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Appendices

A More on simulation study

The details of how do we implement the competing methods are listed as follows,

BS Implemented by the routine sbs of the package wbs(Baranowski & Fryzlewicz,

2015). The number of change-points is selected by the BIC criterion.

WBS Implemented by the routine wbs of the package wbs(Baranowski & Fryzlewicz,

2015). The number of change-points is selected by the BIC criterion. The code we

used is

obj<-wbs(x);changepoints(obj, penalty="bic.penalty").

FLASSO Implemented by the routine fusedlasso1d of the package genlasso(Arnold

& Tibshirani, 2014). The number of change-points is selected by the BIC criterion.

SMUCE Implemented by the routine smuceR of the package stepR(Pein et al., 2017).

We use the default settings which set the parameter α at 0.5. The code we used is

stepFit(x).
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cumSeg Implemented by the routine jumpoints of the package cumSeg(Muggeo,

2012). We use the default settings. The code we used is jumpoints(x). The

number of change-points is selected by the BIC criterion.

PELT Implemented by the routine cpt.mean of the package changepoint(Killick

et al., 2016). The number of change-points is selected by the BIC criterion. The code

we used is cpt.mean(x/mad(diff(x)/sqrt(2)), method="PELT",

penalty = "BIC"), where mad function calculates the median absolute devia-

tion. This implementation was advocated by Fryzlewicz (2014).

S3IB Implemented by the routine Segmentor of the package Segmentor3IsBack(Cleynen

et al., 2016). The number of change-points is selected by the BIC criterion. The code

we used is

obj<-Segmentor(x, model=2);SelectModel(obj,penalty=’BIC’).

SaRa The routine is coded by ourselves. The number of change-points is selected by the

BIC criterion.

Model 1 is a standard testing signal which is also used in Frick et al. (2014) and Fry-

zlewicz (2014). Model 2 and 3 have signals in the shape of teeth. Model 2 is a mix

of more pronounced changes with short distances between change-points and less pro-

nounced changes with greater distances between change-points. Model 3 has more fre-

quent change-points while the size of the jump is constant. Model 4 has signals in the

shape of stairs, the change occurs every 10th observation. The models are considered

because they illustrate various patterns of change-points.

We show more simulation results using the same models as in Section 4, and now the

errors are generated from an autoregressive (AR) model,

εt = 0.3εt−1 + σut,

where σ is the same as the model in Section 4, and ut is standard normally distributed.

The results are collected in Table A.1,A.2 and Figure A.1. Generally speaking, all meth-

ods perform worse than the case where the errors are independent because the correlation

structure is ignored. Compared to other methods, the proposed method performs better
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regarding change-point number estimation and change-point location estimation. Regard-

ing the empirical coverage probabilities of the percentile interval, the smoothed interval,

and the adaptive interval, they are all below the nominal level. This is mainly because the

bootstrapping method and the standard formula for the bagging estimator may not be the

best for correlated data. Also notice that the percentile interval, the smoothed interval, and

the adaptive interval have higher coverage probabilities compared to the SMUCE interval.

Table A.1: Summary statistics of N̂ − N and the Hausdorff distance dH for model 1 and

2. The error are generated from the AR model.

N̂ −N dH

Frequency(%)

Method ≤ −2 = −1 = 0 = 1 ≥ 2 Mean Med Mean SD

Model 1

BootCp 3.6 8.0 62.8 8.6 17.0 0.37 0.0 31.48 36.56

BS 37.0 9.4 38.2 12.4 3.0 -0.67 0.0 29.83 28.99

WBS 6.0 5.8 64.8 13.6 9.8 0.21 0.0 26.94 34.38

FLASSO 4.2 0.8 1.0 2.4 91.6 6.01 6.0 69.24 34.02

SMUCE 0.0 0.6 8.4 19.8 71.2 2.43 2.0 92.43 41.87

cumSeg 77.6 8.8 10.8 2.2 0.6 -1.61 -2.0 35.89 16.25

PELT 0.0 0.6 10.6 14.2 74.6 3.65 3.0 81.12 52.91

S3IB 0.6 2.8 45.0 24.0 27.6 0.91 1.0 40.71 46.67

SaRa 5.2 11.8 32.6 17.4 33.0 0.90 1.0 55.93 44.74

Model 2

BootCp 24.2 20.6 29.8 11.6 13.8 -0.31 0.0 78.09 57.20

BS 60.2 18.2 12.2 5.4 4.0 -2.12 -2.0 162.70 88.65

WBS 36.6 21.0 27.4 9.2 5.8 -0.91 -1.0 86.64 63.95

FLASSO 97.4 0.0 0.6 0.6 1.4 -12.34 -13.0 259.83 140.77

SMUCE 12.0 31.2 36.2 15.0 5.6 -0.29 0.0 48.15 32.18

cumSeg 99.6 0.4 0.0 0.0 0.0 -8.91 -9.0 174.77 89.12

PELT 2.2 5.4 16.2 18.4 57.8 2.34 2.0 48.82 36.32

S3IB 18.8 18.2 35.8 27.2 0.0 -0.33 0.0 73.08 56.03

SaRa 5.8 8.6 18.6 15.4 51.6 1.88 2.0 52.96 37.98
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Table A.2: Summary statistics of N̂ − N and the Hausdorff distance dH for model 3 and

4. The error are generated from the AR model.

N̂ −N dH

Frequency(%)

Method ≤ −2 = −1 = 0 = 1 ≥ 2 Mean Med Mean SD

Model 3

BootCp 32.6 7.4 53.2 6.2 0.6 -1.15 0.0 9.08 11.06

BS 99.8 0.0 0.2 0.0 0.0 -12.61 -13.0 111.22 22.06

WBS 34.2 5.4 40.4 13.8 6.2 -2.32 0.0 11.63 20.23

FLASSO 100.0 0.0 0.0 0.0 0.0 -12.96 -13.0 96.50 26.68

SMUCE 83.0 11.6 5.2 0.2 0.0 -3.69 -4.0 13.33 7.09

cumSeg 100.0 0.0 0.0 0.0 0.0 -12.94 -13.0 109.28 23.69

PELT 17.4 9.8 44.2 20.2 8.4 -0.15 0.0 7.07 5.92

S3IB 77.2 6.2 16.4 0.2 0.0 -3.14 -3.0 19.70 16.21

SaRa 30.4 13.4 48.0 6.8 1.4 -0.85 0.0 7.39 6.51

Model 4

BootCp 0.2 8.4 79.0 12.0 0.4 0.04 0.0 2.74 2.56

BS 9.6 24.2 59.8 6.2 0.2 -0.41 0.0 4.67 3.49

WBS 0.0 1.8 43.0 36.8 18.4 0.80 1.0 3.37 1.97

FLASSO 16.0 1.8 2.4 5.2 74.6 1.61 4.0 37.99 8.04

SMUCE 47.6 26.6 25.2 0.6 0.0 -1.47 -1.0 6.33 3.23

cumSeg 10.8 22.4 60.2 6.6 0.0 -0.45 0.0 4.97 3.22

PELT 0.0 1.8 51.4 31.0 15.8 0.70 0.0 3.12 2.16

S3IB 3.6 23.0 73.4 0.0 0.0 -0.30 0.0 3.58 3.45

SaRa 4.4 22.4 61.8 10.2 1.2 -0.19 0.0 4.60 3.39
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Figure A.1: The empirical coverage probabilities and average length of the confidence intervals based

on 500 simulation runs. From top to bottom, the lines are percentile intervals, adaptive intervals, smoothed

intervals, SMUCE intervals.

