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Longitudinal biomarker data are often collected in studies, providing important
information regarding the probability of an outcome of interest occurring at a
future time. With many new and evolving technologies for biomarker discov-
ery, the number of biomarker measurements available for analysis of disease
progression has increased dramatically. A large amount of data provides a more
complete picture of a patient’s disease progression, potentially allowing us to
make more accurate and reliable predictions, but the magnitude of available data
introduces challenges to most statistical analysts. Existing approaches suffer
immensely from the curse of dimensionality. In this article, we propose methods
for making dynamic risk predictions using repeatedly measured biomarkers of a
large dimension, including cases when the number of biomarkers is close to the
sample size. The proposed methods are computationally simple, yet sufficiently
flexible to capture complex relationships between longitudinal biomarkers and
potentially censored events times. The proposed approaches are evaluated by
extensive simulation studies and are further illustrated by an application to a
data set from the Nephrotic Syndrome Study Network.
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1 INTRODUCTION

A key question in clinical practice is accurate prediction of patient prognosis. To this end, studies are increasingly
measuring biomarkers repeatedly over time in order to dynamically update estimated survival probabilities. Improved
information on prognosis aids in patient management, such as adjusting patient follow-up schedules, or prescribing
appropriate medications. Commonly used approaches for dynamic risk predictions include (1) joint modeling (JM) of
longitudinal and time-to-event data1-5 and (2) landmarking.6,7

A JM approach requires specifying a complete joint distribution of the longitudinal response and the event times.
For the longitudinal biomarker measurements, generalized linear mixed models are typically employed to describe
the subject-specific longitudinal trajectories. Features of the estimated biomarker trajectories are then incorporated as
time-varying covariates in a Cox regression model. In these approaches, calculation of predicted risk involves compli-
cated integration over the marker processes. The computational burden of estimation increases exponentially with the
dimensionality (p) of the biomarker data, which limits the JM approaches to studies with p < 5 longitudinal biomarker
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measurements.8-19 As an alternative to the JM approach, a landmarking approach directly fits a Cox proportional hazards
model to individuals still at risk at the landmark point. This technique is easy to apply in practice and can accom-
modate more longitudinal biomarkers than the JM approach, but still requires p ≪ n. For both JM and landmarking
approaches, accurate predictions rely on correct specification of the functional forms linking biomarkers to the survival
outcome.

As new technologies (eg, genomics, proteomics, and metabolomics) have become available, studies are increasingly
generating large numbers of biomarkers measured over time to study disease progression. This large amount of data
provides a more complete picture of each patient’s physiologic reserve, but it also dramatically increases the difficulty of
statistical modeling. In addition to the curse of dimensionality of the biomarkers, the relationship between biomakers
and event times may be very complex, for example, (1) only a set of biomarkers are predictive for the event of interest (a
variable selection problem), (2) some of the predictive biomarkers have non-linear effects, and/or (3) interactions exist
between some of the predictive biomarkers and measurement time. These settings offer substantial challenges for JM and
landmarking approaches to biomarker discovery and dynamic risk prediction. The goal of this article is to provide simple
and flexible tools for dynamically predicting risk when the number of longitudinal biomarkers is large and statistical
relationships between biomarkers and risk are potentially complex.

Recently, Maziarz et al20 proposed partly conditional survival (PC) models to predict whether an event occurs in the
next 𝜏 time units given covariate information and survival up to time s. Unlike the landmarking approach in References
[6,7], the PC models reset the time origin to s and covariates at time s are regarded as baseline measures. They then model
residual lifetime from s using a Cox proportional hazards regression model (PCCox) or a generalized linear model (PCGLM).
In PCGLM, an individual’s residual survival time from s is dichotomized into a binary outcome depending on whether the
residual survival time is larger or smaller than 𝜏; an inverse censoring probability weighted method is used to correct for
bias due to censoring prior to observing 𝜏 units of follow-up after time s. As shown in Reference [20], both PCCox and
PCGLM have comparative performance to JM approaches, but have much simper computational steps at model fitting and
risk prediction stages.

In this article we borrow ideas from the PC framework in Reference [20] and develop a jackknife pseudo-observation
approach to accommodate the censored nature of the data. The pseudo-observations approach21-23 provides an efficient
and straightforward way to study the relationship between a survival outcome and covariates in the presence of censoring.
It replaces censored survival outcomes by pseudo observations and reduces the complex survival analysis to a regression
problem with numeric outcomes. Then standard regression techniques can be used. In this article we consider two analy-
sis approaches applied to the regression problem (1) a generalized estimation equation analysis (GEE)24 and (2) a random
forest.

The rest of the article is organized as follows. In Section 2 we introduce notation and develop our proposed methods. In
Section 3 we present simulation studies. In Section 4 we illustrate our methods in an analysis of data from the Nephrotic
Syndrome Study Network (NEPTUNE). Concluding remarks are given in Section 5.

2 PROPOSED RISK PREDICTION MODELS

2.1 Notation and data structure

Let Ti be the survival time and Ci be the independent censoring time for subject i, i = 1, … , n. We observe Xi = min(Ti, Ci)
with censoring indicator, di = I(Ti ≤ Ci). For covariates, we use Zi to denote the p-dimensional vector of time-invariant
covariates for subject i and Yi(sij) to denote the q-dimensional vector of time-varying biomarkers measured at time
0 ≤ sij ≤ Xi, i = 1, … , n;j = 1, … , mi. For convenience, we denote the vector of longitudinal biomarker mea-
surement times for subject i using si = {si1 = 0, si2, … , simi} and let Ỹi = {Yi(si1), … ,Yi(simi)}. Unless subscripts on
measurement times are needed for clarity, we will typically drop them to ease notational burden, simplifying this
notation to s.

