈ Π,

QS(s̄|h)Q̄S(s̄|h′, π) ≥ QS(s̄|h′)Q̄S(s̄|h, π), (7.20)

for each s̄ ∈ S and h ≥ h′ ∈ H. Then, Ū(π, o, s̄) �R U(π, o, s̄) for any o ∈ O, s̄ ∈ S, and

π ∈ Π. Conversely, if

QS(s̄|h)Q̄S(s̄|h′, π) ≤ QS(s̄|h′)Q̄S(s̄|h, π), (7.21)

then U(π, o, s̄) �R Ū(π, o, s̄) for any o ∈ O, s̄ ∈ S, and π ∈ Π.

Proof. We begin by showing that Ū(π, o, s̄) �R U(π, o, s̄) holds if (7.20) is satisfied. By

definition, Ū(π, o, s̄) �R U(π, o, s̄) if and only if

[Ū(π, o, s̄)]h[U(π, o, s̄)]h′ ≥ [Ū(π, o, s̄)]h′ [U(π, o, s̄)]h

⇐⇒
[ DOo D

S
s̄ P
>π

1>DOo D
S
s̄ P>π

]
h

[DOo D̄π
s̄P
>π

DOo D̄
π
s̄P>π

]
h′
≥
[ DOo D

S
s̄ P
>π

1>DOo D
S
s̄ P>π

]
h′

[DOo D̄π
s̄P
>π

DOo D̄
π
s̄P>π

]
h
.

After expanding out the terms in both sides of the expression, canceling out normalization
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constants, and canceling out the QO(o|h) terms, the inequality holds if

QS(s̄|h)
∑
h′′∈H

P (h|h′′)π(h′′)Q̄S(s̄|h′, π)
∑
h′′∈H

P (h′|h′′)π(h′′)

≥ QS(s̄|h′)
∑
h′′∈H

P (h′|h′′)π(h′′)Q̄S(s̄|h′, π)
∑
h′′∈H

P (h|h′′)

⇐⇒ QS(s̄|h)Q̄S(s̄|h′, π) ≥ QS(s̄|h′)Q̄S(s̄|h, π).

Clearly, this inequality holds if (7.20) is satisfied. Showing that (7.21) implies U(π, o, s̄) �R
Ū(π, o, s̄) is similar and has been omitted.

We now proceed with the proof for each property in Proposition 7.2 below.

1. Suppose that the conditions hold. We first show that F π is TP2 for any π ∈ Π. Take

any π ∈ Π. By definition, F π is TP2 if f(s̄|π, s)f(s̄′|π, s′) ≥ f(s̄′|π, s)f(s̄|π, s′) for

any s > s′ and s̄ > s̄′. The only non-trivial case occurs if the right-hand side of this

expression is equal to 1, which requires that f(s̄′|π, s)f(s̄|π, s′) = 1. However, this case

cannot occur since arg maxs̄ f(s̄|π, s) is non-decreasing in s. Hence, F π is TP2.

Now, we show that U(π, o, s̄) �R Ū(π, o, s̄). From Lemma 7.3, it suffices to show that

(7.21) holds. Take any s̄ ∈ S and h ≥ h′. Since arg maxs̄ f(s̄|π, s) is non-decreasing in

s and F π is lower triangular, we can rewrite (7.21) as

QS(s̄|h′)
∑
s≥s̄

QS(s|h) ≥ QS(s̄|h)
∑
s≥s̄

QS(s|h′). (7.22)

Since QS is TP2, [QS ]h �R [QS ]h′ for any h ≥ h′. Therefore,

QS(s̄|h′)QS(s|h) ≥ QS(s̄|h)QS(s|h′) for any h ≥ h′, s ≥ s̄. (7.23)

Summing both sides of (7.23) over all s ≥ s̄ gives (7.22), which completes the proof.

2. The proof is similar to the previous case and has been omitted.

Proposition 7.2 implies that if a patient under-reports (resp., over-reports) symptoms, a

doctor who does not account for strategic behavior would think that the patient is healthier
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(resp., sicker) than he actually is. Consequently, failing to account for strategic behavior can

result in premature (resp., delayed) treatment cessation for patients who under-report (resp.,

over-report) symptoms. In Section 7.4.3, we verify that PSRP satisfies these conditions.

Altogether, Theorem 7.3 and Proposition 7.2 illustrate the important role played by the

health state belief update for strategic patients. We strengthen these findings with our

numerical analysis in Section 7.6.

7.4.3 Analysis of Patient Strategies

We now analyze the structure of fb as determined by the PSRP. We suppress b from our

notation throughout this section to simplify exposition. We begin this section by reformulat-

ing the patient’s bi-level optimization problem (7.6) into a form which is interpretable and

amenable to analytical study. For any π ∈ Π and s ∈ S,

arg max
s̄∈S

Eh,o[rp(h, α(π, o, s̄))|π, s]

= arg max
s̄∈S

Eh,o[rp(h, 1)α(π, o, s̄) + rp(h, 0)(1− α(π, o, s̄))|π, s]

= arg max
s̄∈S

Eh,o[r̄p(h)α(π, o, s̄)|π, s]

= arg max
s̄∈S

∑
h∈H

( ∑
h′∈H P (h|h′)π(h′)QS(s|h)∑

h′′∈HQ
S(s|h′′)

∑
h′∈H P (h′′|h′)π(h′)

)
r̄p(h)

∑
o∈O

α(π, o, s̄)QO(o|h)

= arg max
s̄∈S

Up(π, s)>r̄πs̄ , (7.24)

where r̄p = rp1 − rp0, Up(π, s) = DSs P
>π/1>DSs P

>π, and r̄πs̄ is a vector with components

r̄πs̄ (h) = r̄p(h)
∑

o∈O α(π, o, s̄)QO(o|h) for all h ∈ H. The form of (7.6) derived in (7.24) has

computational implications. For fixed π, α(π, o, s̄) can be pre-computed for all o ∈ O and

s̄ ∈ S since it is independent of the patient’s strategy f . Therefore, each vector r̄πs̄ can be

computed through matrix operations, implying that the computational solution to (7.6) can

be determined rather easily. We now proceed with our analysis of f .

In Section 7.3.4, we allude to the interpretability of δ as defined in (7.8). We now provide

conditions which guarantee that δ is viable (i.e., admits a unique s̄ ∈ S for all π ∈ Π, s ∈ S)

and identify its implications on the patient’s strategy f .
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Proposition 7.3. Let r̄p be a vector with components r̄p(h) = rp(h, 1)−rp(h, 0) and suppose

that δ has the form specified in (7.8). The following properties hold.

1. If r̄p ≥ r̄dM or r̄p ≤ r̄dM , then δ admits a unique s̄ for all π ∈ Π and s ∈ S.

2. If r̄p ≥ r̄dM or r̄p ≤ r̄dM , then F π = I if either Ū(π, 0, 0)>r̄dM < 0 or Ū(π,O, S)>r̄dM ≥ 0.

3. If r̄p ≥ r̄dM (resp., r̄p ≤ r̄dM), then F π is lower (resp., upper) triangular for all π ∈ Π.

4. If rp(h, 0) ≥ rp(h, 1) for all h ≥ 1 and∑
o≤o+

QO(o|h+) +
∑
o≤o−

QO(o|h−) ≥
∑
o≤o+

QO(o|h−) +
∑
o≤o−

QO(o|h+) , (7.25)

for all o+ ≥ o−, h+ ≥ h−, then δ(S∗(π, s)) is non-decreasing in s.

Proof. We begin by identifying important properties of the naive doctor’s treatment cessation

decision, α(·).

Lemma 7.4. The naive doctor’s action α(π, o, s̄) satisfies the following properties.

1. α(π, o, s̄) is non-increasing in o.

2. α(π, o, s̄) is non-increasing in s̄.

3. α(π, o, s̄) is MLR non-decreasing. That is, π′ �R π implies α(π, o, s̄) ≥ α(π′, o, s̄).

Proof. Throughout the proof of each property, we use the fact that α(π, o, s̄) is non-decreasing

in Ū(π, o, s̄)>r̄dM . We now show the proof for each property.

1. By Lemma 1.2 in (Lovejoy, 1987a), o′ ≥ o implies that Ū(π, o′, s̄) �R Ū(π, o, s̄) by

Assumption 7.2. Since r̄dM is non-increasing in h and MLR dominance implies FOSD,

we have Ū(π, o′, s̄)>r̄dM ≤ U(π, o, s̄)>r̄dM , implying that U(π, o, s̄)>r̄dM is non-increasing

in o. Hence, α(π, o, s̄) is non-increasing in o, as desired.

2. This proof is similar to the previous and has been omitted.

3. This result follows from the fact that Ū(π, o, s̄) preserves MLR dominance (see Lemma

1.2 in Lovejoy, 1987a).

190



We also use the properties established in Lemma 7.4 to establish the following monotonicity

result.

Lemma 7.5. If rp(h, 1) ≤ rp(h, 0) for all h ≥ 1 and (7.25) holds, then for any s̄ ≤ s̄′, the

vector r̄πs̄ − r̄πs̄′ is non-increasing in h.

