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Abstract

In this paper, we propose a new technique for constructing confidence intervals for

the mean of a noisy sequence with multiple change-points. We use the weighted boot-

strap to generalize the bootstrap aggregating or bagging estimator. A standard devia-

tion formula for the bagging estimator is introduced, based on which smoothed confi-

dence intervals are constructed. To further improve the performance of the smoothed

interval for weak signals, we suggest a strategy of adaptively choosing between the

percentile intervals and the smoothed intervals. A new intensity plot is proposed to

visualize the pattern of the change-points. We also propose a new change-point esti-

mator based on the intensity plot, which has superior performance in comparison with

the state-of-the-art segmentation methods. The finite sample performance of the con-

fidence intervals and the change-point estimator are evaluated through Monte Carlo

studies and illustrated with a real data example.
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1 Introduction

Changes are frequently occurring in the real world. External influences in the environment

are likely to induce instability in the underlying stochastic systems. A common form of the

change-point model is that the parameters in the stochastic system are piece-wise constant.

We consider a model with multiple change-points,

Xt = µ0
t + εt, t = 1, . . . , n, (1)

where the mean {µ0
t}nt=1 is a piece-wise constant signal with change-points at t01, . . . , t

0
N ,

that is µ0
t = β0

i+1 for t0i + 1 ≤ t ≤ t0i+1, i = 0, . . . , N , where t00 = 0, t0N+1 = n

and β0
i 6= β0

i+1, i = 1, . . . , N . The superscript 0 is used to indicate the true values of

parameters. The errors {εt}nt=1 are independent and identically distributed (i.i.d.) zero-

mean random variables.

Change-points detection is closely related to the model selection problem. Some

researchers proposed to obtain change-point estimates by penalizing the number of the

change-points in the model through a Schwarz-like criterion (Yao, 1988; Killick et al.,

2012), or by penalizing the total variation of the piecewise constant signal using the Fused

Lasso (Harchaoui & Lévy-Leduc, 2010). Fast computation is critical in change-point de-

tection. The computational complexity of the binary segmentation (BS) algorithm in-

troduced by Vostrikova (1981) is O(n log(n)). Refinements of BS, such as circular BS

(Olshen et al., 2004), and wild binary segmentation (Fryzlewicz, 2014) have been success-

fully applied to DNA copy number studies. The screening and ranking algorithm (SaRa)

proposed by Niu & Zhang (2012) explored the idea of local statistics for detecting change-

points. The computational complexity of SaRa is O(n).
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In this paper, we are interested in constructing confidence intervals for µ0
t , t = 1, . . . , n

of model (1). Siegmund (1988) discussed confidence sets estimation for parameters of

the exponential family, but only one change-point is allowed. Frick et al. (2014) and

Pein, Sieling & Munk (2017) proposed the simultaneous multiscale change-point estimator

(SMUCE) and constructed confidence sets for the change-points and model parameters.

Frick et al. (2014) relied on the consistency of the estimated change-points to ensure good

performance of the confidence sets. They did not tackle the problem that the number of

change-points might be misspecified in finite samples. When the jump size and the spacing

between change-points are small, the probability of correctly estimating the number of

change-points might be significantly lower than 1. Thus their confidence sets might have

low coverage for weak signals in finite samples. Consider the simulation in Figure 1,

where the true change-points are at 40, 80, 120, the empirical coverage probabilities of the

SMUCE intervals represented by line 5 are lower than the nominal level 95%. See Section

4 for the setup of the simulation.

[Figure 1 about here.]

We emphasize that the randomness in change-point estimation must be appropriately

dealt with when constructing confidence intervals for the mean. Confidence sets for the

mean implicitly depend on the underlying change-point estimator, ignoring randomness

in the change-point estimates will have harmful effects in confidence sets estimation as

illustrated by Figure 1.

To incorporate the randomness in change-point estimation, we use the weighted boot-

strap to generalize the bootstrap aggregating or bagging estimator of Efron (2014). We de-

velop a standard deviation formula for the bagging estimator, based on which confidence

intervals are constructed, that we define to be the smoothed interval. The bagging estima-

tor smooths the discontinuities in the process of change-point detection by averaging over
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the bootstrap replications. The bagging estimator and the corresponding standard error

formula can successfully capture the randomness in estimating the number and location of

the change-points.

The bootstrap is a popular resampling method for obtaining the distribution of esti-

mators and test statistics, see Efron (1982) for an introduction. In time series analysis,

the block bootstrap (Carlstein et al., 1986) can be used to obtain bootstrap samples from

a stationary sequence without specifying the dependence structure. Suppose the observed

data is (X1, . . . , Xn), and denote a block of data as Xj
m = {Xj+1, . . . , Xj+m}, where m

is the length of the block. For simplicity, assume that n = mb where both m and b are

integers. Bootstrap samples are obtained by sampling b blocks with replacement from

{Xjm
m , 0 ≤ j ≤ b − 1} and {Xj

m, 0 ≤ j ≤ n −m} for non-overlapping (Carlstein et al.,

1986) and overlapping (Kunsch, 1989) block bootstrap, respectively. If the time series fol-

lows a suitable model, e.g., Xt = g(Zt) + εt, where Zt is a covariate vector, the residual

bootstrap can be used to obtain bootstrap samples (Freedman, 1984) by sampling from the

centered residuals. See Horowitz (2019) for a recent overview.

In the change-point literature, bootstrap methods are used to approximate the critical

values of test statistics for the existence of a single change-point (Kirch, 2007). In on-

line change-point monitoring problems, Hlávka et al. (2016) considered the problem of

monitoring changes with bootstrapped critical values in time series model and regression

model. Besides hypotheses testing, Hušková & Kirch (2010) obtained confidence interval

for a single change-point in time-series models. We contribute by considering the problem

of doing statistical inference for the mean of a multiple change-point model based on the

bootstrapping methods, which is largely ignored in the change-point literature.

In the simulation studies, we found that the smoothed interval has coverage proba-

bilities close to the nominal level when the signals are moderate or strong, but may have
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coverage probabilities lower than the nominal level otherwise. As indicated by Fryzlewicz

(2014), the square root of the minimal spacing between change-points multiplied by the

size of jumps determines how easily change-points can be detected. When these two are

small or the variance of the noise is high, the probability of underestimating the number

of change-points is high. To correct the coverage probability of the smoothed interval,

we introduce the intensity score, the bootstrap change-point (BootCp) estimator, and the

adaptive interval. The intensity scores are defined as the frequencies of change-points oc-

curring in the bootstrap replications. The plot of the intensity scores versus the locations is

defined as an intensity plot. Intuitively, the intensity scores should be large when a location

is close to a true change-point, and close to 0 otherwise. The lower panel of Figure 1 illus-

trates the intensity plot with simulated data. The intensity plot can also be used to discover

possible missing change-points. If some regions of the intensity plot are ’significant’ to

human eyes, but no change-points are detected by an algorithm, the researcher can further

investigate those regions either by data analysis or expert’s knowledge.

