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Double ramification cycles with target varieties

Felix Janda, Rahul Pandharipande, Aaron Pixton and Dimitri Zvonkine

Abstract

Let X be a nonsingular projective algebraic variety over C, and let Mg,n,β(X) be the moduli
space of stable maps

f : (C, x1, . . . , xn) → X

from genus g, n-pointed curves C to X of degree β. Let S be a line bundle on X. Let A =
(a1, . . . , an) be a vector of integers which satisfy

n∑
i=1

ai =

∫
β

c1(S).

Consider the following condition: the line bundle f∗S has a meromorphic section with zeros and
poles exactly at the marked points xi with orders prescribed by the integers ai. In other words,
we require f∗S(−∑n

i=1 aixi) to be the trivial line bundle on C.
A compactification of the space of maps based on the above condition is given by the moduli

space of stable maps to rubber over X and is denoted by M∼
g,A,β(X,S). The moduli space carries

a virtual fundamental class

[M∼
g,A,β(X,S)]vir ∈ A∗

(M∼
g,A,β(X,S)

)
in Gromov–Witten theory. The main result of the paper is an explicit formula (in tautological

classes) for the push-forward via the forgetful morphism of [M∼
g,A,β(X,S)]vir to Mg,n,β(X). In

case X is a point, the result here specializes to Pixton’s formula for the double ramification cycle

proven in (Janda, Pandharipande, Pixton and Zvonkine, Publ. Math. Inst. Hautes Études Sci.
125 (2017) 221–266). Several applications of the new formula are given.
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1. Introduction

1.1. Double ramification cycles

Let A = (a1, . . . , an) be a vector of n integers satisfying
n∑

i=1

ai = 0 .

Received 13 March 2019; revised 7 August 2020; published online 28 October 2020.

2010 Mathematics Subject Classification 14N35 (primary), 14C17 (secondary).

R. P. was partially supported by SNF-200020-162928, SNF-200020-182181, ERC-2017-AdG-786580-MACI,
SwissMap, and the Einstein Stiftung. A. P. was supported by a fellowship from the Clay Mathematics
Foundation. This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No. 786580).

C�2020 The Authors. The publishing rights in this article are licensed to the London Mathematical Society
under an exclusive licence.



1726 F. JANDA, R. PANDHARIPANDE, A. PIXTON AND D. ZVONKINE

In the moduli space Mg,n of nonsingular curves of genus g with n marked points, consider the
substack defined by the following classical condition:{

(C, x1, . . . , xn) ⊂ Mg,n

∣∣∣∣∣ OC

(
n∑

i=1

aixi

)
� OC

}
. (1)

From the point of view of relative Gromov–Witten theory, the most natural compactification
of the substack (1) is the space M∼

g,A of stable maps to rubber [27, 38]: stable maps to CP
1

relative to 0 and ∞ modulo the C∗ action on CP
1.

The rubber moduli space carries a natural virtual fundamental class [M∼
g,A]vir of dimension

2g − 3 + n. The push-forward via the canonical morphism

ε : M∼
g,A → Mg,n

is the double ramification cycle

ε∗
[M∼

g,A

]vir
= DRg,A ∈ A2g−3+n(Mg,n). (2)

The double ramification cycle DRg,A can also be defined via log stable maps (and was motivated
in part by Symplectic Field Theory [18]).

The classical approach to the locus (1) is via Abel–Jacobi theory for the universal curve.
However, extending the Abel–Jacobi map over the boundary Mg,n \Mg,n of the moduli space
of curves is not straightforward. Approaches by Marcus–Wise [40] and Holmes [30] (motivated
by log geometry), nevertheless, provide a partial resolution of the Abel–Jacobi which is sufficient
to define a double ramification cycle. The result also agrees with definition (2).

Eliashberg posed the question of computing DRg,n in 2001. The hope for a possible formula
was strengthened in [21] where the double ramification cycle was proven to lie in the
tautological ring of Mg,n. Calculations on the open set of compact type curves were given
in [28, 29]. Integrals against the double ramification cycle† played a fundamental role in the
solution of the Gromov–Witten theory for target curves [46–48].

A complete formula for DRg,A in the tautological ring of Mg,n was conjectured by Pixton in
2014 and proven in [35] via Gromov–Witten theory. Pixton’s formula expresses DRg,A directly
as a sum over stable graphs Γ indexing the boundary strata of Mg,n. The contribution of
each stable graph Γ is the constant term of a polynomial in r naturally associated to the
combinatorics of Γ and A. The proof of [35] was obtained by studying the Gromov–Witten
theory of the target P1 with an orbifold BZr-point at 0 ∈ P1 and a relative point at ∞ ∈ P1

in the r → ∞ limit.
Pixton’s formula’s opened new directions in the subject: new formulas for Hodge classes

[35, Section 3], new relations in the tautological ring of Mg,n [17], new connections to the
loci of meromorphic differentials [24, Appendix], and connections to new integrable hierarchies
[9]. For a sampling of the subsequent study and applications, see [6–8, 10, 12, 16, 23, 31,
32, 45, 56, 57]. We refer the reader to [35, Section 0] and [50, Section 5] for more leisurely
introductions to the subject.

The double ramification cycle study above concerns the Gromov–Witten theory of a point‡.
Our goal here is to develop a full theory of double ramification cycles for general nonsingular
projective target varieties X.

Let Mg,n,β(X) be the moduli space of stable maps

f : (C, x1, . . . , xn) → X

†Termed rubber integrals in the papers [46–48].
‡The moduli space of stable maps to a point is Mg,n.
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from genus g, n-pointed curves C to X of degree β. Let S be a line bundle on X. Let A =
(a1, . . . , an) be a vector of integers which satisfy

n∑
i=1

ai =
∫
β

c1(S).

Consider the following condition analogous to (1): the line bundle f∗S has a meromorphic
section with zeros and poles exactly at the marked points xi with orders prescribed by the
integers ai. In other words, we require f∗S(−∑n

i=1 aixi) to be the trivial line bundle on
C. Rubber maps with target X provide a natural compactification of the locus of solutions
and define an X-valued double ramification cycle in A∗(Mg,n,β(X)). Our main result is a
complete formula for the X-valued double ramification cycle which generalizes the structure
of Pixton’s formula.

The formal definition of the X-valued double ramification cycle is given in Section 1.2. After
a discussion of X-valued stable graphs and tautological classes in Sections 1.3 and 1.4, our
formula for the X-valued double ramification cycles is presented in Section 1.6. In case X is a
point, we recover our previous study [35].

The double ramification cycle construction for target varieties plays a crucial role in relative
Gromov–Witten theory. Since the answer for the X-valued double ramification cycles takes
such a simple form, new directions are again opened in the subject.

• The study of the tautological ring of Mg,n,β(X) is suggested by a theory of relations [5]
parallel to the case of point [17].
• For a pair (X,D) where D is nonsingular divisor, the relationship between the relative

Gromov–Witten theory and the orbifold Gromov–Witten theory of the root stack is beautifully
settled in [58, 59]. The study of the D-valued double ramification cycle here plays a crucial
role.
• The CP

N -valued DR-cycle in the limit N → ∞, suitably interpreted, is a universal DR-
cycle on the moduli space of line bundles on curves. The universal Abel–Jacobi theory on
the Picard stack [6] is both motivated by and dependent on our calculation of CP

N -valued
DR-cycles.

Of course, the X-valued formula also leads immediately to simple derivations of older results
in Gromov–Witten theory. Applications are discussed at the end of the paper in Section 5.

1.2. Rubber maps with target X

Let X be a nonsingular projective variety over C. Let S → X be a line bundle, and let

P(OX ⊕ S) → X

be the canonically associated CP
1-bundle over X. Let

D0, D∞ ⊂ P(OX ⊕ S)

be the divisors defined by the projectivizations of the loci OX ⊕ {0} and {0} ⊕ S, respectively.
We will call D0 the 0-divisor and D∞ the ∞-divisor.

Let C be a nonsingular curve with n marked points, and let

f : C → X

be an algebraic map of degree β ∈ H2(X,Z). Furthermore, let s be a nonzero meromorphic
section of f∗S over C, defined up to a multiplicative constant, with zeros and poles belonging
to the set of marked points of C. We denote the orders of zeros and poles by

A = (a1, . . . , an).
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If the ith marking is neither a zero nor a pole, we set ai = 0. We have
n∑

i=1

ai =
∫
β

c1(S) .

The pair (f, s) defines a map to rubber with target X. Let

M∼
g,A,β(X,S)

be the compact moduli space of stable maps to rubber with target X. A general stable map
to rubber with target X is a map to a rubber chain of CP1-bundles P(C ⊕ S) over X attached
along their 0- and ∞-divisors. The space of rubber maps with target X carries a perfect
obstruction theory and a virtual fundamental class, see [38, 39, 43] for a detailed discussion.
Let

ε : M∼
g,A,β(X,S) → Mg,n,β(X)

be the morphism obtained by the projection of the rubber map to X (and the contraction of
the resulting unstable components).

Definition 1. The X-valued double ramification cycle is the ε push-forward of the virtual
fundamental class of the moduli space of stable maps to rubber over X:

DRg,A,β(X,S) = ε∗
[M∼

g,A,β(X,S)
]vir ∈ Avdim(g,n,β)−g(Mg,n,β(X)).

The virtual dimension vdim(g, n, β) of Mg,n,β(X) is determined by

vdim(g, n, β) =
∫
β

c1(X) + (g − 1)(dimC(X) − 3) + n.

1.3. X-valued stable graphs

We define the set Gg,n,β(X) of X-valued stable graphs as follows. A graph Γ ∈ Gg,n,β(X)
consists of the data

Γ = (V, H, L, g : V → Z�0, v : H → V, ι : H → H, β : V → H2(X,Z))

satisfying the properties.

(i) V is a vertex set with a genus function g : V → Z�0.
(ii) H is a half-edge set equipped with a vertex assignment v : H → V and an involution ι.
(iii) E, the edge set, is defined by the 2-cycles of ι in H (self-edges at vertices are permitted).
(iv) L, the set of legs, is defined by the fixed points of ι and is placed in bijective

correspondence with a set of n markings.
(v) The pair (V,E) defines a connected graph satisfying the genus condition∑

v∈V

g(v) + h1(Γ) = g.

(vi) For each vertex v, the stability condition holds: if β(v) = 0, then

2g(v) − 2 + n(v) > 0,

where n(v) is the valence of Γ at v including both edges and legs.
(vii) The degree condition holds: ∑

v∈V

β(v) = β.
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To emphasize Γ, the notation V(Γ), H(Γ), L(Γ), and E(Γ) will also be to used for the vertex,
half-edges, legs, and edges of Γ.

An automorphism of Γ ∈ Gg,n,β(X) consists of automorphisms of the sets V and H which
leave invariant the structures L, g, v, ι, and β. Let Aut(Γ) denote the automorphism group of
Γ.

An X-valued stable graph Γ determines a moduli space MΓ of stable maps with the
degenerations forced by the graph together with a canonical map,

jΓ : MΓ → Mg,n,β(X).

The moduli space MΓ is the substack of the product

MΓ ⊂
∏
v∈V

Mg(v),n(v),β(v)(X)

cut out by the inverse images of the diagonal Δ ⊂ X ×X under the evaluations maps associated
to the edges e = (h, h′) ∈ E, ∏

v∈V

Mg(v),n(v),β(v)(X) eve−→ X ×X.

The moduli space MΓ carries a natural virtual fundamental class [MΓ]vir defined by the refined
intersection,

[MΓ]vir =
∏
e∈E

ev−1
e (Δ) ∩

∏
v∈V

[Mg(v),n(v),β(v)(X)
]vir

. (3)

1.4. Tautological ψ, ξ, and η classes

The universal curve

π : Cg,n,β(X) → Mg,n,β(X)

carries two natural line bundles: the relative dualizing sheaf ωπ and the pull-back f∗S of the
line bundle S via the universal map,

f : Cg,n,β(X) → X.

Let si be the ith section of the universal curve, let

Di ⊂ Cg,n,β(X)

be the corresponding divisor, and let

ωlog = ωπ

(
n∑

i=1

Di

)
be the relative logarithmic line bundle with first Chern class c1(ωlog). Let

ξ = c1(f∗S)

be the first Chern class of the pull-back of S.

Definition 2. The following classes in Mg,n,β(X) are obtained from the universal curve
Cg,n,β(X).

• ψi = c1(s∗iωπ).
• ξi = c1(s∗i f

∗S).
• ηa,b = π∗(c1(ωlog)aξb).
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All can be viewed as either cohomology classes or as operational Chow classes in
A∗(Mg,n,β(X)). We will use the term Chow cohomology for operational Chow.