Proof. Take any s̄ ≤ s̄′ and define the thresholds

o+ = max{o ∈ O : α(π, o, s̄) = 1} and o− = max{o ∈ O : α(π, o, s̄′) = 1}.

From Lemma 7.4, α(·) is non-increasing in o and s̄, so o+ ≥ o− , α(π, o, s̄) = 1 for all o ≤ o+,

and α(π, o, s̄′) = 1 for all o ≤ o−. If o+ = o−, the desired result is achieved. Otherwise,

[
r̄πs̄ − r̄πs̄′

]
h

=
∑
o∈O

r̄p(h)QO(o|h)(α(π, o, s̄)− α(π, o, s̄′)) = r̄p(h)
o+∑

o=o−+1

QO(o|h).

For h = 0, we clearly have

r̄p(0)
o+∑

o=o−+1

QO(o|0) ≥ r̄p(h′)
o+∑

o=o−+1

QO(o|h′),

for any h′ ≥ 0 since r̄p(0) ≥ 0 ≥ r̄p(h′). Otherwise, take any arbitrary h ≤ h′. We have

r̄p(h)
o+∑

o=o−+1

QO(o|h) ≥ r̄p(h′)
o+∑

o=o−+1

QO(o|h′),

since 0 ≥ r̄(h) ≥ r̄p(h′) and
∑o+

o=o−+1 Q
O(o|h) ≤

∑o+

o=o−+1Q
O(o|h′) by (7.25).

The proof for each property of Proposition 7.3 follows.

1. Suppose that r̄p ≥ r̄dM and take any arbitrary π ∈ Π and s ∈ S. If s̄ ≤ s for all

s̄ ∈ S∗(π, s), then clearly, δ(S∗(π, s)) = max{s̄ ∈ S∗(π, s)}. If there exists some

s̄ ∈ S∗(π, s) such that s̄ > s, then s ∈ S∗(π, s) since Up(π, s)>r̄πs ≥ Up(π, s)>r̄πs̄ for

all s̄ ≥ s (see (7.29) in the proof of Property 3). Therefore, δ(S∗(π, s)) = s. Hence,
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δ(S∗(π, s)) admits a unique s̄ ∈ S for all π ∈ Π and s ∈ S. A similar procedure can

be used to show the result in the case that r̄p ≤ r̄dM .

2. Suppose that r̄p ≤ r̄dM or r̄p ≥ r̄dM and Ū(π, 0, 0)>r̄dM < 0. It follows that α(π, 0, 0) = 0.

From Lemma 7.4, α(·) is non-increasing in o and s̄, so α(π, o, s̄) = 0 for all o ∈ O and

s̄ ∈ S. Therefore, s ∈ S∗(π, s) for all s ∈ S. Now, since r̄p ≤ r̄dM or r̄p ≥ r̄dM , δ is a

viable tie-breaking rule and since s ∈ S∗(π, s), we have δ(S∗(π, s)) = s for all s ∈ S.

Hence, F π = I. Showing that F π = I when Ū(π,O, S)>r̄dM ≥ 0 follows a similar

procedure and has been omitted.

3. Take any s ∈ S and π ∈ Π. First, we show that

Up(π, s)>r̄πs ≥ Up(π, s)>r̄πs̄ , (7.26)

for all s̄ ≥ s. Subtracting the right-hand side of (7.26) from the left-hand side and

writing the terms explicitly gives us∑
h∈H

P(h|π, s)r̄p(h)
∑
o∈O

QO(o|h)(α(π, o, s)− α(π, o, s̄)). (7.27)

Now, define the thresholds

o+ = max{o ∈ O : α(π, o, s) = 1} and o− = max{o ∈ O : α(π, o, s̄) = 1}.

From Lemma 7.4, α(·) is non-increasing in o and s̄, so o+ ≥ o− , α(π, o, s) = 1 for all

o ≤ o+, and α(π, o, s̄) = 1 for all o ≤ o−. If o+ = o−, (7.27) holds and the proof is

complete. Otherwise, we can rewrite (7.27) as

∑
h∈H

P(h|π, s)r̄p(h)
o+∑

o=o−+1

QO(o|h) =
o+∑

o=o−+1

∑
h∈H

P(h|π, s)P(o|h)r̄p(h)

=
o+∑

o=o−+1

P(o|s, π)
∑
h∈H

P(h|π, o, s)r̄p(h), (7.28)

where the equality in (7.28) follows from the fact that P(o|h) = P(o|h, s, π) by indepen-

dence from s, π given h and P(h|π, s)P(o|h, π, s) = P(h, o|π, s) = P(h|o, π, s)P(o|π, s).
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Now, since α(π, o, s) = 1 for all o ≤ o+ and r̄p ≥ r̄dM , it follows that

0 ≤ Ū(π, o, s)>r̄dM ≤ Ū(π, o, s)>r̄p =
∑
h∈H

P(h|π, o, s)r̄p(h). (7.29)

Therefore, since each term P(o|s, π) is non-negative, (7.28) is non-negative which im-

plies that (7.26) holds. Now, if s ∈ S∗(π, s), then f(s|π, s) = 1 since δ follows the form

in (7.8). Otherwise, there exists some s̄ < s such that Up(π, s)>r̄πs̄ > Up(π, s)>r̄πs , so

arg maxs̄ f(s̄|π, s) < s. Hence, arg maxs̄ f(s̄|π, s) ≤ s for all s ∈ S, which implies that

F π is lower triangular. Showing that r̄p ≤ r̄dM implies F π is upper triangular proceeds

similarly.

4. We prove Property 4 by contradiction. Suppose that there exist s > s′ and s̄ < s̄′ such

that f(s̄|π, s) = 1 and f(s̄′|π, s′) = 1. Since δ follows the form specified in (7.8), it

must be the case that Up(π, s)>r̄πs̄ > Up(π, s)>r̄πs̄′ . Therefore, we have

Up(π, s)>(r̄πs̄ − r̄πs̄′) > 0 ≥ Up(π, s′)>(r̄πs̄ − r̄πs̄′). (7.30)

Now, Theorem 7.2 implies that Up(π, s) �R Up(π, s′) and Lemma 7.5 implies that

r̄πs̄ − r̄πs̄′ is non-increasing in h. Therefore, we have

Up(π, s′)>(r̄πs̄ − r̄πs̄′) ≥ Up(π, s)>(r̄πs̄ − r̄πs̄′),

which contradicts (7.30) and completes the proof.

Proposition 7.3 classifies symptom-reporting behavior as either honest, under-reporting,

and over-reporting and then characterizes each type. For example, a patient who over-values

treatment cessation compared to the naive doctor (i.e., r̄p ≥ r̄dM) will under-report symptoms

unless (1) he agrees with the naive doctor’s expected decision or (2) he believes that cannot

influence the naive doctor’s expected decision. Furthermore, patients who fit the conditions

imposed in Proposition 7.3 also satisfy the conditions specified in Proposition 7.2, implying

that under-reporting (resp., over-reporting) patients are sicker (resp., healthier) than they

report. Overall, these results help clinicians to anticipate the kinds of symptom-reporting
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behavior they might see in practice and how they can adjust their interpretation of reported

symptoms accordingly.

7.5 Solution Methodology

By Theorem 7.1, the BLM-POMDP’s optimal policy is given by a weighted sum of BAM-

POMDPs. However, BAM-POMDPs generalize POMDPs, for which finding an optimal

policy is undecidable (Madani, Hanks, and Condon, 2003). Hence, we use this section to

detail an approximate solution method. Grid-based approximations are commonly used for

estimating the optimal value functions and optimal policies for infinite horizon POMDPs

(Sandikçi, 2011), i.e., Π is discretized into a finite grid G = {g1, ..., g|G|} and the value

function is estimated for all g ∈ G.

We construct G as a variable-resolution grid. From Theorem 7.3, Π can be divided into

regions R1 := {π ∈ Π : π>rdL < 0}, R2 := Π̄1, and R3 := Π \ (R1 ∪ R2). Since the optimal

policy µ∗b is known in R1 and R2, we prioritize allocation of grid points in R3, followed by

R1 and R2 (see Figure 7.2b). Hence, G :=
{⋃3

i=1 Gi
}
∪
{⋃

h∈H eh

}
, where Gi is the grid

approximation to Ri and eh is the hth vertex of Π. Now, let V̂b denote our approximation to

Vb and let V̂ be the POMDP grid-based approximation evaluated over G. For any π ∈ R2,

we have V̂b(π) = π>rd1. Otherwise,

V̂b(π) =

π>rd0 + ρ
∑

o∈O
∑

s̄∈S Cb(π, o, s̄)
∑

g′∈G λ
Ub(π,o,s̄)
g′ V̂ (Ub(π, o, s̄)) π ∈ R1

max
{
π>rd0 + ρ

∑
o∈O

∑
s̄∈S Cb(π, o, s̄)

∑
g′∈G λ

Ub(π,o,s̄)
g′ V̂ (Ub(π, o, s̄)), π

>rd1

}
π ∈ R3

,

where the weights λπg for any π ∈ Π are determined by solving the following linear program:

min
λπg

{∑
g∈G

λπg V̂ (g) :
∑
g∈G

λπgg = π,
∑
g∈G

λπg = 1, 0 ≤ λπg ≤ 1 for all g ∈ G

}
. (7.31)

Since {e0, ..., eH} ∈ G, (7.31) is always feasible. Now, let µ̃ denote an approximate policy

for the BLM-POMDP where we set Vb = V̂b in (7.9) for all b ∈ B. We complete this

section by estimating an upper bound on the optimality gap of this approximate policy.

