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Summary
This article presents the development and experimental validation of an emis-
sions oriented model predictive controller for a diesel engine. The control objec-
tive is to minimize cumulative NOx and hydrocarbon emissions while limiting
visible smoke production and without compromising fuel economy or torque
response. This is accomplished by using a supervisory model predictive con-
troller (SMPC) and nonlinear model predictive controller (NMPC) in tandem.
The SMPC controller coordinates the exhaust gas recirculation (EGR) rate tar-
get and fuel supplied to the engine in real time to satisfy combustion quality
constraints, while the NMPC controller tracks the EGR rate target by manipu-
lating the EGR throttle, EGR valve, and variable geometry turbine. The NMPC
controller uses MPC for feedforward and feedback in a novel configuration to
simultaneously achieve fast tracking performance, disturbance rejection, and
robustness. We demonstrate that the proposed diesel engine MPC controller is
able to reduce cumulative emissions by 10% to 15% relative to a state of the art
benchmark strategy when placed in closed loop with an engine on a transient
dynamometer.

K E Y W O R D S

automotive applications, constrained control, diesel, experimental validation, nonlinear model
predictive control

1 INTRODUCTION

Increasingly stringent emissions and fuel economy regulations have created a need for more complex engine systems
and advanced engine control strategies. Diesel engines offer superior fuel economy compared with their gasoline coun-
terparts; however, sophisticated strategies are needed to manage oxides of nitrogen (NOx) and particulate matter (PM)
emissions to meet regulatory standards. Many modern diesels incorporate a variable geometry turbocharger (VGT) to
improve power output and fuel efficiency, and an external exhaust gas recirculation (EGR) system to reduce emissions.

Abbreviations: BGF, burnt gas fraction; BLAS, basic linear algebra subroutines; CPU, central processing unit; DAP, diesel air path; ECU, engine control
unit; EGR, exhaust gas recirculation; FB, feedback; FF, feedforward; LAPACK, linear algebra package; LPV, linear parameter varying; LTI, linear time
invariant; MAP, manifold air pressure; MAF, mass air flow; MPC, model predictive control; NEDC, New European Drive Cycle; NMPC, nonlinear model
predictive control; NOx, oxides of nitrogen; OCP, optimal control problem; PM, particulate matter; QP, quadratic Program; SMPC, supervisory model
predictive control; THC, total hydrocarbon; WLTC, Worldwide Harmonized Light Vehicles Test Cycle; VGT, variable geometry turbocharger.
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However, the addition of both the turbocharger and EGR systems into the engine design introduces strong nonlinearities
and interactions, complicating control development.

Emissions control in automotive diesels is especially challenging. Unlike in, for example, marine or generator applica-
tions, load and engine speed are highly transient, leading to frequent emissions spikes which must be carefully managed.
In particular, smoke control is strongly coupled to torque response (drivability) and there is a strong tradeoff between
transient NOx and smoke production. Model predictive control (MPC) provides a useful framework for managing these
tradeoffs via real-time constraint enforcement. MPC1,2 is a control technique that computes a control action at each sam-
pling instant by solving an optimal control problem (OCP) over a finite receding horizon. MPC is of increasing interest in
the automotive and engine control communities3,4 because it can systematically handle constraints, nonlinearities, and
achieve fast transient responses.

Existing literature on diesel engine MPC can be broadly divided into two classes: (i) those with airflow/pressure
setpoint tracking formulations and (ii) those that consider high-level objectives such as fuel economy or emissions.

Prior research on pressure and/or airflow setpoint tracking using linear MPC often uses switching or piecewise linear
models to cover the engine operating range.5-9 This approach may lead to chattering and poor performance; multiple esti-
mator/controllers running in parallel are often needed to overcome these issues, increasing the computational footprint of
the controller. To avoid the use of multiple models, the use of partial nonlinear inversion in combination with rate-based
MPC10 or disturbance observers11 has been proposed to allow a single linear MPC controller to cover the entire oper-
ating range. However, the use of a single controller leads to reduced model accuracy and performance. Nonlinear MPC
(NMPC) can incorporate more accurate models and improve performance while avoiding the need for nonlinear inversion
and/or multiple linear models. Due to the high computational complexity of nonlinear optimization, most literature on
the topic involves only simulation studies.12-14 However, Murilo et al15 present experimental results which demonstrate
good tracking performance with an NMPC controller over a drive cycle but does not offer comparisons with industrial
benchmarks (eg, existing mass production controllers) or insight into how the NMPC controller impacts emissions or fuel
economy.

MPC also is capable of directly optimizing or constraining high-level/economic objectives such as emissions or
fuel economy, these outputs are nonlinear and thus are usually addressed with NMPC. Controllers that maximize
fuel economy subject to emissions constraints have been proposed for heavy duty diesels,16,17 off-highway diesels,18

and marine/generator diesels.19 The associated simulation and experimental results are promising; however, these
varieties of diesel engines are not subject to the same transient operating condition (speed/load) variations as auto-
motive diesel engines. Karlsson et al20 propose an MPC controller that directly considers high-level objectives. How-
ever, they use cylinder pressure sensors which are not available in production vehicles, linear models resulting in
poor closed-loop performance, and present results only for a single-operating point rather than complete driving
cycles.

In summary, linear MPC controllers are not well suited to optimizing high-level objectives in diesel engines, such as
those related to emissions and fuel economy, due to the nonlinearity of these outputs. At the same time, implementing
nonlinear MPC controllers for automotive diesels remains challenging due to fast sampling rates and the high compu-
tational complexity of nonlinear optimization. Moreover, most experimental results for diesel engine MPC controllers
focus either on step responses, rather than realistic driving patterns, or do not consider how the NMPC controller impacts
high-level objectives. In particular, comprehensive experimental emission control results, that is, considering realistic
driving patterns, using only production sensors, and including comparisons with existing industrial benchmarks, have
not been presented for automotive diesel engines.

In this article, we develop a novel nonlinear model predictive control framework for emissions coordinated con-
strained control of a diesel engine. The framework involves an inner-loop nonlinear tracking-type MPC controller for
coordinated control of engine airpath actuators (EGR valve, VGT, throttle) and a supervisory outer-loop MPC/reference
governor hybrid that manipulates the EGR rate setpoint and fuel input to enforce emissions constraints. Our contributions
are as follows:

1. We propose an inner-outer loop MPC-based framework that enables systematic design of constrained controllers for
the diesel engine system, rather than using heuristic or rule based design as is current industrial practice. For the
outer loop, we propose a novel supervisory MPC (SMPC) controller that is able to enforce pointwise-in-time emis-
sions constraints and for the inner loop we develop a controller that uses a novel NMPC based feedforward/feedback
architecture to simultaneously achieve fast transient responses and integral action. Theoretical closed-loop stability
results supporting the controller are also included.
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F I G U R E 1 A high-level diagram
illustrating the architecture of a typical
diesel powertrain

2. We experimentally verify that our integrated SMPC/NMPC controller is able to reduce engine-out NOx and hydro-
carbon emissions by 10% to 15% compared with a state-of-the-art industrial benchmark controller over a transient
driving cycle. Furthermore, we demonstrate visible smoke control during fast transients which is both challenging
and specific to automotive diesel applications. This is accomplished using only production sensors which implies that
our controller can be deployed on existing engines without hardware modifications.

3. We demonstrate that it is possible to implement real-time capable high-performance NMPC controllers at greater than
100 Hz sampling rates by leveraging recent advances in computational algorithms for MPC21 and symbolic tools for
automatic code generation.22 In particular, our inner-loop NMPC controller is able to execute more than five times
faster than the most comparable automotive diesel NMPC controller in the literature.15

Although developed here for diesel engine applications, we believe that our hierarchical control framework is more
broadly applicable, for example, for control of other internal combustion engines and other industrial applications.
Demonstrations of this kind are a crucial step in the transition of NMPC for diesel engines from academic research to
industrial practice.

This article builds upon our previous work. The SMPC controller extends the economic MPC controller of
Liao-McPherson et al23 and the NMPC controller combines the exterior penalty approach of Huang et al12 and a nonlinear
extension of the rate-based formulation presented by Huang et al10 for linear MPC. This article integrates the SMPC and
NMPC modules and presents experimental results for the nonlinear case; our previous publications12,23 only contain sim-
ulation results. An overview of the project, including a high-level description of the NMPC controller, is also available.24

A model predictive controller is fundamentally based on three constituents: (i) prediction models used to estimate the
response of the system to a control action (and any associated estimators), (ii) an optimal control problem (OCP) formula-
tion, and (iii) a method for solving the aforementioned OCP in real time. The rest of Section 1 provides some background
on engine control, describes the engine system, and outlines the control objectives. Section 2 describes the prediction mod-
els used in the SMPC and NMPC controllers. Section 3 describes the control architecture in detail, as well as the optimal
control problems defining the SMPC and NMPC controllers. Section 4 describes how the SMPC and NMPC optimal con-
trol problems are solved in real time. Section 5 contains experimental results and analysis demonstrating the performance
and reliability of the proposed strategy. Finally, Sections 6 and 7 discuss future perspectives and concluding remarks.

1.1 Diesel powertrain overview

We begin with a brief description of the diesel powertrain operation, see Figure 1. The driver inputs a pedal angle com-
mand that is mapped to a fuel request qtrg. In response to fuel input, the engine produces torque which is applied to the
transmission input shaft and transmitted to the wheels through the transmission and differential. The engine also pro-
duces emissions as byproducts which are heavily regulated. In modern vehicles, engine exhaust gases pass through an
aftertreatment system, see Resitoglu et al25 for more details, before being emitted into the atmosphere. From the per-
spective of the engine there are two inputs, the fueling rate command (qtrg) and the engine speed (Ne). The fueling rate
command represents a torque request from the driver and the engine speed is determined by the powertrain, that is, it is
a function of the vehicle speed and the transmission gear ratio. The outputs are the engine torque applied to the transmis-
sion input shaft (𝜏q), the NOx (𝜓NOx), and total hydrocarbon (THC) (𝜓THC) concentrations, and the exhaust gas opacity
(𝜓OP). More details on powertrain modeling and control can be found in the literature.26,27

1.2 System description

A schematic of the diesel engine is shown in Figure 2.
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F I G U R E 2 A diagram of the diesel engine airpath

The engine consists of a cylinder block, intake and exhaust manifolds, an external EGR system, and a turbocharger.
The manifold air pressure (MAP) and mass air flow (MAF) sensors are used to measure the intake manifold pressure
and compressor flow, respectively. The exogenous inputs to the system are the fuel target and the engine speed. Fluid
flows through the engine are controlled by the EGR throttle, EGR valve, and variable geometry turbocharger (VGT). The
EGR valve controls the amount of exhaust gas allowed to flow into the intake manifold; adding exhaust gas into the
intake manifold reduces peak combustion temperature in the cylinders, lowering NOx concentrations, but can cause poor
quality combustion, leading to vibration, roughness, and smoke. The EGR throttle is used to reduce airflow into the intake
manifold allowing for a higher proportion of exhaust gases when it is beneficial. The VGT influences the pressure in the
intake manifold by controlling how much energy is extracted from the exhaust gases. Higher intake manifold pressure
increases air flow into the cylinders, increasing engine power. In this article, we consider the total fueling rate as a control
input; an external injection strategy is used for the rest of the fuel path control.

