
 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1002/adma.202003984. 

 

This article is protected by copyright. All rights reserved. 

 

Filament-free bulk resistive memory enables 

deterministic analogue switching 

 

Yiyang Li*#, Elliot J. Fuller, Joshua D. Sugar, Sangmin Yoo, David S. Ashby, Christopher H. Bennett, 

Robert D. Horton, Michael S. Bartsch, Matthew J. Marinella, Wei D. Lu, A. Alec Talin* 

 

Dr. Y. Li, Dr. E. J. Fuller, Dr. J. D. Sugar, Dr. D. S. Ashby, R. D. Horton, Dr. M. S. Bartsch, Dr. A. A. Talin, 

Sandia National Laboratories, Livermore, CA, 94550 USA 

 

S. Yoo, Prof. W. D. Lu, Department of Electrical Engineering and Computer Science, Ann Arbor, MI, 

48109, USA 

 

Dr. C. H. Bennett, Dr. M. J. Marinella, Sandia National Laboratories, Albuquerque, NM, 87185, USA 

 

*Corresponding authors: yiyangli@umich.edu; aatalin@sandia.gov 

#Present address, Department of Materials Science and Engineering, University of Michigan 

 

Keywords: resistive switching, deterministic, point defects, neuromorphic computing 

 

Abstract: Digital computing is nearing is physical limits as computing needs and energy 

consumption rapidly increase. Analogue memory-based neuromorphic computing can be orders of 

magnitude more energy efficient at data-intensive tasks like deep neural networks, but has been 

limited by the inaccurate and unpredictable switching of analogue resistive memory.  Filamentary 

resistive random access memory (RRAM) suffers from stochastic switching due to the random 

https://doi.org/10.1002/adma.202003984
https://doi.org/10.1002/adma.202003984
https://doi.org/10.1002/adma.202003984


 

 

 

This article is protected by copyright. All rights reserved. 

 

kinetic motion of discrete defects in the nanometer-sized filament. In this work, we overcome this 

stochasticity by incorporating a solid electrolyte interlayer, in this case yttria-stabilized zirconia 

(YSZ), towards eliminating filaments. Filament-free, bulk-RRAM cells instead store analogue states 

using the bulk point defect concentration, yielding predictable switching because the statistical 

ensemble behavior of oxygen vacancy defects is deterministic even when individual defects are 

stochastic. Both experiments and modeling show bulk-RRAM devices using TiO2-X switching layers 

and YSZ electrolytes yield deterministic and linear analogue switching for efficient inference and 

training. Bulk-RRAM solves many outstanding issues with memristor unpredictability that have 

inhibited commercialization, and therefore could enable unprecedented new applications for 

energy-efficient neuromorphic computing. Beyond RRAM, our work shows how harnessing bulk 

point defects in ionic materials can be used to engineer deterministic nanoelectronic materials and 

devices. 

Although CMOS-based digital memory and processors have achieved enormous advances in 

computing, they may not be optimal to meet future computing requirements. Data-intensive 

operations including machine learning and artificial neural networks are particularly costly in energy 

due to the need to move information between the memory and the processor. On the other hand, 

analogue neuromorphic computing processes information directly on the memory elements[1–3] to 

bypass this bottleneck, making such systems hundreds of times more energy efficient[4]. 

Neuromorphic computing architectures for fully-connected[5–7] and convolutional[8,9] neural networks 

have been developed. Despite significant research into memory technologies such as conductive-

bridge random access memory[10–12], ferroelectric memory[13], phase-change memory[14–16], among 

others, the search for a CMOS compatible analogue non-volatile memory element, or artificial 

synapse, with accurate and efficient switching has been elusive. 

