Nautilus: An Interactive
Plug-and-Play Search-Based
Software Engineering (SBSE)
Framework

Thiago do Nascimento Ferreira' and Silvia Regina Vergilio
Federal University of Parana

Marouane Kessentini
University of Michigan

Abstract—Several Software Engineering problems are complex and encompass a great number
of objectives to be handled. However, practitioners may face several challenges to adopt existing
metaheuristic search for their problems due to the lack of background, or some difficult choices
such as the change operators, and parameters tuning. Nautilus Framework allows practitioners

developing and experimenting several multi- and many-objectives evolutionary algorithms
guided (or not) by human participation in few steps with a minimum required background in
coding and search-based algorithms. A case study illustrates its benefits, which can also be
used to support the construction of Al solutions guided by human decisions.

Keywords: preference and search based software engineering, many-objective optimization,

plugin and play framework.

B IT IS A FACT that there is a connection
between Artificial Intelligence (AI) and Software
Engineering (SE), which is explored by many
works in the literature [1], [2], [3], [4], [5].
We can find approaches to solve different SE
problems covering the whole software life cycle,
derived from all the Al sub-fields: (a) Knowledge
Representation, reasoning and Decision systems
(KR&D); (b) Machine Learning (ML); and (c)
Optimization. The Optimization sub-field refers
to the selection of a best element from some set
of available alternatives, which is made based on
some performance criteria (objective functions)
and a search technique, such as the popular
evolutionary algorithms. An example of SE task

!Corresponding Author. E-mail: tnferreira@inf.ufpr.br.

IEEE Software

Published by the IEEE Computer Society

to be optimized is to find the minimal set of test
cases that satisfies a testing criterion, such as all-
branches.

The application of a search technique to solve
SE problems is the subject of the Search-Based
Software Engineering (SBSE) field [6], [7], [8].
We observed in the last decade an explosion in
the number of SBSE solutions for a great variety
of SE tasks. One possible reason of this growth is
due to the characteristics of the SE problems that
make them more attractive than the traditional
problems in other engineering disciplines [9]
such as the abstraction, optimizing directly the
engineering material (e.g. source code, models,
etc.) and the availability of well-defined software
metrics that can be optimized.

To ease the creation, and implementation of

© 2020 IEEE

optimization algorithms, reuse techniques, such
as APIs, libraries, design patterns and frame-
works [10], can be employed, increasing soft-
ware productivity, decreasing software develop-
ment and maintenance costs, and improving the
software quality by reducing the number of bugs,
since the reused part has already been tested
and evaluated. For instance, we can mention
some famous frameworks, largely used to im-
plement solutions for problems from different
areas: PISA framework [11], jMetal [12], MOEA
Framework [13], ECJ [14], PlatEMO [15], DES-
DEO [16], and DEAP [17].

These frameworks contribute to the success
and popularity of SBSE solutions for many SE
tasks [9]. However, we can identify some chal-
lenges that need to be addressed to make these
solutions more useful for software engineers in a
real-world setting. One of these main challenges
is the lack of user-friendly frameworks that can
provide step by step support for software en-
gineers during the adoption of existing search
algorithms. In fact, it is required that software
engineers should have significant background on
optimization to adopt these algorithms for their
SE problems including refactoring, testing, etc.
Furthermore, they may get lost with a lot of de-
tails about the parameters tuning, type of change
operators, and solutions representation.

Even worse, the application contexts of SBSE
currently encompass a great number of objec-
tives, constraints, and complex inputs as well
as outputs. Most SBSE problems are multi- and
many-objectives which are not straightforward to
adopt or navigate through their results. Another
practical issue is the usefulness of the solutions
generated. Many times the users do not recognize
the solutions as good because these ones were not
generated considering their needs, preferences,
and contexts.