B Proof of the theorems

We will prove the theorems under a model with two change-points. Since the change-

points are estimated sequentially, the theory can be generalized to a model with multiple

change-points easily. This technique for proving the convergence rate of the change-points

estimator is advocated by Bai (1997). The model under consideration in this section is

Xt = β0
1 + εt, 1 ≤ t ≤ t01,

Xt = β0
2 + εt, t01 + 1 ≤ t ≤ t02,

Xt = β0
3 + εt, t02 + 1 ≤ t ≤ n.

Because the BS algorithm is implemented sequentially in this paper, we will consider

the convergence rate of the first change-point detected by the BS algorithm. The weighted

residual sum of squares is defined as

Lwn (k) =
k∑
t=1

wt(Xt − X̄w
k )2 +

n∑
t=k+1

wt(Xt − X̄w
−k)

2, (B.1)

where X̄w
k =

∑k
t=1wtXt/

∑k
t=1wt and X̄w

−k =
∑n

t=k+1wtXt/
∑n

t=k+1wt for an integer
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k ∈ [1, n− 1]. The first detected change-point is defined as

t̂w = arg min
k=1,...,n−1

Lwn (k). (B.2)

To prove Theorem 1, we need to investigate the convergence property of Lwn (k) defined

in (B.1). We first study the asymptotic behavior of Uw
n (τ) = n−1Lwn (bnτc) under the

assumptions A1-A3, where bnτc is the integer part of nτ . The intermediate results are

stated in Lemma 1 to Lemma 5.

Lemma 1. Under Assumptions A1-A3, supτ∈[0,1] |Uw
n (τ) − U(τ)| = oPw(1) for a deter-

ministic function U(τ).

Lemma 2. Under Assumptions A1-A3, max
1≤k<n

|Uw
n (k/n) − Ūn(k/n)| = oPw(n−1/2 log(n))

for a deterministic function Ūn(k/n).

See (B.9) for the definition of Ūn(k/n). The function U(τ) has different expressions

over three different regimes,

U(τ) =


(τ 01 − τ)a(τ)2 + (τ 02 − τ 01 )b(τ)2 + (1− τ 02 )c(τ)2 if τ ∈ [0, τ 01 ],
τ01 (τ−τ01 )

τ
(β0

2 − β0
1)2 +

(τ02−τ)(1−τ02 )
1−τ (β0

3 − β0
2)2 if τ ∈ (τ 01 , τ

0
2 ),

τ 01 d(τ)2 + (τ 02 − τ 01 )e(τ)2 + (τ − τ 02 )f(τ)2 if τ ∈ [τ 02 , 1],

(B.3)

where a(τ) =
1−τ01
1−τ (β0

1 − β0
2) +

1−τ02
1−τ (β0

2 − β0
3), b(τ) =

τ01−τ
1−τ (β0

2 − β0
1) +

1−τ02
1−τ (β0

2 − β0
3),

c(τ) =
τ01−τ
1−τ (β0

2 − β0
1) +

τ02−τ
1−τ (β0

3 − β0
2), d(τ) =

τ−τ01
τ

(β0
1 − β0

2) +
1−τ02
τ

(β0
2 − β0

3),

e(τ) =
τ01
τ

(β0
2 − β0

1) +
τ−τ02
τ

(β0
2 − β0

3), and f(τ) =
τ01
τ

(β0
2 − β0

1) +
τ02
τ

(β0
3 − β0

2). Note

that U(τ) is also the limit of Un(τ) = Ln(bnτc; 0, n)/n, see Bai (1997). From Lemma

2, we know that Uw
n (τ) is asymptotically close to Ūn(k/n) given almost all sample paths

of X1, X2, . . . at the rate oPw(n−1/2 log(n)). We expect that the minimizer of Uw
n (τ) will

be close to the minimizer of Ūn(k/n) too. The function U(τ) has two local minima at τ 01
or τ 02 as explained by Bai (1997). A convenient condition would be that U(τ) has a well

pronounced minimizer. In the following, we will assume the following assumption.

Assumption A4. U(τ 01 ) < U(τ 02 ).
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Bai (1997) discussed this case where U(τ 01 ) = U(τ 02 ) in-depth, and he found that

in this case the first change-point detected by the BS algorithm converges to a random

variable with equal mass at t01 and t02. It is possible to adapt the method of our proof to

the case U(τ 01 ) = U(τ 02 ). However, we focus on the most interesting case by assuming

Assumption A4.

Lemma 3. Under Assumption A1-A4, there exists a positive constant C which does not

depend on n such that

n(Ūn(k/n)− Ūn(t01/n)) ≥ C|k − t01| for all large n,

where k ∈ [1, n− 1] denotes a location.

Lemma 3 is essentially a restatement of the Lemma 3 of Bai (1997), with minor differ-

ences. Lemma 3 confirms that t01 is the minimizer of Ūn(k/n). Furthermore, it quantifies

the lower bound on the difference Ūn(k/n) − Ūn(t01/n), which is essential in proving the

convergence rate of t̂w to t01. Recall that t̂w is the minimizer of Lwn (.) defined in (B.2), and

it is the first detected change-point in our sequential implementation of the BS algorithm.

Lemma 4. Under Assumptions A1-A4, t̂w − t01 = oPw(n1/2 log(n)).

The convergence rate of t̂w to t01 is oPw(n1/2 log(n)) as shown in Lemma 4. This rate is

too slow for doing inference on the mean of Xt. The convergence rate can be improved by

carefully examining the behavior of Lwn (k) for those k is small neighborhood of t01. For a

fixed ε > 0, denote Dnε = {k : nη ≤ k ≤ nτ 02 (1− η), |k − t01| > ε log(n)}, where η > 0

is chosen such that t01 ∈ (nη, nτ 02 (1 − η)). The following lemma is helpful in improving

the convergence rate of t̂w.

Lemma 5. Under Assumptions A1-A4, for every ε > 0,

lim
n→∞

Pw
(

inf
k∈Dnε

Lwn (k) ≤ Lwn (t01)

)
= 0 a.s..

To prove the lemmas, we exploit the Háyek-Rényi inequality (Hájek & Rényi, 1955)

for independent random variables. Note that the Háyek-Rényi inequality has been genera-

zlied to linear processes (Bai, 1994), martingale difference sequences, ρ-mixing sequences

(Fazekas & Klesov, 2001), and negatively associated sequences (Hu & Hu, 2006). The

Háyek-Rényi inequality can be used to derive uniform convergence rate of partial sums.
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Lemma 6. (Hájek & Rényi, 1955) Let X1, . . . , Xk, . . . be a sequence of independent ran-

dom variables with zero mean (E(Xk) = 0) and finite variance (E(X2
k) < ∞). Denote

the partial sum of Xk as Sk = X1 + · · · + Xk. Let ck, k = 1, 2, . . . be a non-increasing

sequence of positive numbers. For any α > 0 and positive numbers n < m,

P
(

max
n≤k≤m

ck|Sk| ≥ α

)
≤ 1

α2

[
c2n

n∑
k=1

E(X2
k) +

m∑
k=n+1

c2kE(X2
k)

]
.

The following conditional Háyek-Rényi inequality, derived by Rao (2009), will be

useful in deriving convergence rates of bootstrap estimators.