 Filamentary-RRAM has demonstrated tremendous potential as analogue memory due to its 

scalability, non-volatility, fast switching, and CMOS compatibility[17–26], but suffers from severe 

challenges in achieving predictable analogue behavior. Filamentary-RRAM stores analogue 
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information in a conductive filament formed by oxygen vacancy (  
  ) defects inside a metal oxide 

switching layer. The localized, nanometer-sized filament arises from the instability of the 

electroforming process that results from positive thermal feedback[20,27,28]. Applying a write voltage 

combines two effects to change the resistance state[27,28]: first, a large electronic current creates 

internal joule heating to several hundred degrees Celsius to locally activate   
   mobility[29]; second, a 

much smaller electrochemical current directs the motion of   
   to or away from the filament, 

changing its size and/or composition. 

A well-known challenge of filamentary devices is that the analogue resistance state, set by 

the position and motion of a discrete number of   
   defects in this nanosized filament[20,21,30], is 

stochastic due to the probabilistic nature of microscopic atomic behavior (e.g. thermally-activated 

defect “hopping”). This stochasticity is responsible for the intrinsically unpredictable and 

irreproducible analogue switching in filamentary devices[31–33]. The challenges surrounding 

stochasticity become acute for analogue devices engineered for higher-resistance operation due to 

fewer atoms in the critical conduction path[30,32]. Since energy-efficient neuromorphic computing 

demands both more analogue states and higher resistances[4,34], state-of-the-art analogue 

filamentary devices often switch in the correct direction only ~60% of the time[5,8,10,25,35], slightly 

better than random (50%). As a result, it can take nearly 500 switching events to tune the memory 

cell to one of 32 analogue states[8], expending significant time and energy to achieve modest 5-bit 

resolution. Additional challenges include nonlinear and asymmetric changes in analogue state that 

reduces the training accuracy of artificial neural networks[1,34,36].  

To address these issues, we introduce the filament-free bulk-RRAM using TiO2 and YSZ to 

achieve deterministic switching. An electron-blocking, ion-conducting solid electrolyte interlayer 

eliminates the positive thermal feedback that creates the dominant conductive filament. Instead, 
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due to uniform temperatures provided by external heating sources,   
   defects are homogeneously 

distributed as a solid solution in the bulk. By widening the active information storage volume from 

the dominant nanosized filament to the bulk volume of the switching layer, bulk-RRAM employs the 

statistical ensemble concentration of   
   defects in the bulk to store the analogue resistance states. 

This leads to predictable switching because the ensemble behavior of all defects is deterministic 

even if individual defects are stochastic. The analogue switching accuracy at high resistances 

improves from ~60% in filamentary memristors to between 96% and 99% in these first-generation 

bulk-RRAM devices. Eliminating internal joule heating also enables linear changes in the analogue 

state for accurate training. While external heating in bulk-RRAM may be less space efficient than 

internal joule heating, it provides the uniform temperatures to eliminate the filament, and provides 

a path towards an analogue non-volatile resistive memory solution. 
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Figure 1: Bulk-RRAM compared to filamentary-RRAM. (a) Filamentary-RRAM uses localized internal joule 

heating to mobilize   
   defects within the nanometer-sized conductive filament. Due to the discrete number of 

defects within the dominant conducting filament, this memory device switches stochastically and 

probabilistically, schematically illustrated using a random walk. (b) Analogue switching behavior in a TaOx 

filamentary-RRAM device; this data was also previously used for neural network simulations in ref. 
[35]

; the first 

fifty SET and RESET pulses in each of five ramps are plotted. (c) The switching distribution plot from 50 ramps. 

The switching accuracy, defined as the number of SET or RESET pulses that changes the state in the correct 

direction, is ~58%, slightly better than random (50%). SET from the low-conductance state results in   ~100 

μS, beyond the scale of the graph. (d) Bulk-RRAM utilize the average concentration of   
   defects in the 

switching layer to store analogue information. While each defect follows probabilistic behavior, the statistical 

behavior of all defects is deterministic, leading to accurate and predictable switching. (e) Cross-sectional 

energy dispersive spectroscopy (EDS) map taken by scanning transmission electron microscopy, of the bulk-

RRAM cell used in this work. Contact 1 is a metallic, highly oxygen-deficient TiOx, and the substrate is Si with 

100 nm of thermal oxide. (f) Bulk-RRAM shows much more linear and deterministic behavior despite lower 

electronic conductance and more analogue states. The first and final two ramps over 3×10
8
 pulses are shown. 

