Understanding and Characterizing Changes in Bugs
Priority: The Practitioners’ Perceptive

Rafi Almhana
Dept. of Computer Science
University of Michigan
ralmhana@umich.edu

Thiago Ferreira
Dept. of Computer Science
University of Michigan
thiagod @umich.edu

Abstract—Assigning appropriate priority to bugs is critical for
timely addressing important software maintenance issues. An
underlying aspect is the effectiveness of assigning priorities: if
the priorities of a fair number of bugs are changed, it indicates
delays in fixing critical bugs. There has been little prior work
on understanding the dynamics of changing bug priorities. In
this paper, we performed an empirical study to observe and
understand the changes in bugs’ priority to build a 3-W model
on Why and When bug priorities change, and Who performs the
change. We conducted interviews and a survey with practitioners
as well as performed a quantitative analysis containing 225,000
bug reports, developers’ comments, and source code changes
from 24 open-source systems. The interviews with 11 developers
from industry aim to establish an initial model to characterize
the changes in bugs priority. The survey with an additional 38
developers was to understand their experience in why and when
bug priorities change, and who performs the change. Then, we
conducted a manual inspection of the collected data on open-
source projects to compare our final bugs priority change model
with changes identified in practice. Our quantitative results
confirmed the outcomes of our interviews and surveys. For
instance, we observed frequent changes in bug priorities and
their impact on delaying critical bug fixes especially just before
shipping a new release. Our findings can enable 1) researchers
to build automated tools for checking and validating requests
for bug priority changes, 2) practitioners to use a standard
format in documenting and approving bug priority changes, and
3) educators to teach the better management of bug priorities.

Index Terms—Bug Report, Software Bugs, Bugs Priority,
Empirical Study

I. INTRODUCTION

A bug is a software defect that causes abnormal or erroneous
behavior according to functional or non-functional require-
ments (such as security and performance) [1]-[5]. Different
bugs impact the software system differently based on the
degree of severity associated with each bug [6]-[8]. Therefore,
it is critical to efficiently manage bugs priority [9]-[13]. In
this context, the effectiveness of assigning priorities becomes
important—if priorities of a fair number of bugs are changed,
it indicates delays in fixing critical bugs [9]-[13].

Several studies explored methods to predict bugs priority
in software systems [9], [10], [13]-[17]. To the best of our
knowledge, there has been little prior work on understand-
ing the dynamics of changing bug priorities. Understanding
changes in bugs priority can help us to quickly fix severe
bugs and avoid delays, identify areas that need tool support

Tushar Sharma
Research Scientist
Siemens Corporate Technology
tusharsharma@ieee.org

Marouane Kessentini
Dept. Computer Science
University of Michigan
marouane @umich.edu

for automated validation of bug priority change requests, and
better documentation of these changes. The goal of this paper
is to characterize the overall change process of bugs’ priority.

We advocate that a critical and fundamental step in provid-
ing efficient support for managers and developers to enable
them to validate bugs priority change is to understand the
bugs priority dynamics; it involves discover and characterize
Why and When bug priorities change, and Who performs the
change. Thus, the primary goal of this paper is to observe
and understand the changes in bugs priority to build a 3-
W (Why, When, and Who) model. In this pursuit, we used
two complementary methods in our study. As a first step,
we discovered insights about the rationale of bug priority
changes, their frequency, and when/why these changes were
observed by interviewing 11 software developers, managers,
and executives from industry partners as part of a funded
project. We established an initial model for characterizing
changes in bug priority as an outcome of this first step. In
a second step, we performed a survey with an additional 38
developers to enquire about their experiences with finding,
validating, and documenting the changes in bugs priority.
During these two steps, we answered the following three
research questions (RQ).

® RQ1 Why does priority of a bug change?
® RQ2 Who changes the priority of a bug?
O RQ3 When does the priority of a bug change?

We propose a 3-W bugs priority change model obtained
from the interviews and the survey. We have also conducted
a manual inspection of more than 225,000 bugs reports,
developers’ comments, and source code changes from 24
open-source systems to compare the final 3-W bugs priority
changes model with actual bugs priority changes extracted
from open-source projects to answer the research questions.

We have also compared the experience of developers in
finding, validating, and documenting bugs priority changes
with samples of actual bugs to reveal areas for improvement.
We found that developers indeed change the priority of bugs
multiple times. Table I shows an example of a bug report with
its log of activities that exhibit the number of times developers
change the bug priority both before and after the release. Note
that the priority field ranges between P1 (the highest) to P5
(the lowest).

Who When Before After Attributes Changed
Userl 2008-05-11 P3 P5 -

User2 2008-05-20 PS5 P3 Target Milestone
User3 2008-08-03 P3 P5 -

User2 2008-08-21 P5 P3 Status & Resolution
Userl 2009-05-18 P3 P5 Target Milestone
User2 2009-05-26 PS5 P3 Target Milestone

TABLE I

BUG REPORT# 221310 FROM BIRT PROJECT TO SHOW THE ACTIVITIES
THAT HAPPENED ON THE PRIORITY OF THIS BUG REPORT

Our 3-W model suggests the following rationale of changes
in bugs priority: 1) lack of time to complete the task, 2) the
category of the bug such as security-related bugs, functionality
related bugs, or a user interface related issues, 3) the type or
the domain of project such as desktop application or web-
based application, a plugin tool or standalone program, 3)
dependencies with other bugs, 4) lack of understanding or
misunderstanding the bug report, and 5) accidental changes by
mistake. Also, we found that some developers do not follow
“ethical” practices while changing bugs’ priority. For instance,
they may reduce bugs priority just to bypass quality gates and
to release code quickly.