Let vb(π0, φ0) ≈ Eµ̃[
∑∞

t=1 ρ
t−1rd(ht, at)|b0 = b,π0, φ0] denote the expected total discounted
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rewards (e.g., estimated via simulation) of the BLM-POMDP for a patient with behavior

type b0 = b under policy µ̃ with initial beliefs π0 = (πb0 = π0)b∈B and φ0. By optimality of

Vb and applications of Proposition 7.1 and Jensen’s Inequality, we have

vb(π0, φ0) ≤
∑
o∈O

∑
s̄∈S

Cb(π0, o, s̄)Vb(Ub(π0, o, s̄)) ≤
∑
o∈O

∑
s̄∈S

Cb(π0, o, s̄)
∑
g∈G

λUb(π0,o,s̄)g V̂ (g).

These inequalities provide an upper bound on the optimality gap given by

Optimality Gap UB (%) = 100×

(
1− vb(π0, φ0)∑

o∈O
∑

s̄∈S Cb(π0, o, s̄)
∑

g∈G λ
Ub(π0,o,s̄)
g V̂ (g)

)
.

(7.32)

7.6 RTP From Sports-Related Concussion

In this section, we apply the BLM-POMDP to a case study on optimizing return-to-play

(RTP) from sports-related concussion. Our analysis focuses on male collegiate football play-

ers since football has one of the greatest risks of injury among all collegiate sports and is a

focal point for concussion in popular media (Baugh and Kroshus, 2016). We provide back-

ground on RTP from sports-related concussion in Section 7.6.1. We briefly summarize our

BLM-POMDP model for optimizing RTP from concussion and in Section 7.6.3, we detail

the data sources used to derive model parameters. In Section 7.6.4, we describe benchmark

RTP polices against which we compare the BLM-POMDP and the simulation framework

we use to evaluate each RTP policy in Section 7.6.5. We then analyze the BAM-POMDP

optimal policies in Section 7.6.6, the effect of symptom-reporting behavior on each RTP

policy in Section 7.6.7, and estimate the Value of Incorporating Patient Behavior (VoIPB)

in Section 7.6.8. This analysis aims to (1) provide insights on how to optimize the tim-

ing of RTP for potentially strategic athletes and (2) quantify the benefits in accounting for

symptom-reporting behavior in RTP decisions.

7.6.1 Background on Sports-Related Concussion

Concussion, the most common type of traumatic brain injury, has been identified as a ma-

jor public health issue (McCrory et al., 2017). In the short-term, concussion is associated
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with the alteration of neurologic function and a wide-ranging set of symptoms which include

confusion and memory loss. Furthermore, while the exact relationship is unclear, concussion

may be associated with long-term consequences such as cognitive impairment, neurodegen-

erative disease, depression, and early onset dementia (Guskiewicz et al., 2005; Guskiewicz

et al., 2007; Kerr et al., 2014a; Kerr et al., 2012; Kerr et al., 2018a). Improving concussion

management is critical to improving patient health outcomes.

For sports-related concussions, a key component of the management protocol is deter-

mining when the patient may RTP. During the RTP decision process, current guidelines

recommend a multi-faceted approach which combines objective clinical measures (e.g., neu-

rocognitive and balance assessments) and subjective measures (e.g., self-reported symptoms)

to estimate an athlete’s health status. While self-reported symptoms are typically the most

indicative measure of concussion (Chin et al., 2016; Garcia et al., 2018; McCrea et al., 2005;

Register-Mihalik et al., 2013b; Resch et al., 2016), athletes may purposely under-report or

over-report symptoms to expedite or delay RTP, among other reasons (Conway et al., 2018;

Kerr et al., 2014b; Kroshus et al., 2015a; Kroshus et al., 2015b; Register-Mihalik et al.,

2013a). Given the consequences associated with premature RTP (e.g., increased risk of in-

jury (McCrea et al., 2020)) and delayed RTP (e.g., reduced health benefits from physical

activity and exercise), understanding the role of symptom self-reporting behavior and its

impact in the RTP decision process is critical to improving health outcomes.

7.6.2 Modeling RTP From Concussion

We now summarize the modifications to the BLM-POMDP for modeling athlete-specific

RTP decisions (see Appendix 7.A for details). First, we model the set of health states

as H = {0, 1, 2} where h = 0, 1 and 2 represent recovered, asymptomatic concussion,

and symptomatic concussion, respectively. The objective measures are given by O =

{30+, 29, 28, 27, 0-26}, where each o ∈ O represents a range of scores on the Standard As-

sessment of Concussion (SAC) — a neurocognitive exam used to measure impairment after

concussion. The subjective measures are given by S = {0, 1, 2-4, 5-13, 14-32, 33+}, where

each s ∈ S represents total symptom severity scores on the Sport Concussion Assessment

Tool (SCAT) graded symptom checklist. The rewards rd and rp represent health utilities,

where the lump sum rewards rd(h, 1) are derived from a post-RTP Markov Reward Process
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(MRP) with state space Ω = H ∪ {3} and state transition matrix PΩ. The absorbing state

ω = 3 represents a time-loss injury. The MRP reward function rΩ : Ω → R+ accounts for

post-RTP injury risk, health benefits for being in play, and health disutilities from playing

while injured. The naive doctor’s myopic reward function is given by rdM(h, 0) = rd(h, 0)

and rdM(h, 1) = rΩ(h) for all h ∈ H. We model rp for each behavior type b ∈ B by modifying

the perceived benefit in RTP relative to rdM . Specifically, b = 0 corresponds with honest

symptom-reporting while b > 0 (resp., b < 0) corresponds with symptom under-reporting

(resp., over-reporting). Finally, we augment P,QS , QO, rd, and rp with an athlete specific

state θ ∈ Θ, where the set Θ contains modifying factors such as sex, concussion history, and

sport. Since we focus on male collegiate football players, we set Θ = {0, 1+}, where θ ∈ Θ

represents the athlete’s number of previous concussions.

7.6.3 Model Parameters and Data Sources

For each θ ∈ Θ, we jointly derived the HMM parameters Pθ, Q
O
θ , and QSθ by applying

the Baum-Welch algorithm (Rabiner, 1989) on data from the National Collegiate Athletic

Association and Department of Defense (NCAA-DoD) Concussion Assessment, Research,

and Education (CARE) Consortium (Broglio et al., 2017). This dataset combines concussion

assessment data from 29 NCAA universities and military service academies throughout the

United States. To our knowledge, this dataset is the largest available on concussion among

collegiate athletes. We validated our HMMs using held-out testing data. To parameterize our

post-RTP MRP, we utilized injury rates published in the sports medicine literature (Harada

et al., 2019; Herman et al., 2017; Kerr et al., 2018b; McCrea et al., 2009). To derive health

utilities for our reward functions, we used health-related quality of life estimates from the

concussion and sports medicine literature (Cowee and Simon, 2019; McAllister et al., 2001;

Weber et al., 2019) combined with a previously published health utility estimating function

from the medical decision-making literature (Lawrence and Fleishman, 2004). Given these

rewards, we set B = {−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1} where b = −1 corresponds

to a patient who prefers never to RTP and b = 1 corresponds to a patient who always prefers

to RTP for each θ ∈ Θ. We provide additional details on these parameters in Appendix 7.B.
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7.6.4 Benchmark Policies

For the BLM-POMDP, we set π0 = e2, i.e., all athletes are assumed to have symptomatic

concussions at the start of the RTP decision process, and

φ0 =
[
0.025 0.025 0.05 0.15 0.5 0.15 0.05 0.025 0.025

]>
,

i.e., the doctor assumes that the patient is likely to be honest. The BLM-POMDP is not

sensitive to φ0 in this case study (see Appendix 7.C). We compared the BLM-POMDP

to a POMDP which does not account for symptom-reporting behavior and two practice-

based policies which assume that the athlete reports symptoms honestly. The first practice-

based policy, denoted Myopic, is a simple myopic policy which permits RTP once SAC

and symptom scores are normal (Broglio, Macciocchi, and Ferrara, 2009), i.e., in period

t′ where t′ = inf{t : ot = s̄t = 0}. The second policy, denoted CurrPrac, more closely

mimics current practice by permitting RTP 7 days after the athlete presents normal SAC

and symptom scores at least once (McCrea et al., 2020), i.e., in period t′ + 7 where period

t′ = sup{inft{t : s̄t = 0}, inf{t : ot = o}}.