The engine operating condition consists of the fueling rate* target and the engine speed, that is,

𝜌 = [qtrg Ne]T . (1)

The state vector for the supervisory controller consists of the intake pressure, exhaust pressure, compressor flow,
intake manifold burnt gas fraction, and exhaust manifold burnt gas fraction, and the control vector consists of the EGR
rate target passed to the inner-loop controller and the fueling rate command applied to the engine, that is,

x = [pim pex wc F1 F2]T , and u = [𝜒 trg q]T . (2)

The EGR rate is defined as the mass flow through the EGR valve into the intake manifold over the total mass flow
into the cylinders, that is, 𝜒 = wegr∕wcyl. The fueling rate applied to the engine q may be different than the target qtrg in
order to enforce constraints. The state vector of the supervisory controller x can be partitioned into airpath and EGR loop
variables, denoted by

𝜉 = [pim pex wc]T , and Υ = [F1 F2]T , (3)

respectively, so that x = [𝜉T ΥT]T . The state vector for the airpath controller is the intake pressure and EGR rate, the
control inputs are the throttle, EGR valve, and VGT positions, that is,

z = [pim 𝜒]T , and v = [uthr uval uvgt]T . (4)

*The fueling rate is the ratio of fuel mass flow and engine speed, is proportional to torque (when losses are neglected), and has units of volume per stroke.
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F I G U R E 3 A high-level control architecture diagram

The system outputs are split into measurements, and performance variables, defined respectively as,

ym =
[

pim wc Ne

]T
and yp =

[
𝜓OP 𝜓NOx 𝜓THC 𝜏q

]T
. (5)

The measurements, ym, are used for feedback. The performance outputs: torque, exhaust opacity (smoke), NOx con-
centration, and total hydrocarbon concentration (THC) (strongly correlated with particulate matter), are measured for
evaluation purposes but are not available for feedback. The engine is also instrumented to measure the exhaust pres-
sure pex, the intake and exhaust manifold temperatures Tim,Tex, and the exhaust manifold burnt gas fraction F2. These
measurements are used for model validation and calibration but not for performance evaluation or feedback.

Remark 1. The dimension of the supervisory controller state vector is larger than that of the airpath controller, the extra
states are needed to model emissions.

1.3 Objectives and methodology

The objective of diesel airpath control is to supply the torque requested by the driver while maximizing fuel economy,
respecting regulatory constraints on NOx and particulate matter (PM), and limiting visible smoke. The focus of this article
is emissions reduction, our methodology is to use the constraint handling capabilities of MPC to reduce conservatism
and operate closer to constraint boundaries during transients to reduce emissions. Specifically, there is a tradeoff between
NOx and smoke emissions during transients which is controlled by the EGR valve. Opening the valve and increasing EGR
flow decreases NOx production (by reducing peak combustion temperatures28) but reduces available oxygen and increases
smoke production. The conventional strategy for managing this tradeoff is to shut the EGR valve when fuel/torque is
requested by the driver to suppress smoke, leading to a transient spike in NOx emissions. Our controller uses dynamic
models of the engine to permit more EGR flow while still preventing visible smoke production and thus reduce overall
emissions.

Figure 3 provides a high-level overview of the controller architecture, a more detailed diagram can be found in Figure 7.
The motivation behind the design is to decouple nonlinearity compensation and integral action from constraint satisfac-
tion. This reduces the complexity of the controller as well as making the design modular (an important consideration in
industrial settings).

The controller consists of an outer-loop supervisory module and an inner-loop airpath module. The inner-loop air-
path controller compensates for nonlinearities and coordinates multiple actuators. It also incorporates integral action to
account for variability and noise in the engine. The supervisory controller enforces emissions constraints while keeping
the system as close as possible to preselected operating points. It uses a dynamic model of the system to do so in a mini-
mally conservative manner, allowing safe operation near the constraint boundaries and improving performance, that is,
reducing emissions. This approach is well established in the context of reference governors29 and has been successfully
applied to enforce compressor surge margin constraints in fuel cell systems,30 automotive gasoline engines,31 and aircraft
gas turbines.32

In what follows, we detail the controller development steps which encompass engine modeling, control design, and
experimental validation.
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2 ENGINE MODELING

This section describes the prediction models used by the various MPC controllers. First we describe the data-driven
open-loop engine models, the closed-loop data-driven models of the engine in closed loop with the NMPC controller, and
finally the physics based burnt gas fraction models. The first is used by the inner-loop NMPC controller, while the latter
two are used by the outer-loop MPC controller.

Throughout the article, we make use of a 2-dimensional grid of operating conditions,

⎡⎢⎢⎢⎢⎢⎣

𝜌1 𝜌15 … 𝜌141

𝜌2 𝜌16 … ⋮

⋮ ⋱ ⋱ ⋮

𝜌14 … … 𝜌154

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

(qtrg
1 ,Ne1) (qtrg

1 ,Ne2) … (qtrg
1 ,Ne11)

(qtrg
2 ,Ne1) (qtrg

2 ,Ne2) … ⋮

⋮ ⋱ ⋱ ⋮

(qtrg
14 ,Ne1) … … (qtrg

14 ,Ne11)

⎤⎥⎥⎥⎥⎥⎦
(6)

which are contained within the box [qtrg
1 , q

trg
14 ] × [Ne,1,Ne,11] and are used for scheduling gains, targets, and model param-

eters. This grid was chosen so as to cover the test cycles used for experimental validation†. We use a dense uniform ‡ grid,
the gridpoint density was selected by decreasing the gridpoint spacing until the modeling accuracy ceased improving,
that is, until the point of diminishing returns.

2.1 Open-loop airpath modeling

The open-loop airpath model is used by the NMPC controller to estimate the response of the engine to throttle, EGR valve,
and VGT commands. We use a data-driven approach to generate models of the EGR rate and intake pressure response
to throttle, valve, and VGT actuation. First, we perturb the system around each operating point to generate identification
data. Then, at each operating point, 𝜌i, for i= 1, … ,154, we identify a model of the form,

zk+1 = F̃i + Ãizk + B̃ivk + 𝜔T
i Φ(yk), yk = [zT

k vT
k ]

T , (7)

where k is the discrete time index, Ãi, B̃i, F̃i, and 𝜔i are appropriately sized vectors/matrices of coefficients and Φ(x) is
a basis for P2

n, the set of all polynomials§. in n variables of degree > 1 and ≤ 2, for example, P2
2 = span{x2

1 , x1x2, x2
2}. To

ensure the model has correct local properties, the linear portion of the model is identified first using least squares. The
nonlinear portion is then identified using the error signal ek = zk+1 − F̃(𝜌i) + Ã(𝜌i)zk + B̃(𝜌i)vk. Finally, to obtain a model
that depends continuously on the operating condition 𝜌, the coefficients are interpolated between gridpoints using linear
interpolation, resulting in a nonlinear parameter varying model of the form

zk+1 = fn(zk, vk, 𝜌k) = F̃(𝜌k) + Ã(𝜌k)zk + B̃(𝜌k)vk + 𝜔(𝜌k)TΦ(yk), yk = [zT
k vT

k ]
T , (8)

where F̃ ∶ R2 → R2, Ã, B̃ ∶ R2 → R2×2 and𝜔 ∶ R2 → |P2
4|. Figure 4 illustrates the result of the fitting procedure and com-

pares the nonlinear model with the same model using only the linear terms. Note that the operating point is varying,
demonstrating good model accuracy between gridpoints. In our experience, using interpolation techniques avoids some
issues typically associated with region switching strategies, for example, chattering, discontinuity of the feedback signal,
and so on, and does not significantly affect the computational cost of the resulting controllers.

2.2 Closed-loop airpath modeling

The closed-loop airpath prediction model is used by the outer-loop SMPC controller to estimate the response of the inner
loop to EGR target and fueling rate commands. The model is identified from experimental data. We use a linear parameter

†If the controller described in this article was to be used in a production vehicle the grid would be expanded to cover the entire engine operating region.
‡Note that it would be more efficient to adapt the spacing of the gridpoints so the density is higher where the dynamics change more rapidly. However,
because we are able to gather data quickly, we found the effort required to implement an adaptive scheme was unnecessary.
§Other functions, for example, Gaussian, neural network, can be used but they will inevitably be more complex to differentiate and/or numerically
evaluate.
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F I G U R E 4 Validation of the nonlinear open-loop
airpath model at 1800 rpm. The model output matches
the validation data well and the inclusion of the
nonlinear terms improves overall accuracy [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Fitting result for a local LTI
model of the closed-loop airpath at 1400 rpm.
The inclusion of the inner-loop controller
leads to approximately linear closed-loop
response and, as a result, the linear model is
able to accurately capture the system response
[Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 6 Comparison of the burnt
gas fraction model against experimental data
obtained from a wideband oxygen
concentration sensor downstream of the VGT.
The model is in good agreement with the
measurements; the placement of the sensor
induces a filtering effect which accounts for
the error in transients [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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varying (LPV) model, identified using the local LPV modeling approach33 in the same manner as the open-loop models.
The form of the model is given by:

𝜉k+1 = F(𝜌k) + A(𝜌k)𝜉k + B(𝜌k)uk, (9)

where k is the discrete time index, A ∶ R2 → R3×3, B ∶ R2 → R3×2, and F ∶ R2 → R3 are operating condition dependent
matrices. To construct A,B, and F, coefficient matrices Ai,Bi, and Fi are identified using experimental data at each 𝜌i in
the grid (6) for all i= 1, … ,154 using least squares in the same manner as described in Section 2.1. Linear interpolation is
used to compute model coefficients between grid-points. Figure 5 illustrates a typical outcome of the fitting process. The
model quality is good over most of the operating range since the inner-loop controller tends to “linearize” the closed-loop
plant from the perspective of the SMPC controller.

The SMPC controller uses models of the closed inner loop, see Figure 7 and Remark 2. To accommodate this, the
NMPC controller is calibrated before the data for the SMPC models is gathered, see Section 4.4 for more details. We have
observed that the closed-loop performance of the SMPC controller is not very sensitive to the accuracy of the closed-loop
airpath model, likely because the presence of the inner-loop controller makes the closed-loop airpath dynamics relatively
benign. We were able to obtain good performance as long as the time constants of the modeled states were of the correct
order of magnitude.

