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Summary

This paper presents the development and experimental validation of an emissions
oriented model predictive controller for a diesel engine. The control objective is
to minimize cumulative NOx and hydrocarbon emissions while limiting visible
smoke production and without compromising fuel economy or torque response. This
is accomplished by using a supervisory model predictive controller (SMPC) and
nonlinear model predictive controller (NMPC) in tandem. The SMPC controller
coordinates the exhaust gas recirculation (EGR) rate target and fuel supplied to the
engine in real-time to satisfy combustion quality constraints while the NMPC con-
troller tracks the EGR rate target by manipulating the EGR throttle, EGR valve, and
variable geometry turbine (VGT). The NMPC controller uses MPC for feedforward
and feedback in a novel configuration to simultaneously achieve fast tracking per-
formance, disturbance rejection, and robustness. We demonstrate that the proposed
diesel engine MPC controller is able to reduce cumulative emissions by 10-15% rel-
ative to a state of the art benchmark strategy when placed in closed-loop with an
engine on a transient dynamometer.
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ACRONYMS

EGR Exhaust Gas Recirculation
VGT Variable Geometry Turbocharger
MAP Manifold Air Pressure
MAF Mass Air Flow
MPC Model Predictive Control
SMPC Supervisory Model Predictive Control
NMPC Nonlinear Model Predictive Control
LPV Linear Parameter Varying
OCP Optimal Control Problem
DAP Diesel Air Path
NOx Oxides of Nitrogen
THC Total Hydrocarbon
PM Particulate Matter
QP Quadratic Program
FF Feedforward
FB Feedback
WLTC Worldwide Harmonized Light Vehicles Test Cycle
NEDC New European Drive Cycle
BGF Burnt Gas Fraction
LTI Linear Time Invariant
LAPACK Linear Algebra Package
BLAS Basic Linear Algebra Subroutines
ECU Engine Control Unit
CPU Central Processing Unit

NOMENCLATURE

q, qtrg Fueling rate and fueling rate target
Ne Engine speed
� = [qtrg Ne] Engine operating condition: target fueling rate and engine speed
pim, p

trg
im , pex Intake manifold pressure, intake manifold pressure target, and exhaust manifold pressure

�, � trg EGR rate and EGR rate target
wc , wf , wegr, wcyl Compressor, fuel, EGR, and cylinder mass flow rates
F1, F2 Intake and exhaust manifold burnt gas fractions
utℎr, uval, uvgt EGR throttle, EGR valve, and variable geometry turbocharger (VGT) positions
�q , �w Engine and wheel torque
 THC ,  NOx ,  OP Exhaust gas THC concentration, NOx consecration, and opacity
� Fuel-air ratio
Ns, Nfb, Nff Supervisory, feedback, and feedforward prediction horizon lengths
Rs, �s, s, �s Supervisory controller tuning parameters
Qfb, Rfb, Qff , Rff Feedback and feedforward positive definite weighting matrices
p̄im(�), �̄im(�) Steady state intake pressure and Exhaust Gas Recirculation (EGR) rate setpoints as a functions

of engine operating condition
sveℎ Longitudinal speed of the vehicle
Vim, Vex Intake and exhaust manifold volumes
Tim, Tex Intake and exhaust manifold temperatures
Rair, Rex Gas constants of fresh air and exhaust gases
(A∕F )s Stoichiometric air-fuel ratio
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1 INTRODUCTION

Increasingly stringent emissions and fuel economy regulations have created a need for more complex engine systems and
advanced engine control strategies. Diesel engines offer superior fuel economy compared to their gasoline counterparts; how-
ever sophisticated strategies are needed to manage oxides of nitrogen (NOx ) and particulate matter (PM) emissions to meet
regulatory standards. Many modern diesels incorporate a variable geometry turbocharger (VGT) to improve power output and
fuel efficiency, and an external exhaust gas recirculation (EGR) system to reduce emissions. However, the addition of both the
turbocharger and EGR systems into the engine design introduces strong nonlinearities and interactions, complicating control
development.
Emissions control in automotive diesels is especially challenging. Unlike in e.g., marine or generator applications, load and

engine speed are highly transient, leading to frequent emissions spikes which must be carefully managed. In particular, smoke
control is strongly coupled to torque response (drivability) and there is a strong tradeoff between transient NOx and smoke
production. Model predictive control (MPC) provides a useful framework for managing these tradeoffs via real-time constraint
enforcement. MPC1,2 is a control technique that computes a control action at each sampling instant by solving an optimal control
problem (OCP) over a finite receding horizon.MPC is of increasing interest in the automotive and engine control communities3,4
because it can systematically handle constraints, nonlinearities, and achieve fast transient responses.
Existing literature on diesel engine MPC can be broadly divided into two classes, (i) those with airflow/pressure setpoint

tracking formulations and (ii) those that consider high level objectives such as fuel economy or emissions.
Prior research on pressure and/or airflow setpoint tracking using linear MPC often uses switching or piecewise linear models

to cover the engine operating range5,6,7,8,9. This approach may lead to chattering and poor performance; multiple estimator/con-
trollers running in parallel are often needed to overcome these issues, increasing the computational footprint of the controller.
To avoid the use of multiple models, the use of partial nonlinear inversion in combination with rate-based MPC10 or disturbance
observers11 has been proposed to allow a single linear MPC controller to cover the entire operating range. However, the use of
a single controller leads to reduced model accuracy and performance. Nonlinear MPC (NMPC) can incorporate more accurate
models and improve performance while avoiding the need for nonlinear inversion and/or multiple linear models. Due to the high
computational complexity of nonlinear optimization, most literature on the topic involves only simulation studies12,13,14. How-
ever, Murilo et al.15 present experimental results which demonstrate good tracking performance with an NMPC controller over
a drive cycle but does not offer comparisons with industrial benchmarks (e.g., existing mass production controllers) or insight
into how the NMPC controller impacts emissions or fuel economy.
MPC also is capable of directly optimizing or constraining high level/economic objectives such as emissions or fuel economy,

these outputs are nonlinear and thus are usually addressed with NMPC. Controllers that maximize fuel economy subject to
emissions constraints have been proposed for heavy duty diesels16,17, off-highway diesels18 and marine/generator diesels19.
The associated simulation and experimental results are promising, however, these varieties of diesel engines are not subject to
the same transient operating condition (speed/load) variations as automotive diesel engines. Karlsson et al.20 propose an MPC
controller that directly considers high level objectives. However, they use cylinder pressure sensors which are not available in
production vehicles, linear models resulting in poor closed-loop performance, and present results only for a single operating
point rather than complete driving cycles.
In summary, Linear MPC controllers are not well suited to optimizing high level objectives in diesel engines, such as those

related to emissions and fuel economy, due to the nonlinearity of these outputs. At the same time, implementing nonlinear MPC
controllers for automotive diesels remains challenging due to fast sampling rates and the high computational complexity of
nonlinear optimization. Moreover, most experimental results for diesel engine MPC controllers focus either on step responses,
rather than realistic driving patterns, or do not consider how the NMPC controller impacts high level objectives. In particular,
comprehensive experimental emission control results, i.e., considering realistic driving patterns, using only production sensors,
and including comparisons with existing industrial benchmarks, have not been presented for automotive diesel engines.
In this paper, we develop a novel nonlinear model predictive control framework for emissions coordinated constrained con-

trol of a diesel engine. The framework involves an inner-loop nonlinear tracking-type MPC controller for coordinated control
of engine airpath actuators (EGR valve, VGT, throttle) and a supervisory outer-loop MPC/reference governor hybrid that
manipulates the EGR rate setpoint and fuel input to enforce emissions constraints. Our contributions are as follows:

1. We propose an inner-outer loop MPC based framework that enables systematic design of constrained controllers for the
diesel engine system, rather than using heuristic or rule based design as is current industrial practice. For the outer-loop, we
propose a novel supervisoryMPC (SMPC) controller that is able to enforce pointwise-in-time emissions constraints and for
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the inner-loop we develop a controller that uses a novel NMPC based feedforward/feedback architecture to simultaneously
achieve fast transient responses and integral action. Theoretical closed-loop stability results supporting the controller are
also included.

2. We experimentally verify that our integrated SMPC/NMPC controller is able to reduce engine-out NOx and hydrocarbon
emissions by 10 − 15% compared to a state-of-the-art industrial benchmark controller over a transient driving cycle.
Further, we demonstrate visible smoke control during fast transients which is both challenging and specific to automotive
diesel applications. This is accomplished using only production sensors which implies that our controller can be deployed
on existing engines without hardware modifications.

3. We demonstrate that it is possible to implement real-time capable high performance NMPC controllers at greater than 100
Hz sampling rates by leveraging recent advances in computational algorithms forMPC21 and symbolic tools for automatic
code generation22. In particular, our inner-loop NMPC controller is able to execute more than 5 times faster than the most
comparable automotive diesel NMPC controller in the literature15.

While developed here for diesel engine applications, we believe that our hierarchical control framework is more broadly appli-
cable e.g., for control of other internal combustion engines and other industrial applications. Demonstrations of this kind are a
crucial step in the transition of NMPC for diesel engines from academic research to industrial practice.
This paper builds upon our previous work. The SMPC controller extends the economic MPC controller of Liao-McPherson

et al.23 and the NMPC controller combines the exterior penalty approach of Huang et al.12 and a nonlinear extension of the
rate-based formulation presented by Huang et al.10 for linear MPC. This paper integrates the SMPC and NMPC modules and
presents experimental results for the nonlinear case; our previous publications23,12 only contain simulation results. An overview
of the project, including a high level description of the NMPC controller, is also available24.
Amodel predictive controller is fundamentally based on three constituents: (i) Predictionmodels used to estimate the response

of the system to a control action (and any associated estimators), (ii) An optimal control problem (OCP) formulation, and (iii)
a method for solving the aforementioned OCP in real-time. The rest of Section 1 provides some background on engine control,
describes the engine system and outlines the control objectives. Section 2 describes the prediction models used in the SMPC and
NMPC controllers. Section 3 describes the control architecture in detail, as well as the optimal control problems defining the
SMPC and NMPC controllers. Section 4 describes how the SMPC and NMPC optimal control problems are solved in real-time.
Section 5 contains experimental results and analysis demonstrating the performance and reliability of the proposed strategy.
Finally, Sections 6 and 7 discuss future perspectives and concluding remarks.