The use of many-objective evolutionary algo-
rithms and the participation of the user (develop-
ers, testers, managers, practitioners, and decision
makers) in the creation of the SBSE solutions can
help solve these challenges. To this end, SBSE
approaches should provide different levels of au-
tomation, making small decisions and invoking
human participation to more fundamental ones.

Most of the existing frameworks do not have
even an official user interface in which the

user can interact. Although the frameworks are
platform-independent, no one is integrated with
cloud computing, which could allow scalability
and its use for large problem instances. They
are not available online as a web application,
supporting reports, user customization of some
interface aspects.

To overcome these limitations, we introduce
Nautilus Framework, a free, plug and play extend-
able and, open source Java web platform frame-
work that allows user feedback capturing, de-
veloping, and experimenting with several multi-
and many-objective evolutionary algorithms. In
Nautilus Framework, the users can just “plug”
their optimization problems and “play” with the
available optimization algorithms. The purpose
of Nautilus Framework is to allow SE and Al
practitioners to develop their own optimization
algorithms to solve their problems, guided (or
not) by human participation, by requiring a min-
imum background in coding and search-based
algorithms. Table 1 shows a comparison between
Nautilus and other existing frameworks found in
the literature regarding the features that they have.

Table 1. Comparison among existing frameworks.

“ g S
= - <
E <« £ &2 - =B 2 %
= W] o *a
5] = = Q = = =
Feature Z A Z =2 B E oA A
Multi- v v v v v v v/
objective
optimization
Cloud v
Support
User Interface v/ v v
Preference v v /7 v /7
Support
Web v
Application
User v v v
Customization
Pareto-front v v v

visualization

Nautilus Framework Principles
The following principles guided the develop-
ment of Nautilus Framework:

e Simplicity and easy-to-use: Nautilus works
with jMetal. Then some optimization algo-

IEEE Software

rithms provided by jMetal are already avail-
able, which can be easily executed and config-
ured via a user-friendly interface. To this end,
the user needs only to select an instance of
a configured problem s(he) is interested. After
the execution, the user can visualize and easily
choose or evaluate a solution;

e Portability: Nautilus is developed in Java,
which allows its execution in machines with
different architectures and/or running in dis-
tinct operating systems;

o Extensibility: New optimization algorithms,
search operators, and optimization problems
should be easily added. To reach this principle,
Nautilus supports plugins in which the users
can adapt their needs or context to the tool;

e Performance and Scalability: Nautilus is a
web platform application that executes in cloud
computing. This last characteristic allows auto-
matic software updates, mobility, performance,
and scalability. For instance, it is possible to
read large problem instances by splitting them
in multiple small sub-routines, and calculate
the objective functions or run multiple algo-
rithms in parallel;

o Customizability: Nautilus provides a multi-
user system in which each user can customize
some information and upload to the tool his/her
own problem instances to be optimized. Also,
the users are able to change some information
they visualize about the found solutions, and
customize some interface features.

Many-objective Algorithms

Diverse SE problems are many-objective, that
is, impacted by more than three objectives. The
prioritization of test cases is an example, im-
pacted by different factors such as cost, size of
the test set to be used, the ability to reveal faults,
code coverage, and so on. To deal with such
problems, different Many-objective Evolutionary
Algorithms exist. They can be classified in dis-
tinct categories [18] according to the strategy
implemented to deal with the large/exponential
number of non-dominated solutions, which are
possible for multi-objective problems. For in-
stance, we can mention the following categories
of algorithms supported by Nautilus Framework:
1) NSGA-III: is an algorithm that uses the concept
of Reference Set; ii) R-NSGA-II and WASF-GA

July/August 2020

are preference-based algorithms that reduces the
number of solutions by working with a region of
interest provided by the user; iii) PCA-NSGA-II
is an algorithm based on dimensionality reduction
that reduces the number of solutions by discard-
ing some redundant and non-conflicting objec-
tives; iv) IBEA, an algorithm based on indicators;
and v) SPEA?2 is based on the concept of Pareto
domination and external archiving.