The ramping switches between SET to RESET when the conductance limits of 100 nS and 450 nS are reached. 

(g) The switching distribution for ~30 ramps show 96% switching accuracy. 
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We first compare the switching stochasticity of filamentary- and bulk-RRAM. Filamentary 

devices contain a direct electronic path between the top and bottom contacts formed by electron-

donating   
   defects in the metal oxide layers (Figure 1a). An initial voltage applied between the top 

and bottom contacts concentrates the current into a thermal hotspot to “electroform” a nanometer-

sized conducting filament in the switching layer[20]. The number and position of   
   defects in the 

filament controls its conductance, which dominates the overall device conductance state. 

Subsequent write pulses lead to local joule heating that activates   
   migration within the 

filamentary hotspot to change the defect concentration and distribution. To illustrate the effect of 

stochastic switching and introduce a method to quantify the switching variability, we show a typical 

analogue ramping profile for a TaOx filamentary memristor (Figure 1b, see supporting information 

for details). This data was also used to conduct neural network simulations in ref. [35]. Switching is 

unpredictable and stochastic, and the distribution of switching events varies considerably from cycle 

to cycle and device to device[35] . For higher resistance devices, only ~60% of SET or RESET pulses 

switch in the desired direction (Figure 1c), a result comparable to those of other published 

works[5,8,10,25] (Supporting Figure S1).  

Previous studies have shown that stochastic switching arises because the discrete defects in 

a single nanometer-sized filament dominate the device conductance. A low probability of defect 

“hopping” over an ~1 eV activation barrier (~10-9 at 300oC) combined with the “random walk” of 

defects from kinetic theory dictate that discrete defects behave probabilistically and 

stochastically[31–33]. Poissonian switching statistics[37], shot noise[1], and random telegraph noise[30] 

adds to unpredictability and stochasticity. Filamentary-RRAM also presents nonlinear and 

asymmetric switching behavior that makes it difficult to accurately train neural networks[1,34,36]. 
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To address these challenges, we design the bulk-RRAM cell (Figure 1d) that does not contain 

dominant conducting filaments and is instead sensitive to the average bulk defect concentration, a 

continuous variable that is generalizable to many transition metal oxides. To demonstrate the 

concept, we fabricated thin-film devices on silicon that adds a 400-nm thick solid electrolyte 

interlayer, yttria-stabilized zirconia (YSZ), between the mixed conducting base (120-nm thick) and 

switching (60-nm thick) layers, both consisting of TiO2-X (see supporting information and Figures S2,3 

for fabrication protocol and materials characterization). Figure 1e shows a cross-sectional energy 

dispersive spectroscopy (EDS) map taken using a scanning transmission electron microscope. High-

resolution EDS maps do not show cation intermixing between the YSZ and TiO2 layers (Supporting 

Figures S4,5). This structure resembles a solid oxide fuel cell[38] without the gas interface.  

Because the electrolyte blocks the direct electronic pathway and resulting internal joule 

heating (Figure 1d), the heat to thermally activate   
   migration is supplied uniformly from an 

external hotplate or on-chip resistive heaters. No electroforming process is needed. Unlike 

filamentary devices, bulk-RRAM has separate read and write pathways: write pulses, ±1.5 V in 

magnitude, applied between contacts 1 and 3 shuttles   
   defects in and out of the switching layer. 

The measured resistance state between contacts 2 and 3 (100 mV) samples the average electronic 

resistivity of the switching layer, which depends on the defect concentration. To demonstrate 

analogue tunability, the switching layer was ramped from 100-450 nS. Figure 1f plots the first and 

last two ramps over 3×108 write operations, each consisting ±1.5V write pulses applied between 

contacts 1 and 3 for 2 μs. 

