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ABSTRACT 

 

A complex system contains a broad range of intrinsic properties and parameters. Involved 

interconnections between parameters make it extremely difficult to decompose the system into 

pieces and predict its behavior. In automotive NVH, brake squeal is a dynamic instability 

phenomenon that contains complex physics due to its nature of the problem and complicated 

interconnections and variations; Also includes a wide range of operational conditions over a broad 

range of frequencies. Squeal noise is one of the most significant customer claims results in high 

warranty costs for vehicle manufacturers. Engineers study brake NVH using city and chassis 

dynamometer tests and computational techniques. These methods are costly and time-intensive. In 

recent years, by advancements in CAE tools and resources, numerical methods are vastly 

employed; They can replace physical experiments. 

This research proposes and implements an innovative Machine Learning based technique 

on brake noise analysis and accelerates computational methods. The proposed approach introduces 

a new metric that explores correlations of operating condition distributions from the virtual and 

physical models. Data-driven methods incorporated with numerical simulations have been 

increasingly developed and utilized in recent years to improve virtual models' efficiency. This 

work demonstrates an ML-based model can significantly save computational cost by exploring an 

entire design space and skipping over duplicative iterations. 

The second part of the research proposes and implements a multi-fidelity Deep Learning 

approach to predict brake pad NVH modal characteristics. This approach, inspired by both physics 



 xi 

and statistics. It leads to a perception of component properties, and sequentially, their modal 

responses. This work initially develops a high-fidelity numerical model and correlates with 

experimental data capturing brake pad component physical aspects. Then uses a Design of 

Experiment technique to generate a high-resolution database from CAE. This database is 

ultimately used to develop a physics-inspired deep learning model. The deep learning algorithm is 

composed of distinct multi-layer perceptron (MLP) modules that define component properties. 

The goal of this ML-based approach is to accelerate design and development processes in brake 

NVH and minimize urgency to additional experiments and simulations. This methodology may 

apply to other components and full system analysis. 
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CHAPTER I 

 

 

Introduction 

 
 
 

Research Background 

 

Brake squeal is a complex phenomenon due to the dynamic instability emergence of 

resonant modes in the brake system. The excitation comes from the friction couple between pad 

linings and the disc [Massi et al. (2006), Akay (2002), and Hoffman and Gaul (2008)]. Several 

theories are describing possible root causes for brake squeal occurrence. One possible approach 

introduces an intermittent sticking phase that static frictional contact applies, followed by kinetic 

friction, in which a stick-slip phenomenon causes squealing. The other possible explanation is 

when two neighboring vibration modes couple due to a gradient increase of friction to create a 

complex, unstable mode in a nearby frequency. Another theory describes the sliding motion of 

caliper assembly toward the axial motion of discs, which induces a tangential load which excites 

the resonance mode of the system [Oberst and Lai (2011), Chen et al. (2003), Chen et al. (2003 a-

b) and Ouyang (2005)]. Brake squeal is a high-frequency noise in a frequency range of 1 to 16 

kHz, which is audible to both vehicle occupants and passers-by. This disturbing noise displeases 

passengers as well as the environment, which causes high customer dissatisfaction [Kinkaid et al.  

(2003) and Hamzeh et al. (1999) and Papinniemi et al. (2002)]. Squeal noise is reported to be one 

of the major customer claims, which result in high warranty costs for vehicle manufacturers 

[Ouyang et al. (2005) and Triches et al. (2004)]. 
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During last years, the brake squeal problem has been studied by experimental approaches 

such as vehicle tests, chassis dynamometer tests, and modal tests as well as analytical methods and 

numerical simulations such as finite element analysis (FEA) [Papinniemi et al. (2002), Nagy et al.  

(1994) and Liles (1989)]. However, with all these approaches, squeal predictions in the early phase 

of the design are not achieved yet. Analytical approaches integrated with numerical finite element 

simulation provide a somehow understanding of brake squeal after the model calibrated with some 

level of test data. With the advances in CAE tools, it is now feasible to develop a machine learning 

tool integrated with the FEA model that facilitates brake squeal prediction. 

A full vehicle city test is a standard procedure currently is used in many OEMs for the final 

sign-off and validations for the brake squeal performance. However, this procedure is highly 

expensive and time inefficient to be conducted on the roads. This approach is not suitable for 

design recommendations in an early design phase because the experiment requires manufactured 

parts or a prototype vehicle.  The chassis dynamometer test is also a decent representative of the 

full vehicle behavior within the laboratory environment. It is capable of accurately replicate squeal 

noise, and it consists of a full range of operating conditions. The dyno test is a standard procedure 

and can be performed in a design stage by building prototype test fixtures and subassembly parts. 

It still requires physical components to be fabricated and expensive test equipment and facilities 

to complete the test. However, both dyno and vehicle tests are undesirable for design iterations 

and recommendations. 

Nonetheless, the numerical simulations and analytical approach do not require any physical 

parts or facilities, and the analysis can start in the very early stage of the design. Computational 

methods (CAE) could potentially predict squeal performance if a high-resolution model is 

available. It also can be a time-saving and cost-efficient approach in the long run that is easy to 
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implement for studying more design iterations. On the other side, the CAE methods are 

computationally expensive. They require an understanding of the system's physics and modeling 

of detailed interactions, material properties, and existing nonlinearities. Also, the number of 

operating conditions to be run in CAE is quite large. Besides, it requires other expensive tests in 

addition to the dyno test for correlations and validations. Table I.1, lists the positive and negative 

attributes related to these three main approaches currently is used in studying the brake squeal 

noise. 

 

Table I.1. Advantages and disadvantages of current approaches in studying brake squeal noise 

Approaches Advantages Disadvantages 

Full vehicle 
Test 

1- Accurate in replication of real noise 
events  

2- Reliable procedure for sign-off and 
final validations 

3- For subjective and objective 
evaluations 

1- Highly expensive and time-
taking 

2- Physical parts and prototype 
vehicle are required  

 

Prototype 
Chassis 
Dynamometer 

Test 

1- Accurate method for noise 
prediction 

2- Consists of the full range of 

operating conditions 
3- Capable of capturing the part 

variations 
4- The test can be conducted in the 

design stage 

1- Expensive equipment and 
facilities 

2- Physical prototypes need to be 

manufactured 
3- The procedure requires building 

a test fixture  
4- The procedure is relatively time-

taking takes  
Numerical 

Simulations 
and 
Analytical 
Solutions  

1- No physical parts or facilities 

required 
2- Analysis can start in very early stage 

of the design and lead the design 
3- Easy to implement several iterations 

for design recommendations 
4- Time saving and cost efficient in 

long run  
5- Capable of capturing part variations 

1- Computationally expensive 

2- Requires modeling of 
interconnections, materials and 
nonlinearities 

3- Not accurate enough yet for 

predicting of squeal  
4- Requires other expensive tests 

for validations 
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From a vehicle or chassis dynamometer test, noise occurrence and sound pressure data are 

collected over a range of frequencies, temperatures, pressures, and velocities of brake pads and 

rotor. The number of noise occurrences and amplitudes of sound pressure (dB level) determines 

an intensity of noise from Fast Fourier Transform (FFT) [Cerna (2000)]. The correlation between 

vehicle road test and dynamometer test and the correlation between two dyno tests are common 

problems in brake squeal due to the environmental factors and variations in the components. 

Therefore, repeatability for tests is essential; however, both vehicle and dyno tests are highly 

costly. The other challenge is a correlation between computational models as an alternative low-

cost solution and physical experiments. 

Furthermore, complexity for subsystem interactions in a wide range of operating conditions 

such as temperatures, pressures, and frequencies induce a severe nonlinear model to capture all 

real test aspects. A system considered complex when it contains many intrinsic properties and 

parameters, and convoluted interconnections exist between parameters that make it extremely  

difficult to decompose the system and predict its behavior.  It is incredibly challenging to 

adequately explain a complex system by pure experimental and computational methods. Plenty of 

interdependent variables result in a massive number of input dimensions to be accounted for 

analysis. Besides, not all variables can be sufficiently modeled and embedded into the correlation 

examination. Based on the preceding, constructing such a CAE model to compromise all the 

operating conditions and variations is not computationally feasible. 

Machine learning (ML) models in recent years played a pivotal role to support critical 

decision making, automation of time-consuming processes, predicting complicated systems, and 

advancing scientific discoveries [Karpatne et al. (2017), Karpatne et al. (2018), Nathan (2017) and 

Rahul Rai and Chandan (2020), Baker (2019)]. State-of-the-art machine learning research has been 
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making significant progress in many directions. In engineering, due to an increasing evolution of 

standard testing and design rules, ML has potential applications for product characteristics 

identification, decision-making, and process optimization, specifically in product developments 

[Willard et al. (2020)]. ML-based model aspires to equip a system with an intelligent element to 

automatically improve its performance through experience, pattern recognition, and statistical 

inference [Pham and Afify (2005)]. Progressive ML techniques discover sophisticated data 

patterns and transform information into an autonomous system that imitates human intelligence 

and activities [Panchal et al. (2019)]. ML techniques increasingly developed and deployed in 

growing engineering and technology industries in a wide range of activities from the tuning of 

numerical parameters [Lynch et al. (2019)] and synthesizing high-dimensional optimizat ions 

[Chen and Fuge (2019)] to extracting human preferences and design strategies [Raina et al.  

(2019)]. On the flip side, predicting behaviors for complex systems by only exploring correlation 

and reasoning relationships between inputs and outputs could be inefficient and may have multiple 

drawbacks. Besides, by developing the physics-based models, it is expansive and infeasible to run 

many design iterations within the demanded resolution. Because neither an absolute ML-based nor 

an explicit physics-based methodology alone functions effectively for complex science and 

engineering problems. Thus, researchers are recently studying the continuum between mechanistic 

and ML models to incorporate merits from science-based and data-driven learnings [Karpatne et 

al. (2017) and Rahul Rai and Chandan (2020)]. 

Integrating science-based principles and ML models in a synergistic fashion appears to be 

an efficient technique to accelerate the computationally expensive physics-based model. The 

essential to this approach is to generate a data repository that could be used to discover a pattern 

for predicting of system's outcome. In many cases, the disadvantage of this technique is that the 
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prediction is unreliable beyond a range of tested input variables. In training a machine learning 

algorithm directly from the operative data, the model prediction capability shrinks as parameters 

diverge from trial data, knowing that machine learning algorithms tend to fail predictions with 

extrapolation nature. One remedy to improve predictive ability is to implement a physics-guided 

machine learning algorithm with a structured architecture that accounts for the complexity of input 

features and variables and allows for expansion of the range for variables independently at any 

point. This facilitates the machine learning algorithm's training by employing a structured 

framework designed based on the physical properties of the data. This technique provides a more 

precise image to find the patterns according to the underlying physics of the system [Willard et al.  

(2020), Karpatne et al. (2017), Schleder et al. (2019), Ivezic et al. (2019) and Raccuglia et al.  

(2016)]. 

The current chapter outlines firstly, introduction and research background, and secondly, 

problem statements. Contributions of this scholarly research are multi-fold, which are summarized 

in the chart shown in Figure I.1. In chapter II, (1) Recent advancements in CAE models for brake 

squeal systems and correlations and validations process between numerical approach and physical 

squeal test are described and elaborated. Chapter III, in the first place, (2) provides a metric to 

validate unstable modes without a need to run expensive tests such as laser vibrometers and full-

field operational deflection shapes. At the end of Chapter III, (3) A machine learning-based 

physics-inspired model is developed that efficiently reconstructs CAE outputs for squeal analysis. 

In Chapter IV (4), a physics-guided multi-resolution deep learning technique proposed to predict 

brake pad NVH modal characteristics from its physical properties. 
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Figure I.1. The research contribution chart 

 

 

Problem Statement 

However, numerical approaches are currently primarily efficient tools for addressing brake 

squeal noise in product development; These methods are expensive in terms of the computational 

time and number of simulation jobs to incorporate a high-fidelity Finite Element (FE) model. It 

also depends on the scale of operating conditions that need to be considered in the analysis. The 

number of operating conditions depend on the operating parameters such as brake pressure and 

temperature, friction between pad and disc, rotational speeds of the disc, and component's 

property-dependent materials for frequency and temperature variations. The computational time 

for running one operating condition using a FE model with approximately half a million elements 

(1) Recent advancements in 
CAE models for brake squeal 
systems

(2) Proposing a new metric to 
validate system unstable modes 
without a need to run expensive 
tests

(3) Developing a machine 
learning model that efficiently 
reconstructs the output of CAE 
for squeal analysis

(4) Implementing a physics-guided 
multi-resolution deep learning 
technique to predict brake pad NVH 
modal characteristics 
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takes nearly 2 hours on a supercomputer. A full Finite Element Analysis (FEA) job with all the 

operating conditions that replicate a standard range of parameters for a dynamometer test could 

take several weeks to complete on a supercomputer. Considering modeling correlations and post-

processing time and sequentially design iterations using such a model, it would be computationally 

expensive and exhaustive to pursue such an approach. A Machine Learning (ML) model that is 

architected from the system's physics and trained based on combined CAE and experimental data 

and can compromise a whole range of operating conditions can only take few seconds to run on a 

local computer. Figure I.2 summarizes challenges with the current approaches (Physical test and 

numerical approach) and the alternative proposed approach. Both the physical experiment and 

CAE are expensive and time-taking and have limitations in the number of runs. 

The ML model, however, is cost and time-efficient. Still, there are several challenges: (1) 

Infrastructure for data collection and acquisition, (2) Data sparsity, integrity, and dynamics (3) 

Precision and predictability of the model, and (4) Model generalizations and extrapolations. One 

crucial challenge ahead is, essential infrastructures required for collecting and processing data. 

Regardless, leveraging data from external sources is adopted in many cases, and it could be an 

acceptable practice to save time and accelerate the process. Yet, there is no quality control on how 

data is collected. 

On the other hand, spending internal resources on collecting data could be costly and time -

intensive. Besides, data integrity is essential to ensure consistency and fidelity of analysis. Static 

data could be just as good as a starting point, but in complex behavior, dynamic data required, 

which adds more cost and time to the process. The chain of data custody is also critical to assure 

data acquired as intended. The precision and predictivity of the model depend on multiple involved 
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factors. Most importantly, a machine-learned model that captures a system's fundamental physics 

is in the likelihood of being more reliable and better predictive. 

Moreover, it is essential to optimize the model parameters and hyperparameter to reach a 

global optimal solution. Extending prediction behavior and extrapolation usually is a failure for 

most data-constrained machine learning algorithms because machine learning algorithms would 

only interpolate within the constraint of the given data. Still, estimation outside the box is 

impractical unless adding mechanistic features to the algorithm to enhance the model's structure. 

However, in this research, the goal is not to generate an autonomous ML model to replace 

CAE completely. The main objective here is to advance the correlation of CAE to Dyno and 

accelerate the process when a large number of operating conditions are required. The aim is to 

improve the correlation precision and ultimately reduce the analysis cost by saving engineering 

hours spent on an expensive validation procedure and post-processing for the numerical model. In 

this work, a computationally efficient ML-based model is proposed to effectively replicate the 

CAE results and identify the real unstable modes representing the brake squeal noise using an 

innovative metric. 

 

Figure I.2. Challenges for current approaches in brake system squeal analysis using: physical 
test, numerical model and the proposed ML-based approach 
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For components in bake NVH, physical tests and numerical simulations are currently used 

to investigate their modal characteristics. Studies indicated an association of system and 

component mode-coupling on brake squeal noise. Aforementioned, that at high-frequency noise, 

this circumstance has mainly driven by pads and rotor modal characteristics. The brake pad, known 

as the vibration excitation source, considerably impacts brake noise and vibration performance. 

Researchers studied this phenomenon, demonstrated the influence of subsystems' eigenfrequencies 

and eigenmodes on overall system response. Computational physics-constrained methods 

developed to explore component's modal characteristics precisely and simulate the experimental 

tests based on these observations. However, shortcomings of these physics-based models are 1- 

They still rely on physical inspection of parts, 2- Tuning of materials and geometries to incorporate 

variations and nonlinearities, and 3- Accordingly, this practice is computationally expansive and 

time-taking. 

Meanwhile, an Artificial Intelligent (AI) tool that utilizes a deep learning algorithm by 

inspiration from both physics and statistics could be an effective method to accelerate and 

facilitates this procedure. The proposed technique can be applied to all brake system components 

and efficiently accelerate NVH analysis and developments. This approach aims to enable an 

efficient technique for component study and avoid redundancy for analysis. 
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Figure I.3. Challenges for current brake pad component NVH analysis using: physical test, 
numerical model and the proposed deep learning approach 
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CHAPTER II 

 

 

CAE Advancements in Brake Squeal 

 

 

 

There are mainly two numerical FEA approaches for brake squeal analysis in CAE. One is 

Transient Analysis, which studies the brake system's vibration through dynamic loading of 

braking. The transient analysis uses a Fourier transform for transformation from the time domain 

to the frequency domain to compute squeal frequencies. Simulation time for transient analysis is 

quite large; moreover, this analysis cannot provide information on the system's unstable modes. 