The pseudo-observations approach21-23 provides an efficient way to study the relationship between a survival outcome
and time-invariant covariates in the presence of censoring. To adapt the pseudo-observation approach to the dynamic
prediction method where covariates are measured repeatedly over time, we treat each covariate measurement time, s,
as a landmark time with X* = X − s denoting the remaining survival time from the landmark time. Table 1 shows a
simple example of how to build a “stacked" data set for three subjects with covariates measured every 6 months until the
subject is removed from the study due to censoring or event occurrence. Subjects 1 and 2 experience events at 26 and 15
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T A B L E 1 A stacked data set for three hypothetical subjects ID s X* 𝜹 Ŝ𝝉 Z Y

1 0 26 1 Ŝ𝜏
1(0) 23 1.5

1 6 20 1 Ŝ𝜏
1(6) 23 2.5

1 12 14 1 Ŝ𝜏
1(12) 23 1.2

1 18 8 1 Ŝ𝜏
1(18) 23 4.3

1 24 2 1 Ŝ𝜏
1(24) 23 5.2

2 0 15 1 Ŝ𝜏
2(0) 30 4.5

2 6 9 1 Ŝ𝜏
2(6) 30 5.5

2 12 3 1 Ŝ𝜏
2(12) 30 5.2

3 0 10 0 Ŝ𝜏
3(0) 16 3.5

3 6 4 0 Ŝ𝜏
3(6) 16 3.9

Note: Subject 1 dies at 26 months; subject 2 dies at 15 months and subject 3
is censored at 10 months. Here, s denotes landmark time, X* = X − s
denotes the remaining survival time; 𝛿 is the censoring indicator for the
remaining survival time; Ŝ𝜏 is the pseudo-survival probability at 𝜏 months;
Z is the time-constant covariate; Y is the time-varying covariate.
Additional columns can be added for more covariates.

months, respectively, and subject 3 is censored at 10 months. Each survival time is converted into a sequence of remaining
survival times from the landmark time points and then stacked along with the corresponding covariates into a single data
set. Table 1 also includes placeholders for pseudo-survival probabilities that will be included in the stacked data set. We
introduce pseudo-survival probabilities in Section 2.2.

2.2 Dynamically computed pseudo probabilities

Suppose we are interested in dynamically estimating the probability of surviving 𝜏 units of time. That is, given a subject is
alive at time s, we wish to estimate P(X* > 𝜏|X > s), where X* = X − s is the remaining survival time from some landmark
time, s. If there were no censored data, binary indicators I(X* > 𝜏|X > s) would be observed for all subjects and landmark
times, s, within subject. Hence, standard methods for modeling correlated binary endpoints, say generalized estimating
equations, could be used to model P(X* > 𝜏|X > s) in terms of Z and Y. However, these binary outcomes would not
necessarily be observed for all landmark times when a subject is censored. Subject 3 in Table 1 is censored at 10 months,
and hence does not have an observed value for I(X* > 12|X > s) for either of the two contributed rows of data from this
subject that correspond to landmark times, s = 0 and s = 6 months. This (partially) missing data disrupts our ability to
model correlated binary outcomes using standard software.

Our approach to handling the censored nature of the data is based on a jackknife method that has become popu-
lar in censored survival analysis literature for the analysis of restricted means.21-23 We borrow similar ideas to construct
pseudo-survival probabilities that correspond to the correlated binary outcomes desired for dynamic risk prediction. Ulti-
mately these pseudo-survival probabilities, denoted by Ŝ𝜏 in Table 1, replace each of the binary indicators (observed and
unobserved), as quantitative outcomes for analysis. Details of the pseudo-probability calculations follow.

Step 1. For a particular landmark time s, estimate P(X* > 𝜏|X > s), using the (conditional) Kaplan-Meier survival
estimate calculated using only those subjects remaining at risk at time s. Set aside the resulting survival estimate at time
𝜏 from this curve with label, Ŝ𝜏(s).

Step 2. For each subject i still at risk at time s, repeat this calculation without using subject i’s data. Hence, each subject
will have a survival estimate for P(X* > 𝜏|X > s) that specifically excludes them, labeled Ŝ𝜏

−i(s).
Step 3. For each subject i, the pseudo probability corresponding to surviving 𝜏 units from landmark time s becomes

Ŝ𝜏
i (s) = ñŜ𝜏(s) − (ñ − 1)Ŝ𝜏

−i(s), (1)

where ñ is the number of subjects still at risk at time s.
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Step 4. Repeat steps 1-3 for each landmark time s.
Step 5. The resulting calculated pseudo probabilities are formatted as the outcomes for analysis, following the example

given in Table 1.
It is important to note that pseudo probabilities for patients at risk at landmark time s should be calculated and

used in the analysis, regardless of whether or not I(X* > 𝜏|X > s) was observable for the subject at landmark time
s. However, as seen in the example given in Table 1, subjects not at risk at a particular landmark time do not con-
tribute a pseudo probability for that time. The pseudo-probability calculation in steps 1-4 also applies to studies with
uncommon landmark times. In this case, the common landmark time s will be replaced by sij for subject i at the
jth time point. In Sections 2.3 and 2.4 we describe two dynamic prediction modeling paradigms using the pseudo
probabilities, Ŝ𝜏 in Table 1, as outcomes, and using Z, Y, and time s as predictor variables. For the GEE modeling
paradigm described in Section 2.3, we assume common landmark times, as GEE requires a correlation matrix for
the within-subject pseudo probabilities. This assumption is easily weakened for the random forest approach described
in Section 2.4.