Our findings can enable 1) researchers to automatically
validate bugs priority changes and understanding their ratio-
nale, 2) educators to teach and emphasize the management
of bugs and prioritize software maintenance activities, and 3)
practitioners to use a standard format for documenting and
discussing changes in bugs priority. Though we identified a set
of essential components of changes in bugs priority, adoption
of the components remains context-dependent in practice.
Using our model, software development teams can design
their organization-specific guidelines to include or exclude the
proposed components for validating changes in bugs priority.

The primary contributions of this paper are as follows:

o A detailed model to understand changes in bugs priority

based on practitioners’ perspective.

o A study of the experiences of software developers requir-

ing, finding, and documenting changes in bug reports.

o Investigation of areas for improvement in current prac-

tices of changing bugs report.

Replication Package. All material and data of the bugs
report used in our study as well as the developers’ anonymized
answers are available in our replication package [18].

The remainder of this paper is as follows: Section II
describes the design of our empirical study including the
research questions. The results are described in Section IIT and
Section IV discusses the implications of our study. Section VI
is dedicated to related work. Finally, concluding remarks and
future work are provided in Section VII.

II. STUDY DESIGN

Our study aims to understand the rationale of changes in
bugs priority and therefore will guide the automation of vali-
dating change requests by developers. As described in Figure
1, we first used unstructured interviews with 11 developers,
managers, and executives from industry partners, as part of a

funded project, to discover the rationale of changes in bugs
priority and thereby, design an initial model. These interviews
allowed for rich conversations and insights. These brainstorm-
ing sessions helped us to establish the initial thoughts in
characterizing the changes in bugs priority to discover the
reasons behind changes the priority, the time of changing
the priority, and the individuals who perform the changes.
Then, we extended the obtained initial documentation model
with a larger number of 38 practitioners using a survey. The
practitioners answered our questions about their experiences
in performing, finding, and documenting these bug priority
changes. Finally, we conducted a quantitative validation to
compare the outcomes of the interviews and survey with
actual changes in bugs priority extracted from 24 open-source
systems. The use of these mixed methods has been widely
employed by several other studies of software developers [19]-
[22].

1. Interviews & Discussions 4. Survey Distribution

Uy

e

gy PO

2. Compose RQs 3. Prepare Survey

&8]

5. Perform Quantitative Analysis

s « g\i%@” e @

Repository

Analysis

Fig. 1. Study design

A. Research Questions

We defined the following main three research questions.

® RQ1 Why does priority of a bug change?
This first research question aims to gather exhaustive
possible reasons behind changing the priority of
bugs. An understanding of the rationale will help a)
practitioners to better document priority changes of
bugs, b) researchers to build tools for automatically
checking the requests of changing bug’s priority.

® RQ2 Who changes the priority of a bug?
This research question aims to identify the main
stakeholders who change the priority of bugs and
their role in the team or in the project (e.g. tester,
manager, and the owner of a bug). The outcome of
this research question can help us to understand the
needs for changing the priority based on the role of
the people who make the change.

® RQ3 When does the priority of a bug change?
In general there are no restrictions on bug priority
changes. This research question aims to study the
possible correlations between the dates of priority
changes and bug’s creation, release date, or the date
of assigning a developer on the bug. The outcomes of
this research question may inform us about temporal

patterns to change bugs priority in suspicious time
such as a new release deadline.

To summarize the outcome of this contribution, we aim to
compare the outcomes of both the interviews and the survey
with actual changes in bugs priority extracted from open-
source systems. Observations from the comparison between
the practitioners’ needs and actual priority changes found
through a quantitative analysis could lead us to the areas of
improvement for researchers and practitioners to address them.

B. Phase 1: Interviews with developers to design an initial
model for bug priority changes

1) Interview setup: The goal of this first phase of our
research was to build a model to characterize the dynamics
related to bug’s priority, to understand why and when they
happen, and to identify the individuals’ role who make the
change or get impacted by the change.

Prior to starting the interview sessions, we performed an in-
depth analysis of previous studies that are related to the bug’s
priority changes or bug’s priority in general. We list them
in Table VI and discuss them in detail in the related work
section (Section VI). The aim of this in-depth analysis is to
understand the current state-of-the-art and to gather insights on
why priorities change, when do they change, and who makes
the change. The majority of the existing literature focuses on
bug’s priority prediction and, in some cases, recommending
developers to fix bug reports. To the best of our knowledge,
none of them analyzed the historical changes in priority levels
to build a model that can validate the accuracy of changes in
priority made by developers. Typically, textual and temporal
components of a bug report, the author’s information with
historical bug reports are the four most-used components or
metrics for predicting bug’s priority. We considered these
observations from the current literature about bugs priority
in our unstructured interviews with developers, managers, and
executives.

2) Participants Selection: We advertised our study in mail-
ing lists that covered developers from many industrial partners,
including those who collaborated with us in the past, to
validate our approach in characterizing the overall change
process of bugs priority. We interviewed 11 participants, after
eliminating three other practitioners because they were not
able to attend the whole interview session and provided very
limited and quick feedback in the discussion.

3) Interview with selected volunteers: We started the face-
to-face interviews by providing examples of several bug-
tracking systems such as Jira! and BugZilla>. We presented the
process of logging a bug report and setting the bug’s priority.
Then, we showed the mechanism of changing the priority in
those bug-tracking systems by using several examples. We also
demonstrated tracking a change or restricting certain users
from performing a change at a certain period of time. We
showed the interviewees some examples of bug reports in

Thttps://www.atlassian.com/software/jira
Zhttps://www.bugzilla.org

which the priority has changed along with related information
such as the time, who did the change, and relevant comments
about the priority changes. The exhibited examples set the
context and scope of our discussion with the participants.