Since the class η0,2 = π∗(ξ2) will play a prominent role in our formulas for the X-valued
DR-cycle, we will use the notational convention

η = π∗(ξ2).

The standard κ classes are defined by the π push-forwards of powers of c1(ωlog), so we have

ηa,0 = κa−1.

Consider the moduli MΓ of stable maps described by a stable graph Γ. Let e be an edge of
the graph composed of two half-edges h1 and h2. The space MΓ carries two natural cohomology
classes ψh1 and ψh2 (associated to the two cotangent lines at the node corresponding to the
edge e) and a cohomology class ξe = c1(s∗eS), where se is the section of the universal curve
determined by the same node.

Definition 3. A decorated X-valued stable graph [Γ, γ] is an X-valued stable graph Γ ∈
Gg,n,β(X) together with the following decoration data γ.

• Each leg i ∈ L is decorated with a monomial ψa
i ξ

b
i .

• Each half-edge h ∈ H \ L is decorated with a monomial ψa
h.

• Each edge e ∈ E is decorated with a monomial ξae .
• Each vertex in V is decorated with a monomial in the variables {ηa,b}a+b�2.

Let DGg,n,β(X) be the set of decorated X-valued stable graphs. To each decorated graph

[Γ, γ] ∈ DGg,n,β(X),

we assign the cycle class jΓ∗[γ] obtained via the push-forward via

jΓ : MΓ → Mg,n,β(X)

of the action of the product of the ψ, ξ, and η decorations on [MΓ]vir,

jΓ∗[γ] def= jΓ∗
(
γ ∩ [MΓ

]vir
)

∈ A∗(Mg,n,β(X)). (4)

Our formula for the X-valued DR-cycle is a sum of cycle classes (4) assigned to decorated
X-valued stable graphs.

1.5. Weightings mod r

Following the notation of Sections 1.2–1.4, let S → X be a line bundle on a nonsingular
projective variety X. Fix the data

g � 0, β ∈ H2(X,Z), A = (a1, . . . , an)

subject to the condition
n∑

i=1

ai =
∫
β

c1(S).

Let Γ ∈ Gg,n,β(X) be an X-valued stable graph, and let r be a positive integer.

Definition 4. A weighting mod r of Γ is a function on the set of half-edges,

w : H(Γ) → {0, 1, . . . , r − 1},
which satisfies the following three properties.
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(i) ∀i ∈ L(Γ), corresponding to the marking i ∈ {1, . . . , n},
w(i) = ai mod r,

(ii) ∀e ∈ E(Γ), corresponding to two half-edges h, h′ ∈ H(Γ),

w(h) + w(h′) = 0 mod r.

(iii) ∀v ∈ V(Γ), ∑
v(h)=v

w(h) =
∫
β(v)

c1(S) mod r,

where the sum is taken over all n(v) half-edges incident to v.

We denote by WΓ,r the finite set of all possible weightings mod r of Γ. The set WΓ,r has
cardinality rh

1(Γ). We view r as a regularization parameter.

1.6. The double ramification formula

We denote by Pd,r
g,A,β(X,S) ∈ Avdim(g,n,β)−d(Mg,n,β(X)) the degree d component of the

tautological class

∑
Γ∈Gg,n,β(X)

w∈WΓ,r

r−h1(Γ)

|Aut(Γ)| jΓ∗
⎡⎣ n∏
i=1

exp
(

1
2
a2
iψi + aiξi

) ∏
v∈V(Γ)

exp
(
−1

2
η(v)

)

∏
e=(h,h′)∈E(Γ)

1 − exp
(
−w(h)w(h′)

2 (ψh + ψh′)
)

ψh + ψh′

⎤⎦ .

Inside the push-forward in the above formula, the first product
n∏

i=1

exp
(

1
2
a2
iψhi

+ aiξhi

)
is over h ∈ L(Γ) via the correspondence of legs and markings. The class η(v) is the η0,2 class
of Definition 2 associated to the vertex. The third product is over all e ∈ E(Γ). The factor

1 − exp
(
−w(h)w(h′)

2 (ψh + ψh′)
)

ψh + ψh′

is well defined since:

• the denominator formally divides the numerator;
• the factor is symmetric in h and h′.

No edge orientation is necessary.
The following fundamental polynomiality property of Pd,r

g,A,β(X,S) is parallel to Pixton’s
polynomiality in [35, Appendix] and is a consequence of [35, Proposition 3′′].

Proposition 1. For fixed g, A, β, and d, the class

Pd,r
g,A,β(X,S) ∈ A∗(Mg,n,β(X))

is polynomial in r (for all sufficiently large r).
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We denote by Pd
g,A,β(X,S) the value at r = 0 of the polynomial associated to Pd,r

g,A,β(X,S) by
Proposition 1. In other words, Pd

g,A,β(X,S) is the constant term of the associated polynomial
in r.

The main result of the paper is a formula for the X-valued double ramification cycle parallel†

to Pixton’s proposal in case X is a point.

Theorem 2. Let X be a nonsingular projective variety with line bundle

S → X.

For g � 0, double ramification data A, and β ∈ H2(X,Z), we have

DRg,A,β(X,S) = Pg
g,A,β(X,S) ∈ Avdim(g,n,β)−g(Mg,n,β(X)).

1.7. Strategy of proof

Consider the projective bundle P(OX ⊕ S) → X. By applying Cadman’s rth root construction
[11] to the 0-divisor D0, we obtain a bundle

P(X,S)[r] → X (5)

where every fiber is a projective line with a single stacky point of stabilizer Z/rZ.
Our proof of Theorem 2 is obtained by studying the Gromov–Witten theory of the bundle

(5) relative to the ∞-divisor D∞. The virtual localization formula for the orbifold/relative
geometry

P(X,S)[r]/D∞

yields relations for every r which depend polynomially on r (for all sufficiently large r). After
setting r = 0, we obtain the equality of Theorem 2. The argument has two main parts.

(i) Let Mr

g,A,β(X,S) be the moduli space of stable maps

f : C → X

endowed with an rth tensor root L of the line bundle f∗S(−∑n
i=1 aixi). Furthermore, let

π : Cr
g,A,β(S) → Mr

g,A,β(X,S)

be the universal curve, and let L be the universal rth root over the universal curve. A crucial
step is to prove that the push-forward of

r · cg(−Rπ∗L)

to Mg,n,β(X) is a polynomial in r (for all sufficiently large r) and that the polynomial has the
same constant term as the polynomial Pg,r

g,A,β(X,S). Our formula for the X-valued DR-cycle
therefore has a geometric interpretation in terms of the top Chern class cg(−Rπ∗L).

Contrary to the case of ordinary DR-cycles studied in [35], for the case of X-valued DR-cycles,
we cannot use Chiodo’s formulas [14] to deduce polynomiality. Instead, we adapt Chiodo’s
computations to our geometric setting in Sections 3.3 and 3.4.

(ii) We use the localization formula [25] for the virtual fundamental class of the moduli space
of stable maps to the orbifold/relative geometry

P(X,S)[r]/D∞.

The positive (respectively, negative) coefficients ai specify the monodromy conditions over the
0-divisor (respectively, the tangency conditions along the ∞-divisor).

†Our handling of the prefactor 2−g in [35, Theorem 1] differs here. The factors of 2 are now placed in the

definition of Pd,r
g,A,β .
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The moduli space Mr

g,A,β(X,S) appears in the localization formula. Indeed, the space of
stable maps to the C∗-invariant locus corresponding to the stacky 0-divisor D0 is precisely
Mr

g,A,β(X,S). The push-forward of the localization formula to Mg,n,β(X) is a Laurent series
in the equivariant parameter t and in r. The coefficient of t−1r0 must vanish by geometric
considerations. We prove that the relation obtained from the coefficient of t−1r0 has only two
terms.

• The first is the constant term in r of the push-forward of r · cg(−Rπ∗L) to Mg,n,β(X).
• The second term is the X-valued double ramification cycle DRg,A,β(X,S) with a minus

sign.

The vanishing of the sum of the two terms yields Theorem 2.

1.8. Notation table

To help the reader, we list here the symbols used for the various spaces which arise in the
paper.

• P(X,S) the CP
1-bundle P(OX ⊕ S) over X.

• P(X,S)[r] is the outcome of applying Cadman’s rth root construction to the 0-divisor
D0 ⊂ P(X,S).
• Mg,n,β(X) is the space of stable maps f : (C, x1, . . . , xn) → X.
• Mr

g,A,β(X,S) is the space of stable maps f : (C, x1, . . . , xn) → X together with an rth
root of f∗S(−∑n

i=1 aixi).
• Mg,n is the stack of prestable curves.
• Mr

g,n is the stack of twisted prestable curves.
• MZ

g,n is the stack of prestable curves together with a degree 0 line bundle Z.
• Mr,Z,triv

g,n is the stack of prestable twisted curves together with a degree 0 line bundle Z
where the stabilizer of every point of the twisted curve acts trivially in the fibers of the line
bundle.
• Mr,L

g,n is the stack of prestable twisted curves together with a degree 0 line bundle L with
no conditions on the stabilizers.

2. Curves with an rth root

2.1. Artin stacks and Chow cohomology

Let Mg,n denote the smooth Artin stack of prestable curves. The Artin stack MZ
g,n of prestable

curves with a line bundle Z of total degree 0 is obtained from the Picard stack of the universal
curve

π : Cg,n → Mg,n

and is also smooth. The Artin stack MZ
g,n has a universal curve

π : CZ
g,n → MZ

g,n

which carries a universal line bundle Z with sections s1, . . . , sn.
Kresch [37] has developed a theory of Chow cohomology classes on Artin stacks. A basic

property is that given a morphism from a scheme to the stack, Kresch’s Chow cohomology
class on the stack determines a Chow cohomology class on the scheme (compatible with further
pull-backs). We describe here a family of Chow cohomology classes on MZ

g,n.
We first define the set GZ

g,n of prestable graphs as follows. A prestable graph Γ ∈ GZ
g,n consists

of the data
Γ = (V, H, L, g : V → Z�0, v : H → V, ι : H → H, d : V → Z)

satisfying the properties.
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(i) V is a vertex set with a genus function g : V → Z�0.
(ii) H is a half-edge set equipped with a vertex assignment v : H → V and an involution ι.
(iii) E, the edge set, is defined by the 2-cycles of ι in H (self-edges at vertices are permitted).
(iv) L, the set of legs, is defined by the fixed points of ι and is placed in bijective

correspondence with a set of n markings.
(v) The pair (V,E) defines a connected graph satisfying the genus condition∑

v∈V

g(v) + h1(Γ) = g.

(vi) The degree condition holds: ∑
v∈V

d(v) = 0.

An automorphism of Γ ∈ GZ
g,n(X) consists of automorphisms of the sets V and H which leave

invariant the structures L, g, v, ι, and d. Let Aut(Γ) denote the automorphism group of Γ.

Definition 5. A decorated prestable graph [Γ, γ] is a prestable graph Γ ∈ GZ
g,n together

with the following decoration data γ.

• Each leg i ∈ L is decorated with a monomial ψa
i ξ

b
i .

• Each half-edge h ∈ H \ L is decorated with a monomial ψa
h.

• Each edge e ∈ E is decorated with a monomial ξae .
• Each vertex in V is decorated with a monomial in the variables {ηa,b}a+b�2.

Let DGZ
g,n be the set of decorated prestable graphs. Every

[Γ, γ] ∈ DGZ
g,n

determines a class in the Chow cohomology of MZ
g,n.

• Γ specifies the degeneration of the curve.
• d specifies the degree distribution of Z.
• ψi corresponds to the cotangent line class.
• ξi = c1(s∗iZ).
• ξe = c1(s∗eZ), where se is the node associated to e.
• ηa,b = π∗(c1(ωlog)a c1(Z)b).

We have followed here the pattern of Definition 2.
More generally, every possibly infinite linear combination of decorated prestable graphs

determines a class in the Chow cohomology of MZ
g,n. Indeed, for any morphism

B → MZ
g,n

from a scheme B of finite type, only a finite number of terms in the linear combination will
contribute. We refer the reader to the Appendix of [26] for the construction of the product in
the Chow cohomology algebra (see also the discussion in Section 2.7).

2.2. Twisted curves

Let r � 1 be an integer. The analog of Mg,n in the context of rth roots is moduli space of Mr
g,n

of twisted prestable curves constructed in [49], see also [2, 3]. We give a short summary here.
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A twisted curve is a prestable curve with stacky structure at the nodes†. Denote by μr ⊂ C∗

the group of rth roots of unity in the complex plane. The neighborhood of a node in a family
of twisted curves is obtained from the family

(x, y) 
→ z = xy

by taking a μr × μr quotient in the source and a μr quotient in the target.
To construct the versal deformation of the node of twisted curve, we start with the versal

deformation

C2 → C , (x, y) 
→ z = xy (6)

of the node of a prestable curve. Let (a, b) ∈ μr × μr act on C2 by

(x, y) 
→ (ax, by),

and let c ∈ μr act on C by z 
→ cz. These actions commute with (6) via the group morphism

φ : μr × μr → μr, (a, b) 
→ c = ab .