Lemma 7. (Rao, 2009, Theorem 5) Let G be a sub-σ-field of F . Conditional on G, let

X1, . . . , Xk, . . . be a sequence of conditional independent random variables with zero

conditional mean (E(Xk|G) = 0) and finite conditional variance (E(X2
k |G) < ∞). De-

note the partial sum ofXk as Sk = X1+· · ·+Xk. Let ck, k = 1, 2, . . . be a non-increasing

sequence of positive G-measurable random variables. For any G-measurable random vari-

able α > 0, a.s. and positive numbers n < m,

P
(

max
n≤k≤m

ck|Sk| ≥ α
∣∣∣ G) ≤ 1

α2

[
c2n

n∑
k=1

E(X2
k |G) +

m∑
k=n+1

c2kE(X2
k |G)

]
a.s..

By Lemma 6 and 7, we can establish uniform convergence of partial sums. Lemma 8

collects some uniform convergence rates which are handy in proving the lemmas.

Lemma 8. Let 0 < φ(n) ≤ n be a non-decreasing and unbounded function. Under
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Assumptions A1-A3, we have,

(i) max
1≤k≤t01

∣∣∣ n∑
t=k+1

(wt − 1)
∣∣∣= OP(

√
n) = OPw(

√
n),

and max
1≤k≤t01

∣∣∣ t01∑
t=k+1

(wt − 1)
∣∣∣= OPw(

√
n);

(ii) max
1≤k≤t01

∣∣∣ n∑
t=k+1

(wt − 1)εt

∣∣∣= OPw(
√
n);

(iii) max
1≤k≤φ(n)

∣∣∣ 1√
k

k∑
t=1

(wt − 1)εt

∣∣∣= oPw(log φ(n));

(iv) max
1≤k≤φ(n)

∣∣∣ k∑
t=1

εt

∣∣∣= oPw(
√
φ(n) log φ(n));

(v) max
1≤k≤φ(n)

∣∣∣ 1√
k

k∑
t=1

εt

∣∣∣= oPw(log φ(n)).

Proof. (i) By the Háyek-Rényi inequality (Lemma 6), we have for M > 0,

P

(
max
1≤k≤t01

∣∣ n∑
k+1

(wt − 1)
∣∣> M

√
n

)

≤ 1

M2n

(
(n− t01) + (t01 − 1)

)
≤ 1

M2
.

Therefore, max1≤k≤t01

∣∣ ∑n
k+1(wt−1)

∣∣= OP(
√
n). Because the bootstrap weights wt, t =

1, . . . , n and the data Xt, t = 1, . . . , n are independent by Assumption 3, max1≤k≤t01

∣∣∑n
k+1(wt − 1)

∣∣= OPw(
√
n) as well. The second part of (i) is proved in the same way, for

any M > 0,

P

 max
1≤k≤t01

∣∣ t01∑
1

(wt − 1)
∣∣> M

√
n

 ≤ t01
M2n

≤ 1

M2
.
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(ii) By the conditional Háyek-Rényi inequality (Lemma 7), we have for M > 0,

Pw

(
max
1≤k≤t01

∣∣ n∑
k+1

(wt − 1)εt
∣∣> M

√
n

)

≤ 1

nM2

 n∑
t=t01+1

Ew((wt − 1)εt)
2 +

t01∑
t=1

Ew((wt − 1)εt)
2

 a.s.

=
1

M2

(
1

n

n∑
t=1

ε2t

)
a.s.

≤ 1

M2
(E(ε21) + 1) a.s.

where the last step follows from the strong law of large numbers. By the definition of the

notation OPw(.), (ii) is proved.

(iii) By the conditional Háyek-Rényi inequality (Lemma 7), we have for ε > 0,

Pw

(
max

1≤k≤φ(n)

∣∣ 1√
k

k∑
1

(wt − 1)εt
∣∣> ε log φ(n)

)

≤ 1

ε2(log φ(n))2

φ(n)∑
t=1

Ew((wt − 1)εt)
2

t

 a.s.

=
1

ε2

 1

(log φ(n))2

φ(n)∑
t=1

ε2t − σ2

t
+

1

(log φ(n))2

φ(n)∑
t=1

σ2

t

 a.s..

The series
∑∞

t=1(ε
2
t−σ2)/(t(log(t))2) converges almost surely by invoking the Kolmogorov’s

three series theorem. In view of the Kronecker lemma, the first term in the bracket con-

verges almost surely to 0. The second term in the bracket converges to 0 by noting that∑φ(n)
t=1 t

−1 ≤ log(φ(n)) + 1.

(iv) By a formula discovered by Chung (1948, page 206), we have for any ε > 0,

P

(
lim sup

n

{
max

1≤k≤φ(n)

∣∣∣ k∑
t=1

εt

∣∣∣> (
√
φ(n) log φ(n))ε

})

= P

lim sup
n

∣∣∣
φ(n)∑
t=1

εt

∣∣∣>√φ(n) log φ(n)ε


 .
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That is, we can translate the strong convergence result of sum of random variables to

the maximum of sums. Therefore, by applying the law of iterated logarithms, we have

max
1≤k≤φ(n)

|
∑k

t=1 εt|/(
√
φ(n) log φ(n)) converges to 0 almost surely. Lastly, we prove that if

Zn is σ(X1, . . . , Xn) measurable, then Zn = oPw(1) is equivalent to Zn converges to zero

almost surely. This follows from the following chain of arguments,

∀ε > 0, lim
n→∞

Pw(|Zn| > ε) = 0, a.s.

⇔ ∀ε > 0, lim
n→∞

1(|Zn| > ε) = 0, a.s.

⇔ ∀k = 1, 2, . . . , lim
n→∞

1(|Zn| > 1/k) = 0, a.s.

⇔ lim
n→∞

|Zn| = 0, a.s.,

where 1(.) is the indicator function.

(v) The proof of (v) is the same as that of (iv). Using Chung (1948)’s formula, we

have for any ε > 0,

P

(
lim sup

n

{
max

1≤k≤φ(n)

∣∣∣ 1√
k

k∑
t=1

εt

∣∣∣> log φ(n)ε

})

= P

lim sup
n

∣∣∣ 1√
φ(n)

φ(n)∑
t=1

εt

∣∣∣> log φ(n)ε


 .

The lemma is proved by invoking the law of iterated logarithm.

The proofs of the Lemma 1-5 and theorems are presented below.

Proof of Lemma 1 and Lemma 2. We first examine Lwn (k) for k ∈ [1, n]. For k ≤ t01,

X̄w
k =

∑k
t=1wtXt∑k
t=1wt

= β0
1 +

∑k
t=1wtεt∑k
t=1wt

,

X̄w
−k =

∑t01
t=k+1wt∑n
t=k+1wt

β0
1 +

∑t02
t=t01+1

wt∑n
t=k+1wt

β0
2 +

∑n
t=t02+1wt∑n
t=k+1wt

β0
3 +

∑n
t=k+1wtεt∑n
t=k+1wt

.

To simplify the notations, denote

ε̄wk =

∑k
t=1wtεt∑k
t=1wt

, ε̄w−k =

∑n
t=k+1wtεt∑n
t=k+1wt

.
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and

awk =
1∑n

k+1wt


n∑

t01+1

wt(β
0
1 − β0

2) +
n∑

t02+1

wt(β
0
2 − β0

3)

 ,

bwk =
1∑n

k+1wt


t01∑
k+1

wt(β
0
2 − β0

1) +
n∑

t02+1

wt(β
0
2 − β0

3)

 ,

cwk =
1∑n

k+1wt


t01∑
k+1

wt(β
0
2 − β0

1) +

t02∑
k+1

wt(β
0
3 − β0

2)

 .