2.3 Burnt gas fraction modeling

The burnt gas fraction (BGF) model is used by the SMPC to predict the emissions response of the system by tracking the
time evolution of the burnt gas fractions in the intake manifold, F1, and exhaust manifold, F2. We use the model from
Kolmanovsky et al.34 Expressed in the form Υ̇ = G(𝜉)Υ + b(𝜉)q, the BGF equations can be written as

[
Ḟ1

Ḟ2

]
=
⎡⎢⎢⎣
−(wegr+wth)

m1

wegr

m1
wcyl

m2

−(wcyl+wf )
m2

⎤⎥⎥⎦
[

F1

F2

]
+
⎡⎢⎢⎣

0
1+(A∕F)E

m2

⎤⎥⎥⎦ cqNeq, m1 =
pimVim

RairTim
, m2 =

pexVex

RexTex
, (10)

F I G U R E 7 A schematic of the MPC control architecture;
see Section 1.2 for notation. In this article the supervisory
controller is a supervisory MPC (SMPC) controller and the
airpath or inner-loop controller is a nonlinear MPC (NMPC)
controller

F I G U R E 8 The normalized
fuel-air ratio is strongly correlated with
smoke [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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where cq is the constant such that wf = cqNeq, Rair is the gas constant of air, Rex is the gas constant of the exhaust gas, and
V im, V ex, Tim, and Tex are the volumes and gas temperatures in the intake and exhaust manifolds. The effective air-fuel
ratio, denoted by (A/F )E, quantifies the mass of oxygen consumed per unit fuel and is calibrated as a function of operating
condition using exhaust analyzer data. The cylinder flow is estimated as a linear, operating condition dependent function
of intake pressure, that is,

wcyl = a(𝜌)pim + b(𝜌), (11)

the EGR flow is estimated as wegr =wcyl −wc, and the throttle flow, wth, is assumed to be equal to the compressor flow.
The BGF equations are stiff so we discretize them using the implicit Euler integration scheme.35 Since the equations are
linear in Υ the update equation can be determined analytically as

Υk+1 = (I2×2 − Δ𝜏kG(𝜉k, 𝜌k))−1(Υk + Δ𝜏kb(𝜉k) qk), (12)

where k is the discrete time index, Δ𝜏k is the integration step size, and I2× 2 is an identity matrix. In Figure 6 we compare
the BGF model, under the temperature, EGR flow, and throttle flow assumptions, against measurements from a wideband
oxygen concentration sensor, situated immediately downstream of the VGT. The model is in good agreement with the
measurements; the placement of the sensor induces a filtering effect which accounts for the error in transients.

3 CONTROL DESIGN

The overall architecture of the controller is shown in Figure 7. The outer-loop SMPC controller generates an EGR rate
target and a fueling rate input. The fueling rate input is applied directly to the engine, while the EGR rate target is passed
to the NMPC controller. The NMPC controller tracks EGR rate and intake pressure commands.

In typical engine control strategies, the EGR rate and intake pressure targets (𝜒 egr and pim) are static functions of the
operating condition, that is, 𝜒 egr(𝜌) ∶ R2 → R and pim(𝜌) ∶ R2 → R, and are implemented using lookup tables. These tar-
gets are obtained during engine development and are chosen to be “optimal” in steady state. The steady-state maps can be
chosen based on a variety of objectives, for example, maximizing fuel economy subject to emissions limits as well as other
constraints, for example, maximum temperature, pressure, and so on. Note that there is a complicated tradeoff between
fuel economy, NOx, and PM/THC emissions so determining the steady-state maps is nontrivial. A variety of methods
have been investigated in the literature for this purpose including constrained optimization techniques,36,37 extremum
seeking,38 and model based calibration.39 Engine manufacturers and suppliers also employ sophisticated proprietary
methodologies.

In this article, we assume that these maps are provided and we focus on transient optimization, that is, using MPC
to shape the transient response of the system as it transitions between operating points. The steady-state maps usually
neglect dynamic effects, for example, the intake and exhaust manifold filling dynamics, so transient shaping can have an
impact on performance. For example, a significant portion of cumulative emissions production occurs in transients,40 see
Figure 19, and drivability depends on the response speed of the system to fuel commands. Moreover, we have observed
that remaining as close as possible to the steady-state targets is a very effective strategy¶, this is reflected in the SMPC
formulation in Section 3.2 which minimizes deviation of 𝜒 trg from 𝜒 egr and q from qtrg in a manner similar to a reference
governor.29 Remaining near the optimal steady-state targets during transient operation provides good performance in
practice (as we demonstrate in Section 5). In a previous article,23 we explored simultaneous setpoint determination and
constraint enforcement using economic MPC. We found that, in practice, determining optimal setpoints online was slow
and lead to poor performance. This motivated our current approach of “precomputing” the setpoints, that is, using the
predetermined setpoint maps 𝜒 egr(𝜌) and pim(𝜌).

Most inner-outer loop architectures operate at different rates to minimize interactions between the loops. The SMPC
and NMPC controllers operate at the same update rate to allow the SMPC controller to respond to driver fuel requests as
quickly as supported by the hardware. This minimizes delays between driver commands and the system response lead-
ing to a more responsive vehicle. Furthermore, it allows us to decompose constraint handling (SMPC) and nonlinearity

¶We hypothesize that this is because emissions formation occurs in the cylinders at a fast timescale and is essentially a quasistatic function of the
airpath states.



LIAO-MCPHERSON et al. 7455

compensation/integral action (NMPC) and makes the architecture modular; the inner-loop airpath controller can be of
any type, including PID or MPC. However, choice of inner-loop controller will affect the performance of the overall sys-
tem so using a high-performance inner-loop controller is advantageous. Finally, these simplifications help make real-time
execution computationally tractable.

Remark 2. We manage the possibility of interference between the loops by using closed-loop models that account for
the inner-loop controller as the SMPC prediction models. This technique is well established in the reference governor
literature.29

Remark 3. The NMPC controller tracks an EGR rate target 𝜒 trg and an intake pressure target ptrg
im . The SMPC controller

controls 𝜒 trg which is passed to the NMPC controller and q which is applied directly to the engine; it does not control ptrg
im

which is instead obtained from the optimal steady-state map, that is, ptrg
im = pim(𝜌). We chose this architecture because the

SMPC controller is focused on combustion quality control and combustion quality is most sensitive to 𝜒 and q. Future
work will include extending the SMPC controller to also control the intake pressure target.

Remark 4. The controller presented in this article does not use cylinder pressure, NOx, opacity, or oxygen concentration
sensors for feedback. As a result, it can be implemented using only sensors available in a standard production vehicle.

3.1 Estimator design

The EGR flow is estimated using a steady-state mass balance equation, wegr ≈wcyl −wc, and the cylinder flow is estimated
as a function of the operating condition and intake pressure using a static regression map. The EGR rate is calculated
as 𝜒 = max (0,wegr∕wcyl). The burnt gas fractions are obtained by propagating (10). The normalized fuel-air ratio is
estimated as

𝜙(x,u, 𝜌) =
wf

wcyl(pim, 𝜌)(1 − F1)

(A
F

)
s
, (13)

where (A/F )s is the stoichiometric air-fuel ratio of the fuel. The cylinder flow is a function of pim and 𝜌 as described in
(11) and wf = cqNeq where cq > 0 is a fixed constant that depends on the engine. The normalized fuel-air ratio is strongly
correlated with smoke production as illustrated in Figure 8.

The intake temperature, exhaust temperature and the exhaust pressure estimates are obtained from the engine control
unit (ECU). Some literatures on constructing these estimators include References 41-43.

3.2 Supervisory controller design

The objective of the supervisory layer is to enforce safety, and fuel-air ratio constraints to limit smoke during transients as
unobtrusively as possible. In this context, safety is ensured by an upper bound on the fuel input and EGR rate to prevent
damage to the engine. The following optimal control problem is solved at each sampling instance for the fueling rate and
EGR target. The index i runs over the prediction horizon while the index k indicates the sampling instance; the notation
xi|k indicates the predicted value of x at the ith step in the prediction horizon at time tk.

min .
s,u,x

J(s,u, 𝜌k) =
Ns∑
i=0

l(ui|k,ui−1|k, 𝜌k, s), (14a)

s.t. xi+1|k = fs(xi|k,ui|k, 𝜌k,Δ𝜏i), i = 0, … ,Ns − 1, (14b)

𝜙(xi|k,ui|k, 𝜌k) − 𝜙l(𝜌k,wc,k) ≤ s, i = 0, … ,Ns − 1, (14c)

0 ≤ 𝜒
trg
i|k ≤ 𝜒 egr(𝜌k), i = 0, … ,Ns − 1, (14d)

0 ≤ qi|k ≤ qtrg
k , i = 0, … ,Ns − 1, (14e)

s ≥ 0, (14f)



7456 LIAO-MCPHERSON et al.

where u = [uT
0|k … uT

Ns−1|k]T , and x = [xT
1|k … xT

Ns|k]T . The quantity 𝜙l(𝜌,wc) is the fuel-air ratio limit, it corresponds to
when the engine begins to produce visible smoke and is a characteristic of the engine. It is determined experimen-
tally during engine characterization and increases with compressor flow and decreases with engine speed. The fuel-air
ratio 𝜙 is computed using (13). The stage cost function l and prediction model f s are defined in (15) and (17) given
below.

The stage cost function is given by

l(u,u−, 𝜌, s) = 𝛾s(𝜒 trg − 𝜒 egr(𝜌))2 + 𝛼s(qtrg − q) + 𝛽ss + ||u − u−||2Rs
, u = [𝜒 trg q]T , (15)

where 𝛼s, 𝛽s, 𝛾s > 0, and Rs ≻ 0 are tuning parameters, and reflects tracking objectives for the EGR rate target and fueling
rate, a penalty to soften the fuel-air ratio (FAR) constraint to guarantee feasibility, and a damping term (||x||2R = xTRx for
R=RT ≻ 0). Since the cost function has no dependence on the system outputs, the fuel command and/or EGR rate target
are only modified in response to predicted constraint violation, and, as a result, the SMPC controller is a hybrid between
an MPC controller and a variant of a reference governor.29 Together with (14c) and (14f) the slack penalty term, 𝛽ss, defines
an 𝓁1 softened constraint on the fuel-air ratio, which is used to limit smoke. The fuel tracking term, 𝛼(qtrg − q), which
is equivalent to 𝛼s|qtrg − q| due to (14e), promotes drivability. The remaining constraints, a lower bound on 𝜒 trg and a
fueling rate nonnegativity constraint in (14e), make the control constraint set compact. We use linear or 1-norm penalties
for both the fuel tracking and fuel-air ratio constraints because they are more robust to ill-conditioning compared with
quadratic penalties, ensuring that we are able to reliably solve (14) numerically.