After taking the stack quotient of both sides of (6), we obtain a family of twisted curves over
[C/μr] with one stacky μr-point at the origin. The fibers of the family over t �= 0 are nonsingular
curves isomorphic to C∗. The fiber over the origin t = 0 is the union of the coordinate axes
xy = 0 factored by the kernel of the morphism φ. As soon as a twisted curve acquires a node,
the twisted curve simultaneously acquires an extra μr group of symmetries (given by the image
of φ).

In a family of prestable curves, the neighborhood of a node is modeled by the versal
deformation

(x, y) 
→ z = xy.

Given two line bundles Tx and Ty over a base B, consider the tensor product

Tz = Tx ⊗ Ty.

We construct a family of curves over the total space of Tz over B by

Tx ⊕B Ty → Tz, (b, x, y) 
→ (b, xy).

Here, B is the boundary divisor and Tz is the normal line bundle to B. We can construct a
family of twisted curves over the total space of Tz by applying Cadman’s rth root construction
to the zero section B ⊂ Tz. In particular, the normal bundle to the locus of nodal twisted
curves is now (Tx ⊗ Ty)⊗(1/r).

A prestable twisted curve is a twisted curve with a prestable coarsification. Let Mr
g,n be

the moduli space of prestable twisted curves of genus g with n marked points. Since Mr
g,n is

obtained from the smooth Artin stack Mg,n of ordinary prestable curves by applying Cadman’s
rth root construction to the boundary divisor, Mr

g,n is also a smooth Artin stack. The moduli
space Mr

g,n carries three universal curves, see [14].

(i) There is the universal twisted prestable curve

Cr
g,n → Mr

g,n.

(ii) There is the fiberwise coarsification Cr
g,n of Cr

g,n. The local model of Cr
g,n is given by

the quotient of the map

(x, y) 
→ z = xy

†A more complete name is balanced twisted curve, but we omit the word balanced, since these are the only
twisted curves that we consider. While stacky structure can also be imposed at the markings of the curve, our
twisted curves have stacky structure only at the nodes.
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by the kernel of the group morphism φ. An Ar−1 singularity at the origin is obtained, so the
universal curve Cr

g,n is singular.
(iii) There is the universal curve C̃r

g,n obtained by resolving the singularities of Cr
g,n by

a series of blow-ups. The resolution of the Ar−1 singularity yields a chain of r − 1 rational
exceptional curves over the origin. The rational curves correspond to the vertices of the Ar−1

Dynkin diagram, and their intersection points correspond to the edges. We call C̃r
g,n the bubbly

universal curve.

2.3. Twisted curves with a line bundle

We introduce two more Artin stacks denoted by Mr,Z,triv
g,n and Mr,L

g,n:

• The stack Mr,Z,triv
g,n is obtained from the stack MZ

g,n of prestable curves with a line bundle
by applying Cadman’s rth root construction to the boundary divisors. It is the stack of twisted
prestable curves endowed with a degree 0 line bundle Z with one extra condition: the stabilizer
of every point of the twisted curve acts trivially in the fibers of the line bundle. A Chow
cohomology class on MZ

g,n determines a Chow cohomology class on Mr,Z,triv
g,n by pull-back.

• The stack Mr,L
g,n is the stack of twisted prestable curves with a degree 0 line bundle (with

no stabilizer conditions).

These stacks are related by three natural morphisms:

Mr,L
g,n

p1−→ Mr,Z,triv
g,n

p2−→ MZ
g,n

p3−→ Mg,n. (7)

The morphism p1 assigns to a pair (C,L) the pair (C,Z = L⊗r), where C is a twisted prestable
curve and L a line bundle. The morphism p1 is étale of degree r2g−1. The morphism p2 comes
from Cadman’s rth root construction. The morphism p3 assigns to a pair (C, S) the curve C.

While we have taken both Z and L to be of degree 0 in the definitions, all of the constructions
and results of Sections 2 and 3 will be valid in case

deg(Z) = r deg(L).

2.4. Commutative diagram

Let X be a nonsingular projective variety with line bundle S → X. Let A = (a1, . . . , an) be a
vector of integers which satisfy

n∑
i=1

ai =
∫
β

c1(S)

for β ∈ H2(X,Z).
The moduli space Mr

g,A,β(X,S) of stable maps

f : (C, x1, . . . , xn) → X

endowed with an rth root of the degree 0 line bundle

f∗S

(
−

n∑
i=1

aixi

)
plays a central role in the proof of Theorem 2. The moduli space Mr

g,A,β(X,S) is defined as
the fiber product of the following two maps.

(i) πZ : Mg,n,β(X) → MZ
g,n assigns to a stable map f : C → X the pair(

C, f∗S

(
−

n∑
i=1

aixi

))
.
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(ii) ε : Mr,L
g,n → MZ

g,n is the composition ε = p2 ◦ p1.
The moduli space Mr

g,A,β(X,S) is the fiber product of πZ and ε:

(8)

where we denote top arrow also by ε.

2.5. The pull-back map π∗
Z

We describe here the pull-back map π∗
Z for Chow cohomology classes defined by decorated

graphs. Let

[Γ, γ] ∈ DGZ
g,n

be a decorated prestable graph representing a Chow cohomology class in MZ
g,n following the

conventions of Section 2.1.

Lemma 3. The pull-back π∗
Z [Γ, γ] is obtained in terms of Chow cohomology classes of

decorated X-valued stable graphs by applying the following procedure.

• Replace the degree d(v) ∈ Z of each vertex with effective classes

β(v) ∈ H2(X,Z)

satisfying ∫
β(v)

c1(S) −
∑
i�v

ai = d(v) ,

where the sum is over the legs i incident to v. Sum over all choices of β(v).
• Replace each ξi with ξi + aiψi.
• Replace each class η0,b at each vertex v with

η0,b −
∑
i�v

b∑
k=1

(
b

k

)
aki ψ

k−1
i ξb−k

i ,

where the first sum is again over the legs i incident to v.

All other decorations are kept the same.

Proof. Given a stable map f : C → X, the degree of f∗S(−∑n
i=1 aixi) on the component

of the curve C corresponding a vertex v of the dual graph equals∫
β(v)

c1(S) −
∑
i�v

ai,

which justifies the first operation.
Recall the divisor Di corresponds to the ith section,

Di ⊂ CZ
g,n

π→ MZ
g,n,
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and ωlog = ωπ(
∑n

i=1 Di). The first Chern class of f∗S(−∑n
i=1 aixi) on the universal curve

equals

c1(S) −
n∑

i=1

aiDi.

The pull-back π∗
Z(ηa,b) is the push-forward from the universal curve of the product

Ka

(
c1(S) −

n∑
i=1

aiDi

)b

, (9)

where K = c1(ωlog). Since KDi = 0, the product (9) is equal to Kaξb if a > 0. Hence, for
a > 0,

π∗
Z(ηa,b) = ηa,b,

In case a = 0, we expand (c1(S) −∑n
i=1 aiDi)b and take the push-forward from the universal

curve to the moduli space. We find

η0,b −
∑
i�v

b∑
k=1

(
b

k

)
aki ψ

k−1
i ξb−k

i

in the notation of decorated X-valued stable graphs. �

2.6. Chow cohomology classes on Mr

g,A,β(X,S) and Mr,L
g,n

2.6.1. Overview. Recall the commutative diagram (8):

We now define Chow cohomology classes via decorated graphs on

Mr

g,A,β(X,S) and Mr,L
g,n

and describe the pull-back map π∗
L. Except for the additional data recording the twisted

structure, the discussion is almost identical to our treatment of

πZ : Mg,n,β(X,S) → MZ
g,n.

2.6.2. The moduli space Mr

g,A,β(X,S). We define the set Gr
g,A,β(X,S) of X-valued r-

twisted stable graphs as follows. A graph Γ ∈ Gr
g,A,β(X,S) consists of the data

Γ = (V, H, L, g, v, ι, β : V → H2(X,Z), tw : H → {0, . . . , r − 1})
satisfying the properties.

(i-vii) Exactly as for X-valued stable graphs in Section 1.3,
(viii) The twist conditions hold.

(L) ∀i ∈ L =⇒ tw(i) = 0.
(E) ∀e = (h′, h′′) ∈ E =⇒ tw(h′) + tw(h′′) = 0 mod r.
(V) ∀v ∈ V =⇒ ∑

ν(h)=v

tw(h) =
∫
β(v)

c1(S) −∑
i�v ai mod r.
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The line bundle S → X and vector A only appear in property (viii).
The universal curve

π : Cr
g,A,β → Mr

g,A,β(X,S)

carries the log relative dualizing sheaf ωlog and the pull-back f∗S of the line bundle S via the
universal map,

f : Cr
g,A,β → X.

Following Section 1.4, we define Chow cohomology classes on Mr

g,A,β(X,S).

• ψi = c1(s∗iωπ).
• ξi = c1(s∗i f

∗S).
• ηa,b = π∗(c1(ωlog)a c1(f∗S)b).

Definition 6. A decorated X-valued r-twisted stable graph [Γ, γ] is an X-valued stable
graph Γ ∈ Gr

g,A,β(X) together with the following decoration data γ.

• Each leg i ∈ L is decorated with a monomial ψa
i ξ

b
i .

• Each half-edge h ∈ H \ L is decorated with a monomial ψa
h.

• Each edge e ∈ E is decorated with a monomial ξae .
• Each vertex in V is decorated with a monomial in the variables {ηa,b}a+b�2.

Let DGr
g,A,β(X,S) be the set of decorated X-valued r-twisted stable graphs. Every

[Γ, γ] ∈ DGr
g,A,β(X,S)

determines a class in the Chow cohomology of Mr

g,A,β(X,S).

• Γ specifies the degeneration of the curve with twisted structure w at the nodes on the rth
root of

f∗S

(
−

n∑
i=1

aixi

)
.

• β specifies the curve class distribution of the map f .
• The decorations ψi, ξi, ξe, and ηa,b specify Chow cohomology classes,

ξe = c1(s∗ef
∗S).

2.6.3. The Artin stack Mr,L
g,n. Let Gr,L

g,n be the set of r-twisted prestable graphs defined as
follows. A graph

Γ ∈ Gr,L
g,n

consists of the data

Γ = (V, H, L, g, v, ι, d : V → Z, tw : H → {0, . . . , r − 1})
satisfying the properties.

(i-vi) Exactly as for prestable graphs in Section 2.1.
(vii) The twist conditions hold.

(L) ∀i ∈ L =⇒ tw(i) = 0.
(E) ∀e = (h′, h′′) ∈ E =⇒ tw(h′) + tw(h′′) = 0 mod r.
(V) ∀v ∈ V =⇒ ∑

ν(h)=v

tw(h) = d(v) mod r.
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Definition 7. A decorated r-twisted prestable graph [Γ, γ] is a graph

Γ ∈ Gr,L
g,n

together with the following decoration data γ.

• Each leg i ∈ L is decorated with a monomial ψa
i ξ

b
i .

• Each half-edge h ∈ H \ L is decorated with a monomial ψa
h.

• Each edge e ∈ E is decorated with a monomial ξae .
• Each vertex in V is decorated with a monomial in the variables {ηa,b}a+b�2.

Let DGr,L
g,n be the set of decorated r-weighted prestable graphs. Every

[Γ, γ] ∈ DGr,L
g,n

determines a class in the Chow cohomology of Mr,L
g,n.

• Γ specifies the degeneration of the curve with twisted structure w at the nodes on L.
• d specifies the degree distribution of L⊗r.
• ψi corresponds to the cotangent line class.
• ξi = c1(s∗iL

⊗r).
• ξe = c1(s∗eL

⊗r) where se is the node associated to e.
• ηa,b = π∗(c1(ωlog)a c1(L⊗r)b).

2.6.4. The pull-back map π∗
L. Let [Γ, γ] ∈ DGr,L

g,n be a decorated prestable graph represent-
ing a Chow cohomology class in Mr,L

g,n. The pull-back π∗
L along

πL : Mr

g,A,β(X,S) → Mr,L
g,n

is computed by exactly the same rules governing π∗
Z . The proof is identical.

Lemma 4. The pull-back π∗
L[Γ, γ] is obtained in terms of Chow cohomology classes of

decorated X-valued r-twisted stable graphs by applying the following procedure.