Using these notations, we have

k∑
t=1

wt(Xt − X̄w
k )2 =

k∑
t=1

wt(εt − ε̄wk )2,

and
n∑

t=k+1

wt(Xt − X̄w
−k)

2

=

t01∑
t=k+1

wt(Xt − X̄w
−k)

2 +

t02∑
t=t01+1

wt(Xt − X̄w
−k)

2 +
n∑

t=t02+1

wt(Xt − X̄w
−k)

2

=

t01∑
t=k+1

wt
(
awk + εt − ε̄w−k

)2
+

t02∑
t=t01+1

wt
(
bwk + εt − ε̄w−k

)2
+

n∑
t=t02+1

wt
(
cwk + εt − ε̄w−k

)2
= (awk )2

t01∑
k+1

wt + (bwk )2
t02∑
t01+1

wt + (cwk )2
n∑

t02+1

wt + 2awk

t01∑
k+1

wt(εt − ε̄w−k)

+ 2bwk

t02∑
t01+1

wt(εt − ε̄w−k) + 2cwk

n∑
t02+1

wt(εt − ε̄w−k) +
n∑
k+1

wt(εt − ε̄w−k)2.
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Thus, we obtain for k ≤ t01,

Uw
n (k/n) = Lwn (k) =

k∑
t=1

wt(Xt − X̄w
k )2 +

n∑
t=k+1

wt(Xt − X̄w
−k)

2

=
1

n

(awk )2
t01∑
k+1

wt + (bwk )2
t02∑
t01+1

wt + (cwk )2
n∑

t02+1

wt


+

1

n

n∑
t=1

wtε
2
t +Rw

n (k),

(B.4)

where

Rw
n (k) =

1

n

2awk

t01∑
k+1

wtεt + 2bwk

t02∑
t01+1

wtεt + 2cwk

n∑
t02+1

wtεt


− 1

n

2awk

t01∑
k+1

wt + 2bwk

t02∑
t01+1

wt + 2cwk

n∑
t02+1

wt

 ε̄w−k

− 1

n

k∑
t=1

wt(ε̄
w
k )2 − 1

n

n∑
t=k+1

wt(ε̄
w
−k)

2

:= I(k) + II(k) + III(k) + IV (k).

In the following, we derive the convergence rate of Rw
n (k). Note that the bootstrap

weightswt, t = 1, . . . , n are positive by Assumption A3, therefore max{|awk |, |bwk |, |cwk |} ≤

13



2(|β0
1 |+ |β0

2 |+ |β0
3 |). Thus,

I(k) =
1

n

2awk

t01∑
k+1

wtεt + 2bwk

t02∑
t01+1

wtεt + 2cwk

n∑
t02+1

wtεt


=

1

n

2awk

n∑
k+1

wtεt + 2(bwk − awk )

t02∑
t01+1

wtεt + 2(cwk − awk )
n∑

t02+1

wtεt


=

1

n

2awk

n∑
k+1

(wt − 1)εt + 2(bwk − awk )

t02∑
t01+1

(wt − 1)εt + 2(cwk − awk )
n∑

t02+1

(wt − 1)εt


+

1

n

2awk

n∑
k+1

εt + 2(bwk − awk )

t02∑
t01+1

εt + 2(cwk − awk )
n∑

t02+1

εt


:= I1(k) + I2(k).

Now, we apply Lemma 8 (ii) to the first term I1(k), by the boundedness of awk , b
w
k , and

cwk , we conclude that sup1≤k≤t01 I1(k) = OPw(n−1/2). Note that max1≤k≤t01 |
∑n

k+1 εt| ≤
max1≤k≤n |

∑n
t=k εt| = oPw(

√
n log n) by Lemma 8 (iv). Thus, we have sup1≤k≤t01 I2(k) =

oPw(n−1/2 log n). By combining the convergence rates of I1(k) and I2(k), we obtain the

uniform convergence rate of I(k) as sup1≤k≤t01 I(k) = oPw(n−1/2 log n).

Similarly,

II(k) =
1

n

2awk

t01∑
k+1

wt + 2bwk

t02∑
t01+1

wt + 2cwk

n∑
t02+1

wt

 ε̄w−k

=
1

n

(
2awk

∑t01
k+1wt + 2bwk

∑t02
t01+1

wt + 2cwk
∑n

t02+1wt

)
∑n

k+1wt

(
n∑

t=k+1

wtεt

)

≤ 2

n
max{|awk |, |bwk |, |cwk |}

(∣∣∣ n∑
t=k+1

(wt − 1)εt

∣∣∣ +
∣∣∣ n∑
t=k+1

εt

∣∣∣)

≤ 4

n
(|β0

1 |+ |β0
2 |+ |β0

3 |)

(∣∣∣ n∑
t=k+1

(wt − 1)εt

∣∣∣ +
∣∣∣ n∑
t=k+1

εt

∣∣∣) .
By applying Lemma 8 (ii) and (iv), we have sup1≤k≤t01 II(k) = oPw(n−1/2 log n).

14



The uniform convergence rate of III(k) can be derived as follows,

sup
1≤k≤t01

III(k) =
1

n
sup

1≤k≤t01

k∑
t=1

wt(ε̄
w
k )2 =

1

n
sup

1≤k≤t01

(∑k
t=1wtεt

)2
∑k

t=1wt

=
1

n
sup

1≤k≤t01

(
1√
k

∑k
t=1(wt − 1)εt + 1√

k

∑k
t=1 εt

)2
1
k

∑k
t=1wt

≤ 1

n
sup

1≤k≤logn

(∑k
t=1(wt − 1)εt +

∑k
t=1 εt

)2
∑k

t=1wt

+
1

n
sup

logn≤k≤t01

(
1√
k

∑k
t=1(wt − 1)εt + 1√

k

∑k
t=1 εt

)2
1
k

∑k
t=1(wt − 1) + 1

:= III1 + III2.

By the conditional Háyek-Rényi inequality (Lemma 7), we have for ε > 0,

Pw

(
max

1≤k≤log(n)

∣∣ k∑
t=1

(wt − 1)εt
∣∣> ε log(n)

)

≤ 1

ε2 log(n)

 1

log(n)

log(n)∑
t=1

ε2t

→ 0 a.s.,

(B.5)

where the last step follows from the strong law of large numbers. Take φ(n) = log(n) in

Lemma 8 (iv), we have sup1≤k≤logn |
∑k

t=1 εt| = oPw(log n). Together with (B.5), we have

III1 = oPw(log(n)2/n).

Next, we derive the convergence rate of III2. By Lemma 6 and the Assumption A3

that the bootstrap weights and the observations are independent, we have for any ε > 0

Pw

(
max

log(n)≤k≤t01

∣∣∣ 1

k

k∑
t=1

(wt − 1)
∣∣∣> ε

)

≤ 1

ε2

 1

log(n)

log(n)∑
t=1

1

k2
+

t01∑
t=log(n)+1

1

k2

 ≤ 1

ε2
3

log(n)
.

(B.6)

Therefore maxlog(n)≤k≤t01

∣∣∣ 1
k

∑k
t=1(wt − 1)

∣∣∣= oPw(1). Take φ(n) = t01 = nτ 01 in Lemma

15



8 (iii) and (v), we obtain that

max
log(n)≤k≤t01

∣∣∣ 1√
k

k∑
t=1

(wt − 1)εt

∣∣∣= oPw(log(n)), (B.7)

and

max
log(n)≤k≤t01

∣∣∣ 1√
k

k∑
t=1

εt

∣∣∣= oPw(log(n)). (B.8)

By combining (B.6), (B.7), and (B.8), we obtain III2 = oPw(log(n)2/n), and therefore

sup1≤k≤t01 III(k) = oPw(log(n)2/n).