2.3 Pseudo-probability generalized estimating equation model

We first consider a generalized estimating equation (GEE) approach for dynamically estimating the probability of sur-
viving 𝜏 subsequent time units. As mentioned in the Introduction, dynamic prediction regression models are typically
unstable unless the number of dynamic predictors incorporated in the model is small, say less than 5. The dynamic
pseudo-probability GEE regression model we consider takes the form

g[Ŝ𝜏
i (sij)] = 𝛂B(sij) + 𝜷Zi + 𝛄Yi(sij), i = 1, … ,n, j = 1, … ,mi, (2)

where sij, j = 1, … , mi are landmark times for individual i, B(sij) is a spline base function that captures nonlinear effects
attributed to the landmark times, and g(⋅) is a link function. If g(⋅) corresponds to a logit link function, the estimated
dynamic probability of living at least 𝜏 subsequent time units is constrained to be between 0 and 1. Many statistical pack-
ages are available for fitting Model (2) using GEE methodology and obtaining estimates, 𝜽̂, of 𝜽= (𝜶, 𝜷, 𝜸). In Sections 3.1
and 4, we use the geese function from the geepack R package.25 Use of this package requires specification of a working
correlation matrix for the within-subject correlation between outcome measures (pseudo probabilities); we have used the
default independence working correlation matrix throughout this article. In performing inference on model parameters,
sandwich methods for estimation of Cov(𝜽̂) are typically employed that are robust to misspecification of the working cor-
relation matrix. The geese package offers an approximate jackknife estimate, Ĉov(𝜽̂), for Cov(𝜽̂)26,27 that we have used in
simulation and examples that follow.

Dynamic estimates for the probability of surviving 𝜏 time units can be quickly derived from the results of the GEE fit
to model (2). For a new patient with Ho(s) = {B(s), Zo, Yo(s)}, the predicted probability of surviving the next 𝜏 time units

is g−1(𝜽̂
T

Ho) =
exp(𝜽̂

T
Ho)

1+exp(𝜽̂
T

Ho)
with estimated variance, JĈov(𝜽̂)JT , obtained using the delta method, where J is the estimated

Jacobian matrix of g−1(𝜽THo). In particular, if using a logit link in Model (2),

J =
exp(−𝜽̂

T
Ho)

(1 + exp(−𝜽̂
T

Ho))2
Ho.

We refer to this approach as GEE.pseudo in the rest of the article.

2.4 Pseudo-based random forest

Random forest (RF) methodology28 has gained popularity in big data applications since (1) it is able to incorporate
high-dimensional biomarkers into estimated predictions, (2) it is not necessary to prespecify functional forms of biomark-
ers when using the algorithm, (3) interactions between biomarker processes are automatically embedded into predictions,
and (4) software is available for implementing these algorithms in the case of a single outcome (randomForest function
from randomForest R package28,29) or correlated outcomes (hrf function from htree R package30,31). To our knowledge,
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RF methodology has not been applied to pseudo-probabilities outcomes described in Section 2.2 for dynamic predic-
tion of censored survival outcomes. Because pseudo probabilities are correlated within individual, the hrf function
from the htree package provides an RF algorithm suitable for our purposes. Importantly, RF methods for correlated
data allow us to utilize information from substantially more dynamically measured predictors that the GEE method
of Section 2.3.

For those who are not well versed in RF terminology, we give a very brief primer to assist in understanding how to
use the htree package to make dynamic predictions based on correlated pseudo-probability outcomes. More advanced
users of random forest methods may choose to skip ahead to Section 2.4.2. Notation for the pseudo-probability response
variable and predictor variables in what follows is unchanged from Section 2.3.

For simplicity, our primer first describes the special case with a single pseudo-probability outcome contributed per
subject (Section 2.4.1) and the RF algorithm28 that is the basis of the R package randomForest. We then describe how
the hrf function in the htree package handles dependent outcomes, in our case pseudo probabilities contributed from the
same subject, in Section 2.4.2.

2.4.1 Random forest with single pseudo probability

Suppose for each of our n subjects we consider only the first pseudo probability, Ŝ𝜏
i (0), as our outcome. The data

from subject i, [Zi, Ŝ𝜏
i (0)], is referred to as a training sample in RF jargon, and our data consists of n training samples,

{[Z1, Ŝ𝜏
1(0)], … , [Zn, Ŝ𝜏

n(0)]}.

Step 1 Draw a bootstrap sample of size n. That is, randomly sample data pairs [Zi, Ŝ𝜏
i (0)], with replacement, from

the i = 1, … , n subjects until the bootstrap sample is also of size n. In RF jargon, unique subjects who are repre-
sented in the bootstrap sample are called bagged, or collectively, the bagged sample. Subjects who do not make it
into the bootstrap sample are called out of bag, or collectively, the out of bag sample.

Step 2 For each bootstrap sample, a binary decision tree is built. An example binary decision tree is given in Figure 1.
Each node in the tree reflects a decision point for traveling down the binary decision tree. The top node is often
called the root node. Any node in the tree may become a parent node by splitting into two daughter nodes or
become a terminal node, also called a leaf node. The number of terminal nodes in the tree is denoted by K, with
Figure 1 showing a tree with K = 3. Each terminal node captures a partition, Rk of the data, k = 1, … , K. For
example, in Figure 1, the first partition R1 includes all black subjects with albumin < 3.8.The randomForest pack-
age has two parameters that influence whether a node splits or becomes terminal, the nodesize parameter and
the maxnodes parameter. The nodesize parameter specifies the minimum number of individuals from the boot-
strap sample that a terminal node must capture; the default is 5. The maxnodes parameter specifies the maximum
number of terminal nodes allowed in the tree; if left unspecified, nodes continue to split until nodesize restric-
tions define the node as terminal. For parent nodes that split into daughter nodes, the process for defining the best
split follows steps (a) through (c) below. Interestingly, rather than using all available predictors to choose the best
split, an independently sampled subset of predictors is considered at each node, which improves processing speed
considerably.

(a) Select a random subset of predictors, Z*, from Z. In the randomForest package, the default number of pre-
dictors in Z* is the number of predictors in Z divided by three (rounded down), which can be changed via
the mtry parameter. The function, tuneRF, can be used to treat the number of sampled predictors in Z* as a
tuning parameter; however, we have found reasonable operating characteristics using the default choice. The
randomly selected predictors from this step are called input variables in RF jargon.