Bulk-RRAM shows linear, symmetric, and predictable switching profiles. In stark contrast to 

that of filamentary devices (Figure 1b,c), the switching behavior is essentially deterministic with 

minimal cycle-to-cycle variations. Over 96% of the switching pulses change the conductance state in 
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the desired direction (Figure 1g), despite >2 MΩ resistance, more analogue states, and lack of 

materials optimization compared to the filamentary devices. This predictable switching arises from 

the absence of localized internal heating: under uniform temperatures, mobile defects are 

homogeneously distributed as a solid solution due to configurational entropy[38], without the positive 

feedback conditions for heterogeneous filament growth[28]. Because the number of   
   defect sites 

exceeds 106 even in a small (30-nm)3 volume[39], defect migration firmly obeys collective 

deterministic statistical behavior like Fick’s Laws of Diffusion. Moreover, switching is linear and 

symmetric, essential attributes required to achieve high network training accuracy[1,34,36]: Crossbar 

simulations (Cross-Sim[36]) show ~97% training accuracy for the MNIST training set (Supporting Figure 

S6). While this device is a type of electrochemical random-access memory (ECRAM) [40–49], the bulk-

RRAM cells based on oxygen vacancies presented here provides significant advantages in terms of 

scalability, retention, and CMOS compatibility over previously-developed ECRAM, and will be 

discussed later.  

Next, we probe the switching layer’s local conductivity with both materials characterization 

and physical modelling to confirm the absence of filaments. Experimentally, we map the electrical 

conductivity with conductive atomic force microscopy (c-AFM) using a modified device geometry 

with exposed switching layers (see supporting information). Figure 2a,b shows the local tip current 

of a region of the switching layer in two conductance states, 5 μS and 1 μS. No current hotspots 

were detected, in stark contrast to hotspots frequently observed for filamentary-RRAM arising from 

conductive filaments[17,50]. The average tip current for all images in the high-conductance state is 

about 4.9 times higher than that of the low-conductance state, in agreement with macroscopically-

measured values.  
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To quantify the inhomogeneity in local conductivity, we divide the c-AFM map into square 

regions of different sizes during analysis, and calculate the mean tip current  ̅ for each region (Figure 

2c). The error bars represent two standard deviations (2s) of the distribution: our results show that 

94/100 of the (25 nm)2 regions have tip currents between 70% and 130% of the mean current  ̅. 

Given that bulk-RRAM devices have 5× conductance range (Figure 1f), c-AFM results suggest that 

nanoscale devices with switching layers on the order of 25-50 nm would be sufficiently uniform for 

analogue memory crossbars. The 2s/   ratio obtained from a number of c-AFM maps for both states 

are plotted in Figure 2d. The highly uniform, yet low conductance of the oxide at different states 

suggests that large crossbars with > 106 synapses are indeed possible to yield at least 1014 multiply-

and-accumulate operations per joule, hundreds of times improvement over optimized digital 

computing[4].  

 

Figure 2: Nanoscale spatial distribution in electronic conductivity demonstrates non-filamentary nature of the 

device as well as potential scalability to smaller dimensions. (a-b) Conductive-AFM tip current distributions for 

the switching layer at high-conductance and low-conductance states. The tip voltage is -2V, and the absolute 

value for the current is plotted. No filaments were observed. (c) Histogram distribution of the tip current in (b) 

averaged across regions of different sizes, used to evaluate the uniformity of the conductance as a function of 

dimensions. The black dots represent the image-averaged current     The error bars 2s (twice the standard 
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deviation) encompasses ~95% of the distribution of region-averaged currents. (d) Plot of the uniformity of the 

different regions using 2s/   as a metric for the uniformity: for example, our results state that ~95% of the 50-

nm regions in the low-conductance state have conductance within 25% of the mean value. The confidence 

intervals represent the standard deviation of (2s/  ) across three c-AFM images for the low-conductance state 

and four images for the high-conductance state. (e) Physical modelling confirms the uniformity of the 

switching layer in bulk-RRAM as a result of diffusion and configurational entropy when the temperature is 

uniform, even as the initial distribution of   
   defects is nonuniform. The arrows indicate uniform oxygen 

vacancy flux. (f) In filamentary devices, the filaments form around these initial nonuniformities which act as 

nucleation seeds. Due to localized temperature increases and positive thermal feedback, defect migration is 

concentrated around a ~2-nm filament, where   
   flux is very high. 