7.6.5 Simulation Framework

We evaluated the performance by each RTP policy using discrete event simulation with

1, 000 replications for each θ ∈ Θ and b0 ∈ B. In each iteration, we assumed that the athlete

initially had acute concussion, i.e., h0 = 2. Although we formulated the BLM-POMDP for

an infinite horizon, we evaluated the policy over 90 days since the majority of RTP decisions

are made well within that timeframe (McCrea et al., 2020). The sequence of events in each

decision period follow the illustration in Figure 7.1, with all problem data following the

models and parameters defined in Sections 7.A and 7.6.3. Once the RTP policy permits

RTP, we simulated the post-RTP MRP (see Section 7.A.2).

7.6.6 Analysis of BAM-POMDP RTP Policies

In this section, we analyze how concussion history and symptom-reporting behavior modify

optimal RTP policies, providing some insights on how optimal RTP policies might change

for athletes not included in our study. We also estimate the optimality gaps associated with
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our grid-based approximation. To construct the BLM-POMDP optimal policy, we solved a

BAM-POMDP for each θ ∈ Θ and b0 ∈ B using the grid-based approximation of Section 7.5

with 400, 150, and 550 grid points in regions R1, R2, and R3, respectively.

The BAM-POMDP policies for honest athletes are illustrated in Figure 7.1. Recall that

these policies are equivalent to the optimal POMDP policies by Theorem 7.2. The optimal

policy is more conservative for athletes with 1+ previous concussions compared to 0 previous

concussions. This difference is likely due to the increased post-RTP injury risk incurred by

athletes with a greater concussion history. Extrapolating beyond our analysis, we expect

that athletes at higher risk of injury after RTP require a more conservative RTP policy than

those with lower risk (e.g., athletes playing soccer vs. golf). Furthermore, we expect that if

the risk of injury post-RTP is sufficiently high, then an optimal policy would never permit

RTP.

Figure 7.1: BAM-POMDP policies for honest athletes. Black indicates that it is
optimal to RTP and gray indicates that it is optimal to wait. For belief states not
shown, it is optimal to wait.

For fixed concussion history, RTP policies are more aggressive for athletes who greatly

over-report symptoms (i.e., b0 = −1) compared to honest athletes. However, there are only

minor differences between the BAM-POMDP policy for honest athletes and all other behavior

types (see Figure 7.3). This surprising result might suggest that adaptations to symptom-

reporting behavior in the health state belief update sufficiently modify RTP decisions and

few compensations are needed within the RTP policy itself. Furthermore, among athletes

who under-report symptoms, the RTP policy cannot become any more conservative than it
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(a) 0 Previous Concussions

(b) 1+ Previous Concussions

Figure 7.3: Differences in BAM-POMDP policies relative to honest behavior (i.e.,
b0 = 0). RTP, return-to-play.

already is for honest patients (see Theorem 7.3). Hence, potential differences in performance

between the BLM-POMDP and POMDP are likely driven by differences in the health state

belief update and not the actual RTP policy. We illustrate this concept for a sample patient

in Figure 7.4, where we see that athletes who over-report symptoms will delay RTP and those

who under-report symptoms will cause premature RTP compared to the BLM-POMDP.
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Figure 7.4: Illustration of BLM-POMDP and POMDP health state belief evolution for
sample athletes. Differences in performance between the BLM-POMDP and POMDP
are primarily due to differences in health belief updates rather than differences in
RTP policy. RTP, return-to-play; s̄t, reported symptom; ot, objective assessment

Table 7.1: Optimality Gap UB (%) for BLM-POMDP policies based on simulation
estimates

Symptom-reporting Behavior b0

θ -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
0 0.271% 0.082% 0.085% -0.028% 0.042% 0.130% 0.180% 0.159% 0.261%

1+ 0.217% 0.134% 0.176% 0.117% 0.227% 0.346% 0.308% 0.276% 0.371%

7.6.7 Effect of Symptom-reporting Behavior on RTP Policy

Performance

We now analyze how symptom-reporting behavior affects each RTP policy. We begin by

estimating the optimality gap associated with the approximate BLM-POMDP policy via

(7.32) (see Table 7.1). Overall, these gaps are no larger than 0.371% across all policies,

behavior types, and concussion histories. Given the magnitude of these estimates, we suspect

that the BLM-POMDP policies are close to optimal.

We present the expected total discounted health utilities achieved by each policy in Figure

7.5. The BLM-POMDP outperforms all benchmark policies although the POMDP perform

similarly among honest athletes. Hence, the simpler POMDP suffices for this group. Among
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Figure 7.5: Total discounted health utilities for each RTP policy and behavior type b0 ∈
B. Markers indicate mean values and shaded areas indicate 95% confidence intervals
of the mean.

strategic athletes, the BLM-POMDP most outperforms the benchmark RTP policies when

athletes are under-reporting symptoms (i.e., b0 > 0) or when athletes never want to RTP

(i.e., b0 = −1). Hence, accounting for symptom-reporting behavior is most beneficial among

athletes who under-report symptoms.

We also investigated the timing of RTP decisions relative to the timing of recovery from

concussion. For athletes who are permitted to RTP, we compute the relative RTP delay,

which measures the difference between the time to RTP and the time until the athlete

recovers. A value of 0 indicates perfect timing, whereas negative values indicate premature

RTP and positive values indicate delayed RTP. We illustrate the relative RTP delay for

the BLM-POMDP and POMDP in Figure 7.7. When patients are honest, both the BLM-

POMDP and POMDP are more conservative (i.e., take longer to RTP) than the practice-

based policies. Across different behavior types, the time to RTP is relatively stable for

the BLM-POMDP, with only a small proportion of athletes permitted to RTP before a

full recovery is made. In alignment with Proposition 7.2, the POMDP and practice-based

policies permit RTP sooner (resp., later) for under-reporting (resp., over-reporting) athletes

compared to those who are honest. In fact, when b0 = −1, the POMDP never allows

RTP and the practice-based policies permit only 6%-34% of athletes to RTP. In contrast,

the BLM-POMDP permits all athletes to RTP. These results suggest that for b0 = −1,

differences in performance between the BLM-POMDP and benchmark policies are driven by
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the suboptimality of never permitting RTP whereas for under-reporting athletes, the costs

associated with premature RTP (e.g., increased injury risk) far outweigh the costs of delayed

RTP.

Figure 7.7: Violin plots illustrating distribution of relative RTP delay. Median RTP
delay is shown by a circle for BLM-POMDPs and a square for POMDPs in each
violin plot, while lower and upper bars indicate 5th and 95th percentiles, respectively.
Probability of Premature RTP is shown below BLM-POMDP violin plots and above
POMDP violin plots. ∗∗ No athletes RTP for POMDP when b0 = −1. RTP, return-to-
play.
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7.6.8 Estimating the Value of Incorporating Patient Behavior

We now define and estimate the VoIPB. Let vpb,θ denote the expected total discounted health

utilities for policy p ∈ {BLM-POMDP, POMDP, Myopic, CurrPrac} and athlete character-

ized by (b, θ). We define the VoIPB according to

V(ϕ, θ, p′) :=
∑
b∈B

ϕ(b)
(
vBLM-POMDP
b,θ − vp

′

b,θ

)
,

for each policy p′ ∈ {POMDP,Myopic,CurrPrac} where ϕ ∈ Φ is a distribution over behavior

types. Simply stated, the VoIPB quantifies the benefit in applying the BLM-POMDP over

policy p′ which does not incorporate patient behavior. Since ϕ is difficult to estimate, we

estimate lower and upper bounds on the VoIPB by

VLB(β0, β1, θ, p
′) := min

ϕ∈Φ′(β0,β1)
V(ϕ, θ, p′)

VUB(β0, β1, θ, p
′) := max

ϕ∈Φ′(β0,β1)
V(ϕ, θ, p′),

respectively, where the set Φ′(β0, β1) is given by

Φ′(β0, β1) :=

{
ϕ ∈ Φ :

ϕ(0) = β0

∑
b>0 ϕ(b) = β1

ϕ(b+ 1) ≥ ϕ(b) for all b > 0 ϕ(b) ≥ ϕ(b− 1) for all b < 0

}
.

(7.33)

In (7.33), β0 and β1 denote the proportion of honest and under-reporting athletes, respec-

tively. For example, Φ′(0.5, 0.4) defines the set of all distributions over symptom-reporting

behavior when 50% of athletes are honest, 40% under-report symptoms, and 10% over-report

symptoms. Finally, notice that Φ′(β0, β1) contains only distributions with monotone tails,

i.e., the proportion of extremely strategic athletes is no greater than the proportion who

subtly over- or under-report symptoms.

Bounds on the VoIPB over the POMDP are shown in Figure 7.8. Incorporating patient

behavior only fails to be beneficial when the proportion of honest patients in the population

is high and there are no under-reporting athletes (e.g., β0 = 0.75, β1 = 0 for θ = 0).