Then, we asked them to tell us some real-world situations
when they needed to carefully check a change in bugs priority.
These steps helped stimulate the practitioners’ memories as
well. As a next step, we asked them to think about an exhaus-
tive set of reasons to change bugs priority after describing
their experiences in changing, finding, and documenting these
bugs priority so that it does not slow down addressing critical
bugs while respecting deadlines and dealing with available
resources. Based on these unstructured interviews, we built an
initial 3-W model for bugs priority changes. We validated the
initial model later with more participants via surveys and a
quantitative validation using data collected from open-source
systems.

C. Phase 2: Survey about the bug priority change model

After deriving a bug priority change model from the inter-
views, we designed a survey to understand their experiences
and opinions about changes in bug’s priority. The survey also
aimed to elicit the individual roles who are responsible for
changing the bug’s priority and when they make these changes
along with the reasons that lead to increasing or decreasing
the priority.

We distributed our 12-question survey to multiple software
engineering groups, software testing groups, and software
maintenance groups on several social media channels and a
list of private emails of researchers with a related background
in software engineering and testing. We used the snowball
sampling of the interviews for our survey by reaching out to
our industry partners and asking them to advertise it to their
contacts.

Table II shows a list of questions of our survey which was
carried out using Qualtrics®. The table shows the connections
between our research questions and the questions of the
survey. In the first section, we prepared three questions to
capture demographic information about the background of
the participants (number of years in the field, the level of
education, and their current role/occupation).

Our intention in the second section of the survey is to
gather information about the rationale of changing the priority
of the bug reports. So we asked our participants to choose
from a list of possible reasons collected from the interviews
from Phase 1 or propose a new reason to be added to our
findings. Furthermore, we asked the participants whether they
leave a comment about the rationale when they change the
bug’s priority and whether they change other attributes/fields
in bug reports while they are changing the priority. The goal
of this question is to identify a possible correlation between
bug’s priority and other attributes, as well as to discover other
reasons for changing the bug’s priority. Finally, we asked the
participants whether they consider the priority to rank their
list of tasks and organize their schedules around it.

3https://www.qualtrics.com

Survey question

Research Question / Intention

What is your current occupation?
How many years have you worked with software?

What is your highest level of education related to Computer Science?

Background Information

Why do you change bug’s priority?

Do you consider bug’s priority to manage your workload?

Do you leave a comment about the rationale when you change bug’s priority?
What are the attributes that you change when you change bug’s priority?

Why does the priority of the bug change and when?

When do you change, in general, the priority of bugs?

O 01 O\ W K| W N —| 3

priority?

Is there any approval process or poll/vote mechanism to check your change of bug’s

How does the priority of the bug change?

10 | Who does change bug’s priority and when?
11 | Do you change the priority of bugs?
12 | How many times do you change, in general, the priority per bug?

Who does change the priority of the bug?

TABLE I
THE TRACEABILITY BETWEEN OUR RESEARCH QUESTIONS AND SURVEY QUESTIONS

The third section of the survey focused on when bugs
priority are changed compared to other temporal events such
as the date of the bug’s creation, the date of bug’s resolution,
the date on which developers are assigned to the bug, and
the date of the deployment or releasing a new version of the
software. Also, we asked our participants if they follow an
approval or voting process or any other mechanisms before
changing the priority of a bug.

In the last section, we asked the participants whether they
change the priority themselves and how often they change
it. We were also interested to know the group of people
who changes the priority including their profiles, current
occupations, and their role in the project. Furthermore, we
asked the frequency of changing a bug’s priority in general.

We discarded three responses based on the short time
that they spent to take the survey (less than 5 minutes).
We considered 38 survey responses (after discarding three
responses); the participants took 8-12 minutes to finish the
survey.

D. Phase 3: Quantitative analysis

Table III shows the list of open-source systems that we
analyzed in this study. The table shows the number of bugs and
comments in bug reports for each project. We used Bugzilla
API to fetch all bug reports and the list of related comments
along with changes on any attributes of the bug reports. Fur-
thermore, we have collected all the commits belonging to all
the considered projects on their GitHub repositories. Overall,
we collected a total of 225,534 bug reports belonging to 24
projects. Those bug reports included more than 1.79 million
changes in bug reports and 1.35 million developers’ comments
related to these changes. In addition, these projects have
302, 760 GitHub commits with more than 15, 000 releases.

A bug report from Bugzilla is composed of several attributes
listed below.

e Creator: The login name of the person who filed the bug
(the reporter)

o Creation time: When the bug was created

o Keywords: Each keyword mentioned on the bug

o Severity: The current severity of the bug

Project #Bugs #Comments #Commits #Versions
Name

Eclipse Plat- 118,309 761,180 8,190 5,201
form

BIRT 23,270 111,178 41,290 437
Aspect] 3,049 16,666 46,910 112
JDT 59,780 367,172 24,222 5,723
Buildship 482 2,304 3,314 37
JGit 1,351 7,254 7,655 174
openj9 9 36 41,948 42
PDT 6,062 31,580 9,490 487
TCF 1,238 5,896 4,830 28
SW360 2 5 512 12
Antenna 2 4 773 28
Hawkbit 2 2 2,267 21
Californium 61 212 1,927 32
Kapua 4 13 4,078 24
GEF 3,167 14,612 5,113 7
Ditto 2 2 4,343 19
Vorto 160 467 1,987 31
Titan 563 1,857 8,237 15
Jetty 3,813 16,661 66,427 340
BPEL 386 1,341 1,047 9
ed 3,788 21,057 993 1,122
Milo 1 1 759 24
Che 31 96 8,372 163
OMR 2 12 8,076 1

TABLE III

LIST OF STUDIED PROJECTS ALONG WITH THE NUMBER OF BUGS,
COMMENTS, GITHUB COMMITS, AND RELEASES

e Resolution: The current resolution of the bug, or an empty
string if the bug is open

o Summary: A summary of the bug

e Status: The current status of the bug

o Priority: The current priority of the bug

e Assignee: The login name of the user to whom the bug
is currently assigned

We collected every change that happened on any attribute
on the bug reports and extracted the following fields corre-
sponding to each change.

e Field Name: The changed field name

o Time: The date-time stamp on when the change happened

e Old Value: The value of the field before it was changed

e New Value: The value of the field after it was changed

e Person: The login name of the user who changed the

value of the field

The collected data is used to answer our research questions
and find potential gaps between the developers’ perception
to changes of bugs priority and actual ones observed in the
practice.