Using the same techniques for deriving the convergence rate of III2, we can prove

that sup1≤k≤t01 IV (k) = oPw(log(n)2/n). Combining the convergence rates of I(k), II(k),

III(k), and IV (k), we obtain sup1≤k≤t01 R
w
n (k) = oPw(log(n)/

√
n).

Recall the decomposition of Uw
n (k/n) in (B.4) for k ∈ [1, t01] is

Uw
n (k/n) =

1

n

(awk )2
t01∑
k+1

wt + (bwk )2
t02∑
t01+1

wt + (cwk )2
n∑

t02+1

wt

+
1

n

n∑
t=1

wtε
2
t +Rw

n (k),

=

(
t01 − k
n

+

∑t01
k+1(wt − 1)

n

)
(awk )2 +

t02 − t01
n

+

∑t02
t01+1

(wt − 1)

n

 (bwk )2

+

(
n− t02
n

+

∑n
t02+1(wt − 1)

n

)
(cwk )2 +

1

n

n∑
t=1

wtε
2
t +Rw

n (k).

For k ∈ [1, t01], denote

Ūn(k/n) =
t01 − k
n

a2k +
t02 − t01
n

b2k +
n− t02
n

c2k + σ2, (B.9)

where ak = ((n− t01)(β0
1 − β0

2) + (n− t02)(β0
2 − β0

3))/(n− k), bk = ((t01− k)(β0
2 − β0

1) +

(n− t02)(β0
2 − β0

3))/(n− k), and ck = ((t01 − k)(β0
2 − β0

1) + (t02 − k)(β0
3 − β0

2))/(n− k).
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We calculate the difference between Uw
n (k/n) and Ūn(k/n) as

Uw
n (k/n)− Ūn(k/n) =

t01 − k
n

(
(awk )2 − a2k

)
+

∑t01
k+1(wt − 1)

n
(awk )2

+
t02 − t01
n

(
(bwk )2 − b2k

)
+

∑t02
t01+1

(wt − 1)

n
(bwk )2

+
n− t02
n

(
(cwk )2 − c2k

)
+

∑n
t02+1(wt − 1)

n
(cwk )2

+
1

n

n∑
t=1

(wt − 1)ε2t +
1

n

n∑
t=1

(ε2t − σ2) +Rw
n (k).

(B.10)

To derive the uniform convergence rate of Uw
n (k/n) − Ūn(k/n), we first investigate

the convergence rate of awk to ak, bwk to bk, and cwk to ck. For awk , simple algebras lead to

awk − ak =

(∑n
t01+1wt∑n
k+1wt

− n− t01
n− k

)
(β0

1 − β0
2) +

(∑n
t02+1wt∑n
k+1wt

− n− t02
n− k

)
(β0

2 − β0
3)

=

1
n−t01

∑n
t01+1(wt − 1)− 1

n−k
∑n

k+1(wt − 1)(
1

n−k
∑n

k+1(wt − 1) + 1
) (

n−k
n−t01

) (β0
1 − β0

2)

+

1
n−t02

∑n
t02+1(wt − 1)− 1

n−k
∑n

k+1(wt − 1)(
1

n−k
∑n

k+1(wt − 1) + 1
) (

n−k
n−t02

) (β0
2 − β0

3).

By Lemma 6, we have for some M > 0

Pw

(
max
1≤k≤t01

∣∣∣ 1

n− k

n∑
k+1

(wt − 1)
∣∣∣> Mn−1/2

)
≤ 1

M2

nC

n− t01
, (B.11)

for some constantC > 0. Therefore, max1≤k≤t01

∣∣ (n−k)−1
∑n

k+1(wt−1)
∣∣= OPw(n−1/2).

We thus proved that max1≤k≤t01 |a
w
k − ak| = OPw(n−1/2). Similarly, for bwk and cwk we have

max1≤k≤t01 |b
w
k − bk| = OPw(n−1/2) and max1≤k≤t01 |c

w
k − ck| = OPw(n−1/2).

By the convergence rate of awk to ak, bwk to bk, cwk to ck, and Lemma 8 (i), we have

proved that the first six terms of (B.10) have uniform convergence rate of OPw(n−1/2) for

17



k ∈ [1, t01]. The seventh term of (B.10) can be bounded as

Pw

(∣∣∣ 1

n

n∑
t=1

(wt − 1)ε2t

∣∣∣> n−1/2 log(n)ε

)

≤ 1

n log(n)2ε2

n∑
t=1

ε4t → 0 a.s.,

for any ε > 0, where the convergence follows from the strong law of large numbers. The

convergence rate of the eighth term is oPw(n−1/2 log(n)) by the law of iterated logarithm.

Together with the already proved rate sup1≤k≤t01 R
w
n (k) = oPw(log(n)/

√
n), we obtain the

convergence rate

sup
1≤k≤t01

|Uw
n (k/n)− Ūn(k/n)| = oPw(log(n)/

√
n).

With the same technique the results can be proved for k ∈ [t01+1, t02] and k ∈ [t02+1, n].

These results imply Lemma 2.

For k = bnτc and τ ≤ τ 01 , denote

a(τ) =
1− τ 01
1− τ

(β0
1 − β0

2) +
1− τ 02
1− τ

(β0
2 − β0

3)

b(τ) =
τ 01 − τ
1− τ

(β0
2 − β0

1) +
1− τ 02
1− τ

(β0
2 − β0

3)

c(τ) =
τ 01 − τ
1− τ

(β0
2 − β0

1) +
τ 02 − τ
1− τ

(β0
3 − β0

2),

and let

U(τ) = (τ 01 − τ)a(τ)2 + (τ 02 − τ 01 )b(τ)2 + (1− τ 02 )c(τ)2. (B.12)

Since limn→∞ Ūn(k/n) = U(τ) uniformly for τ ∈ [0, τ 01 ], Lemma 1 is proved.

Proof of Lemma 4.

Uw
n (t̂w/n)− Uw

n (t01/n) = (Uw
n (t̂w/n)− Ūn(t̂w/n))− (Uw

n (t01/n)− Ūn(t01/n))

+ Ūn(t̂w/n)− Ūn(t01/n)

≥ −2 sup
1≤k≤n

|Uw
n (k/n)− Ūn(k/n)|+ C|t̂w − t01|/n,

where the last inequality is true by Lemma 3. Since Uw
n (t̂w/n)− Uw

n (t01/n) ≤ 0, we have

|t̂w − t01| ≤ C−12n sup
1≤k≤n

|Uw
n (k/n)− Ūn(k/n)|.
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Thus, Lemma 4 is proved by the result of Lemma 2.

Proof of Lemma 5. In the proof, we consider the case k < t01. The case k > t01 is similar.

With a little bit abuse of notation, we denote Dnε = {k : nη ≤ k ≤ nτ 02 (1− η), t01 − k >
ε log(n)}. We decompose Lwn (k)− Lwn (t01) as follows,

Lwn (k)− Lwn (t01) =

t01∑
k+1

wt(a
w
k )2 +

t02∑
t01+1

wt((b
w
k )2 − (bwt01

)2)

+
n∑

t02+1

wt((c
w
k )2 − (cwt01

)2) + n(Rw
n (k)−Rw

n (t01)).