The other approach, which is more desired by CAE analysts, is Complex Eigenvalue Analysis 

(CEA), which determines the system's instabilities under small perturbation.  

This approach calculates complex eigenvalues of the system under certain boundary 

conditions and braking preloads [Triches et al. (2004), Nagy et al. (1994) and AbuBakar and 

Ouyang (2006)]. Damping ratios of the system are calculated from real parts, and imaginary parts 

of eigenvalues and the imaginary parts also identify instabilities in the system [Adhikari and 

Friswell (2007) and Adhikari (2000)]. It is mathematically proven that a negative damping ratio at 

a specific frequency indicates the presence of an unstable mode at that frequency [Kang et al.  

(2009)]. This approach is relatively fast and provides more information such as complex mode 

shapes and coupling modes; additionally, contributions of subsystems of unstable modes at 

specific frequencies.  
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However, the major issue with using CEA is an over-prediction of noise. The CAE model 

includes many false positives and delivers much more unstable modes than the real noise event 

occurs in a physical test.  Calibration is required for CAE model parameters that need additional 

validation tests to overcome over-prediction and mitigate the false positives issue.  One critical 

test is a Frequency Response Function (FRF) test for subsystems. The test provides information 

such as precise dynamic stiffness and damping properties of components. Another important test 

is a contact pressure distribution scan, which offers pressure contours of contact surfaces. The 

latter is crucial for calibrating the model for component interactions under static braking load. 

Besides the fact that these calibration tests are expensive and time-consuming, they do not entirely 

solve the over-prediction problem, and still, false positives occur with the CEA approach. 

 

 

CAE Analysis Using Numerical Approach for Brake Squeal 

Currently, numerical approaches are primarily efficient tools for brake squeal 

investigations in product development. But they are still expensive for computational time and 

scale of simulation jobs that need to incorporate for a high-fidelity model. Hence, it depends on a 

variety of operating conditions to be considered. The brake system operating conditions are 

physical and environmental parameters, including brake pressure and temperature and friction 

between pad and disc, the disc's rotational speed, and component property dependent materials for 

frequency and temperature variations. 

A brake system in the analysis consists of subsystems, including brake rotor, pads, shims, 

caliper, piston, mount, and drive. Figure II.1 shows the assembly of brake squeal analysis 

components under the computational model in this study. 
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Figure II.1. A 3D model of brake assembly in brake squeal analysis 

 

This section describes a finite element (FE) model for brake NVH system, including 

subsystems and interconnections. Then, it discusses the most recent and common numerical 

approach to represent the physics of the system. The FE model contains a detailed high-resolut ion 

element representation of components from their 3D CAD geometries. Additionally, the material 

properties and element formulation assigned to create a modal stiffness matrix. For initial modal 

analysis, the eigenvectors of components normalized, as shown in the formulations in Table II.1. 

The diagonal features in the modal stiffness matrix represent eigenvalues, and the modal mass 

matrix given by a unit matrix. K indicates the modal stiffness matrix for each component, and λ 

stands for the respective eigenvalue matrix composed of eigenvalues (for eigenmodes from 1 to n) 

[Garg (1973) and Lee et al. (1996) and Lee (2000)]. 
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Table II.1. Modal stiffness matrix for brake components  

Component Modal Stiffness Matrix 

Rotor 

KRotor = I {λRotor} =   [
λRotor
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λRotor

n
] 

Pad 

𝐾Pad = I {λPad } =   [
λPad
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λPad

𝑛
] 

Shim 

𝐾Piston = I {λShim} =   [
λShim
1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ λ𝑆ℎ𝑖𝑚

𝑛
] 

Caliper 

𝐾Caliper = I {λCaliper} =   [

λCaliper
1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ λCaliper

𝑛
] 

Piston 

𝐾Piston = I {λPiston} =   [
λPiston
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λPiston

𝑛
] 

Mount 

𝐾Mount = I {λMount} =   [
λMount
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λMount

𝑛
] 

Drive 

𝐾Drive = I {λDrive} =   [
λDrive
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λDrive

𝑛
] 
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Correspondingly, the structural stiffness matrix for assembly of the brake components 

given as: 

(Equation II.1) 

  𝐾structural =

(

 
 
 
 

KRotor 0 0
0 𝐾Pad IB 0
0 0 𝐾Shim

−0 − −0−

−0 − 𝐾Caliper −0−

−0 − −0 −

𝐾Piston 0 0
0 𝐾Mount 0
0 0 𝐾Drive)

 
 
 
 

 

The structural stiffness matrix is a diagonal matrix composed of components' eigenvalues. 

The structural stiffness is useful for optimizing the system's structure for NVH performance and 

mitigating squeal noise.  

Other critical elements for system stiffness are interconnections between components and 

frictional interactions between rotor and pads. Precisely modeling of interconnections is crucial 

for achieving a high-fidelity paradigm. Examining transfer energies from the components facilitate  

to verify if interactions are adequately captured. This can be studied by correlation and comparing 

the frequency response functions in subassemblies from the computational model to the physical 

system. The other critical element is a fictional representation of the pad-to-rotor interface. 

Previous research believed this is the most important consideration in modeling and simulating 

brake squeal using numerical approaches. The frictional mechanism in simulations must 

incorporate nonlinear and asymmetric behavior for contact pressure distributions [Lee et al. (1996) 

and Spurr (1971)]. The interconnection between rotor and pads is considered a spring-type 

connection, as shown in Figure II.2, when they are fully engaged. 
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Figure II.2. A schematic of physical interactions between brake rotor and pad 

 

Variation of the brake force is proportional to the friction coefficient and the variation of 

the normal force as written in Equation II.2: 

(Equation II.2)  

𝜕𝐹𝑦 =  𝜇.𝜕𝑁 

Where 𝜇 is the friction coefficient, and 𝜕𝑁 is the variation of the normal force. 

The variation of the normal force can also be written in terms of connection stiffness and 

the relative displacement of the pad to the rotor as below: 

(Equation II.3)  

 𝜕𝑁 =  𝐾𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛. (𝑋𝑝𝑎𝑑− 𝑋𝑟𝑜𝑡𝑜𝑟) 

On the other side, the equation of motion is presented as: 

(Equation II.4)  

𝑀�̈�  +  𝐾𝑥 = 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

Where 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is given by: 
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(Equation II.5)  

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  =  𝐾𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 .𝑥 

By combining Equations II.2- II.5, the equation of motion becomes homogenous and 

represents in Equation II.6. According to Equation II.6, the resultant stiffness matrix becomes 

asymmetric in the aftermath of friction term [Lee (2000) and Mottorshead et al. (1997)]; Therefore, 

the eigensolutions appear in a complex form.  As a result, the frictional force induces asymmetric 

formulation to the system stiffness matrix.    

(Equation II.6)  

𝑀�̈�  +  (𝐾 −  𝐾𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛).𝑥 = 0 

Including all the terms in the modal stiffness matrix, it is given as equation below: 

(Equation II.7)  

𝐾 = 𝐾structural  +  𝐾𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛  +  𝐾𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

Since the modal mass matrix is normalized, the friction force and interconnections won’t affect it.  

Therefore, the modal stiffness matrix contains all necessary information for system analysis. 

The two most recent and popular approaches for analyzing brake squeal are 1- Complex 

eigenvalue analysis (CEA) and 2- Transient analysis.  

This research employs the Complex eigenvalue analysis (CEA) approach rather than the 

transient analysis for studying brake squeal. CEA is the most common approach and relatively 

time-efficient comparing to transient analysis. It also leverages examining a more comprehensive 

range of operating conditions that could mimic the real physical test. A 5-step CEA approach used 

in this research work consists of the following: 

• Step 1: Static pretension clamp load of rotor-wheel-hub bolts  

• Step 2: Static pressure load of piston and caliper that induces pads to rotor contacts 
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• Step 3: Static step to induce steady-state rotation of brake disk and pad-to-rotor nonlinear 

friction establishment 

• Step 4: Extraction of natural frequencies of the system under the brake loading and 

boundary conditions 

• Step 5: Extraction of complex eigenvalues of the system and mode shapes of unstable 

modes 

The FE model for brake squeal system studied in this work includes nearly half a million 

elements. FE model is developed from a 3D solid mesh model of all the components in the brake 

assembly. The system's boundary is a portion of the wheel from one side and a part of the axle 

tube and hub from the other side. Because wheel and axle components have a minimal impact on 

the problem's frequency range, only a part of those components is included to capture contact 

interactions. This assumption reduces the computational time for analysis. 

 

 

Overview of Brake Squeal CEA 

Several theories describe instability of brake squeal, including (i) a stick-slip contact of 

frictional material and disk, (ii) a modal coupling of two neighboring vibration modes of the 

system, (iii) a cross-coupling tangential excitation and, (iv) an axial oscillation due to frictional 

force of disk to pads [Hoffmann et al. (2002)]. 

To solve a complex eigenvalue problem: Firstly, Normal Mode Analysis extracts the 

natural frequency of an un-damped system under static loads and constraints. Next, by 

incorporating the effect of a friction coupling, Eigensolver extracts complex eigenvalues of the 
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system utilizing a projection method [Bajer et al. (2003) and Bajer and Belsky (2004)]. The 

equation for the complex eigenvalue problem is given by: 

 (Equation II.8)     

(λ2 [M] +  λ[C] + [K]){ψ} =  𝐹𝑒𝑥𝑡  

Where [M] indicates the mass matrix, [C] is damping the matrix and [K] is the stiffness matrix of 

the brake system. The damping matrix includes frictional induced damping and material damping. 

𝐹𝑒𝑥𝑡 is the external force. Also, λ and ψ are eigenvalue and eigenvector terms correspondingly that 

defines system vibration modes. It is worth noting here that the mass matrix [M] is symmetric. 

However, the stiffness matrix [K] is an un-symmetric matrix due to inclusion of the frictional 

effect, which includes loading conditions from the aforementioned static steps. The right side of 

the equation is zero since squeal problem is a self-excited vibration.  

The eigenvalues of the system present in a complex form as below due to the un-symmetric 

stiffness matrix of K [Nouby et al. (2011), Nouby et al. (2009), and Esgandari et al. (2013)]: 

(Equation II.9)      

λ𝑖 = 𝑎𝑖 + 𝒾ω𝑖  

Where 𝑎𝑖 is the real part and ω𝑖  is the imaginary part of complex mode ‘i’. Thus, the damping 

ratio of the system represents the equation below: 

(Equation II.10)      

ζi = −2
𝑎𝑖
ω𝑖

 

The system becomes unstable when the real part of the eigenvalue becomes positive, which 

induces a negative damping ratio [Esgandari et al. (2013), Kang et al. (2009) and Caughey]. In 

brake squeal analysis using the CEA approach, the negative damping ratio indicated the tendency 

of noise in a brake system model. A major complication of the CEA approach in brake squeal is 
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over-prediction. Generally, there will be much more unstable modes from the numerical model 

results than those observed in the physical test. Therefore, the prediction of noise in the early stage 

of the program is unfortunate.  On the other hand, instability results are highly sensitive to a small 

variation in components' geometries and materials and subsystem interactions and system 

operating conditions. Material properties and surface interactions are also nonlinearly dependent 

on temperature changes during braking operations and frequency range. Besides, the frequency 

range of the problem is quite extensive, often from 1 kHz to 16 kHz.  

Although one potential remedy to address the over-prediction problem is to include the 

components' damping properties, capturing the proper damping is another challenge in CEA.  To 

overcome these challenges, the numerical model has to correlate with an initial dyno test result.  

Alongside this, an additional validation test is required to validate this correlation and calibrate the 

model. 

 

 

CAE to Test Correlation and Validation 

Using the CEA approach, CAE simulations generate several unstable data points in a given 

frequency range, depending on the number of operating conditions considered in the analysis. 

Many of these instabilities are false positives and may not occur as a noise event in the dyno. 

Figure II.3 shows the comparison between CAE and dyno test plot for a production Ford vehicle. 

Here, the CAE result is computed based on system negative damping as indications of the system 

instabilities through a range of frequency from 0 to 16 kHz. The dyno noise results are in dB level 

through the test's given frequency range and operating conditions.  
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From CAE data, several false positives are occurred, which are not observed as a noise 

event in the dyno test. This indicates the challenge of using a numerical model for the prediction 

of squeal noise. Without a valid touchstone, instability result alone is a sophisticated metric and 

even can be contradictory and misguiding for decision making. 

 

Figure II.3. Comparison of CAE (system instability) and dyno test (noise occurrence) for the 

frequency range of brake squeal from 0 to 16 Hz 
 

In order to evidently differentiate between false and true positive instabilities, currently, an 

expensive technique is being carried out. One approach is to validate the system's unstable mode 

shape by comparing the CAE mode shapes versus the Dyno test mode shapes at the target 

frequency. However, computing a 3-Dimensional (3D) displacement of the unstable modes in 

CAE is affordable; the post-processing and visualizing of such a mode shape is a tedious process 

when the number of the data point is extensive. This is highly dependent on the number of 

operating conditions that are executed in the analysis. An expensive technique is currently used to 

verify CAE to dyno result correlation and identify real instabilities from the false positives. The 

current approach validates the system's unstable mode shape by comparing the CAE to Dyno mode 

shapes at a target frequency. However, computing and post-processing for the 3-Dimensional (3D) 

unstable modes in CAE is a tedious process when the number of data points is extensive. The 
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number of CAE data points highly depends on the number of operating conditions considered in 

the analysis.  

Besides, additional physical experiments are required to identify the dyno test mode shape. 

One approach is non-contact full-field vibration analysis. Such analysis is a high-speed scanning 

laser vibrometer test to enable measurement of full-field operational deflection shape for brake 

components under a transient excitation enforcing braking load. The experimental measurement 

from the deflection shape test is compared to CAE to validate the CAE analysis's true mode shape. 

This validation is to distinguish the true unstable mode from the false one.  

Figure II.4 shows the brake disk's measured deflection shape test results at the primary 

squeal noise frequency at 13 kHz. This measurement corresponds to the same brake configuration 

that was previously displayed in Figure II.3. The vertical axis in Figure II.4 is the amplitude of 

measured acceleration on the outer edge of the brake disk.  As a result of the deflection shape test 

at 13 kHz, the primary vibration is observed in a Tangential direction (Figure II.4. b). There are 

also minor contributions in the axial direction (Figure II.4. a), and the radial contributions are 

negligible (Figure II.4. c).  

The CAE unstable mode shapes shown in Figure II.3, at three different operating conditions  

of -15 C, 25 C, and 100 C temperatures at 10 bar pressure. Figure II.5. a (at -15 C), shows the 

primary in-plane vibration of the disk plates that indicates the Tangential mode of the disk. Figure 

II.5. c (at -15 C) displays out–of–plane displacement of the disk plates in the axial direction, 

indicating a Nodal Diameter (ND) mode of the rotor is being excited. In Figure II.5. b (at 25 C), 

the mode shape comprises both contributions of tangential and axial directions. 
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As a result, for this case study, by comparison of the unstable mode shapes from CAE 

(Figure II.4) to the deflection shape test (Figure II.5): Those mode shapes with tangential 

contributions agree to the test measurements. The corresponding operating conditions 

(temperature) are -15 C and 25 C. In contrast, the unstable mode with pure axial mode shape does 

not match the test result. The respective operating condition (temperature) for the false-positive 

instability point is at 100 C temperature. This circumstantial evaluation of system modes shapes 

at unstable datum validates if the CAE output is a real NVH concern in the physical system. 

 

(a)    (b)     (c) 

Figure II.4. Measured acceleration of the rotor in brake assembly at 13 kHz from the deflection  

shape test: (a) Axial direction; (b) Tangential direction; (c) Radial direction 
 

 

(a)    (b)     (c) 

Figure II.5. CAE unstable mode shapes at 13 kHz and 10 bar pressure at (a) -15 C, (b) 25 C, and 

(c) 100 C   
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CHAPTER III 

 
 

An ML-Enabled Metric to Predict Unstable NVH Modes Using Operating Conditions of 

Squeal Analysis 

 

 

 

Motivation and Significance  

 

Recent numerical approaches using the complex eigenvalue analysis for solving brake 

squeal; however, widely used in industry, it has a substantial disadvantage. When a high-fidelity 

model is required, the process is considerably slow and computationally expensive. This is due to 

broad ranges of operating conditions from the dynamometer test that induces extensive iterations 

in CAE to capture those conditions. In addition to the computational time for running such an 

analysis, the engineering time spent to validate the results is a more significant challenge. The 

validation process through the classic approach explained in the previous Chapter through unstable 

mode shape analysis is considerably time-consuming and costly.  