 

We adapt a quantitative and deterministic physical model from past work[27,28] to further 

study switching in bulk-RRAM (see Supporting Information for details). The temperature within bulk-

RRAM with externally-controlled heating is constant (Figure 2e); as a result,   
   defects enter the 

switching layer uniformly from the base layer via the electrolyte. In contrast, internal joule heating in 

filamentary devices concentrates the electronic current into regions that are initially more 

conducting, turning them into hotspots (Figure 2f). These hotspots serve as positive feedback 

nucleation points for the filament. The filament is nanometer-sized even when the device is much 

larger, leading to the discrete stochastic behavior in Figure 1b,c. 

We also use this deterministic model to simulate analogue switching. In filamentary devices, 

the change in conductance depends non-linearly on the present state, even when stochasticity is not 

simulated (Supporting Figure S7). This arises because the joule heating power (I2R or V2/R) depends 

on the resistance, yielding resistance- or state-dependent temperature which in turn affects the 

defect mobility. In contrast, the temperature of bulk-RRAM is controlled independently, so both the 

defect mobility and the number of defects shuttled per pulse is essentially constant, resulting in the 

highly linear switching shown experimentally (Figure 1f,g). 

We next seek to elucidate and quantify the switching and retention properties using model 

bulk-RRAM cells fabricated on single-crystal YSZ substrates (100-1000-μm thick, see supporting 
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information for device fabrication details). Cyclic voltammetry between contacts 1 and 3 shows a 

strong hysteresis typical of electrochemical systems[51], and that the conductance of the switching 

layer (measured through contacts 2 and 3) increases as   
   is inserted (Supporting Figure S8a), 

suggesting that Ti4+ ions are reduced to Ti3+ and creating two mobile polarons (    
 ) for every   

   

inserted. At negative currents, the process is reversed. The electronic conductivity of the switching 

layer increases with temperature (Supporting Figure S8b), characteristic of polaron conduction[52]. 

Because the devices are not cooled between weight update pulses, this behavior must be considered 

when converting analogue weights at different temperatures (see Supporting Information). Despite 

appreciable electronic conductance, the Ti3+ concentration at the surface is below the detection 

threshold of X-ray photoelectron spectroscopy (Supporting Figure S8c). Linear current-voltage curves 

confirm that our weight updates arise from bulk compositional modulation rather than interfacial 

effects at the Pt/TiO2-X interface (Supporting Figure S8d). 

 

Figure 3: Switching behavior in model bulk-RRAM devices fabricated on single-crystal YSZ. (a) Analogue 

switching of a device fabricated on a 100-μm YSZ electrolyte substrate shows linear and symmetric switching. 

(b) The switching distribution shows an even higher switching accuracy than the thin-film YSZ devices. Over 

99% of the SET and RESET pulses switch in the correct direction.  (c) The switching time needed to achieve 100 

analogue states within a 3× change in conductance for different electrolyte thickness and temperatures. All 

results are fitted using a common fit parameter D = 80 ± 20 nF cm
-2

 (95% confidence interval). (d) Ionic 

resistivity of the YSZ electrolyte as a function of the temperature show an activation energy ~1.1 eV, 

comparable to high-temperature results from Ahamer et al
[53]

. Representative Nyquist impedance plots are 

shown in Supporting Figure S10. 
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 Figure 3a shows the analogue switching behavior of a device with a 100-μm-thick 

electrolyte. The TiO2-X layers were more chemically reduced during fabrication to enable the bulk-

RRAM cell to operate at different designed conductance levels. The switching accuracy is 99% 

(Figure 3b). The conductance change is linearly proportional to the write voltage  and the pulse time 

(Supporting Figure S9a,b); this differs from the exponential (voltage) and logarithmic (time) 

relationship observed in metal-oxide-ECRAM[54], which were not heated, and suggests fundamentally 

different switching mechanisms. An even higher density of analogue conductance states is obtained 

by reducing the write pulse time (Supporting Figure S9c-f) without loss of accuracy. 