Based on the intensity score, we define a new change-point estimator, the BootCp

estimator. The BootCp estimator is essentially a subset of the local maxima of the inten-

sity scores. The unique feature of the BootCp estimator is that every change-point esti-

mate is coupled with an intensity score, which indicates the plausibility of a change-point

occurring in the sample. The BootCp estimator performs well compared to state-of-art

segmentation methods in the simulation studies.

With the BootCp estimator and the intensity scores, we define the adaptive interval

as a data-driven choice between the percentile interval and the smoothed interval. The

percentile interval is constructed using the empirical quantiles of the bootstrap samples

of the mean estimator. The percentile interval is more robust to misspecification of the

change-points than the smoothed interval because it does not rely on a point estimate or a
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standard error estimate. The disadvantage of the percentile interval is that it is much wider

than the smoothed interval. For an estimated change-point with a low intensity score,

the bagging estimator of the mean for nearby locations will be severely biased. Thus

the resulting smoothed interval can not cover the true mean with the nominal probability.

To protect the confidence interval from low coverage probabilities, we use the percentile

interval to replace the smoothed interval. This is the intuition behind the adaptive intervals.

We show by simulation examples that the coverage probability of the adaptive interval is

closer to the nominal level compared to the smoothed interval, and the average length of

the adaptive interval is shorter compared to the percentile interval.

Although the model we consider is simple, the method can be generalized to more

complicated models. The methodology essentially consists of three elements, a valid boot-

strapping method for the observed data, a multiple change-point detection procedure which

can be applied to bootstrapped data, and the standard deviation of the bagging estimator.

With the three elements, one can proceed exactly as we do in our paper to derive confidence

intervals for interested parameters in more general settings.

Bayesian analysis is another approach for quantifying uncertainty in change-point

models. Application of Bayesian analysis in change-point model can be date back to

Shiryaev (1963) and Chernoff & Zacks (1964), also see Kim et al. (2009) for subse-

quent developments. For multiple change-points models, prior distributions on the number

and location of change-points penalize the complexity of the studied model, see Du et al.

(2016). Hidden Markov Model (HMM) is a popular formulation in Bayesian change-point

analysis, in which a latent state variable is used to indicate the segment from which a par-

ticular observation has been drawn, see Chib (1998) and Rozenholc & Nuel (2013). The

Bayesian method is a promising candidate for the inference problem, although it needs

further research.
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We organize the rest of the paper as follows. In Section 2, we describe the model and

the proposed confidence intervals. Large sample properties are investigated in Section 3.

Simulation studies are conducted in Section 4 to illustrate the finite sample performance

of the proposed procedure. In Section 5, we apply our proposed method to DNA copy

number data. Section 6 summarizes the paper.

2 Model and Method

2.1 The sequential binary segmentation

In this paper, we implement the BS algorithm sequentially as advocated by Bai (1997),

which is more convenient for theoretical analysis. We first describe the BS algorithm for

estimating m ≥ 1 change-points. Afterwords, we will discuss how to select the number of

change-points. For two integers 0 ≤ k1 < k2 ≤ n, let X̄k1,k2 = (k2 − k1)−1
∑k2

t=k1+1Xt

and Sn(k1, k2) =
∑k2

t=k1+1(Xt − X̄k1,k2)
2. Consider one change-point at k1 < k < k2, de-

fine the residual sum of squares for the data segment (Xk1+1, . . . , Xk2) as Ln(k; k1, k2) =

Sn(k1, k) + Sn(k, k2). In each iteration of the sequential BS, only one change-point is

added to the set of the estimated change-points such that the total residual sum of squares

is minimized. For instance, at the beginning of the ith round, i < m, we already have

i − 1 estimated change-points, say 0 = t̂0 < t̂1 < · · · < t̂i−1 < t̂i = n. The orig-

inal sample {Xt}nt=1 is partitioned into i segments, i.e., {Xt}t̂1t=1, . . . , {Xt}nt=t̂i−1+1
, by

the estimated change-points. Then, the ith detected change-point is t̂ = k̂ĵ , where ĵ =

arg minj=1,...,i{Sn(t̂j−1, t̂j)−Ln(k̂j; t̂j−1, t̂j)}, and k̂j = arg mink=t̂j−1+1,...,t̂j−1 L(k; t̂j−1, t̂j).

To select the number of change-points, we use a BIC criterion as in Yao (1988) and

Fryzlewicz (2014). For a candidate model with m estimated change-points 0 = t̂0 < t̂1 <

· · · < t̂m < t̂m+1 = n, define an estimate of µ0
t as µ̂t(m) = X̄t̂i,t̂i+1

for t ∈ [t̂i + 1, t̂i+1],
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let σ̂2
m = n−1

∑n
t=1(Xt − µ̂t(m))2. The BIC criterion is defined as

BIC(m) =
n

2
log σ̂2

m +mlog n.

The BIC criterion is based on an assumption of Gaussianity and common variance. Denote

N̂ = arg minm≤N BIC(m), where N is a known upper bound for the number of change-

points N . In practice, we can proceed by setting N at a relatively large number, e.g.,

N = n/10. Because of the sequential nature of the BS algorithm, the computational

burden increases only linearly with N .

We are interested in constructing confidence intervals for µ0
t , t = 1, . . . , n. Without

loss of generality, we will focus on constructing a 95% confidence interval for µ0
1, the con-

fidence interval for other µ0
t can be constructed similarly. Conditional on the estimated

location of the change-points, we can estimate µ0
1 by µ̂1 = (t̂1)

−1∑t̂1
1 Xt, and the corre-

sponding standard error can be estimated by (σ̂µ̂1)
2 = (t̂21)

−1∑t̂1
1 (Xt − µ̂1)

2. We define

the 95% unsmoothed confidence interval for µ0
1 as

[µ̂1 − 1.96σ̂µ̂1 , µ̂1 + 1.96σ̂µ̂1 ] . (2)

Note that the quantiles of the normal distribution are used in (2). As pointed out by a

reviewer, the confidence interval can be constructed using the quantiles t-distribution as

well, especially for a small t̂1. The unsmoothed interval ignores the randomness for es-

timating t̂1. If the change-point estimates miss t01 frequently, µ̂1 will be severely biased,

and the unsmoothed interval is problematic, see Figure 1 line 6 for an illustration. The un-

smoothed interval works well only when the number and the location of the change-points

are estimated accurately.