Denote A(w,β0) =
∑n

t01+1wt(β
0
1 − β0

2) +
∑n

t02+1wt(β
0
2 − β0

3). We rewrite awk , b
w
k , c

w
k as

awk =
A(w,β0)∑n

k+1wt
,

bwk =
A(w,β0)∑n

k+1wt
+ (β0

2 − β0
1),

cwk =
A(w,β0)∑n

k+1wt
+ (β0

3 − β0
1).
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After some algebras, we obtain

t01∑
k+1

wt(a
w
k )2 +

t02∑
t01+1

wt((b
w
k )2 − (bwt01

)2) +
n∑

t02+1

wt((c
w
k )2 − (cwt01

)2)

=

∑t01
k+1wt

(
∑n

k+1wt)
2
A(w,β0)2 +

t02∑
t01+1

wt

{
A(w,β0)2

(
∑n

k+1wt)
2

+
2(β0

2 − β0
1)A(w,β0)∑n
k+1wt

}

−
t02∑
t01+1

wt

{
A(w,β0)2

(
∑n

t01+1wt)
2

+
2(β0

2 − β0
1)A(w,β0)∑n
t01+1wt

}

+
n∑

t02+1

wt

{
A(w,β0)2

(
∑n

k+1wt)
2

+
2(β0

3 − β0
1)A(w,β0)∑n
k+1wt

}

−
n∑

t02+1

wt

{
A(w,β0)2

(
∑n

t01+1wt)
2

+
2(β0

3 − β0
1)A(w,β0)∑n
t01+1wt

}

=
−2
∑t01

k+1wtA(w,β0)∑n
k+1wt

∑n
t01+1wt

 t02∑
t01+1

wt(β
0
2 − β0

1) +
n∑

t02+1

wt(β
0
3 − β0

1)


−
∑t01

k+1wtA(w,β0)2∑n
k+1wt

∑n
t01+1wt

=

∑t01
k+1wtA(w,β0)2∑n
k+1wt

∑n
t01+1wt

.

Therefore, we have

Lwn (k)− Lwn (t01) =

∑t01
k+1wtA(w,β0)2∑n
k+1wt

∑n
t01+1wt

+ n(Rw
n (k)−Rw

n (t01)).

We first derive a lower bound of A(w,β0)2/(
∑n

k+1wt
∑n

t01+1wt) for k ∈ [1, t01]. Let

B = (1− τ 01 )(β0
1 − β0

2) + (1− τ 02 )(β0
2 − β0

3), and ∆ = B2/(1− τ 01 ). We have

A(w,β0)2

(
∑n

k+1wt
∑n

t01+1wt)

=

(
1
n

∑n
t01+1(wt − 1)(β0

1 − β0
2) + 1

n

∑n
t02+1(wt − 1)(β0

2 − β0
3) +B

)2
(
1
n

∑n
k+1(wt − 1) + (n− k)/n

) (
1
n

∑n
t01+1(wt − 1) + (1− τ 01 )

) .

(B.13)
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By Lemma 8 (ii), all the stochastic terms in (B.13) are OPw(n−1/2) uniformly over k ∈
[1, t01]. It is easily seen that for a fixed ε > 0,

lim
n→∞

Pw

(
min

1≤k≤t01

A(w,β0)2

(
∑n

k+1wt
∑n

t01+1wt)
> ∆/2

)
= 0 a.s.. (B.14)

Therefore, we have

lim
n→∞

Pw
(

inf
k∈Dnε

Lwn (k) ≤ Lwn (t01)

)
= lim

n→∞
Pw

( ⋃
k∈Dnε

{Lwn (k)− Lwn (t01) ≤ 0}

)

= lim
n→∞

Pw

( ⋃
k∈Dnε

{
n(Rw

n (k)−Rw
n (t01))∑t01

k+1wt
≤ −A(w,β0)2

(
∑n

k+1wt
∑n

t01+1wt)

})

≤ lim
n→∞

Pw

( ⋃
k∈Dnε

{
n(Rw

n (k)−Rw
n (t01))∑t01

k+1wt
≤ −∆

2

})
,

(B.15)

where the last inequality follows from (B.14). Therefore, to prove Lemma 5, it is suffices

to show that for any fixed ε > 0,

lim
n→∞

Pw

(
sup
k∈Dnε

∣∣∣∣ n(Rw
n (k)−Rw

n (t01))∑t01
k+1wt

∣∣∣∣> ∆/2

)
= 0 a.s., (B.16)

which can be implied by proving supk∈Dnε

∣∣ n(Rw
n (k)−Rw

n (t01))/
∑t01

k+1wt
∣∣= oPw(1).

We decompose n(Rw
n (k)−Rw

n (t01)) for k < t01 as follows,

n(Rw
n (k)−Rw

n (t01))

= 2awk

t01∑
k+1

wtεt + 2(bwk − bwt01)
t02∑
t01+1

wtεt + 2(cwk − cwt01)
n∑

t02+1

wtεt

− 2awk ε̄
w
−k

t01∑
k+1

wt + 2(bwk ε̄
w
−k − bwt01 ε̄

w
−t01

)

t02∑
t01+1

wt + 2(cwk ε̄
w
−k − cwt01 ε̄

w
−t01

)
n∑

t02+1

wt

−

 k∑
t=1

wt(ε̄
w
k )2 −

t01∑
t=1

wt(ε̄
w
t01

)2

−
 n∑
t=k+1

wt(ε̄
w
−k)

2 −
n∑

t=t01+1

wt(ε̄
w
−t01

)2

 .

(B.17)

We will show that each term of n(Rw
n (k)−Rw

n (t01)) divided by
∑t01

k+1wt is oPw(1) uniformly
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over k ∈ Dnε. The first term of (B.17) divided by
∑t01

k+1wt is

2awk
∑t01

k+1wt∑t01
k+1wt

= 2awk

1
t01−k

∑t01
k+1(wt − 1)εt + 1

t01−k
∑t01

k+1 εt

1
t01−k

∑t01
k+1(wt − 1) + 1

. (B.18)

By Lemma 7, for an arbitrary δ > 0,

Pw

 max
nη≤k≤t01−ε log(n)

∣∣∣ 1

t01 − k

t01∑
k+1

(wt − 1)εt

∣∣∣> δ


≤ 1

δ2

 1

t01 − ε log(n)

t01∑
k=t01−ε log(n)

ε2t
(t01 − k)2

+

t01−ε log(n)∑
k=nη

ε2t
(t01 − k)2

 a.s..

(B.19)

The right hand side converges almost surely to 0 as n→ 0 by invoking the Kolmogorov’s

three series theorem. Next, we prove that max
nη≤k≤t01−ε log(n)

1
t01−k

∑t01
k+1 εt → 0, a.s.. For any

δ > 0,

lim
m→∞

P

 ∞⋃
n=m

 max
nη≤k≤t01−ε log(n)

∣∣ 1

t01 − k

t01∑
k+1

εt
∣∣> δ




≤ lim
m→∞

P

(
max

k≥ε log(m)

∣∣ 1

k

k∑
t=1

εt
∣∣> δ

)
≤ lim

m→∞

1

ε log(m)

∞∑
k=1

1

k2
,

(B.20)

where the last inequality follows from Lemma 6. Thus, by (B.20) we have proved that

max
nη≤k≤t01−ε log(n)

1
t01−k

∑t01
k+1 εt → 0, a.s.. Similarly, for any δ > 0,

Pw

 max
nη≤k≤t01−ε log(n)

∣∣ 1

t01 − k

t01∑
k+1

(wt − 1)
∣∣> δ


≤ 1

δ2

 1

t01 − ε log(n)

t01∑
k=t01−ε log(n)

