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ABSTRACT
Impaired awareness of hypoglycemia (IAH) is a reduction in the ability to recognize low
blood glucose levels that would otherwise prompt an appropriate corrective therapy. Identi-
fied in approximately 25% of patients with type 1 diabetes, IAH has complex pathophysiol-
ogy, and might lead to serious and potentially lethal consequences in patients with diabetes,
particularly in those with more advanced disease and comorbidities. Continuous glucose
monitoring systems can provide real-time glucose information and generate timely alerts on
rapidly falling or low blood glucose levels. Given their improvements in accuracy, affordability
and integration with insulin pump technology, continuous glucose monitoring systems are
emerging as critical tools to help prevent serious hypoglycemia and mitigate its conse-
quences in patients with diabetes. This review discusses the current knowledge on IAH and
effective diagnostic methods, the relationship between hypoglycemia and cardiovascular
autonomic neuropathy, a practical approach to evaluating cardiovascular autonomic neu-
ropathy for clinicians, and recent evidence from clinical trials assessing the effects of the use
of CGM technologies in patients with type 1 diabetes with IAH.

INTRODUCTION
For almost 100 years, insulin has been the fundamental therapy
for type 1 diabetes1. By suppressing ketogenesis, insulin miti-
gates the risk for the development of diabetic ketoacidosis, a
life-threatening acute complication of diabetes. The Diabetes
Control and Complications Trial2 and Epidemiology of Dia-
betes Interventions and Complications study3 further estab-
lished the use of intensive insulin therapy to prevent or delay
the development of chronic microvascular and macrovascular
complications. Based on recent updates, the impacts of this rel-
atively short-term glucose control appear to confer durable
metabolic benefits for at least 30 years4–8. However, intensive
insulin therapy comes at a price. Intensive insulin treatment
almost invariably increases the incidence of severe hypo-
glycemia9,10, which is associated with altered mental state, sei-
zures, cardiac arrhythmias and even death11–14.
Hypoglycemia has traditionally been defined by blood glu-

cose levels of <70 mg/dL (recently termed level 1 hypo-
glycemia15,16), as these levels trigger the normal physiology of
counterregulatory responses to hypoglycemia17. Recent revisions

of hypoglycemia definitions also include glucose levels <54 mg/
dL (i.e., level 2 hypoglycemia16) for its associations with major
comorbidities, such as increased mortality, cognitive dysfunction
and the development of impaired awareness of hypoglycemia
(IAH)18, a condition in which patients have diminished or lost
ability to perceive the onset of hypoglycemia19. The Diabetes
Control and Complications Trial study defined severe hypo-
glycemia as hypoglycemic episodes requiring assistance of
another person for recovery9. This definition was subsequently
adopted as the universal definition of severe (or level 3) hypo-
glycemia11,15,16.
Iatrogenic hypoglycemia is not restricted to type 1 diabetes

patients. Both sulfonylurea use and insulin therapy in patients
with type 2 diabetes result in increased risks for hypo-
glycemia20,21. Interestingly, there has been intensive debate as
to whether severe hypoglycemic events in type 2 diabetes
patients is merely a marker of, or indeed causal of, the well-
documented increased risk of cardiovascular events and mor-
tality after hypoglycemia22–25.
Continuous glucose monitoring systems (CGMs, or real-time

CGMs) are devices that measure subcutaneous interstitial glu-
cose to estimate blood glucose levels, and report the glucose
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levels and trends to patients in real time26. CGMs can also gen-
erate audible or vibrating alarms for low/high glucose levels,
based on the settings customized by patients or healthcare pro-
viders, to alert the patients to hypo/hyperglycemic events. Based
on their capability to (i) improve hemoglobin A1C (HbA1c)
and average glucose levels; (ii) reduce the risk for serious hypo-
glycemic complications27–29; and (iii) reduce the burden of
repetitive fingerstick glucose monitoring30, CGMs are now con-
sidered the standard of care for type 1 diabetes patients31–33.
CGM use has also been further established with improvements
in accuracy34, feasibility for patients of various ages35,36 and dia-
betes duration37, and the standardization of metrics for quanti-
fying hypoglycemia18,38. The interest and availability of CGMs
that are integrated to sensor-augmented insulin pumps is also
rapidly expanding39. For patients with type 2 diabetes, data
showing the beneficial roles of CGM technology for glucose
control40, weight control and lifestyle adherence41 are also
emerging.
The current review gives a brief overview of the current

knowledge of the IAH, and its assessment methods, the rela-
tionships between hypoglycemia and cardiovascular autonomic
neuropathy (CAN), a practical approach on CAN evaluations
in clinical care, and the recent clinical trial evidence on the role
of CGMs use in the IAH population.