In this research, an alternative technique offered to validate the correlation by matching the 

CAE operating conditions to the dyno test using a Machine Learning (ML) technique. This ML 

technique suggests selected operating conditions from the dyno test that need to be executing in 

CAE analysis. It uses an interpolation of the CAE data comparable with physical runs in the test. 

A surrogate model is generated from the operating conditions' statistical data by implementing this 

approach, which results from the correlation of CAE to baseline test. This model applies for further 

CAE iterations used for predicting noise and providing design recommendations. This approach 

illustrates a massive saving in computational time for CAE and the correlation process. 
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The Object Process Methodology (OPM) diagram for the current correlation technique is 

displayed in Figure III.1. The first step in the correlation process is capturing the material 

properties and the subsystems' resonance frequencies. The next step is correlating the noise 

frequencies, noise percentage, and dB level of the noise to the system level's instabilities. In the 

last step, the unstable mode shape is being examined between the two by conducting an operational 

deflection shape or laser vibrometer test using a 3D deflection comparison. It has been discussed 

that this validation process is a time-taking and costly procedure and requires expensive test 

facilities. 

In Figure III.1. b, the proposed approach is shown using an innovative validation metric 

and imposing a Machine Learning (ML) model. The first three steps in the correlation process are 

the same as the classic methodology. The last step for validation at the system level is where a 

surrogate model is implemented to accelerate this process. The ML model distinguishes the true 

and false CAE data through operating condition profiles and verifies the correlations without 

running expensive tests such as the deflection shape test. This research work demonstrates the 

validation is achieved efficiently by matching the operating condition profiles. It enables an 

affordable and computationally reasonable technique that saves many engineering times. 
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(a) 

 

(b) 

Figure III.1. Object Process Methodology (OPM) diagrams for: (a) the current correlation 
technique and (b) the proposed ML approaches 
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Nonlinearities of Analysis as a Result of Complex Operating Conditions 

Nonlinearities in brake squeal analysis include material and geometrical nonlinearities. The 

geometrical nonliterary is due to a complex thermal and mechanical loading during braking 

operations. In the CEA approach, brake loading is simplified into three major static steps: 

1. A thermal loading between pad and rotor due to energy dissipation induced by 

frictional force 

2. A mechanical pressure loading that applies from caliper/piston assembly to brake 

pads 

3. A steady-state rotation of the disk that determines the direction for frictional 

contact  

As shown in Figure III.2, these static steps induce a contact interaction between the inboard 

and outboard pads to the brake rotor. These loading steps are modeled in ABAQUS to define 

frictional contact behavior. As the friction contribution increases, the system's adjacent modes at 

nearby frequencies could couple with each other and destabilize the system. The frictional model 

is described by contact surface interactions between rotor and pads and the friction coefficient. 

The friction coefficient is calculated based on the contact pressure, contact temperature, and the 

slip rate and predefined field variable as the formula in below:  

(Equation III.1)      

𝜇 = 𝜇(�̇�𝑒𝑞,𝑝,𝜃, 𝑓) 

Where �̇�𝑒𝑞 is the equivalent slip rate, 𝑝 is the contact pressure, 𝜃 is the average temperature at the 

contact point, and 𝑓 is the predefined field variable. 
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Figure III.2. Pad to rotor thermal and mechanical braking loading in numerical simulation 

 

Simulating precise contact distribution is critical because it defines the interaction between 

the nodes in the pad and rotor contact surface in their engagement region. Also, it determines a 

precondition for eigenvalue calculations. This contact definition essentially reforms the system's 

un-symmetric stiffness matrix before conducting the eigenvalue and complex eigenvalue steps. 

Validating simulated contact distribution precision is challenging due to complex dynamic 

circumstances in braking operation. However, in this works, a static contact distribution is 

validated by comparing a scan of the physical assembly contact distribution in clamped loading 

from the dyno test and the CAE simulations. The discussion of contact correlations between the 

brake pads and the rotor is beyond this study's scope. 

In the first loading step in CAE simulations, a combination of thermal and mechanical 

loading applies to the system to establish a contact pressure distribution pattern in the contact 

surface between the pad and the rotor. The thermal loading condition is determined by pad-to-rotor 

temperature and the braking's operation conditions (pressure and friction).  This deforms the pad's 

surface and changes it into nonlinear (concave, convex, or complex) shapes. Through the thermal 

expansion equations, the phenomena regulate the pad lining's contact profile toward the disk.  
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Additionally, the mechanical loading is defined by pressure operation conditions through 

pressurizing piston and caliper during the braking operation. In below Figure III.3, a simulation 

for scaled deformations of the inboard and outboard pads under thermal and mechanical loading 

steps are displayed. Before applying the loading, the pad surface is perfectly flat. This figure shows 

the scaled deflections after applying a 10-bar pressure load through the piston and caliper at -15 C 

(Cold temp.), 25 C (Room temp.), and 100 C (Hot temp.). The deformed profile indicates a concave 

pad shape at the cold temperature and a convex pad shape at the high temperature.  

This deflection in the pad surface is due to the component temperature dependency 

behavior regulated in the analysis with the corresponding thermal expansion. This enables for 

capturing of geometrical nonlinearities due to thermal effects. The thermal expansion model is 

included in material definitions. The thermal strains for the homogeneous solid continuum 

elements obtained according to the equation below: 

 (Equation III.2)      

𝜖𝑡ℎ = 𝛼. (𝜃, 𝑓𝛽). (𝜃 − 𝜃
0) −  𝛼. (𝜃𝐼, 𝑓𝛽

𝐼). (𝜃𝐼 − 𝜃0) 

Where 𝛼 is the thermal expansion coefficient; 𝜃 is the current temperature; 𝜃𝐼 is the initial 

temperature; 𝑓𝛽  are the current values of the predefined field variables; 𝑓𝛽
𝐼 are the initial values of 

the field variables; and 𝜃0 is the reference temperature for the thermal expansion coefficient. The 

second term in the above equation represents the strain due to the difference between the initial 

temperature, 𝜃𝐼, and the reference temperature, 𝜃0.  
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Figure III.3. CAE simulation of the inboard and outboard pad deformations under the combined 
thermal and mechanical loading 

 

Modal characteristics of components are also temperature-dependent. Therefore, material 

elastic constants are considered temperature-dependent. Figure III.4 shows variations for the pad’s 

first two eigenfrequencies and eigenmodes: the first bending mode (fb) and the first torsional mode 

(ft). This is through temperature variations between -15 C to 150 C. This data is collected from a 

Frequency Response Function (FRF) test for a production Ford vehicle brake pad in various 

temperatures. From this experimental data, variations are: 

• 14% for the first bending mode eigenfrequency (fb) 

• 17% for the first torsional mode eigenfrequency (ft). 

 

Figure III.4. Experimental data: eigenfrequencies vs temperature for the first bending mode (fb) 
and the first torsional mode (ft) in -15 C to 150 C (a production brake pad) 
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The range of the temperature variation in this brake squeal CAE analysis is from -15°C 

(cold brake) to 200°C (hot brake) to be proportional to the dyno test operating conditions. The 

variation range for pressure is from 0 bar to 30 bar based on the dyno test's operating condition 

range. The temperature and pressure conditions specified in the pressure loading step has a major 

role in defining the contact distribution pattern and nonlinearity of geometry. The disk's rotation 

direction induces asymmetrical contact distribution in a tangential direction in the rotational 

loading step. The pad leading side first contacts the rotor and forms a broader contact pressure 

area. Figure III.5 displays the contact pressure distributions for the inboard (IB) and the outboard 

(OB) pad surfaces to the rotor at -15 C (Cold temp.), 25 C (Room temp.), and 100 C (Hot temp.) 

for the pressure step (a) and the rotations step (b) from the CAE simulations. In the first static step 

(a), the pressure distribution from leading to the trailing is symmetric because there is no tangential 

activation. Applying the disk's rotational motion in the second step (b) enforces asymmetric 

distributions representing the brake's dynamic loading. By comparing the contact pressure 

contours in three various temperatures, the observations are:  

• At the cold temperature, the distribution is more toward the center of the pad near the 

center slot (mainly for the inboard pad), and in hot temperature, it is more toward the 

pad's outer edges.  

• The pressure concertation for the outboard pad is more toward the outer diameter 

(regarding rotor) than the inboard pad.  

• The pad shape deformations can reasonably explain these contact conditions through 

the thermal variations. 
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(a) Pressure Step 

 

(b) Rotation Step 

Figure III.5. Contact pressure distributions for the IB/OB pad surface to the rotor at -15 C (Cold 

temp.), 25 C (Room temp.), and 100 C (Hot temp.) simulated in CAE 
 

Braking pressure levels also changes the pressure contours between the pad-to-rotor 

surfaces.  The brake pressure level is determined by the pressure of fluid inside the piston and 

caliper housing, which applies a vertical load to the backing plates' surfaces and transfers the forces 

to the pads' surface toward the rotor. This pressure directly changes the contact pressure magnitude 

and the contact distribution of pad-to-rotor. Figure III.6 displays simulated contact pressure 

distributions for the inboard (IB) and the outboard (OB) pad surfaces to the rotor at 2 bar, 10 bar, 

and 30 bars at ambient temperature. 
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Figure III.6 Contact pressure distributions for the IB/OB pad surface to the rotor at 2 bar, 10 bar, 

and 30 bar at ambient temperature simulated in CAE 
 

Another operating condition is directions of braking. In forward braking, as shown in 

Figure III.7, the initial contact point is the edge of the pad, where it is first in contact with the rotor. 

This region is where the contact pressure is mostly concentrated. As shown in the left figure, 

contact distribution in the tangential direction is more toward the leading side and the center for 

the inboard pad. For the outboard pad, however, the distribution is more shifted to the outer edge 

of the diameter (rotor), where the caliper finger applies pressure to the pad. Also, similar 

distribution is observed in the tangential direction for the leading to the trailing. In reverse braking, 

an opposite contact pattern is formed as simulated and displayed on the right side. These results 

also imply that the opposite braking direction will not impose an utterly different boundary 

condition that significantly impacts this case study. 
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Figure III.7. Contact pressure distributions for the IB/OB pad surfaces in forward and reverse 
braking operation at 10 bar and ambient temperature simulated in CAE 

 

 

A New Metric for Accelerated Unstable Modes Validations Using Operating Condition 

Profiles 

 

A physical dyno or vehicle test for brake squeal noise provides information such as noise 

occurrences, including frequencies of the noises, dB level of the noises, and percentage of the 

noisy events. Besides, operating condition inputs such as temperatures, pressures, frictions, and 

rotor velocity for the noisy occurrences are recorded for each test. Material properties and 

frequency response function (FRF) of brake components are measured at the subsystem level 

before performing the test. Uncertainties are also studied in the analysis to include part 

characteristic variations and contact surface pressure distributions (for rotor-to-pads and 

caliper/piston-to-pads). 

In CAE simulations using complex eigenvalue analysis, system instabilities are observed 

in an entire frequency spectrum. Every operating condition, including temperatures, pressures, and 

frictions, and the system's unstable mode shapes, are determined.  
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The numerical FE model is developed from brake component geometries and the CAD 

assemblies. The subsystems' correlations to the physical components are evaluated and verified, 

and then material properties are adjusted in the CAE. Variations and uncertainties could be 

considered depending on the fidelity of the model. Capturing the nonlinearities and variations in 

CAE requires typically further testing, such as scanning contact pressure distributions and physic al 

parts. After the subsystems correlated from the virtual to the physical model, the system results 

must achieve a certain correlation level between the two systems. In the system-level analysis, the 

test's noise occurrences are compared to the CAE's instability results. Firstly, the frequencies of 

noise occurrences are cross-checked. Next, the noise dB level versus instability level and 

percentages of the noise occurrences versus the volume of instability occurrences are compared.  

CAE to test correlation in brake squeal analysis is challenging because of the physical 

system's nonlinearities and uncertainties. The correlation process might need several trial and error 

and tedious efforts when there is a lack of data; if the correlation was not satisfactory, a CAE 

diagnosis is required to tune the model's parameters and achieve a better correlation. As described 

in the previous chapter, the CEA approach generates over-prediction, i.e., many more instabilit ies 

than the actual experimental results. Many of these instabilities are false positives that will not 

occur as real noise. This research proposes a new metric to address this discrepancy, which cross-

checks the virtual model's operational condition profiles with the physical test.  

Figure III.8 shows the probability density function of pressure and temperature operation 

conditions for the noise events from the baseline dyno result shown in the previous chapter in 

Figure II.3. In this case study, the density plots indicate that noisy occurrences mainly concentrate 

on medium pressure from 5 to 15 (bar). And for temperature, it primarily occurs in the cold regions 
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in -15 to 0 (Celsius). There are some occurrences in a mild to warm range between 25 to 75 

(Celsius). 

  

(a)      (b) 

Figure III.8. Probability density function plots for (a) pressure and (b) temperature 

 

Figure III.9 (a - d) displays the bivariate probability density function of temperature and 

pressure for four primary noise frequencies observed in this study. From the dyno test results, 13.1 

kHz was detected as a dominant noise frequency compared to the overall noise events in the whole 

frequency range measured in 1 to 20 kHz. The probability density at 13.1 kHz (Figure III.9. d) 

indicates concentration in low to medium pressure range between 5 to 12 (bar) and cold-to-mild 

temperature from -15 to 50 (Celsius). Almost the same extent of pressure and temperature is 

observed at 2.2 kHz and 6.3 kHz (Figure III.9. a and c). Only at 3.2 kHz (Figure III.9. b), the range 

of the operating conditions observed is at medium-to-high pressure in 7 to 20 (bar) and room-to-

high temperature in 25 to 120 (Celsius). 
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(a) 

 

 (b) 
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(c) 

 

 (d) 

Figure III.9. Bivariate probability density function from dyno operating conditions (T: 
temperature and P: pressure) at: (a) 2.2 kHz, (b) 3.2 kHz, (c) 6.3 kHz and (d) 13.1 kHz noises 
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Given the relevance of the operating conditions in identifying unstable modes at target 

noise frequencies, the previous sections extensively discussed conceptual theory and complex 

physics. Equating the physical experiments' and the CAE simulations' operational condition 

profiles yields an additional layer of concrete data for validating and advancing the computational 

model. This leads to adding a physics-guided dimension for cross-checking of the computational 

model by adjusting its mechanistic features and parameters.  

However, a proper statistical approach is required to quantify the two sources' correlation 

level, i.e., CAE and test, concerning their profiles of operational conditions. The probability 

intersection is one technique that the author believes it effectively addresses this matter. However, 

this requires sufficient data from both resources. Besides, a machine-learning algorithm has to be 

employed to adopt parameters and quantities from these two essentially different fashions. 

 

 

Machine Learning Based Model to Accelerate CAE to Test Correlation 

In order to implement the newly proposed metric based on operating conditions, a 

mathematical approach has to be implemented. One argument here is the number of operating 

conditions from the dyno test is significantly larger than the number of operating conditions in 

CAE. This will also depend on the fidelity of the virtual model and the computational resources 

available. The CAE instability results (previously shown in Figure II.3) ran over 96 different 

operating conditions, including pressures and temperate in forward and backward directions. With 

an average running time of 2 hours per each job on a supercomputer, the overall computational 

time was about 192 hours. Another argument is if the number of conditions is adequate to be 

comparable to the physical test; because the experimental test runs over thousands of operational 
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conditions (pressure, temperature) continuously. A key point here is an approach that has to be 

employed to minimize the computational time and still provides a quality correlation from the 

proposed metric. This approach requires developing a legitimate machine-learning model from the 

CAE results and interpolating the CAE data to be comparable to the experimental results.  

Establishing an effective ML model requires a proper mathematical approach based on the 

input and output features and the dataset's characteristics. The ML model inputs are: 1- Pressure 

operating condition, 2- Temperature operating condition, and 3- Frequency of the instabilities from 

the CAE runs; and the output of the model is the projected instabilities. It is worth noting that the 

CAE's instability values are the absolute values of negative damping from the complex eigenvalue 

analysis. A schematic of the input and output features for the ML model is shown in Figure III.10 

below. 