1.1 Diesel Powertrain Overview
We begin with a brief description of the diesel powertrain operation, see Figure 1. The driver inputs a pedal angle command
that is mapped to a fuel request qtrg . In response to fuel input, the engine produces torque which is applied to the transmission
input shaft and transmitted to the wheels through the transmission and differential. The engine also produces emissions as
byproducts which are heavily regulated. Inmodern vehicles, engine exhaust gases pass through an aftertreatment system, see e.g.,
Recsitouglu et al.25 for more details, before being emitted into the atmosphere. From the perspective of the engine there are two
inputs, the fueling rate command (qtrg) and the engine speed (Ne). The fueling rate command represents a torque request from
the driver and the engine speed is determined by the powertrain, i.e., it is a function of the vehicle speed and the transmission
gear ratio. The outputs are the engine torque applied to the transmission input shaft (�q), theNOx ( NOx), and total hydrocarbon
(THC) ( THC ) concentrations, and the exhaust gas opacity ( OP ). More details on powertrain modelling and control can be
found in the literature26,27.

1.2 System Description
A schematic of the diesel engine is shown in Figure 2. The engine consists of a cylinder block, intake and exhaust manifolds,
an external EGR system, and a turbocharger. The Manifold Air Pressure (MAP) and Mass Air Flow (MAF) sensors are used to
measure the intake manifold pressure and compressor flow, respectively. The exogenous inputs to the system are the fuel target
and the engine speed. Fluid flows through the engine are controlled by the EGR throttle, EGR valve and variable geometry
turbocharger (VGT). The EGR valve controls the amount of exhaust gas allowed to flow into the intake manifold; adding
exhaust gas into the intake manifold reduces peak combustion temperature in the cylinders, lowering NOx concentrations, but
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FIGURE 1 A high level diagram illustrating the architecture of a typical diesel powertrain.
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FIGURE 2 A diagram of the diesel engine airpath.

can cause poor quality combustion, leading to vibration, roughness, and smoke. The EGR throttle is used to reduce airflow into
the intake manifold allowing for a higher proportion of exhaust gases when it is beneficial. The VGT influences the pressure
in the intake manifold by controlling how much energy is extracted from the exhaust gases. Higher intake manifold pressure
increases air flow into the cylinders, increasing engine power. In this paper, we consider the total fueling rate as a control input;
an external injection strategy is used for the rest of the fuel path control.

The engine operating condition consists of the fueling rate† target and the engine speed, i.e.,

� = [qtrg Ne]T . (1)

The state vector for the supervisory controller consists of the intake pressure, exhaust pressure, compressor flow, intake manifold
burnt gas fraction, and exhaust manifold burnt gas fraction and the control vector consists of the EGR rate target passed to the

†The fueling rate is the ratio of fuel mass flow and engine speed, is proportional to torque (when losses are neglected), and has units of volume per stroke.
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inner-loop controller and the fueling rate command applied to the engine i.e.,

x =
[

pim pex wc F1 F2
]T , and u =

[

� trg q
]T . (2)

The EGR rate is defined as the mass flow through the EGR valve into the intake manifold over the total mass flow into the
cyinders, i.e., � = wegr∕wcyl.The fueling rate applied to the engine q may be different than the target qtrg in order to enforce
constraints. The state vector of the supervisory controller x can be partitioned into airpath and EGR loop variables, denoted by

� =
[

pim pex wc
]T , and Υ =

[

F1 F2
]T , (3)

respectively so that x = [�T ΥT ]T . The state vector for the airpath controller is the intake pressure and EGR rate, the control
inputs are the throttle, EGR valve, and VGT positions, i.e.,

z =
[

pim �
]T , and v =

[

utℎr uval uvgt
]T . (4)

The system outputs are split into measurements, and performance variables, defined respectively as,

ym =
[

pim wc Ne
]T and yp =

[

 OP  NOx  THC �q
]T
. (5)

The measurements, ym, are used for feedback. The performance outputs: torque, exhaust opacity (smoke), NOx concentration,
and total hydrocarbon concentration (THC) (strongly correlated with particulate matter), are measured for evaluation purposes
but are not available for feedback. The engine is also instrumented to measure the exhaust pressure pex, the intake and exhaust
manifold temperatures Tim, Tex and the exhaust manifold burnt gas fractionF2. Thesemeasurements are used formodel validation
and calibration but not for performance evaluation or feedback.

Remark 1. The dimension of the supervisory controller state vector is larger than that of the airpath controller, the extra states
are needed to model emissions.

1.3 Objectives and Methodology
The objective of diesel airpath control is to supply the torque requested by the driver while maximizing fuel economy, respecting
regulatory constraints on NOx and particulate matter (PM), and limiting visible smoke. The focus of this paper is emissions
reduction, our methodology is to use the constraint handling capabilities of MPC to reduce conservatism and operate closer to
constraint boundaries during transients to reduce emissions. Specifically, there is a tradeoff between NOx and smoke emissions
during transients which is controlled by the EGR valve. Opening the valve and increasing EGR flow decreasesNOx production
(by reducing peak combustion temperatures28) but reduces available oxygen and increases smoke production. The conventional
strategy for managing this tradeoff is to shut the EGR valve when fuel/torque is requested by the driver to suppress smoke,
leading to a transient spike in NOx emissions. Our controller uses dynamic models of the engine to permit more EGR flow
while still preventing visible smoke production and thus reduce overall emissions.
Figure 3 provides a high level overview of the controller architecture, a more detailed diagram can be found in Figure 7. The

motivation behind the design is to decouple nonlinearity compensation and integral action from constraint satisfaction. This
reduces the complexity of the controller as well as making the design modular (an important consideration in industrial settings).

Supervisory
Controller

Airpath 
Controller Engine

Actuators
Torque

Emissions

Fuel 
request

Engine speed Engine speed

Setpoints

Measurements

FIGURE 3 A high level control architecture diagram.
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The controller consists of an outer-loop supervisory module and an inner-loop airpath module. The inner-loop airpath con-
troller compensates for nonlinearities and coordinates multiple actuators. It also incorporates integral action to account for
variability and noise in the engine. The supervisory controller enforces emissions constraints while keeping the system as close
as possible to preselected operating points. It uses a dynamic model of the system to do so in a minimally conservative manner,
allowing safe operation near the constraint boundaries and improving performance, i.e., reducing emissions. This approach is
well established in the context of reference governors29 and has been successfully applied to enforce compressor surge margin
constraints in fuel cell systems30, automotive gasoline engines31, and aircraft gas turbines32.
In what follows, we detail the controller development steps which encompass engine modelling, control design, and

experimental validation.

2 ENGINE MODELLING

This section describes the prediction models used by the various MPC controllers. First we describe the data driven open-loop
engine models, the closed-loop data driven models of the engine in closed-loop with the NMPC controller, and finally the
physics based burnt gas fraction models. The first is used by the inner-loop NMPC controller while the latter two are used by
the outer-loop MPC controller.
Throughout the paper, we make use of a 2 dimensional grid of operating conditions,

⎡

⎢

⎢

⎢

⎢

⎣

�1 �15 ⋯ �141
�2 �16 ⋯ ⋮
⋮ ⋱ ⋱ ⋮
�14 ⋯ ⋯ �154

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

(qtrg1 , Ne1) (q
trg
1 , Ne2) ⋯ (qtrg1 , Ne11)

(qtrg2 , Ne1) (q
trg
2 , Ne2) ⋯ ⋮

⋮ ⋱ ⋱ ⋮
(qtrg14 , Ne1) ⋯ ⋯ (qtrg14 , Ne11)

⎤

⎥

⎥

⎥

⎥

⎦

(6)

which are contained within the box [qtrg1 , qtrg14 ] × [Ne,1, Ne,11] and are used for scheduling gains, targets, and model parameters.
This grid was chosen so as to cover the test cycles used for experimental validation‡. We use a dense uniform § grid, the gridpoint
density was selected by decreasing the gridpoint spacing until the modelling accuracy ceased improving, i.e., until the point of
diminishing returns.

2.1 Open-loop Airpath Modelling
The open-loop airpath model is used by the NMPC controller to estimate the response of the engine to throttle, EGR valve, and
VGT commands. We use a data-driven approach to generate models of the EGR rate and intake pressure response to throttle,
valve, and VGT actuation. First, we perturb the system around each operating point to generate identification data. Then, at each
operating point, �i, for i = 1,… , 154, we identify a model of the form,

zk+1 = F̃i + Ãizk + B̃ivk + !Ti Φ(yk), yk = [z
T
k v

T
k ]
T , (7)

where k is the discrete time index, Ãi, B̃i, F̃i, and !i are appropriately sized vectors/matrices of coefficients and Φ(x) is a basis
for ℙ2n, the set of all polynomials¶. in n variables of degree > 1 and ≤ 2, e.g., ℙ22 = span

{

x21, x1x2, x
2
2

}

. To ensure the model
has correct local properties, the linear portion of the model is identified first using least squares. The nonlinear portion is then
identified using the error signal ek = zk+1 − F̃ (�i) + Ã(�i)zk + B̃(�i)vk. Finally, to obtain a model that depends continuously on
the operating condition �, the coefficients are interpolated between gridpoints using linear interpolation, resulting in a nonlinear
parameter varying model of the form

zk+1 = fn(zk, vk, �k) = F̃ (�k) + Ã(�k)zk + B̃(�k)vk + !(�k)TΦ(yk), yk = [zTk v
T
k ]
T , (8)

where F̃ ∶ ℝ2 → ℝ2, Ã, B̃ ∶ ℝ2 → ℝ2×2 and! ∶ ℝ2 → |ℙ24|. Figure 4 illustrates the result of the fitting procedure and compares
the nonlinearmodel with the samemodel using only the linear terms. Note that the operating point is varying, demonstrating good
model accuracy between gridpoints. In our experience, using interpolation techniques avoids some issues typically associated

‡If the controller described in this paper was to be used in a production vehicle the grid would be expanded to cover the entire engine operating region.
§Note that it would be more efficient to adapt the spacing of the gridpoints so the density is higher where the dynamics change more rapidly. However, because we

are able to gather data quickly, we found the effort required to implement an adaptive scheme was unnecessary.
¶Other functions, e.g., Gaussian, neural network, can be used but they will inevitably be more complex to differentiate and/or numerically evaluate.
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FIGURE 4 Validation of the nonlinear open-loop airpath model at 1800 rpm. The model output matches the validation data
well and the inclusion of the nonlinear terms improves overall accuracy.

with region switching strategies e.g., chattering, discontinuity of the feedback signal etc., and does not significantly affect the
computational cost of the resulting controllers.