However, this setting is unrealistic given that an estimated 50%-60% of athletes under-report

symptoms (Conway et al., 2018; Meier et al., 2015). To this end, both VLB(·,POMDP)
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and VUB(·,POMDP) are increasing as the proportion of under-reporting athletes increases,

implying that incorporating patient behavior is more beneficial with athletes who under-

report (vs. over-report) symptoms. These trends hold over policies p′ ∈ {Myopic,CurrPrac}.
Furthermore, VLB(β0, β1, θ, p

′) > 0 for all β0, β1 implying the benefit in incorporating patient-

behavior and tailoring RTP policies over current practice.

Figure 7.8: Lower (VLB) and upper (VUB) bounds on the Value of Incorporating Patient
Behavior (VoIPB) over the POMDP.

To contextualize the VoIPB for clinicians, we quantify the Probability of Premature RTP

(PoPRTP) and the Total Health-adjusted Athletic Exposures (THAEs). PoPRTP is defined

as P(at = 1, ht > 0). Minimizing PoPRTP is critical given the association between premature

RTP and devastating consequences (e.g., second impact syndrome or late-life neurocognitive

impairment (Cantu and Gean, 2010; Guskiewicz et al., 2005)). THAEs are calculated by

E[
∑120

t=1 r
Ω
θ (ωt)1{ωt 6= 3}] for athletes who RTP and 0 for athletes who do not. They measure
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Table 7.2: BLM-POMDP reduction in Probability of Premature RTP (PoPRTP) and
gain in Total Health-adjusted Athletic Exposures (THAEs) over benchmark policies

θ = 0 θ = 1+
PoPRTP THAEs PoPRTP THAEs

p’ Reduction Relative Risk Gain % Improvement Reduction Relative Risk Gain % Improvement
POMDP 0.21-0.27 3.26-3.94 1.12-3.49 2.45%-7.67% 0.18-0.22 7.4-9.31 0.85-2.91 2.18%-7.52%
Myopic 0.39-0.47 5.2-6.14 1.92-3.91 4.3%-8.75% 0.51-0.58 18.9-24.56 3.01-4.66 8.22%-12.72%

CurrPrac 0.25-0.29 3.66-4.2 1.31-2.92 2.92%-6.5% 0.32-0.35 12.02-15.4 1.5-2.89 3.92%-7.59%

Ranges are computed over distributions ϕLB(β0, β1, θ, p
′) and ϕUB(β0, β1, θ, p

′) with β0 ∈ [0.3, 0.5]
and β1 ∈ [0.5, 0.6]. Relative Risk = PoPRTPp′/PoPRTPBLM-POMDP; % Improvement =
100×(THAEsBLM-POMDP/THAEsp′ - 1).

an athlete’s health-weighted participation in sport after RTP, providing a surrogate measure

for safe RTP.

For each p′ ∈ {POMDP, Myopic, CurrPrac}, we evaluated PoPRTP and THAEs un-

der distributions ϕLB(β0, β1, θ, p
′) = arg minϕ∈Φ′(β0,β1) V(ϕ, θ, p′) and ϕUB(β0, β1, θ, p

′) =

arg maxϕ∈Φ′(β0,β1) V(ϕ, θ, p′). We assume β0 ∈ [0.3, 0.5] and β1 ∈ [0.5, 0.6], reflecting the

estimated 50%-60% of athletes who under-report symptoms (Conway et al., 2018; Meier

et al., 2015). This analysis is summarized in Table 7.2. Overall, incorporating patient be-

havior can drastically reduce the PoPRTP and increase the THAEs experienced by athletes

after RTP. For example, compared to CurrPrac, incorporating patient behavior reduces the

PoPRTP by at least 25% and increases post-RTP participation by up to 4.66 THAEs. A

reduction in PoPRTP of this scale has tremendous clinical implications, suggesting drastic re-

ductions in the risk of catastrophic short-term injury (e.g., repeat concussion) and long-term

neurodegenerative disease.

7.7 Conclusion, Limitations, and Future Directions

The potential for strategically reported PROs in patient-centered care can make health

assessments and treatment decisions challenging. In this chapter, we formulated the BLM-

POMDP — a novel multi-agent, multi-period, stochastic dynamic programming framework

which incorporates uncertainty around the patient’s health and PRO-reporting behavior.

Despite its formidable state space representation, we leveraged structural characteristics to
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develop an approximation to the optimal policy which achieved a relatively small optimal-

ity gap. We then applied the BLM-POMDP to optimize the timing of RTP from sports-

related concussion by incorporating CARE Consortium data and published literature values

to parameterize and validate our model. The BLM-POMDP outperformed several bench-

mark RTP policies in terms of increased health utilities, decreased PoPRTP, and increased

THAEs — especially in the presence of symptom under-reporting. In particular, the BLM-

POMDP’s improvement over current practice suggests a drastic reduction in short-term risks

of catastrophic injury and long-term risks such as neurodegenerative disease.

Our analysis on RTP from concussion reveals valuable insights for clinicians. First, ath-

letes with a greater risk of injury after RTP require a more conservative approach compared

to those at lower risk (e.g., athletes with 1+ vs. 0 previous concussions or football vs. track).

That is, the degree of certainty required about the athlete’s recovery should increase with

the athlete’s post-RTP risks. Secondly, there is a greater potential benefit in incorporating

symptom-reporting behavior for athletes who are under-reporting symptoms. Specifically,

the costs associated with premature RTP are far greater than those associated with delayed

RTP. Given the high rate of symptom under-reporting described in the literature, clinicians

should cautiously interpret symptoms that signal full recovery early in the RTP decision pro-

cess, although efforts should be made to learn each athlete’s symptom-reporting behavior

over time and adjust their interpretation of reported symptoms accordingly. Beyond concus-

sion, our main takeaway is that incorporating patient behavior can be at least as important

as optimizing the treatment decision policy. Our analysis showed that gap in performance

between the VoIPB is largely owed to learning and incorporating patient behavior in the

interpretation of PROs, rather than adjusting the treatment policy. Hence, clinicians must

aim to understand the drivers of strategic behavior and how this behavior manifests in PROs.

This work can be extended in several ways. First, future research can extend the BLM-

POMDP to consider larger action spaces which may be more appropriate for other medi-

cal decision-making contexts such as hypertension treatment planning (Schell et al., 2019;

Zargoush et al., 2018). Second, future research can consider alternative models of patient be-

havior, e.g., patients who are not myopic. Finally, the BLM-POMDP can be applied readily

to a broad class of stopping time problems. For example, within medical decision-making, the

prescription of opioids among potentially malingering patients fits the BLM-POMDP frame-

work. Beyond healthcare, the BLM-POMDP can be extended to applications in finance (e.g.,
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sequential fraud detection), military (e.g., optimal search with adversarially placed clues),

and energy (e.g., sequential changepoint detection with adversarially determined signals).

As medicine continues its shift towards patient-centered care, the importance of incorpo-

rating PROs and understanding patient behavior in medical decision-making will continue

rise. Our research provides a novel modeling framework and detailed numerical analysis

which illustrate the importance of adaptively learning and accounting for a patient’s PRO-

reporting behavior throughout a long treatment planning process. By understanding pa-

tients’ objectives and expectations, doctors can better account for individual differences in

patient behavior and tailor their treatment decisions accordingly, ultimately improving each

patient’s health outcomes.
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7.A Modeling RTP From Sports-Related Concussion

In this section, we detail the application of the BLM-POMDP to determine the optimal

timing of RTP for athletes diagnosed with sports-related concussion. We begin by describing

our HMM model for concussion recovery dynamics before RTP in Section 7.A.1 and after

RTP in Section 7.A.2. Then, we derive the doctor’s and patient’s rewards in Section 7.A.3.

7.A.1 Concussion Recovery Dynamics

We illustrate our model of concussion recovery dynamics in Figure 7.A.1. During the RTP

process, the athlete’s state space is defined as H×B×Θ, where H is the set of unobservable

pre-RTP core health states, B is the set of athlete behavior types, and Θ is the set of

demographic information. We describe H and Θ in this section, while B is described in

Section 7.A.3.

Prior to RTP, the patient’s unobservable health states are given by H = {0, 1, 2}, where

h = 0 describes the state where the patient has recovered from concussion, h = 1 de-

scribes the state where the patient’s concussion is asymptomatic (i.e., the athlete is still con-

cussed but shows minimal symptom presentation, neurocognitive deficits, or postural control

deficits), and h = 2 describes the state where the patient’s concussion is symptomatic (i.e.,

the concussion presents with a high symptom load and high degree of neurocognitive and

postural control deficits).

In general, the set of demographic information Θ can include information such as age,

sex, number of previous concussions, and sport. These demographic states modify state

transition probabilities, observation probabilities, and rewards. In our analysis of Section

7.6, we restrict our attention to male football players with 0 or 1+ previous concussions.

That is, we take Θ = {0, 1+}, where θ ∈ Θ describes the athlete’s number of previous

concussions, since concussion history is among the most widely studied factors related to

injury presentation and recovery dynamics for concussion (Harada et al., 2019; Tsushima

et al., 2019). We remark that the model formulation which follows can be applied readily to

a broader set of demographic features such as those we have mentioned previously.