• Replace the degree d(v) ∈ Z of each vertex with all effective classes

β(v) ∈ H2(X,Z)

satisfying ∫
β(v)

c1(S) −
∑
i�v

ai = d(v) ,

where the sum is over the legs i incident to v. Sum over all choices of β(v).
• Replace each ξi with ξi + aiψi.
• Replace each class η0,b at each vertex v with

η0,b −
∑
i�v

b∑
k=1

(
b

k

)
aki ψ

k−1
i ξb−k

i ,

where the sum is again over the legs i incident to v.

All other decorations are kept the same.

2.7. Multiplication in the Chow cohomology of Mr,L
g,n

The product in Chow cohomology of the classes of two decorated r-twisted prestable graphs
in DGr,L

g,n is defined in a very similar way to the product of stable graphs carefully described in
the appendix of [26]. We briefly sketch the construction and highlight the differences.
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An edge contraction in an r-twisted prestable graph is defined in the natural way.

• If the edge contraction merges two vertices, the corresponding genera and degrees are
summed.
• If the contracted edge is a loop, the genus of the base vertex increases by 1 and the degree

remains unchanged.

The total degree and twisting conditions are still satisfied after edge contraction in an r-
twisted prestable graph.

We define the product of two decorated r-twisted prestable graphs

[ΓA, γA], [ΓB , γB ] ∈ DGr,L
g,n

as follows. The product is a (possibly infinite) linear combination of decorated r-twisted
prestable graphs.

We first consider prestable graphs

Γ ∈ Gr,L
g,n

with edges colored by A, B, or both A and B, satisfying the conditions.

(i) After contracting the edges not colored A, we obtain ΓA.
(ii) After contracting the edges not colored B, we obtain ΓB .

For each such Γ, we add decorations by the following rules.

• The monomials ψaξb on the legs of the graph Γ are obtained by multiplying the
corresponding leg monomials on the graphs ΓA and ΓB .
• The monomial ψa on a half-edge colored A only or colored B only is inherited from the

graph ΓA or ΓB , respectively. On an edge e = (h′, h′′) colored both A and B, we take the
product of the monomials on the corresponding edge in the graphs ΓA and ΓB and include an
extra factor

−1
r
(ψh′ + ψh′′)

corresponding to the excess intersection.
• The monomial ξa on an edge colored A only or colored B only is inherited from the graph

ΓA or ΓB , respectively. On an edge colored both A and B, we take the product of the monomials
on the corresponding edge in the graphs ΓA and ΓB.
• The factors ηa,b of the monomials assigned to each vertex v of ΓA (and ΓB) are distributed

in all possible ways among the vertices which collapse to v as Γ is contracted to ΓA (and ΓB). In
other words, each factor is assigned to a unique vertex, and we sum over all such assignments.
Each vertex of Γ is then marked with two monomials in the variables ηa,b, which we multiply
together.

The product [ΓA, γA] · [ΓB , γB ] is then the sum over all decorated r-twisted prestable graphs
[Γ, γ] produced by the above construction.

It is important to note that a product of two decorated r-twisted prestable graphs can be
an infinite linear combination of decorated r-twisted prestable graphs. For instance, if we take
the square of the graph with a single vertex of degree 0 and a single loop (and no decorations),
we obtain, among other terms, a sum over all graphs with two vertices of degrees d and −d
connected by two edges. Since the integer d can be chosen arbitrarily, the result is an infinite
linear combination. However, the product of two decorated r-twisted prestable graphs or even
of infinite linear combinations of such graphs, is always well defined because the coefficient of
each graph in the product only involves a finite number of graphs in the factors. Therefore, the
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product rule transforms the vector space of possibly infinite linear combinations of decorated r-
twisted prestable graphs into an algebra which agrees with the product in the Chow cohomology
of Mr,L

g,n.

3. GRR for the universal line bundle

3.1. Universal bundles on universal curves over Mr,L
g,n

The universal twisted curve

π : Cr,L
g,n → Mr,L

g,n

carries a universal line bundle L. Consider a node in a singular fiber of the universal curve.
The kernel of the group morphism φ of Section 2.2 acts on the fiber of L over the node. If the
generator

(1,−1) ∈ μr × μr

of the kernel acts on the fiber of L at the node by e2πa/r, we assign the remainders a and −a
mod r to the branches of the curve at the node. Every node in the universal curve therefore
acquires a type: a pair of remainders mod r assigned to the branches meeting at the node (with
vanishing sum mod r). For the line bundle

Z = L⊗r,

the action of the kernel of φ is always trivial.
The push-forward L of the sheaf of invariant sections of L to the coarse universal curve Cr,L

g,n,
is a rank 1 torsion free sheaf which is described in detail in [15]. The push-forward of the sheaf
of sections of L⊗r to Cr,L

g,n is just a line bundle Z̃.
On the bubbly universal curve C̃r,L

g,n, we may pull-back the line bundle Z̃ from the coarse
curve Cr,L

g,n. The situation is more interesting for L. Chiodo [14] has proven that there exists
a line bundle

L̃ → C̃r,L
g,n

for which the push-forward of the associated sheaf of sections to the coarse curve Cr,L
g,n is L.

However, instead of the simple isomorphism

Z = L⊗r on Cr,L
g,n,

we have the more complicated relation

Z̃ = L̃⊗r(D) on C̃r,L
g,n,

where D is a linear combination of the exceptional divisors of the desingularization

C̃r,L
g,n → Cr,L

g,n.

More precisely, a node of type

(a, b) with a + b = 0 (mod r),

gives rise to a chain of r − 1 rational curves in the fiber of the bubbly universal curve. These
rational curves appear in D with coefficients

a, 2a, . . . , (b− 1)a, ab, (a− 1)b, . . . , 2b, b,

see [14].
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3.2. Polynomial classes

Ehrhart’s theory states that if we take an n-dimensional polytope Δ with integer vertices and
a polynomial P (x1, . . . , xn) in n variables, then the sum of values of P over the integer points
inside rΔ is a polynomial in r. Actually, the same claim holds for a polynomial P (x1, . . . , xn; r)
in n + 1 variables depending explicitly on r. Similarly to the discussion in the Appendix of [35],
we will use Ehrhart’s theory to prove that a family of cohomology classes on Mr,L

g,n projected
to MZ

g,n forms a cohomology-valued Laurent polynomial in r.
Consider a family of polynomials{

PΓ ∈ C[twh, r, r
−1]

}
Γ∈DGZ

g,n
.

For each graph Γ ∈ DGZ
g,n, PΓ is a polynomial in the variables twh, where h runs over the

half-edges of Γ which are not legs (and PΓ is a Laurent polynomial in r). The formal variables
twh play the role of the variables xi in the previous paragraph.

The family PΓ determines a family of Chow cohomology classes on Mr,L
g,n for all r:

α =
∑
Γ

∑
tw

PΓ

(
tw(h), r, r−1

) · [Γ, tw],

where the summation is over all r-twistings tw of all decorated prestable graphs Γ ∈ DGZ
g,n

which, equivalently, is the set DGr,L
g,n. Note that we have substituted the value of the twist

tw(h) ∈ {0, . . . , r − 1} in place of the formal variable twh.
We call such families of classes polynomial. We let

val(α) = inf
Γ∈DGZ

g,n

[valr(PΓ) − |E(Γ)|].

Proposition 5. If α and β are two polynomial families of classes of valuations val(α) and
val(β), then the product †αβ is a polynomial family of classes satisfying

val(αβ) � val(α) + val(β).

Proof. Let Γ be a decorated prestable graph and tw an r-twisting. The coefficient of Γ in
the product αβ is a finite linear combination of coefficients of contractions of Γ in α and β.
More precisely, the coefficient is a sum over all ways to label the edges of Γ with A, B, or AB
and to split every monomial on a leg, edge, or vertex of Γ into a product of two factors labeled
A and B while keeping a factor

−1
r
(ψ′ + ψ′′)

aside for every edge labeled AB. For every such labeling, the contribution to the coefficient of
Γ is the product of the two corresponding polynomials in tw(h), r, and r−1 times a factor of
r−1 for each AB-edge. Therefore the coefficient of Γ is also a polynomial in tw(h), r, and r−1.

The lowest possible order in r is given by summing the following three degrees.

• val(α) + (number of A-edges and AB-edges) from the coefficient of the A-contraction of
Γ in α.

• val(β) + (number of B-edges and AB-edges) from the coefficient of the B-contraction of
Γ in β.

• −(number of AB-edges) from the excess intersection factor

−1
r
(ψ′ + ψ′′).

†The product of two families of Chow cohomology classes is defined by taking the products of the

corresponding Chow cohomology classes on Mr,L
g,n for all r.
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The sum of these three degrees is, indeed, val(α) + val(β) + |E(Γ)|, so the valuation of αβ
is the sum of valuations of α and β (or larger if the lowest degree terms cancel out). �

Proposition 6. Let α be a polynomial family of classes in the strata algebra of Mr,L
g,n. Let

β be the push-forward of α to the strata algebra of MZ
g,n. Then, for any decorated prestable

graph Γ ∈ DGZ
g,n, the coefficient of Γ in β is a Laurent polynomial in r of valuation at least

val(α) + 2g − 1, for all sufficiently large r.

Proof. The projection from Mr,L
g,n to MZ

g,n sums over all possible twists, which is the analog
of summing the values of a polynomial over integer points in a polytope in Ehrhart’s theory.

For every r-twisting tw of Γ, the push-forward from the stratum [Γ, tw] of Mr,L
g,n to the

stratum Γ of MZ
g,n has degree

r
∑

v∈V (Γ)(2g(v)−1) = r2g−2h1(Γ)−|V (Γ)|

see the proof of [35, Corollary 4].
The coefficient of Γ in β is obtained by summing the coefficients of [Γ, tw] in α over all

r-twistings tw of Γ. According to Proposition 3′′ of the Appendix of [35], the sum is a Laurent
polynomial in r, for r sufficiently large, with valuation at least

val(α) + |E(Γ)| + h1(Γ).

Multiplying the Laurent polynomial by the degree of the push-forward map, we obtain, again,
a Laurent polynomial in r with valuation at least

val(α) + |E(Γ)| + h1(Γ) + 2g − 2h1(Γ) − V (Γ) = val(α) + 2g − 1

as claimed. �

3.3. Applying the GRR formula to C̃r,L
g,n → Mr,L

g,n

The bubbly universal curve

π : C̃r,L
g,n → Mr,L

g,n

is representable and proper over Mr,L
g,n. We may apply the Grothendieck–Riemann–Roch (GRR)

formula to compute Rπ∗L̃,

ch
(
Rπ∗L̃

)
= π∗

(
ch(L̃) · td(π)

)
.

As before, let Di be the class of the divisor of C̃r,L
g,n corresponding to the ith section. Let

K = c1(ωlog) = c1

(
ω

(
n∑

i=1

Di

))
, ξ = c1

(
Z̃
)
.

Following the notation of Section 3.1, let D be defined by

Z̃ = L̃⊗r(D).

Let j be the double covering of the locus of nodes in the singular fibers,

j : Δ → C̃r,L
g,n.

The sheets of the covering correspond to the two ways of numbering the branches of the curve at
the node. The domain Δ carries two cotangent line bundles corresponding to the two branches
of the node. We denote by ν1 and ν2 first Chern classes of the two cotangent lines.



DOUBLE RAMIFICATION CYCLES WITH TARGET VARIETIES 1745

Using the above notation, we have:

ch(L̃) = eξ/re−D/r,

td(π) =
K

eK − 1

n∏
i=1

Di

1 − e−Di

⎛⎝1 + j∗
1
2

∑
m�1

B2m

(2m)!
ν2m−1
1 + ν2m−1

2

ν1 + ν2

⎞⎠,

see [14, 20].

Lemma 7. We have

π∗
(
ch(L̃)td(π)

)

= π∗

⎡⎣eξ/r K

eK − 1

n∏
i=1

Di

1 − e−Di
+ eξ/r−D/r

⎛⎝1 + j∗
1
2

∑
m�1

B2m

(2m)!
ν2m−1
1 + ν2m−1

2

ν1 + ν2

⎞⎠⎤⎦.
Proof. The following intersections vanish in C̃r,L

g,n by the definition of ωlog and the fact that
the markings are disjoint from the nodes (before the bubbly resolution and, therefore, also
after the bubbly resolution):

K · Δ = Di · Δ = Di ·D = 0.

Moreover, since the bubble curve is crepant (see [14]), we have

K ·D = 0.

The push-forward of the constant term vanishes

π∗(1) = 0.