 

Figure III.10. Inputs and outputs for the proposed ML model  

 

For preliminary analysis, a Gaussian process is developed to model the CAE instabilit ies 

as a function of the operating conditions at any frequency of interest. This enables generating 

millions of surrogate CAE simulations at different operating conditions with the need to run only 

a few actual CAE simulations. The Gaussian process model for the instability is explicitly written 

as: 
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(Equation III.3) 

𝑦(𝒙)~GP(𝑚(𝒙),𝑘(𝜽, 𝒙,𝒙′)), 

Where 𝑚(𝒙) is the basis function for the instability with inputs 𝒙,  𝑘(𝜽, 𝒙,𝒙′) = cov(𝑦(𝒙),𝑦(𝒙′)) 

is the covariance function that correlates the pairwise instabilities for any two set of inputs 𝒙 and 

𝒙′. 𝜽 are the hyper-parameters of the covariance function. 

To better elaborate the model in this section, denote {(𝒙𝑖 ,𝑦(𝒙)); 𝑖 = 1, … . , 𝑁} for 𝑁 

experiments where the input 𝒙𝑖 corresponds to the frequency, temperature, and pressure of test-

case 𝑖,  and the output 𝑦(𝒙𝑖) corresponds to the instability value (i.e., the negative of the complex 

part of the eigen-value) for test-case 𝑖. 

The major advantage of considering the Gaussian process is to capture the complex 

correlations between the instabilities at different inputs (frequency, temperature, and pressure). 

Unlike the deterministic nonlinear models such as neural networks, the Gaussian process provides 

an entire distribution of estimations, which further quantifies the uncertainty in the estimation. The 

mean of the distribution is chosen as the point estimate, and its variance quantifies the uncertainty 

around the mean. 

  The name Gaussian process comes from its core assumption that any subset of capacity 

measurements follows a normal distribution. Consequently, the joint distribution of the 

instabilities from the available test-cases 𝑦(𝒙1), 𝑦(𝒙2),… ,𝑦(𝒙𝑁), follows the multivariate normal 

distribution: 

(Equation III.4) 

𝒚(𝑿) = [

𝑦(𝒙1)

𝑦(𝒙2)
⋮

𝑦(𝒙𝑁)

]~𝑁

(

 
 
[

𝑚(𝒙1)

𝑚(𝒙2)
⋮

𝑚(𝒙𝑁)

] , 𝑲(𝜽, 𝑿, 𝑿)

)

 
 
, 
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Where  

(Equation III.5)   

𝑲(𝜽, 𝑿, 𝑿) = [

𝑘(𝜽,𝑥1, 𝑥1) 𝑘(𝜽,𝑥1, 𝑥2) … 𝑘(𝜽,𝑥1, 𝑥𝑁)

𝑘(𝜽,𝑥2,𝑥1) ⋱ … 𝑘(𝜽,𝑥2,𝑥𝑁)
⋮ ⋮ ⋱ ⋮

𝑘(𝜽,𝑥𝑁, 𝑥1) 𝑘(𝜽, 𝑥𝑁,𝑥2) … 𝑘(𝜽,𝑥𝑁, 𝑥𝑁)

] 

The covariance function depends on the domain knowledge and the number of available 

test-cases. With enough test-cases, the Gaussian kernel or the scaled Gaussian kernel captures the 

local trends in small time windows. For long-term cyclic trends, customized compound kernels 

can be developed that consists of seasonal kernels and/or seasonal mean functions are considered. 

For the available dataset in this case study, the scaled Gaussian kernel in (6) seems to be powerful.  

(Equation III.6) 

cov(𝑦(𝒙),𝑦(𝒙′)) = 𝑘(𝒙,𝒙′|𝜃𝐹 , 𝜃𝑇 , 𝜃𝑃 , 𝜃𝑠)

=  𝜃𝑠
2 exp [−

1

2
(
𝑓𝑥 −𝑓𝑥′

𝜃𝑓
)

2

−
1

2
(
𝑇𝑥 −𝑇𝑥′

𝜃𝑇
)
2

−
1

2
(
𝑃𝑥 − 𝑃𝑥′

𝜃𝑃
)
2

] 

Here, 𝒙 = [𝑓𝑥 , 𝑇𝑥 , 𝑃𝑥 ], 𝑓𝑥  is the frequency for input 𝒙, 𝑇𝑥 is temperature for input 𝒙, and 𝑃𝑥  is the 

pressure for input 𝒙. 

The log-likelihood of the instabilities from the available CAE simulations is calculated as 

a function of the hyper-parameters 𝜽. The data is imbalanced because only a limited number of 

instability points are recorded, and the rest are denoted to be stable. Therefore, an importance 

weighting technique is applied to address the imbalance problem. The hyper-parameters are then 

estimated by maximizing the log-likelihood of the pre-processed using quasi-newton optimizat ion 

algorithms.  

(Equation III.7) 

log(𝑝(𝒚(𝑿)|𝜽)) = 
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−
1

2
(𝒚(𝑿) − 𝒎(𝑿))

𝑇
𝑲(𝜽,𝑿,𝑿)−1(𝒚(𝑿)− 𝒎(𝑿)) −

1

2
log(det(𝑲(𝜽,𝑿,𝑿))) −

𝑁

2
log(2𝜋)  

Given the prior information 𝒎(𝑿),𝒚(𝑿), 𝒙∗,𝑿, 𝜽, the only unknown is the instability 𝑦(𝒙∗) and 

its predictive posterior distribution is: 

(Equation III.8) 

�̂�(𝒙∗)|𝒎(𝑿), 𝒚(𝑿),𝒙∗,𝑿,𝜽~𝑁(�̂�(𝒙∗), �̂� 2(𝒙∗)), 

Where  

(Equation III.9) 

�̂�(𝒙∗) = 𝒌(𝜽, 𝒙∗,𝑿)𝑲(𝜽, 𝑿, 𝑿)−1(𝒚(𝑿)−𝒎(𝑿)), 

(Equation III.10) 

�̂�2(𝒙∗) = 𝑘(𝜽, 𝒙∗, 𝒙∗) − 𝒌(𝜽, 𝒙∗,𝑿)𝑲(𝜽, 𝑿, 𝑿)−1𝒌(𝜽,𝑿,𝒙∗) 

And 

(Equation III.11) 

𝒌(𝜽,𝒙∗,𝑿) = [𝑘(𝜽, 𝒙∗, 𝒙1) … 𝑘(𝜽, 𝒙∗, 𝒙𝑁)] 

A structured flowchart in Figure III.11 describes the proposed correlation and validation 

procedure between the virtual model and the physical test. The validation process is through the 

proposed metric using operational conditions profiles (Temperature and Pressure). Contributions 

for this research are 1- To present and 2- Establish this metric, and 3- Implement a machine-

learning (ML) model that efficiently fits the CAE model and improves the correlation.  

The correlation is calibrated when the fitted ML model agrees to the test results; Otherwise, 

a diagnosis is required for tuning the parameters of the ML model; or the CAE model needs to be 

further improved for higher accuracy. The data set used in this case study is based on the CAE, 

which is composed of instability data at 96 different operating conditions (pressure and 
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temperature data) that match frequencies of the noisy occurrences in the dyno test at approximately 

2, 3, 6, and 13 kHz. The collected database contains 9328 samples of CAE instability points.  

 

Figure III.11. A structured flowchart for the proposed correlation and validation process between 
the virtual model and the physical test 
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Results and Discussion 

The implemented ML model developed over 96 operating condition runs from CAE results 

(previously shown in Figure II.3) employing a Gaussian process. Figure III.12 below shows the 

instability plot resulting from the ML model compared to the CAE instabilities through the whole 

range of the frequency. The ML model is based on both false and true positive data points from 

the CAE output. As observed from the plot below, more than one trend of unstable data points 

exists around the noise frequencies: 2.2, 3.2, 6.3, and 13.1 kHz, which were observed from the 

corresponding dyno plot in Figure II.3. 

 

Figure III.12. Comparison of CAE and ML model outputs for the entire frequency 
spectrum 

 

The noise at 13 kHz frequency is the primary target noise observed in the dyno test. This 

result elaborates the target noise frequency for discussion and proving the concept. The goal here 

is to identify the trend of instability data points as the real highest potential noise in the physical 

system. Substantially, data from the ML model and dyno are compared using distribution plots. 

The noisy stops in the dyno test occur in the frequency range between 13150 Hz to 13200Hz. On 

the other hand, in the ML model, the first frequency peak is at 12950 Hz and the second and third 
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ones are at 13150 and 13350 kHz. However, it is worth noting that the CAE and corresponding 

ML model may not be accurate enough to predict the target frequency within the 3% range.  

Applying the proposed metric using the ML-based model presented here, validation of real 

instability peaks is by assessing the correlation of the operating conditions. Figure III.13. (a-c) 

shows a 3-dimensional probability density outputs from the ML model's operating condition at 

12950 Hz, 13150 Hz, and 13350 Hz. Here the P indicates pressure (bar), and the T is for 

temperature (Celsius), and the vertical axis is the probability density magnitude. These plots 

indicate the range and the density of distributions through temperature and pressure. From the 

density plots, at 12950 Hz (Figure III.13. a), the temperature range is mainly at the warm and hot 

range, and the pressure range is from 3 to 12 bar. However, the density plots at 13150 Hz (Figure 

III.13. b) and 13350 Hz (Figure III.13. c) imply the temperature range from cold to mild, and the 

pressure is in the mid-range from 7 to 15 (bar). From the dyno probability density plot at the 13 

kHz noise previously displayed in Figure III.9. b, the range of the operating conditions reported in 

low to medium range from 7 to 12 (bar) pressure and cold to mild temperature. Finally, from this 

observation and correlating the density plots of the ML model and dyno test, the real instabilit ies 

are determined at 13150 Hz and 13350 Hz. The operating condition metric provides validation for 

the CAE model and identifies the true unstable modes through this assessment. There are two main 

advantages to this validation approach. Firstly, it doesn't require additional physical tests such as 

laser deflection shape test; Secondly, it is computationally affordable and doesn't require 

computing and visualizing modes shapes. However, the computational model's fidelity has a 

significant role in this process, and it must be capable of predicting temperature-dependent 

behavior for materials and nonlinear frictional contacts. The other metric used to validate the real 

instability peak is by exploring the unstable mode shapes and comparing it to the deflection shape 
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test described in the earlier sections. The drawback of the latter approach is that it requires high-

cost physical experiments from one side, and on the other side, it requires slow and expensive 

postprocessing. 

 

(a) 

 

 (b)  
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(c) 

Figure III.13. ML model operating conditions distributions (temperature and pressure) at: 
(a) 12950 Hz, (b) 13150 Hz and (c) 13350 Hz 

 

Brake NVH is a challenging area due to brake subsystems' nonlinear interactions and 

complex thermal and mechanical loading cycles in a wide range of frequency and operating 

conditions. Numerical approaches currently exist to simulate brake squeal, but they are 

computationally expensive and highly challenging for predicting the phenomena. A high-fidelity 

numerical model (captures features such as variations and contact nonlinearities) still requires 

additional physical experiments to identify real instabilities from false positives. For this 

validation, an expensive approach is currently used, that is described in this work. This method 

requires extra computational time to evaluate the unstable complex mode shapes, and an 

operational deflection shape analysis is needed from the physical system.  

In this work, an alternative time-efficient approach for validation is presented by 

introducing a statistical technique and assessing operating conditions' correlation. The proposed 
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scheme introduces a metric that explores the correlation of operating condition distributions from 

the virtual and physical models. It eliminates the necessity for additional physical testing, such as 

the deflection shape test, to verify the correlation.  

Statistical techniques incorporated with the numerical models have been increasingly 

developed and employed to improve virtual models' efficiency. These collaborations and 

interactions brought new challenges to the research areas in Computer Aided-Engineering. To 

present a robust solution, the statistical models must adequately fit the output of computer 

experiments, which requires an accurate estimation of uncertainties in physical experiments and 

incorporating acceptable physics-based criterion. 

This research presented an algorithm is to implement a Machine Learned model based on 

CAE data for brake squeal analysis to simulate the dyno test results. It discussed the challenges to 

incorporate the presented ML model into such a complex problem. Further, the author proposed a 

new validation process. It described extensively the learning approach and equations employed to 

construct the surrogate models. Particularly, it showed the ML-based model presented in this study 

reduced the computational cost significantly by exploring the whole design space from operating 

conditions and skipping over duplicative iterations.  

Even though only one primary noise frequency was evaluated and validated in this study, 

a full spectrum of noise frequencies can be examined using the same method. Moreover, a higher -

dimension model can be used in future studies, including additional parameters for operating 

conditions such as friction values, material properties, and geometrical variations. 
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CHAPTER IV 

 

 

A Deep Learning Technique to Predict Brake Pad NVH Modal Characteristics Based on 

Physical Properties 
 

 

 

Introduction to Brake Pad NVH Modal Characteristics and Physical Properties  

 

Brake in automotive converts kinetic energy into thermal energy by engaging pad's 

stationary friction surface to rotating brake disk to develop a frictional torque to stop the motion 

that happens through a complex loading process with thermo-mechanical divergences and many 

uncertainties. Brake pads must sustain a high frictional contact in a sudden temperature shift due 

to a dissipation of energy and exhibit steady performance [Kinkaid and O'Reilly (2003)]. The pad 

component comprises frictional additives, fillers, binders, and reinforcement fibers [Eriksson 

(1999)]. Pad lining is generally classified into low metallic, semi-metallic, and non-asbestos 

organic (NAO) concerning its ingredients [Alemani et al. (2017) and Sanders (2003)]. Brake pad 

material has a complex formulation and consists of multiple compounds, including metal fiber, 

organic/inorganic fiber, barite, several other additives, graphite, and phenol-formaldehyde resin 

binder [Sasaki et al. (2003)]. Physical properties of pads and their friction material formulation 

play a key role in braking systems' performance and controlling friction, wear, and NVH 

characteristics [Sriwiboon et al. (2018)]. 

According to many works of literature [Papinniemi (2002), Kinkaid and O'Reilly (2003), 

Chen (2007), Dunlap (2008) and Dai and Lim (2008)], brake NVH has been studied in a frequency 

domain and, in general, classified in 3 categories by the range of the frequency. Low-frequency 
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noise and vibration occur in 0 to 1000 Hz, which has multiple categories for several types of noise 

and vibration. From 1000 to 3000 Hz, low-frequency squeal noise occurs more related to brake 

components. A high-frequency squeal noise occurs in about 3000 to 16,000 Hz range, which is 

dominantly influenced by the brake pad's dynamic characteristics and interactions with the brake 

disk. Squeal Noise is a major NVH problem and considered a highly disturbing noise, causing 

customer complaints and dissatisfaction. It is a failure for the quality of products [Kinkaid et al.  

(2005), Hoffmann and Gaul (2008), Mottershead (1998), Papinniemi (2002), and Kinkaid and 

O'Reilly (2003)]. 

Several studies and analyses [Earles and Soar (1971), Earles and Lee (1976), Earles (1977), 

Earles and Badi (1984) and Earles and Chambers (1987)] indicated that brake squeal is due to a 

mode-coupling induced by the neighboring of two or more natural frequencies of the brake system, 

which is mainly governed by the pads and rotor's natural frequency. Pad is the excitation source 

that significantly influences brake vibration and noise performance [Massi et al. (2006)]. Several 

analytical models and analyses developed in the past to explore the brake squeal phenomenon and 

the potential solution to that. These analyses demonstrated that the influence of the frictional 

contact surface is highly significant, as well as modal eigenfrequencies and eigenmodes [Ouyang 

et al. (2005), Oura et al. (2008) and Giannini and Sestieri (2006)]. Elaborated nonlinear finite 

element models of brake squeal demonstrated that a correlation is achievable when the nonlinear 

effects are captured and incorporated into the system model and an accurate material properties 

identification conducted and validated by physical tests [Mottershead (1995), Nack and Joshi 

(1995) and Nack (2000)]. It is demonstrated in multiple research studies that there is an 

interrelationship between components modal characteristics and system modal response [Ouyang 
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et al. (2003), Matsuzaki and Izumihara (1993), Chen et al. (2002), Chen et al. (2003), Bae and 

Wickert (2000) and Brunel and Dufrénoy (2008)]. 

The investigation to find an explicit correlation between pad friction material parameters 

and the NVH performance is still under review and research in the automotive industry. A 

statistical study [Wegmann and Dohle (2015)] performed by conducting physical measurements 

on a relatively large number of pad samples to collect data on pad NVH related features such as 

K3 Compressibility, Specific compress, Eigenfrequency, Dynamic Material Properties (DMP), 

and pad geometry. This study aimed to investigate a correlation between the measured pad 

parameter and the noise performance on dyno tests. A wide range of pads from a serial production 

is used to minimize influences of part variations. This study has not found any resealable 

correlation between the measured pad parameters and the noise results. [Wegmann and Dohle 

(2015), Steege et al. (2008), and Wegmann et al. (2010)]. However, other researches indicated 

NVH sensitivity to parameters such as compressibility and eigenfrequency [Lee and Cho et al.  