Achieving a sufficiently long prediction horizon to capture the dynamics of interest using a uniform prediction
horizon discretization requires a large number of discrete timesteps. Unfortunately, additional timesteps introduce
additional decision variables which increases computational complexity. As a countermeasure, we implemented a
nonuniform integration timestep in the prediction model. This technique is related to move-blocking44 and adap-
tive numerical integration.2 It was introduced in Reference 45, which also provides stability conditions for the case
of continuous time LTI systems. We use the following function to determine the timestep sizes over the prediction
horizon:

Δ𝜏i =
⎧⎪⎨⎪⎩

ts i ≤ 2,
6 ⋅ ts 2 < i ≤ 4,
40 ⋅ ts 4 < i ≤ 8.

(16)

The total length of the prediction horizon is approximately 1.1 seconds and corresponds to Ns = 8 steps. The sampling
period of the system is approximately 8 milliseconds. The short steps ensure consistency between the model and what is
applied, the medium steps capture emissions peaks, and the long steps capture the intake and exhaust pressure responses.

The prediction dynamics (14b) of the supervisory MPC controller are formed by combining the closed-loop airpath
and EGR loop models described in Sections 2.2 and 2.3. The prediction model is given by,

xi+1|k = fs(xi|k,ui|k, 𝜌k,Δ𝜏i) =

[
𝜉

Υ

]
i+1|k

=

[
F(𝜌k) + Ā(𝜌k,Δ𝜏i)𝜉i|k + B(𝜌k,Δ𝜏i)ui|k

[I2×2 − Δ𝜏iG(𝜉i|k, 𝜌k,Tk)]−1(Υi|k + Δ𝜏ibqi|k)
]
, (17)

which is the concatenation of a downsampled version of (9) and (12). The temperatures Tk = [Tim,k Tex,k]T and operating
condition 𝜌k are considered constant over the prediction horizon. The downsampled linear model matrices, Ā(𝜌,Δ𝜏) and
B(𝜌, 𝜏) are computed as follows,

Ā(𝜌,Δ𝜏) = (A(𝜌))𝓁 , B(𝜌,Δ𝜏) =

(
𝓁−1∑
j=0

(A(𝜌))j

)
B(𝜌), (18)

where 𝓁 = Δ𝜏∕ts is the downsampling factor. The constant term F remains unchanged after downsampling.
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3.3 Airpath controller design

This section describes the NMPC airpath controller. The NMPC controller presented in this article includes both feed-
forward, to provide high performance, and feedback, for robustness, disturbance rejection, and integral action. Both the
feedforward and feedback are implemented as separate NMPC controllers. Figure 9 illustrates how they are connected.
The feedback NMPC controller uses a rate-based formulation to achieve integral action. The feedforward NMPC con-
troller computes an optimal control action for a nominal plant with a fictitious state z̃. Throughout this section the index
i runs over the prediction horizon, while the index k indicates the sampling instance; the notation zi|k indicates the pre-
dicted value of z at the ith step in the prediction horizon at time tk, while ẑk indicates the measured state at time tk,
similarly vk indicates the control applied to the system at time tk.

Remark 5. While the airpath controller can be of any type; using a faster controller will lead to better overall performance.
In this article, we use a high-performance NMPC controller and show in Section 5 that it outperforms a state of the art
in-production airpath controller.

3.4 Feedback design

The purpose of the airpath controller is to provide fast tracking of the EGR rate and intake pressure targets com-
puted by the supervisory controller. In addition, due to variations in the engine and plant-model mismatch, integral
action is needed to achieve zero offset steady-state tracking. We incorporate integral action by employing a rate-based
(also known as velocity form) MPC formulation.# The OCP arising from the velocity-form MPC has the following
form,

min .
Δv

||zNfb − ztrg
k ||2Qfb

+
Nfb−1∑

i=0
||zi|k − ztrg

k ||2Qfb
+ ||Δvi|k||2Rfb

, (19a)

s.t. zi+1|k = zi|k + fn(zi|k, vi−1|k + Δvi|k, 𝜌k,Δt) − fn(zi−1|k, vi−1|k, 𝜌k,Δt), i = 0, … ,Nfb − 1, (19b)

vi|k = vi−1|k + Δvi|k, i = 0, … ,Nfb − 1 (19c)

z0|k = ẑk, z−1|k = ẑk−1, v−1|k = vk−1, (19d)

vlb ≤ vi|k ≤ vub, i = 0, … ,Nfb − 1, (19e)

where Δv = [ΔvT
0|k … ΔvT

(Nfb−1)|k]T , Nfb is the receding horizon length, vff is the control obtained from the feedforward
control described in Section 3.5, see Figure 9, vub and vlb are bounds on the actuator positions, Qfb ≻ 0, and Rfb ≻ 0 are
positive definite weighting matrices, and fn(z, v, 𝜌,Δt) in (19b) is defined in (8) with the dependence on the sampling
period Δt made explicit. The typical choice is to set Δt = ts. The variable vk−1 = vk−1 + vff

k − vff
k−1 in (19d) is the nominal

control input after feedforward compensation.
To achieve good performance and stability, a common rule-of-thumb for MPC is to use a prediction horizon roughly

equal to the slowest time constant of the system. For the DAP these are the pressure dynamics with settling times of
approximately 1 to 2 seconds. With a base sampling rate, ts, of 8 milliseconds, if Δt = ts a horizon of more than 100 steps
would be required, leading to more than 300 optimization variables, which is too large to be solved in real time for this
application. Our strategy for managing the size of the OCP is to utilize move blocking.44 Typically, move blocking is used
to reduce the number of optimization variables in the OCP. However, due to the limited computational resources available
in the DAP application, we also seek to reduce the number of nonlinear model evaluations required to propagate the
dynamics and to form Jacobian/Hessian matrices.

#Many strategies for incorporating integral action into MPC are equivalent, see.46,47
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F I G U R E 9 A diagram of the feedforward + feedback NMPC architecture. In the square boxes z stands for the discrete shift operator,
that is, uk + 1= z uk, and r = [𝜒 trg ptrg

im]
T . The feedforward NMPC controller is placed in loop with a nominal plant model which is used to

generate fictitious measurements, denoted by z̃, as opposed to the real measurements, ẑ, which are provided to the feedback controller. Note
that Δv is computed by the feedback module, vff is computed by the feedforward module, v is applied to the engine, and v is supplied to the
feedback module through (19d)

To this end, our strategy is to increase the discretization timestep of the model, Δt, such that Δt ≫ ts while keeping
Nfb and the form of f n the same. Note we cannot increase ts directly because fuel, engine speed, and target input changes,
which occur at ts ≈ 8 milliseconds, must be accommodated. We parameterize the discretization timestep as an integer
multiple of the sampling period, that is, Δt = d ⋅ ts; we will refer to d ∈ N as the downsampling factor. For the feedback
component of the NMPC controller we pick d= 40. This approach increases the time horizon of the OCP but creates a
mismatch between the sampling period of the controller and discretization timestep of the prediction horizon. It also
requires generating models, fn(⋅, ⋅, ⋅,Δt), with a large sampling time Δt which is challenging in practice due to aliasing
effects.

As mentioned above making Δt ≠ ts introduces sampling/discretization mismatch. As a result it is no longer clear
if we can use v−1 = v(t − Δt) in (19d) because multiple changes in control would have been applied between times t −
Δt and t. Furthermore, this is severely inconsistent with the model, (19b), which assumes that a zero-order-hold time
of Δt on the control has been and will be applied; if Δt ≠ ts this assumption is inaccurate. We address these issues as
follows. Since the formulation (19) is rate-based we optimize for the change in control Δvi rather than vi directly, this
leads to a first-order-hold assumption applied to the control inputs which more closely matches what is actually applied.
Furthermore, we collect (19b) and (19c) into a single rate-based model

zi+1 = f (zi,Δvi, 𝜌i,Δt), where zi = [ΔzT
i zT

i vT
i−1]

T , (20)

and apply (19d) to z instead of z. The next issue which must be addressed is how to obtain (20) when Δt ≠ ts. We observed
that a model of the form (8) cannot be identified from downsampled data directly due to aliasing effects; since we require
that Δt = dts ≫ ts, it turns out that for any useful value of d that 1∕Δt is well below the Nyquist frequency. Our solution
is to analytically propagate the LPV portion of (8) with Δvk = vk − vk−1 held constant for d-steps and use the resulting
downsampled model to assemble (20). An error model, 𝜃̂, is then introduced to account for higher order terms. The
resulting model has the following form,

⎡⎢⎢⎢⎣
Δzd(i+1)

zd(i+1)

vdi

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
Ã(𝜌k) 0 0
Ã(𝜌k) I 0

0 0 I

⎤⎥⎥⎥⎦
d ⎡⎢⎢⎢⎣

Δzdi

zdi

vd(i−1)

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

0
F̃(𝜌k)

0

⎤⎥⎥⎥⎦ +
⎛⎜⎜⎜⎜⎝

d−1∑
j=0

⎡⎢⎢⎢⎣
Ã(𝜌k) 0 0
Ã(𝜌k) I 0

0 0 I

⎤⎥⎥⎥⎦
j⎞⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎣
B̃(𝜌k)
B̃(𝜌k)

I

⎤⎥⎥⎥⎦Δvdi + 𝜃̂(zdi, vdi−1,Δzdi,Δvdi, 𝜌k),

(21)
where Ã, B̃, and F̃ are the matrices in (8), and 𝜃̂ is an error model which is identified to data generated by simulating (20)
with Δv held constant for d-steps. Note that (8) is associated with Δt = ts = 8 milliseconds. Since the linear model can be
downsampled analytically and the data used to train 𝜃̂ is generated from noise-free simulations no aliasing effects occur.
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Incorporating these changes, the OCP for the move-blocked rate-based MPC is

min .
Δv

||zdNfb|k − ztrg
k ||2Qfb

+
Nfb−1∑

i=0
||zdi|k − ztrg

k ||2Qfb
+ ||Δvdi|k||2Rfb

, (22a)

s.t. (21), i = 0, … ,Nfb − 1 (22b)

z0|k = ẑk, Δz0|k = ẑk − ẑk−1, v−1|k = vk−1, (22c)

vlb ≤ vdi|k ≤ vub, i = 0, … ,Nfb − 1, (22d)

where Δv = [ΔvT
0|k … ΔvT

d(Nfb−1)|k]T and vk−1 = vk−1 + vff
k − vff

k−1. We observed that this method is effective and, for a fixed
number of prediction horizon steps Nfb, significantly improves the performance of the feedback portion of the NMPC
controller compared with setting Δt = ts. The results in this article were generated using Nfb = 6 and d= 40; the resulting
time horizon length is approximately 1.9 seconds. The results presented in this article utilize the higher order terms 𝜃̂ in
(21). However, we would advise in the future against using higher order terms in the feedback MPC. An argument can
be made that the feedforward, nonlinear, MPC will keep the system close to the nominal setpoints where linear models
are accurate. In addition, using a linear MPC for feedback is advantageous from a verification standpoint.