III. RESULTS

In this section, we answer the research questions by com-
bining the results of the survey and the outcomes of the
quantitative analysis on several open-source projects. Figure 2
represents the demographic information of the 38 participants
of the survey. Their current occupation ranges between re-
searcher, senior and junior software engineers, and QA/testers.

18

14

12

10

8

6

4

2 i il

o mm [[

10+ years 6 -10 years 3 -5years < 2years

B Academic / Industrial Researcher B Project Manager / Team Leader

m Software Developer / Other QA /Tester

Fig. 2. Current occupation and years of experience

A. O RQI: Why does the priority of a bug change?

Figure 3 shows that the majority of our participants agree that
they consider the bug’s priority to manage their workload.
Eight participants mentioned that they use the priority some-
times, and only 2 participants highlighted that they rarely look
at the priority to manage their tasks. None of the participants
expressed that they never consider the bug’s priority. Our
quantitative analysis shows that 100% of collected bugs have
a priority assigned to them which proves the importance of
bug’s priority in managing bug reports.

-
'\

m Always m Often m Sometimes

Rarely m Never

Fig. 3. Responses to the survey question: Do you consider bug’s priority to
manage your workload?

Figure 4 shows that only 2 participants said that they never
changed a bug’s priority where the majority of them agree
to the fact that they do need to change the bug’s priority

frequently. Furthermore, Figure 5 shows that most of the
developers agree to change the priority once, twice, or more in
general. Our quantitative analysis shows that more than 10%
of collected bug reports have their priority changed at least one
time, and over 86% of those bugs had their priority changed
at least two times.

Sometimes
45%

Never
Rarely 5%

16%

Always
13%

m Always m Often m Sometimes Rarely m Never

Fig. 4. Responses to the survey question: Do you change the priority of bugs?

Three times or more

u Twice

m None mOnce

Fig. 5. Responses to the survey question: How many times do you change,
in general, the priority per bug?

Figure 6 shows the distribution of the votes among several
possible reasons for changing the bug’s priority. From the
response, we observe that the dependencies among the bugs
are the biggest reason for changing a bug’s priority. Lack of
time and high workload are the next biggest reasons of priority
change with 19 and 17 votes, respectively. 13 participants said
that the initial priority value is always not accurate and hence
they have to correct it to match the reality of the issue. We also
found that 10 participants agree that the domain of the project
or the category of the bug report may affect the clarity of the
bug report which makes a big difference whether changing
the priority is needed or not. Other participants confirmed that
changing priority by mistake does happen but it is not frequent.

Our quantitative analysis shows that 14% of the bug reports
with priority changes have their priority changed twice from
high to low and then from low to high. This outcome shows

Other W
The type of project |

Changed by mistake |

Heavy workload |

Incorrect to match the reality I
Dependent of another bug's fix |
Lack of time to complete the task |
0 5 10 15 20 25 30

Fig. 6. Responses to the survey question: Why do you change bug’s priority?

that bug’s assignee may change the priority once it gets
assigned to them to reduce the perceived urgency of the bug
and to delay the delivery of the solution to the end-users. While
it may not be among the best practices to change priorities
to reduce the workload, the quantitative analysis of the bug
reports shows that this aspect is common when bugs priority
is lowered.

We found that developers may change the priority based on
their present workload to avoid any interruptions in the current
sprint or simply due to lack of time. In fact, we looked into
developers’ comments in the collected bug reports and we
found some comments complaining about workload or lack of
time. We also found comments mentioning dependency with
other bugs/issues from other teams/projects. Examples #1, #3,
and #7 in Table IV show the details of those comments.

Another finding is that developers might not see the neces-
sity of assigned high priority or they might see the urgency
in the assigned high priority of a bug. Examples #4 and #8
of Table IV show that developers change the priority to better
match the reality.

We also noticed that when the initial bug’s description is
not clear or not detailed enough, developers tend to introduce
priority changes after some investigation based on the analysis
of the comments in bug reports. We also found that some
projects do not have any priority changes, the reasons could be
the lack of using the bug’s priority to prioritize their workload
or the bug’s description is clear enough to make an accurate
estimation of the priority of the bug.

Regarding the documentation of bug priority changes, most
of the participants in our survey confirmed that they tend
to leave a comment explaining the change; only nine re-
sponses said that they rarely or never document these changes.
However, we found that developers are not following specific
guidelines in documenting these changes and they are docu-
mented in an informal way.

We also noticed that the description, status, and severity
attributes are the most common attributes that get changed
upon changing the priority. Based on the participants’ re-
sponses, only five of them mentioned that they have to pass
through an approval process before changing the priority. The
remaining participants agree that there is no process that
restricts developers from changing the priority at any time

and for any bug report. The lack of this process to check and
validate priority changes can be a reason for some suspicious
changes due to a high workload, release deadlines, showing
less impact of a bug created by a developer, etc.