2.2 Closed-loop Airpath Modelling
The closed-loop airpath prediction model is used by the outer-loop SMPC controller to estimate the response of the inner-loop
to EGR target and fueling rate commands. The model is identified from experimental data. We use a linear parameter varying
(LPV) model, identified using the local LPV modelling approach33 in the same manner as the open-loop models. The form of
the model is given by:

�k+1 = F (�k) + A(�k)�k + B(�k)uk, (9)
where k is the discrete time index, A ∶ ℝ2 → ℝ3×3, B ∶ ℝ2 → ℝ3×2, and F ∶ ℝ2 → ℝ3 are operating condition dependent
matrices. To construct A,B and F , coefficient matrices Ai, Bi and Fi are identified using experimental data at each �i in the
grid (6) for all i = 1,… , 154 using least squares in the same manner as described in Section 2.1. Linear interpolation is used to
compute model coefficients between grid-points. Figure 5 illustrates a typical outcome of the fitting process. The model quality
is good over most of the operating range since the inner loop controller tends to “linearize” the closed loop plant from the
perspective of the SMPC controller.
The SMPC controller uses models of the closed inner loop, see Figure 7 and Remark 2. To accommodate this, the NMPC

controller is calibrated before the data for the SMPC models is gathered, see Section 4.4 for more details. We have observed
that the closed-loop performance of the SMPC controller is not very sensitive to the accuracy of the closed-loop airpath model,
likely because the presence of the inner loop controller makes the closed-loop airpath dynamics relatively benign. We were able
to obtain good performance as long as the time constants of the modelled states were of the correct order of magnitude.
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FIGURE 5 Fitting result for a local LTI model of the closed-loop airpath at 1400 rpm. The inclusion of the inner-loop controller
leads to approximately linear closed-loop response and, as a result, the linear model is able to accurately capture the system
response.

2.3 Burnt Gas Fraction Modelling
The burnt gas fraction (BGF) model is used by the SMPC to predict the emissions response of the system by tracking the time
evolution of the burnt gas fractions in the intake manifold, F1, and exhaust manifold, F2. We use the model from Kolmanovsky
et al.34. Expressed in the form Υ̇ = G(�)Υ + b(�)q, the BGF equations can be written as

[

Ḟ1
Ḟ2

]

=
⎡

⎢

⎢

⎣

−(wegr+wtℎ)
m1

wegr

m1
wcyl

m2

−(wcyl+wf )
m2

⎤

⎥

⎥

⎦

[

F1
F2

]

+

[

0
1+(A∕F )E

m2

]

cqNeq, m1 =
pimVim
RairTim

, m2 =
pexVex
RexTex

, (10)

where cq is the constant such thatwf = cqNeq,Rair is the gas constant of air,Rex is the gas constant of the exhaust gas, and Vim,
Vex, Tim, and Tex are the volumes and gas temperatures in the intake and exhaust manifolds. The effective air-fuel ratio, denoted
by (A∕F )E , quantifies the mass of oxygen consumed per unit fuel and is calibrated as a function of operating condition using
exhaust analyzer data. The cylinder flow is estimated as a linear, operating condition dependent function of intake pressure, i.e.,

wcyl = a(�)pim + b(�), (11)

the EGR flow is estimated as wegr = wcyl − wc , and the throttle flow, wtℎ, is assumed to be equal to the compressor flow. The
BGF equations are stiff so we discretize them using the implicit Euler integration scheme35. Since the equations are linear in Υ
the update equation can be determined analytically as

Υk+1 = (I2×2 − Δ�kG(�k, �k))−1(Υk + Δ�kb(�k) qk), (12)

where k is the discrete time index, Δ�k is the integration step size and I2×2 is an identity matrix. In Figure 6 we compare the
BGF model, under the temperature, EGR flow, and throttle flow assumptions, against measurements from a wideband oxygen
concentration sensor, situated immediately downstream of the VGT. The model is in good agreement with the measurements;
the placement of the sensor induces a filtering effect which accounts for the error in transients.

This article is protected by copyright. All rights reserved.



10 Liao-McPherson ET AL

0 10 20 30 40 50 60 70 80 90 100

Time [s]

E
x
h

a
u

s
t 

B
u

rn
t 

G
a

s
 F

ra
c
ti
o

n Modelled Measured

FIGURE 6 Comparison of the burnt gas fraction model against experimental data obtained from a wideband oxygen concen-
tration sensor downstream of the VGT. The model is in good agreement with the measurements; the placement of the sensor
induces a filtering effect which accounts for the error in transients.

3 CONTROL DESIGN

The overall architecture of the controller is shown in Figure 7. The outer loop SMPC controller generates an EGR rate target
and a fueling rate input. The fueling rate input is applied directly to the engine while the EGR rate target is passed to the NMPC
controller. The NMPC controller tracks EGR rate and intake pressure commands.
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FIGURE 7 A schematic of the MPC control architecture; see Section 1.2 for notation. In this paper the supervisory controller
is a supervisory MPC (SMPC) controller and the airpath or inner-loop controller is a nonlinear MPC (NMPC) controller.

In typical engine control strategies, the EGR rate and intake pressure targets (�̄egr and p̄im) are static functions of the operating
condition, i.e., �̄egr(�) ∶ ℝ2 → ℝ and p̄im(�) ∶ ℝ2 → ℝ, and are implemented using lookup tables. These targets are obtained
during engine development and are chosen to be “optimal” in steady state. The steady state maps can be chosen based on a
variety of objectives e.g., maximizing fuel economy subject to emissions limits as well as other constraints, e.g., maximum
temperature, pressure, etc. Note that there is a complicated tradeoff between fuel economy, NOx , and PM/THC emissions so
determining the steady state maps is nontrivial. A variety of methods have been investigated in the literature for this purpose
including constrained optimization techniques36,37, extremum seeking38, and model based calibration39. Engine manufacturers
and suppliers also employ sophisticated proprietary methodologies.
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In this paper, we assume that these maps are provided and we focus on transient optimization, i.e., using MPC to shape
the transient response of the system as it transitions between operating points. The steady state maps usually neglect dynamic
effects, e.g., the intake and exhaust manifold filling dynamics, so transient shaping can have an impact on performance. For
example, a significant portion of cumulative emissions production occurs in transients40, see e.g., Figure 19, and drivability
depends on the response speed of the system to fuel commands. Moreover, we have observed that remaining as close as possible
to the steady-state targets is a very effective strategy#, this is reflected in the SMPC formulation in Section 3.2 which minimizes
deviation of � trg from �̄egr and q from qtrg in a manner similar to a reference governor29. Remaining near the optimal steady
state targets during transient operation provides good performance in practice (as we demonstrate in Section 5). In a previous
paper23, we explored simultaneous setpoint determination and constraint enforcement using Economic MPC. We found that, in
practice, determining optimal setpoints online was slow and lead to poor performance. This motivated our current approach of
“precomputing” the setpoints, i.e., using the predetermined setpoint maps �̄egr(�) and p̄im(�).
Most inner-outer loop architectures operate at different rates to minimize interactions between the loops. The SMPC and

NMPC controllers operate at the same update rate to allow the SMPC controller to respond to driver fuel requests as quickly
as supported by the hardware. This minimizes delays between driver commands and the system response leading to a more
responsive vehicle. Further, it allows us to decompose constraint handling (SMPC) and nonlinearity compensation/integral
action (NMPC) and makes the architecture modular; the inner loop airpath controller can be of any type, including e.g., PID or
MPC. However, choice of inner loop controller will affect the performance of the overall system so using a high performance
inner loop controller is advantageous. Finally, these simplifications help make real-time execution computationally tractable.

Remark 2. We manage the possibility of interference between the loops by using closed-loop models that account for the inner
loop controller as the SMPC prediction models. This technique is well established in the reference governor literature29.

Remark 3. The NMPC controller tracks an EGR rate target � trg and an intake pressure target ptrgim . The SMPC controller controls
� trg which is passed to the NMPC controller and q which is applied directly to the engine; it does not control ptrgim which is
instead obtained from the optimal steady state map, i.e., ptrgim = p̄im(�). We chose this architecture because the SMPC controller is
focused on combustion quality control and combustion quality is most sensitive to � and q. Future work will include extending
the SMPC controller to also control the intake pressure target.

Remark 4. The controller presented in this paper does not use cylinder pressure,NOx , opacity, or oxygen concentration sensors
for feedback. As a result, it can be implemented using only sensors available in a standard production vehicle.

3.1 Estimator Design
The EGR flow is estimated using a steady state mass balance equation, wegr ≈ wcyl − wc , and the cylinder flow is estimated
as a function of the operating condition and intake pressure using a static regression map. The EGR rate is calculated as � =
max(0, wegr∕wcyl). The burnt gas fractions are obtained by propagating (10). The normalized fuel-air ratio is estimated as

�(x, u, �) =
wf

wcyl(pim, �)(1 − F1)

(A
F

)

s
, (13)

where (A∕F )s is the stoichiometric air-fuel ratio of the fuel. The cylinder flow is a function of pim and � as described in (11) and
wf = cqNeq where cq > 0 is a fixed constant that depends on the engine. The normalized fuel-air ratio is strongly correlated
with smoke production as illustrated in Figure 8.
The intake temperature, exhaust temperature and the exhaust pressure estimates are obtained from the engine control unit

(ECU). Some literature on constructing these estimators includes41,42,43.