However, the user is able to extend the frame-
work and implement his/her preference-based,
or dimensionality reduction algorithms. In addi-
tion to this, the user can extend Nautilus and
implement mechanisms to combine the above-
mentioned strategies.

Architecture

Nautilus Framework has some non-modifiable
classes that provide a pre-defined behavior, and
other ones that can be extended to provide some
new functionalities [19]. The first classes belong
to the module Nautilus-Core and the last to
Nautilus-Plugin. Both modules are represented
in Figure 1 that contains the Nautilus architecture.

N) Nautilus
Nautilus-Plugin
Algorithm Problem Quality Indicators
Mating Operators
Selection Crossover Mutation <:|
Preferences
Items Feedback Incorporation A
]
=
w
=
g
3
o
=
Nautilus-Core
Encoding Algorithms
Binary NSGA-II NSGA-III WASF-GA
Integer R-NSGA-II IBEA SPEA2 C:I
Double PCA-NSGA-II
Integration
M 0

jMetal MongoDB Spring Boot

Figure 1. Nautilus Framework Architecture
Nautilus uses three main third-party libraries:

the jMetal framework, as mentioned before,
for the optimization algorithms; MongoDB, a

general purpose and document-based database;
and Spring Boot, a web application framework
and inversion of control container for the Java
platform. Besides Nautilus-Core, and Nautilus-
Plugin, Nautilus has a third module, called
Nautilus-Web. All of them are briefly described
as follows.

Nautilus-Core is the most important module
because it contains the base classes required
by the other modules. For instance, it provides
the classes responsible for defining the encod-
ing type of the problems supported, such as
Binary, Integer, and Double encoding solutions.
The current version of Nautilus-Core uses jMetal
implementation for generating solutions. It is re-
sponsible for i) providing the set of optimization
algorithms; ii) the basic solution representations;
and iii) some quality attributes, while Nautilus.
However, we plan to release in future versions
the capability of connecting this module to other
optimization frameworks. Besides, this module
provides a mechanism to generate an approxi-
mation to the True Pareto-front putting together
all solutions generated in multiple runs (for a
given problem and instance, considering or not
different algorithms) and removing repeated and
non-dominated ones.

Nautilus-Plugin is responsible for providing
extensible classes in which the user can create
his/her own plugins for Nautilus and adapt his/her
needs to the tool. For instance, the user can
extend and create new optimization algorithms,
optimization problems, mating operators, qual-
ity indicators, and preference mechanisms (those
ones in-the-loop provided).

show an example of extension for the Variabil-
ity Testing of Software Product Lines (VTSPL)
problem [20]. This problem refers to the selection
of the best set of products to be tested that
can be derived from the SPL. The selection can
take into account many factors: size of the set,
cost, product similarity, pairwise coverage, and
possible faults.

Instantiating a New Problem

We instantiate the VTSPL problem in Nau-
tilus considering seven objective functions. To
implement this problem, it is necessary to extend
some classes such as AbstractProblemExtension,
AbstractObjective, and Instance. Some of these
implementations are described as follows.

Algorithm 1 shows the code of the

AbstractProblemExtension class. This class is one
of the most important class during the problem
instantiation process. In this one, the user can
define which encoding type the addressed opti-
mization problem supports, the class responsible
for reading an instance file (a file with required
information to calculate the objective functions),
and the objective functions to be optimized. In
this figure, the SPL Testing supports a binary
encoding, the instance file is in txt format, and
the objective functions are: Number of Products,
Alive Mutants, Uncovered Pairs, Similarity, Cost,
Unselected and Unimportant Features.

@Extension

> public class SPLProblemExtension

Nautilus-Web is the module responsible for |

providing a user interface based on a web plat-
form. Through this interface, it is possible to exe-
cute the algorithms, visualize the found solutions,
interact with the tool, provide the user preferences
and feedback about the solutions. This module
uses Nautilus-Core and Nautilus-Plugin and is
developed in Spring Boot by using MongoDB for
saving in a database all generated solutions.