(b) Predictors (input variables) selected in step (a) are converted into binary variables that may or may not be
used as daughter nodes of the node under consideration for a split. Dichotomous predictors are already in a
suitable format for splitting into daughter nodes. For categorical predictors with I categories, the randomForest
package dichotomizes the predictor by randomly splitting the I categories into two groups. This split varies
across bootstrap samples of the original data (step 1 of algorithm). For each continuous or ordinal predictor, all
possible thresholds from the observed data are considered for splitting individuals into low versus high valued
groups. The resulting binary predictors that are generated from a single continuous/ordinal predictor are called
split variables of that predictor. All binary variables defined in this step are compared for the best split from the
parent node into daughter nodes.
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F I G U R E 1 An example of a decision tree. The red circle is the root node. Ovals
reflect parent nodes and rectangles reflect terminal (leaf) nodes [Colour figure can be
viewed at wileyonlinelibrary.com]

(c) The best daughter nodes (or split) from a parent node under consideration is chosen from binary variables
defined in step (b). Parent node selection borrows ideas from forward stepwise linear regression algorithms,
in that the most favorable split is added to the existing tree based on further minimizing the sum of squared
errors between observed and predicted outcomes in the data until each either the maxnode restriction is met
or the nodesize restriction is met for all current terminal nodes of the tree. In our setting, for each node, k, the
predicted outcome is the average of individual pseudo probabilities in the corresponding partition of the data,
Rk. That is, define nRk to be the number of subjects in partition Rk. Then the predicted outcome for partition

Rk is Ŝ𝜏(0)Rk
= 1

nRk

∑
i∈Rk

Ŝ𝜏
i (0) and sum of squared errors in partition k is SSEk =

∑
i∈Rk

(Ŝ𝜏
i (0) − Ŝ𝜏(0)Rk

)2. If nodesize

and maxnode restrictions have not been met, and a further split for node k into daughter nodes k1 and k2 is
possible, then the chosen split variable for node k minimizes SSEk1 + SSEk2 . One node at a time is added to the
existing tree such that after comparing all possible splits from all possible nodes, the overall SSE is minimized,
where for K terminal nodes,

SSE =
K∑

k=1

∑
i∈Rk

(Ŝ𝜏
i (0) − Ŝ𝜏(0)Rk

)2.

The tree is grown to the maximum size (i.e., until no further splits are possible for any of the terminal nodes)
and not pruned back. This algorithm is sometimes described as a greedy recursive binary splitting algorithm.

Step 3 Repeat step 1 (bootstrap step) and step 2 (tree growing step) until B decision trees are available; the RandomForest
package default is B = 500 trees. Each of the b = 1, … , B trees have their own number of terminal nodes, Kb,
with corresponding partitions, Rbk, k = 1, … , Kb and 𝜏-year survival probability estimates, Ŝ𝜏(0)Rbk

, that apply to

individuals who traverse the bth tree and land in partition, Rbk. Define Ŝ𝜏(0)Rbki
as the estimated 𝜏-year survival

probability for individual i based on traversing through the bth decision tree and landing in partition Rbki of that
tree. Individual i’s final estimated 𝜏-year survival probability aggregated across the B trees is

S̃𝜏
i (0) =

B∑
b=1

Ŝ𝜏(0)Rbki
,

which we also call the fitted random forest model prediction for subject i.

2.4.2 Random forest with multiple correlated pseudo probabilities per individual

In the more general case, data from individual i is collected at time points sij, j = 1, … , mi. Hence at time sij, subject i
has time-varying biomarkers, Yi(sij), time invariant predictors, Zi, and pseudo-probability outcome, Ŝ𝜏

i (sij). An algorithm
proposed by Adler et al32 modifies the bootstrap step (step 1) from Section 2.4.1 so that when individual i is sampled, only

http://wileyonlinelibrary.com
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data {Ŝ𝜏
i (sij),Zi,Yi(sij)} from a randomly selected measurement time sij is included in the bootstrap sample. Steps 2 (tree

growing step) and 3 (aggregating estimates across trees), as described in Section 2.4.1, remain unchanged. We refer to this
approach as the RF.pseudo method is the rest of the article.

The32 approach for handling dependent outcomes has several strong advantages: (1) it restructures the data so
that the randomForest package can be applied, which is elegant from a programming point of view. (2) Resam-
pling of the data allows information from the dependent outcomes to be incorporated into predictions, as desired. (3)
Technical proofs of consistency given in the original article by Breiman28 that draw on theorems for independently
distributed outcomes are able to be employed without further justification. And (4) individuals with large numbers
of measures, mi, are not allowed to unduly dominate the algorithm at the expense of those with small numbers of
measures.

One disadvantage of random forest methods, compared with more standard regression methods, is that the model
underlying predictions cannot be written in terms of easily interpreted parameter estimates as in Equation (2). And
although we advocate open source code for fitted random forest models, a few practitioners will be able to read and
interpret the code, making it a bit of a black box approach for dynamic predictions.

One attempt to demystify fitted random forest models is to report variable importance summary statistics from a fitted
random forest model. In the htree package, variable importance estimates for predictors (input variables) are calculated
via the varimp_hrf function. The general idea is to compare model performance with and without the input variable
under investigation. Of course predictions based on traversing trees in the fitted random forest model require all input
variables to be specified. Hence, when calculating model performance without the input variable of interest, a random
permutation of the observed input variables is reassigned to the training samples, eliminating any association between
the predictor of interest and the training sample. It is common to randomly re-permute the input variable several times
and average the corresponding model performance results; the nperm parameter for the varimp.hrf function defaults to
20 permutations of this nature.