The formula is then easily obtained from the above vanishing from GRR. �

3.4. GRR and polynomiality in r

Proposition 8. The GRR formula for the Chern character chk(Rπ∗L̃) is a polynomial family
with valuation −(k + 1). Its coefficients of lowest degree in r equal

r−(k+1) η0,k+1 + r−k
∑

Γ with one edge (h,h′)

∑
i+j+m=k−1

ξme
m!

tw(h)k+1−m

(k + 1 −m)!
(−1)iψi

hψ
j
h′ .

Proof. The first term in Lemma 7 only involves decorated graphs with a single vertex and
with a single (trivial) weighting. The dependence on r in the first term is only through eξ/r. The
degree k part of the class, obtained by π push-forward of the degree k + 1 part, is a Laurent
polynomial in r with lowest degree term

r−(k+1) · π∗(ξk+1) = r−(k+1)η0,k+1.

Since the second term in Lemma 7 is supported on Δ before π push-forward, we can write the
result after π push-forward as a sum of contributions of graphs Γ with a single edge e = (h, h′).
Since the factor eξ/r is then the π pull-back of ξe, the crucial calculation is

π∗

⎡⎣e−D/r

⎛⎝1 + j∗
1
2

∑
m�1

B2m

(2m)!
ν2m−1
1 + ν2m−1

2

ν1 + ν2

⎞⎠⎤⎦. (10)
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Fortunately, the π push-forward (10) was computed by Chiodo in Step 3 of [14, Section 3].
The codimension k part of (10) is equal to a sum over r-weighted prestable decorated graphs
Γ with a single edge e = (h, h′) with coefficient

r
Bk+1(tw(h)/r)

(k + 1)!

∑
i+j=k−1

(−1)iψi
hψ

j
h′ . (11)

Here, Bk(x) is the Bernoulli polynomial defined by

t ext

et − 1
=

∑
k�0

Bk(x)
tk

k!
.

We see (11) is a polynomial in tw(h), r and r−1 with lowest degree term in r given by

r−k tw(h)k+1

(k + 1)!

∑
i+j=k−1

(−1)iψi
hψ

j
h′ . (12)

The formula for the second term in Lemma 7 is then obtained by multiplying by eξe/r. �

Proposition 9. The GRR formula for the Chern class ck(−Rπ∗L̃) is a polynomial family
with valuation −2k. The coefficient of lowest degree in r equals the degree k part of the mixed
degree class

∑
Γ∈Gr,L

g,n

r−2k+|E(Γ)|

|Aut(Γ)| jΓ∗

⎡⎣ ∏
v∈V(Γ)

exp
(
−1

2
η(v)

)

∏
e=(h,h′)∈E(Γ)

1 − exp
(
− tw(h)tw(h′)

2 (ψh + ψh′)
)

ψh + ψh′

⎤⎦ ,

where η = η0,2.

Proof. The Chern class ck can be expressed as a quasi-homogeneous polynomial in the
Chern characters,

ck =
1
k!

chk
1 + . . . . (13)

By Proposition 5, each monomial M on the right side of (13) is a polynomial family of classes
with valuation at least −(k + deg(M)). Since the monomial of largest degree is

M =
1
k!

chk
1 ,

the Chern class ck is a polynomial family with valuation at least −2k. Since only the lowest
degree coefficient in r of the polynomial class ch1 contributes to the lowest degree in r of the
polynomial family ck, the valuation of the latter is exactly −2k.

More precisely, the lowest degree coefficient in

1 + c1(−Rπ∗L̃) + c2(−Rπ∗L̃) + . . .

is obtained by exponentiating the formula for ch1(−Rπ∗L̃) given by Proposition 8 after
changing the sign. A parallel exponentiation is taken in [35, Section 1]. �
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We will now push-forward the GRR formula of Proposition 9 along the morphism

ε : Mr,L
g,n → MZ

g,n

from the commutative diagram (8).

Corollary 10. The push-forward ε∗ck(−Rπ∗L̃) is a Laurent polynomial in r with valuation
2g − 2k − 1 for r sufficiently large. The coefficient of r2g−2k−1 is obtained by substituting r = 0
into the polynomial

∑
Γ∈GZ

g,n

∑
r-twist tw

r−h1(Γ)

|Aut(Γ)| jΓ∗
⎡⎣ ∏
v∈V(Γ)

exp
(
−1

2
η(v)

)

∏
e=(h,h′)∈E(Γ)

1 − exp
(
−w(h)w(h′)

2 (ψh + ψh′)
)

ψh + ψh′

⎤⎦
and extracting the part of degree k.

Proof. The claim follows directly from Propositions 6, 9, and the calculation:

−2k + |E(Γ)| + 2g − 2h1(Γ) − |V(Γ)| − (2g − 2k − 1) = −h1(Γ) .

While graphs Γ ∈ Gr,L
g,n in Proposition 9 correspond to classes in the Chow cohomology of Mr,L

g,n,
graphs

Γ ∈ GZ
g,n

here correspond to classes in the Chow cohomology of MZ
g,n. �

Finally, as proven by Chiodo [13, Proposition 4.3.3] and [14, Lemma 2.2.5], all of the
following three push-forwards yield the same complex on Mr,L

g,n.

• Rπ∗L via π : Cr,L
g,n → Mr,L

g,n.
• Rπ∗L via π : Cr,L

g,n → Mr,L
g,n.

• Rπ∗L̃ via π : C̃r,L
g,n → Mr,L

g,n.

Hence, Corollary 10 also holds for Rπ∗L.

Corollary 11. The push-forward ε∗ck(−Rπ∗L) is a Laurent polynomial in r with valuation
2g − 2k − 1 for r sufficiently large. The coefficient of r2g−2k−1 is obtained by substituting r = 0
into the polynomial

∑
Γ∈GZ

g,n

∑
r-twist tw

r−h1(Γ)

|Aut(Γ)| jΓ∗
⎡⎣ ∏
v∈V(Γ)

exp
(
−1

2
η(v)

)

∏
e=(h,h′)∈E(Γ)

1 − exp
(
−w(h)w(h′)

2 (ψh + ψh′)
)

ψh + ψh′

⎤⎦
and extracting the part of degree k.
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4. Localization analysis

4.1. Overview

Let X be a nonsingular projective variety over C. Let S → X be a line bundle. Let

A = (a1, . . . , an)

be a vector of double ramification data as defined in Section 1.2,
n∑

i=1

ai =
∫
β

c1(S).

The double ramification cycle

DRg,A,β(X) ∈ A∗(Mg,n,β(X))

is defined via the moduli space of stable maps to rubber M∼
g,A,β(X,S). We prove here the

claim of Theorem 2,

DRg,A,β(X) = Pg
g,A,β ∈ A∗(Mg,n,β(X)).

Our path follows [35, Section 2].
Theorem 2 for an arbitrary vector A can be deduced from the case where every ai is nonzero

by forgetting the markings with ai = 0. Our proof of Theorem 2 has no mathematical difficulties
when A has zeros, but the discussion then requires separating markings into three types instead
of just positive and negative. For simplicity, we assume every ai is nonzero.

4.2. Target geometry

Denote by P(X,S) the CP
1-bundle P(OX ⊕ S) → X. Following the notation of Section 1.2, let

D0, D∞ ⊂ P(X,S)

be the divisors defined by the projectivizations of the loci

OX ⊕ {0} and {0} ⊕ S,

respectively. After applying Cadman’s rth root construction [11] to D0, we obtain a bundle

P(X,S)[r] → X

with fiber given by the orbifold projective line CP
1[r] with single orbifold point with stabilizer

Z/rZ.
Denote by Mg,A,β(P(X,S)[r]/D∞) the moduli space of stable maps to the orbifold P(X,S)[r]

relative to D∞. The moduli space parametrizes connected, nodal, twisted curves (C, x1, . . . , xn)
of genus g with n markings† together with a map

f : C → P (X,S)[r],

where P (X,S)[r] is an expansion‡ of P(X,S)[r] along D∞. The following conditions are required
to hold over

D0, D∞ ⊂ P (X,S)[r] :

(i) The stack structure of the domain curve C occurs only at the nodes over D0 and at
the markings corresponding to positive elements of A (which must be mapped to D0). The

†As always, the markings are distinct and away from the nodes.
‡The expansion has a canonical D0 ⊂ P (X,S)[r] from the bulk and a canonical D∞ ⊂ P (X,S)[r] from the

last component of the expansion.
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monodromies associated to the latter markings are specified by the parts ai of A at these
markings. More precisely, the monodromies are ai mod r.

(ii) The only points mapped by f to D∞ are the markings xi with negative ai. The
multiplicity of D∞ at xi is −ai. The map f satisfies the ramification matching condition
over the internal nodes of the expansion P .

(iii) Stability requires the full data (C, x1, . . . , xn, f, P (X,S)[r]) to have only finitely many
automorphisms.

The moduli space Mg,A,β(P(X,S)[r]/D∞) has a perfect obstruction theory and a virtual
class of dimension

dimC [Mg,A,β(P(X,S)[r]/D∞)]vir = dimC [Mg,n,β(X,S)]vir − (g − 1) +
∑

i|ai>0

⌊ai
r

⌋
, (14)

see [36, Section 1.1].
We will be most interested in the case where r >

∑n
i=1 |ai|. The last term in (14) then

vanishes. We refer the reader to [1, 36, 43] for a more detailed definition of the moduli space
of stable relative maps.

4.3. The C∗-fixed loci

4.3.1. The C∗-action. The standard C∗-action over X on the projective bundle P(O ⊕
S) → X, defined by

ξ · [x, z, s] = [x, z, ξs],

lifts canonically to C∗-actions on P(X,S)[r] and Mg,A,β(P(X,S)[r]/D∞).

4.3.2. Graphs. The C∗-fixed loci of Mg,A,β(P(X,S)[r]/D∞) are in bijective correspon-
dence with decorated graphs

Φ = (V, E, L, g : V → Z�0, β : V → H2(X,Z), � : V → {0,∞}, d : E → Z>0)

which satisfy the following six properties.

(i) V is a vertex set with a genus function g, a degree function β, and a label �. For
v ∈ V, the degree β(v) must be an effective† curve class. We also require the genus and degree
conditions to hold:

g =
∑
v∈V

g(v) + h1(Φ) and β =
∑
v∈V

β(v).

(ii) L, the set of legs, is placed in bijective correspondence with the n markings.
• Legs marked i with ai > 0 are incident to vertices labeled 0.
• Legs marked i with ai < 0 are incident to vertices labeled ∞.

(iii) E is the edge set. For e ∈ E, the edge degree de corresponds to the de-th power map

CP1[r] → CP1[r].

(iv) Φ is a connected graph, and Φ is bipartite with respect to labeling �: Every edge is
incident to a 0-labeled vertex and an ∞-labeled vertex.

(v) If �(v) = 0, denote by A(v) the list of integers formed by the values ai for the legs i
incident to v and by the values −de for the edges e incident to v. For every such vertex v, we
impose the condition

|A(v)| =
∫
β(v)

c1(S) mod r,

where |A(v)| is the sum of the elements of A(v).

†Effective here includes the class 0 ∈ H2(X,Z).
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(vi) If �(v) = ∞, denote by A(v) the list of integers formed by the values ai for the legs
i incident to v and by the values de for the edges e incident to v. For every such vertex, we
impose the condition

|A(v)| =
∫
β(v)

c1(S) .

To every 0-labeled vertex v of Φ, we assign the space Mr

g(v),A(v),β(v)(X,S). We will use the
notation

Mr

v = Mr

g(v),A(v),β(v)(X,S).

As explained in Section 2.3, the forgetful map

Mr

v → Mg(v),n(v),β(v)(X)

is a finite map of degree r2g−1. The virtual fundamental class [Mr

v]
vir of Mr

v is of dimension

dimC

[
Mr

v

]vir

= dimC

[Mg(v),n(v),β(v)(X)
]vir

= (3 − dim(X))(g(v) − 1) + n(v) +
∫
β(v)

c1(X) .

A C∗-fixed relative stable map with vector A = (a1, . . . , an),

f : (C, x1, . . . , xn) → P(X,S)[r]/D∞

takes two basic forms.

• If the target does not expand, then the stable map has a finite number of preimages of
D∞ which correspond precisely to the markings i with ai < 0. Each such pre-image is then
described by an unstable vertex of Φ decorated by ∞.
• If the target expands, then C contains a possibly disconnected subcurve mapping to the

rubber P(X,S) — with no orbifold structure at D0 in the rubber. The ramification in the
rubber over D0 is specified by the degrees de of the edges of Φ, and the ramification over
D∞ is specified by the negative elements of A. The ramification in the rubber occurs over D0

and is specified by the negative elements of A over D∞. Every ∞-labeled vertex v describes a
connected component of the rubber map. We will denote the moduli space of stable maps to
rubber by M∼

∞.