In Figure 3c we plot the write time as a function of electrolyte thickness and temperature. 

The results are fitted to the simple model          , where D = 80 ± 20 nF cm-2 (95% confidence 

interval) is the common fit parameter,      is the temperature-dependent ionic resistivity of the YSZ 

electrolyte plotted in Figure 3d, and L is the thickness of YSZ. Our results show that write time can be 

faster by decreasing L and by increasing T. The rate-limiting step is the resistance of the YSZ 

electrolyte, which is over 800 times thicker than the TiO2-X layers. Reducing the electrolyte thickness 

from >100 μm to <1 μm can be used to decrease the series ionic resistance and the write time: as 

shown in Figure 1f, a 400-nm thick thin-film electrolyte result in devices ~2 μs write times. The 

excellent fit across all fabricated devices suggests minimal device-to-device variation. 

 Next, we consider the long-term information retention of the device. Like other types of 

RRAM, bulk-RRAM harnesses the reduced mobility of   
   at lower temperatures (Figure 3d) to 

“freeze” the information state. This contrasts strongly with other types of ECRAM cells, which also 

have three terminals but that need electronic switches to isolate the gate from the channel[40–48]. We 

plot the memory loss over time (Figure 4a) when shorting the base and switching layers after setting 

the device to a high-conductance state. The switching layer decay time strongly depends on 
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temperature: at room temperature, it decays less than 0.3% after one week. Devices in both high- 

and low-conductance states relax to equilibrium in a manner consistent with an RC circuit model 

with a similar time constant (Supporting Figure S11). The first-order exponential fit suggests that the 

relaxation time constant is not strongly dependent on the conductance state.  

 In Figure 4b we plot the retention time   , defined as the time for the conductance to drop 

by 2%, as a function of temperature. The trendline fit is given by a simple RC circuit model 

         , with B fitted to 1.4 ± 0.5 μF cm-2 (95% confidence interval), and relates to the 

chemical capacitance[55–57]. The thin-film devices from Figure 4b retain state longer than predicted, 

which suggests that   
   transport in the electrolyte is not rate limiting. Bulk-RRAM retain state for 

periods of days to weeks due to low   
   mobility at or near room temperature, sufficient for 

neuromorphic computing[1,3]. Materials with higher Arrhenius activation energy can be used to 

achieve longer retention (Figure 4c) by increasing the temperature dependence of the ionic 

resistivity. This is especially crucial to achieve sufficient retention time when other components in an 

integrated circuit need to operate above room temperature. 
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Figure 4: Retention of bulk-RRAM at various temperatures when the bulk and switching layers are shorted 

without an electronic switch. (a) Conductance decay over for a device constructed on 100-μm single-crystal 

YSZ. Retention time increases significantly at lower temperatures as the electrolyte resistance rises. (b) The 

retention time   , defined as 2% change in conductance, as a function of temperature (T) and electrolyte 

thickness (L), with a single fit parameter B = 1.4 ± 0.5 μF cm
-2

 (95% confidence interval) fitted to all the single-

crystal YSZ results (c) Computed ionic resistance normalized to the resistance at 150
o
C for different activation 

energies; the retention time is expected to be proportional to the ionic resistance. (d) RC time constants for 

bulk-RRAM do not depend on the device size because the ionic resistance increases at the same rate that the 

chemical capacitance decreases. Retention is achieved when the top and bottom contacts are shorted. We 

assume each layer is 100-nm thick, the specific chemical capacitance is 1000 F cm
-3

 (ref. 
[56,58]

) and the ionic 

resistance is 10
14

 cm from Figure 3d. (e) The RC time decreases significantly with device size in ECRAM cells 

that use an electronic switch to isolate the top and bottom contacts. As chemical capacitance decreases with 

size, the switch’s resistance does not decrease and assumed to be 10
13

  here, resulting in drastic decrease in 

  . 