Out of bag subjects feature prominently in estimating variable importance metrics. To briefly summarize how variable
importance is calculated, consider the out of bag sample corresponding to the bth (modified) bootstrap sample, recalling
that these 𝓁 = 1, … , nb out of bag subjects were those subjects not used to build the bth decision tree. For out of bag
subject 𝓁, data from measurement time s𝓁j is {Ŝ𝜏

𝓁(s𝓁j),Z𝓁 ,Y𝓁(s𝓁j)}, 𝓁 = 1, … , nb, j = 1, … , m𝓁 , and the estimated 𝜏-year
survival probability for individual 𝓁 at time s𝓁j based on traversing the bth decision tree and landing in partition Rbk𝓁 is

Ŝ𝜏(s𝓁j)Rbk𝓁
. For the bth decision tree, model fit in the out of bag sample is characterized by

MSEb(Z) =
nb∑
𝓁=1

1
m𝓁

m𝓁∑
j=1

(
Ŝ𝜏
𝓁(s𝓁j) − Ŝ𝜏(s𝓁j)Rbk𝓁

)2

,

where the summand is the average mean squared error seen for individual 𝓁 across follow-up windows, j = 1, … , m𝓁 .
Denote MSEb(Z̃) the value of MSEb when the input variable of interest has been randomly permuted as described above,
altering the estimated 𝜏-year survival probabilities for individual 𝓁 at each time s𝓁j in the formula. The importance of the
input variable under consideration is calculated as

∑B
b=1[MSEb(Z̃) − MSEb(Z)]∑B

b=1 MSEb(Z)
,

which measures the relative increase in MSEb(Z) due to permuting the input variable under consideration. The htree
package reports the percent increase in MSE (%IncMSE) based on this calculation, with larger values indicating more
importance of the predictor. Lunetta et al33 noted that importance measures are able to assess the impact of an input
variable in dynamic random forest predictions despite potentially complex functional relationships between the outcome
and other predictors, a metric that is unavailable from more traditional regression models.

3 SIMULATIONS STUDIES

The proposed methods are evaluated in a variety of settings where three longitudinally measured biomarkers influence
mortality. We will describe the latent biomarker processes, models and results momentarily. In each scenario, separate



3692 ZHAO et al.

0 5 10 15 20

−
6

−
4

−
2

0
2

4

Time

T
ru

e
 m

a
rk

e
r 

m
e
a
s
u
re

m
e
n
ts

0 5 10 15 20

0
5

1
0

Time

T
ru

e
 m

a
rk

e
r 

m
e
a
s
u
re

m
e
n
ts

0 5 10 15 20

−
4

−
2

0
2

4

Time

T
ru

e
 m

a
rk

e
r 

m
e
a
s
u
re

m
e
n
ts

(C)(B)(A)

F I G U R E 2 Simulated latent biomarker trajectories for 10 random subjects. A, W1i(t). B, W2i(t). C, Latent continuous process
𝛼3i + KL3i

t +
KD3i

𝜂3i
(e−𝜂3i t − 1) used to define the binary biomarker W3i(t) [Colour figure can be viewed at wileyonlinelibrary.com]

training and validation data sets are generated, with each including n = 200 subjects. The training data set is used to build
a 𝜏 = 6-month dynamic risk prediction tool based on the existing PCGLM method as well as the proposed GEE.pseudo
and RF.pseudo methods described in this article. Each generated validation subject’s follow-up windows are then filtered
through the proposed algorithms to predict the probability of being event-free at time s + 6 given observed biomarker data
up to time s. Performance of dynamic prediction algorithms in the validation data is summarized across 500 simulated
iterations.

Latent nonlinear continuous-time biomarker processes feature prominently in the simulations. Let N(a, b) and LN(a,
b) denote the normal and lognormal distributions, respectively, with mean a and standard deviation b. For each individual
i, i = 1, … , n, three true correlated latent biomarker processes follow

W1i(t) = 𝛼1i + 𝛾it,

W2i(t) = 𝛼2i + KL2i t +
KD2i

𝜂2i
(e−𝜂2it − 1),

and W3i(t) = I
(
𝛼3i + KL3i t +

KD3i

𝜂3i
(e−𝜂3it − 1) > 0

)
,

where 𝛾 i ∼ N(0, 0.1), 𝜂2i ∼ LN(−0.3, 0.5), 𝜂3i ∼ LN(−0.5, 0.5), KL2i ∼ LN(−1.2, 0.5), KL3i ∼ LN(−1.5, 0.5), KD2i ∼
LN(−0.4, 0.5), KD3i ∼ LN(0.4, 0.5), and 𝜶i = (𝛼1i, 𝛼2i, 𝛼3i) follows a multivariate mean zero normal distribution with
correlation matrix

∑
𝛼

=
⎡⎢⎢⎢⎣

1 0.3 0.1
0.3 1 0
0.1 0 1

⎤⎥⎥⎥⎦
.

Both W2i(t) and W3i(t) are constructed from a combination of underlying growth and death processes,34-37 with W2i(t)
reflecting a continuous process and W3i(t) transformed to a Bernoulli process. Figure 2 illustrates continuous latent
biomarker trajectories in 10 representative individuals for W1i(t) (left panel), W2i(t) (middle panel), and the process,
𝛼3i + KL3i t +

KD3i

𝜂3i
(e−𝜂3it − 1), that after transformation becomes the Bernoulli process, W3i(t) (right panel).

The continuous latent biomarker processes are measured with independent and identically distributed N(0, 0.5)
random error at 6-month intervals, si = {0, 6, 12, … , simi}, where mi in each case depends on the simulated censoring
time for subject i. Uniform censoring times are independently generated to produce approximately 30% censoring. At
measurement time sij, the observed biomarker data are denoted Yi(sij) = [Y 1i(sij), Y 2i(sij), Y 3i(sij)].
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Survival times are linked to the latent longitudinal biomarkers via a piecewise exponential model assuming
the rate is constant between two consecutive measurement times. In Simulation Study 1, the rate parameter in
the exponential model is 𝜆i(sij) = 0.02exp[0.5W1i(sij)+ 0.5W2i(sij)+ 0.5W3i(sij)] for time interval [sij, sij + 6). For
additional complexity in Simulation Studies 2 and 3, the rate parameter includes an interaction term, that is,
𝜆i(sij) = 0.02exp[0.5W1i(sij)+ 0.5W2i(sij)+ 0.5W3i(sij)−W1i(sij)×W2i(sij)].