1

(t01 − k)2
+

t01−ε log(n)∑
k=nη

1

(t01 − k)2

 ,

(B.21)

the right hand side converges to 0 obviously. By combining (B.19), (B.20), (B.21) and that

awk is bounded from above, we have

max
nη≤k≤t01−ε log(n)

2awk
∑t01

k+1wt∑t01
k+1wt

= oPw(1).
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For the second term of (B.17), note that

(bwk − bwt01)
∑t02

t01+1
wtεt∑t01

k+1wt
=
A(w,β0)

∑t02
t01+1

wtεt∑n
k+1wt

∑n
t01+1wt

≤ 2(|β0
1 |+ |β0

2 |+ |β0
3 |)

1
n−t01

∑t02
t01+1

(wt − 1)εt + 1
n−t01

∑t02
t01+1

εt
1

n−t01

∑n
t01+1(wt − 1) + 1

(B.22)

Therefore, by Lemma 8 (i), (ii), and the strong law of large numbers, we have

max
nη≤k≤t01−ε log(n)

(bwk − bwt01)
∑t02

t01+1
wtεt∑t01

k+1wt
= oPw(1).

The third term of (B.17) can be treated similarly as the second term. To treat the fourth

term, we first deal with ε̄wk ,

ε̄wk =

∑n
t=k+1wtεt∑n
t=k+1wt

=
1

n−k
∑n

t=k+1(wt − 1)εt + 1
n−k

∑n
t=k+1 εt

1
n−k

∑n
t=k+1(wt − 1) + 1

.

(B.23)

By the same technique in deriving (B.19) and (B.20), we know that maxnη≤k≤t01−ε log(n) ε̄
w
k =

oPw(1). Therefore, the fourth term is oPw(1) uniformly over k ∈ [nη, t01 − ε log(n)].

The fifth term of (B.17) can be written as

(bwk ε̄
w
−k − bwt01 ε̄

w
−t01

)

t02∑
t01+1

wt

= (bwk − bwt01)ε̄
w
−k

t02∑
t01+1

wt + bwt01
(ε̄w−k − ε̄w−t01)

t02∑
t01+1

wt

=
A(w,β0)

∑t02
t01+1

wt∑n
k+1wt

∑n
t01+1wt

t01∑
k+1

wtε̄
w
−k + bwt01

t02∑
t01+1

wt

∑t01
k+1wtεt∑n
k+1wt

− bwt01

t02∑
t01+1

wt

∑t01
k+1wt

∑n
t01+1wtεt∑n

k+1wt
∑n

t01+1wt
:= V1(k) + V2(k) + V3(k).
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For the first part, |V1(k)|/
∑t01

k+1wt ≤ C|ε̄w−k|. Thus, by (B.23), we obtain

max
nη≤k≤t01−ε log(n)

|V1(k)|/
t01∑
k+1

wt = oPw(1).

For the second part,

V2(k)∑t01
k+1wt

= bwt01

∑t02
t01+1

wt∑t01
k+1wt

∑t01
k+1wtεt∑n
k+1wt

,

which is oPw(1) uniformly over k ∈ [nη, t01 − ε log(n)] because (B.18) does so. For the

third part, we have

V3(k)∑t01
k+1wt

= bwt01

∑t02
t01+1

wt
∑n

t01+1wt∑n
k+1wt

∑n
t01+1wt

∑n
t01+1wtεt∑n
t01+1wt

≤ 2(|β0
1 |+ |β0

2 |+ |β0
3 |)
∑n

t01+1wtεt∑n
t01+1wt

,

which is oPw(1) uniformly over k ∈ [nη, t01− ε log(n)]. By combining the convergence re-

sult of V1(k), V2(k), and V3(k), we obtain that the fifth term of (B.17) divided by
∑t01

k+1wt

is oPw(1) uniformly over k ∈ [nη, t01 − ε log(n)].

The sixth term of (B.17) is treated similarly as the fifth term. The second to the last

term divided by
∑t01

k+1wt can be decomposed as k∑
t=1

wt(ε̄
w
k )2 −

t01∑
t=1

wt(ε̄
w
t01

)2

 /

t01∑
k+1

wt

=

(∑k
t=1wtεt

)2
∑t01

k+1wt
∑k

t=1wt
−

(∑t01
t=1wtεt

)2
∑t01

k+1wt
∑t01

t=1wt
.

which is oPw(1) uniformly over k ∈ [nη, t01−ε log(n)] using the same techniques in proving

(B.7) and (B.8). The last term is treated similarly as the second to the last term.

By combining all the convergence results we obtained, we have

max
nη≤k≤t01−ε log(n)

n(Rw
n (k)−Rw

n (t01))∑t01
k+1wt

= oPw(1),
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which leads to (B.16). The proof of Lemma 5 is completed.

Proof of Theorem 1. Note that the binary segmentation algorithm is implemented se-

quentially in this paper, we first study the convergence rate of t̂w, which is first change-

point detected by the BS algorithm defined in Section 2.2. For a fixed ε > 0, recall that

Dnε = {k : nη ≤ k ≤ nτ 02 (1− η), |k − t01| > ε log(n)},

lim
n→∞

Pw(|t̂w − t01| > log(n)ε)

≤ lim
n→∞

Pw(t̂w ≤ nη or t̂w ≥ nτ 02 (1− η)) + lim
n→∞

Pw(t̂w ∈ Dn)

≤ lim
n→∞

Pw(t̂w ≤ nη or t̂w ≥ nτ 02 (1− η)) + lim
n→∞

Pw( inf
k∈Dnε

Lwn (k) ≤ Lwn (t01))

= 0 a.s.,

where the last equality follows from Lemma 4 and Lemma 5. Thus, we obtain |t̂w − t01| =
oPw(log(n)).

Have obtained the convergence rate of the first change-point t̂w, we can proceed to

analyze the convergence rate a further change-point in the sub-sample [t̂w, n]. Since we

have proved that t̂w−t01 = oPw(log(n)), the difference between the residual sum of squares

using the sub-sample [t̂w, n] and the sub-sample [t01, n] is of order oPw(log(n)), which is

ignorable in the proof. Thus, we can use the same technique used in proving the conver-

gence rate of t̂w to prove that the second estimated change-point converges to t02 with the

rate oPw(log(n)).

Proof of Theorem 2. Denote the weighted mean of Xt, t = k1, . . . , k2 by the weights

wt, t = k1, . . . , k2 by X̄w
k1,k2

= (
∑k2

k1+1wt)
−1∑k2

k1+1wtXt, denote the weighted-CUSUM

statistic for the sample Xt, t = k1, . . . , k2 by

V w
k1,k2

(k) =

∣∣∣∣∣∣
√√√√ ∑k2

t=k1
wt∑k

t=k1
wt
∑k2

t=k+1wt

[
k∑

t=k1

wt(Xt − X̄w
k1,k2

)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
√√√√∑k

t=k1
wt
∑k2

t=k+1wt∑k2
t=k1

wt

[
X̄w
k1,k
− X̄w

k,k2

]∣∣∣∣∣∣ .
We first study the difference between (σ̂wk )2 and (σ̂wk−1)

2, the subscript k and k − 1 de-

note the number of change-points for the candidate model. Note that the estimated set of
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change-points are nested, thus (σ̂wk−1)
2 − (σ̂wk )2 must be of the form