 

 We now consider how bulk-RRAM would retain state when scaled to smaller lateral 

dimensions. We assume that the retention time is proportional to an RC time constant (   ), where 

C is the chemical capacitance[55] of the switching layer while R is the total ionic resistance of the 
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device. A size-independent     is obtained because the chemical capacitance decreases 

proportionally with the area while the ion resistance increases at the same rate (Figure 4d). A     of 

107 s, ~ 4 months, is computed when each layer in the stack is 100-nm thick.  

Whereas bulk-RRAM cells retain state by immobilizing   
   and blocking ion migration, 

ECRAM cells that operate at constant temperature instead use electronic switches to block electron 

migration between the gate and channel[40–49]. This method does not scale well for smaller devices: 

ROFF is constant and depends on the properties of the switch while C decreases proportionally with 

the area (Figure 4e). Assuming that ROFF ~1013  (ref. [59]), this scheme provides long     for relatively 

large areal devices (>10 μm)2, but     decreases drastically for smaller devices, yielding only ~10 s 

for scaled (100 nm)2 devices, many orders of magnitude lower than for a similarly-sized  bulk-RRAM 

device (Figure 4d). A recent scaled proton-based ECRAM shows retention time of ~ 5 sec[49]. We note 

that the bulk-RRAM cells can also utilize an electronic switch for short-term information retention 

when the devices are heated at its elevated write temperature (Figure S12a,b). Unlike ECRAM based 

on Li+ and H+, bulk-RRAM also possess long-term information storage mechanisms by immobilizing 

oxygen vacancies using temperature. 

The significant improvements in stochasticity of non-filamentary bulk-RRAM ultimately arise 

from using a solid electrolyte to eliminate the dominant conducting filament which arises from 

localized internal joule heating. Instead, the temperature of bulk-RRAM is uniform and controlled 

externally, so the defects are homogeneously distributed in the bulk as a solid solution. Without a 

dominant filament, the statistical ensemble behavior of all defects controls the resistance and 

analogue information state. This results in deterministic, predictable, and linear behavior for the 

bulk-RRAM devices, essential for analogue neural network applications, and compensates for the 

lower information density and higher complexity of using three terminals devices. While we 
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anticipate higher stochasticity for smaller devices with fewer defect sites, bulk-RRAM should be 

more deterministic than filamentary-RRAM because the switching layer’s volume is always larger 

than the filament’s volume, and stochasticity usually scales with the square root of the number of 

defects based on probability theory[33]. The switching layer’s geometry can also be designed through 

lithography, whereas the size of the filament is sensitive to the material’s mass, heat, and electron 

transport properties, and likely cannot exceed 10 nm. We hypothesize that bulk storage also makes 

these devices less sensitive to impurities and variations in oxide thickness, and not require extensive 

process control as in filamentary memristors[11]. Our ability to achieve deterministic switching is not 

specific to the properties of the materials used here, and is generalizable to many mixed-conducting 

transition metal oxides[38], opening up new opportunities for materials research. 

 Interfacial memristors[18,29] that switch by modulating the defects near the interface should 

be less stochastic than filamentary devices because of the higher number of defects at a two-

dimensional interface. However, bulk-RRAM has even more defect sites by using the three-

dimensional bulk. Furthermore, although interfacial[18,29] and three-dimensional memristors[60,61] 

without a solid electrolyte may not contain filaments,  they rely upon internal joule heating[29], which 

leads to nonlinear and asymmetric switching behavior because the temperature and defect mobility 

would depend strongly on the present resistance state. 

Another class of analogue memory with significant recent research is ECRAM [40–48] based on 

bulk transport of Li+ or H+ defects. Our statistical ensemble analysis also explains why these ECRAM 

switch more linearly and deterministically than filamentary devices. Bulk-RRAM is a type of ECRAM 

that uses oxygen vacancies, and has significantly better retention for smaller devices by immobilizing 

defects using temperature, as opposed to using switches to electronically isolate the gate and 

channel in past ECRAM cells (Figure 4d,e). Moreover, there are wide numbers of CMOS-compatible 
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materials that conduct oxygen vacancies at elevated temperatures, including many transition metal 

oxides. ECRAM that switch at room temperature must utilize more mobile defect ions like Li+ in 

metal oxides[41,44,46], H+ in electroactive polymers[42,45], or O2- in ionic liquids[40,48], which often 

necessitates CMOS-incompatible materials. 