We assume that the injury recovers progressively according to a Bakis model. That is, the
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Figure 7.A.1: Illustration of Pre-RTP States, Post-RTP States, and State Transitions.
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state transition probabilities between h ∈ H take the form

Pθ =

 1 0 0

ε1(θ) 1− ε1(θ) 0

0 ε2(θ) 1− ε2(θ)

 . (7.34)

Imposing this structure on Pθ implies that the athlete’s cannot directly recover from con-

cussion if it is currently in the symptomatic stage. Furthermore, the athlete’s concussion

cannot worsen. Instead, it can either improve towards recovery or remain the same.

We model the set of objective observations as O = {0, 1, 2, 3, 4}, where an observation of

o = 0, 1, 2, 3, and 4 corresponds to a total SAC score of 30+, 29, 28, 27, and 0-26, respectively.

Lower SAC total scores are correlated with the presence of concussion. Furthermore, these

categories represent quintiles of the distribution of total SAC scores in the CARE Consortium

Data used to parameterize our models. The set of subjective observations is given by S =

{0, 1, 2, 3, 4, 5}, where an observation of s = 0, 1, 2, 3, and 4 corresponds to a total symptom

severity score of 0, 1, 2-4, 5-13, 14-32, and 33+, respectively. Higher symptom severity scores

are correlated with the presence of concussion. Since a total symptom severity score 0

represents over 40% of all total symptom severity scores, the categories 1− 5 represent the

quintiles of all total symptom severity scores in the CARE Consortium Data not including

0.

7.A.2 Post-RTP Markov Process

Once the doctor permits the athlete to RTP, the athlete enters a post-RTP Markov process

in which the doctor can no longer perform actions. We illustrate the post-RTP states and

their transitions in Figure 7.A.1. The set of post-RTP states is given by Ω = {0, 1, 2, 3}
where ω = 0, 1, 2 is analogous to the pre-RTP health states h = 0, 1, 2, respectively, and

ω = 3 corresponds to the state in which the athlete has suffered a time-loss injury. We

assume that the states ω = 3 results in the athlete being removed from play and is modeled

as an absorbing state. For demographic state θ, the state transition probabilities between
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ω ∈ Ω are given by

PΩ
θ =


1− δ0(θ) 0 0 δ0(θ)

ε1(θ) 1− ε1(θ)− δ1(θ) 0 δ1(θ)

0 ε2(θ) 1− ε2(θ)− δ2(θ) δ2(θ)

0 0 0 1

 . (7.35)

7.A.3 Rewards

Since health-related quality of life (HRQoL) have been suggested as important primary

outcomes for managing elite athletes with sports-related injuries (Parsons and Snyder, 2011),

we model the doctor’s and athlete’s reward functions using health utilities derived from

physical and mental HRQoL measures. Health utilities take on values in [0, 1], where a value

of 0 represents death and a value of 1 represents perfect health.

Doctor’s Reward Function

The doctor’s reward function incorporates physical and mental HRQoL for the patient at

each health state along with potential gains and losses in HRQoL from increased exercise and

potential injury risks associated with RTP. Specifically, we set the doctor’s reward function

as

rdθ(h, a) =

ζ
(

PCS(h, θ),MCS(h, θ)
)

a = 0

Wθ(h) a = 1
, (7.36)

where ζ(·) is a function which maps physical and mental HRQoL scores to health utilities,

PCS(h, θ) and MCS(h, θ) are physical and mental HRQoL composite scores, respectively,

when the athlete’s health state is h and demographic group is θ, and Wθ(h) is the athlete’s

expected T -day total discounted reward when they RTP in health state h. In our numerical

analysis we take T = 120 which is consistent with other studies on injury after RTP from

concussion (Brooks et al., 2016; Cross et al., 2016; Herman et al., 2017)

The lump sump reward rd(h, 1) = Wθ(h) is derived from a Markov reward process which

combines the post-RTP Markov process from Section 7.A.2 with health utilities associated

with all post-RTP states ω ∈ Ω. In this Markov reward process, the reward for being in
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state ω is given by

rΩ
θ (ω) =


ζ
(

PCS(ω, θ) + PCS+(ω, θ)− PCS−(ω, θ),

MCS(ω, θ) + MCS+(ω, θ)−MCS−(ω, θ)
) ω = 0, 1, 2

ζ
(

PCS(3, θ),MCS(3, θ)
)

ω = 3

, (7.37)

where PCS+(h, θ) and MCS+(h, θ) (resp., PCS−(h, θ) and MCS−(h, θ)) are the post-RTP

boost (resp., decline) in physical and mental HRQoL composite scores for an athlete in

demographic group θ while in health state h due to increased exercise and activity levels.

The post-RTP value function is given by

W t
θ(ω) = rΩ

θ (ω) + ρ
∑
ω′∈Ω

PΩ
θ (ω′|ω)W t+1

θ (ω′) for t = 1, ..., T − 1

W T
θ (ω) = rΩ

θ (ω).

(7.38)

We set rd(h, 1) = Wθ(h) = W 0
θ (h) for all h ∈ H.

Athlete’s Reward Function and Symptom-Reporting Problem

We model the athlete’s reward function similarly to the doctor’s in the sense that it also

incorporates physical and mental HRQoL measures. The main difference in our construction

of rpθ is that the athlete’s gain (or loss) in physical and mental HRQoL post-RTP differs from

the doctor’s. Specifically, an athlete with θ previous concussions and behavior type b ∈ B
has the reward function

rpθ(h, a, b) =


rd(h, 0) a = 0

ζ
(

PCS(ω, θ) + (1 + b)PCS+(ω, θ)− PCS−(ω, θ),

MCS(ω, θ) + (1 + b)MCS+(ω, θ)−MCS−(ω, θ)
) a = 1

, (7.39)

for all h ∈ H, a ∈ A, and b ∈ B. Furthermore, the athlete is modeled to assume that the

naive doctor’s myopic reward function is given by rdθ,M(h, 0) = rdθ(h, 0) and rdθ,M(h, 1) = rΩ
θ (h)

for all h ∈ H. With this parameterization, the athlete will report symptoms honestly if b = 0,

under-report symptoms if b > 0, and over-report symptoms if b < 0.
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7.B Derivation of Model Inputs

In this section, we detail the derivation of model inputs for our case study in Section 7.6.2.

7.B.1 Parameterizing the HMM

Care Consortium Data

We parameterized the HMM for concussion recovery dynamics (see Section 7.A.1) using

multi-center longitudinal data from the National Collegiate Athletic Association and Depart-

ment of Defense (NCAA-DoD) Concussion Assessment, Research, and Education (CARE)

Consortium (Broglio et al., 2017). This dataset combines concussion assessment data across

29 NCAA universities and military service academies throughout the United States.

All study participants are evaluated at the start of each athletic season using several assess-

ments, including the Standard Assessment for Concussion (SAC) and the Sport Concussion

Assessment Tool (SCAT) symptom survey. The SAC is a neuropsychological assessment

which includes measures of orientation, immediate memory, concentration, and delayed re-

call. The scores from each of these measures can be summed to obtain a SAC total score,

which ranges from 0-30. Lower SAC total scores indicate worse performance. The SCAT

symptom survey is a checklist containing of 22 symptoms, each of which are graded from 0-6

with higher scores indicating greater symptom severity. The severity scores can be summed

to obtain a SCAT total symptom severity score.

Throughout the course of the athletic season, participants who are diagnosed with con-

cussion are reassessed using the SAC and the SCAT symptom survey at several timepoints:

<6 hours post-injury, 24-48 hours post-injury, at the time that the patient becomes asymp-

tomatic, at the time that the patient is cleared to RTP, and 7 days post-RTP.