We found in our quantitative analysis that the status, res-
olution, assignee, and target milestone are the fields that get
changed when the priority attribute is changed. In 27% of
priority change activities, we noticed that the assignee field
changed. It indicates that assigning the right developer to fix
the bug is important to get the right estimation of the priority.
We also discovered that 37% of priority change activities
where priority changed at the same time with status and target
milestone fields. We consider those activities as suspicious
because they tend to delay the deliverable of the project by
lowering the priority due to an upcoming release deadline. To
confirm this observation, we investigated and found that 44%
of these bug reports get back to the same level of priority after
a short period of time that can be associated with a release
deadline.

By exploring some comments among developers in several
of the bug reports in open-source projects, we found that
many discussions are about raising or lowering priority or
simply asking for clarity about the bug’s description itself.
This observation may confirm that there are some discussions
happening before changing the priority between developers
which can contribute to better explaining the reasons behind
the changes. On the other hand, we found, by looking at
the comments of developers, that bug’s priority gets changed
by accident as described in example #5 of Table IV. These
accidental changes confirm again the importance of adding a
mechanism in the pipeline of localizing and fixing bugs to
validate the priority changes.

A Key findings: The bug priority changes for the following
reasons:

¥’ The dependency of another bug’s fix

¥ Incorrect priority

¥ Type/Domain of project

¥ Category of the bug report

¥ Lack of time / Heavy workload / Tight schedule

¥ Accident

¥ Hot-fix request

¥ Business requirements
A Key findings: Bug tracking systems track the changes of
the bug’s priority but they lack the ability to document the
reasons of the change.

B. O RQ2: Who does change priority of a bug?

Figure 7 shows that most of the priority changes are carried
out by developers, team leaders, or project managers. Out
of 38, 31 responses show that developers change the bug’s
priority making them playing the biggest role in the change.
It is not surprising because they are the ones who work on
localizing and fixing the bugs. Other responses, 22 and 26,
suggest that team leaders or project managers/owners also

Example#

Bug ID

Project

Comment

1

150807, 151061

IDT

Downgrading priority since we will probably not have time for this.
There are no plans for the UI team to work on this defect until higher priority items

Ownership has changed for the javadoc comments bugs, but I surely will not have

enough time to fix your bug during the 3.5 development process,

Lowering priority to better match reality.
My apology, I inadvertently changed the priority when I changed the severity, I'm

Resetting priority to P3. Will be reassessed for the next release.
Firefox hasn’t fix this bug yet. Set the priority to pS.

2 33897, 34076, 35075 Eclipse Platform
are addressed.
3 217891, 233481 JDT
4 151612, 170140 Eclipse Platform
5 75829 Eclipse Platform
changing it back now.
6 50888, 52115 IDT
7 191927 BIRT
8 21652 Eclipse Platform

Lowering priority to P2 (Pl means that this is a ”stop-ship” bug report)

TABLE IV
DEVELOPERS’ COMMENTS FROM SEVERAL OPEN SOURCE SOFTWARE REGARDING THE CHANGES ON THE PRIORITY OF THE BUG.

change the priority to rush certain software features or meet
future expectations or milestones.

0 [

Developers Team Leader Project Manager Business Analyst

Fig. 7. Responses to the survey question: Who does change priority of a
bug?

In the quantitative analysis, we found that 28% of bug
reports with priority changes have been changed by their
assignee. Also, there is 19% of bug reports with priority
changes where the priority is changed by their reporter or
creator of the bug. We assume that the rest of the priority
changes were performed by the project leader, business
analyst, or another developer. The lack of information to
describe the role or the profile of each of the team members
is also an issue in the open-source software and bug tracking
systems. We note that there is no mechanism or approval
process by which the project’s stakeholders can request the
change and apply the change to the bug report.

A Key findings: Most priority changes are made by project’s
stakeholders including developers, team leaders, and project
managers.

A Key findings: Bug tracking systems track the individuals
who make the changes on the priority but they lack the ability
to

W Restrict certain individuals to change the priority
since they may not have the required knowledge and
expertise of the addressed bug.

¥ Capture profile or role information about project’s
stakeholders.

C. O RQ3: When does priority of a bug change?

Figure 8 shows that the most of the priority changes happen
between the date in which the bug gets assigned to the
developer and the date before releasing a new version of the
software. Some answers claim that it is necessary to change the
priority by the project manager who is assigning them because
each developer has their own tasks and therefore the priority
should be tuned based on the type and the number of tasks
assigned to the developer. Another explanation comes from
best practices of agile methodology where they are advised
to change the priority after scrum planning sessions with the
development and the business teams.

Before it gets assigned to you [
After it gets assigned to you _
Before release date _
After release date]
Other .
0 5 10 15 20 25 30 35

Fig. 8. When do you change, in general, the priority of bugs?

In the quantitative analysis on bug reports from open-source
projects, we found that a bug’s priority changes 2 times on an
average with a minimum of one time and a maximum of 18
times. Interestingly, we found that a bug’s priority changes in
a relatively short period of time with an average 15 days from
releasing a new version of the software. More surprisingly,
we identified that there are about 44% of the bugs where the
priority has been changed twice—the first change is to lower
the priority and the second one is to reset it to the original
priority of the bug. Thus, the bug’s priority changes twice,
once after the developer or assignee reviews it, another time
comes in a short period after the release date. This bad practice
should be avoided since developers may tend to ship their code
quickly with bugs in that some of them could be critical.

A Key findings: Most priority changes happen between the
date when the bug gets assigned to the developer and the date
just before releasing new version of the software.
A Key findings: Bug tracking systems track the timestamp
when changes have happened but they lack the ability to
¥ lock the priority so that it cannot be changed after
certain time or restrict certain individuals to change
the priority after it passes a period of time or when
it reaches certain status.
¥ capture the project’s milestones along with their
due date.