(2017), Nonaka (2012) and Oura et al. (2009) and Yuhas and Yamane (2010)]. 

Within this research scope, NVH modal characteristics of brake pads are described by 

eigenfrequencies and eigenmodes in the frequency range of 500 Hz to 16 kHz according to the 

standard test SAE J2598 (2012). The main objective of this test is to establish a standardized and 

repeatable method for measuring the Frequency Response Function (FRF) of disc brake pads. This 

data used as a multifold index for the component modal map, benchmark, and dynamic stiffness 

identification. 

The test setup is shown in Figure IV.1, according to the standard procedure. The FRF 

measurements are performed by striking one end of the pad using an impact hammer and recording 
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the response using an accelerometer on the pad's farthest edges in multiple locations to ensure that 

the first three natural frequencies and responses are measured precisely. 

 

Figure IV.1. Test set up for standard test SAE J2598 (2012) to measure brake pad frequency 

response function 
 

The CAE model set up for simulating the brake pad's frequency response function is shown 

in Figure IV.2. The simulation is performed using a mode superposition method. Modal analysis 

of the component is performed in the first step, which provides natural frequencies and vibration 

modes in a free-free boundary condition. In the second step, by applying a unit harmonic loading 

condition: (Fy=1 N) as the source of the excitation at the furthest end of the pad backing plate, the 

response is measured in terms of acceleration (Ay) at the other end. Steady-state dynamic analysis 

is conducted in the finite element model using Fourier transform, and therefore the modal 

coordinates are extracted in the frequency domain. FRF is calculated as a complex function, with 

real and imaginary parts that can be interpreted in terms of magnitude and phase angle. The 

response magnitude and phase angle are determined by the components' physical features, 

including geometry and material properties (defined by elastic constants and density). One critical 
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element that crucially controls the magnitude of the response is material damping. Damping can 

be included in the analysis as structural damping, classic Rayleigh damping, or frequency-

dependent viscous damping. In this research work, the Rayleigh damping approach is used for the 

numerical model, which contains a mass-proportional and a stiffness-proportional value for the 

entire frequency range. Other researches [Esgandari et al. (2013), Liu and Gorman (1995), and 

Giannini and Meerbergen (2008)] discussed the advantage of using Rayleigh damping in brake 

NVH analysis and have shown results that improved the correlation of CAE to the experimental 

tests using this damping definition. 

 

Figure IV.2. CAE model set up for simulating brake pad frequency response function  

 

This research conducts an experimental work by correlating the frequency response 

function from the finite element model to the physical test for a production brake pad from a Ford 

vehicle. The experimental test is based on the SAE J2598 (2012) standard procedure. The material 

and geometry parameters adjusted precisely to ensure the preconditions for the correlation exists. 

The numerical model is based on a steady-state dynamic analysis in CAE using a high-resolut ion 

finite element model.  Comparing the CAE results to the physical test is shown in Figure IV.3 

(Left), which demonstrates the correlation of the brake pad's frequency response function at 1st 

and 2nd normal modes between the CAE simulation vs. the Test measurements at ambient 



 

 

56 

condition. The 1st peak corresponds to the pad's 1st normal mode, and the 2nd peak corresponds 

to the 2nd normal mode. However, SAE J2598 suggests the measurement of the first three 

eigenmodes. In this case study, the 3rd eigenmode is a higher order of 2nd eigenmode, and their 

characteristics correlate with each other. Therefore, it is dismissed from this study. For this 

experiment, the 1st and 2nd normal modes were observed as bending and torsional modes, 

respectively, as illustrated in Figure IV.3 (right). However, pad eigenmodes' order depends on the 

pad's structure and the backing plate geometry and could vary for the other geometries. 

 

Figure IV.3. Frequency response function correlation for the brake pad’s 1st and 2nd normal 
modes: CAE simulation vs Test measurements 

 

Physical tests and FEA simulation are currently used for studying component modal 

characteristics. Although FEA simulation could precisely match up with test in component level 

yet, it relies on physical inspection of parts and tuning of materials and geometries to capture 

variations to provide comparable results with test experiments. This process requires several hours 

of engineering and computational time for a single analysis. However, the numerical FEA model 

can offer many iterative designs concerning its input parameters to discover the optimum design 

for an NVH resolution. These data are practically beneficial to find a pattern between critical 

physical parameters and overall performance.  
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The contribution of this chapter is to propose and implement an alternative technique 

utilizing data from numerical simulations to predict NVH modal characteristics of the brake pad 

(i.e., the frequency response function) concerning its physical features. The pad's physical features 

comprise pad friction material and geometry parameters and environmental and operating 

conditions: 

1. This method eliminates urgency to additional physical testing and numerical model at a 

component level analysis. 

2. It accelerates the process of design and development. 

3. It facilitates the perception of the brake pad's physical features and their synchronous 

interactions and their implications on NVH response. 

4. It will allow an efficient way of redesigning products by circumventing the redundancy in 

design exploration. 

 

Figure IV.4. This chapter research contribution 

 

 

(1) Eliminating additional 
tests and numerical  
simulations

(2) Accelerating process of 
design and developments

(3) Perception of important 
features, their interactions 
and implications 

(4) Efficient designing that 
minimizes redundancy
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Brake Pad Material Features 

Brake pad friction material is transversely isotropic property. Transversely isotropic 

property is a specific subclass of orthotropic property that is characterized by a plane of isotropy 

at every point in the material. As shown in Figure IV.5, for transversely isotropic material, physical 

properties are symmetric about a normal axis for the isotropy plane. Infinite planes of symmetry 

could exist within this transverse plane; however, the material properties remain the same in all 

directions. In contrast, an orthotropic material has three orthogonal planes of symmetry, where 

properties differ along each of three principal directions [Schreiber et al. (1973), Every (1993), 

Brecht (2003), Hashmi (2014) and Aboudi (2013)]. 

 

(a)      (b) 

Figure IV.5. Material properties structure: Orthotropic (a) vs Transversely isotropic (b) 

 

Orthotropic material has the compliance tensor given by [Hashmi (2014), Aboudi (2013)]: 

 

 

 

 

https://www.sciencedirect.com/topics/engineering/stiffness-tensor
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(Equation IV.1)    

{
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Assuming the 1–2 plane to be the plane of isotropy at every point, transverse isotropy 

requires that: 𝐸1 = 𝐸2 = 𝐸𝑝,  𝐸3 = 𝐸𝑜𝑝 , 𝜐31 = 𝜐32 = 𝜐𝑜𝑝−𝑝, 𝜐13 = 𝜐23 = 𝜐𝑝−𝑜𝑝, and 𝐺13 = 𝐺23 =

𝐺𝑜𝑝 . Where p and op stand for “in-plane” and “out-of-plane,” respectively. Thus, while 𝜐𝑜𝑝−𝑝 has 

the physical interpretation of the Poisson's ratio that characterizes the strain in the plane of isotropy 

resulting from stress normal to it, 𝜐𝑝−𝑜𝑝 characterizes the transverse strain in the direction normal 

to the plane of isotropy resulting from stress in the plane of isotropy. In general, the 

quantities 𝜐𝑜𝑝−𝑝 and 𝜐𝑝−𝑜𝑝 are not equal and are related by: 

(Equation IV.2)   

𝜐𝑜𝑝−𝑝

𝐸𝑜𝑝
=
𝜐𝑝−𝑜𝑝

𝐸𝑝
 

And Gp is related to Ep and υp as following: 

(Equation IV.3)     

𝐺𝑝 =
𝐸𝑝

2(1+ υp)
 

In the transversely isotropic materials, the stability relations for orthotropic elasticity simplify to: 

(Equation IV.4) 

𝐸𝑝 ,  𝐸𝑜𝑝 ,  𝐸𝑝 ,  𝐺𝑜𝑝 > 0,   |𝜐𝑝| < 1, |𝜐𝑝−𝑜𝑝 |< (
𝐸𝑝

𝐸𝑜𝑝
)
0.5

 ,  |𝜐𝑡𝑝 |< (
𝐸𝑜𝑝

𝐸𝑝
)
0.5

 , 
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1 −  𝜐𝑝
2 −  2. 𝜐𝑜𝑝−𝑝 .𝜐𝑝−𝑜𝑝 −2.𝜐𝑝 . 𝜐𝑜𝑝−𝑝 . 𝜐𝑝−𝑜𝑝 > 0.  

The characterization of a transversely isotropic material consists of finding the five 

independent elastic constants of the compliance tensor as of: 𝐸𝑝, 𝜐𝑝−𝑜𝑝, 𝜐𝑜𝑝−𝑝, υp and 𝐺𝑜𝑝. Pad 

friction material in the brake squeal instability analysis is defined based on the five elastic 

constants in the compliance tensor, damping values, and the density of the pad listed in Table IV.1.  

The pad material elastic constants and density are generally extracted from two 

experimental techniques: one technique is the Ultrasonic wave test, commonly called ETEK 

measurements. ETEK is a high-frequency testing technique in the MHz range, and it has been used 

widely in the automotive industry to measure the in-plane and out-of-plane elastic properties of 

the anisotropic friction material [Strickland and Yuhas (1996) and Sanders and Yuhas (2007)]. 

This test is known as SAE J2725 (2009) test, which specifies a standard method for measuring 

elastic constants in friction materials by employing a precise ultrasonic velocity measurement. 

Another technique uses Frequency Response Function (FRF) outputs from the SAE J2598 (2012) 

test and a reverse engineering technique to optimize the elastic constants of the pad friction's 

material properties conducted through a CAE DOE material optimization. The latter approach 

requires both FRF test data, numerical simulation, and DOE optimization for tuning the material 

features. But the advantage of this technique is it provides the dynamic properties in the given 

frequency range of the measurement, i.e., 500 Hz to 16 kHz, which is the same range as the 

problem for brake NVH. However, the ETEK measurement technique determines the properties 

in the MHz range. Studies have shown the dynamic properties of the pad materials are considerably 

varies in kHz and MHz range [Lou et al. (2007), Malmassari et al. (2015), and Augsburg et al.  

(2003)]. Therefore, the second technique is employed here as a more reliable technique for the 

material properties definition.  

https://www.sciencedirect.com/topics/engineering/tensors
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As discussed earlier, in this research, the classic Rayleigh damping approach is used for 

brake pad material, and it is described by only two variables of mass-proportional value 𝐷𝑚 and 

stiffness-proportional value 𝐷𝑠 as shown below [Geradin (1993), Newland (1989)]: 

(Equation IV.5)  

[C] = 𝐷𝑚 [M] + 𝐷𝑠 [K] 

Where [M] is the component Mass matrix, [C] is the component Damping matrix, and [K] is the 

component Stiffness matrix.  

Likewise, the mass proportional and the stiffness-proportional parameters 𝐷𝑚 and 𝐷𝑠 are 

connected to the critical damping ratio ξ𝑖  and the natural frequency ω𝑖  of the component at 

vibration mode i and is defined by Equation IV.6. The values for critical damping ratio ξ𝑖  and the 

natural frequency ω𝑖  at every eigenmodes of the component can be directly calculated from the 

output of the component FRF test SAE J2598 (2012) [Liu and Gorman (1995) and Meerbergen 

(2008)]. 

 (Equation IV.6)  

ξ𝑖 =
1

2
(
𝐷𝑚
ω𝑖

+ 𝐷𝑠.ω𝑖) 
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Table IV.1. Brake pad friction material parameters 

Variable Variable Description 

𝑬𝒑 Young’s modulus in the plane of isotropy 

𝑬𝒐𝒑 Young’s modulus in the direction of normal to the plane of isotropy 

𝝊𝒑 Poisson's ratio 

𝝊𝒑−𝒐𝒑 Poisson's ratio that characterizes the transverse strain in the direction normal 

to the plane of isotropy 

𝑮𝒐𝒑 Shear modulus in the direction normal to the plane of isotropy 

𝑫𝒎 Mass Proportional Damping value 

𝑫𝒔 Stiffness Proportional Damping value 

𝑹𝒐 Density of the pad friction 

 

In this research work, for pad friction material, four features studied as the dominant 

features that influence the Frequency Response Function of the pad in Free-Free boundary 

condition as defined in SAE J2598 (2012). These four material features are: 1-𝑬𝒑: Young’s 

modulus in the plane of isotropy, 2- 𝑮𝒐𝒑: Shear modulus in the direction normal to the plane of 

isotropy, 3- 𝑫𝒎: Mass Proportional Damping value, and 4- 𝑫𝒔 : Stiffness Proportional Damping 

value. 

An initial sensitivity analysis is conducted in CAE by running a dynamic steady-state 

analysis using the pad FEA model by varying the material parameters (- and +) 25%, to observe 

the significance of these features on the frequency response function. The result is shown in Figure 

IV.6-9. For the material elastic constants, it is observed that the in-plane Young’s modulus “Ep” 

and the out-of-plane shear modulus “Gop” are crucial for shifting the first two natural frequencies 
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of the pad. However, the in-plane Young’s modulus “Ep” dominantly impacted the 1st eigenmode, 

which is the bending mode of the pad and out-of-plane shear modulus “Gop” mostly affected the 

2nd eigenmode, which is the torsional mode of the pad.  

Whereas, the material mass proportional damping “Dm” and stiffness proportional 

damping “Ds”, mostly influences the magnitude of the response and do not have a major influence 

on the natural frequencies as a result shown in Figure IV.8 and Figure IV.9. Another observation 

is, the mass proportional variable “Dm” has a significant impact on the 1st peak (lower frequency), 

and the stiffness proportional “Ds” has a larger effect on the 2nd peak (higher frequency).  

 

Figure IV.6. Brake pad Frequency Response Function plot for material in-plane Young’s 
modulus “Ep” at 0%, -25% and +25% variation 
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Figure IV.7. Brake pad Frequency Response Function plot for material out-of-plane shear 
modulus “Gop” at 0%, -25% and +25% variation 

 

 

Figure IV.8. Brake pad Frequency Response Function plot for material mass proportional 
damping “Dm” at 0%, -25% and +25% variation 
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Figure IV.9. Brake pad Frequency Response Function plot for material stiffness proportional 
damping “Ds” at 0%, -25% and +25% variation 

 

 

Brake Pad Geometry Features  

Brake pad geometry is a significant effective squeal counter-measurement, especially for 

noise solution at higher frequencies. Pad geometry is defined by chamfer and slot geometries and 

the backing plate's shape, and the overall thickness. The last two are constrained by manufacturing 

tooling and are customarily considered inflexible. One remedy to address the brake noise is to 

explore the brake pad locations with the high vibration amplitudes and then optimize the chamfer 

or slot shape as an effective solution to mitigate the high vibration area. [Sasaki et al. (2003) and 

Alemani et al. (2017)] Pad geometry has multiple effects regarding changing the overall NVH 

performance of the brake. One impact is changing the pressure contact distribution and, as a result, 

the source of excitation. Contact distribution defines the contact area between rotor and pads, and 

it changes the vibration energy transfer.  [Kinkaid et al. (2002), Liu et al. (2006)]. The other 

substantial effect is changing the modal frequency of the component as well as the system [Chen 
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(2009), Denys et al. (2006), Chen and McKillip (2008)]. Another theory describes the significance 

of modal frequency shifts that changes the vibration energy transfer between rotor and pads. It 

contends there are eigenmodes and eigenfrequencies in the first place that would reinforce the 

effective energy transfer. The latter implies the significance of pad geometry on the modal 

frequency of brake and its impact on system NVH behavior (Kinkaid et al. (2002), Liu et al. (2006), 

and Fieldhouse (1999)]. 

The two major pad geometry features are chamfer and slot (Figure IV.10). Brake pad slots 

mainly designed to allow air/gas flows from the pad during the braking operation also provide 

stress relief to avoid cracks in the material. The other purpose of the slot is to shift the brake pad's 

natural frequency and control the bending and torsional modes. Chamfers can considerably move 

the contacts between the pad and the rotor. They are mainly designed to remove high vibration 

regions around the brake pad's contact edges where it interacts with the disk. These two features 

affect the brake vibration and squeal noise predominantly. Pad shapes are studied in brake NVH 

development using optimization techniques to solve high-frequency noise with a cost-efficient 

change. Pad geometry could have sophisticated shapes that comprise chamfers and slots in 

different angles and form and size, including asymmetric leading to trailing design. Nonetheless, 

this study limited geometry complexity with only two prominent features captured for proof of the 

concept and the pad design assumed to be symmetric. 
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Figure IV.10 Brake pad geometry features: slot and chamfer  

 

The pad shape geometry iterations that have been studied are shown in Table IV.2. In this 

work, Chamfer features are considered a simple straight cut with one dimension varies in a range 

of 0 to 20 % of the pad's overall lining length. Additionally, the slot size (defined by its width) 

changes in a range of 0 to 6 % of the lining length. Both variables are predefined in the vertical 

direction (i.e., depth is fixed), and they are only flexible in the tangential direction. More complex 

pad geometry features can be studied in future analysis and be considered as new variables.  