Three performance metrics are used to evaluate the various dynamic risk prediction methods. The first metric is the
area under the time-dependent receiver operating characteristic curve (AUC),38 where a method that perfectly predicts
survival status for a 𝜏-length follow-up window has an AUC of 1.0, and methods with poor prediction have AUC val-
ues near 0.5. AUC estimates are obtained using the survivalROC package in R. The second metric is the prediction error
(PE),39,40 or time-dependent Brier score, where smaller values indicate better precision in estimating the probability of sur-
viving 𝜏 time units. In particular, an inverse weight approach estimates the average squared difference between observed
and estimated survival probabilities at sij + 𝜏 among those at risk at sij using

PE(𝜏; sij) =
1
ñ

n∑
i=1

I(sij < Xi ≤ sij + 𝜏)[S̃𝜏
i (sij)]2di

Ĝ(Xi|sij)

+ 1
ñ

n∑
i=1

I(Xi > 𝜏)[1 − S̃𝜏
i (sij)]2

Ĝ(sij + 𝜏|sij)
,

where ñ is the number of subjects still at risk at sij, Ĝ(⋅|sij) is the Kaplan-Meier censoring time survival estimate among
subjects at risk at sij and the squared terms reflect observed minus estimated probabilities of surviving 𝜏 time units in the
follow-up window starting at sij.

The last metric to evaluate prediction accuracy is the mean squared error (MSE). For individual i and at measurement
time s, we can obtain the true 6-month survival probability from time s based on the data generating model. The MSE
is the squared difference between the estimated 6-month survival probability and the true survival probability averaged
across 200 subjects.

3.1 Scenarios evaluating a small number of longitudinal markers

With a small number of longitudinal biomarkers, we are able to compare performance of all three methods, PCGLM,
GEE.pseudo, and RF.pseudo. In both Simulation Studies 1 and 2, the GEE.pseudo method, Model (2) took the form

logit[Ŝ𝜏
i (sij)] = 𝛂B(sij) + 𝛾1Y1i(sij) + 𝛾2Y2i(sij) + 𝛾3Y3i(sij), i = 1, … ,n, j = 1, … ,mi,

where B(sij) was taken to be a B-spline basis matrix with three degrees of freedom. As described in Section 2.3, an inde-
pendent working correlation was assumed with robust estimation of standard errors using the methods of Reference [26]
along with Reference [27]. In RF.pseudo, the input variables for subject i at time sij include Yi(sij) and sij. We implemented
the RF.pseudo using the hrf function with default parameters.

Results for the above two simulation studies are shown in Tables 2 and 3. In the more simple case where the number of
biomarkers is small and the relationship between the biomarkers and survival is correctly specified (Table 2), GEE.pseudo
has very similar performance to PCGLM, which indicates that the GEE.pseudo method is a competing alternative to the
PCGLM method. The nonparametric RF.pseudo approach performs slightly worse than the parametric approaches, PCGLM
and GEE.pseudo, in this case. We also increased correlations between the three biomarker measurements (ie, from 0.3
to 0.6 and from 0.1 to 0.3 in

∑
𝛼 matrix), all three models performed similarly, or slightly better. However, conclusions

remained the same (results not shown).
When an interaction is present (see Table 3), the RF.pseudo method that automatically incorporates complex relation-

ships between predictors and outcomes performed substantially better than the PCGLM and GEE.pseudo models that did
not consider the interaction term. Similar conclusions were reached when the censoring rate was increased to 50% (see
Table 4).
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n0 s = 6 s = 12 s = 18 s = 24

MSE (ESD) MSE (ESD) MSE (ESD) MSE (ESD)

PCGLM 0.003 (0.002) 0.004 (0.002) 0.005 (0.003) 0.010 (0.009)

GEE.pseudo 0.003 (0.002) 0.004 (0.002) 0.005 (0.003) 0.010 (0.009)

RF.pseudo 0.010 (0.003) 0.014 (0.004) 0.019 (0.006) 0.028 (0.012)

AUC (ESD) AUC (ESD) AUC (ESD) AUC (ESD)

PCGLM 0.775 (0.04) 0.830 (0.04) 0.827 (0.06) 0.809 (0.09)

GEE.pseudo 0.775 (0.04) 0.830 (0.04) 0.827 (0.06) 0.810 (0.09)

RF.pseudo 0.752 (0.05) 0.805 (0.06) 0.798 (0.06) 0.761 (0.10)

PE (ESD) PE (ESD) PE (ESD) PE (ESD)

PCGLM 0.157 (0.02) 0.172 (0.02) 0.175 (0.03) 0.183 (0.05)

GEE.pseudo 0.157 (0.02) 0.172 (0.02) 0.175 (0.03) 0.184 (0.05)

RF.pseudo 0.165 (0.02) 0.192 (0.02) 0.200 (0.03) 0.215 (0.04)

Note: AUC, PE, and MSE are the averaged AUC, PE, and MSE over 500 simulated data sets, respectively, and
ESD is corresponding empirical standard error.

T A B L E 2 Simulation results
comparing PCGLM, GEE.pseudo, and
RF.pseudo in Simulation Study 1
(n = 200 in training data and n = 200 in
validation data; each with 30%
censoring)

n0 s = 6 s = 12 s = 18 s = 24

MSE (ESD) MSE (ESD) MSE (ESD) MSE (ESD)

PCGLM 0.058 (0.01) 0.080 (0.01) 0.079 (0.02) 0.061 (0.02)

GEE.pseudo 0.053 (0.01) 0.072 (0.01) 0.082 (0.02) 0.075 (0.03)

RF.pseudo 0.017 (0.01) 0.020 (0.01) 0.019 (0.01) 0.015 (0.01)

AUC (ESD) AUC (ESD) AUC (ESD) AUC (ESD)

PCGLM 0.674 (0.06) 0.809 (0.05) 0.844 (0.06) 0.845 (0.11)

GEE.pseudo 0.687 (0.06) 0.814 (0.05) 0.828 (0.07) 0.819 (0.12)

RF.pseudo 0.791 (0.05) 0.888 (0.04) 0.923 (0.04) 0.938 (0.08)

PE (ESD) PE (ESD) PE (ESD) PE (ESD)

PCGLM 0.185 (0.02) 0.186 (0.02) 0.157 (0.03) 0.110 (0.04)

GEE.pseudo 0.180 (0.02) 0.178 (0.02) 0.160 (0.03) 0.126 (0.05)

RF.pseudo 0.152 (0.02) 0.146 (0.02) 0.113 (0.02) 0.074 (0.03)

Note: AUC, PE, and MSE are the averaged AUC, PE, and MSE over 500 simulated data sets,
respectively, and ESD is corresponding empirical standard error.