3.5 Feedforward design

The feedback portion of the NMPC controller, described above, incorporates integral action to compensate for model
mismatch. It is well known that the addition of integral action can have a detrimental effect on the response speed of the
closed-loop system; to compensate we add a feedforward module.

In engine airpath control, a common strategy is to obtain the feedforward control action from various maps and ad hoc
logic. In this article we instead use a model-based approach and replace the traditional feedforward table with a function
defined by the control action computed by a nonlinear model predictive controller placed in closed loop with a nominal
model of the plant. This is illustrated graphically in Figure 9. The OCP for the feedforward controller has the following
form,

min .
vff

||z̃i|k − ztrg
k ||2Qff

+
Nff −1∑

i=0
||z̃i|k − ztrg

k ||2Qff
+ ||vff

i|k − ṽk||2Rff
, (23a)

s.t. z̃i+1|k = fn(z̃i|k, vff
i|k, 𝜌k, dts), i = 0, … ,Nff − 1, (23b)

z̃0|k = z̃k, (23c)

vlb ≤ vff
i|k ≤ vub, i = 0, … ,Nff − 1, (23d)

where Nff is the prediction horizon length, Qff and Rff are positive definite weighting matrices, vff = [vff ,T
0|k … vff ,T

Nff −1|k]T , f n

is the model of the engine defined in (8) with the dependence on the sampling time made explicit, ztrg
k = [𝜒 trg

k pim(𝜌k)]T

and ṽk satisfies ztrg
k = fn(ztrg

k , ṽk, ts). The state, z̃k+1, in (23) is obtained by propagating the nominal model,

z̃k+1 = fn(z̃k, vff
0|k, 𝜌k,Δt). (24)

The results in this article used a prediction horizon of Nff = 6 and a discretization period of Δt = 6ts ≈ 48 milliseconds
for the feedforward module. No aliasing issues arose while identifying the models.
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We found it significantly faster to tune the feedforward MPC instead of calibrating a feedforward map. In addition, the
NMPC feedforward controller was able to provide feedforward commands which improved performance by overshooting
steady-state targets while still considering constraints. Essentially, the NMPC feedforward module is a dynamical system
instead of a function like a typical map based feedforward.

Remark 6. The use of a fictitious state, z̃, is necessary to ensure that the NMPC feedforward module is truly a feedforward,
that is, it is independent of the measured state. If the measured state was used as an input to the feedforward module in
Figure 9 would be in feedback, this is undesirable since it would interfere with the integral action in the feedback NMPC
module.

3.6 Stability and feasibility

This section discusses the stability and feasibility of the SMPC and NMPC controllers. Both controllers use nonstandard
techniques to achieve the performance required by the application and, as a result, a complete a priori stability analysis
is beyond the scope of this article. However, existing theory and stability analyses of simplified models were used to
guide the controller design process. We also performed exhaustive simulations and hundreds of hours of experimental
testing to verify practical stability a posteriori as is standard practice in engine control applications.48,49 The testing was
rigorous, performed systematically, and based on domain expertise; we did not observe any issues during our testing
campaign.

Moving forward, it would be preferable to incorporate the testing into a framework that allows for probabilistic per-
formance/stability guarantees. A promising direction for future work along these lines is the application of data-driven
statistical closed-loop verification techniques.50,51

3.6.1 Supervisory model predictive controller

For the SMPC controller we will prove recursive feasibility and provide a stability proof for a nominal case where
Δ𝜏i = ts, the horizon is sufficiently long, the OCP is solved exactly, and in the absence of model mismatch. Since SMPC
uses a closed-loop model of the NMPC controller and engine, this nominal analysis addresses loop interactions. In
this section we will use P to denote the speed and fuel operating range of the engine. We will also denote the corre-
sponding to 𝜌 set of “safe,” that is, no misfires, surge, overpressure, and so on, states by X(𝜌). The set of admissible
pairs is Y(𝜌) = {(x,u) | 𝜙(x,u, 𝜌) ≤ 𝜙l(x, 𝜌), 0 ≤ 𝜒 trg ≤ 𝜒 egr, 0 ≤ q ≤ qtrg} and we define the set of admissible controls as
U(x, 𝜌) = {u | (x,u) ∈ Y(𝜌)}. Note that the constraint x ∈ X(P) is handled implicitly through careful selection of 𝜒 egr and
pim, that is, through good calibration.

Theorem 1 (Feasibility). For any 𝜌 ∈ P, x ∈ X(𝜌) the set U(x, p) is nonempty, implying that (14) is always feasible.

Proof. Algebraic manipulation of (14c) yields,

q ≤ qmax(𝜌, x) = 𝜙l(𝜌, x)
wcyl(1 − F1)

Nec

(A
F

)−1

s
, (25)

an explicit bound on the fuel. For any x ∈ X the right-hand side is positive thus qmax ≥ 0 and the constraint
0≤ q≤min(qmax, qtrg) is feasible. The constraint 0 ≤ 𝜒 trg ≤ 𝜒 egr(𝜌) is feasible by construction which completes the
proof. ▪

Theorem 2 (Nominal stability of SMPC). Let the following assumptions hold:
(A1) (Stability of the inner loop) For all steady-state admissible ū = [𝜒 trg q] the inner loop, with dynamics given by

x+ = f (x,u, 𝜌), is asymptotically stable about the corresponding equilibrium point x(ū) with region of attraction X.
(A2) (Asymptotic controllability) The inner-loop system is asymptotically controllable with respect to (15) in the sense of

Reference [ 2, assumption 6.5].
Then there exists a horizon length N∗ ∈ N and a set Xs ⊆ X such that if N ≥N* and (x0,u0) ∈ Xs × R2 then the sequence

{(xk,uk)} → (x, ū) as k→∞ with all (xk,uk) ∈ Y(𝜌).
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Proof. See Appendix. ▪

Note that Theorem 2 only proves the existence of a sufficiently large N*; we have to assume that the horizon length
chosen is long enough. We employ move blocking related techniques to increase N, see Section 3.2. In practice we observed
no stability issues, lending some credence to our assumption.

Remark 7. It is difficult to verify (A2) a priori since obtaining a high-accuracy nonlinear model for the engine is extremely
challenging. However, to support our assumption, we linearized (17) at each operating condition in the grid defined in
(6) and observed that each linearized model was controllable. That is, we checked the controllability of Ai = ∇xfs(xi, ūi)
and Bi = ∇ufs(xi, ūi) for all i= 1, … 154 where 𝜌i is defined in (6), ūi = [𝜒 egr(𝜌i) qtrg

i ] and xi is the steady state associated
with ūi. This implies that (A2) holds in the vicinity of each operating point.52 This does not imply that (A2) holds globally
but it does support that it holds in our region of interest. Furthermore, in Section 5 we present experimental results that
demonstrate the robustness of the SMPC controller a posteriori.

3.6.2 Nonlinear model predictive controller

To achieve the performance required by the application the feedback portion of the NMPC controller uses a variety of non-
standard techniques, for example, rate-based formulations, sampling period/prediction horizon discretization mismatch,
and move blocking. As a result, a rigorous stability analysis of the controller is challenging and beyond the scope of this
work. However, existing theoretical stability results were used to guide the design of the NMPC controller. In particular,
we use move-blocking to achieve a sufficiently long prediction horizon.

The NMPC feedback controller does not include a terminal set constraint or terminal penalty, two common meth-
ods for establishing the stability of nonlinear model predictive controllers; instead we use the sufficiently long horizon
approach. Enforcement of the terminal set constraint consumes computational resources and can cause feasibility issues.
Furthermore, since we are unaware of a suitable control Lyapunov function for this system, terminal penalties must be
constructed numerically by solving appropriate Ricatti equations at each timestep, adding computational burden. We
have also observed that, for this application, terminal penalties can reduce the performance of the controller.

We refer interested readers to Reference [2, chapter 6] and the references therein for an comprehensive treatment on
the stability of NMPC without terminal constraints or penalties. It has been shown (see Reference 2, theorem 6.24) that
provided that the plant is (i) asymptotically controllable, (ii) the stage cost function can be bounded above and below by
appropriate comparison functions, and (iii) the horizon is sufficiently long then the nominal closed-loop system is stable.
The feedback portion of the NMPC controller uses a strongly convex quadratic stage cost and exploits move blocking to
ensure the prediction horizon (1.52 seconds in six steps) is sufficiently long. We verified that (8) is locally controllable
at each operating point in our grid in the same manner as described in Remark 7, that is, by checking controllability
of the identified models at each operating point in the grid. Closed-loop stability is then confirmed in practice through
exhaustive simulation studies and experimental testing. Since the NMPC controller only enforces control constraints,
feasibility is automatic.

The engine is controllable only in a portion of its state space. Outside of this safe region, the engine may display
undesirable behavior such as surge, misfire, or excessive roughness characterized by torque fluctuations due to poor
combustion. The target operating points must be chosen to avoid these unsafe regions. In practice, this is accomplished
through the domain expertise** of the engine manufacturer and experienced calibrators who provide a set of nominal
operating points for the engine. We take these operating point maps as a given (indeed they are included in the engine
control unit software), their safety can be verified by performing fuel step experiments on a dynomometer.

4 CONTROLLER IMPLEMENTATION

Implementation of a model predictive controller requires an algorithm for (approximately) solving the optimal control
problems online. This section outlines suitable strategies for the SMPC controller and for the feedback and feedforward
portions of the NMPC controller.