Baum-Welch Algorithm

We separated male athletes in the CARE Consortium data by concussion history (i.e., 0

and 1+) to parameterize an HMM for each θ ∈ Θ = {0, 1+}. Since post-injury assessments

were not available for each day after the time of injury, we applied linear interpolation to

estimate SAC total scores and total symptom severity scores between observed post-injury

assessments. We then divided each subset of data into a training set (80%) for parame-
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terizing the HMM and a testing set (20%) for validating the HMM. For each training set,

we applied an expectation-maximization algorithm known as the Baum-Welch algorithm

(Rabiner, 1989) to determine the parameters Pθ, Q
O
θ , and QSθ for each θ ∈ Θ. Since the

Baum-Welch algorithm produces varying parameters depending on its initialization, we per-

formed 100 initializations with ε1(θ) and ε2(θ) generated from a uniform random sampling

and initial values of QOθ and QSθ estimated using the testing data for every θ ∈ Θ. We

retained the 10 sets of HMM parameters which produced the greatest log-likelihood values

based on the training set. At the recommendation of our clinical collaborators, we chose the

set of parameters (Pθ, Q
O
θ , Q

S
θ ) corresponding to the minimum value of ε1(θ) among these 10

candidate parameter sets since it would result in more conservative (i.e., slower) concussion

recovery dynamics. The resulting HMM parameters for each θ ∈ Θ are as follows:

P0 =

 1 0 0

0.102 0.898 0

0 0.532 0.468

 QO0 =

0.220 0.229 0.183 0.156 0.212

0.178 0.201 0.260 0.166 0.194

0.060 0.144 0.211 0.168 0.416



QS0 =

0.892 0.047 0.0502 0.011 0 0

0.401 0.222 0.261 0.100 0.015 0.001

0.010 0.006 0.064 0.306 0.366 0.247



P1+ =

 1 0 0

0.102 0.898 0

0 0.484 0.516

 QO1+ =

0.240 0.222 0.217 0.145 0.176

0.231 0.289 0.193 0.160 0.127

0.115 0.166 0.197 0.174 0.348



QS1+ =

0.868 0.053 0.051 0.026 0.002 0

0.372 0.252 0.247 0.111 0.017 0.001

0.011 0.014 0.092 0.347 0.367 0.170

 .
Validation

For each θ ∈ Θ, we validated the chosen HMM (Pθ, Q
O
θ , Q

S
θ ) by applying the HMM to the

held-out testing data and comparing the distribution of actual SAC total scores and total

symptom severity scores to the expected predicted distribution of SAC total scores and total

symptom severity scores. Then, we computed the Kullback-Leibler (KL) divergence between
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these two distributions, where KL divergence is computed according to

DKL(P ||Q) =
∑
x∈X

P (x) log2

(
P (x)

Q(x)

)
,

for a discrete reference distribution P with finite support X and discrete comparison distri-

bution Q. KL divergence is commonly used for measuring similarity between distributions,

including in validation of HMM models (Celeux and Durand, 2008; Wang and Pham, 2011).

The value of DKL(P ||Q) is bounded below by 0 and is increasing in value as P and Q become

more dissimilar. In our validation procedure, we set P as the empirical distribution of SAC

total scores or SCAT total symptom severity scores from the testing data. We set Q as the

expected predicted observation probabilities when the HMM was applied to testing data.

The results of this validation are presented in Figure 7.B.1. Given the small DKL values,

we conclude that our HMM models are reasonable approximations for modeling concussion

recovery dynamics.

7.B.2 Post-RTP Injury Rates

For each h ∈ H and θ ∈ Θ, we estimated values of δh(θ) by applying sex and concussion

history-related adjustments to collegiate football injury rates reported in sports medicine

literature. Specifically, we estimated

δh(θ) =
%h,θinj

1 + %h,θinj

and %h,θinj =
ηsport

inj /1000

1− ηsport
inj /1000

× κsex × κhistory × κh,

where

� %h,θinj are the odds associated with time-loss injuries for athletes with state (h, θ),

� ηsport
inj is the sport-specific time-loss injury rate per 1000 athletic exposures,

� κsex is the sex-specific increased odds in injury rate due to RTP from concussion,

� κhistory is the sex-specific increased odds in injury rate due to number of previous

concussions, and
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(a) 0 previous concussions

(b) 1+ previous concussions

Figure 7.B.1: Distribution of SAC total scores and SCAT total symptom severity scores
for testing data and HMM predictions for all θ ∈ Θ. SAC = Standard Assessment of
Concussion; SCAT = Sport Concussion Assessment Tool; DKL = Kullback-Leibler
divergence
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� κh is the increased odds in injury rate due to athletic activity while in health state h.

We summarize the parameter base values and sources in Table 7.B.1. All values were taken

directly from the published literature values except for κh, which was estimated as the odds

increase in same-season concussion rates from 1999-2001 to 2014-2017, where we assume that

more athletes were permitted to RTP prematurely in 1999-2001 since their time to RTP was

much shorter than it is now (McCrea et al., 2020).

Table 7.B.1: Injury rate parameters and sources

Parameter Modifier Base value Source

ηsport
inj Men’s football 7.21 Kerr et al., 2018b

κsex Male 2.5 Herman et al., 2017

κhistory Male, 0 previous concussions 1

Male, 1+ previous concussions 1.3 Harada et al., 2019

κh h = 0 1

h = 1 1.74 McCrea et al., 2020

h = 2 1.74 McCrea et al., 2020

7.B.3 Rewards

Concussion history-specific values of PCS(h, θ) and MCS(h, θ) for male athletes were gen-

erously provided by Dr. Michelle Weber upon request. These PCS-12 and MCS-12 values

are derived from the data in Weber et al., 2019. From McAllister et al., 2001, we set

PCS+(h, θ) = 1.9 and MCS+(h, θ) = 2.7 for all h ∈ H and θ ∈ Θ. Additionally, we set

PCS−(h, θ) =


0 h = 0

4.2 h = 1

8.3 h = 2

and MCS−(h, θ) =

0 h = 0, 1

3.3 h = 2
for all θ ∈ Θ.

Finally, we set PCS(3, θ) = 49 and MCS(3, θ) = 51 for all θ ∈ Θ (McAllister et al., 2001). A

previously published and validated regression equation was used to transform these SF-12

values into health utility values (Lawrence and Fleishman, 2004). The health utility values

for the doctor’s and athlete’s reward functions are presented in Table 7.B.2 and Table 7.B.3,

respectively. We parameterized the naive doctor’s reward function as rdM,θ(h, a) = rpθ(h, a, 0)

for all h ∈ H and a ∈ A.
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Table 7.B.2: Health utility values for the doctor’s reward function for each θ ∈ Θ

θ h a = 0 a = 1
0 0 0.902 18.343
0 1 0.913 17.922
0 2 0.868 17.622

1+ 0 0.920 18.444
1+ 1 0.889 17.769
1+ 2 0.841 17.397

Table 7.B.3: Health utility values for the patient’s reward function for each θ ∈ Θ and
b ∈ B.
θ h a = 0 a = 1

b = −1.0 b = −0.75 b = −0.5 b = −0.25 b = 0.0 b = 0.25 b = 0.5 b = 0.75 b = 1.0
0 0 0.902 0.902 0.915 0.928 0.942 0.955 0.968 0.981 0.995 1.008
0 1 0.913 0.854 0.867 0.880 0.894 0.907 0.920 0.933 0.947 0.960
0 2 0.868 0.719 0.732 0.746 0.759 0.772 0.785 0.799 0.812 0.825

1+ 0 0.920 0.920 0.933 0.946 0.960 0.973 0.986 0.999 1.012 1.026
1+ 1 0.889 0.830 0.843 0.856 0.870 0.883 0.896 0.909 0.922 0.936
1+ 2 0.841 0.692 0.705 0.718 0.731 0.745 0.758 0.771 0.784 0.798

7.C Importance of Initial Beliefs for BLM-POMDP

Here, we estimate the performance of the BLM-POMDP as a function of the initial behavior

belief φ0. Specifically, we evaluated the BLM-POMDP under different initial behavior belief

states given by

φ1
0 =

[
0.025 0.025 0.05 0.15 0.5 0.15 0.05 0.025 0.025

]>
φ2

0 =
[
0.025 0.02 0.025 0.05 0.05 0.075 0.10 0.15 0.5

]>
φ3

0 =
[
0.5 0.15 0.1 0.075 0.05 0.05 0.025 0.025 0.025

]>
.

The initial values of φ1
0, φ2

0, and φ3
0 correspond to initial assumptions of honest, under-

reporting, and over-reporting behavior, respectively. These results are presented in Figure

7.C.1. We expected that the BLM-POMDP would achieve greater performance when the

initial belief φ0 is “closer” to the actual patient behavior. However, in almost every case, the

differences in performance are negligibly small. These results may be attributed to the fact
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Figure 7.C.1: Total discounted health utilities for BLM-POMDP with different initial
behavior beliefs. φ1

0, φ
2
0, and φ3

0 correspond to initial beliefs of honest, under-reporting,
and over-reporting, respectively. Markers indicate mean values and shaded areas
indicate 95% confidence interval of the mean.

that (1) the BLM-POMDP has enough time to learn the patient’s behavior and (2) when

athletes under-report or over-report symptoms, they rule out the opposite behavior type.

We conclude that while it is generally important to “match up” initial behavior beliefs, it is

more important to dynamically update one’s belief about patient behavior.
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Chapter 8

Conclusion and Future Work

Motivated by high-impact problems in the management of sports-related concussion, this

thesis combines data-driven analytics and operations research to develop new methodological

frameworks in predictive and prescriptive analytics. The analyses carried out within this

dissertation reveal both practical insights on the nature of concussion management and

technical insights regarding the nature of our modeling approaches.