 

Table IV.2. Pad geometry features: “Chamfer” and “Slot” Size to the pad lining length % 

Iterations Chamfer Size % Slot Size % 

1 0 % 0 % 

2 0 % 3 % 

3 0 % 6 % 

4 10 % 0 % 

5 10 % 3 % 

6 10 % 6 % 

7 20 % 0 % 

8 20 % 3 % 

9 20 % 6 % 
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A sensitivity analysis is conducted for the pad geometry in CAE, varying the chamfer and 

slot sizes variables from 0 to the higher bounds of their range to observe its impact on the frequency 

response function. As shown in Figure IV.11, these results demonstrate that adding the slot impacts 

the first two natural frequencies of the pad (both bending and torsional modes) and also the 

response's magnitude. Changing the slot size from 3% to 6% is still considerable but not as 

effective as including/excluding this feature. On the other side, as displayed in Figure IV.12, 

adding the chamfer hints no significant impact on either the natural frequencies or response; Plus, 

changing the chamfer from 10% to 20% (of pad length) shows a minor influence on the FRF plot 

at either peak. 

 

Figure IV.11. Brake pad Frequency Response Function plot for “Slot size” of 0%, 3% and 6% of 
the length of the pad 
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Figure IV.12. Brake pad Frequency Response Function plot for “Chamfer size” of 0%, 10% and 

20% of the length of the pad 
 

 

Enviormental and Operating Condition Factors 

The brake's environmental and operating conditions are unique. Humidity and temperature 

are two primary environmental conditions. There have been numerous research developments to 

enhance cold and humidity test procedures to predict brake NVH better, explicitly addressing the 

squealing noise. Cold room chassis dynamometer is one of the most common recent tests to capture 

humidity and temperature impacts on noise performance. This test procedure is updated in the 

latest SAE standard procedure, J2521 (2005), to scrutinize environmental factors and uncertainties. 

Due to the braking phenomena' frictional nature, the dissipation of energy from the frictional 

contact surface between rotor and pada raises the pad's surface temperature up to 300 degrees 

Celsius. Several studies revealed the static and dynamic properties of brake pad dramatically 

changes in this thermal cycle [Nishioka et al. (2006), Miyoshi and Buckley (1984), Kobayashi and 

Odani (1997), Odani et al. (1999), Eriksson et al. (2001), Chen (2002) and Koch et al. (2006)]. 
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Research studies also indicated that the pad's contact surface characteristics, including surface to 

surface frictional behavior, are extremely affected by temperature varying due to the thermal 

expansion effect [Chen (2009)]. 

The fugitive nature of squeal makes it highly challenging to recreate the test rig's noise 

events and study the root cause. Uncertainties exist due to the variations in the operating conditions 

and the environmental factors that considerably influences both component and system behaviors.  

The main operational conditions and environmental factors considered in brake NVH analysis are 

temperatures, humidity, braking pressure, rotor velocity, and coefficient of friction [Kinkaid and 

O'Reilly (2003), Ichiba and Nagasawa (1993) and Chen et al. (2007)]. However, the last two 

features do not apply in the component level analysis. Besides, the braking pressure excluded, 

insofar as this research's scope is studying the component response in a Free boundary condition. 

At this point, there was no data available for the humidity impacts on modal characteristics. 

Therefore, in this research, only the temperature factor is considered as a primary environmental 

feature. The Frequency Response Function measurements were conducted for a production pad at 

four temperatures: -15, 25, 100, and 150 (Celsius) within the braking operating conditions range. 

A high-fidelity numerical model was created in ABAQUS by accounting for material temperature 

dependency, nonlinear geometry formulations, and thermal expansion proportion (Equation IV.7). 

The numerical model correlated to the temperature-dependent test data for a production 

pad tested in Ford NVH Development internal facilities; The comparison results in Table IV.3. 

The CAE frequency response function output is shown in Figure IV.13. This result displays a 

strong sensitivity of the Frequency Response Function to thermal variations. This result concludes 

that both natural frequency and response highly connected to the thermal effect, and the two 

normal-mode peaks (bending and torsional) shifted consecutively.  
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(Equation IV.7)  

𝜖𝑡ℎ = 𝛼. (𝜃, 𝑓𝛽). (𝜃 − 𝜃
0) −  𝛼. (𝜃𝐼, 𝑓𝛽

𝐼). (𝜃𝐼 − 𝜃0) 

Where 𝛼 is the thermal expansion coefficient; 𝜃 is pad temperature; 𝜃𝐼 is the initial temperature; 

𝑓𝛽  are the values of the predefined field variables; 𝑓𝛽
𝐼 are the initial values of the field variables; 

and 𝜃0 is the reference temperature for the thermal expansion coefficient. The second term in the 

above equation represents the strain due to the difference between the initial temperature, 𝜃𝐼, and 

the reference temperature, 𝜃0.  

 

Table IV.3. Comparison of the correlated CAE model results vs. the FRF test results 

Temp. (c) -15 25 100 150 

Eigenfreq.1 Test (Hz) 2702 2595 2386 2305 

Eigenfreq.1 CAE (Hz) 2670 2573 2377 2248 

Var. -1% -1% 0% -2% 

Eigenfreq.1 Test (Hz) 4059 3861 3486 3395 

Eigenfreq.2 CAE (Hz) 4027 3874 3562 3350 

Var. -1% 0% 2% -1% 
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Figure IV.13. Brake pad Frequency Response Function plot for pad temperatures at: -15 C, 25 C, 
100 C and 150 C  

 

 

Methodology: A Structured Physics-Guided Machine Learning Technique 

Machine learning (ML) models in recent years played a pivotal role to support critical 

decision making, automation of the time-consuming process, predicting the complicated systems, 

and advancing scientific discoveries [Karpatne et al. (2017), Karpatne et al. (2018), Nathan (2017) 

and Rahul Rai and Chandan (2020), Baker (2019)]. The state-of-the-art machine learning research 

has been making significant progress in many directions. In engineering, due to an increasing 

evolution of standard testing and design rules, ML has potential applications for product 

characteristics identification, decision-making, and process optimization, specifically in product 

developments [Willard et al. (2020)]. ML-based model aspires to equip a system with an intelligent 

element to automatically improve its performance through experience, pattern recognition, and 

statistical inference [Pham and Afify (2005)]. Progressive ML techniques discover sophisticated 

data patterns and transform information into an autonomous system that imitates human 
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intelligence and activities [Panchal et al. (2019)]. ML techniques increasingly developed and 

deployed in growing engineering and technology industries in a wide range of activities from the 

tuning of numerical parameters [Lynch et al. (2019)] and synthesizing high-dimensiona l 

optimizations [Chen and Fuge (2019)] to extracting human preferences and design strategies 

[Raina et al. (2019)].  

However, Predicting the behavior of complex systems by only exploring correlation and 

reasoning relationships between inputs and outputs could be inefficient and may have multiple 

drawbacks. On the other hand, by developing physics-based models, it is expansive and infeasible 

to run many design iterations within the demanded resolution. Considering that neither an absolute 

ML-based nor an explicit physics-based methodology alone functions effectively for complex 

science and engineering problems. Thus, researchers are recently studying the continuum between 

mechanistic and ML models to incorporate merits from science-based and data-driven learnings 

[Karpatne et al. (2017) and Rahul Rai and Chandan (2020)]. 

Integrating science-based principles and ML models in a synergistic manner seems to be 

an efficient technique to accelerate computationally expensive physics-based models. The 

essential to this approach is to generate a data repository that could be used to discover a pattern 

for predicting the system's outcome. In many cases, this technique's disadvantages are that 

prediction is unreliable beyond the range of tested input variables. In training a machine learning 

algorithm directly from the operative data, it should be noted that the model prediction capability 

shrinks as parameters diverge from the trial data, considering the fact that machine learning 

algorithms tend to fail in predictions with an extrapolation nature. One remedy to improve 

predictive ability is to implement a physics-guided machine learning algorithm with a structured 

architecture that accounts for the complexity of input features and variables and allows for 
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expansion of the range of variables independently at any point. This facilitates the machine 

learning algorithm's training by employing a structured framework that is designed based on the 

physical properties of data. This technique provides a more precise image to find the patterns 

according to the underlying physics of the system [Willard et al. (2020), Karpatne et al. (2017), 

Schleder et al. (2019), Ivezic et al. (2019) and Raccuglia et al. (2016)]. 

This section provides an overview of a structured physics-guided machine learning 

technique that is the main contribution of this research work. The outline is drafted in the flowchart 

shown in Figure IV.14. The proposed approach aims to predict the brake pad's NVH modal 

characteristics from its physical features and feed the results into brake system NVH analysis.  

The brake pad's physical features include geometry, material, and environmental features 

collected through experiments. These features are imported to both the ML model and the 

computational model (CAE). The computational model then generates a more extensive database 

through an iterative DOE to deliver adequate samples to the machine learning (ML) model. The 

output from this CAE DOE is the Frequency Response Function (FRF) of the pad, which converted 

to its mechanistic properties defined by three attributes of Eigenfrequency (Eigenfreq.), 

Acceleration (Acc.), and Loss Factor. 

For the brake pad, geometrical features are available from either the parametric CAD 

model or the geometry library. Each brake pad may have different geometries and shapes, but the 

geometrical parameters remain the same as long as the fundamental structure doesn't change. 

Material features are collected through the material library, and environmental data is captured 

through experimental records. 

In this study, a physics-guided machine learning algorithm is employed to combine 

experimental and computational data. With this basis, an advancement to the ML algorithm is 
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enforced by integrating data from the correlated CAE paradigm and correspondent physics. Input 

features are assigned by their physical property associated with distinct attributes. Aggregation of 

experimental and computational data provides higher precision for the predictive Machine 

Learning algorithm. 

 

Figure IV.14. Methodology flowchart: employing a physics-guided ML model to predict modal 
characteristics from the physical properties of the brake pad 
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Data Analysis and DOE Interactions 

Data in this study is collected from CAE DOE. The baseline model is precisely correlated 

with the experimental test result (SAE J2598 test). A case study with 9216 design iterations 

developed through a Design of Experiment (DOE), which ran through iterative CAE using 

ModeFrontier software (interface) and ABAQUS software (solver). The dataset consists of seven 

inputs and six outputs, as listed in Table IV.4. There are two geometry inputs: pad chamfer size 

(C_Size) and slot size (S_Size). Also, four material inputs include two elastic constants E_p and 

G_op and two damping parameters D_m and D_s. Lastly, the pad temperature as the 

environmental input. 

Additionally, six outputs are driven based on the FRF plot. Three outputs define each 

eigenmode: including Frequency, Acceleration magnitude, and the Loss factor, for two normal 

modes of the pad. A feasible range for variables is decided according to the design and 

manufacturing constraint and the operating conditions range. The DOE iterations are established 

based on a pseudorandom selection of material and temperature variables and limited selections 

for geometry features. 
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Table IV.4. Parameters specification for the case study dataset   

Input Unit Range Dataset Descriptions Output Unit Descriptions 

C_Size mm [0:20] % 

Pad 

Length 

0, 10, 20 Chamfer Size 

(1D): Length 

F 1 Hz 1st Eigenmode Frequency 

  

S_Size mm [0:6] % 

Pad 

Length 

0, 3, 6 Slot Size (1D): 

Width 

E_p kPa [-25:25] 

% C-

Property 

Pseudo 

random 

Young’s Modulus 

in the plane of 

isotropy 

Acc 1 mm/s2/N Acceleration for the1st Eigenmode 

 

G_op kPa [-25:25] 

% C-

Property 

Pseudo 

random 

Shear Modulus 

normal to the 

plane of isotropy 

LossF 1 NA Loss Factor for the1st Eigenmode 

  

D_m NA [-25:25] 

% C-

Property 

Pseudo 

random 

Mass Proportional 

Damping value 

F 2 Hz 2nd Eigenmode Frequency  

 

D_s NA [-25:25] 

% C-

Property 

Pseudo 

random 

Stiffness 

Proportional 

Damping value 

Acc 2 mm/s2/N Acceleration for the 2nd Eigenmode 

 

T C [-15: 

150] 

-15, 25, 

100,150 

Pad Temperature LossF 2 NA Loss Factor for the 2nd Eigenmode  

 



 

 

78 

In general, a correlation between two variables is defined by measuring a linear association 

between those two variables, which is a value between -1 to 1. A correlation coefficient value close 

to 1 or -1 indicates the two variables are ideally correlated (respectively, with a positive or negative 

relationship). Additionally, a correlation coefficient close to zero indicates variables have poor 

correlation, or in other words, variables are linearly unassociated. The correlation analysis shows 

what variables have a relationship with another; however, it doesn’t provide any insights into cause 

and effect relationships. In this data analysis, the Pearson correlation approach is used, a common 

technique in science and engineering. Pearson product-moment correlation coefficient (PPMCC) 

measures the strength of linear dependence between two variables x1  and x2,  defined by Equation 

IV.8 as following [Hogg et al. (2014), Lindeman et al. (1980)]: 

(Equation IV.8)     

𝜌x1,x2 =
COV (x1   , x2)

σx1 σx2
=
E[(x1  − μx1) (x2 − μx2)]

σx1 σx2
 

Where, COV is the covariance and σ is the standard deviation. Additionally, in the other form of 

the equation μ is the mean and E is the expectation. 

Parallel to the correlation matrix, a scatter matrix chart shows any dependency between the 

variables. Still, it also provides information such as the nature and the strength of such correlation, 

how data is dispersed, visualize the distribution of data, and enables detection of the outliners. 

Besides, a potential advantage of the scatter plots is it allows to explore non-linear relationships 

between variables. 

The correlation and scatter matrix chart shown in Figure IV.15 displays the relationships 

of all the input and output features for the iterations executed in the CAE DOE through this work. 

The scatter charts for each variable pair are shown in the upper triangular of the matrix. The 
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correlation charts are shown in the lower triangular; the probability density function charts are 

shown on the matrix's main diagonal.  

In this analysis, a general guideline is used as an indicator for determining the strength of 

the correlation: 

• Coefficient from 0.1 to 0.3 and -0.1 to -0.3 considered as low strength correlation. 

• From 0.3 to 0.5 and -0.3 to -0.5 considered as medium strength correlation. 

• From 0.6 to 1.0 and -0.6 to -1.0 considered a high strength correlation. 

This analysis (Figure IV.15) demonstrates a strong linear correlation between the 

acceleration responses for the 1st and the 2nd eigenmodes. Also, there is a significant relationship 

between the acceleration responses and the loss factors. Furthermore, there is a positive linear 

correlation between the 1st and the 2nd eigenmodes' loss factor. For the input features, elastic 

constants E_p and G_op mainly tied positively with the eigenfrequencies. Another observation is 

that the mass proportional damping D_m negativity correlated with the Loss Factors and 

Acceleration Peaks. Also, for the geometry variables, the slot size (S_Size) is adversely connected 

with the outputs. Besides, there is a strong correlation between the material elastic constants and 

the temperature inputs. 
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Figure IV.15. The correlation and scatter matrix chart for all the input and output features from 
the CAE DOE dataset 
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Interaction Effect in Statistics is defined by a condition that a concurrent effect of two or 

more covariates on an outcome is not additive. The impact of one covariate on the outcome 

depends on the state of the other covariates. Interactions analysis gives an insight into how to 

evaluate better a relationship between covariates in the model and their effects on the outcome, 

leading to improving the model fit [Hayes and Matthes (2009)]. In a more complex scenario, 

independent covariates could interact with another, and a third variable influences the relationship 

between an independent and dependent variable. In this situation, it is crucial to incorporate the 

effect in the model to capture a more pragmatic implication of the real behavior [Hayes and 

Matthes (2009), Aschard (2016), Jaccard, and Turrisi (2003) and Reno et al. (1991)]. 

A DOE Interaction Effects explored here using ModeFrontier software. The Interaction 

Effects Chart refers to a sequence of box-whiskers plots that visualize the first-order interaction 

effects to assess the significance of the interactions through the evaluated factors. Interaction 

Effect accounts for contributions of the product of factors for 2-level and 3-level analysis. For two 

variables x1  and x2 the Interaction Effect is calculated by Equation IV.9. For 2-level analysis only  

x1 + x2 terms are considered; for the 3-level analysis both x1 + x2and  x1
2 + x2

2 terms are 

accounted. Albeit, in this study only the 2-level analysis evaluated.  