3.2 Supervisory Controller Design
The objective of the supervisory layer is to enforce safety, and fuel-air ratio constraints to limit smoke during transients as
unobtrusively as possible. In this context, safety is ensured by an upper bound on the fuel input and EGR rate to prevent damage
to the engine. The following optimal control problem is solved at each sampling instance for the fueling rate and EGR target.
The index i runs over the prediction horizon while the index k indicates the sampling instance; the notation xi|k indicates the

#We hypothesize that this is because emissions formation occurs in the cylinders at a fast timescale and is essentially a quasi-static function of the airpath states.
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FIGURE 8 The normalized fuel-air ratio is strongly correlated with smoke.

predicted value of x at the ith step in the prediction horizon at time tk.

min.
s,u,x

J (s, u, �k) =
Ns
∑

i=0
l(ui|k, ui−1|k, �k, s), (14a)

s.t xi+1|k = fs(xi|k, ui|k, �k,Δ�i), i = 0, ... , Ns − 1, (14b)
�(xi|k, ui|k, �k) − �l(�k, wc,k) ≤ s, i = 0, ... , Ns − 1, (14c)
0 ≤ � trgi|k ≤ �̄egr(�k), i = 0, ... , Ns − 1, (14d)

0 ≤ qi|k ≤ qtrgk , i = 0, ... , Ns − 1, (14e)
s ≥ 0, (14f)

where u =
[

uT0|k ... u
T
Ns−1|k

]T
, and x =

[

xT1|k ... x
T
Ns|k

]T
. The quantity �l(�,wc) is the fuel-air ratio limit, it corresponds to when

the engine begins to produce visible smoke and is a characteristic of the engine. It is determined experimentally during engine
characterization and increases with compressor flow and decreases with engine speed. The fuel-air ratio � is computed using
(13). The stage cost function l and prediction model fs are defined in (15) and (17) given below.
The stage cost function is given by

l(u, u−, �, s) = s(� trg − �̄egr(�))2 + �s(qtrg − q) + �ss + ||u − u−||2Rs , u = [�
trg q]T , (15)

where �s, �s, s > 0, and Rs ≻ 0 are tuning parameters, and reflects tracking objectives for the EGR rate target and fueling
rate, a penalty to soften the fuel-air ratio (FAR) constraint to guarantee feasibility, and a damping term (||x||2R = xTRx for
R = RT ≻ 0). Since the cost function has no dependence on the system outputs, the fuel command and/or EGR rate target
are only modified in response to predicted constraint violation, and, as a result, the SMPC controller is a hybrid between an
MPC controller and a variant of a reference governor29. Together with (14c) and (14f) the slack penalty term, �ss, defines an l1
softened constraint on the fuel-air ratio, which is used to limit smoke. The fuel tracking term, �(qtrg − q), which is equivalent to
�s|qtrg−q| due to (14e), promotes drivability. The remaining constraints, a lower bound on � trg and a fueling rate nonnegativity
constraint in (14e), make the control constraint set compact. We use linear or 1-norm penalties for both the fuel tracking and
fuel-air ratio constraints because they are more robust to ill-conditioning compared to quadratic penalties, ensuring that we are
able to reliably solve (14) numerically.
Achieving a sufficiently long prediction horizon to capture the dynamics of interest using a uniform prediction horizon

discretization requires a large number of discrete timesteps. Unfortunately, additional timesteps introduce additional decision
variables which increases computational complexity. As a countermeasure, we implemented a non-uniform integration timestep
in the prediction model. This technique is related to move-blocking44 and adaptive numerical integration2. It was introduced
in45, which also provides stability conditions for the case of continuous time LTI systems. We use the following function to
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determine the timestep sizes over the prediction horizon:

Δ�i =

⎧

⎪

⎨

⎪

⎩

ts i ≤ 2,
6 ⋅ ts 2 < i ≤ 4,
40 ⋅ ts 4 < i ≤ 8.

(16)

The total length of the prediction horizon is approximately 1.1 sec and corresponds toNs = 8 steps. The sampling period of the
system is approximately 8 msec. The short steps ensure consistency between the model and what is applied, the medium steps
capture emissions peaks, and the long steps capture the intake and exhaust pressure responses.
The prediction dynamics (14b) of the supervisory MPC controller are formed by combining the closed-loop airpath and EGR

loop models described in Sections 2.2 and 2.3. The prediction model is given by,

xi+1|k = fs(xi|k, ui|k, �k,Δ�i) =
[

�
Υ

]

i+1|k
=
[

F (�k) + Ā(�k,Δ�i)�i|k + B̄(�k,Δ�i)ui|k
[I2×2 − Δ�iG(�i|k, �k, Tk)]−1(Υi|k + Δ�ibqi|k)

]

, (17)

which is the concatenation of a downsampled version of (9) and (12). The temperatures Tk =
[

Tim,k Tex,k
]T and operating

condition �k are considered constant over the prediction horizon. The downsampled linear model matrices, Ā(�,Δ�) and B̄(�, �)
are computed as follows,

Ā(�,Δ�) = (A(�))l , B̄(�,Δ�) =

(

l−1
∑

j=0
(A(�))j

)

B(�), (18)

where l = Δ�∕ts is the downsampling factor. The constant term F remains unchanged after downsampling.

3.3 Airpath Controller Design
This section describes the NMPC airpath controller. The NMPC controller presented in this paper includes both feedforward,
to provide high performance, and feedback, for robustness, disturbance rejection, and integral action. Both the feedforward and
feedback are implemented as separate NMPC controllers. Figure 9 illustrates how they are connected. The feedback NMPC
controller uses a rate-based formulation to achieve integral action. The feedforward NMPC controller computes an optimal
control action for a nominal plant with a fictitious state z̃. Throughout this section the index i runs over the prediction horizon
while the index k indicates the sampling instance; the notation zi|k indicates the predicted value of z at the ith step in the
prediction horizon at time tk, while ẑk indicates the measured state at time tk, similarly vk indicates the control applied to the
system at time tk.

Remark 5. While the airpath controller can be of any type; using a faster controller will lead to better overall performance. In
this paper, we use a high performance NMPC controller and show in Section 5 that it outperforms a state of the art in-production
airpath controller.

3.4 Feedback Design
The purpose of the airpath controller is to provide fast tracking of the EGR rate and intake pressure targets computed by the
supervisory controller. In addition, due to variations in the engine and plant-model mismatch, integral action is needed to achieve
zero offset steady state tracking. We incorporate integral action by employing a rate-based (also known as velocity form) MPC
formulation.‖ The OCP arising from the velocity-form MPC has the following form,

min.
Δv

||zNfb
− ztrgk ||

2
Qfb

+
Nfb−1
∑

i=0
||zi|k − z

trg
k ||

2
Qfb

+ ||Δvi|k||2Rfb , (19a)

s.t. zi+1|k = zi|k + fn(zi|k, vi−1|k + Δvi|k, �k,Δt) − fn(zi−1|k, vi−1|k, �k,Δt), i = 0, ..., Nfb − 1, (19b)
vi|k = vi−1|k + Δvi|k, i = 0, ..., Nfb − 1 (19c)
z0|k = ẑk, z−1|k = ẑk−1, v−1|k = v̄k−1, (19d)
vlb ≤ vi|k ≤ vub, i = 0, ..., Nfb − 1, (19e)

‖Many strategies for incorporating integral action into MPC are equivalent, see 46,47.
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FIGURE 9 A diagram of the feedforward + feedback NMPC architecture. The feedforward NMPC controller is placed in loop
with a nominal plant model which is used to generate fictitiousmeasurements, denoted by z̃, as opposed to the real measurements,
ẑ, which are provided to the feedback controller. In the square boxes z stands for the discrete shift operator, i.e., uk+1 = z uk, and
r = [� trg ptrgim ]

T . Note that Δv is computed by the feedback module, vff is computed by the feedforward module, v is applied
to the engine, and v̄ is supplied to the feedback module through (19d).

where, Δv =
[

ΔvT0|k ... Δv
T
(Nfb−1)|k

]T
, Nfb is the receding horizon length, vff is the control obtained from the feedforward

control described in Section 3.5, see Figure 9, vub and vlb are bounds on the actuator positions, Qfb ≻ 0, and Rfb ≻ 0 are
positive definite weighting matrices, and fn(z, v, �,Δt) in (19b) is defined in (8) with the dependence on the sampling period
Δt made explicit. The typical choice is to set Δt = ts. The variable v̄k−1 = vk−1 + v

ff
k − vffk−1 in (19d) is the nominal control

input after feedforward compensation.
To achieve good performance and stability, a common rule-of-thumb for MPC is to use a prediction horizon roughly equal to

the slowest time constant of the system. For the DAP these are the pressure dynamics with settling times of approximately 1–2
seconds. With a base sampling rate, ts, of 8msec, ifΔt = ts a horizon of more than 100 steps would be required, leading to more
than 300 optimization variables, which is too large to be solved in real-time for this application. Our strategy for managing the
size of the OCP is to utilize move blocking44. Typically, move blocking is used to reduce the number of optimization variables
in the OCP. However, due to the limited computational resources available in the DAP application, we also seek to reduce the
number of nonlinear model evaluations required to propagate the dynamics and to form Jacobian/Hessian matrices.
To this end, our strategy is to increase the discretization timestep of the model, Δt, such that Δt ≫ ts while keepingNfb and

the form of fn the same. Note we cannot increase ts directly because fuel, engine speed, and target input changes, which occur
at ts ≈ 8 msec, must be accommodated. We parameterize the discretization timestep as an integer multiple of the sampling
period, i.e., Δt = d ⋅ ts; we will refer to d ∈ ℕ as the downsampling factor. For the feedback component of the NMPC controller
we pick d = 40. This approach increases the time horizon of the OCP but creates a mismatch between the sampling period of
the controller and discretization timestep of the prediction horizon. It also requires generating models, fn(⋅, ⋅, ⋅,Δt), with a large
sampling time Δt which is challenging in practice due to aliasing effects.
As mentioned above making Δt ≠ ts introduces sampling/discretization mismatch. As a result it is no longer clear if we

can use v−1 = v(t − Δt) in (19d) because multiple changes in control would have been applied between times t − Δt and t.
Furthermore, this is severely inconsistent with the model, (19b), which assumes that a zero-order-hold time of Δt on the control
has been and will be applied; if Δt ≠ ts this assumption is inaccurate. We address these issues as follows. Since the formulation
(19) is rate-based we optimize for the change in control Δvi rather than vi directly, this leads to a first order hold assumption
applied to the control inputs which more closely matches what is actually applied. Further, we collect (19b) and (19c) into a
single rate-based model

z̄i+1 = f̄ (z̄i,Δvi, �i,Δt), where z̄i =
[

ΔzTi z
T
i v

T
i−1

]T , (20)
and apply (19d) to z̄ instead of z. The next issue which must be addressed is how to obtain (20) when Δt ≠ ts. We observed
that a model of the form (8) cannot be identified from downsampled data directly due to aliasing effects; since we require that
Δt = dts ≫ ts, it turns out that for any useful value of d that 1∕Δt is well below the Nyquist frequency. Our solution is to
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analytically propagate the LPV portion of (8) withΔvk = vk−vk−1 held constant for d-steps and use the resulting downsampled
model to assemble (20). An error model, �̂, is then introduced to account for higher-order-terms. The resulting model has the
following form,