To summarize, we collected all our findings in the survey
and the results of the quantitative analysis. The outcome is
presented in Table V as a 3-W model to show the consolidated
findings from both the survey and the quantitative analysis.
We also present a list of recommendations for any future im-
provements by industrial and research communities. Therefore,
we classified our findings and recommendations into three
different groups to answer each of our research questions.

The first group is designed to answer the first research
question as to why does the priority change. We found that
the dependency of another bug could be one of the reasons
besides some other obstacles that programmers encounter
such as lack of time, heavy workload, or a tight schedule.
Also, we identified some cases where developers set incorrect
priority for bug reports in which they are not knowledgeable
enough to do so. Another reason could be related to business
requirements where they have to prioritize some bugs over
other bugs considering the severity of the bugs. Likewise,
the priority may need to be changed if the bug report is
considered to be a hot-fix request and thus it needs to be
tackled by the development team right away. According to
our quantitative analysis, we noticed that some projects do
not have any changes in priority due to the clarity of the
description of the bug report, the size of the project, or the
size of the development team. Similarly, we found that the
changes in the priority of some bug reports are different than
the priority of other bug reports in the same project due to
the category of the bug report such as security, functionality,
or user interface related bugs. Lastly, we noticed some cases
where the developers changed the priority by accident. As a
recommendation, due to a lack of documentation upon chang-
ing the priority, we recommend that all bug tracking systems
should have the ability to track the changes in priority with
appropriate documentation noted by the user who makes the
change. Capturing such information will help in the priority
prediction process to accurately predicate the priority of bug
reports and therefore improve the bug triage process. Also, we
recommend adopting a standard in bug report documentation
to avoid ambiguity in the process.

The next group is focused to answer the second research
question as to who changes the priority. According to our
findings from both the survey and the quantitative analysis,
we discovered that there is no rule on who is allowed or not
allowed to change a priority. We encounter several cases where

developers, team leaders, or project owners have the permis-
sion to change the priority without prior approval process or
team decision making. As a recommendation, we suggest that
bug tracking software should have the ability to prevent some
users from changing the priority and doing so by knowing
more about the team structure or hierarchy.

The last group is to answer the third research question
as to when does a priority change. We discovered that a
priority gets changed anytime as long as the bug has not been
resolved. We have seen examples where it gets changed after
the creation, before assigning to the developer, after assigning
to the developer, before or upon closing the bug report. More
importantly, we noticed that the priorities get changed in
the last phase of bug resolution—a short period of time just
before closing the bug report and set a resolution for it. We
recommend that bug tracking systems should be aware of the
project’s future releases, milestones, and the current bugs and
features pipeline targeted to the release. Subsequently, the bug
tracking software should be able to restrict certain users from
changing the priority in a critical time to prevent any delays
in resolving the bug reports.

IV. DISCUSSIONS AND IMPLICATIONS

In this section, we discuss the results observed from our
experiments and articulate the potential implications for re-
searchers as well as practitioners.

A. Better understanding of bug priority changes

The observations gathered from interviews with 11 devel-
opers and conducting a survey with 38 participants show
the possible reasons of why the priority of bug reports get
changed. Moreover, the results show many temporal patterns
related to when the priority gets changed especially close to
the release deadlines. Our survey shows that, in general, any
team member can change the priority including the developers,
testers, and project owners. We aimed to better understand
these patterns so that researchers, practitioners, and educators
can manage their projects, tasks, and bug reports efficiently.

B. Implications for researchers

The current state-of-art about the generation of documenta-
tion for bug priority changes is still in its infancy. Therefore
this study will facilitate the software engineering commu-
nity to automatically generate documentation for bug priority
changes. Furthermore, this study suggests that new tools may
need to be developed to validate the changes in bug priority
since not all priority changes are made with a good reason or
intent.

C. Implications for tool builders

This study shows a list of recommendations that could
improve bugs tracking systems in two different dimensions:
1) document the changes of the bugs appropriately, and 2)
implement checks/validation routines to secure bug priority
changes.

Research Question

Findings

Recommendations

Why does the priority of a bug change?

Who does change the priority of a bug?

When does the priority of a bug change?

¥ The dependency of another bug’s fix v
Incorrect priority

v Heavy workload /Tight schedule
FZ\Y

W Category of bug report

F/ 1\

W Hot-fix request

FZ\Y . .

W Business requirements

F/\Y .

W Type of project

¥ On accident

(?} Stakeholders including developers, team
leaders, project owners

¥ Priority changes happen between the
date the bug gets assigned to the developer
and date before releasing a new version of

o Bug tracking systems should have the
ability to document the reasons for changing
priority

o Priority prediction systems should rely
on priority changes to improve their predic-
tion model

‘f Standardize documentation methods
based on different projects’ domains and
bugs’ categories

o Bug tracking systems should have the
ability to restrict certain users from chang-
ing the priority if they don’t have permission
to do so.

o Bugs tracking systems should be aware
of team structure and the role of each stake-
holder.

o Bugs tracking systems should prevent
stakeholders from changing the priority un-
necessarily if the bug milestone is close to

the software.

the release date or if the bug is active or
pending status.

Bugs tracking systems should be aware
of the project’s milestones and timelines.

TABLE V
3-W MODEL FINDINGS AND RECOMMENDATIONS

D. Implications for educators

Our findings as presented in 3-W model will be the initial
guide to help educators to emphasize the importance of bug
priority to their students to manage the bug reports. Therefore,
educators will be able to teach and transfer this knowledge
to future practitioners and tool builders to follow the best
practices in managing their software maintenance activities.