In the second case above, let g(∞) be the genus of the possibly disconnected domain of the
rubber map, n(∞) the total number of legs and edges adjacent to ∞-labeled vertices, and β(∞)
their total degree. The virtual fundamental class [M∼

∞]vir has dimension

dimC

[M∼
∞
]vir

= dimC

[Mg(∞),n(∞),β(∞)(X)
]vir − g(∞)

= (3 − dim(X))(g(∞) − 1) + n(∞) +
∫
β(∞)

c1(X) − g(∞) .

The image of the virtual fundamental class [M∼
∞]vir in the moduli space of (not necessarily

connected) stable maps to X is denoted by DR∞.

4.3.3. Unstable vertices. A vertex v ∈ V(Φ) is unstable if β(v) = 0 and 2g(v) − 2 + n(v) �
0. There are four types of unstable vertices.

(i) �(v) = 0, g(v) = 0, v carries no markings and one incident edge.
(ii) �(v) = 0, g(v) = 0, v carries no markings and two incident edges.
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(iii) �(v) = 0, g(v) = 0, v carries one marking and one incident edge.
(iv) �(v) = ∞, g(v) = 0, v carries one marking and one incident edge.

The target of the stable map expands if and only if there is at least one ∞-labeled
stable vertex.

A stable map in the C∗-fixed locus corresponding to Φ is obtained by gluing together maps
associated to the vertices v ∈ V(Φ) with Galois covers associated to the edges. Denote by
V0

st(Φ) the set of 0-labeled stable vertices of Φ. Then the C∗-fixed locus corresponding to Φ is
isomorphic to the product

MΦ =

⎧⎪⎪⎨⎪⎪⎩
∏

v∈V0
st(Φ)

Mr

v × M∼
∞, if the target expands,

∏
v∈V0

st(Φ)

Mr

v, if the target does not expand,

quotiented by the automorphism group of Φ and the product of cyclic groups Zde
associated

to the Galois covers of the edges.
The natural morphism corresponding to Φ,

ι : MΦ → Mg,A,β(P(X,S)[r]/D∞),

is of degree

|Aut(Φ)| ·
∏

e∈E(Φ)

de

onto the image ι(MΦ).

Lemma 12. For r sufficiently large, the unstable vertices of type (i) and (ii) cannot occur.

Proof. We define β′ ∈ H2(X,Z) to be an effective summand of β if both β′ and β − β′ are
effective cycle classes (including 0). Let b be the maximum of | ∫

β′ c1(S) | over all effective
summands of β. Further, let

a+ =
∑

i|ai>0

ai

be the sum of the positive elements of the vector A. Assume

r > 2(a+ + b).

Let β0 (respectively, β∞) be the sum of degrees of all vertices of Φ with label 0 (respectively,
∞), so

β = β0 + β∞.

We then have

a+ −
∫
β0

c1(S) =
∑

e∈E(Φ)

de.

By our choice of r, we have
∑

e∈E(Φ) de < r/2.
At each 0-labeled stable vertex v ∈ V(Φ), the condition∑

i�v
ai −

∫
β(v)

c1(S) =
∑
e�v

de mod r
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holds by the conditions on the graph Φ. By our choice of r, both the absolute value of
∑

i�v ai −∫
β(v)

c1(S) and
∑

e�v de are less than r/2. Therefore, the equality mod r is actually an exact
equality: ∑

i�v
ai −

∫
β(v)

c1(S) =
∑
e�v

de. (15)

For an unstable vertex of type (i) or (ii), we have both
∑

i�v ai = 0 and β(v) = 0. The sum
of the degrees of edges adjacent to such a vertex then vanishes by (15). However, the degree
of every edge is a positive integer and the graph Φ is connected. The resulting contradiction
implies that there are no unstable vertices of types (i) and (ii). �

4.4. Localization formula

We write the C∗-equivariant Chow ring of a point as

A∗
C∗(•) = Q[t],

where t is the first Chern class of the standard representation.
For the localization formula, we will require the inverse of the C∗-equivariant Euler class

of the virtual normal bundle in Mg,A,β(P(X,S)[r]/D∞) to the C∗-fixed locus corresponding
to Φ. Let

f : (C, x1, . . . , xn) → P (X,S)[r], [f ] ∈ MΦ,

where P (X,S)[r] is a possible expansion of P(X,S)[r] along D∞. Denote by

T → P(X,S)[r]

the tangent line bundle to the fiber of P(X,S)[r] → X. For simplicity, we will also denote by
T the pull-back of T from P(X,S)[r] to the expansion P (X,S)[r]. The formula for the inverse
Euler class can then be written as:

1
e(Normvir)

=
e(H1(C, f∗T (−D∞)))
e(H0(C, f∗T (−D∞)))

1∏
i e(Ni)

1
e(N∞)

. (16)

Several aspects of Formula (16) require explanation. To start, we assume that r is sufficiently
large (using Lemma 12) to exclude the presence of unstable vertices of types (i) and (ii) in Φ.
To compute the leading factor of (16),

e(H1(C, f∗T (−D∞)))
e(H0(C, f∗T (−D∞)))

, (17)

we use the normalization exact sequence for the domain C tensored with the line bundle
f∗T (−D∞). The associated long exact sequence in cohomology decomposes the leading factor
into a product of vertex, edge, and node contributions.

• Let v ∈ V(Φ) be a stable vertex over D0 ⊂ P(X,S)[r] corresponding to a moduli space

Mr

v = Mr

g(v),A(v),β(v)(X,S).

The orbifold universal curve†

π : Cr,orb
g(v),A(v),β(v) → Mr

g(v),A(v),β(v)

†The moduli space Mr
g,A,β(X) may be considered with the universal curve Cr

g,A,β of Section 2.6.2 or with

the orbifold universal curve Cr,orb
g,A,β . While Cr

g,A,β has orbifold structure only at the nodes of the fibers, Cr,orb
g,A,β

has orbifold structure both at the markings xi and at the nodes. A full discussion of the differences will be
given in Section 4.5.4.
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carries an orbifold line bundle Lorb (the rth root of the pull-back of S) which is the pull-back
of T to the universal curve. Therefore, the contribution

e(H1(Cv, f
∗T (−D∞))

e(H0(Cv, f∗T (−D∞))

yields the class

e
(
(−Rπ∗Lorb) ⊗O(1/r)

)
= crk

(
(−Rπ∗Lorb) ⊗O(1/r)

)
in A∗(Mr

v) ⊗ Q[t, 1
t ], where O(1/r) is a trivial line bundle with a C∗-action of weight 1

r and

rk = g(v) − 1 + |E(v)|
is the virtual rank of −Rπ∗Lorb. Unstable 0-labeled vertices of type (iii) contribute factors
of 1. Since the restriction of T (−D∞) to D∞ is trivial, the ∞-labeled vertices also contribute
factors of 1.
• The edge contribution is trivial since the degree di

r of f∗T (−D∞) is less than 1, see [36,
Section 2.2].
• The contribution of a node N over D0 is trivial. Indeed, the space of sections

H0(N, f∗T (−D∞)) vanishes because N must be stacky, and H1(N, f∗T (−D∞)) is trivial for
dimension reasons. Nodes over D∞ contribute 1.

Consider next the last two factors of (16),

1∏
i e(Ni)

1
e(N∞)

.

• The product
∏

i e(Ni)−1 is over the nodes that correspond to half-edges of the graph Φ
adjacent to a 0-labeled vertex. If N is a node corresponding to an edge e ∈ E(Φ) and the
associated vertex v is stable, then

e(N) =
t + ev∗

e(c1(S))
r de

− ψe

r
. (18)

The factor corresponds to the smoothing of the node N of the domain curve: e(N) is the first
Chern class of the normal line bundle of the divisor of nodal domain curves. The first Chern
classes of the tangent lines to the branches at the node are divided by r because of the orbifold
twist, see Section 2.2.

In the case of an unstable vertex of type (iii), the associated edge does not produce a node
of the domain. The type (iii) edge incidences do not appear in

∏
i e(Ni)−1.

• N∞ corresponds to the expansion of the target P(X,S)[r] over D∞. The factor e(N∞) is
1 if the target (P(X,S)[r]/D∞) does not expand and

e(N∞) = − t + Ψ∞∏
e∈E(Φ) de

if the target expands.
Here, Ψ∞ is the first Chern class of a line bundle defined as follows. Consider a point of the

moduli space Mg,A,β(P(X,S)[r]/D∞) where the target expands. For the target over the point,
the divisor along which the target expands carries tangent line bundles to the two components
of the target. The tensor product of these two line bundles is a trivial line bundle. Thus the
tensor product is the pull-back of a line bundle N over the divisor of Mg,A,β(P(X,S)[r]/D∞)
where the target expands, and Ψ∞ is the first Chern class of N . See [43] for more details.
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The virtual class of Mg,A,β(P(X,S)[r]/D∞) can be written in terms of the C∗-fixed point
loci by the virtual localization formula [25]:[Mg,A,β(P(X,S)[r]/D∞)

]vir
=

∑
Φ

1
|Aut(Φ)|

1∏
e∈E(Φ) de

· ι∗
(

[MΦ]vir

e(Normvir)

)
(19)

in A∗(Mg,A,β(P(X,S)[r]/D∞)) ⊗ Q[t, 1
t ]. Our analysis of the inverse Euler class of the virtual

normal bundle yields the following contributions to [MΦ]vir

e(Normvir)
associated to the graph Φ.

• A factor ∏
e∈E(v)

r
t+ev∗

e(c1(S))
de

− ψe

·
∑
d�0

cd(−Rπ∗Lorb)
(
t

r

)g(v)−1+|E(v)|−d

for each stable vertex v ∈ V(Φ) over 0, where E(v) is the set of edges incident to v.
• A factor

−
∏

e∈E(Φ) de

t + ψ∞
· DR∞,

if the target expands, where DR∞ is the virtual class of the moduli space of map to the rubber
over D∞.

4.5. The formula for the DR-cycle

4.5.1. Three operations. We will now perform three operations on the localization formula
(19) for the virtual class [Mg,A,β(P(X,S)[r]/D∞)]vir:

(i) The C∗-equivariant push-forward via

ε : Mg,A,β(P(X,S)[r]/D∞) → Mg,n,β(X) (20)

to the moduli space Mg,n,β(X) of stable maps to X with trivial C∗-action.
(ii) Extraction of the coefficient of t−1 after push-forward by ε∗.
(iii) Extraction of the coefficient of r0.

After push-forward by ε∗, the coefficient of t−1 is equal to 0 because

ε∗[Mg,A,β(P(X,S)[r]/D∞)]vir ∈ A∗(Mg,n,β(X)) ⊗ Q[t].

Using Proposition 9, all terms of the t−1 coefficient will be seen to be polynomials in r, so
operation (iii) will be well defined. After operations (i)–(iii), only two nonzero terms will
remain. The cancellation of the two remaining terms will prove Theorem 2.

To perform (i)–(iii), we multiply the ε-push-forward of the localization formula (19) by t and
extract the coefficient of t0r0. To simplify the computations, we introduce the new variable

s = tr.

Then, instead of extracting the coefficient of t0r0, we extract the coefficient of s0r0.

4.5.2. Push-forward to Mg,n,β(X). For each vertex v ∈ V(Φ), following the notation of
Section 4.3.2, we have

Mr

v = Mr

g(v),A(v),β(v).

As in diagram (8), we denote by

ε : Mr

v → Mg(v),n(v),β(v)(X) (21)
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the morphism obtained by forgetting the rth root line bundle. The maps ε in (20) and (21) are
compatible. Denote by

ĉd = r2d−2g(v)+1ε∗cd(−Rπ∗Lorb) ∈ Ad(Mg(v),n(v),β(v)(X)). (22)

By Corollary 10, ĉd is a polynomial in r for r sufficiently large.
We now write the inverse Euler class of the virtual normal bundle for the C∗-fixed point

locus associated to the graph Φafter push-forward along

ε : Mg,n,β(P(X,S)[r]/D∞) → Mg,n,β(X)

in terms of s = rt. The analysis of Section 4.4 yields the following contributions to
ε∗ι∗

[MΦ]vir

e(Normvir)
.

• A factor
r

s
·

∏
e∈E(v)

de

1 + r
sev∗

e(c1(S)) − rde

s ψe

·
∑
d�0

ĉd s
g(v)−d · [Mg(v),n(v),β(v)(X)

]vir

∈ A∗(Mg(v),n(v),β(v)(X)) ⊗ Q

[
s,

1
s

]
for each stable vertex v ∈ V(Φ) over 0.

• A factor

−r

s
·
∏

e∈E(Φ) de

1 + r
sΨ∞

· DR∞

if the target degenerates.