⎡

⎢

⎢

⎣

Δzd(i+1)
zd(i+1)
vdi

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

Ã(�k) 0 0
Ã(�k) I 0
0 0 I

⎤

⎥

⎥

⎦

d
⎡

⎢

⎢

⎣

Δzdi
zdi
vd(i−1)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

0
F̃ (�k)
0

⎤

⎥

⎥

⎦

+

⎛

⎜

⎜

⎜

⎝

d−1
∑

j=0

⎡

⎢

⎢

⎣

Ã(�k) 0 0
Ã(�k) I 0
0 0 I

⎤

⎥

⎥

⎦

j
⎞

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎣

B̃(�k)
B̃(�k)
I

⎤

⎥

⎥

⎦

Δvdi + �̂(zdi, vdi−1,Δzdi,Δvdi, �k),

(21)
where, Ã, B̃, and F̃ are the matrices in (8), and �̂ is an error model which is identified to data generated by simulating (20) with
Δv held constant for d-steps. Note that (8) is associated with Δt = ts = 8 msec. Since the linear model can be downsampled
analytically and the data used to train �̂ is generated from noise-free simulations no aliasing effects occur.
Incorporating these changes, the OCP for the move-blocked rate-based MPC is

min.
Δv

||zdNfb|k − z
trg
k ||

2
Qfb

+
Nfb−1
∑

i=0
||zdi|k − z

trg
k ||

2
Qfb

+ ||Δvdi|k||2Rfb , (22a)

s.t. (21), i = 0, ..., Nfb − 1 (22b)
z0|k = ẑk, Δz0|k = ẑk − ẑk−1, v−1|k = v̄k−1, (22c)

vlb ≤ vdi|k ≤ vub, i = 0, ..., Nfb − 1, (22d)

where Δv =
[

ΔvT0|k ... Δv
T
d(Nfb−1)|k

]T
and v̄k−1 = vk−1 + v

ff
k − vffk−1. We observed that this method is effective and, for a fixed

number of prediction horizon stepsNfb, significantly improves the performance of the feedback portion of the NMPC controller
compared to setting Δt = ts. The results in this paper were generated using Nfb = 6 and d = 40; the resulting time horizon
length is approximately 1.9 s. The results presented in this paper utilize the higher order terms �̂ in (21). However, we would
advise in the future against using higher order terms in the feedback MPC. An argument can be made that the feedforward,
nonlinear, MPC will keep the system close to the nominal setpoints where linear models are accurate. In addition, using a linear
MPC for feedback is advantageous from a verification standpoint.

3.5 Feedforward Design
The feedback portion of the NMPC controller, described above, incorporates integral action to compensate for model mismatch.
It is well known that the addition of integral action can have a detrimental effect on the response speed of the closed-loop system;
to compensate we add a feedforward module.
In engine airpath control, a common strategy is to obtain the feedforward control action from various maps and ad hoc logic.

In this paper we instead use a model based approach and replace the traditional feedforward table with a function defined by
the control action computed by a nonlinear model predictive controller placed in closed-loop with a nominal model of the plant.
This is illustrated graphically in Figure 9. The OCP for the feedforward controller has the following form,

min.
vff

||z̃i|k − z
trg
k ||

2
Qff

+
Nff−1
∑

i=0
||z̃i|k − z

trg
k ||

2
Qff

+ ||vffi|k − ṽk||
2
Rff
, (23a)

s.t. z̃i+1|k = fn(z̃i|k, v
ff
i|k , �k, dts), i = 0, ..., Nff − 1, (23b)

z̃0|k = z̃k, (23c)
vlb ≤ vffi|k ≤ vub, i = 0, ..., Nff − 1, (23d)

whereNff is the prediction horizon length,Qff andRff are positive definite weighting matrices, vff =
[

vff,T0|k ... vff,TNff−1|k

]T
,

fn is the model of the engine defined in (8) with the dependence on the sampling time made explicit, ztrgk = [� trgk p̄im(�k)]T and
ṽk satisfies z

trg
k = fn(z

trg
k , ṽk, ts). The state, z̃k+1, in (23) is obtained by propagating the nominal model,

z̃k+1 = fn(z̃k, v
ff
0|k, �k,Δt). (24)

The results in this paper used a prediction horizon of Nff = 6 and a discretization period of Δt = 6ts ≈ 48 msec for the
feedforward module. No aliasing issues arose while identifying the models.
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We found it significantly faster to tune the feedforward MPC instead of calibrating a feedforward map. In addition, the NMPC
feedforward controller was able to provide feedforward commands which improved performance by overshooting steady state
targets while still considering constraints. Essentially, the NMPC feedforwardmodule is a dynamical system instead of a function
like a typical map based feedforward.

Remark 6. The use of a fictitious state, z̃, is necessary to ensure that the NMPC feedforward module is truly a feedforward, i.e.,
it is independent of the measured state. If the measured state was used as an input to the feedforward module in Figure 9 would
be in feedback, this is undesirable since it would interfere with the integral action in the feedback NMPC module.

3.6 Stability and Feasibility
This section discusses the stability and feasibility of the SMPC and NMPC controllers. Both controllers use nonstandard tech-
niques to achieve the performance required by the application and, as a result, a complete a-priori stability analysis is beyond
the scope of this paper. However, existing theory and stability analyses of simplified models were used to guide the controller
design process. We also performed exhaustive simulations and hundreds of hours of experimental testing to verify practical
stability a-posteriori as is standard practice in engine control applications, see e.g.,48,49. The testing was rigorous, performed
systematically, and based on domain expertise; we didn’t observe any issues during our testing campaign.
Moving forward, it would be preferable to incorporate the testing into a framework that allows for probabilistic perfor-

mance/stability guarantees. A promising direction for future work along these lines is the application of data-driven statistical
closed-loop verification techniques, see e.g.,50,51.

3.6.1 SMPC
For the SMPC controller we will prove recursive feasibility and provide a stability proof for a nominal case where Δ�i = ts,
the horizon is sufficiently long, the OCP is solved exactly, and in the absence of model mismatch. Since SMPC uses a closed
loop model of the NMPC controller and engine, this nominal analysis addresses loop interactions. In this section we will use
ℙ to denote the speed and fuel operating range of the engine. We will also denote the corresponding to � set of “safe”, i.e.,
no misfires, surge, overpressure, etc., states by X(�). The set of admissible pairs is Y (�) = {(x, u) | �(x, u, �) ≤ �l(x, �), 0 ≤
� trg ≤ �̄egr, 0 ≤ q ≤ qtrg} and we define the set of admissible controls as U(x, �) = {u | (x, u) ∈ Y (�)}. Note that the constraint
x ∈ X(ℙ) is handled implicitly through careful selection of �̄egr and p̄im, i.e., through good calibration.

Theorem 1. (Feasibility) For any � ∈ ℙ, x ∈ X(�) the set U(x, p) is nonempty, implying that (14) is always feasible.

Proof. Algebraic manipulation of (14c) yields,

q ≤ qmax(�, x) = �l(�, x)
wcyl(1 − F1)

Nec

(A
F

)−1

s
, (25)

an explicit bound on the fuel. For any x ∈ X the right hand side is positive thus qmax ≥ 0 and the constraint 0 ≤ q ≤
min(qmax, qtrg) is feasible. The constraint 0 ≤ � trg ≤ �̄egr(�) is feasible by construction which completes the proof.

Theorem 2. (Nominal stability of SMPC) Let the following assumptions hold:

(A1) (Stability of the inner loop) For all steady state admissible ū = [� trg q] the inner-loop, with dynamics given by x+ =
f (x, u, �), is asymptotically stable about the corresponding equilibrium point x̄(ū) with region of attraction X.

(A2) (Asymptotic controllability) The inner-loop system is asymptotically controllable with respect to (15) in the sense of2
Assumption 6.5.

Then there exists a horizon length N∗ ∈ ℕ and a set Xs ⊆ X such that if N ≥ N∗ and (x0, u0) ∈ Xs × ℝ2 then the sequence
{(xk, uk)}→ (x̄, ū) as k→∞ with all (xk, uk) ∈ Y (�).

Proof. See Appendix.

Note that Theorem 2 only proves the existence of a sufficiently largeN∗; we have to assume that the horizon length chosen is
long enough. We employ move blocking related techniques to increaseN , see Section 3.2. In practice we observed no stability
issues, lending some credence to our assumption.
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Remark 7. It’s difficult to verify (A2) a-priori since obtaining a high accuracy nonlinear model for the engine is extremely
challenging. However, to support our assumption, we linearized (17) at each operating condition in the grid defined in (6)
and observed that each linearized model was controllable. That is, we checked the controllability of Ai = ∇xfs(x̄i, ūi) and
Bi = ∇ufs(x̄i, ūi) for all i = 1,…154 where �i is defined in (6), ūi = [�̄egr(�i) q

trg
i ] and x̄i is the steady state associated with ūi.

This implies that (A2) holds in the vicinity of each operating point see e.g.,52. This does not imply that (A2) holds globally but
it does support that it holds in our region of interest. Further, in Section 5 we present experimental results that demonstrate the
robustness of the SMPC controller a-posteriori.

3.6.2 NMPC
To achieve the performance required by the application the feedback portion of the NMPC controller uses a variety of
non-standard techniques e.g., rate-based formulations, sampling period/prediction horizon discretization mismatch, and move
blocking. As a result, a rigorous stability analysis of the controller is challenging and beyond the scope of this work. However,
existing theoretical stability results were used to guide the design of the NMPC controller. In particular, we use move-blocking
to achieve a sufficiently long prediction horizon.
The NMPC feedback controller does not include a terminal set constraint or terminal penalty, two common methods for estab-

lishing the stability of nonlinear model predictive controllers; instead we use the sufficiently long horizon approach. Enforcement
of the terminal set constraint consumes computational resources and can cause feasibility issues. Further, since we are unaware
of a suitable control Lyapunov function for this system, terminal penalties must be constructed numerically by solving appropri-
ate Ricatti equations at each timestep, adding computational burden. We have also observed that, for this application, terminal
penalties can reduce the performance of the controller.
We refer interested readers to2 Chapter 6 and the references therein for an comprehensive treatment on the stability of NMPC

without terminal constraints or penalties. It has been shown (see2 Theorem 6.24) that provided that the plant is (i) asymptotically
controllable, (ii) the stage cost function can be bounded above and below by appropriate comparison functions, and (iii) the
horizon is sufficiently long then the nominal closed-loop system is stable. The feedback portion of the NMPC controller uses a
strongly convex quadratic stage cost, and exploits move blocking to ensure the prediction horizon (1.52 s in 6 steps) is sufficiently
long. We verified that (8) is locally controllable at each operating point in our grid in the same manner as described in Remark 7,
i.e., by checking controllability of the identifiedmodels at each operating point in the grid. Closed-loop stability is then confirmed
in practice through exhaustive simulation studies and experimental testing. Since the NMPC controller only enforces control
constraints, feasibility is automatic.
The engine is controllable only in a portion of its state space. Outside of this safe region, the engine may display undesirable

behaviour such as surge, misfire, or excessive roughness characterized by torque fluctuations due to poor combustion. The target
operating points must be chosen to avoid these unsafe regions. In practice, this is accomplished through the domain expertise∗∗
of the engine manufacturer and experienced calibrators who provide a set of nominal operating points for the engine. We take
these operating point maps as a given (indeed they are included in the engine control unit software), their safety can be verified
by performing fuel step experiments on a dynomometer.