E. Implications for practitioners

Practitioners will be able to follow the guidelines illustrated
in Table V to manage bug priority. Though we do not expect
practitioners to document all the bug priority change compo-
nents independently from the context, we expect them to judge
which components are more relevant and adequate for their
specific contextual needs. Managers and team-leads can work
with developers to establish customized guidelines from this
study for documenting bug priority changes and validate them
as well. Such guidelines can also be enforced by customizing
the continuous integration pipeline. These guidelines could
trigger developers to capture the impact and the rationale of
their bug priority changes appropriately for each situation,
developing beneficial habits, long-lasting documentation, and
better check of bug priority changes.

V. THREATS TO VALIDITY

A. Construct validity

Some threats can be related to the way we construct
our 3-W model. To mitigate this threat, our interviews with
developers were limited to a set of predefined questions and
give opportunities to the participants to share their experiences

without bias. Also, we gave our participants enough time to
comprehend our questions so that they can provide opinions
and ideas without any implicit inputs and bias. We have
included “Other” option with a free text as an answer in some
of the interviews and survey questions to open the door for
any suggestion or feedback.

B. Internal validity

The first possible internal threat is that some participants
of the survey may provide a biased perceptive about bug
priority changes. To mitigate this threat, we ensured that
our participants have diverse backgrounds, different educa-
tion/experience levels, and hired from different industrial com-
panies to bring their in-house practices to the survey. Another
typical co-factor in survey studies is the respondent’s fatigue
bias, so to mitigate this threat, we ran a pilot study with five
PhD students to make sure that the survey can be answered
within 10 minutes, and the context of the survey is clear
enough to the participants without any ambiguity.

C. External validity

The number of participants may not represent very large
population of developers. To mitigate this threat, our partic-
ipants were chosen from a diverse population, with diverse
expertise and years of experience as presented in Figure 2.

VI. RELATED WORK

Most of the existing defect management studies focused
on the prediction of bug severity/priority from bug reports
[9], [13]-[15], [24]-[29]. Machine learning algorithms were
extensively used for that purpose such as Support Vector

Study Description / Technique Used

Have they addressed pri-
ority changes?

Yang et al. [14]
bug report
Tian et al. [9], [13]
to predict the priority level of a bug report
Sharma et al. [15]
in predicting the priority of bugs
Kanwal et al. [11], [23]
Machine.
Yu et al. [12]
Alenezi et al. [24]
Decision Trees, and Random Forest
Kumari et al. [10]

Extract and identify multi-feature (e.g., Component, product, priority and severity) from No
Use several factors such as temporal, textual, author, related-report, severity, and product, =~ No
Use Support Vector Machine, Naive Bayes, K-Nearest Neighbors and Neural Network ~ No
Propose a priority recommendation module based on Naive Bayes and Support Vector ~ No

Utilize neural network techniques to predict the priorities of bugs No
Present an approach to use different machine learning algorithms namely Naive Bayes, = No

Build classifiers using machine learning and Naive Bayes and Deep Learning techniques ~ No

TABLE VI
SUMMARY OF PREVIOUS STUDIES ABOUT BUG PRIORITY PREDICTIONS.

Machine, Naive Bayes, K-Nearest Neighbors, and Neural
Networks. To the best of our knowledge, there is no existing
study about understanding the changes in bug’s priority and
their rationale. We present, in the following, the closest studies
to this paper but a more comprehensive summary can be found
in Table VI about the prediction of bugs’ priority.

Yang et al. [14] proposed an approach to managing the
bug triage by predicting the workload. They were also able to
extract and identify multi-feature (e.g., Component, product,
priority, and severity) from bug reports in order to assign
developers to bugs and predict the severity of those bugs [14].

Tian et al. [9], [13] proposed an automated approach us-
ing machine learning to recommend a priority level based
on information available in bug reports. Their method used
several factors such as temporal, textual, author, related-report,
severity, and product, to predict the priority level of a bug
report [9], [13].

In the work of Sharma et al. [15], they use different
machine learning techniques such as Support Vector Machine,
Naive Bayes, K-Nearest Neighbors, and Neural Network in
predicting the priority of bugs. Also, they evaluated the perfor-
mance by performing cross-project validation [15]. Similarly,
Kumari et al. [10] built classifiers using machine learning and
Naive Bayes and Deep Learning techniques. These classifiers
considered the severity, summary weight, and entropy attribute
to recommend the priority of bugs [10].

Yu et al. [12] used neural network techniques to predict the
priorities of bugs, adopted an evolutionary training process to
solve problems associated with reducing features, and reused
data sets from similar software systems to speed up the
convergence of training [12].

Kanwal et al. [23], proposed a priority recommendation
module based on Naive Bayes and Support Vector Machine.
Also, they provided another comparative study to evaluate
which classifier performs better in terms of accuracy [23].

Alenezi et al. [24] presented an approach to predict the
priority of a reported bug using different machine learning
algorithms namely Naive Bayes, Decision Trees, and Random
Forest. They also evaluated the performance of each one of
these algorithms in predicting the priority of bug reports [24].

As a summary, all existing research papers focus on pre-

dicting the priority of bugs and therefore it helps in the bugs
triage process and assigning developers to given bugs. More
details can be found in Table VI

VII. CONCLUSIONS

In this paper, we used a combination of qualitative and
quantitative techniques (interviews, a survey, and bug reports
analysis) to understand the changes in bug priority and their
rationale. We started first with a set of interviews with prac-
titioners to define a bugs priority change model. Then, we
performed a large online survey to gather the experiences of
practitioners with the rationale, frequency, and experiences of
changing the priority of bugs. We have also collected a large
data-set of bugs priority change on open-source projects. We
looked into actions that happen in bug reports such as the date
when priority changes happen, the reasons beyond changing
the priority documented in the comments, and the profile of
the users who changed the priority. The quantitative validation
on this created data-set revealed several areas of improvement
as discussed in the implications section.