**Engine calibration is a complex topic with an extensive literature,39,53-55 engine manufacturers also have sophisticated internal methodologies. As
such, engine calibration is outside the scope of this article.
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4.1 Supervisory controller

The SMPC controller OCP, (14), can be compactly represented as

min.
zk

J(zk, x̂k, 𝜌k), (26a)

s.t. c(zk, x̂k, 𝜌k) ≤ 0, (26b)

where zk = [uT
k sT

k ]
T ∈ Rn are the collected primal decision variables, x̂k ∈ R5 is the SMPC state estimate, 𝜌k ∈ R2 is the

operating condition, J ∶ Rn × R5 × R2 → R is the cost function, and c ∶ Rn × R5 × R2 → Rm defines the inequality con-
straints. All equality constraints are linearized about x̂k and u = (0, qtrg

k ) is eliminated by substitution using symbolic
tools.22 This nonlinear program can then be approximated by the following quadratic program,

min .
Δzk

1
2
ΔzT

k HkΔzk + f T
k Δzk, (27a)

s.t. AkΔzk ≤ bk, (27b)

where Hk = ∇2
z J(zk−1, x̂k, 𝜌k) ≽ 0, fk = ∇zJ(zk−1, x̂k, 𝜌k), Ak = ∇zc(zk−1, x̂k, 𝜌k), and b = −c(zk−1, x̂k, 𝜌k). We solve one

instance of (27) per timestep as in the real-time iteration scheme.56 This is a type of time-distributed sequential quadratic
programming and, under appropriate conditions, convergence to a solution of the nonlinear OCP can be guaranteed over
time.57,58 The SMPC control update is then computed as

uk = [zk,1 zk,2]T , zk = zk−1 + Δzk, (28)

where zk = [zk,1 zk,2 … zk,3N ]T.
To guarantee that each QP is convex the nonlinear dynamics are linearized about x̂k and u = [0 qtrg

k ]T at each sampling
instance before substitution into the cost and constraint functions. We also use the Hessian of the cost function rather
than of the Lagrangian which is sometimes referred to as Gauss-Newton Hessian approximation.56 In addition, due to the
presence of slack variables in the original OCP, each QP is guaranteed to be feasible and, due to the penalty on ui −ui− 1 in
the cost function, (15), the strong second-order sufficient conditions always hold. Together these properties ensure that
(27) is always solvable and admits a unique solution. The quadratic programs are solved using the Fischer-Burmeister
regularized and smoothed (FBRS) method which is described in detail in Reference 21.

Remark 8. To guarantee finite-time execution, necessary for real-time implementation, the FBRS algorithm is limited to
5 iterations per sampling period. Each QP is warmstarted with the solution of the QP at the previous timestep. This was
sufficient for convergence in almost every case, we observed no degradation of control performance due to the iteration
limit. MPC is known to be robust to suboptimality.59,60

4.2 Airpath controller

Both the feedforward, (23), and feedback, (22), OCPs can be compactly written in the following form:

min.
xk

J(xk, ẑk, 𝜌k), (29a)

s.t. h(xk, ẑk, 𝜌k) ≤ 0, (29b)

where xk ∈ Rn is the collection of primal decision variables, ẑk ∈ R2 is the state estimate, 𝜌k ∈ R2 is the operating con-
dition, J ∶ Rn × R2 × R2 → R, is the cost function and h ∶ Rn × R2 × R2 → Rm is a vector of constraints. For both the
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feedforward and feedback NMPC controllers the inequality constraints are box constraints. For the feedforward,

xff
k = [vff ,T

0|k … vff ,T
Nff −1|k]T , (30)

and for the feedback

xfb
k = [ΔvT

0|k … ΔvT
Nfb−1|k]T . (31)

All equality constraints are eliminated via symbolic substitution. Since only actuator saturation constraints are
considered we chose to implement them via exterior penalties. Consider the exterior quadratic penalty,

𝛾 ∶ R → R, 𝛾(⋅) = max(0, (⋅))2, (32)

applying it to the constraints yields an unconstrained OCP:

min.
xk

F = J(xk, ẑk, 𝜌k) +
m∑
j=i
𝜎j𝛾(hj(xk, ẑk, 𝜌k)), (33)

where 𝜎j > 0 are the penalty weights and m is the number of inequality constraints. This OCP can be linearized about the
solution at the previous timestep, xk− 1, to form a quadratic approximation

min .
Δxk

1
2
ΔxT

k GkΔxk + dT
kΔxk, (34)

where Gk = ∇2
xF(xk−1, ẑk, 𝜌k), and dk = ∇xF(xk−1, ẑk, 𝜌k). The solution of this QP can be computed by solving a linear sys-

tem of equations, the resulting solution is then computed as xk = xk−1 + Δxk. As with the SMPC problem this procedure
is a variant of the real-time iteration scheme.56 Despite only solving one QP per timestep, under appropriate condi-
tions, the real-time iteration scheme converges to the solution of the nonlinear OCP.57,58 By using exterior penalties we
are only able to solve (23) and (22) in an approximate sense. In exchange we solve a single-linear system per timestep
for each NMPC problem which significantly reduces the computational cost of the controller. We have found that the
exterior-penalty-based approximations perform well in practice provided the penalty weights are properly tuned.

4.3 Executable generation and execution time

The MPC controller was implemented on a dSPACE DS1006 rapid prototyping unit (2.6 GHz CPU clock speed) using
Simulink 2010b SP2 real-time workshop (RTW). All necessary derivatives for the three optimal control problems, (14),
(22), and (23), were calculated using symbolic methods. The tools, collectively referred to as the symbolic control design
environment (SCDE),22 translate symbolic expressions into highly optimized C code (and corresponding S-function tem-
plates) which meets the Motor Industry Software Reliability Association (MISRA) standard for embedded computations.61

Expressions for the cost, constraints, and dynamics were written in the Maple symbolic language then processed and dif-
ferentiated symbolically. The SCDE was then used to generate S-functions for all necessary derivatives. The QP solver for
the SMPC controller was implemented in embedded MATLAB. The QP solvers for the feedforward and feedback NMPC
controllers, which are Cholesky factorization routines, were directly implemented in the SCDE.

Execution times on the DS1006 rapid prototyping unit are shown in Table 1. The entire MPC controller takes approx-
imately 1 millisecond to execute in the worst case, well below the sampling period of 8 milliseconds. The total size of the
real-time executable file was 5547 KB. Note that since the number of Newton iterations performed by the SMPC QP solver
was fixed at 5 the convergence check was disabled; as a result, the average and maximum execution times are similar.

4.4 Controller calibration

Figure 10 provides an overview of the MPC controller calibration process. First the open-loop models are identified as
described in Section 2.1, then the NMPC controller is tuned, closed-loop models are identified (Section 2.2), and the SMPC
controller is tuned. The final step is drivecycle testing to verify the tuning and identify if any retuning is needed.
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T A B L E 1 Summary of problem sizes and execution times
Average
execution time (𝛍s)

Maximum
execution time (𝛍s)

Maximum estimated
ECU execution time (ms)

Number of
decision variables

Number of hard
constraints

SMPC 530 550 5.6 17 41

NMPC: FF 31 32 0.33 18 0

NMPC: FB 127 133 1.4 18 0

Note: The ECU execution times are estimated for a 256 MHz ECU using clock scaling, see Section 6.1 for more details.

F I G U R E 10 Calibration and
model identification process for the
MPC controllers

4.4.1 Feedforward NMPC controller

The feedforward NMPC controller is tuned in closed-loop simulations with its prediction model using nominal target
maps. The fueling rate range is divided evenly into low, medium, and high zones for tuning. At each engine speed the con-
troller is tuned by performing fuel step maneuvers so as to maximize the responsiveness of the EGR rate while avoiding
oscillations in either the EGR rate or intake pressure. The result are positive definite weighing matrices Qff ,i,Rff ,i corre-
sponding to each grid point 𝜌i, i = 1, … , 154. Linear interpolation is used between gridpoints to construct functions
Qff (𝜌),Rff (𝜌), these are evaluated at the measured operating point then used to construct (23). Only the diagonal terms of
Qff and Rff are nonzero.

4.4.2 Feedback NMPC controller

Once the feedforward controller is tuned, the feedback NMPC controller is tuned by performing fuel-step experiments at
fixed engine speeds on the engine bench using nominal EGR rate and intake pressure target maps. The fueling rate oper-
ating range is evenly divided into low, medium, and high zones for tuning. At each engine speed, fuel step experiments
are performed and the EGR rate settling time is reduced as much as possible without inducing oscillations in the intake
pressure or EGR rate responses. Cross-terms in the weighting matrices are not used. The result are positive definite weigh-
ing matrices Qfb,i,Rfb,i corresponding to each grid point 𝜌i, i = 1, … , 154. Linear interpolation is used between gridpoints
to construct functions Qfb(𝜌),Rfb(𝜌), these are evaluated at the measured operating point then used to construct (22).
Finally, these tunings are verified through drivecycle tests to ensure they perform well under engine speed variations.

4.4.3 SMPC controller

The SMPC controller is tuned after the inner-loop controller is calibrated. SMPC has four tuning parameters, 𝛼s, 𝛽s, 𝛾s > 0,
and Rs ≻ 0, which is a 2× 2 matrix, and is straightforward to tune. Tuning is performed during fuel step experiments at
fixed engine speeds. The fuel deviation parameter 𝛼s is fixed to a sufficiently large value to ensure fuel tracking, we used
𝛼s = 1. The constraint softening parameter was set to 𝛽s = 1000, 𝛾s was set to 0.05 and Rs = diag(5,0.1) was used.

5 EXPERIMENTAL RESULTS

The integrated MPC controller was placed in closed loop with a 2.8-L diesel engine on a transient engine dynomome-
ter†† for experimental validation. The engine is instrumented to measure pim, wc, and Ne which are used for feedback,

††The focus of this article is on the engine control algorithms, so for brevity we only provide details about the experimental setup insofar as they relate
to the controllers and refer interested readers to the literature40,62,63 for more details regarding engine testing and instrumentation.
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F I G U R E 11 A comparison between
the benchmark (BM) and NMPC controllers
during a fuel step-up maneuver at a constant
engine speed. The NMPC controller is able to
more closely track the EGR rate target
leading to reduced NOx emissions. The
supervisory controller is disabled so opacity
limits are not enforced. The y-axes scales
have been removed to preserve data
confidentiality [Colour figure can be viewed
at wileyonlinelibrary.com]

estimators are used to reconstruct the rest of the state, see Section 3.1. The signals 𝜏q, 𝜓NOx , 𝜓THC, and 𝜓OP are only used
for performance evaluation. Other signals are measured but used only for model validation and calibration as described
in Section 1.2. In what follows, we compare the NMPC controller with a PID benchmark, analyze step response traces,
and present drive cycle results comparing the integrated MPC controller with state-of-the-art industrial equivalent.

5.1 Step responses

Before exercising the controller on a more realistic driving pattern, we present some step responses to obtain some insight
into typical closed-loop behaviors of the system. First, we compare the NMPC controller with a state-of-the art indus-
trial benchmark (with the supervisor inactive) to showcase the utility of the NMPC controller. Figure 11 compares the
responses of the two controllers to a fuel step up, the NMPC controller more closely tracks the EGR rate target leading
to reduced NOx emissions. Figure 12 compares the responses of the two controllers during a fuel-step down, again the
NMPC controller more closely tracks the EGR rate target leading to reduced NOx production.

Second, we illustrate the impact of the NMPC feedforward module. Figure 13 compares the response of the engine, in
closed loop with the NMPC airpath controller with and without the feedforward module, to an acceleration command.
Without the feedforward module, the controller’s EGR rate tracking performance suffers, it relies on the slow integral
action in the feedback module to open the EGR valve in order to increase the EGR rate. This leads to an avoidable increase
in NOx emissions. Figure 14 compares the NMPC feedforward module against a standard static map based approach. Note
that the EGR valve and EGR throttle actuation is much more aggressive leading to better EGR rate and intake pressure
tracking performance.