(Equation IV.9)  

𝐹(x1,x2) = 𝑘 + x1 + x2 + x1x2 + x1
2x2 + x1x2

2 + x1
2 + x2

2 

Each factor initially ranked by low and high rank, then by multiplying each factor by all 

the other factors, a new rank calculated and assigned is shown with a box-plot at each level. A 

factor considered significant if it has a more remarkable shift from negative to positive levels 

concerning the outcome. The slope of the connecting line denotes variation; a steeper slope implies 

a larger variation that indicates a significance of that factor. A positive slope indicates that the 



 

 

82 

given factor and the outcome positively correlated, whereas a negative slope indicates a negative 

correlation. The Interaction Effect chart for input variables with respect to the FRF outcomes 

shown in Figure IV.16-18 for the dataset in this study. For eigenfrequency outcomes at both normal 

modes (Figure IV.16), an apparent positive correlation exists for G_op*S_Size and E_p*S_Size. 

At the 1st eigenfrequency, a significant negative correlation factor appears for C_Size*S_Size. At 

the 2nd eigenfrequency, E_p*G_op, S_Size*T, and C_Size*T are prominent factors.  

For the acceleration peaks (Figure IV.17), a strong correlation exists for G_op*S_Size and 

E_p*S_Size and then D_m*G_op and D_m*E_p. Also, there is a substantial negative correlation 

for C_Size*D_m, S_Size*D_m, and C_Size*S_Size. For the Loss factors (Figure IV.18), a 

dominant positive tie corresponds to the D_m*E_p and D_m*G_op and dominant negative factors 

associated with C_Size*D_m, S_Size*D_m. 
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Figure IV.16. DOE Interaction Effect chart for input variables for the outcome: Eigenfreq1 and 
Eigenfreq2  
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Figure IV.17. DOE Interaction Effect chart for input variables for the outcome: 

Acceleration_Peak_1 and Acceleration_Peak_2 
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Figure IV.18. DOE Interaction Effect chart for input variables for the outcome: Loss_Factor_1 

and Loss_Factor_2 
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Implementing an Innovative Deep Learning Model 

In machine learning, the area referred to as brain-inspired computation is categorized as an 

Artificial Neural Network (ANN) inspired by the brain's biology. ANN mimics the basic form and 

functionality from a human brain's physics that simulates an interconnected process that can learn 

and operates as an intelligent program. But, unlike a biological brain that neurons connect within 

a distinct space, ANN has a particular pattern of layers and connections with their directions of 

data propagation [VanRullen (2017), Hassoun (1996) and Esser et al. (2016)]. In other words, 

Artificial Neural Network (ANN) is a computational arithmetic model acquired by information 

processing emulating the human neural network. Neurons in Neural Networks are connected and 

specified by an output function called an excitation function. The neuron's computation entails a 

weighted sum of the input values. Any change to the connection modes, weight (synapses), and 

the excitation function changes the network's output [Hassoun (1996)]. The functional operation 

within the neuron performed on the combined inputs can be a non-linear function that results in 

creating output for the inputs by exceeding a threshold. In this definition, neural networks apply a 

non-linear function to the weighted sum of the input values. Weighted sums being propagated 

through the neurons from the input layer to the hidden layers and eventually receives to the output 

layer [VanRullen (2017), Hassoun (1996) and Esser et al. (2016)]. 

Deep learning is a newer field of machine learning that emerged from ANN researches in 

the 1960s [Lecun (2015)]. Deep learning generally referred to a domain of Neural Network in 

which the network has more than one hidden layer, and it is often called Deep Neural Networks 

(DNNs). DNNs can learn multi-level representations of complex neural networks with many 

features, and they showed superior performance in processing visual data and images. Deep 

learning is believed to have increasing success from the 2010s due to 1- rapid grow of training 
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data and information, 2-advances in semiconductor devices and computing capacities, and 3-

development of algorithms and frameworks that facilitates research and explorations [Sze et al.  

(2017), Russakovsky et al. (2015) and Deng et al. (2013)]. Since then, it has widely been used in 

many applications from multimedia [Pouyanfar et al. (2018) and Girshick et al. (2014)] to robotics 

[Kustikova and Druzhkov (2016).], medical [Esteva et al. (2019), Angermueller et al. (2017) and 

Ching, T. et al. (2017)], and engineering design and product developments [Márcia et al. (2020) 

and Stender et al. (2021)]. The aim of training the Deep Neural Networks (DNN) is to establish 

the value of the weights and bias to optimize the model's score depending on the defined metric. 

If the metric is defined as Loss, its score is appraised by the difference between prediction and 

actual outcomes. Therefore, the model objective is to search for the best set of weights that 

minimize the Loss through the training dataset. By applying the gradient descent approach, the 

weights are updated given Equation IV.10, by computing the partial derivative of the Loss 

concerning the weight. This gradient determines the updated weights to minimize the Loss through 

an iterative process [Sze et al. (2017)]. 

 (Equation IV.10)  

𝑊𝑖𝑗
𝑡+1 =𝑊𝑖𝑗

𝑡 −  𝛼 
Δ𝐸

Δ𝑊𝑖𝑗
 

Where, 𝑊𝑖𝑗 are weights and, 𝛼 is called the learning rate and 𝐸 is Error. 

A backpropagation technique is used to compute the gradient's partial derivatives and 

update the weights regarding the loss. Various techniques employed to train the weights depend 

on the application. The DNNs are classified according to their learning mode to supervised, 

unsupervised, and reinforcement learning (a special form of supervised learning). The 

backpropagation algorithm described here is supervised learning, one of the most frequent neural 

networks approach adopted for multilayer perceptron (MLP) [Sze et al. (2017), Towell and Shavlik 
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(1993) and Craven (1997)]. These DNNs have superior performance in many tasks and provide a 

general pragmatic module for learning numerical and categorical data that is robust to noise in the 

training data. However, their drawbacks are: 1- They can create too convoluted models that are 

hard to perceive and 2- They can computationally be very expensive [Pham and Liu (1999) Haykin 

(1994) and Mitchell (1997)]. Nonetheless, there has been an expansion of development and 

research in recent years that specifically concentrated on these two issues [Hsieh (2009)]. 

This research employs a supervised, structured Deep Neural Network (DNN) with seven 

inputs and six outputs to fit the database collected from the CAE DOE (Shown in Figure IV.19). 

Input features subdivide into three main groups: 1- Geometry group composed of pad chamfer size 

(C_Size) and slot size (S_Size). 2- The material group that includes the material elastic constants 

of in-plane Young’s modulus (E_p) and out-of-plane shear modulus (G_op), and damping features 

of mass proportional damping (D_m) and proportional stiffness damping (D_s). 3- Environmental 

group composed of the pad temperature. On the other side, outputs are Frequency, Acceleration 

magnitude, and the Loss factor for the first two eigenmodes of the pad. 

 
Figure IV.19. A schematic of the DNN model with multi-input and multi-output 
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Innovative network architecture is defined with distinct inception modules consisting of 

geometry, materials, and environmental blocks. This architecture allows multiple-input, including 

numerical and categorical data in a single end-to-end network with separate neurons, layers, 

activations, and normalization structures. The modules then are concatenated to get maximal 

multiscale features of the data. For each module, a distinct multi-layer perceptron (MLP) is 

developed and finally combined with other MLPs, as shown in Figure IV.20. The features are 

extracted from a fully connected layer, and after the concatenation from different Inception 

modules are passed to the final MLP, between the combined inputs and the outputs. The advantage 

is that each deep layer Inception module could be structured separately, which induces a superior 

performance for the overall network. 

 

Figure IV.20. Architecture of the DNN model with distinct modulus and concatenated features 
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The structured DNN model proposed in this work is based on a backpropagation technique. 

It uses hyperparameters for training and optimizes those through training utilizing a loss function 

and an optimizer. Progressively, the loss function learns to minimize the prediction error with the 

assist of an optimization function. This deep learning model's primary task is learning a function 

approximation between input and output features that partially benefits from its deep structure. A 

decent training strategy for parameter updating is important to achieve the desired results. Through 

the data preprocessing, all input features initially scaled using the min-max scaler, which translates 

each input individually such that it values returns in a range of [0, 1]. This preserves the original 

distribution's shape; besides, the meaning of the information embedded in the original data remains 

the same. The data split to separate training and validation sets with a distribution of 85 to 15 

percent (on the total sample size of 9216). 

Next, the structure of hidden layers and neurons are determined for each of the three MLP 

modules by developing a hybrid algorithm. This hybrid algorithm explores each MLP under an 

iterative fashion for hidden layers and selects the number of nodes (neurons) through a flexible 

random sampling. The number of the hidden layers iteratively increased from 1 to the number of 

inputs. In parallel, flexible random selection allows the user to determine the scale of the trial. It 

is given by a lower bound, higher bound, and a sampling size so that it could be adjustable for a 

larger or smaller scale of design space depends on the condition. If it is needed for a more in-depth 

search, these three parameters could be adjusted to fit the desired design space. Ultimately, these 

three MLP modules concatenate to generate a combined input for the latter MLP that links the 

combined input to predicted outputs. Conditioning is imposed for the learning process to define a 

constraint for the maximum number of parameters allowed in the network structure. The 

conditioning not just balances the parameters but improve interpretability and addresses overfitting 
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issues. The constraint limits the number of parameters to be less than 80% of the overall training 

sample size. This restricts the search space and thus over-complexity for the network structure. 

This study investigates two different optimizer algorithms, Adam and RMSProp. The 

Metric for compiling the model is the root means square error (RMSE). Also, the learning rate for 

optimizer is tuned through trial and error. Adjusting the learning rate is crucial for model training. 

Because a high learning rate could increase loss error and results in extreme weight changes, on 

the contrary, a low learning rate can prevent these problems but increases convergence time. A 

rectified linear unit (ReLU) activation function was used for each intermediate layer, and a linear 

activation applied to the output layer due to the dataset's nature. Finally, the number of epochs and 

batch size decided using empirical analysis. An overview of the algorithm developed for the entire 

deep learning model structure is depicted in Table IV.5. 
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Table IV.5. An overview of the algorithm for the deep learning model structure  

Step Function 

1 scaling: min-max scaler [0,1] 

2 data split: training-set←85% (s-size) & validation-set ←15% (s-size) 

3 constraint: par-number ≤ 0.8 * s-size 

4 for n = 1 to length (input) do 

|   l-bound-nodes & h-bound-nodes & nodes-size {user-defined} 

|   create MLP-Geo (l-bound-nodes, h-bound-nodes) {activation}← ReLU 

|          for n = l-bound-nodes to h-bound-nodes do 

|               | return model MLP-Geo 

|           end 

|   create MLP-Mat (l-bound-nodes, h-bound-nodes) {activation}← ReLU 

|           for n = l-bound-nodes to h-bound-nodes do 

|              | return model MLP-Mat 

|           end 

|   create MLP-Tem (l-bound-nodes, h-bound-nodes) {activation}← ReLU 

|           for n = l-bound-nodes to h-bound-nodes do 

|               | return model MLP-Temp 

|           end 

end 

5 [combined input] ← concatenate  [MLP-Geo, MLP-Mat, MLP-Temp] 

6 create MLP {activation}← Linear 

[prediction] ← model [combined input] 

7 model compile  (optimizer, metric = loss) 

     {optimizer} ← Adam & RMSProp {learning rate, decay} 

     {loss} ← root means square error (RMSE) 

8 model fit ([X-Geo, X-Mat, X-Temp] training, [Y]training) 

                 ([X-Geo, X-Mat, X-Temp] validation, [Y]validation) 

                 {epochs, batch size} 
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Results and Discussion 

This section presents results and discussion for the implemented deep learning model 

described in the previous section. The architecture and algorithm for the deep neural network 

model elaborated. The model is investigated here uses the database presented in the past section 

in Table IV.4. Based on the input features, a unique flexible structure for hyperparameters (the 

number of hidden layers and neurons) is specified to optimize the deep learning model. In this case 

study, the structure of DNN is determined by the arrangement of the number of hidden layers at 

each of three MLP modules: Geometry, Material, and Environmental. The number of hidden layers 

at each MLP increased from 1 to the number of inputs (inside the MLP). This process carried out 

iteratively as the structures produced are listed in Table IV.6. The neuron numbers in each layer 

are decided by the user; in this study, specified as a random independent selection of 20 iterations 

in a given range of 8 to 40 nodes at each hidden layer. As a result, this experiment generates 140 

different DNN models categorized by seven unparalleled structures. With the conditioning applied 

to the number of parameters, the parameters are limited to 6635. Therefore, for the feasible designs 

evaluated in this case study, the model's complexity remains within this constraint. A major task 

here is finding the optimal model complexity that minimizes the validation (test) error. The general 

guideline used to find the best model complexity regarding comparing the performance of training 

and validation datasets shown in Figure IV.21. 

https://www.sciencedirect.com/science/article/pii/S0888327020303836?viewFullText=true#s0020
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Figure IV.21. General guideline for best model complexity 

 

Table IV.6.  The case study DNN structures (number of hidden layers) 

DNN # of H Layers 

(Geometry MLP) 

# of H Layers 

(Materials MLP) 

# of H Layers 

(Environmental MLP) 

DNN s -1 1 1 1 

DNN s -2 1 2 1 

DNN s -3 1 3 1 

DNN s -4 1 4 1 

DNN s -5 2 2 1 

DNN s -6 2 3 1 

DNN s -7 2 4 1 

 

A resolution to adopt the premier feasible DNN structure obtained by a trade-off of 

minimum loss score for validation dataset regarding the number of parameters. The number of 
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parameters determined by the arrangement of neurons and hidden layers. Two optimizers 

RMSProp and Adam, investigated through all 140 deep learning models.  

The results presented correspondingly in Figure IV.22. (a) and (b). Each cluster for the 

DNN structure is displayed with a distinct color mark. The primary observation is the clusters with 

the least complex structure condensed more in the min-loss region. Comparing the DNN s-1 (with 

only one hidden layer at each module) to DNN s-7 (with two geometry layers and four material 

layers) indicates that the model can perform efficiently with minimal convolution. However, Adam 

optimizer shows a slight improvement in higher complexity with certain node arrangements. The 

other important observation is that the neuron numbers sequence appears to be more effective, 

particularly where the hidden layers structures become more convoluted. One further remark is in 

plot (b) with the Adam optimizer; a horizontal trend of the minimal loss is witnessed from 

approximately 1300 to 3600 parameters; This indicates that eminent convergence is achievable by 

optimizing the neuron number arrangements departs from the depth of the hidden layers. That 

means by optimizing the nodes' arrangement across a less complex structure, convergence to the 

optimal paradigm is forthcoming. 
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(a)  

 

 (b) 

Figure IV.22. DNN models trade-off based on validation loss vs. number of parameters: (a) 

RMSProp and (b) Adam optimizers 
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Regarding the primary observations on various network structures, a high-fidelity 

exploration was performed with reference to the DNN s-1 model (composed of a “1-1-1” hidden 

layers structure). This is conducted by taking a deep dive into the hyperparameters search for node 

number arrangements at every hidden layer in geometry, material and environmental MLPs. The 

new exploration broadens the design space to 100 iterations to uncover the best practicable neurons 

arrangements. The node number range is a carryover from the previous study (from 8 to 40). 3D 

scatter plot and heatmap are found as meaningful, intuitive tools that allow for transparency to  

explore interconnection mapping between hyperparameters in this case study. The bivariate 

interconnection mapping for each two MLP modules concerning the neuron numbers (of hidden 

layers) in response to the min-loss score is demonstrated in Figure IV.23 and Figure IV.24. The 

min-loss values are computed based on the validation dataset. The detection of minimal loss 

explores the optimum region through this multivariate design space. This analysis provides insight 

into a smart selection of neuron number arrangement to optimize the learning model for an 

optimum hyperparameters margin. 

 

(a) 
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 (b) 

 

(c) 

Figure IV.23. Scatter plot for neuron number exploration: (a) Geometry vs Material, (b) 
Geometry vs. Environmental and (c) Material vs. Environmental 
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(a) 

 

 (b) 
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(c) 

Figure IV.24. Heatmap plot for neuron number exploration: (a) Geometry vs Material, (b) 
Geometry vs. Environmental and (c) Material vs. Environmental 

 

Learning curves is a classic indication of learning performance over the sequences. In this 

study, the learning curves measured on the loss metric bases to evaluate and diagnose the model; 

the same reference the model parameters are being optimized. The score for loss monitored over 

the number of epochs and the model behavior investigated for under/ overfitting. An epoch here 

refers to a pass that the model goes through the training samples during the learning process. The 

model behavior is evaluated on the training dataset and the hold-out validation dataset. It is worth 

noting that the training dataset and validation dataset are exclusively independent. 