Extending Nautilus Framework

As mentioned before, the classes of Nautilus-

Plugin can be instantiated to add a new problem
to be solved as well as new algorithms, including

the preference-based ones. In this section, we

extends AbstractProblemExtension {

@Override
public Problem<?> getProblem(Instance
in,
List<AbstractObjective> obj) {
return new VISPLProblem(in, obj);
}

@Override

public String getName () {
return "VTSPL Problem";

}

@Override

public Class<? extends Solution<?>>
supports () {
return BinarySolution.class;

}

@Override
public List<AbstractObjective>
getObjectives () {
return Arrays.asList (
new NumberOfProducts (),
new AliveMutants (),

IEEE Software

)

new
new
new
new
new

UncoveredPairs (),

NewSimilarity (),

Cost (),

UnselectedFeatures (),

UnimportantFeatures ()
) i

}

@Override
public Instance getInstance (Path path) {
return new TXTInstanceData (path);
}
}

Algorithm 1. Instantiating VTSPL problem

To calculate each one of the objectives of
the VISPL problem the user needs to provide
the corresponding implementation and extend the
AbstractObjective class. Algorithm 2 presents
an example of extension to calculate the ob-
jective function Number of Products. The user
must define a name for the desired objective
function and the corresponding implementation.
As a default behavior, Nautilus considers that an
objective function must be minimized. However,
this default Behavior can be changed.

public class NumberOfProductsObjective
extends AbstractObjective {

protected int selectedProducts;

@Override

public void beforeProcess (Instance 1,

Solution<?> s) {
this.selectedProducts = 0;

}

@Override

public void process (Instance i,

Solution<?> s, int id) {
selectedProducts++;

}

@Override
public double calculate (Instance i,
Solution<?> sol) {

return selectedProducts / 1i.
NumberOfProducts () ;
}

@Override
public String getName () {
return "Number Of Products";

}
}

Algorithm 2. Instantiating an objective function

Regarding the Instance class, this one is re-
sponsible for saving information read from the
input file (used as problem instance). This in-
formation is used for evaluating the solutions
generated.

July/August 2020

10
11

12

4

15

Instantiating a New Algorithm

If the addressed problem requires an optimiza-
tion algorithm different from those ones already
implemented in Nautilus, the user must extend
the AbstractAlgorithmExtension class. To illus-
trate this, Algorithm 3 shows an extension in
which the SPEA2 algorithm, available in jMetal
is added.
@Extension

public class SPEA2AlgorithmExtension
extends AbstractAlgorithmExtension {

@Override

public Algorithm<? extends Solution<?>>
getAlgorithm (Builder builder) {
return new SPEA2 (builder);

}

@Override
public String getName () {
return "SPEA2";
}
}

Algorithm 3. Instantiating the SPEA algorithm

In this way, we can instantiate Nautilus by
extending the classes with implementation of
different algorithms. But a preference-based algo-
rithm requires a different mechanism to provide
or incorporate user preferences. To this end, the
user can extend the AbstractPreferenceExtension
class as described in Algorithm 4.

@Extension
public class ConfidencePreferenceExtension

3 extends AbstractPreferenceExtension {

@Override
public AbstractFeedback getFeedback () {
return new OrdinalScale();

}

@Override
public AbstractIncorporation
getIncorporation() {

return new WeightedGuidance () ;
}

Algorithm 4. Instantiating user preferences

In the example, the user is required to provide
feedback for some solutions by using an ordi-
nal scale composed of items Not preferred, No
Opinion, and Preferred. The feedback is provided
interactively and incorporated in the objective
functions by weighting them to the next execu-
tion.

Once the required basic classes are extended,
the user can generate a final plugin file and upload

it to Nautilus by using the graphical interface
provided to this purpose.

Using the VTSPL Extension

In the next paragraphs, we present some Nau-
tilus’s screenshots that illustrate the use of the
VTSPL extension.