For the first factor, we have used the compatibility of the virtual classes

ε∗
[
Mr

v

]vir

= r2g−1
[Mg(v),n(v),β(v)(X)

]vir

proven in [4, Theorem 6.8].

4.5.3. Extracting coefficients. From (19) and the contribution calculus for Φ presented in
Section 4.5.2, we have a complete formula for the C∗-equivariant push-forward of t times the
virtual class:

ε∗
(
t[Mg,A,β(P(X,S)[r], D∞)]vir

)
=

s

r
·
∑
Φ

1
|Aut(Φ)|

1∏
e∈E(Φ) de

· ε∗
(

[MΦ]vir

e(Normvir)

)
. (23)

Extracting the coefficient of r0. By Corollary 10, the classes ĉd are polynomial in r for r
sufficiently large. We have an r in the denominator in the prefactor on the right side of (23)
which comes from the multiplication by t on the left side. However, in all other factors, we
only have positive powers of r, with at least one r per 0-labeled vertex of the graph and one
more r if the target degenerates. The only graphs Φ which contribute to the coefficient of r0

are those with exactly one r in the numerator. There are only two graphs which have exactly
one r factor in the numerator.

• The graph Φ′ with a 0-labeled stable vertex of full genus g and an ∞-labeled unstable
vertex of type (iv) for each negative element of A.
• The graph Φ′′ with a stable ∞-labeled vertex of full genus g and a 0-labeled unstable

type (iii) vertex for each positive element of A.
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No terms involving ev∗(c1(S)), ψ or Ψ∞ classes contribute to the r0 coefficient of either
Φ′ or Φ′′ since every ψ class in the localization formula comes with an extra factor of r. The
homology class associated with Φ′′ is, by definition, the double ramification cycle DRg,A,β(X).
We can now write the r0 coefficient of the right side of (23) as

|Aut| · Coeffr0

[
ε∗
(
t[Mg,A,β(P(X,S)[r], D∞)]vir

)]
= Coeffr0

⎧⎨⎩∑
d�0

ĉd s
g−d · [Mg,n,β(X)

]vir

⎫⎬⎭ − DRg,A,β(X) (24)

in A∗(Mg,n,β(X)) ⊗ Q[s, 1
s ]. Here, |Aut| = |Aut(Φ′)| = |Aut(Φ′′)| = 1.

Extracting the coefficient of s0. The remaining powers of s in (24) appear only in the classes
ĉd (in the contribution of the graph Φ′). In order to obtain s0, we must take d = g,

|Aut| · Coeffs0r0

[
ε∗
(
t[Mg,A,β(P(X,S)[r], D∞)]vir

)]
= Coeffr0

{
ĉg · [Mg,n,β(X)

]vir
}

− DRg,A,β(X) (25)

in A∗(Mg,n,β(X)).

4.5.4. Proof of Theorem 2. Since Coeffs0r0 [ε∗(t[Mg,A,β(P(X,S)[r], D∞)]vir)] vanishes, we
can rewrite equality (25) as

DRg,A,β(X) = Coeffr0

[
rε∗cg(−Rπ∗Lorb) · [Mg,n,β(X)

]vir
]
∈ A∗(Mg,n,β(X)). (26)

Here, we have used the definition (22) of ĉg,

ĉg = rε∗cg(−Rπ∗Lorb).

What is the relationship between the line bundle

L on π : Cr
g,A,β → Mr

g,A,β(X)

considered in Section 2.6.2 and the line bundle

Lorb on π : Cr,orb
g,A,β → Mr

g,A,β(X)

which appears in (26) here? The definitions are slightly different.

• Cr
g,A,β has orbifold structure only at the nodes of the fibers.

• L⊗r = f∗S(−∑n
i=1 aixi).

• Cr,orb
g,A,β has orbifold structure both at the markings xi and at the nodes.

• Lorb = f∗T .

The universal curve Cr
g,A,β is the coarsification along the markings xi of Cr,orb

g,A,β . By considering
the sheaf of invariant sections of Lorb on Cr

g,A,β , we obtain an rth root of

f∗S

⎛⎝−
∑

i|ai>0

aixi −
∑
e∈E

(r − de)xe

⎞⎠ = f∗S

(
−

n∑
i=1

aixi

)
⊗OC

⎛⎝−
∑

i|ai<0

xi

⎞⎠⊗r

.
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So the rth roots corresponding to L and the coarsification of Lorb are related simply by the
factor OC(−∑

i|ai<0 xi) which yields a shift

ξ 
→ ξ − r
∑

i|ai<0

Di

in the study of L in Section 3. The lowest r terms of

cg(−Rπ∗L) and cg(−Rπ∗Lorb)

are therefore equal, and we can apply Corollary 11 to calculate

Coeffr0

[
rε∗cg(−Rπ∗Lorb) · [Mg,n,β(X)

]vir
]
∈ A∗(Mg,n,β(X)).

Corollary 11 gives the coefficient of r−1 of ε∗cg(−Rπ∗L) in the Artin stack MZ
g,n. The answer

is obtained by the r = 0 restriction of the degree g part of

∑
Γ∈GZ

g,n

∑
r-twist tw

r−h1(Γ)

|Aut(Γ)| jΓ∗
⎡⎣ ∏
v∈V(Γ)

exp
(
−1

2
η(v)

)

∏
e=(h,h′)∈E(Γ)

1 − exp
(
−w(h)w(h′)

2 (ψh + ψh′)
)

ψh + ψh′

⎤⎦ .

By applying Lemma 3, we can calculate the pull-back of the class in Mg,n,β(X). After
interpreting the twists as weights, we obtain the r = 0 restriction of the degree g part of

∑
Γ∈Gg,n,β(X)

w∈WΓ,r

r−h1(Γ)

|Aut(Γ)| jΓ∗
⎡⎣ n∏
i=1

exp
(

1
2
a2
iψi + aiξi

) ∏
v∈V(Γ)

exp
(
−1

2
η(v)

)

∏
e=(h,h′)∈E(Γ)

1 − exp
(
−w(h)w(h′)

2 (ψh + ψh′)
)

ψh + ψh′

⎤⎦ .

The result is exactly the formula for the X-valued DR-cycle claimed in Theorem 2.

5. Applications

5.1. A topological view

Let X be a nonsingular projective variety with a line bundle S → X, and let

P(OX ⊕ S) → X

be the canonically associated CP
1-bundle over X with 0-divisor D0 and ∞-divisor D∞.

Localization with respect to the fiberwise C∗-action immediately leads to a calculation of
the Gromov–Witten theory of P(OX ⊕ S) in terms of the Gromov–Witten theory of X and the
class

c1(S) ∈ H2(X,Z).
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In [43], an effective procedure was given to compute the Gromov–Witten invariants of the
associated rubber geometry and the three relative geometries

P(OX ⊕ S)/D0 , P(OX ⊕ S)/D∞ , P(OX ⊕ S)/D0 ∪D∞

in terms of the Gromov–Witten theory of X and the class c1(S). The results may be viewed
as analogues in Gromov–Witten theory of the Leray–Hirsch Theorem.

A basic consequence of the X-valued DR-cycle formula of Theorem 2 is a much stronger
result on the level of Gromov–Witten classes (not invariants).

Proposition 13. The X-valued DR-cycle formula calculates the push-forward to the
moduli space of maps to X of the virtual fundamental classes of the moduli spaces of stable
maps to

P(OX ⊕ S)/D0 , P(OX ⊕ S)/D∞ , P(OX ⊕ S)/D0 ∪D∞ (27)

in terms of tautological classes and c1(S) ∈ A1(X).

Proof. Theorem 2 provides a formula for the push-forward to the moduli space of maps to
X of the virtual fundamental classes of moduli space of maps to rubber in terms of tautological
classes and

c1(S) ∈ A1(X).

To apply Theorem 2, we localize the equivariant virtual fundamental classes of the moduli
spaces of stable maps to the three relative geometries (27) with respect to the fiberwise C∗-
action. The C∗-fixed contributions are either absolute or relative. The virtual localization
formula [25] on the absolute side is already of the desired form. On the relative side, after
removing the cotangent line via the rubber calculus [43, Section 1.5], the desired form is
provided by Theorem 2. �

While [43] provides an algorithm for calculating the Gromov–Witten invariants of the relative
geometries (27), the complexity of the method is not practical for calculations†. On the other
hand, Theorem 2 may be used effectively for calculation.

In case X is a point, exact calculations using Pixton’s formula were presented in [35,
Section 3] for Hodge classes and Hodge integrals. In Section 5.2 below, an application of
Theorem 2 is presented where X is the resolution of the surface A�-singularity.

5.2. Resolution of surface singularities

5.2.1. Gromov–Witten invariants of X�. Maulik [41] computed the Gromov–Witten
invariants of the toric surface X� obtained by resolving the surface A�-singularity. We briefly
review the geometry of the problem and refer the reader to [41] for a more detailed treatment.

The resolution of the A�-singularity is a nonsingular quasi-projective surface X� with �
exceptional divisors. The intersection pairing of the divisors is given by the Cartan matrix C
of the Lie algebra A�. For a simply laced Lie algebra, the Cartan matrix is given by

Cii = −2, Cij = 1

if vertices i and j in the Dynkin diagram are connected by an edge.
There is a (C∗)2-action on the resolution X� of the A�-singularity which leaves every

exceptional divisor invariant. We denote by t1 and t2 the corresponding equivariant weights.
Because X� is a holomorphic symplectic variety, the ordinary Gromov–Witten invariants of X�

†The results, however, have been used for theoretical purposes, see [51, 53].
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vanish except in degree 0. Maulik computed the reduced Gromov–Witten invariants which
correspond to (t1 + t2)-coefficient of the (C∗)2-equivariant Gromov–Witten invariants of X�.
The (t1 + t2)-coefficient is the lowest nonvanishing coefficient.

Theorem 14 [41]. Let α be a root, let β = dα ∈ H2(X�,Z) be a nonzero curve class, and
let

ω1, . . . , ωp ∈ H2(X�,Z)

be divisor classes. Let b1, . . . , bp � 0 and c1, . . . , cq > 0 be integers subject to the dimensional
constraint

p∑
i=1

bi +
q∑

j=1

cj = g + q.

Then, we have 〈
p∏

i=1

τbi(ωi)
q∏

j=1

τcj (1)

〉X�, red

g,p+q,β

=
(2g + p + q − 3)!

(2g + p− 3)!
d2g+p−3

·
p∏

i=1

bi!
(2bi + 1)!

(
−1

2

)bi

(α, ωi)

·
q∏

j=1

(cj − 1)!
(2cj − 1)!

(
−1

2

)cj−1

.

If β is not a multiple of a root or if the dimensional constraint is not satisfied, then the
invariant vanishes.

5.2.2. The DR-cycle. The rank of the Cartan matrix for A� is �. The dimension of the
equivariant cohomology of X� is � + 1, and the Poincaré intersection form is given by an
extension of the Cartan matrix C:

η =

(
1

(p+1)t1t2
0

0 C

)
. (28)

Let A = (a1, . . . , an) be a vector of integers satisfying
∑n

i=1 ai = 0. Let β �= 0. We can
compute the reduced rubber Gromov–Witten invariant〈

n∏
i=1

τ0(ωi) · DRg,A,β(X�,OX�
)

〉red

(29)

using the formula of Theorem 2 for the X�-valued DR-cycle. The intersection number (29) is,
by definition, the coefficient of t1 + t2 in the corresponding equivariant intersection (the lowest
nonvanishing coefficient).

Lemma 15. The only X�-valued stable graphs which contribute to the coefficient of t1 + t2
are graphs with one vertex.

Proof. The (C∗)2-equivariant Gromov–Witten invariant associated to a vertex v of the graph
Γ with β(v) �= 0 is a polynomial divisible by t1 + t2 since X� is holomorphic symplectic. By
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formula (28) for η, an edge of Γ contributes either a constant, if the markings at the half-edges
are divisors, or a factor of

(p + 1)t1t2,

if the markings at the half-edges are equal to 1.
For a vertex v of Γ with β(v) = 0, a more careful study using the (C∗)2-localization formula

for the degree 0 Gromov–Witten invariants of X� is required. The (C∗)2-invariant locus in X�

consists of � + 1 points. The tangent weights at the kth point are

αk(t1, t2) = (p + 2 − k)t1 − (k − 1)t2, −αk+1(t1, t2) = (k − p− 1)ti + kt2 (30)

and satisfy the equation

αk − αk+1 = t1 + t2.

For a divisor class ω of X�, we denote by ω(k)(t1, t2) the restriction of ω to the kth invariant
point in (C∗)2-equivariant cohomology. The restriction ω(k)(t1, t2) is a linear combination of
αk and αk+1.