4 CONTROLLER IMPLEMENTATION

Implementation of a model predictive controller requires an algorithm for (approximately) solving the optimal control problems
online. This section outlines suitable strategies for the SMPC controller and for the feedback and feedforward portions of the
NMPC controller.

∗∗Engine calibration is a complex topic with an extensive literature, see e.g., 39,53,54,55, engine manufacturers also have sophisticated internal methodologies. As such,
engine calibration is outside the scope of this paper.

This article is protected by copyright. All rights reserved.



18 Liao-McPherson ET AL

4.1 Supervisory Controller
The SMPC controller OCP, (14), can be compactly represented as

min.
zk

J (zk, x̂k, �k), (26a)

s.t c(zk, x̂k, �k) ≤ 0, (26b)

where zk =
[

uTk s
T
k

]T ∈ ℝn are the collected primal decision variables, x̂k ∈ ℝ5 is the SMPC state estimate, �k ∈ ℝ2 is the
operating condition, J ∶ ℝn ×ℝ5 ×ℝ2 → ℝ is the cost function, and c ∶ ℝn ×ℝ5 ×ℝ2 → ℝm defines the inequality constraints.
All equality constraints are linearized about x̂k and u = (0, qtrgk ) is eliminated by substitution using symbolic tools22. This
nonlinear program can then be approximated by the following quadratic program,

min.
Δzk

1
2
ΔzTkHkΔzk + f Tk Δzk, (27a)

s.t AkΔzk ≤ bk, (27b)

where Hk = ∇2zJ (zk−1, x̂k, �k) ⪰ 0, fk = ∇zJ (zk−1, x̂k, �k), Ak = ∇zc(zk−1, x̂k, �k), and b = −c(zk−1, x̂k, �k). We solve one
instance of (27) per timestep as in the real-time iteration scheme56. This is a type of time-distributed sequential quadratic pro-
gramming and, under appropriate conditions, convergence to a solution of the nonlinear OCP can be guaranteed over time57,58.
The SMPC control update is then computed as

uk =
[

zk(1 ∶ 2)T
]T , zk = zk−1 + Δzk, (28)

where we have used MATLAB notation for indexing.
To guarantee that each QP is convex the nonlinear dynamics are linearized about x̂k and u = [0 qtrgk ]

T at each sampling
instance before substitution into the cost and constraint functions. We also use the Hessian of the cost function rather than of
the Lagrangian which is sometimes referred to as Gauss-Newton Hessian approximation56. In addition, due to the presence of
slack variables in the original OCP, each QP is guaranteed to be feasible and, due to the penalty on ui− ui−1 in the cost function,
(15), the strong second order sufficient conditions always hold. Together these properties ensure that (27) is always solvable and
admits a unique solution. The quadratic programs are solved using the Fischer-Burmeister Regularized and Smoothed (FBRS)
method which is described in detail in21.

Remark 8. To guarantee finite-time execution, necessary for real-time implementation, the FBRS algorithm is limited to 5
Newton iterations per sampling period. Each QP is warmstarted with the solution of the QP at the previous timestep. This was
sufficient for convergence in almost every case, we observed no degradation of control performance due to the iteration limit.
MPC is known to be robust to suboptimality, see59,60.

4.2 Airpath Controller
Both the feedforward, (23), and feedback, (22), OCPs can be compactly written in the following form:

min.
xk

J (xk, ẑk, �k), (29a)

s.t ℎ(xk, ẑk, �k) ≤ 0, (29b)

where, xk ∈ ℝn is the collection of primal decision variables, ẑk ∈ ℝ2 is the state estimate, �k ∈ ℝ2 is the operating condition,
J ∶ ℝn × ℝ2 × ℝ2 → ℝ, is the cost function and ℎ ∶ ℝn × ℝ2 × ℝ2 → ℝm is a vector of constraints. For both the feedforward
and feedback NMPC controllers the inequality constraints are box constraints. For the feedforward,

xffk =
[

vff,T0|k ... vff,TNff−1|k

]T
, (30)

and for the feedback
xfbk =

[

ΔvT0|k ... Δv
T
Nfb−1|k

]T
. (31)

All equality constraints are eliminated via symbolic substitution. Since only actuator saturation constraints are considered we
chose to implement them via exterior penalties. Consider the exterior quadratic penalty,

 ∶ ℝ → ℝ, (⋅) = max(0, (⋅))2, (32)
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applying it to the constraints yields an unconstrained OCP:

min.
xk

F = J (xk, ẑk, �k) +
m
∑

j=i
�j(ℎj(xk, ẑk, �k)), (33)

where �j > 0 are the penalty weights and m is the number of inequality constraints. This OCP can be linearized about the
solution at the previous timestep, xk−1, to form a quadratic approximation

min.
Δxk

1
2
ΔxTkGkΔxk + d

T
k Δxk, (34)

where Gk = ∇2xF (xk−1, ẑk, �k), and dk = ∇xF (xk−1, ẑk, �k). The solution of this QP can be computed by solving a linear
system of equations, the resulting solution is then computed as xk = xk−1 + Δxk. As with the SMPC problem this procedure is
a variant of the real-time iteration scheme56. Despite only solving one QP per timestep, under appropriate conditions, the real-
time iteration scheme converges to the solution of the nonlinear OCP57,58. By using exterior penalties we are only able to solve
(23) and (22) in an approximate sense. In exchange we solve a single linear system per timestep for each NMPC problem which
significantly reduces the computational cost of the controller. We have found that the exterior-penalty based approximations
perform well in practice provided the penalty weights are properly tuned.

4.3 Executable Generation and Execution Time
The MPC controller was implemented on a dSPACE DS1006 rapid prototyping unit (2.6 GHz CPU clock speed) using Simulink
2010b SP2 real-time workshop (RTW). All necessary derivatives for the three optimal control problems, (14), (22), and
(23), were calculated using symbolic methods. The tools, collectively referred to as the symbolic control design environment
(SCDE)22, translate symbolic expressions into highly optimized C code (and corresponding S-function templates) which meets
the Motor Industry Software Reliability Association (MISRA) standard for embedded computations61. Expressions for the cost,
constraints, and dynamics were written in the Maple symbolic language then processed and differentiated symbolically. The
SCDE was then used to generate S-functions for all necessary derivatives. The QP solver for the SMPC controller was imple-
mented in embedded MATLAB. The QP solvers for the feedforward and feedback NMPC controllers, which are Cholesky
factorization routines, were directly implemented in the SCDE.
Execution times on the DS1006 rapid prototyping unit are shown in Table 1. The entire MPC controller takes approximately

1 ms to execute in the worst case, well below the sampling period of 8 ms. The total size of the real-time executable file was
5547 KB. Note that since the number of Newton iterations performed by the SMPC QP solver was fixed at 5 the convergence
check was disabled; as a result, the average and maximum execution times are similar.

4.4 Controller Calibration
Figure 10 provides an overview of the MPC controller calibration process. First the open-loop models are identified as described
in Section 2.1, then the NMPC controller is tuned, closed-loop models are identified (Section 2.2) and the SMPC controller is
tuned. The final step is drivecycle testing to verify the tuning and identify if any re-tuning is needed.

Open	loop	model	
identification Inner	loop	calibration Closed	loop	model	

identification Outer	loop	calibration

FIGURE 10 Calibration and model identification process for the MPC controllers.
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4.4.1 Feedforward NMPC Controller
The feedforward NMPC controller is tuned in closed-loop simulations with its prediction model using nominal target maps. The
fueling rate range is divided evenly into low, medium, and high zones for tuning. At each engine speed the controller is tuned
by performing fuel step maneuvers so as to maximize the responsiveness of the EGR rate while avoiding oscillations in either
the EGR rate or intake pressure. The result are positive definite weighing matricesQff,i, Rff,i corresponding to each grid point
�i, i = 1,… , 154. Linear interpolation is used between gridpoints to construct functions Qff (�), Rff (�), these are evaluated
at the measured operating point then used to construct (23). Only the diagonal terms of Qff and Rff are nonzero.

4.4.2 Feedback NMPC Controller
Once the feedforward controller is tuned, the feedback NMPC controller is tuned by performing fuel-step experiments at fixed
engine speeds on the engine bench using nominal EGR rate and intake pressure target maps. The fueling rate operating range is
evenly divided into low, medium, and high zones for tuning. At each engine speed, fuel step experiments are performed and the
EGR rate settling time is reduced as much as possible without inducing oscillations in the intake pressure or EGR rate responses.
Cross terms in the weighting matrices are not used.The result are positive definite weighing matricesQfb,i, Rfb,i corresponding
to each grid point �i, i = 1,… , 154. Linear interpolation is used between gridpoints to construct functionsQfb(�), Rfb(�), these
are evaluated at the measured operating point then used to construct (22). Finally, these tunings are verified through drivecycle
tests to ensure they perform well under engine speed variations.

4.4.3 SMPC Controller
The SMPC controller is tuned after the inner loop controller is calibrated. SMPC has 4 tuning parameters, �s, �s, s > 0 and
Rs ≻ 0, which is a 2 by 2 matrix, and is straightforward to tune. Tunning is performed during fuel step experiments at fixed
engine speeds. The fuel deviation parameter �s is fixed to a sufficiently large value to ensure fuel tracking, we used �s = 1. The
constraint softening parameter was set to �s = 1000, s was set to 0.05 and Rs = diag(5, 0.1) was used.

5 EXPERIMENTAL RESULTS

The integrated MPC controller was placed in closed-loop with a 2.8L diesel engine on a transient engine dynomometer†† for
experimental validation. The engine is instrumented to measure pim, wc , and Ne which are used for feedback, estimators are
used to reconstruct the rest of the state, see Section 3.1. The signals �q ,  NOx ,  THC , and  OP are only used for performance
evaluation. Other signals are measured but used only for model validation and calibration as described in Section 1.2. In what
follows, we compare the NMPC controller with a PID benchmark, analyze step response traces, and present drive cycle results
comparing the integrated MPC controller with state-of-the-art industrial equivalent.