First, the user should sign up and log in the
system. Then, the user can visualize information
about all executions already performed and those
ones in execution. In Nautilus, an execution is
associated with an algorithm and corresponding
parameters, and with the Pareto-front composed
by the obtained non-dominated solutions.

To start a new execution, the user needs to
choose the problem instance to be optimized
and set the algorithm parameters such as mating
operators, number of evaluations, and population
size, as well as to specify the number of runs for
this setting.

Once the optimization is done, the user can
visualize the solutions (Figure 2), either by using
a chart or a table, which contains the objective
values.

Chart Solutions Correlation Parameters Settings

Figure 2. Execution page

Another important feature in this page is
customization. It is possible to change some
displayed information such as the chart color,
remove duplicated solutions from Pareto-front,
and normalize objective values. So, to open and
visualize a solution, it is necessary just to click
in the circle on the chart.

In this example, Solution #79 was selected
and, as a result, Nautilus presents information
about the selected solution as illustrated in Fig-
ure 3.

ece <« o

Nautilus Home Gallery

Home / vtspl-problem / Solution 79

Show 10+ entries Search:

% Variable

1 Product #0: [JAMES, UserManagement, GUI, PC, Core, Modules, Calendar, Raw Normalized
o8) 05204 05228

2 Product #1; LJAMES, UserManagement, LADP, GU, PC, Core, Modules, 00472 00602
Calendar]

00133 00185

ment, WSinterface, GUI, PC, Core,

;m:ucld? ‘umss‘ U 08880 08889

2 os
ment, LADP, WSlnterface, GUI, PC, Core, 083 05269

00000 00000
s odem o0soon

ment, GUI, PDA, Core, Modules,

ent, GUI, PC, PDA, Core, Modules,

6 Product #5: [JAMES, UserMa
alendar, DB]
Feedback for Number of Products.

ment, WSinterface, GUI, PDA, Core,

Not
L]

Wsinterface, GUI, PC, PDA, Core, Preferred

9 Product #12: [JAMES, UserManagement, GU, PC, Core, Modules, Forum, B
o8]

Figure 3. Solution page

It is possible to see the variables from the
selected solution and corresponding raw and nor-
malized objective values. Also, users can pro-
vide their preferences about the solutions by just
sliding left or right the component below the
objective values. In this example, the user pro-
vides a feedback Not preferred, No Opinion, and
Preferred to the visualized solution. Again, this
component can be changed by extending specific
classes from Nautilus-Plugin, as well as the kind
of information provided by the user. If the user
considers the solution good, s(he) can click on
the button “Selected” to end the search.

Evaluating Nautilus Framework

Using the VTSPL problem, we conducted an
evaluation with a group of 12 potential users of
Nautilus. This group is composed by practitioners
with different skills and experiences on SPL,
software testing, and optimization algorithms, in
which 7 are currently Ph.D. students, and 5 have
experience with software development in compa-
nies. The experience in years of these participants
on programming ranged, in general, from 2 to 10
years.

Each participant executed a set of different op-
timization algorithms, including algorithms based
on preferences provided interactively. In the end,
they were asked to select a solution they con-
sidered good. After the experiment, each partici-
pant answered a questionnaire aiming to evaluate
their experience using Nautilus. The results are
described as follows.

Regarding the time spent to get familiar with
Nautilus, 8 participants (66.7%) took less than
10 minutes in which 5 of them spent less than 5

IEEE Software

minutes. Besides, all users claimed to spend less
than 10 minutes to explore the Pareto-front by
using the visualization support.