T A B L E 3 Simulation results comparing
PCGLM, GEE.pseudo, and RF.pseudo in
Simulation Study 2 (n = 200 in training data
and n = 200 in validation data; each with 30%
censoring)

3.2 Models with a large number of longitudinal markers

Simulation Study 3 is based on the same underlying data structure developed for Simulation Study 2. However, in this
case, the truly useful biomarkers for predicting the event time are included for analysis along with a batch of n0 biomarkers
that are not associated with the event time. These n0 biomarkers reflect random noise at each measurement time sij, i = 1,
… , n, j = 1, … , mi, with the observed data processes, Y ki(sij) ∼ N(0, 0.5), k = 4, … , 4 + n0 and n0 ∈{50, 100, 150}. In this
setting, only the RF.pseudo algorithm is able to process the large number of predictors and produce dynamic predictions.
Table 5 shows that the RF.pseudo method has reasonably good performance, although not as strong as in Simulation Study
2 where the number of inputs, p, was smaller. This indicates that RF.pseudo is able to successfully draw information from
the smaller set of useful biomarkers to make predictions over time. The performance measures improve as the number
of random noise biomarkers included with the truly useful biomarkers decreases.
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T A B L E 4 Simulation results
comparing PCGLM, GEE.pseudo, and
RF.pseudo in Simulation Study 2
(n = 200 in training data and n = 200 in
validation data; each with 50%
censoring)

n0 s = 6 s = 12 s = 18 s = 24

MSE (ESD) MSE (ESD) MSE (ESD) MSE (ESD)

PCGLM 0.057 (0.011) 0.080 (0.014) 0.081 (0.021) 0.066 (0.035)

GEE.pseudo 0.051 (0.011) 0.073 (0.014) 0.091 (0.029) 0.089 (0.053)

RF.pseudo 0.018 (0.005) 0.022 (0.006) 0.022 (0.008) 0.017 (0.011)

AUC (ESD) AUC (ESD) AUC (ESD) AUC (ESD)

PCGLM 0.674 (0.063) 0.806 (0.052) 0.839 (0.081) 0.798 (0.214)

GEE.pseudo 0.694 (0.061) 0.812 (0.053) 0.808 (0.091) 0.742 (0.223)

RF.pseudo 0.787 (0.052) 0.882 (0.043) 0.918 (0.053) 0.895 (0.197)

PE (ESD) PE (ESD) PE (ESD) PE (ESD)

PCGLM 0.199 (0.024) 0.205 (0.028) 0.186 (0.043) 0.159 (0.082)

GEE.pseudo 0.191 (0.025) 0.197 (0.029) 0.199 (0.053) 0.197 (0.112)

RF.pseudo 0.165 (0.022) 0.163 (0.025) 0.135 (0.035) 0.106 (0.054)

Note: AUC, PE, and MSE are the averaged AUC, PE, and MSE over 500 simulated data sets, respectively, and
ESD is corresponding empirical standard error.

T A B L E 5 Simulation results of RF.pseudo in
Simulation Study 3 (n = 200 in training data and
n = 200 in validation data; each with 30% censoring)

n0 s = 6 s = 12 s = 18 s = 24

MSE (ESD) MSE (ESD) MSE (ESD) MSE (ESD)

50 0.061 (0.01) 0.116 (0.02) 0.102 (0.03) 0.079 (0.03)

100 0.065 (0.01) 0.129 (0.03) 0.114 (0.03) 0.084 (0.03)

150 0.067 (0.02) 0.134 (0.03) 0.117 (0.03) 0.086 (0.03)

AUC (ESD) AUC (ESD) AUC (ESD) AUC (ESD)

50 0.664 (0.09) 0.756 (0.09) 0.778 (0.12) 0.749 (0.24)

100 0.628 (0.09) 0.707 (0.09) 0.717 (0.12) 0.688 (0.25)

150 0.602 (0.09) 0.675 (0.09) 0.690 (0.14) 0.642 (0.25)

PE (ESD) PE (ESD) PE (ESD) PE (ESD)

50 0.188 (0.03) 0.226 (0.04) 0.182 (0.04) 0.134 (0.05)

100 0.193 (0.03) 0.238 (0.04) 0.195 (0.04) 0.139 (0.05)

150 0.195 (0.03) 0.243 (0.04) 0.197 (0.05) 0.141 (0.05)

Note: AUC, PE, and MSE are the averaged AUC, PE, and MSE over 500 simulated data sets,
respectively, and ESD is corresponding empirical standard error. n0 is the number of noise
markers that are not associated with the event outcome.

4 ANALYSIS OF NEPTUNE DATA

One of the goals of the Nephrotic Syndrome Study Network (NEPTUNE) was to understand factors leading to
kidney failure, defined as the development of end-stage renal disease (ESRD) or estimated glomerular filtration
rate (eGFR) decline by ≥40% from baseline.41,42 Our first example taken from this study focuses on dynamic
prediction of 2-year kidney-failure-free survival based on risk factors that would be routinely available to most care
givers. Our cohort is constrained to 174 subjects with proteinuria ≥ 0.5 g/d at the time of their first clinically indi-
cated renal biopsy. Longitudinal data available for dynamic risk prediction from that point included clinical and
demographic factors (eg, diagnosis, presence of hypertension, gender, weight, age, race), urine measurements (eg,
urine albumin to creatinine ratio [UACR], urine protein to creatinine ratio [UPCR]), serum measurements (eg,
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F I G U R E 3 NEPTUNE Cohort Example 1 with analysis based on RF.pseudo method. Left panel: time-dependent receiver operating
characteristic (ROC) curve for estimating 2-year kidney-failure-free survival probability based on 55 routinely collected predictors. Right
panel: variance important plot showing top 12 predictors. %IncMSE, percent increase in mean squared error when predictor is replaced with
randomly permuted values in algorithm; AUC, area under curve; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; PE,
prediction error; UACR, urine albumin to creatinine ratio; UPCR, urine protein to creatinine ratio

eGFR, triglycerides, albumin, creatinine, hematocrit, hemoglobin, CO2, blood urea nitrogen [BUN]), and medication
information.