2.2 The smoothed interval

Efron (2014) showed the power of bootstrap in post model selection inferences, he devel-

oped a closed-form formula for the standard deviation of the bagging estimator, and con-
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structed confidence intervals for interested model parameters. In this section, we use the

weighted bootstrap to generalize Efron (2014)’s method and construct confidence intervals

for µ0
t , t = 1, . . . , n of model (1). The weighted bootstrap is widely applied in confidence

interval estimation and hypothesis testing. Chatterjee et al. (2005) studied the weighted

bootstrap for estimators obtained by solving estimating equations. Spokoiny et al. (2015)

considered the weighted bootstrap for constructing confidence sets for parameters in a

possibly mis-specified model by a quasi-likelihood method. See also Chernozhukov et al.

(2013) for studies of the weighted bootstrap when the dimension of the parameters is high.

Let w = (w1, . . . , wn) be a random vector with i.i.d. elements. The elements wi are

non-negative with mean 1 and variance 1. In the simulation study and data analysis, we

use weights that are independently generated from the exponential distribution with mean

1. We apply the sequential BS algorithm described in Section 2.1 to the weighted sample,

with the residual sum of squares replaced by the weighted sum of squares,

Lwn (k; k1, k2) = Swn (k1, k) + Swn (k, k2),

where Swn (k1, k2) =
∑k2

t=k1+1wt(Xt−X̄w
k1,k2

)2, and X̄w
k1,k2

= (
∑k2

t=k1+1wt)
−1∑k2

t=k1+1wtXt

for integers 0 ≤ k1 ≤ k < k2 ≤ n. The number of change-points is also determined by

the BIC criterion. For a candidate model with m estimated change-points denoted as 0 =

t̂w0 < t̂w1 < · · · < t̂wm < t̂wm+1 = n, denote (σ̂wm)2 = (
∑n

t=1wt)
−1∑n

t=1wt(Xt − µ̂wt (m))2

where µ̂wt (m) = X̄w
t̂wi ,t̂

w
i+1

. The BIC criterion is defined as

BIC(m) =
n

2
log(σ̂wm)2 +mlog n.

We obtain the number of change-points by N̂w = arg minm≤N BIC(m). The ordered

change-point estimator for the weighted sample is denoted as 0 = t̂w0 < t̂w1 < · · · < t̂w
N̂w <
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t̂w
N̂w+1

= n, thus the bootstrap version of µ̂1 is

µ̂w1 =

 t̂w1∑
t=1

wt

−1 t̂w1∑
t=1

wtXt. (3)

By repeatedly sampling from the distribution of the random weights w = (w1, . . . , wn),

for example B times, we obtain bootstrap replications µ̂w1,1, . . . , µ̂
w
1,B. Confidence intervals

for µ0
1 can be constructed based on these bootstrap replications. First, we can use the em-

pirical standard deviation of µ̂w1,1, . . . , µ̂
w
1,B, denoted as σ̂wµ̂1 , as the bootstrap estimate of

standard error of µ̂1, then the 95% naive bootstrap interval can be constructed as

[
µ̂1 − 1.96σ̂wµ̂1 , µ̂1 + 1.96σ̂wµ̂1

]
. (4)

The naive interval also inherits the instability of the estimator µ̂1, see Figure 1.

We use the bagging estimator,

µ̃1 =
1

B

B∑
b=1

µ̂w1,b, (5)

to overcome the instability of the estimator µ̂1 by averaging over the bootstrap replications.

Efron (2014) developed a standard deviation formula for the bagging estimator based on

the infinitesimal jackknife method. The infinitesimal jackknife, originally proposed by

Jaeckel (1972), is a tool for approximating the variance of an estimator. Using the idea of

the infinitesimal jackknife, Efron (1992) obtained accuracy measures of various bootstrap

estimators. Recently, Giordano et al. (2019) and Wager et al. (2014) used the infinitesimal

jackknife to estimate the variability of machine learning algorithms. Next, we generalize

this formula in the weighted bootstrap sampling scheme. To illustrate the ideas, we will

consider exponential weights.

Proposition 1. Suppose the weights wi, i = 1, . . . , n are independent and identically dis-

tributed as standard exponential distribution Exp(1), the variance of µ̃1, approximated by
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the infinitesimal jackknife method, is,

(σ̃µ̃1)
2 =

n∑
j=1

cov2j , (6)

where covj = cov(µ̂w1 , w̄ − wj|X) and w̄ = n−1
∑n

t=1wt.

The proof of Proposition 1 is presented in the appendix. The covariance covj can be

easily estimated by the sample covariance of µ̂w1,b, b = 1, . . . , B and the jth component of

the weights. Denote the bth replication of the bootstrap weights as wb = (wb1, . . . , wbn),

and its average is denoted as w̄b = n−1
∑n

j=1wbj , then ĉovj = B−1
∑B

b=1(µ̂
w
1,b− µ̃1)(w̄b−

wbj). With the standard deviation of µ̃1, we define the 95% smoothed interval as

[µ̃1 − 1.96σ̃µ̃1 , µ̃1 + 1.96σ̃µ̃1 ] . (7)

To determine whether the bootstrap sample size B is large enough to guarantee the accu-

racy of σ̃µ̃1 , we can use the so called jackknife-after-bootstrap method. We refer the reader

to Efron (2014, page 996) and Davison & Hinkley (1997, Section 3.10) for details.

Another promising confidence interval is the percentile interval,

[
µ̂w,0.0251 , µ̂w,0.9751

]
, (8)

where µ̂w,0.0251 and µ̂w,0.9751 are the empirical 0.025 and 0.975 quantiles of the bootstrap

replications µ̂w1,1, . . . , µ̂
w
1,B, respectively. Note that we do not need a point estimate of µ0

1

when constructing the percentile interval, and the percentile interval is more robust in mis-

specification of the change-points. In Section 3, we will prove the asymptotic consistency

of the percentile interval and the smoothed interval. As demonstrated by the simulation

study, in small samples, the percentile interval is generally wider than the smoothed inter-

val, while it has more conservative empirical coverage probabilities.
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2.3 The intensity plot, BootCp estimator and Adaptive choice of intervals

We found in the simulation studies that the smoothed interval has coverage probability

close to the nominal level when the signals are moderate or strong, but may have low

coverage probabilities otherwise. To correct the coverage probability of the smoothed

interval, we introduce the intensity score, the bootstrap change-point (BootCp) estimator

and the adaptive interval.