The outcomes of this empirical study can be used to build
tools for automatically validating the changes’ request for
bugs priority. We are planning as part of our future work
to leverage machine learning to check and validate the bug
priority changes submitted by developers based on the data-
set collected in this study [18].

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, “Non-functional require-
ments,” Software Engineering, 2000.

S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: a case study on firefox,” in Proceedings of the Sth working
conference on mining software repositories, 2011, pp. 93-102.

P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characteriz-
ing and predicting which bugs get fixed: an empirical study of microsoft
windows,” in Proceedings of the 32Nd ACM/IEEE International Con-
ference on Software Engineering-Volume 1, 2010, pp. 495-504.

T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Characteriz-
ing and predicting which bugs get reopened,” in 2012 34th International
Conference on Software Engineering (ICSE). 1EEE, 2012, pp. 1074—
1083.

E. Shihab, A. Thara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto, “Studying re-opened bugs in open
source software,” Empirical Software Engineering, vol. 18, no. 5, pp.
1005-1042, 2013.

K. Chaturvedi and V. Singh, “Determining bug severity using machine
learning techniques,” in 2012 CSI Sixth International Conference on
Software Engineering (CONSEG). 1EEE, 2012, pp. 1-6.

A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in 2011
15th European Conference on Software Maintenance and Reengineering.
IEEE, 2011, pp. 249-258.

X. Xia, D. Lo, M. Wen, E. Shihab, and B. Zhou, “An empirical study
of bug report field reassignment,” in 2014 Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE). IEEE, 2014, pp. 174-183.

Y. Tian, D. Lo, and C. Sun, “Drone: Predicting priority of reported
bugs by multi-factor analysis,” in 2013 IEEE International Conference
on Software Maintenance. 1EEE, 2013, pp. 200-209.

M. Kumari and V. Singh, “An improved classifier based on entropy and
deep learning for bug priority prediction,” in International Conference
on Intelligent Systems Design and Applications. Springer, 2018, pp.
571-580.

J. Kanwal and O. Magbool, “Managing open bug repositories through
bug report prioritization using svms,” in Proceedings of the Interna-
tional Conference on Open-Source Systems and Technologies, Lahore,
Pakistan, 2010, pp. 22-24.

L. Yu, W.-T. Tsai, W. Zhao, and F. Wu, “Predicting defect priority based
on neural networks,” in International Conference on Advanced Data
Mining and Applications. Springer, 2010, pp. 356-367.

Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated prediction of bug report
priority using multi-factor analysis,” Empirical Software Engineering,
vol. 20, no. 5, pp. 1354-1383, 2015.

G. Yang, T. Zhang, and B. Lee, “Towards semi-automatic bug triage
and severity prediction based on topic model and multi-feature of bug
reports,” in 2014 IEEE 38th Annual Computer Software and Applications
Conference. 1EEE, 2014, pp. 97-106.

M. Sharma, P. Bedi, K. Chaturvedi, and V. Singh, “Predicting the priority
of a reported bug using machine learning techniques and cross project
validation,” in 2012 12th International Conference on Intelligent Systems
Design and Applications (ISDA). 1EEE, 2012, pp. 539-545.

S. Zaman, B. Adams, and A. E. Hassan, “A qualitative study on
performance bugs,” in 2012 9th IEEE working conference on mining
software repositories (MSR). 1EEE, 2012, pp. 199-208.

J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, “A survey
on bug prioritization,” Artificial Intelligence Review, vol. 47, no. 2, pp.
145-180, 2017.

A. authors. (2020) Replication package. URL: https:/sites.google.com/
view/scam2020-bugs-priority.

M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history
under the lens: A study on why and how developers examine it,” in 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2015, pp. 1-10.

M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-
offs in continuous integration: assurance, security, and flexibility,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 197-207.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

advanced empirical software engineering.
311.

Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes? an exploratory study in industry,”
in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, 2012, pp. 1-11.

J. Kanwal and O. Magbool, “Bug prioritization to facilitate bug report
triage,” Journal of Computer Science and Technology, vol. 27, no. 2,
pp. 397412, 2012.

M. Alenezi and S. Banitaan, “Bug reports prioritization: Which features
and classifier to use?” in 2013 12th International Conference on Machine
Learning and Applications, vol. 2. 1EEE, 2013, pp. 112-116.

A. Ouni, M. Kessentini, M. o) Cinnéide, H. Sahraoui, K. Deb, and K. In-
oue, “More: A multi-objective refactoring recommendation approach to
introducing design patterns and fixing code smells,” Journal of Software:
Evolution and Process, vol. 29, no. 5, p. 1843, 2017.

A. Ghannem, G. El Boussaidi, and M. Kessentini, “On the use of design
defect examples to detect model refactoring opportunities,” Software
Quality Journal, vol. 24, no. 4, pp. 947-965, 2016.

B. Amal, M. Kessentini, S. Bechikh, J. Dea, and L. B. Said, “On
the use of machine learning and search-based software engineering
for ill-defined fitness function: a case study on software refactoring,”
in International Symposium on Search Based Software Engineering.
Springer, Cham, 2014, pp. 31-45.

M. Kessentini, A. Ouni, P. Langer, M. Wimmer, and S. Bechikh,
“Search-based metamodel matching with structural and syntactic mea-
sures,” Journal of Systems and Software, vol. 97, pp. 1-14, 2014.

A. Ghannem, M. Kessentini, and G. El Boussaidi, “Detecting model
refactoring opportunities using heuristic search,” in Proceedings of the
2011 Conference of the Center for Advanced Studies on Collaborative
Research, 2011, pp. 175-187.

Springer, 2008, pp. 285—