In all, a mixture of 55 continuous and binary predictors are of interest, with updates to the 52 time-varying
predictors measured at different times across subjects during the follow-up time ranging from 1.7 to 81 months.
Of the PCGLM, GEE.pseudo, and RF.pseudo methods, only the RF.pseudo is able to simultaneously evaluate
the large number of predictors for this analysis. Dynamically estimated probabilities of 2-year kidney-failure-free
survival were estimated using 10-fold cross-validation to prevent model overfitting based on the RF.pseudo method.
The left panel of Figure 3 shows the time-dependent receiver operating characteristic (ROC) curve based on these
estimated probabilities, with AUC = 0.86 and PE = 0.16 indicating very good prediction from the RF.pseudo
algorithm. Variable importance was calculated using out of bag subjects, as described in Section 2.4.2, with the
top 12 featured predictors summarized in the right panel of Figure 3. The variable importance plot highlights
several markers that have previously been linked to kidney failure (such as eGFR, serum creatinine, UPCR,
and UACR).

Our second example from the NEPTUNE cohort investigates three experimental urine biomarkers that are not rou-
tinely collected in clinical practice (epidural growth factor [EGF], monocyte chemoattractant protein-1 [MCP1], and
tissue inhibitor of metalloproteinases-1 [TIMP1]), along with the top urine biomarker that emerged from the variable
importance plot in our first example (UPCR from Figure 3, right panel); each biomarker is continuous, and the experi-
mental biomarkers were measured at baseline, 12, 24, and 36 months. Two hundred and eleven subjects with proteinuria
≥ 0.5 g/d at the time of their first clinically indicated renal biopsy are available for this analysis. Because of the relatively
smaller number of longitudinally measured biomarkers in this example, we are able to compare results from the existing
method, PCGLM, and our proposed methods, GEE.pseudo and RF.pseudo. For the GEE.pseudo method, Model (2) takes
the form

logit[Ŝ𝜏
i (sij)] = 𝜶B(sij) + 𝛾1EGFi(sij) + 𝛾2MCP1i(sij) + 𝛾3TIMP1i(sij) + 𝛾4UPCRi(sij),

i = 1, … , 211, j = 1, … , mi, where B(sij) is a B-spline basis matrix with three degrees of freedom. An independent
working correlation is assumed with robust estimation of standard errors, as previously described. For all methods,
kidney-failure-free survival probabilities at 𝜏 = 12, 18, 24, and 30 months were estimated with 10-fold cross-validation to
prevent model over-fitting.
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F I G U R E 4 NEPTUNE Cohort
Example 2 comparing PCGLM,
GEE.pseudo and RF.pseudo methods
using four longitudinal urine
biomarkers. Time-dependent receiver
operating characteristic (ROC) curves
estimate kidney-failure-free survival
probabilities at 12 months (top left
panel), 18 months (top right panel),
24 months (bottom left panel), and 30
months (bottom right panel). AUC:
area under curve; PE: prediction error.
Preferred methods achieve higher
AUC and lower PE [Colour figure can
be viewed at wileyonlinelibrary.com]
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Figure 4 displays time-dependent ROC curves, along with AUC and PE results for the three dynamic risk prediction
methods, with 𝜏 varying across the four panels. In each panel, RF.pseudo outperforms the other methods with higher
AUC values and equivalent or lower PE values. The GEE.pseudo and PCGLM methods did not show a clear advantage over
one another, with GEE.pseudo having better performance for 𝜏 = 24 and 30 months and PCGLM having better performance
at 𝜏 = 12 and 18 months.

5 DISCUSSION

The goal of this article is to provide simple and flexible tools for calculating dynamic risk predictions when the number of
longitudinal biomarkers is large. We proposed methods for making dynamic risk predictions using repeatedly measured
biomarkers of a large dimension. The main idea is to compute Jackknife pseudo observations to replace the survival
outcomes and then model these pseudo observations as a function of the longitudinal marker measurements for risk
predictions. Existing statistical methods (such as JM, landmarking, PCCox and PCGLM in Reference [20]) cannot handle
longitudinal data with a large dimension, p, especially when p > n. As illustrated in both simulation studies and the
NEPTUNE data analysis, a key feature of the proposed RF.pseudo is its ability to select a small set of important markers
when a large number of longitudinal markers are available. When the number of longitudinal markers is small, the
proposed GEE.pseudo is a competing alternative to PCGLM, and RF.pseudo could achieve better prediction accuracy when
complexity relationships exist between markers and the survival outcome.

Another important feature of the proposed methods is their simplicity in computation. The two-stage strategy offers
great flexibility to incorporate many features of longitudinal covariate history into the modeling. For example, fitted
marker values can be used by modeling the longitudinal marker process up to the measurement time rather than the
observed values; rates of changes in marker values can be included in the model as a covariate; changes from baseline
(or nadir) could also be included in the model for the risk prediction. Compared with the popular randomForestSRC

http://wileyonlinelibrary.com
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R package, which is the random forest method for survival data, pseudo.RF accounts for correlated data introduced by
repeated measured within subjects. Furthermore, by using the pseudo probability as a quantitative response in the random
forest, we can directly estimate the survival probability from the model.

KM estimates used in creating the pseudo values are subject to covariate-dependent censoring bias. In this case, we
can replace the KM estimator by the inverse of probability of censoring weighted estimator for the survival function in
computing the pseudo-survival probabilities, which has been shown to reduce the bias in the parameter estimation.43-45

The proposed methods cannot automatically handle missing biomarker values. If biomarkers are measured at different
time points, we can impute the missing data at prespecified landmark times, using the last observation carried forward
or the predicted random effects based on estimates from a linear mixed effects model as described in Reference [20].
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