We first define the intensity score. For t ∈ {1, . . . , n} and b = 1, . . . , B, let It,b = 1 ,

if t is estimated as a change-point in the b-th bootstrap replication, otherwise let It,b = 0.

The intensity score of a location t ∈ {1, . . . , n} is defined as p̃t = B−1
∑B

b=1 It,b. The

intensity score p̃t reflects the possibility that a location t is, or is close to, a change-point.

By Theorems 1 and 2 in Section 3, the estimated change-points in the bootstrap replications

will be concentrated in o(log(n)) neighborhoods of the true change-points almost surely.

Thus the intensity score p̃t is significantly greater than 0 when t is near a true change-point,

and is close to 0 when t is far away from any true change-points.

The intensity scores p̃t, t ∈ {1, . . . , n} are usually grouped into clusters around true

change-points. To visualize the pattern of the estimated change-points, we define the in-

tensity plot as a plot of p̃t versus t. The lower panel of Figure 1 gives an illustration

of the intensity plot. We can see that the intensity scores are large for locations that are

close to the true change-points 40, 80 and 120, and small otherwise. The intensity plot can

also be used to discover possible missing change-points. If some regions of the intensity

plot are ’significant’ to human eyes, but no change-points are detected by an algorithm,

the researcher can investigate those regions either by data analysis or expert’s knowledge.

We illustrate the usage of the intensity plot in Figure 2, where the data is simulated from

Model 2 of Section 4. The change-points 421 and 491 are not detected by the BootCp

estimator defined in the following, while the intensities of the locations that are close to
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these change-points are not zero.

[Figure 2 about here.]

We propose a new change-point estimator by identifying local maximizers of the in-

tensity scores, we call it the BootCp estimator. Define the location t as a h-local maximizer

of p̃s, s = 1, . . . , n if p̃t ≥ p̃s, for |s − t| ≤ h. For a fixed h > 0, denote the set of all

the h-local maximizers as L(h). For a threshold value λ > 0, let T (h, λ) be a subset of

L(h), such that p̃t > λ for any t ∈ T (h, λ). The locations in the set T (h, λ) are defined as

the BootCp change-point estimators. This algorithm is an adaptation of the screening and

ranking algorithm (SaRa) of Niu & Zhang (2012). The difference is that we replace the lo-

cal statistics of Niu & Zhang (2012) by the intensity scores. The computational complexity

of this algorithm is O(n) as shown by Niu & Zhang (2012).

The parameter h works as a bandwidth parameter. As proved in Section 3, all change-

points can only be estimated up to an order of oPw(log(n)). Thus any location in a neigh-

borhood of a true change-point will have a positive probability to be estimated as a change-

point in the bootstrap replications. The parameter h determines the size of the neighbor-

hood. The parameter λ is a threshold parameter, and it serves as a lower bound of the

intensity scores that are considered as significant.

We use an information criterion function to select the parameters h and λ as in Niu

& Zhang (2012). It has been shown that under mild conditions the BIC criterion leads

to consistent estimation of the number of change-points (Yao, 1988; Fryzlewicz, 2014).

Denote the elements of T (h, λ) as T (h, λ) = {t̃1 < t̃2 < · · · < t̃Ñ}. Let µ̃t = (t̃k+1 −

t̃k)
−1∑t̃k+1

t̃k+1
Xt, for t ∈ [t̃k + 1, t̃k+1]. The BIC criterion for selecting the parameters h, λ

is defined as

BIC(h, λ) =
n

2
log

(
1

n

n∑
t=1

(Xt − µ̃t)2
)

+ Ñ log(n), (9)
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where µ̃t and Ñ are estimates based on (h, λ). In practice, we use a two dimensional

grid search to minimize the BIC criterion function. In our application, the SaRa algorithm

has two nesting properties which make the parameter tuning very fast. That is, we have

L(h2) ⊂ L(h1) if h2 > h1, and T (h, λ2) ⊂ T (h, λ1) if λ2 > λ1.

Another strategy for selecting h and λ is the multi-bandwidth SaRa proposed by Niu &

Zhang (2012). In the multi-bandwidth SaRa, a pool of candidate change-points is first cre-

ated by identifying local maxima of the intensity scores using multiple values of the band-

width h and the threshold λ. In the second step, the best subset selection along with the

BIC criterion (9) can be applied to screen the candidate pool and obtain the final change-

point estimates. The multi-bandwidth SaRa can adapt to more complicated data but may

need more computation because in the second step the best subset selection is used. In the

following, we stick to the basic SaRa for simplicity.

For the BootCp estimator, along with the change-point estimates t̃k, we have the cor-

responding intensity scores p̃t̃k . A low value of p̃t̃1 indicates that we can not detect the true

change-point t01 with a high probability in the bootstrap replications, the bagging estimator

µ̃1 are biased, and the smoothed interval for µ0
1 will then have coverage probability lower

than the nominal level. We propose to use the percentile interval to replace the smoothed

interval in this circumstance, because the percentile interval is more robust to the misspec-

ification of the change-points. For a location t ∈ {1, . . . , n}, we construct a confidence

interval for µ0
t as follows. For t ∈ [t̃k + 1, t̃k+1], if min(p̃t̃k , p̃t̃k+1

) > 0.5 then we use the

smoothed interval as the confidence interval of µ0
t , otherwise we use the percentile inter-

val. We call this strategy adaptive interval estimation. From Figure 1, we can see that the

empirical coverage probabilities of the adaptive interval are close to the nominal level 95%

except for those locations in the neighborhood of a true change-point.

In practice, the intensity scores of the BootCp estimator can help the practitioner ex-
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plaining why an interval is chosen. For an estimated change-point with a low intensity

score, the bagging estimator of the mean for nearby locations will be severely biased. Thus

the resulting smoothed interval can not cover the true mean with the nominal probability.

Therefore, we replace the smoothed interval with the percentile interval. For change-point

estimates with high intensity scores, we trust the smoothed interval which is shorter than

the percentile interval. The adaptive intervals ensure good empirical coverage probabili-

ties compared to the smoothed interval. A schematic outline of the proposed procedure is

listed in Algorithm 1.
Algorithm 1: Change-points detection and confidence interval construction

Input: Data: X = {X1, . . . , Xn}; Number of bootstrap: B; Maximum number of

change-points: N ; Confidence level: 1− α.