As shown in Figure IV.25, for the Optimal DNN model, a decent fitting achieved for the 

learning curve on training and validation sets. This gives an insight into what degree the model is 

learning as well as generalizing. After passing 5 to 10 epochs, the loss reaches a stability point 
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with a minimal gap between the two dataset losses. Accordingly, this indicates the model 

optimized to a level that efficiently converges. 

 

Figure IV.25. Learning curve for the optimal DNN model through training and validation sets 
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CHAPTER V 

 
 

Future Works 

 

 

 

Brake NVH and particularly brake squeal is due to dynamic instability of the brake system. 

This phenomenon contains complex physics due to its nature of the problem and complicated 

interconnections and variation within the subsystems; also, a wide range of operational conditions 

and a broad range of frequency. 

Currently, Analytical approaches integrated with numerical finite element simulation 

provide a somehow understanding of the phenomena and estimating squeal behavior for designing 

the brake system. However, still, it requires some physical experiments to guide and coordinate 

the computational investigations. The author believes that with the advances in CAE methods on 

the one hand and significant development and progress in the area of Artificial Intelligent (AI) in 

recent years, it is now feasible to develop a machine learning tool integrated with the numerical 

model that: 

• Facilitates the prediction of the brake squeal.  

• Provides an efficient tool to adequately estimating brake components' NVH modal 

characteristics from their physical properties. 

The first part of this research describes the most recent CAE methodologies and 

advancements for brake squeal. Then, it proposes a new metric based on the exploration of cross-

checking the operating condition distributions from the result of the computational model to 
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physical experiments. Besides, this work introduces a statistical technique and implements it to 

enable this investigation. An ML algorithm is developed and employed to fit CAE data from brake 

squeal analysis and simulated CAE and experimental results. The ML-based model significant ly 

saves computational cost by examining the whole design space in operating conditions and 

skipping unnecessary iterations. In the presented work, the two major features for operating 

conditions: pressure and temperature taken into consideration, and their corresponding formulation 

and analytical representation elaborated. A higher-dimension model can be considered in the future 

to study and include additional parameters for operating conditions such as friction values, disk 

velocity, and considering geometrical and material variations. Variations could extend into many 

sub-features that, in some ways, identified but not quantified yet. That includes but not limited to: 

variations due to the wearing and surface imperfectness, geometry difference because of casting 

and manufacturing specs and tolerances, materials change due to the material treatment and 

processes, environmental and cyclic loading conditions which have impacts on both materials and 

geometries, connections and compliances, etc. On the other side, the Machine-learning model can 

be further modified and improved. With the advances in AI algorithms and computational 

resources in recent years, this area is developing exponentially. New algorithms enable capturing 

more complicated and mechanistic features; therefore, an up-to-date methodology should be 

considered in future studies that could better demonstrate the real physics of the system and add 

more critical features. Furthermore, this study evaluated and validated the methodology for only 

one primary noise frequency; however, to implement this concept in an industrial investigation, 

the full spectrum of noise frequencies must be considered. Accordingly, the technique should be 

examined low-mid-high frequency range.  
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The second part of this research proposes a multi-resolution deep learning approach 

inspired by physics and data. Then, it develops a deep learning model to predict brake pad NVH 

modal characteristics from the physical properties. The brake pad, known as the excitation source 

that crucially affects the brake NVH. Studies have shown the relevance of mode-coupling that 

arises from neighboring natural frequencies in the brake system on high-frequency noises. This 

phenomenon is mainly influenced by pads and rotor characteristics, including modal factors and 

surface-to-surface interactions. In this work, a high-fidelity numerical model developed and 

correlated with the experimental test data. The numerical model captured the physical aspects of 

the component. The CAE model then generated a big database using a design of the experiment 

(DOE) technique to feed the machine learning model. 

As the primary solution, a physics-inspired deep learning model developed with a flexible 

structure to capture multi-dimensional interconnections between the pad's physical properties and 

the corresponding response. The goal of this ML-based approach is to advance the design and 

development process for brake NVH and minimize the urgency to additional physical tests and 

numerical models at component level analysis.  

The relationship between the component's physical properties and the ultimate modal 

response is captured by employing a structured deep learning algorithm. Through this algorithm, 

separate multi-layer perceptron (MLP) modules developed for each of geometry, materials, and 

environmental groups of features and eventually concatenated to incorporate adequate complexity 

required by the input features. It was described that this scheme better represents the physics of 

the system through the analysis. A unique network structure presented in this work that optimized 

the model for optimum feasible hyperparameters (hidden layers and hidden units). This scheme is 
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explained by searching for optimal possible solutions from hundreds of neural networks to achieve 

minimum complexity and computational costs. 

Several areas can be further studied for future work. The first one is to incorporate a more 

complex representation of input features (including material, geometry, and environmental).  

While, in this study, a smaller input size was considered to prove the concept. For instance, for 

geometry, only two geometry features were accounted, and for environmental, only one feature 

(temperature) was considered as the main factor. However, in the real world, geometry and 

environmental features would be more complicated. Therefore, more complex geometry features 

could be added in future work, and also features such as humidity and constraint/loading conditions 

may be studied. Likewise, including additional material features to explore the behavior within the 

entire regime. Moreover, another group of features can potentially be included in the inputs, such 

as manufacturing variations and uncertainties. Another investigation is to expand the database for 

more experimental tests. Experimental data is a significant challenge because it is costly and 

challenging to acquire. This is an essential step for employing the proposed technique for product 

benchmark and design and developments. Additionally, the developed machine-learning algorithm 

could be modified, capturing a more efficient optimization for parameters and hyperparameters, 

so the modified model outperforms the baseline. This could be critical when a more extensive 

database is acquired. The sampling method could also be reformed concerning scalability and 

computational efficiency. Finally, the methodology can be extended and applied to other brake 

components to generate a powerful, efficient design tool for component NVH analysis. 
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 APPENDIX   

 

 

Machine Learning Code: 

A Deep Learning Technique to Predict Brake Pad NVH Modal Characteristics Based on 

Physical Properties 

 

 

 

Jupiter Notebook (Intuitive -Deep-Learning) Python 3 

 

# **************************************** 

# import the necessary packages 

import pandas as pd 

import numpy as np 

from sklearn import preprocessing 

from sklearn.utils import shuffle 

from sklearn.model_selection import train_test_split 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras import backend as K 

import keras.backend as K 

from keras.layers.normalization import BatchNormalization 

import matplotlib.pyplot as plt 

from keras.models import Sequential 

from keras.optimizers import Adam 

from keras.optimizers import rmsprop 

from keras.models import Model 

from keras.layers import Concatenate, Dense, LSTM, Input, Activation, Flatt

en, concatenate 

from keras.layers import Dropout 

from keras import regularizers 

from sklearn.model_selection import KFold 

import numpy as np  

from keras.losses import mean_squared_error 



 107 

 

# **************************************** 

# reading data 

df = pd.read_csv("datasets/Pad_DOE_Data_EM12.csv", sep=",") 

dataset = df.values 

X_g= dataset[:,0:2] 

X_m= dataset[:,2:6] 

X_t= dataset[:,6:7] 

Y= dataset[:,7:13] 

 

# **************************************** 

# data cleaning 

 

df = shuffle(df) 

min_max_scaler = preprocessing.MinMaxScaler() 

X_g_scale = min_max_scaler.fit_transform(X_g) 

X_m_scale = min_max_scaler.fit_transform(X_m) 

X_t_scale = min_max_scaler.fit_transform(X_t) 

Y_scale = min_max_scaler.fit_transform(Y) 

 

# data slpit 

split = train_test_split(X_g_scale, X_m_scale,X_t_scale,Y_scale, test_size=

0.1) 

(X_g_train, X_g_val, X_m_train, X_m_val, X_t_train, X_t_val,Y_train, Y_val) 

= split 

 

training_samples = Y_train.shape[0] 

print(f'> Training_Samples: {training_samples}') 

print(f'> Geometry_Inputs: {X_g_train.shape[1]}, Materials_Inputs: {X_m_tra

in.shape[1]}, Enviormental_Inputs: {X_t_train.shape[1]},   Response_Outputs

: {Y_train.shape[1]}') 

 

# **************************************** 

# model parameters  

 

L_bound_neurons = 8 

H_bound_neurons = 40 

n_doe_size = 100 
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par_constrain = 0.8 * training_samples 

opt = rmsprop(lr=1e-3, decay=1e-3 / 200) 

 

# **************************************** 

# initial values 

 

verbosity = 1 

n_g1= np.random.randint(L_bound_neurons,H_bound_neurons,n_doe_size) 

n_m1=np.random.randint(L_bound_neurons,H_bound_neurons,n_doe_size) 

n_t1=np.random.randint(L_bound_neurons,H_bound_neurons,n_doe_size) 

NN_s1 = 1 

acc_per_NN_s1 = [] 

loss_per_NN_s1 = [] 

params_per_NN_s1 = [] 

neurons_feas_s1 = [] 

neurons_feas_s1 = [[0, 0, 0, 0]] 

loss_best_NN_s1 = loss_best_NN_f_s1 = 1 

best_NN_f_s1 = 0 

 

# **************************************** 

# model DNN S-1 : [1,1,1] 

for n in np.arange(len(n_t1)):   

    def create_mlp(dim_h,dim_out): 

        model = Sequential() 

        for i in np.arange(len(dim_h)-1): 

             

            model.add(Dense(dim_h[i+1], input_dim=dim_h[i], activation="rel

u")) 

        model.add(Dense(dim_out, activation="relu")) 

        return model 

         

    mlp_g1 = create_mlp([X_g_train.shape[1],n_g1[n]],12) 

    mlp_m1 = create_mlp([X_m_train.shape[1],n_m1[n]],12) 

    mlp_t1 = create_mlp([X_t_train.shape[1],n_t1[n]],6) 
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    combinedInput_s1 = concatenate([mlp_g1.output, mlp_m1.output, mlp_t1.ou

tput]) 

     

    prediction_s1 = Dense(6, activation="linear")(combinedInput_s1) 

     

    model_s1 = Model(inputs=[mlp_g1.input, mlp_m1.input, mlp_t1.input], out

puts=prediction_s1) 

 

     

    def root_mean_squared_error_s1(Y_scale,prediction_s1): 

        return K.sqrt(mean_squared_error(Y_scale,prediction_s1))     

     

    print('NN_s1 ',NN_s1) 

    model_s1.compile(optimizer=opt,loss=root_mean_squared_error_s1,metrics=

['accuracy']) 

    model_s1.summary() 

    hist_s1 = model_s1.fit( 

        [X_g_train, X_m_train, X_t_train],Y_train, 

            validation_data=([X_g_val, X_m_val, X_t_val],Y_val), 

                epochs=16,  

                batch_size=64, 

                verbose=verbosity) 

    scores_s1 = model_s1.evaluate([X_g_val, X_m_val, X_t_val],Y_val, verbos

e=0) 

    parnum_s1 = model_s1.count_params() 

    loss_per_NN_s1.append(scores_s1[0]) 

    params_per_NN_s1.append(parnum_s1)    

    NN_s1=(NN_s1)+1 

         

print('--------------------------------------------------------------------

----------------------------------') 

print(f'> NN_s1 () : geo1 - mat1 - temp1       (Par. Constrain: N of Par. < 

{par_constrain})') 

for j in range(0, len(loss_per_NN_s1)): 

    if (params_per_NN_s1[j] < par_constrain): 

                print(f'> NN_s1({j+1}): Loss: {loss_per_NN_s1[j]} N of Par.

: {params_per_NN_s1[j]}') 

                neurons_feas_s1 = np.append(neurons_feas_s1, [[n_g1[j], n_m

1[j], n_t1[j], loss_per_NN_s1[j]]], axis=0) 
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                if (loss_per_NN_s1[j] < loss_best_NN_f_s1): 

                    loss_best_NN_f_s1=loss_per_NN_s1[j];best_NN_f_s1 = j+1; 

best_par_f_s1 = params_per_NN_s1[j];    

print('Best Feasible NN for s1:') 

print(f'> NN_s1({best_NN_f_s1}): Loss: {loss_best_NN_f_s1}   N of Par.: {be

st_par_f_s1}') 

if (best_par_f_s1 < 1): 

    print('No Feasible NN for s1') 

 

     

# ****************************************     

# design iterations 3D plot 

 

from mpl_toolkits import mplot3d 

%matplotlib inline 

import numpy as np 

from matplotlib import cm 

from matplotlib.ticker import LinearLocator, FormatStrFormatter 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

fig = plt.figure(figsize=plt.figaspect(0.25)) 

ax1 = fig.add_subplot(1, 3, 1, projection='3d') 

scatter_plot1=ax1.scatter(n_g1, n_m1, loss_per_NN_s1, c=loss_per_NN_s1, cma

p='RdBu', linewidth=5, alpha=0.5); 

cb1=fig.colorbar(scatter_plot1, cmap='RdBu', shrink=0.6, aspect=12); 

ax2 = fig.add_subplot(1, 3, 2, projection='3d') 

scatter_plot2=ax2.scatter(n_g1, n_t1, loss_per_NN_s1, c=loss_per_NN_s1, cma

p='RdBu', linewidth=5, alpha=0.5); 

cb2=fig.colorbar(scatter_plot2, cmap='RdBu', shrink=0.6, aspect=12); 

ax3 = fig.add_subplot(1, 3, 3, projection='3d') 

scatter_plot3=ax3.scatter(n_m1, n_t1, loss_per_NN_s1, c=loss_per_NN_s1, cma

p='RdBu', linewidth=5, alpha=0.5); 

cb3=fig.colorbar(scatter_plot2, cmap='RdBu', shrink=0.6, aspect=12); 

 

ax1.view_init(elev=20, azim=225);ax1.dist=11;ax2.view_init(elev=20, azim=22

5);ax2.dist=11;ax3.view_init(elev=20, azim=225);ax3.dist=11; 

ax1.set_title('Neurons: Geometry vs Material Layers');ax2.set_title('Neuron

s: Geometry vs Enviormental Layers');ax3.set_title('Neurons: Material vs En

viormental Layers'); 
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ax1.set_xlabel('neurons geo_layer', labelpad=2);ax1.set_ylabel('neurons mat

_layer', labelpad=2);ax1.set_zlabel('loss per NN', labelpad=5); 

ax2.set_xlabel('neurons geo_layer', labelpad=2);ax2.set_ylabel('neurons tem

p_layer', labelpad=2);ax2.set_zlabel('loss per NN', labelpad=5); 

ax3.set_xlabel('neurons mat_layer', labelpad=2);ax3.set_ylabel('neurons tem

p_layer', labelpad=2);ax3.set_zlabel('loss per NN', labelpad=5); 

 

# ****************************************    

# design iterations heatmap 

 

%matplotlib inline 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

n_feas= neurons_feas_s1[1:,:] 

df = pd.DataFrame(n_feas) 

 

df.columns=['neurons geo_layer','neurons mat_layer','neurons temp_layer','l

oss_per_NN'] 

df_copy =  df.copy() 

df_copy.drop_duplicates(subset=['neurons geo_layer', 'neurons mat_layer'],i

nplace=True) 

df_copy.drop_duplicates(subset=['neurons mat_layer','neurons temp_layer'],i

nplace=True) 

df_copy.drop_duplicates(subset=['neurons geo_layer','neurons temp_layer'],i

nplace=True) 

 

geo_mat = df_copy.pivot(index='neurons geo_layer',columns='neurons mat_laye

r', values='loss_per_NN') 

geo_temp = df_copy.pivot(index='neurons geo_layer',columns='neurons temp_la

yer', values='loss_per_NN') 

mat_temp = df_copy.pivot(index='neurons mat_layer',columns='neurons temp_la

yer', values='loss_per_NN') 

 

fig, ax1 = plt.subplots(1,3, figsize = (16,4)) 

sns.heatmap(geo_mat,cmap='RdBu',ax=ax1[0]) 

sns.heatmap(geo_temp,cmap='RdBu',ax=ax1[1]) 
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sns.heatmap(mat_temp,cmap='RdBu',ax=ax1[2]) 

 

ax1[0].set_title('Neurons: Geometry vs Material Layers', fontsize = 12)   

ax1[1].set_title('Neurons: Geometry vs Enviormental Layers', fontsize = 12)   

ax1[2].set_title('Neurons: Material vs Enviormental Layers', fontsize = 12)   

 

# ****************************************    

# loss vs epoch plot 

 

plt.plot(hist_s1.history['loss'], color='blue', linewidth=3, marker='x') 

plt.plot(hist_s1.history['val_loss'], color='red', linewidth=3, marker='o') 

plt.title('Model loss vs Epoch') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

plt.legend(['Training', 'Validation'], loc='upper right') 

plt.show() 
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