5.1 Step Responses
Before exercising the controller on a more realistic driving pattern, we present some step responses to obtain some insight into
typical closed-loop behaviours of the system. First, we compare the NMPC controller with a state-of-the art industrial benchmark
(with the supervisor inactive) to showcase the utility of the NMPC controller. Figure 11 compares the responses of the two
controllers to a fuel step up, the NMPC controller more closely tracks the EGR rate target leading to reduced NOx emissions.
Figure 12 compares the responses of the two controllers during a fuel-step down, again the NMPC controller more closely tracks
the EGR rate target leading to reducedNOx production.
Second, we illustrate the impact of the NMPC feedforward module. Figure 13 compares the response of the engine, in closed-

loop with the NMPC airpath controller with and without the feedforward module, to an acceleration command. Without the
feedforward module, the controller’s EGR rate tracking performance suffers, it relies on the slow integral action in the feedback
module to open the EGR valve in order to increase the EGR rate. This leads to an avoidable increase inNOx emissions. Figure 14

††The focus of this paper is on the engine control algorithms, so for brevity we only provide details about the experimental setup insofar as they relate to the controllers
and refer interested readers to the literature 40,62,63 for more details regarding engine testing and instrumentation.
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compares the NMPC feedforward module against a standard static map based approach. Note that the EGR valve and EGR
throttle actuation is much more aggressive leading to better EGR rate and intake pressure tracking performance.
Finally, we consider the integrated controller. Typical responses with the supervisory controller active are shown in Figure 15.

During a tip-in (fuel step up) the fuel-air ratio rapidly increases since fuel is added to the system more quickly than the airflow
can be raised to compensate. This causes the controller to predict a fuel-air ratio constraint violation. In response the fueling
rate is filtered and the EGR rate target undershoots its steady state value to reduce the fuel-air ratio. Moreover, by adjusting the
fuel-air ratio limit, it is possible to limit smoke production.

FIGURE 11 A comparison between the benchmark (BM) and NMPC controllers during a fuel step-up maneuver at a constant
engine speed. The NMPC controller is able to more closely track the EGR rate target leading to reduced NOx emissions. The
supervisory controller is disabled so opacity limits are not enforced. The y-axes scales have been removed to preserve data
confidentiality.
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FIGURE 12A comparison between the benchmark (BM) and NMPC controllers during a fuel step-downmaneuver at a constant
engine speed. The NMPC controller more closely tracks EGR rate leading to reducedNOx production. The y-axes scales have
been removed to preserve data confidentiality.
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FIGURE 13 A comparison between the NMPC airpath controller with and without the NMPC feedforward module at a constant
engine speed. The feedforward module improves EGR rate tracking leading to reducedNOx emissions. The y-axes scales have
been removed to preserve data confidentiality.
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FIGURE 14 A comparison between the NMPC airpath controller with the NMPC feedforward module and a static map
based feedforward module. The NMPC FF module leads to improved EGR rate and intake pressure tracking performance. The
supervisory controller is disabled so opacity limits are not enforced. The y-axes scales have been removed to preserve data
confidentiality.
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FIGURE 15 Experimental results of two fuel steps at 2400 rpm. Exhaust opacity (smoke) constraints can be enforced by
limiting the fuel-air ratio. For example, when �lim = 0.8 the opacity constraint is violated and reducing �lim to 0.7 eliminates
the problem. The fuel-air ratio constraint is slightly violated in both cases due to an unmodelled 3 step delay between the MPC
controller and the actuators. The y-axes scales have been removed to preserve data confidentiality.
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5.2 Drive Cycle Validation
This section presents experimental validation results for the integratedMPC controller which it was exercised over theWorldwide
Harmonized Light Vehicles Test Cycle (WLTC) and New European Drive Cycle (NEDC) using a simulated vehicle and driver.
Emissions performance was evaluated by estimating the cumulative mass of NOx and THC emitted during the drivecycle,

smoke was evaluated by integrating the exhaust opacity whenever it was above the visible limit‡‡. Drivability was evaluated
using the root mean square velocity tracking error (RMSE) between the longitudinal speed of the simulated vehicle and its target.
Relative difference is defined as

% difference = DAP MPC − Benchmark
Benchmark

∗ 100. (35)

5.2.1 Overall Performance Results
A summary of the results, using the best tunings obtained during testing, is contained in Table 2. Figure 16 represents typical
experimental traces when DAP MPC controller is in closed-loop with the engine. The smoke is well controlled, only a handful
of spikes approach the boundary of the visible range.
Over the WLTC the the DAPMPC controller was able to significantly reduce cumulativeNOx and THC, compared to a state

of the art benchmark controller. The aggressive tuning resulted in slightly worse drivability compared to the benchmark and
yielded significant NOx and THC reductions at the cost of a small increase in smoke production. A more conservative tuning
reduced smoke emissions compared to the benchmark but led to smallerNOx and THC improvements; drivability was adversely
affected as well. Over the NEDC the DAP MPC controller slightly increased NOx and slightly decreased THC. The NEDC
cycle is not aggressive enough to trigger fuel limiting or cause visible smoke. The increase in fuel consumption is not large
enough to be considered significant as the results are estimated by integrating the commanded fuel signal rather than measured
using a fuel meter. The explicit incorporation of fuel-economy into the MPC controller is a topic of future work.

Remark 9. The opacity target is the maximum opacity value allowed during steady state calibration. The opacity limit is when
smoke becomes visible, it is desirable to minimize violation of this constraint. The smoke metric used in Table 2 is computed
by integrating the opacity signal whenever its higher than the limit.

5.2.2 Detailed Traces
This section presents detailed experimental traces (Figures 17 to 21) to provide insight into the behaviour of the controller.
Figure 17 shows a high speed portion of theWLTC. Between 165 and 170 s, the SMPC controller predicts fuel-air ratio constraint
violation and, in response, lowers the EGR rate target and limits the fuel to enforce the constraint. As a result, the exhaust opacity
remains below the visible limit. Figure 18 illustrates the importance of the supervisory controller. Without the it, large amounts
of visible smoke are produced. When active, the SMPC controller successfully manipulates the fueling rate and EGR rate target
to limit smoke production.
Figure 19 shows the response of the DAP MPC controller during an acceleration event. As the vehicle speed increases, three

gearshifts occur, each consisting of a tip out (fuel step down) followed by a tip in (fuel step up). In response to each tip in
the SMPC controller predicts a fuel-air ratio constraint violation and reduces the EGR rate target, in order to empty the intake
manifold of burnt gas, and limits the fuel to enforce the constraint and prevent visible smoke. The target then returns to the steady
state EGR rate target as quickly as possible to reduceNOx . Due to the use of feedforward and feedback in the inner-loop NMPC
controller, it is able to use the VGT and EGR valve to track the EGR rate target very accurately. This fast EGR rate tracking
ensures that the fuel-air ratio constraint satisfaction is accomplished primarily with EGR valve and VGT actuation, rather than
with fuel limiting, which is important for drivability. Figure 20 shows an input-output (most benchmark signals cannot be shown
for confidentiality reasons) comparison between the DAPMPC controller and a benchmark industrial controller. The DAPMPC
controller reduces transient NOx by shrinking the spikes that occur after gearshifts. This is possible because (i) the SMPC
controller brings the EGR rate target back to its steady state target quickly after a tip in by accurately calculating the fuel-air
ratio response using its prediction model and (ii) because the NMPC controller is able to track very fast EGR rate transients by
exploiting both the VGT and EGR valve.

‡‡The visibility threshold used here is consistent with current calibration guidelines.
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FIGURE 16Aportion of theWLTCwith theMPC controller in closed loopwith the engine. The vehicle was able to successfully
complete the drivecycle despite some fuel limiting. The smoke is well controlled with only a few spikes reaching the edge of
the visible range. The y-axes scales have been removed to preserve data confidentiality.

Figure 21 illustrates some issues we observed with the DAPMPC controller. Firstly, between 160 and 165 s the fuel is limited
quite severely, despite the exhaust opacity being nowhere near the visible limit. This indicates there is room for improvement
in the fuel-air ratio limit map (recall that �l = �l(Ne, wc)). Secondly, between 170 and 180 s the closed-loop system becomes
oscillatory which is undesirable in view of increased wear on the actuators and oscillations in the engine torque. This occurs
because the controller oscillates near the fuel-air ratio constraint due to mismatch between the EGR rate tracking error predicted
by the SMPC controller and the true tracking error. Possible countermeasures for this issue are discussed in Section 6.2.
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FIGURE 17 A close-up of a high speed potion of the WLTC with the MPC controller in closed-loop with the engine. The
supervisory layer prevents visible smoke by coordinating the fuel input and the EGR rate. It causes the EGR rate target to
undershoot the steady state optimum, this command is tracked by the NMPC controller, and limits the fueling rate to satisfy the
fuel-air ratio constraint and prevent visible smoke. The y-axes scales have been removed to preserve data confidentiality.
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FIGURE 18 A comparison between the MPC controller with and without the supervisory controller. Without the supervisor
large amounts of visible smoke is produced; the opacity limit is where the smoke becomes visible. The enforcement of the
smoke constraint leads to a torque delay which is undesirable but necessary to prevent excessive smoke. Minimization of this
torque delay is part of the SMPC formulation via the fuel tracking term. The y-axes scales have been removed to preserve data
confidentiality.
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FIGURE 19 A close-up of an acceleration event with the MPC controller in closed-loop with the engine during the WLTC.
During the tip ins following the gearshifts the supervisory layer commands the NMPC controller to quickly reduce the EGR
rate and limits the fuel to satisfy the fuel-air ratio constraint, preventing visible smoke. The inner loop relies on its feedforward
module to track the aggressive commands from the supervisory layer, leading to a very fast EGR rate response which minimizes
fuel limiting and NOx production. The y-axes scales have been removed to preserve data confidentiality.

FIGURE 20 A comparison between the MPC and a benchmark (BM) strategy running in closed-loop with the engine during
the WLTC. The MPC controller is able to reduce NOx emissions compared to the benchmark strategy without causing visible
smoke or increasing hydrocarbon output. All signals are generated by the MPC controller unless otherwise noted. The y-axes
scales have been removed to preserve data confidentiality.
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FIGURE 21 A close-up of an acceleration event with the MPC controller in closed-loop with the engine during the WLTC.
The MPC controller aggressively limits the fuel despite the low opacity of the exhaust. Oscillation against the fuel-air ratio
constraint boundary also occurs which leads to undesirable EGR rate and torque fluctuations. We discuss countermeasures for
these oscillations in Section 6.2. The y-axes scales have been removed to preserve data confidentiality.
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6 DISCUSSION

While our proposed MPC controller is promising, more development effort is necessary before it can be considered “production
ready”. Here we discuss the challenges we observed leading up to and during our experimental campaign and outline directions
for continued controller development.