Output: Confidence intervals; BootCp estimator; Intensity plot.

for i = 1 : B do
Sample wi = (wi1, . . . , win);

Estimate change-points t̂wi1 < · · · < t̂w
iN̂w

i

using the sequential BS;

Estimate µ̂w1,i using (3);

end

Estimate α/2 and 1− α/2 sample quantiles of (µ̂w1,1, . . . , µ̂
w
1,B). Output the

percentile interval;

Estimate the bagging estimator µ̃1 and its standard error using (5) and (6),

respectively. Output the smoothed interval;

Calculate the intensity score p̃t, t = 1, . . . , n, and output the intensity plot;

Calculate the BootCp estimator t̃1 < · · · < t̃Ñ . Output the BootCp estimator and the

adaptive interval.
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3 Asymptotic Theory

In this section, we establish the large-sample property of the weighted bootstrap change-

point estimator and the asymptotic validity of the proposed confidence intervals. All the

proofs are collected in the supplementary material. We need the following assumptions.

Assumption A1, The error terms εt, t = 1, . . . , n are i.i.d. with mean 0 and finite variance

σ2, and the fourth moment is finite E|εt|4 <∞.

Assumption A2, The true change-points are t0i = bnτ 0i c, i = 1, . . . , N , with 0 < τ 01 <

τ 02 <, . . . , τ
0
N < 1, and β0

i 6= β0
i+1, i = 1, . . . , N . The number of change-points N does not

change with the sample size n.

Assumption A3, The bootstrap weights (w1, . . . , wn) are i.i.d., and strictly positive ran-

dom variables. The bootstrap weights are independent of the data Xt, t = 1, . . . , n. The

mean and variance of wt are 1, E|wt|2+ε <∞ for some ε > 0.

Assumptions A1 and A2 are standard in the literature, see Bai (1997). We focus on

independent data in this paper, as stated in assumption A1. Extending the current method-

ology to time series data is challenging, and we leave that for future research. Assumption

A2 implies that the number of change-points is finite, and each segments contain a posi-

tive fraction of the whole sample. This assumption is appropriate when the change-points

are fixed, e.g., dates or locations, and it is possible to collect more observations between

change-points. For example, in copy number variation studies, the resolution of compar-

ative genomic hybridization (CGH) data improves as technologies rapidly develop, while

the locations of the change-points, which are the locations of the copy number variations,

can be considered as fixed. See also Perron (2006) for an in-depth discussion of assump-
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tion A2. Assumption A3 is commonly assumed in the weighted bootstrap literature, see

van der Vaart & Weller (1996).

The large sample theory of binary segmentation algorithm is developed in Bai (1997)

and Fryzlewicz (2014), where consistency and rate of convergence for the change-point

estimator are established. We will study the asymptotic behavior of the bootstrap change-

point estimator and the asymptotic consistency of the proposed confidence intervals. We

first work under the assumption that the number of change-points is known. Later we will

show the consistency of BIC criterion in selecting the number of change-points.

Let (Ω,F ,P) be a fixed probability space, all the random variables are defined on this

space. In this paper, the probability measure P is understood to be the product measure of

the bootstrap weights and the observations. For convenience, let Pw(.) and Ew(.) denote

the conditional probability measure and the conditional expectation with respect to the

bootstrap weights {wt}nt=1 conditional on the data {Xt}nt=1, respectively. The abbreviation

a.s. stands for almost surely as usual. A sequence of random variables Zn is denoted

as oPw(1) if limn→∞ Pw(|Zn| > ε) = 0 almost surely for any ε > 0. Similarly, Zn =

OPw(1) if for any ε > 0, there exists M > 0, such that lim supn→∞ Pw(|Zn| > M) <

ε, a.s.. Denote Zn(k) as a measurable function of {wt}nt=1, {Xt}nt=1, and an integer k ∈

[a(n), b(n)], where 1 ≤ a(n) ≤ b(n) ≤ n. We say that Zn(k) is oPw(1) uniformly over

k ∈ [a(n), b(n)] if supk∈[a(n),b(n)] |Zn(k)| = oPw(1). Denote σ(X1, . . . , Xn) as the sigma

field generated by X1, . . . , Xn. By a straightforward argument, if Zn is σ(X1, . . . , Xn)

measurable, then Zn = oPw(1) is equivalent to Zn converges to zero almost surely, see

Lemma 8(iv) of the supplementary material for a proof.

Theorem 1. Assume assumptions A1-A3, and that the true number of change-points N is

known. The change-points estimators t̂w1 , . . . , t̂
w
N have the convergence rate max1≤i≤N |t̂wi −
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t0i | = oPw(log(n)). That is, for every ε > 0,

lim
n→∞

Pw

(
N⋃
i=1

{|t̂wi − t0i | > ε log(n)}

)
= 0 a.s.

Theorem 1 establishes that t̂wi will be concentrated in an oPw(log(n)) neighborhood

of the true change-point. The asymptotic results on the convergence rate of change-point

estimators in the bootstrap setting is rare. We can compare with the convergence rates

of change-point estimators in the non-bootstrap setting. Bai (1997) obtained a conver-

gence rate ofOP(1) for the change-points estimator under similar assumptions. Fryzlewicz

(2014) derived a convergence rate of OP(n2δ−2n (f
n
)−2 log(n)) for the binary segmentation

algorithm, and a convergence rate of OP((f
n
)−2 log(n)) for the wild binary segmentation

algorithm, where mini=0,...,N |t0i+1 − t0i | ≥ δn and mini=0,...,N |β0
i+1 − β0

i | ≥ f
n
. If as-

sumption A2 is true, these two convergence rates are both of the order OP(log(n)). The

convergence rate we proved is sharp compared to these results up to a factor of log(n).

The intensity score p̃k defined in Section 2.3 will converge to 0 almost surely if k

is not in a log(n) neighborhood of a true change-point. To see this, for some k where

mini=1,...,N |k − t0i | > log(n), note that

p̃k = Pw
(
∪Ni=1{t̂wi = k}

)
≤ Pw(∪Ni=1{|t̂wi − t0i | > log(n)})→ 0 a.s.

Thus, empirically p̃k can serve as an indicator of whether the location k is, or close to, a

change-point. If p̃k is significantly greater than 0, there may exist a change-point close to

k. On the contrary, if p̃k is close to 0, there are no change-points around k.

Theorem 1 is proved under the assumption that we know the true number of change-

points N . In practice, we use the BIC criterion to determine the number of change-points

as described in Section 2.2. Recall that N̂w = arg min BIC(m), the following results state

the consistency of N̂w.
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Theorem 2. Under assumptions A1-A3, assume that the number of change-points is finite,

then

lim
n→∞

Pw(N̂w = N) = 1, a.s.