(σ̂wk−1)
2 − (σ̂wk )2 =∑k2

t=k1
wt(Xt − X̄w

k1,k2
)2 −

∑k
t=k1

wt(Xt − X̄w
k1,k

)2 −
∑k2

t=k wt(Xt − X̄w
k,k2

)2∑n
t=1wt

=
(V 2

k1,k2
)2∑n

t=1wt
=

∑k
t=k1

wt
∑k2

t=k+1wt∑n
t=1wt

∑k2
t=k1

wt

[
X̄w
k1,k
− X̄w

k,k2

]2
,

where k, k1, k2 are change-points estimated by the binary segmentation algorithm. Note

that the number of change-points is N = 2 in the true model, we use N in the proof for

clarity. By Theorem 1, the change-points are estimated by the precision oPw(log(n)),

(σ̂wN−1)
2 − (σ̂wN)2 =

∑k
t=k1

wt
∑k2

t=k+1wt∑n
t=1wt

∑k2
t=k1

wt

[
X̄w
k1,k
− X̄w

k,k2

]2
=

∑k
t=k1

wt
∑k2

t=k+1wt∑n
t=1wt

∑k2
t=k1

wt

[
β0
1 − β0

2 + ε̄wk1,k − ε̄
w
k,k2

+ oPw(n−1 log(n))
]2

= (β1 − β2)2 + oPw(1),

where ε̄wk1,k2 = (
∑k2

k1
wt)
−1∑k2

k1
wtεt, β0

1 is the mean ofXt in the segmentXt, t = k1, . . . , k,

and β0
2 is the mean of Xt in the segment Xt, t = k, . . . , k2. For k < N ,

(σ̂wk )2 − (σ̂wN)2 = (σ̂wk )2 − (σ̂wk+1)
2+, . . . ,+(σ̂wN−1)

2 − (σ̂wN)2

≥ (σ̂wN−1)
2 − (σ̂wN)2 = (β1 − β2)2 + oPw(1).

We have for k < N and some positive constant C > 0,

BIC(k)−BIC(N) =
n

2
log

(σ̂wk )2

(σ̂wk )2
+ (k −N) log(n)

=
n

2
log

(
1 +

(σ̂wk )2 − (σ̂wk )2

(σ̂wk )2

)
+ (k −N) log(n)

≥ Cn
(σ̂wk )2 − (σ̂wk )2

(σ̂wk )2
+ (k −N) log(n) a.s.

≥ Cn+ (k −N) log(n) > 0 a.s.,

which is true for sufficiently large n. Next we consider the case where k > N , for k =
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N + 1 we have,

(σ̂wN)2 − (σ̂wN+1)
2 =

∑k
t=k1

wt
∑k2

t=k+1wt∑n
t=1wt

∑k2
t=k1

wt

[
X̄w
k1,k
− X̄w

k,k2

]2
=

∑k
t=k1

wt
∑k2

t=k+1wt∑n
t=1wt

∑k2
t=k1

wt

[
ε̄wk1,k − ε̄

w
k,k2

+ op(n
−1)
]2

= oPw(n−1 log(n)).

Thus for k > N , we have (σ̂wk )2 − (σ̂wN)2 = oPw(n−1 log(n)), and

BIC(k)−BIC(N) =
n

2
log

(σ̂wk )2

(σ̂wk )2
+ (k −N) log(n)

≥ Cn
(σ̂wk )2 − (σ̂wk )2

(σ̂wk )2
+ (k −N) log(n)

≥ oPw(log(n)) + (k −N) log(n),

which is positive for large n almost surely. Thus for large n, BIC(k) is minimized at

k = N = 2 almost surely.

Proof of Theorem 3. Without loss of generality, we prove the asymptotic consistency

of the confidence interval for µ0
t for a fixed location t such that t01 − t > log(n). Note

that in the proof t is used to indicate a fixed notation. By Theorem 2, we have that the

probability of the estimated number of change-points for the bootstrap samples equals

the true number of change-points goes to 1 conditional on the observations almost surely.

Take ε = 1/2 in Theorem 1, we have limn→∞ Pw(|t̂w1 − t01| < 1/2 log(n)) = 1 almost

surely. Therefore, limn→∞ Pw(t̂w1 − t > 1/2 log(n)) = 1 almost surely. Therefore,

limn→∞ Pw(µ̂wt =
∑t̂w1

s=1wsXs/
∑t̂w1

s=1ws) = 1 almost surely, where µ̂wt denotes the boot-

strap analog of µ̂t = 1/t̂1
∑t̂1

s=1Xs.

Denote µ̌wt =
∑t01

s=1wsXs/
∑t01

s=1ws, we shall show that |µ̂wt − µ̌wt | = oPw(log(n)2/n).

In view of the inequality

|µ̂wt − µ̌wt | ≤

∣∣ ∑t01
s=1wsXs

∑t01
s=t̂w1 +1

ws
∣∣ +

∣∣ ∑t01
s=1ws

∑t01
s=t̂w1 +1

wsXs

∣∣∑t01
s=1ws

∑t̂w1
s=1ws

,

we only need to prove that

t01∑
s=t̂w1 +1

ws = oPw(log(n)2), and

t01∑
s=t̂w1 +1

wsXs = oPw(log(n)2). (B.24)
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For any ε > 0,

Pw

 t01∑
s=t̂w1 +1

ws > ε log(n)2


≤ Pw

 t01∑
s=t̂w1 +1

ws > ε log(n)2, |t̂w1 − t01| < ε log(n)


+ Pw(|t̂w1 − t01| ≥ ε log(n))

≤ Pw

 t01∑
s=t01−log(n)+1

ws > ε log(n)2, |t̂w1 − t01| < ε log(n)


+ Pw(|t̂w1 − t01| ≥ ε log(n))

≤ log(n)

ε log(n)2
+ Pw(|t̂w1 − t01| ≥ ε log(n))→ 0 a.s.,

where the second inequality follows from positiveness of ws, the third inequality follows

from the Chebyshev’s inequality, and the convergence follows from Theorem 1. The proof

of second part of (B.24) is the same as the first part except we need to apply a strong law

of large numbers to sum of |Xs|.
Theorem 3.6.13 of van der Vaart & Weller (1996) develops the general theory for

the weighted bootstrap measures, with the continuous mapping theorem (van der Vaart &

Weller, 1996, Theorem 1.11.1), we have√
t01

µ̌wt − 1

t01

t01∑
s=1

Xs

 N(0, σ2),

in probability, given the almost all the observations X1, X2, . . . , where stands for weak

converge. For the exact meaning of the above statement, we refer the reader to Section 2.9

and Section 3.6 of van der Vaart & Weller (1996). Together with the already established

result |µ̂wt − µ̌wt | = oPw(log(n)2/n), we have√
t01

µ̂wt − 1

t01

t01∑
s=1

Xs

 N(0, σ2),

in probability, given the almost all the observations X1, X2, . . . . The asymptotic consis-

tency of the percentile interval follows from Lemma 23.3 of Van der Vaart (2000).
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Note that the bagging estimator is the conditional expectation of µ̂wt given the obser-

vations. By standard probability manipulations similar to the proof of (B.24), we can show

that n/ log(n)2Ew(|µ̂wt − µ̌wt |)→ 0 almost surely. Also note that Ew(µ̌wt ) = 1/t01
∑t01

s=1Xt.

The delta method approximation of the variance of the sample mean is simply the sample

variance, see Chapter 6 of Efron (1982). Therefore, the consistency of the smoothed in-

terval follows from the central limit theorem. Because the adaptive interval is either the

smoother interval or the percentile interval, the adaptive interval is also consistent.
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