6.1 Computational Footprint
One of the largest drawbacks of MPC is the computational footprint. Our controller uses the real-time iteration scheme56, a kind
of time-distributed sequential quadratic programming58, a new QP solver21, and symbolic code generation tools22 to reduce the
worst case total execution time to around 715�s on a 2.6 GHz rapid prototyping unit. Assuming a 256 MHz ECU and estimating
the computation time using a clock speed scaling analysis §§ we arrive at an estimate of 0.715ms ⋅ 2.6 GHz

256 MHz
= 7.26 ms which is

slightly below the current 8 ms sampling period. This indicates that our strategy is likely to be implementable in real-time on
an appropriate dedicated ECU. However, ECUs must run other modules besides the engine controller so further reductions in
the CPU usage are necessary before the controller is production ready.
Since completing the experiments, we have performed preliminary investigations into the use of Kylov methods, specifi-

cally the conjugate gradient method64, for inexactly solving the necessary conditions of (33). We have found that 2 − 3 times
improvements are possible without noticeably degrading controller performance. We also believe this approach is promising
when combined with FBRS65 to solve (27). Another possible avenue for improvement is the use of optimized mathematical
subroutines. Our current implementation uses symbolically generated or handwritten linear algebra and factorization routines. It
is well known that specialized routines (e.g., those provided by high performance BLAS or LAPACK libraries) can offer much
better performance; they are often optimized at an assembly code level. Further, embedded BLAS libraries have recently begun
to appear66. We believe that routines of this type for ECUs could help further reduce CPU usage. Finally, we expect ECU hard-
ware to continue to improve over time. In particular, the incorporation of dedicated signal processing units into future ECUs
could further reduce computation times.

6.2 Performance Issues
We observed some performance issues during experimental testing. Specifically, the MPC controller was not able to perfectly
control smoke see e.g., Figure 16, and we observed some undesirable oscillations in the fueling rate input, see e.g., Figure 21.
Typically, when using MPC, the best way to improve constraint handling is to improve the prediction models. The least

accurate portion of our prediction models is the intake manifold burnt gas fraction F1 in (10). Since our experimental setup did
not have an oxygen sensor in the intake manifold, we were unable to directly validate our F1 predictions and/or improve the
model using data. As our smoke control approach depends directly on F1 inaccurate predictions of F1 are the most likely cause
of the performance degradation we observed. We suspect that installing the sensor on the testbed (for modelling and validation
purposes only, i.e., not for use as feedback) and an associated data collection and modelling effort could significantly improve
smoke control. Moreover, as this modelling error forced us to adopt a more conservative smoke limit, we hypothesize that this
caused the underperformance we observed on the less aggressive NEDC cycle where the conservatism was not warranted. Note
that the benchmark controller’s smoke control is also not perfect.
Beyond improving the quality of the models, various modifications to the SMPC controller formulation could be considered.

For example, re-parameterizing the fueling rate input in (14) as

q = �(qtrg − q−) + q− (36)

where � ∈ [0, 1] is the new decision variable, q− is the input applied at the previous instance and qtrg is the target, will force
the fueling rate input to approach the target monotonically and thus remove oscillations. Such a parameterization is often used
in reference governors29.

§§We have found clock scaling analyses to be sufficiently accurate for first order computation time estimates due to the relative simplicity of typical ECU computational
architectures.
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6.3 Future Perspectives
Our proposed MPC controller offers several advantages over a typical industrial PID based engine control strategy:

• Statement of the control objective is intuitive and can be easily summarized through the OCP formulation;

• The use of prediction models reduces the amount of conservatism needed to handle constraints, leading to performance
improvements;

• It straightforwardly handles multiple input and outputs, coupling between them, and nonlinearities;

• It can be calibrated quickly.

It also suffers from some drawbacks:

• It requires an understanding of more advanced control engineering concepts to troubleshoot issues;

• It has a higher computational footprint;

• Construction of the prediction models can be labour intensive.

Overall, we demonstrated that significant (10− 15%) emissions reductions are possible without hardware changes¶¶, e.g., with-
out adding additional sensors or actuators, and that the challenges associated with the computational burden of MPC are not
insurmountable, even when using nonlinear MPC. We also demonstrated various techniques such as non-uniform prediction
horizons and inner-outer loop MPC control architectures that may be useful in a broader context.
We believe that, as emissions regulations become tighter, MPC has the potential to play a significant role in emissions reduc-

tion efforts. However, progressing from demonstrations to mass production would require significant amounts of effort both in
terms of modelling, controller improvement and computational footprint reduction, as outlined in the previous two subsections.
It would also require creating standardized tools for design, calibration, simulation, modelling and deployment, a significant
experimental validation campaign, and a significantly larger team of engineers and researchers. See e.g., the acknowledgments
section in67 which details the deployment of linear MPC in production by a major automotive manufacturer67.

7 CONCLUSION

An emissions oriented model predictive controller for a diesel engine airpath has been designed and experimentally vali-
dated. Using a combination of a supervisory model predictive controller, for emissions constraint enforcement, and a nonlinear
model predictive controller incorporating optimal feedforward and feedback, for nonlinearity compensation, we were able to
demonstrate significant reductions in cumulative emissions over the WLTC drive cycle.
By distributing quadratic programming iterations over time we are able to achieve low computation times without compro-

mising performance. However, while the DAPMPC controller is executable real-time using a rapid prototyping unit, more work
is required to make this strategy feasible on a production engine control unit. The DAP MPC controller also displayed some
undesirable oscillations, produced some visible smoke, and underperformed on gentle driving patterns such as the NEDC. More
work is needed to address these issues.
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8 TABLES

TABLE 1 Summary of problem sizes and execution times. The ECU execution times are estimated for a 256MHz ECU using
clock scaling, see Section 6.1 for more details.

Average Maximum Maximum estimated Number of decision Number of hard
execution time [�s] execution time [�s] ECU execution time [ms] variables constraints

SMPC 530 550 5.6 17 41
NMPC FF 31 32 0.33 18 0
NMPC FB 127 133 1.4 18 0

TABLE 2 Summary of the results obtained using the DAP MPC controller.

WLTC aggressive WLTC conservative NEDC aggressive
tuning tuning tuning

[% difference] [% difference] [% difference]
NOx -16 -11 1.4
THC -14 -4 -2
Fuel 0.67 0.54 0.9
VRMSE 1 4 2
Smoke 24 -49 0
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APPENDIX

Proof of Theorem 2
Our goal is to apply68 Theorem 1 to infer the existence of a Lyapunov function for the closed-loop system. To show this we
verify the conditions of the theorem, referred to as (SA1-SA4) in68. Since the SMPC OCP has a penalty on Δu, and is thus
nonstandard, we work with an equivalent augmented system by defining

y =
[

x
u

]

, and y+ = g(y,Δu) =
[

f (x, u)
u + Δu

]

, (1)

which is the so-called input velocity form of the original system. We seek a Lyapunov function which proves the stability of (1).
Note that recursive feasibility, i.e., yk ∈ Y (�), is automatic thanks to Theorem 1. We consider each condition in turn:
(SA1) Trivially satisfied since the stage cost (15) is semidefinite and continuous, the terminal cost is null.
(SA2) The OCP (14) is guaranteed to be feasible by construction and has a strongly convex objective function, thus (14) has

a solution and the infimum is achieved.
(SA3) Consider a candidate detection function W (y) = V (x) + k(u) where V (x) is a Lyapunov function which proves

asymptotic stability of the inner-loop and k(u) = l(u, 0). Since the NMPC controller is assumed to stabilize the engine, V (x)
can be taken to be its value function. Alternatively, since the inner-loop is stable by assumption, a converse Lyapunov theorem,
e.g.,69, could be invoked. Since V is a Lyapunov function it is bounded above and below by class∞ functions. In addition, k(u)
is positive definite, strictly convex with k(ū) = 0, and is Lipschitz continuous on the set, {u | 0 ≤ � trg ≤ max

ℙ
�̄egr(�), 0 ≤ q ≤

max
ℙ

qtrg}, with Lipschitz constant L and thus can be bounded from above by a class ∞ function. Following the notation of68

we define our tracking measure as �(y) = V (x)+k(u). Let �1(�(y)) = �1(||x− x̄||)+ �2(||u− ū||), where �1 ∈ ∞ upperbounds
V (x) and �2 ∈ ∞ upperbounds k(u). ThenW (y) ≤ �1(�(y)) and �1 ∈ ∞. Now consider

W (g(y,Δu)) −W (y)
= V (f (x, u)) − V (x) + k(u + Δu) − k(u)
≤ V (x+) − V (x) + L||Δu||R,

and define

�1(x) =

{

(V (x) − V (x+))∕V (x), x ≠ x̄,
0 x = x̄,

(2)

Since V is a Lyapunov function ∀x ∈ X ⧵ {x̄}, V (x+) − V (x) < 0, V (x) > 0 and thus �1(x) ∈ [0, 1) and V (x+) − V (x) +
�1(x)V (x) = 0. Continuing, using that V (x+) − V (x) = −�1(x)V (x) ≤ 0, we have that

W (g(y,Δu)) −W (y) ≤ V (x+) − V (x) + L||Δu||R,
≤ −�1(x)V (x) + (1 − �1(x))k(u) + L||Δu||R,
≤ −�1(x)(V (x) + k(u)) + 1k(u) + L||Δu||R,
≤ −�(x)�1(�(y)) + 1k(u) + L||Δu||R,

for any 1 > 1 > �1(x). Since �1(x) < 1, for any 2 > 1, �1(x)(V (x) + k(u)) ≤ 2�1(�(y)). Thus �2(⋅) = 2�1(⋅) ∈ ∞ is
an appropriate comparison function. The remaining terms can be upper bounded by the function 1l(u,Δu) + 3

√

l(u,Δu) for
sufficiently large 3. Thus we can take �3(⋅) = 1(⋅) + 3

√

(⋅) ∈ ∞ as the final required comparison function. The existence of
�1, �2, and �3 verifies the detectability condition68 Definition 1.
(SA4) Boundedness of the value function can be established using Assumption 2 (Asymptotic controllability) combined with2

Lemma 6.6. Verifying (SA1-SA4) completes the proof.
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