Yao (1988) established the consistency of a similar criterion for estimating the num-

ber of change-pointsN in a least squares regression framework. Fryzlewicz (2014) proved

the consistency of a strengthened Schwartz Information Criterion for selecting the num-

ber of change-points with a binary segmentation algorithm. These results do not apply

to the bootstrap procedure. We generalize the consistency results for the BIC criterion

to the weighted bootstrap estimator. By Theorem 1 and 2, we can prove the asymptotic

properties of the percentile confidence interval and the smoothed confidence. A confi-

dence interval [µ̂n,1, µ̂n,2] for a parameter µ is asymptotically consistent at level 1 − α if

lim infn→∞ P(µ̂n,1 ≤ µ ≤ µ̂n,2) ≥ 1− α, see Section 23.2 of Van der Vaart (2000).

Theorem 3. Under assumptions A1-A3, for any location tn ∈ {1, . . . , n} such that

mini=1,...,N |tn− t0i | > log(n), the percentile confidence interval, the smoothed confidence

interval, and the adaptive confidence interval for µ0
t are all asymptotically consistent.

Theorem 3 establishes the asymptotic consistency of the confidence intervals for µ0
t

when t is not close to any true change-points. Theorem 1 implies that in a log(n) neigh-

borhood of the true change-points, an estimator of the mean defined as the average of the

observations between two adjacent estimated change-points is severely biased. This is the

intuition why we can only establish the consistency of the proposed confidence intervals

for the locations that are not in a log(n) neighborhood of the true change-points.

In practice, we can construct confidence intervals for µ0
t using either the percentile

confidence interval, the smoothed confidence interval or the adaptive confidence interval

as long as t is away from any estimated change-points. For any location t that is close
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to a true change-point, the confidence interval for µ0
t will generally be biased, that is, the

empirical coverage probabilities will be lower than the specified level, because we can not

estimate µ0
t consistently. As we can see from the simulation study in Section 4, the length

of the confidence interval for µ0
t will be wide and the empirical converge probability will

be lower than the specified level for any location t that is close to a true change-point.

4 Simulation Study

In this section, we use simulation studies to illustrate the finite sample performance of

the proposed method. In Example 1, we compare the BootCp estimator with the state-

of-art change-point detection algorithms in the literature. In Example 2, we study the

performance of the proposed confidence intervals. In all the experiments, the weights are

sampled from the standard exponential distribution.

Example 1. Consider a piece-wise constant signal of length n, the errors are inde-

pendently normally distributed with mean 0 and standard deviation σ. We simulate 500

datasets from each of the following models. See Figure 3 for the mean of the models and

one sample of each model.

Model 1. The sample size n = 497 and σ = 0.3, the change-points are (139, 226, 243,

300, 309, 333), the means between change-points are (-0.18, 0.08, 1.07, -0.53, 0.16, -0.69,

-0.16).

Model 2. The sample size n = 560 and σ = 4, the change-points are (11, 21, 41, 61,

91, 121, 161, 201, 251, 301, 361, 421, 491), the means between change-points are (7, -7,

6, -6, 5, -5, 4, -4, 3, -3, 2, -2, 1, -1).

Model 3. The sample size n = 140 and σ = 0.4, the change-points are (11, 21, 31, 41,

51, 61, 71, 81, 91, 101, 111, 121, 131), the means between change-points are (0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0, 1, 0, 1).
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Model 4. The sample size n = 150 and σ = 0.3, the change-points are (11, 21, 31, 41,

51, 61, 71, 81, 91, 101, 111, 121, 131, 141), the means between change-points are (1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

[Figure 3 about here.]

We compare BootCp with the following change-point detection methods. The compet-

ing methods are implemented by the R (R Core Team, 2019) packages mentioned below,

most of which are available on CRAN. See the supplementary material for a detailed de-

scription of how do we implement the competing methods.

• the binary segmentation (BS) and wild binary segmentation (WBS) algorithm of

Fryzlewicz (2014), which are implemented in the R package wbs (Baranowski &

Fryzlewicz, 2015);

• the fused lasso (FLASSO) of Harchaoui & Lévy-Leduc (2010), which is imple-

mented in the R package genlasso (Arnold & Tibshirani, 2014);

• the SMUCE procedure of Frick et al. (2014), which is implemented in the R package

stepR (Pein, Hotz, Sieling & Aspelmeier, 2017);

• the cumSeg procedure of Muggeo & Adelfio (2011), which is implemented in the R

package cumSeg (Muggeo, 2012);

• the PELT procedure of Killick et al. (2012), which is implemented in the R package

changepoint (Killick et al., 2016);

• the S3IB method, implemented in the R package Segmentor3IsBack (Cleynen

et al., 2016);

• the screening and ranking algorithm (SaRa) of Niu & Zhang (2012).
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For the proposed BootCp estimator, the number of bootstrap samples is B = 5000 and the

parameters λ and h are selected by the BIC criterion described in Section 2.3.

Besides summary statistics of N̂ − N for all methods, we also use the Hausdorff

distance dH to measure the estimation accuracy of the change-points. Let A and B be two

nonempty sets of integers, the Hausdorff distance dH is defined as

dH(A,B) = max{sup
a∈A

inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|a− b|}.

We evaluate the mean and standard deviation of the Hausdorff distance between the set of

true change-points and the set of estimated change-points.

The results are shown in Table 1 and Table 2. The proposed BootCp estimator has

the best overall performance, followed by three other methods WBS, S3IB, PELT, and

SaRa. For Model 1, BootCp recovers the true number of change-points in 94.2% of the

replications, and it is comparable to that of WBS and S3IB. For the estimation accuracy

dH , BootCp is also close to the best competitors WBS and S3IB. For Models 2-4, BootCp

outperforms all the other methods in recovering the number of change-points and in es-

timation accuracy. Model 2 is challenging for all the methods. BootCp detects the true

number of change-points in 49% of the replications. The mean of dH is 51.12, which is

the smallest among all the procedures. For Model 3 and Model 4, BootCp recovers the

true number of change-points around 90% of the times. Several procedures have large

biases in estimating the number of change-points. The average computational time (in

seconds) are listed in Table 3. Since the bootstrap method is used in our approach, it is

slower than other methods. With modern computing devices, it is easy to parallelize the

bootstrapping method such that it can work for massive data sets. More simulation studies

with correlated errors are shown in the supplementary material.

[Table 1 about here.]
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[Table 2 about here.]

[Table 3 about here.]