Figure 4 presents that 7 participants (58.3%)
said it was easy to learn how to operate the tool
and just one claimed difficulty. Besides, 9 partic-
ipants (75%) stated that it was easy to understand
the task they were asked to do. Still in this
context, 10 participants (83.3%) asserted that it
was easy to locate and identify relevant solutions.
Besides, 50% of the users stated it is easy to
use the visualization support for the Pareto-front.
The other 50% claimed it was neutral. A total of
8 participants asserted that Nautilus has a user-
friendly interface, that the navigation is very easy
and the error messages are helpful. We also asked
to the users their opinions about the organization
of the information in the screen. In this case, 5
participants (41.7%) stated that the information in
the screen is clear, 4 participants (33.3%) stated
that the information is very clear, and just 3
participants (25%) chose the neutral option.

I Strongly Agree Neutral

W Agree

[Disagree
Itis easy to learning to
operate the tool

33.3% .
Itis easy to understand
the task you were asked

|
todo
itis easy to locate and
idently reevert _ 167%
solutions

Itis easy to use the

visualization support for
the Pareto-front

50.0%

-

25.0%

25.0% .

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

The tool has a user
friendly interface

The tool is easy to
navigate

Error messages are
helpful

Figure 4. Users’ feedback

The users also opined about the best features
provided by Nautilus. Figure 5 shows the results.
For most users, the best feature Nautilus provides
is the Pareto-front visualization followed by the
interface.

To better evaluate the users’ opinion about
the features provided by Nautilus in comparison
with existing frameworks, we asked users, with
previous experience with other frameworks, to

July/August 2020

W stongly Agree 1 Agree Neutral [Disagree [Strongly Disagree

Ease of use 4
fertece 2 -
Cloud computing- 1 3
based
Pareto-front 2 1
visualization
¢

90% 100%

Algorithms Provided

0% 10% 20% 30% 40% 50% 60% 70% 80%

Figure 5. Best features.

provide agreement rates about each feature of
Table 1. The results are shown in Figure 6. For
most features, Nautilus provides better support
in comparison with existing frameworks. For the
latter, the users pointed out the lack of support for
user customization, web application and existence
of a user interface.

Nautilus
M VeryGood [Good Neutral W Bad [VeryBad [No Support
Multi-objective Optimization
Pareto-front
User Interface
User Preference Support
Web Application
User Customization
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Framework you have used
Multi-objective Optimization
Pareto-front 33.33%
User Interface

User Preference Support

Web Application
User Customization 33.33%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 6. Agreement rates regarding features pro-
vided by Nautilus and existing frameworks.

We also provided open questions allowing
users to write about Nautilus advantages and dis-
advantages in comparison with other frameworks
previously used by them. Most of them pointed
out as advantage the support to Pareto-front vi-
sualization and user interaction, for instance, the
user can set some parameters aiming to improve
the solutions generated. As disadvantage, the
users mentioned the lack of more optimization
algorithms and a history of user actions. We
intend to address such limitations in a future
version of Nautilus.

Conclusion

This work introduced Nautilus Framework, a
plug and play extendable, and Java web-based
framework for many-objective optimization with
human participation. Nautilus has the following
main features:

e Plugins to allow extensibility;

e Instantiation of different problems to be opti-
mized, and extension for implementing search
operators and many-objective functions;

e Use of different optimization algorithms, with
an emphasis in many-objective ones from the
categories based on user preferences, Pareto-
dominance, Reference Set, and dimensionality-
reduction. Some of these algorithms and mat-
ing operators are available in the framework,
and new ones can also be extended;

e A user-friendly interface that allows visual-
izing the solutions and their objective val-
ues, capturing user feedback, and can be cus-
tomized (that is, color, language, decimal sep-
arator and places);

e Calculation of some quality indicators widely
used in the literature, such as hypervolume
and IGD, and other ones for preference-based
algorithms such as R-HV and R-IGD;

e A web-based platform that allows scalability.
The framework can run in the cloud com-
puting, supporting optimization problems with
large instances and number of objectives. It is
possible to see the executions from anywhere.