Finally, we consider the integrated controller. Typical responses with the supervisory controller active are shown in
Figure 15. During a tip-in (fuel step up) the fuel-air ratio rapidly increases since fuel is added to the system more quickly
than the airflow can be raised to compensate. This causes the controller to predict a fuel-air ratio constraint violation. In
response the fueling rate is filtered and the EGR rate target undershoots its steady-state value to reduce the fuel-air ratio.
Moreover, by adjusting the fuel-air ratio limit, it is possible to limit smoke production.

5.2 Drive cycle validation

This section presents experimental validation results for the integrated MPC controller which it was exercised over the
Worldwide Harmonized Light Vehicles Test Cycle (WLTC) and New European Drive Cycle (NEDC) using a simulated
vehicle and driver.

http://wileyonlinelibrary.com
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F I G U R E 12 A comparison
between the benchmark (BM) and
NMPC controllers during a fuel
step-down maneuver at a constant
engine speed. The NMPC controller
more closely tracks EGR rate leading to
reduced NOx production. The y-axes
scales have been removed to preserve
data confidentiality [Colour figure can
be viewed at wileyonlinelibrary.com]

F I G U R E 13 A comparison
between the NMPC airpath controller
with and without the NMPC
feedforward module at a constant engine
speed. The feedforward module
improves EGR rate tracking leading to
reduced NOx emissions. The y-axes
scales have been removed to preserve
data confidentiality [Colour figure can
be viewed at wileyonlinelibrary.com]

Emissions performance was evaluated by estimating the cumulative mass of NOx and THC emitted during the drive-
cycle, smoke was evaluated by integrating the exhaust opacity whenever it was above the visible limit‡‡. Drivability was
evaluated using the root mean square velocity tracking error (RMSE) between the longitudinal speed of the simulated
vehicle and its target. Relative difference is defined as

%difference = DAP MPC − Benchmark
Benchmark

∗ 100. (35)

‡‡The visibility threshold used here is consistent with current calibration guidelines.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 14 A comparison between
the NMPC airpath controller with the
NMPC feedforward module and a static map
based feedforward module. The NMPC FF
module leads to improved EGR rate and
intake pressure tracking performance. The
supervisory controller is disabled so opacity
limits are not enforced. The y-axes scales
have been removed to preserve data
confidentiality [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 15 Experimental results of
two fuel steps at 2400 rpm. Exhaust opacity
(smoke) constraints can be enforced by
limiting the fuel-air ratio. For example,
when 𝜙lim = 0.8 the opacity constraint is
violated and reducing 𝜙lim to 0.7 eliminates
the problem. The fuel-air ratio constraint is
slightly violated in both cases due to an
unmodeled three-step delay between the
MPC controller and the actuators. The
y-axes scales have been removed to preserve
data confidentiality [Colour figure can be
viewed at wileyonlinelibrary.com]

5.2.1 Overall performance results

A summary of the results, using the best tunings obtained during testing, is contained in Table 2. Figure 16 represents
typical experimental traces when DAP MPC controller is in closed loop with the engine. The smoke is well controlled,
only a handful of spikes approach the boundary of the visible range.

Over the WLTC the DAP MPC controller was able to significantly reduce cumulative NOx and THC, compared with
a state of the art benchmark controller. The aggressive tuning resulted in slightly worse drivability compared with the
benchmark and yielded significant NOx and THC reductions at the cost of a small increase in smoke production. A more
conservative tuning reduced smoke emissions compared with the benchmark but led to smaller NOx and THC improve-
ments; drivability was adversely affected as well. Over the NEDC the DAP MPC controller slightly increased NOx and
slightly decreased THC. The NEDC cycle is not aggressive enough to trigger fuel limiting or cause visible smoke. The

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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T A B L E 2 Summary of the results obtained using the DAP MPC controller
WLTC aggressive
tuning (%difference)

WLTC conservative
tuning (%difference)

NEDC aggressive
tuning (%difference)

NOx −16 −11 1.4

THC −14 −4 −2

Fuel 0.67 0.54 0.9

V RMSE 1 4 2

Smoke 24 −49 0

F I G U R E 16 A portion of the
WLTC with the MPC controller in closed
loop with the engine. The vehicle was
able to successfully complete the
drivecycle despite some fuel limiting.
The smoke is well controlled with only a
few spikes reaching the edge of the
visible range. The y-axes scales have
been removed to preserve data
confidentiality [Colour figure can be
viewed at wileyonlinelibrary.com]

increase in fuel consumption is not large enough to be considered significant as the results are estimated by integrating
the commanded fuel signal rather than measured using a fuel meter. The explicit incorporation of fuel economy into the
MPC controller is a topic of future work.

Remark 9. The opacity target is the maximum opacity value allowed during steady-state calibration. The opacity limit is
when smoke becomes visible, it is desirable to minimize violation of this constraint. The smoke metric used in Table 2 is
computed by integrating the opacity signal whenever its higher than the limit.

5.2.2 Detailed traces

This section presents detailed experimental traces (Figures 17 to 21) to provide insight into the behavior of the con-
troller. Figure 17 shows a high speed portion of the WLTC. Between 165 and 170 seconds, the SMPC controller predicts
fuel-air ratio constraint violation and, in response, lowers the EGR rate target and limits the fuel to enforce the constraint.
As a result, the exhaust opacity remains below the visible limit. Figure 18 illustrates the importance of the supervi-
sory controller. Without it, large amounts of visible smoke are produced. When active, the SMPC controller successfully
manipulates the fueling rate and EGR rate target to limit smoke production.

http://wileyonlinelibrary.com
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F I G U R E 17 A close-up of a high
speed potion of the WLTC with the MPC
controller in closed loop with the
engine. The supervisory layer prevents
visible smoke by coordinating the fuel
input and the EGR rate. It causes the
EGR rate target to undershoot the
steady-state optimum, this command is
tracked by the NMPC controller, and
limits the fueling rate to satisfy the
fuel-air ratio constraint and prevent
visible smoke. The y-axes scales have
been removed to preserve data
confidentiality [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 18 A comparison
between the MPC controller with and
without the supervisory controller.
Without the supervisor large amounts of
visible smoke is produced; the opacity
limit is where the smoke becomes
visible. The enforcement of the smoke
constraint leads to a torque delay which
is undesirable but necessary to prevent
excessive smoke. Minimization of this
torque delay is part of the SMPC
formulation via the fuel tracking term.
The y-axes scales have been removed to
preserve data confidentiality [Colour
figure can be viewed at
wileyonlinelibrary.com]

Figure 19 shows the response of the DAP MPC controller during an acceleration event. As the vehicle speed increases,
three gearshifts occur, each consisting of a tip out (fuel step down) followed by a tip in (fuel step up). In response to
each tip in the SMPC controller predicts a fuel-air ratio constraint violation and reduces the EGR rate target, in order to
empty the intake manifold of burnt gas, and limits the fuel to enforce the constraint and prevent visible smoke. The target
then returns to the steady-state EGR rate target as quickly as possible to reduce NOx. Due to the use of feedforward and
feedback in the inner-loop NMPC controller, it is able to use the VGT and EGR valve to track the EGR rate target very
accurately. This fast EGR rate tracking ensures that the fuel-air ratio constraint satisfaction is accomplished primarily
with EGR valve and VGT actuation, rather than with fuel limiting, which is important for drivability. Figure 20 shows
an input-output (most benchmark signals cannot be shown for confidentiality reasons) comparison between the DAP
MPC controller and a benchmark industrial controller. The DAP MPC controller reduces transient NOx by shrinking
the spikes that occur after gearshifts. This is possible because (i) the SMPC controller brings the EGR rate target back
to its steady-state target quickly after a tip in by accurately calculating the fuel-air ratio response using its prediction

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 19 A close-up of an
acceleration event with the MPC
controller in closed loop with the engine
during the WLTC. During the tip ins
following the gearshifts the supervisory
layer commands the NMPC controller to
quickly reduce the EGR rate and limits
the fuel to satisfy the fuel-air ratio
constraint, preventing visible smoke.
The inner loop relies on its feedforward
module to track the aggressive
commands from the supervisory layer,
leading to a very fast EGR rate response
which minimizes fuel limiting and NOx
production. The y-axes scales have been
removed to preserve data confidentiality
[Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 20 A comparison between
the MPC and a benchmark (BM) strategy
running in closed loop with the engine
during the WLTC. The MPC controller is
able to reduce NOx emissions compared
with the benchmark strategy without
causing visible smoke or increasing
hydrocarbon output. All signals are
generated by the MPC controller unless
otherwise noted. The y-axes scales have
been removed to preserve data
confidentiality [Colour figure can be
viewed at wileyonlinelibrary.com]

model and (ii) because the NMPC controller is able to track very fast EGR rate transients by exploiting both the VGT and
EGR valve.

Figure 21 illustrates some issues we observed with the DAP MPC controller. First, between 160 and 165 seconds the
fuel is limited quite severely, despite the exhaust opacity being nowhere near the visible limit. This indicates there is room
for improvement in the fuel-air ratio limit map (recall that 𝜙l = 𝜙l(Ne,wc)). Second, between 170 and 180 seconds the
closed-loop system becomes oscillatory which is undesirable in view of increased wear on the actuators and oscillations in
the engine torque. This occurs because the controller oscillates near the fuel-air ratio constraint due to mismatch between
the EGR rate tracking error predicted by the SMPC controller and the true tracking error. Possible countermeasures for
this issue are discussed in Section 6.2.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 21 A close-up of an
acceleration event with the MPC
controller in closed loop with the engine
during the WLTC. The MPC controller
aggressively limits the fuel despite the low
opacity of the exhaust. Oscillation against
the fuel-air ratio constraint boundary also
occurs which leads to undesirable EGR
rate and torque fluctuations. We discuss
countermeasures for these oscillations in
Section 6.2. The y-axes scales have been
removed to preserve data confidentiality
[Colour figure can be viewed at
wileyonlinelibrary.com]

6 DISCUSSION

While our proposed MPC controller is promising, more development effort is necessary before it can be considered “pro-
duction ready.” Here we discuss the challenges we observed leading up to and during our experimental campaign and
outline directions for continued controller development.

6.1 Computational footprint

One of the largest drawbacks of MPC is the computational footprint. Our controller uses the real-time iteration scheme,56

a kind of time-distributed sequential quadratic programming,58 a new QP solver,21 and symbolic code generation tools22

to reduce the worst case total execution time to around 715 μs on a 2.6 GHz rapid prototyping unit. Assuming a 256
MHz ECU and estimating the computation time using a clock speed scaling analysis§§ we arrive at an estimate of
0.715 milliseconds ⋅ 2.6 GHz

256 MHz
= 7.26 milliseconds which is slightly below the current 8 milliseconds sampling period. This

indicates that our strategy is likely to be implementable in real time on an appropriate dedicated ECU. However, ECUs
must run other modules besides the engine controller so further reductions in the CPU usage are necessary before the
controller is production ready.