Example 2. The observations are a sequence of length n = 160, with the change-points

at 40, 80, 120. The means between the change-points are {1, 2, 1, 2}, respectively. The

errors are normally distributed or double exponentially distributed. The standard deviation

σ of the signal is 0.75 or 1. For the proposed adaptive interval, the parameters h, λ are

selected by the BIC criterion proposed in Section 2.3. We simulate 500 data sets under

each setting. The bootstrap sample size is B = 5000. We construct 95% confidence

intervals for µ0
t , t = 1, . . . , 160 by using the smoothed intervals, the percentile intervals

and the adaptive type intervals. We also compare our methods with the SMUCE interval

proposed by Frick et al. (2014). The empirical coverage probabilities of the confidence

intervals for µ0
t , t = 1, . . . , 160 are shown in Figure 4, and the average lengths of the

constructed intervals are depicted in Figure 5. Other methods do not provide confidence

intervals, and therefore are not included in the comparison.

Generally speaking, the adaptive interval outperforms the other methods. The cover-

age probabilities of the adaptive interval are the closest to the nominal level 95% for all

four cases. The SMUCE interval does not cover the true value in a high frequency, its cov-

erage probabilities are generally around 0.7, except for normal errors with σ = 0.75, where

its coverage probabilities are close to 0.8. The coverage probabilities of the smoothed con-

fidence intervals are lower than the nominal size 95% in general, especially in the case

where σ = 1. The coverage probabilities of the percentile interval are generally higher

than the nominal level 95%. The average length of the smoothed interval and the SMUCE

interval are the shortest among the four intervals. The average length of the percentile

intervals are twice the average length of the smoothed interval. As predicted by the theory,
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the methods do not give satisfactory confidence intervals for µ0
t when t is close to one of

the true change-points 40, 80, 120, in which case the estimator for µ0
t is generally biased.

[Figure 4 about here.]

[Figure 5 about here.]

5 Application to the DNA copy number data

In this section, we will analyze the comparative genomic hybridization (CGH) data to illus-

trate the possible applications of the proposed procedure. Copy number variations (CNV)

refer to amplification and deletions of chromosome segments, which constitute a major

source of variation between individual humans and contribute to many diseases, see Hast-

ings et al. (2009). The alteration of the copy number for specific genes may cause genomic

disorders, which are related to the formulation and progression of cancer and many other

diseases. Advances in technologies such as microarray comparative genomic hybridiza-

tion (CGH) make it possible to compare the cancer cell lines to the normal cell lines with

high resolution. The CGH data record log ratio of the testing sample copy number to the

reference sample copy number. A value higher than 0 in regions of a chromosome indi-

cates amplification of the copy number to the reference, while a value less than 0 indicates

the deletion of the copy number to the reference.

CGH data are often modeled as a piece-wise constant function, and segmentation

methods can be implemented to detect the possible amplifications and deletions in a CGH

signal, see Niu & Zhang (2012) and Frick et al. (2014). In this section, we apply the pro-

posed method to detect the change-points in a CGH data studied by Snijders et al. (2001)

who analyzed the genomic aberrations of breast cancer. The original data are shown in

the upper panel of Figure 6, and the adaptive confidence intervals for the mean are plot-

ted in shaded areas. The intensity plot is depicted in the lower panel of Figure 6. From
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the intensity plot, we can readily see the major locations of the change-points (Figure 6,

lower panel). For example, we find some obvious change-points, such as genome position

123841 and 228492 at chromosome 1, genome position 198680 and 224174 at chromo-

some 2 and genome position 42560 and 63000 at chromosome 7.

In array CGH data analysis, we are interested in determining segments of genome lo-

cations on which the log ratios differ from zero. The confidence sets can be used with the

BootCp change-points estimator to determine these intervals. A segment shows a sign of

amplification if the confidence band is above zero, and it shows a sign of deletion if the con-

fidence band is below zero. The BootCp algorithm detects 23 change-points. Moreover,

we use the confidence bands to determine the significant segments of genes. From Figure

6, we conclude that the amplification segments are genome positions 123841 to 228492

at chromosome 1, genome positions 86135 to 10050 at chromosome 13 and genome po-

sitions 57063 to 86000 at chromosome 18. The deletion segments are genome positions

198680 to 224174 at chromosome 2, genome positions 42560 to 63000 at chromosome

7 and genome positions 3292 to 56563 at chromosome 14. These findings are consistent

with those of Snijders et al. (2001). Compared to other segmentation algorithms, we not

only detect these segments but also provide uncertainty assessment through confidence

intervals.

[Figure 6 about here.]

6 Conclusion

The inherent uncertainty in change-point detection makes it challenging to construct con-

fidence intervals for the mean of a noisy sequence. We used the weighted bootstrap to

generalize the bagging estimator and developed a standard deviation formula for the pro-

posed estimator. We proposed an adaptive interval which chooses between the smoothed
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confidence interval and the percentile interval to correct the coverage probability of the

smoothed interval. We proposed a new intensity plot, which is a visualization tool for the

change-point detection process. Through the intensity plot, we have a second chance to

detect possible missing change-points. Based on the intensity plot, we proposed a new

change-point estimator, the bootstrap change-point estimator (BootCp). The BootCp es-

timator has excellent performance in the simulation study compared to some state-of-art

segmentation methods.
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Appendix

Proof of Proposition 1. We use the infinitesimal jackknife method as in Efron (2014)

to derive a standard deviation formula for µ̃1, see also Chapter VI of Efron (1982). The

parameters of the random vector w = (w1, . . . , wn) is p0 = (1, . . . , 1), which is the mean

of w. We can also write w as w(p0) to emphasize w depends on the parameter p0. More

generally, for a vector p = (p1, . . . , pn), w(p) = (w1, ..., wn) is defined as a vector of

independent exponentially distributed random variables, with the marginal distribution of

wj being Exp(pj).

The population version of the bagging estimator µ̃1 is the expectation of µ̂w1 (w,X) =

(
∑t̂w1

t=1wt)
−1∑t̂w1

1 wtXt with respect to w conditional on the original observation X, which

we denoted as µ̃1(p0) = E(µ̂w1 (w(p0),X)|X). We proceed similarly as that in Efron

(2014) and perturb the distribution of the weights w to get the influence function of µ̃1(p0).