This dissertation is divided into three parts, each of which coincides with a key aspect of

the concussion management protocol. Chapters 2 and 3 comprise the first part of this disser-

tation, in which we focus on concussion assessment. We developed predictive models which

quantify the value of multi-dimensional approaches to concussion assessment, estimate the

marginal utility in incorporating athlete-specific baseline information, and identify the most

important components of the SCAT — a concussion assessment battery which is commonly

used throughout the world. The second part of this dissertation, containing Chapters 4-6, fo-

cuses on concussion diagnosis. In these chapters, we formulated the TTP, a novel data-driven

stochastic optimization approach to determine diagnostic decision thresholds, and analyze

the value of this approach for acute concussion diagnosis by creating a certainty-based con-

cussion diagnosis framework (i.e., Unlikely, Possible, Probable, and Definite concussion). Our

analysis provides an important characterization of athletes for whom concussion diagnosis

decisions are easily made (i.e., Unlikely or Definite concussion) and those whose diagnoses

are not straightforward (i.e., Possible or Probable concussion). The final part of this disserta-

tion, Chapter 7, addresses the optimal timing of RTP from sports-related concussion. In this

chapter, we formulated and characterized the BLM-POMDP — multi-agent, multi-period,
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stochastic dynamic programming framework which incorporates the patient’s and doctor’s

perspectives while accounting for uncertainty in the patient’s health and symptom-reporting

behavior. Our application of the BLM-POMDP to RTP from concussion quantifies the ben-

efit (i.e., increased health-related quality of life, decreased likelihood of premature RTP, and

increased athletic exposures after RTP) in accounting for symptom-reporting behavior in

RTP decisions, while also demonstrating the utility of tailored RTP policies over existing

RTP approaches.

The research in this dissertation provides a starting point for data-driven analytics in

concussion management. In the following sections, we briefly discuss how future work can

extend our analysis and modeling frameworks within concussion and beyond concussion.

8.1 An Integrated Approach to Personalized Concussion

Management

In this dissertation, we separately studied concussion diagnosis decisions and RTP decisions.

Yet, these components of the concussion management protocol are intimately linked; the

“costs” associated with misdiagnoses may be determined by considering outcomes owing to

the RTP process such as health-related quality of life, likelihood of premature RTP, or time

to RTP. Likewise, the certainty revolving around an athlete’s diagnosis might dictate the

approach taken in their graded RTP protocol — ultimately affecting their recovery trajectory

and RTP criteria. The dependence between all concussion management decisions from the

point of diagnosis until the RTP decision suggests a stochastic programming formulation

given by

max
u,l

∑
h∈H

(
E[V RTP

θ |h0 = h]P(h0 = h|f(θ) ≤ l) + E[V 1
θ (f(θ))|h0 = h]P(h0 = h|l < f(θ) < u)

+ E[V 2
θ (f(θ))|h0 = h]P(h0 = h|f(θ) ≥ u)

)
s.t. Eθ[fp(u, f(θ))] ≤ γfp

Eθ[fn(l, f(θ))] ≤ γfn

0 ≤ l ≤ u ≤ 1,
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where f : Θ → [0, 1] maps athlete characteristics θ ∈ Θ to a risk score, V RTP
θ describes the

expected health outcomes (e.g., health utilities) for an athlete who RTPs, V 1
θ (f(θ)) describes

the expected health outcomes for an athlete classified as Possible/Probable concussion and

who enters the injury management protocol with an initial risk score of f(θ), and V 2
θ (f(θ))

describes the health outcomes for an athlete classified as Definite concussion and who enters

the concussion management protocol with an initial risk score of f(θ). Here, the functions

V RTP
θ , V 1

θ (f(θ)), and V 2
θ (f(θ)) may be derived from MRPs and POMDPs, making the solu-

tion of this problem a challenging task. Given the intractability of this problem, determining

the optimal decision thresholds (u, l) as well as the optimal post-injury protocols associated

with V 1
θ and V 2

θ can require advances in multi-stage stochastic programming, stochastic

control, and simulation optimization. Incorporating symptom-reporting behavior and/or a

data-driven robust optimization formulation to this problem (e.g., see Section 4.4.2) would

also provide interesting and non-trivial extensions. Key questions which can be addressed

by this research include the following.

1. How do diagnosis decisions impact downstream post-injury management decisions and

vice versa?

2. How does the quality of the risk prediction model f affect decisions throughout the

protocol?

3. How do athlete-specific factors such as age, sex, sport, concussion history, baseline

testing performance, symptom-reporting behavior, etc. play a role in RTP and post-

injury management decisions?

4. Which athletes most benefit from a personalized approach?

5. How does this integrated approach compare to existing practice? What are the advan-

tages and disadvantages?

6. Are there simple heuristics which perform relatively well (compared to the optimal

integrated approach) and are much more interpretable?
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8.2 Data-driven Decision-making in the Management of

Military Concussions

Military settings are often regarded as another area in which improving concussion manage-

ment can have substantial impact on the health outcomes of personnel (O’Connor, 2019).

Although the management of military concussion can build on many findings related to

sports-related concussions (Lew et al., 2007), there are challenges specific to military concus-

sion which warrant special attention. One specific challenge is in the diagnosis of concussion

within military settings. In sports, concussion diagnosis can be facilitated by a stoppage

of play after a potential concussive event. However, among military personnel in combat

environments, such stoppages are not possible given the long, continuous nature of combat

missions (Chapman and Diaz-Arrastia, 2014). While surveillance technologies can help to

identify potential concussive events (e.g., blast-related trauma), there is a heavy reliance on

self-reporting to identify possible concussion. As with sports-related concussion, however,

under-reporting concussion symptoms is pervasive and the reasons owing to this behavior

are complex and heterogeneous (Rawlins et al., 2019). It is also well-known that the presence

of comorbidities (e.g., physical injuries and emotional stress) make it difficult to determine

whether concussion-like symptoms are caused by a concussion or a different cause altogether

(Rigg and Mooney, 2011). For these reasons, future research can focus on developing models

which address the following questions.

1. What person-specific risk factors are associated with concussion? How should these

risk factors dictate concussion management decisions?

2. How can post-deployment screening be designed to facilitate the identification of con-

cussion and incentivize truthful symptom under-reporting?

3. How can surveillance technologies help to identify which military personnel have likely

sustained a concussion during a combat mission?

4. How can comorbid conditions be ruled out or utilized to help identify the presence of

concussion?

Future research can also consider concussion management decisions beyond diagnosis. For

example, which personnel should be permitted to return to combat in consideration of risks
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associated with doing so? Additionally, how can veterans with potentially undiagnosed

traumatic brain injury be identified and provided the care they need? While answering

these research questions can result in a profound impact for those impacted by military

concussions, this research can also advance the application and theory of predictive modeling

and data-driven stochastic optimization.

8.3 Design and Analysis of Shared Decision-Making

Frameworks

As mentioned in Chapter 7, healthcare has been transitioning towards patient-centered care.

Shared decision-making comprises an important aspect of patient-centered care. Specifically,

shared decision-making is defined as “an approach where clinicians and patients share the

best available evidence when faced with the task of making decisions, and where patients

are supported to consider options, to achieve informed preferences” (Elwyn et al., 2012). In

contrast to the decision process modeled in Chapter 7, shared decision-making involves pa-

tients and doctors making decisions jointly based on the patient’s preferences. Key elements

of this decision-making framework include the presentation of treatment alternatives and

deliberation over preferences and options, whereby all information exchanges between the

doctor and patient hinge on rapport and trust between the two. Hence, important research

questions on the design and analysis of shared decision-making models include the following.

1. What role does information transmission and transparency play in shared decision-

making framework? For example, how does the order of information revelation affect

the patient’s choices and decisions?

2. How should shared decisions in previous meetings play a role in future shared decisions

when treatment planning occurs over several periods?

3. How should evolving data regarding treatment risk, patient-specific disease risk, patient-

specific disease evolution, predicted future health outcomes, etc. be incorporated in

shared decision-making processes?

4. How do the doctor’s objectives and patient’s objectives interact throughout this deci-

sion process?
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Given the need to model both the patient and doctor, sequential game theoretic frameworks

may be appropriate for the design and analysis of shared decision-making. For example,

cheap talk frameworks can be useful given the costless information exchanges between the

two parties (Crawford and Sobel, 1982). However, cheap talk models in sequential decision-

making settings are notoriously difficult to solve in the presence of information asymmetry

and partially observable information. Furthermore, refining and selecting cheap talk equi-

libriums can be burdensome (Chen, Kartik, and Sobel, 2008). Hence, this research can

potentially advance the theory of sequential cheap talk and multi-agent stochastic control

while also making a valuable contribution to data-driven decision-making in the context of

shared decision-making.

8.4 Conclusion

This dissertation develops new methodologies in predictive and prescriptive analytics to

determine

1. how large clinical datasets can inform our understanding of personalized disease pro-

gression/risk over time, and

2. how this understanding of disease progression/risk can be translated into improved

medical decision-making which account for multiple stakeholders’ perspectives.

Our findings highlight important insights for the assessment of acute concussion, as well as

making data-driven diagnosis and RTP decisions. This research also advances the theory of

data-driven analytics and operations research by formulating and characterizing the TTP and

BLM-POMDP frameworks. As the Big Data revolution continues to grow, there will continue

to be new research questions at the intersection of data analytics, operations research, and

healthcare — including the three extensions proposed in this section. While much work

remains to be done, it is our hope that this dissertation strengthens the foundation of research

in these fields and that future research strives to build on these methods to address new

healthcare challenges in the years to come.
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