 Finally, we consider the energy of reading and switching in an array. Read energies are low 

when bulk-RRAM is engineered to have high electronic resistances; our devices already achieved 

several megaohm (Figure 1f) and can be further improved to tens to hundreds of megaohm using 

“square” geometries. High read resistances not only minimize the read current but also enables 

larger (>106 devices), more energy-efficient crossbar arrays that conduct ~1014 inference operations 

per joule[4,8,34]. For training accelerators, it is necessary to consider the energy costs for switching. 

The direct electrical energy cost of writing is very low, on the order of 10-17 J for a (100-nm)3 scaled 

device (see supporting information). To account for the thermal energy needed to heat the chip to 

~150°C, the energy cost per switching event is estimated to be ~10-14 J for scaled devices that switch 

in parallel (see Supporting information and Figure S12a), compared to ~10-12 for filamentary 

memristors[22]. When weight updates are sporadic, such as for inference, a simpler selector-free 

configuration can also be constructed (Supporting Figure S12c). We propose  a device density of 8F2, 

where F is the feature size (Supporting Figure S12d). 

 Bulk-RRAM solves major challenges of filamentary-RRAM for analogue computing. By 

eliminating the dominant filament and instead storing information through the bulk   
   

concentration, bulk-RRAM switches deterministically rather than stochastically by harnessing the 

defects’ statistical ensemble behavior. The bulk-RRAM provides a generalizable approach towards 

enabling the predictable analogue memory element for enable energy-efficient neuromorphic 
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computing, and inspires the use of bulk point defects to control the stochasticity of nanoelectronic 

systems. 

 

Experimental Section: The devices containing thin-film YSZ were fabricated by using optical 

photolithography and electron beam lithography to define the bottom Ti/Pt contacts on a Si/SiO2 

substrate, then sputtering consecutive layers of TiO2 switching layer (DC-reactive), YSZ electrolyte 

(RF), TiO2-X base layer (DC-reactive), and TiOX (DC-reactive) top contact using shadow masks 

(Supporting Figure S2). All sputtering was conducted at room temperature. The bottom TiO2 and YSZ 

layers were crystallized by annealing at 700°C (Supporting Figure S3), previously shown to be 

sufficient to crystallize sputtered thin-film YSZ[62] and TiO2
[46], but not high enough to support 

significant cation intermixing at the interface (Supporting Figures S4-5). The TiO2-X base layer and top 

contact was not annealed. Energy dispersive spectroscopy suggests that the Y:Zr ratio is 12% ± 3%  

(Supporting Figure 4f), slightly lower than expected based on the target composition, but with 

sufficient defects to support oxygen vacancy conduction[63]. The model devices containing single-

crystal YSZ were fabricated by sputtering TiO2, annealing at 600°C to form anatase, and evaporating 

Pt contacts on opposites side of a single-crystal YSZ substrate. Oxygen vacancies were introduced 

into TiO2 by reducing in a 2 bar H2 environment at 400°C for 2 hr. Device testing was conducted using 

a Bio-logic SP-300 bipotentiostat or a National Instruments Data Acquisition Device (DAQ-6358) 

system controlled by the LabVIEW program. More details on device fabrication, measurements, 

physical modeling, and atomic force microscopy calculations can be found in the supporting 

information. 

Supporting Information is available from the Wiley Online Library or from the author 
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TOC Text: 

 

This work presents a resistive memory cell based on the electrochemical migration of oxygen 

vacancies for in-memory neuromorphic computing. By using the average behavior of all oxygen 

vacancies to store analogue information states, this cell overcomes stochastic and unpredictable 

switching plaguing filament-forming memristors, and instead achieves linear, predictable, and 

deterministic switching. 

 

 

 