Now, we change the parameter p0 of w to p = (1− ε/n, . . . , 1 + (n− 1)ε/n, . . . , 1− ε/n)

where the j-th element is 1 + (n − 1)ε/n, and ε is a small perturbation. The influence

function is defined as

µ̇j = lim
ε→0

µ̃1(p)− µ̃1(p0)

ε
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where

µ̃1(p) = E(µ̂w1 (w(p),X)|X)

=

∫ ∞
0

µ̂w1 (w,X)(1 + (n− 1)ε/n)(1− ε/n)n−1×

exp

{
−(1− ε/n)

∑
i 6=j

wi − (1 + (n− 1)ε/n)wj

}
dw

=

∫ ∞
0

µ̂w1 (w,X)(1 + (n− 1)ε/n)(1− (n− 1)ε/n)×

exp

{
−

n∑
i=1

wi + ε/n
∑
i 6=j

wi − (n− 1)ε/nwj

}
dw + o(ε)

=

∫ ∞
0

µ̂w1 (w,X) exp(−
n∑
i=1

wi) exp(ε(w̄ − wj))dw + o(ε)

= µ̃1(p0) + ε

∫ ∞
0

µ̂w1 (w,X)(w̄ − wj) exp(−
n∑
i=1

wi)dw + o(ε),

and w̄ = 1/n
∑n

i=1wi. Thus we have µ̇j = cov(µ̂w1 (w,X), w̄ − wj|X). Using the formula

(6.18) of Efron (1982), we obtain the standard deviation formula

σ̃2
µ̃1

=
n∑
j=1

cov(µ̂w1 (w,X), w̄ − wj|X)2.
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Figure 1: Upper panel: Empirical coverage probabilities of 95% confidence intervals for µ0
1, µ

0
2, . . . , µ

0
160,

line 1 for percentile interval, line 2 for adaptive interval, line 3 for smoothed interval, line 4 for naive
bootstrap interval, line 5 for SMUCE interval, and line 6 for unsmoothed interval. Lower panel: intensity
plot for a typical sample, locations close to the true change-points 40, 80, 120 have high intensity scores.
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Figure 2: An illustration of the intensity plot. The BootCp estimator does not detect the change-points 421
and 491, while the intensities of the locations that are close to these change-points are not zero.
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Figure 3: The signals used in example 1 with one simulated data.
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Figure 6: The S0034 cell line a-CGH data, the y-axis is the position in the genome. Upper panel, the
original data with the adaptive intervals plotted in shaded areas. Bottom panel, the intensity plot.
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Table 1: Summary statistics of N̂ −N and the Hausdorff distance dH for model 1 and 2.
N̂ −N dH

Frequency(%)

Method ≤ −2 = −1 = 0 = 1 ≥ 2 Mean Med Mean SD
Model 1

BootCp 0.0 0.6 94.2 2.0 3.2 0.08 0 9.32 16.31
BS 34.0 1.6 60.4 4.0 0.0 -0.66 0 16.62 16.65
WBS 0.4 0.0 95.4 3.6 0.6 0.04 0 7.24 13.73
FLASSO 0.6 0.4 1.2 3.0 94.8 6.34 6 57.57 28.04
SMUCE 1.6 28.0 66.4 3.8 0.2 -0.27 0 10.99 21.05
cumSeg 75.2 4.0 18.4 2.4 0.0 -1.52 -2 30.15 13.33
PELT 0.6 0.0 92.0 6.4 1.0 0.07 0 8.50 19.43
S3IB 0.6 0.2 96.8 2.0 0.4 0.01 0 6.28 11.28
SaRa 10.4 36.8 51.2 1.2 0.4 -0.59 0 41.19 39.43

Model 2
BootCp 11.0 23.4 49.0 9.2 7.4 -0.19 0 51.12 44.53
BS 83.2 12.2 4.0 0.6 0.0 -2.69 -3 178.29 68.39
WBS 36.6 27.4 32.4 3.0 0.6 -1.04 -1 79.52 57.56
FLASSO 94.0 0.4 0.6 0.6 4.4 -11.80 -13 181.19 164.71
SMUCE 79.8 18.2 2.0 0.0 0.0 -2.23 -2 116.37 48.17
cumSeg 100.0 0.0 0.0 0.0 0.0 -8.85 -9 181.49 77.19
PELT 38.4 29.6 30.0 1.6 0.4 -1.12 -1 86.50 59.77
S3IB 46.0 28.8 24.2 1.0 0.0 -1.33 -1 96.83 61.50
SaRa 24.6 25.6 40.4 7.0 2.4 -0.67 -1 68.14 52.47
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Table 2: Summary statistics of N̂ −N and the Hausdorff distance dH for model 3 and 4.
N̂ −N dH

Frequency(%)

Method ≤ −2 = −1 = 0 = 1 ≥ 2 Mean Med Mean SD
Model 3

BootCp 6.4 2.8 87.2 3.4 0.2 -0.17 0 3.71 6.43
BS 100.0 0.0 0.0 0.0 0.0 -12.86 -13 119.74 3.27
WBS 10.4 1.2 72.2 11.8 4.4 -0.49 0 4.91 12.99
FLASSO 100.0 0.0 0.0 0.0 0.0 -12.98 -13 106.50 24.28
SMUCE 96.2 2.6 1.2 0.0 0.0 -6.29 -6 21.27 15.55
cumSeg 100.0 0.0 0.0 0.0 0.0 -12.98 -13 119.90 0.32
PELT 28.2 3.4 62.8 5.2 0.4 -1.11 0 8.8 15.17
S3IB 75.0 2.0 22.8 0.2 0.0 -3.57 -3 24.75 25.49
SaRa 15.8 7.6 74.8 1.6 0.2 -0.46 0 4.34 6.19

Model 4
BootCp 0.0 0.8 94.2 4.2 0.8 0.05 0 1.47 1.45
BS 1.2 10.0 85.4 3.4 0.0 -0.09 0 2.37 2.44
WBS 0.0 0.0 63.0 29.4 7.6 0.48 0 2.12 1.53
FLASSO 11.0 1.2 2.4 7.4 78.0 2.45 4 37.48 6.89
SMUCE 73.4 16.6 10.0 0.0 0.0 -2.46 -2 7.34 2.59
cumSeg 3.2 13.2 75.4 8.2 0.0 -0.13 0 3.43 2.56
PELT 0.0 0.4 93.6 5.0 1.0 0.066 0 1.34 1.29
S3IB 0.2 6.6 93.2 0.0 0.0 -0.07 0 1.63 2.09
SaRa 0.2 11.6 84.8 3.4 0.0 -0.09 0 2.54 2.93
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Table 3: The average computational time (in seconds) under model 1-4.
Method Model 1 Model 2 Model 3 Model 4
BootCp 29.146 38.970 1.218 1.033
BS 0.018 0.023 0.001 0.001
WBS 0.038 0.043 0.003 0.003
FLASSO 5.741 5.913 0.434 0.474
SMUCE 0.528 0.532 0.011 0.013
cumSeg 0.162 0.098 0.007 0.009
PELT 0.107 0.004 0.001 0.001
S3IB 0.174 0.131 0.021 0.028
SaRa 0.182 13.880 0.034 0.050
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