The (C∗)2-fixed locus of Mg(v),n(v),β(v)=0(X�) is the union of � + 1 copies of Mg(v),n(v)

corresponding to constant maps to the � + 1 invariant points. The contribution of the kth copy
to the (C∗)2-equivariant integral〈

p∏
i=1

τbi(ωi)
q∏

j=1

τcj (1)

〉X�

g(v), n(v)=p+q, β(v)=0

equals

−

p∏
i=1

ω
(k)
i

αk αk+1

∫
Mg(v),n(v)=p+q

p∏
i=1

ψbi
i

q∏
j=1

ψ
cj
p+j · Λ∨(αk)Λ∨(−αk+1). (31)

Here, we use the notation

Λ∨(α) = αg(v) − αg(v)−1λ1 + · · · + (−1)g(v)λg(v).

The weights αk, αk+1, and ω
(k)
i are linear forms in t1 and t2.

By formula (30), the weights αk and αk+1 are never proportional to t1 + t2. Thus, the
(t1 + t2)-valuation of the rational function (31) is nonnegative. In other words, every vertex v
of Γ of nonzero degree has (t1 + t2)-valuation at least one, while every edge and degree zero
vertex has (t1 + t2)-valuation at least zero. Since we are interested in the coefficient of t1 + t2
of the result, there can be only one vertex of nonzero degree, and we can restrict ourselves to
the (t1 + t2)-valuation zero part of every degree zero vertex contribution.

We can extract the (t1 + t2)-valuation zero part of (31) by substituting

t1 = t, t2 = −t.

In particular, then αk = −αk+1 and hence, by Mumford’s identity [44] for Hodge classes,

Λ∨(αk)Λ∨(−αk+1) = (−1)g(v)α
2g(v)
k .

Thus, the contribution (31) simplifies to

(−1)g(v)−1α
2g(v)−2
k

p∏
i=1

ω
(k)
i

∫
Mg(v),n(v)=p+q

p∏
i=1

ψbi
i

q∏
j=1

ψ
cj
p+j , (32)

where αk and ω
(k)
i are now linear forms in t.
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The contribution (32) is a Laurent monomial in t of degree 2g − 2 + p. In the total
contribution of the graph Γ, we will have a product of these monomials over the genus 0
vertices and also a product of monomials

−(p + 1)t2

over the edges carrying the class 1 on both half-edges. We distribute the edge factor t2 to the
two adjacent vertices, one factor of t for each vertex. For the invariant (29), all legs of Γ carry
divisors. Hence, every half-edge carrying the class 1 contributes a factor of t to the monomial.
Every degree 0 vertex therefore contributes a factor of

t2g(v)−2+p+q = t2g(v)−2+n(v).

By the stability condition, for a degree 0 vertex, the integer 2g(v) − 2 + n(v) is positive. Every
degree 0 vertex thus contributes a monomial factor of positive degree. A product of such factors
can never have a constant term. We conclude that there are no degree 0 vertices and, as claimed,
only one vertex of nonzero degree. �

We are ready now to compute the reduced rubber Gromov–Witten invariant〈
n∏

i=1

τ0(ωi) · DRg,A,β(X�,OX�
)

〉red

.

For the computation, we will need two identities.

Lemma 16. We have ∑
i+j=n

1
(2i + 1)!(2j + 1)!

=
22n+1

(2n + 2)!
.

Proof. After multiplying the left side by (2n + 2)!, we obtain the well-known sum of odd
binomial coefficients. �

The Bernoulli number are defined by the following generating series:

∞∑
m=0

Bm
tm

m!
=

t

et − 1
.

We define the functions S(t) and G(t) by

S(t) =
sin(t/2)

t/2
=

∑
b�0

(−1)b

(2b + 1)! 4b
t2b,

G(t) = −1
2

∑
c�1

B2c

2c

∑
c′+c′′=c−1

(−1)c
′

(2c′ + 1)! 4c′
(−1)c

′′

(2c′′ + 1)! 4c′′
t2c

=
∑
c�1

(−1)c
B2c

2c
t2c

(2c)!
.

The last equality follows from Lemma 16.
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Lemma 17. We have S(t) = eG(t).

Proof. The verification is straightforward:

t(log(S(t)))′ = t

(
log

sin(t/2)
t/2

)′

= t · t/2
sin(t/2)

·
( 1

2 cos(t/2)
t/2

−
1
2 sin(t/2)

(t/2)2

)
=

t

2
cot(t/2) − 1

=
it

eit − 1
+

it

2
− 1

=
∑
b�1

(−1)bB2b
t2b

(2b)!

= tG′(t). �

We now substitute the formula of Theorem 2 for the DR-cycle in (29). Since only graphs
with a single vertex contribute, we obtain the following sum over the number k of loops:

∑
k�0

1
2k k!

∑
b1,...,bn
c1,...,ck

∑
c′1+c′′1 =c1−1

...
c′k+c′′k=ck−1

∑
μ1,ν1
...

μk,νk

k∏
j=1

(
−ημjνj

B2cj

2cj

)

×
n∏

i=1

(a2
i /2)bi

bi!

k∏
j=1

(1/2)c
′
j

c′j !
(1/2)c

′′
j

c′′j !

〈
n∏

i=1

τbi(ωi)
k∏

j=1

τc′j (ωμj
)τc′′j (ωνj

)

〉red

g−k,β

.

In the above sum, c′j and c′′j are the powers of the ψ-classes at the branches of the jth node.
The indices μ and ν run over a basis of (C∗)2-equivariant divisor classes of X� and ημν is the
inverse of the Poincaré intersection form ημν .

In fact, we can restrict the range of μj and νj in the diagonal splitting by one. Indeed,

η1,1 = (p + 1)t1t2,

while we are interested in the coefficient of t1 + t2. We can therefore replace the inverse of η
by the inverse of the Cartan matrix C and write (C−1)μν instead of ημν .

Next, we apply Maulik’s formula of Theorem 14 to the reduced Gromov–Witten invariants
which appear and use our definitions of the generating series S and G, We conclude that (29)
equals

d2g+n−3
n∏

i=1

(α, ωi)
∑
k�0

1
2k k!

[t2g]

(
n∏

i=1

S(ait)

)(
2G(t)

∑
μ,ν

(α, ωμ)(C−1)μν(α, ων)

)k

.

Since
∑

μ,ν(α, ωμ)(C−1)μν(α, ων) = (α, α) = −2, the formula simplifies to

d2g+n−3
n∏

i=1

(α, ωi) ·
∑
k�0

1
2k k!

[t2g]

(
n∏

i=1

S(ait)

)
(−4G(t))k
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= d2g+n−3
n∏

i=1

(α, ωi) · [t2g]
(

n∏
i=1

S(ait)

)
exp(−2G(t))

= d2g+n−3
n∏

i=1

(α, ωi) · [t2g]
∏n

i=1 S(ait)
S(t)2

.

The final equality coincides† with [41, Proposition 3.6] except for the automorphism factors of
the partitions (omitted here since we have numbered our marked points).

The same calculation as above using the formula of Theorem 2 for the DR-cycle yields the
following more general evaluation for the rubber theory over X�.

Theorem 18. Let S → X� be a (C∗)2-equivariant line bundle on X�. Let α be a root, let
β = dα ∈ H2(X�,Z) be a nonzero curve class, and let

A = (a1, . . . , an)

be a vector of integers satisfying

n∑
i=1

ai =
∫
β

c1(S) .

Then, we have the evaluation〈
n∏

i=1

τ0(ωi) · DRg,A,β(X�, S)

〉red

= d2g+n−3
n∏

i=1

(α, ωi) · [t2g]
∏n

i=1 S(ait)
S(t)2

.

Proof. Since S → X is now not necessarily trivial, Theorem 2 has additional ξi terms at
the markings and π∗(ξ2) terms at the vertices. Lemma 15 still holds since the changes in the
DR-cycle formula due to the line bundle S play no role in the argument. The k-loop summation
for 〈

n∏
i=1

τ0(ωi) · DRg,A,β(X�, S)

〉red

is again ∑
k�0

1
2k k!

∑
b1,...,bn
c1,...,ck

∑
c′1+c′′1 =c1−1

...
c′k+c′′k=ck−1

∑
μ1,ν1
...

μk,νk

k∏
j=1

(
−ημjνj

B2cj

2cj

)

×
n∏

i=1

(a2
i /2)bi

bi!

k∏
j=1

(1/2)c
′
j

c′j !
(1/2)c

′′
j

c′′j !

〈
n∏

i=1

τbi(ωi)
k∏

j=1

τc′j (ωμj
)τc′′j (ωνj

)

〉red

g−k,β

.

The extra ξi and π∗(ξ2) terms produce additional factors of the equivariant parameters (and
hence do not affect the reduced invariants). The evaluation of the k-loop formula is then just
as before. �

5.2.3. Remarks. Maulik’s evaluation of the reduced rubber invariants (29) played a crucial
role in establishing the GW/DT/PT correspondences for toric 3-folds, see [42, 52]. His
calculation of (29) in the case of A1 relied on the evaluation of the stationary theory of CP

1

†The result is also stated in [41, Proposition 3.1] where the factor
∏n

i=1(α, ωi) is forgotten.
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in [46, 47]. Using Maulik’s A1 argument in the reverse direction, Theorem 2 via Theorem 18
provides a completely new DR derivation of the stationary Gromov–Witten theory of CP

1.
Theorem 18 is also new. The DR-cycle for the rubber

P(OX�
⊕ S) → X�

constructed from the line bundle S → X� had not been considered before. The DR perspective
puts all the rubber theories over X� on the same footing.

5.3. The tautological ring of the moduli of stable maps

Pixton’s formula for the standard DR-cycle leads to relations in the tautological ring of Mg,n

first conjectured by Pixton [55] and later proven by Clader and Janda [17]. After defining an
appropriate strata algebra and tautological ring for the moduli space of stable maps Mg,n,β(X),
Bae [5] uses the formula of Theorem 2 for the X-valued DR-cycle to construct tautological
relations in the Chow theory of Mg,n,β(X), a rich new direction of study.

5.4. Universal Abel–Jacobi theory on the Picard stack

The classifying space of the group C∗ is CP∞. If we take the CPN -valued DR-cycle in the
limit N → ∞, we may hope that the result, suitably interpreted, is a universal DR-cycle on
the moduli space of line bundles on curves. The required universal Abel–Jacobi theory on
the Picard stack is developed in [6]. The calculation of the universal DR-cycle there is both
motivated by and dependent on our calculation of CP

N -valued DR-cycles. The circle of ideas,
also using [33], leads to the proof of the formulas for the loci of holomorphic and meromorphic
differentials in Mg,n conjectured in the Appendix of [24].
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8. A. Buryak, J. Guéré and P. Rossi, ‘DR/DZ equivalence conjecture and tautological relations’, Geom.

Topol. 23 (2019) 3537–3600.
9. A. Buryak, P. Rossi and S. Shadrin, ‘Towards a bihamiltonian structure for the double ramification

hierarchy’, Preprint, 2007, arXiv:2007.00846.
10. A. Buryak, S. Shadrin, L. Spitz and D. Zvonkine, ‘Integrals of ψ-classes over double ramification cycles’,

Amer. J. Math. 137 (2015) 699–737.
11. C. Cadman, ‘Using stacks to impose tangency conditions on curves’, Amer. J. Math. 129 (2007) 405–427.
12. R. Cavalieri, S. Marcus and J. Wise, ‘Polynomial families of tautological classes on Mrt

g,n’, J. Pure

Appl. Algebra 216 (2012) 950–981.
13. A. Chiodo, ‘Stable twisted curves and their r-spin structures’, Ann. Inst. Fourier 58 (2008) 1635–1689.



DOUBLE RAMIFICATION CYCLES WITH TARGET VARIETIES 1765

14. A. Chiodo, ‘Towards an enumerative geometry of the moduli space of twisted curves and rth roots’,
Compos. Math. 144 (2008) 1461–1496.

15. A. Chiodo and D. Zvonkine, ‘Twisted Gromov–Witten r-spin potential and Givental’s quantization’,
Adv. Math. Phys. 13 (2009) 1335–1369.

16. E. Clader, S. Grushevsky, F. Janda and D. Zakharov, ‘Powers of the theta divisor and relations in
the tautological ring’, Int. Math. Res. Not. IMRN 24 (2018) 7725–7754.

17. E. Clader and F. Janda, ‘Pixton’s double ramification cycle relations’, Geom. Topol. 22 (2018) 1069–1108.
18. Y. Eliashberg, A. Givental and H. Hofer, ‘Introduction to symplectic field theory’, Vision in

mathematics (eds N. Alon, J. Bourgain, A. Connes, M. Gromov and V. Milman; Birkhäuser, Basel, 2000)
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