Since completing the experiments, we have performed preliminary investigations into the use of Kylov methods,
specifically the conjugate gradient method,64 for inexactly solving the necessary conditions of (33). We have found that
two to three times improvements are possible without noticeably degrading controller performance. We also believe this
approach is promising when combined with FBRS65 to solve (27). Another possible avenue for improvement is the use
of optimized mathematical subroutines. Our current implementation uses symbolically generated or handwritten linear
algebra and factorization routines. It is well known that specialized routines (eg, those provided by high performance
BLAS or LAPACK libraries) can offer much better performance; they are often optimized at an assembly code level. Fur-
ther, embedded BLAS libraries have recently begun to appear.66 We believe that routines of this type for ECUs could
help further reduce CPU usage. Finally, we expect ECU hardware to continue to improve over time. In particular, the
incorporation of dedicated signal processing units into future ECUs could further reduce computation times.

§§We have found clock scaling analyses to be sufficiently accurate for first-order computation time estimates due to the relative simplicity of typical
ECU computational architectures.

http://wileyonlinelibrary.com
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6.2 Performance issues

We observed some performance issues during experimental testing. Specifically, the MPC controller was not able to
perfectly control smoke, see Figure 16, and we observed some undesirable oscillations in the fueling rate input, see
Figure 21.

Typically, when using MPC, the best way to improve constraint handling is to improve the prediction models. The
least accurate portion of our prediction models is the intake manifold burnt gas fraction F1 in (10). Since our experimental
setup did not have an oxygen sensor in the intake manifold, we were unable to directly validate our F1 predictions and/or
improve the model using data. As our smoke control approach depends directly on F1 inaccurate predictions of F1 are the
most likely cause of the performance degradation we observed. We suspect that installing the sensor on the testbed (for
modeling and validation purposes only, that is, not for use as feedback) and an associated data collection and modeling
effort could significantly improve smoke control. Moreover, as this modeling error forced us to adopt a more conservative
smoke limit, we hypothesize that this caused the underperformance we observed on the less aggressive NEDC cycle where
the conservatism was not warranted. Note that the benchmark controller’s smoke control is also not perfect.

Beyond improving the quality of the models, various modifications to the SMPC controller formulation could be
considered. For example, reparameterizing the fueling rate input in (14) as

q = 𝜅(qtrg − q−) + q−, (36)

where 𝜅 ∈ [0, 1] is the new decision variable, q− is the input applied at the previous instance, and qtrg is the target, will
force the fueling rate input to approach the target monotonically and thus remove oscillations. Such a parameterization
is often used in reference governors.29

6.3 Future perspectives

Our proposed MPC controller offers several advantages over a typical industrial PID based engine control strategy:

• Statement of the control objective is intuitive and can be easily summarized through the OCP formulation;
• The use of prediction models reduces the amount of conservatism needed to handle constraints, leading to performance

improvements;
• It straightforwardly handles multiple input and outputs, coupling between them, and nonlinearities;
• It can be calibrated quickly.

It also suffers from some drawbacks:

• It requires an understanding of more advanced control engineering concepts to troubleshoot issues;
• It has a higher computational footprint;
• Construction of the prediction models can be labor intensive.

Overall, we demonstrated that significant (10% to 15%) emissions reductions are possible without hardware changes¶¶,
for example, without adding additional sensors or actuators, and that the challenges associated with the computational
burden of MPC are not insurmountable, even when using nonlinear MPC. We also demonstrated various techniques
such as nonuniform prediction horizons and inner-outer loop MPC control architectures that may be useful in a broader
context.

We believe that, as emissions regulations become tighter, MPC has the potential to play a significant role in emissions
reduction efforts. However, progressing from demonstrations to mass production would require significant amounts of
effort both in terms of modeling, controller improvement, and computational footprint reduction, as outlined in the pre-
vious two subsections. It would also require creating standardized tools for design, calibration, simulation, modeling and

¶¶This can help manufacturers meet emissions targets without major cost increases.
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deployment, a significant experimental validation campaign, and a significantly larger team of engineers and researchers.
See the acknowledgments section in Reference 67 which details the deployment of linear MPC in production by a major
automotive manufacturer.67

7 CONCLUSION

An emissions oriented model predictive controller for a diesel engine airpath has been designed and experimentally
validated. Using a combination of a supervisory model predictive controller, for emissions constraint enforcement, and a
nonlinear model predictive controller incorporating optimal feedforward and feedback, for nonlinearity compensation,
we were able to demonstrate significant reductions in cumulative emissions over the WLTC drive cycle.

By distributing quadratic programming iterations over time we are able to achieve low computation times without
compromising performance. However, while the DAP MPC controller is executable in real time using a rapid prototyping
unit, more work is required to make this strategy feasible on a production engine control unit. The DAP MPC con-
troller also displayed some undesirable oscillations, produced some visible smoke, and underperformed on gentle driving
patterns such as the NEDC. More work is needed to address these issues.
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NOMENCLATURE
q,qtrg fueling rate and fueling rate target
Ne engine speed
𝜌 = [qtrg Ne] engine operating condition: target fueling rate and engine speed
pim, ptrg

im, pex intake manifold pressure, intake manifold pressure target, and exhaust manifold pressure
𝜒, 𝜒 trg EGR rate and EGR rate target
wc,wf ,wegr,wcyl compressor, fuel, EGR, and cylinder mass flow rates
F 1,F 2 intake and exhaust manifold burnt gas fractions
uthr,uval,uvgt EGR throttle, EGR valve, and variable geometry turbocharger (VGT) positions
𝜏q, 𝜏w engine and wheel torque
𝜓THC, 𝜓NOx , 𝜓OP exhaust gas THC concentration, NOx consecration, and opacity
𝜙 fuel-air ratio
Ns,Nfb,Nff supervisory, feedback, and feedforward prediction horizon lengths
Rs, 𝛼s, 𝛾s, 𝛽s supervisory controller tuning parameters
Qfb,Rfb,Qff ,Rff feedback and feedforward positive definite weighting matrices
pim(𝜌), 𝜒 im(𝜌) steady-state intake pressure and exhaust gas recirculation (EGR) rate setpoints as a functions of

engine operating condition
sveh longitudinal speed of the vehicle
V im,V ex intake and exhaust manifold volumes
T im,T ex intake and exhaust manifold temperatures
Rair,Rex gas constants of fresh air and exhaust gases
(A/F )s stoichiometric air-fuel ratio
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APPENDIX

Proof of Theorem 2
Our goal is to apply Reference [68, theorem 1] to infer the existence of a Lyapunov function for the closed-loop system.
To show this we verify the conditions of the theorem, referred to as (SA1-SA4) in Reference 68. Since the SMPC OCP has
a penalty on Δu, and is thus nonstandard, we work with an equivalent augmented system by defining

y =

[
x
u

]
, and y+ = g(y,Δu) =

[
f (x,u)
u + Δu

]
, (A1)

which is the so-called input velocity form of the original system. We seek a Lyapunov function which proves the stability
of (A1). Note that recursive feasibility, that is, yk ∈ Y(𝜌), is automatic thanks to Theorem 1. We consider each condition
in turn:

(SA1) Trivially satisfied since the stage cost (15) is semidefinite and continuous, the terminal cost is null.
(SA2) The OCP (14) is guaranteed to be feasible by construction and has a strongly convex objective function, thus

(14) has a solution and the infimum is achieved.
(SA3) Consider a candidate detection function W(y)=V(x)+ k(u) where V(x) is a Lyapunov function which proves

asymptotic stability of the inner loop and k(u)= l(u,0). Since the NMPC controller is assumed to stabilize the engine, V(x)
can be taken to be its value function. Alternatively, since the inner loop is stable by assumption, a converse Lyapunov
theorem, for example, Reference 69, could be invoked. Since V is a Lyapunov function it is bounded above and below by
class ∞ functions. In addition, k(u) is positive definite, strictly convex with k(ū) = 0, and is Lipschitz continuous on the
set, {u | 0 ≤ 𝜒 trg ≤ max

P
𝜒 egr(𝜌), 0 ≤ q ≤ max

P
qtrg}, with Lipschitz constant L and thus can be bounded from above by

a class ∞ function. Following the notation of Reference 68 we define our tracking measure as 𝜎(y) = V(x) + k(u). Let
𝛽1(𝜎(y)) = 𝜂1(||x − x||) + 𝜂2(||u − ū||), where 𝜂1 ∈ ∞ upperbounds V(x) and 𝜂2 ∈ ∞ upperbounds k(u). Then W(y) ≤
𝛽1(𝜎(y)) and 𝛽1 ∈ ∞. Now consider

W(g(y,Δu)) − W(y)
= V(f (x,u)) − V(x) + k(u + Δu) − k(u)
≤ V(x+) − V(x) + L||Δu||R,

and define

𝛼1(x) =

{
(V(x) − V(x+))∕V(x), x ≠ x,
0 x = x.

(A2)
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Since V is a Lyapunov function ∀x ∈ X ⧵ {x}, V(x+)−V(x) < 0, V(x) > 0 and thus 𝛼1(x) ∈ [0, 1) and V(x+) − V(x) +
𝛼1(x)V(x) = 0. Continuing, using that V(x+) − V(x) = −𝛼1(x)V(x) ≤ 0, we have that

W(g(y,Δu)) − W(y) ≤ V(x+) − V(x) + L||Δu||R,
≤ −𝛼1(x)V(x) + (𝛾1 − 𝛼1(x))k(u) + L||Δu||R,
≤ −𝛼1(x)(V(x) + k(u)) + 𝛾1k(u) + L||Δu||R,
≤ −𝛼(x)𝛽1(𝜎(y)) + 𝛾1k(u) + L||Δu||R,

for any 𝛾1 > 1 > 𝛼1(x). Since 𝛼1(x) < 1, for any 𝛾2 > 1, 𝛼1(x)(V(x) + k(u)) ≤ 𝛾2𝛽1(𝜎(y)). Thus 𝛽2(⋅) = 𝛾2𝛽1(⋅) ∈ ∞ is an
appropriate comparison function. The remaining terms can be upper bounded by the function 𝛾1l(u,Δu) + 𝛾3

√
l(u,Δu)

for sufficiently large 𝛾3. Thus we can take 𝛽3(⋅) = 𝛾1(⋅) + 𝛾3
√
(⋅) ∈ ∞ as the final required comparison function. The

existence of 𝛽1, 𝛽2, and 𝛽3 verifies the detectability condition [68, definition 1].
(SA4) Boundedness of the value function can be established using Assumption 2 (asymptotic controllability) combined

with Reference [2, lemma 6.6]. Verifying (SA1-SA4) completes the proof.