An open-source implementation of Nautilus
Framework is available!. The application of opti-
mization algorithms generate solutions that have
been proved to increase the effectiveness and
efficiency of many software engineering tasks.
Nautilus Framework contributes to fulfill new de-
mands required by the nowadays software appli-
cations, allowing the implementation of adaptive
solutions, considering real and many-objective
scenarios, and including user participation in an
interactive way. The main Nautilus features allow
support to the construction of Al solutions guided
by human decisions. As a future work, we intend
to extend Nautilus to work with other optimiza-
tion frameworks available in the literature.

Thttps://github.com/nautilus-framework

Acknowledgments
This work is supported by CAPES and CNPq,
grants: 307762/2015-7 and 473899/2013-2.

B REFERENCES

1. M. Harman, “The role of artificial intelligence in soft-
ware engineering,” in 2012 First International Workshop
on Realizing Al Synergies in Software Engineering
(RAISE), June 2012, pp. 1-6.

2. L. Ford, “Artificial intelligence and software engineering:
a tutorial introduction to their relationship,” Artificial In-
telligence Review, vol. 1, no. 4, pp. 255-273, Dec 1987.

3. A. Ghannem, G. El Boussaidi, and M. Kessentini, “On
the use of design defect examples to detect model
refactoring opportunities,” Software Quality Journal,
vol. 24, no. 4, pp. 947-965, 2016.

4. B. Amal, M. Kessentini, S. Bechikh, J. Dea, and L. B.
Said, “On the use of machine learning and search-
based software engineering for ill-defined fitness func-
tion: a case study on software refactoring,” in Interna-
tional Symposium on Search Based Software Engineer-
ing. Springer, Cham, 2014, pp. 31-45.

5. M. Kessentini, A. Ouni, P. Langer, M. Wimmer, and
S. Bechikh, “Search-based metamodel matching with
structural and syntactic measures,” Journal of Systems
and Software, vol. 97, pp. 1-14, 2014.

6. M. Harman and B. F. Jones, “Search-based software
engineering,” Information and Software Technology,
vol. 43, pp. 833-839, Dec. 2001.

7. C.L.B. Maia, T. F. do Nascimento, F. G. de Freitas, and
J. T. de Souza, “An evolutionary optimization approach
to software test case allocation,” in International Con-
ference on Computational Intelligence and Information
Technology.
637—-641.

8. H. L. Jakubovski Filho, T. N. Ferreira, and S. R. Vergilio,
“Preference based multi-objective algorithms applied to

Springer, Berlin, Heidelberg, 2011, pp.

the variability testing of software product lines,” Journal
of Systems and Software, vol. 151, pp. 194—209, 2019.

9. M. Harman, S. A. Mansouri, and Y. Zhang, “Search-
based Software Engineering: Trends, Techniques and
Applications,” ACM Comput. Surv., vol. 45, no. 1, pp. 1-
61, 2012.

10. A. V. Tsyganov and O. I.
parallel metaheuristic optimization framework using

Bulychov, “Implementing

metaprogramming and design patterns,” in Information
Technology Applications in Industry, ser. Applied Me-
chanics and Materials, vol. 263. Trans Tech Publica-

tions Ltd, 2 2013, pp. 1864-1873.

IEEE Software

https://github.com/nautilus-framework

20.

. S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA
- a platform and programming language independent
interface for search algorithms,” in Proceedings of the
2nd International Conference on Evolutionary Multi-
Criterion Optimization (EMO ’03).
Springer, 2003, pp. 494-508.

. J. J. Durillo and A. J. Nebro, “jMetal: A Java framework

Faro, Portugal:

for multi-objective optimization,” Advances in Engineer-
ing Software, vol. 42, no. 10, pp. 760-771, Oct. 2011.

. D. Hadka, “MOEA Framework: A free and open source
Java framework for multiobjective optimization. user
manual,” http:/www.moeaframework.org/, 2016, Ac-
cessed in 20th August 2019.

. E. O. Scott and S. Luke, “ECJ at 20: toward a general
metaheuristics toolkit,” in Proceedings of the Genetic
and Evolutionary Computation Conference Companion
(GECCO '19), 2019, pp. 1391-1398.

. Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A
MATLAB platform for evolutionary multi-objective opti-
mization,” IEEE Computational Intelligence Magazine,
vol. 12, no. 4, pp. 73-87, 2017.

. V. Ojalehto and K. Miettinen, “Desdeo: An open frame-
work for interactive multiobjective optimization,” in Mul-
tiple Criteria Decision Making and Aiding. ~ Springer,
2019, pp. 67-94.

. F-A. Fortin, F-M. De Rainville, M.-A. Gardner,
M. Parizeau, and C. Gagné, “DEAP: Evolutionary al-
gorithms made easy,” Journal of Machine Learning Re-
search, vol. 13, pp. 2171-2175, jul 2012.

. B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolu-
tionary algorithms: A survey,” ACM Computing Surveys,
vol. 48, no. 1, p. 13, Sep. 2015.

. T.N. Ferreira, S. R. Vergilio, and M. Kessentini, “Many-

objective search-based selection of software product

line test products with Nautilus,” in The 24th Interna-
tional Systems and Software Product Line Conference

(SPLC ’20) - Demo Track. Montréal, Canada: ACM,

2020.

T. N. Ferreira, J. A. P. Lima, A. Strickler, J. N. Kuk,

S. R. Vergilio, and A. Pozo, “Hyper-heuristic based

product selection for software product line testing,” IEEE

Computational Intelligence Magazine, vol. 12, no. 2, pp.

34-45, May 2017.

July/August 2020

Thiago do Nascimento Ferreira received the PhD
degree in Computer Science from the Federal Uni-
versity of Parand, in 2019. His main interest are bio-
inspired computation, multi-objective optimization and
preference-based optimization algorithms focused on

Search-based Software Engineering (SBSE). Contact
him at tnferreira@inf.ufpr.br.

Silvia Regina Vergilio is currently a professor of
Software Engineering in the Computer Science De-
partment of Federal University of Parana (UFPR),
Brasil, where she leads the Research Group on
Software Engineering. She has involved in several
projects and her research is mainly supported by
CNPq (PQ Level 1D). Her research interests include
software testing, software reliability, Software Prod-
uct Lines (SPLs) and Search-based Software Engi-
neering (SBSE). She serves as assistant editor of
the Journal of Software Engineering: Research and
Development, and acts as peer reviewer for diverse
international journals. She serves on the Program
Committee of many conferences related to Search-
Based Software Engineering and software testing.
Contact her at silvia@inf.ufpr.br.

Marouane Kessentini is a recipient of the pres-
tigious 2018 President of Tunisia distinguished re-
search award, the University distinguished teaching
award, the University distinguished digital education
award, the College of Engineering and Computer
Science distinguished research award, 4 best paper
awards, and his Al-based software refactoring inven-
tion, licensed and deployed by industrial partners,
is selected as one of the Top 8 inventions at the
University of Michigan for 2018 (including the three
campuses), among over 500 inventions, by the UM
Technology Transfer Office. He is currently a tenured
associate professor and leading a research group on
Software Engineering Intelligence. Prior to joining UM
in 2013, He received his Ph.D. from the University
of Montreal in Canada in 2012. He received several
grants from both industry and federal agencies and
published over 110 papers in top journals and con-
ferences. He has several collaborations with industry
on the use of computational search, machine learning
and evolutionary algorithms to address software en-
gineering and services computing problems. Contact
him at marouane@umich.edu.

http://www.moeaframework.org/

	Nautilus Framework Principles
	Many-objective Algorithms
	Architecture
	Extending Nautilus Framework
	Instantiating a New Problem
	Instantiating a New Algorithm

	Using the VTSPL Extension
	Evaluating Nautilus Framework

	Conclusion
	REFERENCES
	Biographies
	Thiago do Nascimento Ferreira
	Silvia Regina Vergilio
	Marouane Kessentini