IMPAIRED AWARENESS OF HYPOGLYCEMIA AS A
BARRIER FOR GLUCOSE CONTROL
Patients with IAH develop unrecognized hypoglycemic events
and thereby can often miss the opportunity to treat their hypo-
glycemia in a timely manner19. Commonly co-existing with
IAH is the attenuation or loss of sympathoadrenal mechanisms,
which limits the endogenous glucoregulatory recovery from
hypoglycemia (specifically, catecholaminergic stimulation of
hepatic glucose output and restraint of muscle glucose
uptake)42. Thus, for people with type 1 diabetes, who have
already lost the ability to decrease endogenous insulin secretion
and increase glucagon production as counterregulatory mecha-
nisms, IAH and impaired adrenomedullary responses result in
a further significant loss of defense mechanisms to avoid severe
hypoglycemia (Figure 1)19. Indeed, IAH is associated with an
approximately sixfold increased risk of developing severe hypo-
glycemia43,44. Clinically, because of the risk of developing dan-
gerously low glucose levels, patients and healthcare providers
alike are often reluctant to practise/advocate tight glucose con-
trol to achieve proposed glycemic targets45.
Approximately 25–40% of type 1 diabetes patients were

found to have IAH, with a stable prevalence over the past two
decades43,44,46,47. This value is most certainly an underestima-
tion, as even patients who report having intact hypoglycemia
awareness are indeed unaware of CGM-confirmed hypo-
glycemia48. In the type 2 diabetes population, the IAH preva-
lence ranges from approximately 6 to 17% in those using
insulin injection programs, and the IAH status is associated
with 9–17-fold increased risk for severe hypoglycemia49–51.

A major cause of IAH and impaired adrenomedullary
responses to hypoglycemia is recurrent episodes of hypo-
glycemia, which (as part of a vicious cycle) perpetuate these
conditions52–54. There is also evidence that IAH can be induced
by sleep55,56, psychological stress57 and alcohol58, yet there are
still controversies as to whether exercise59,60 and beta-adrenergic
blockers61,62 have detrimental or beneficial effects on hypo-
glycemia awareness status.
The mechanisms for the development of IAH remain to be

elucidated63. Earlier studies evaluated the relationships between
this condition and adrenal medulla destruction64, cortisol (as a
systemic mediator)65 or CAN66. Some studies focused on the
glucose sensing in the brain and how it is altered with antece-
dent hypoglycemia. Consistent with this central nervous sys-
tem-impaired glucose sensing, recent studies have implicated
the use of alternative fuels (e.g., lactate67 or monocarboxylic
acids68) and changes in the neurotransmitter signaling in the
brain (e.g., GABAergic69, glutaminergic and opioidergic70 sig-
naling) as likely causes for IAH and the impaired sympathoad-
renal response to hypoglycemia.
As these impaired responses are purported to be caused by

recurrent antecedent hypoglycemia, it is logical that a reduction
in the incidence of hypoglycemia would be expected to improve
hypoglycemia awareness and adrenomedullary responses. In
support of this notion, studies have shown that strict hypo-
glycemia avoidance with rigorous monitoring and behavioral
modifications can help improve hypoglycemia awareness in as
little as 2 weeks71–74. Additionally, blood glucose awareness
training75, education to optimize insulin dosing76 and hypo-
glycemia avoidance motivational programs77 have also been
shown to improve hypoglycemia awareness.

HYPOGLYCEMIA AND CARDIOVASCULAR AUTONOMIC
NEUROPATHY
Diabetic CAN, defined as the impairment of autonomic control
of the cardiovascular system in the setting of diabetes after
exclusion of other causes78, is a major diabetic comorbidity that
has been associated with a significant increase in mortality in
both patients with type 1 diabetes79–81 and type 2 diabetes82–84.
Despite the association between CAN and increased mortality,
currently there is no effective therapy to prevent or reverse this
condition beyond glycemic control6,85,86 and symptomatic man-
agement87. The role of autonomic dysfunction as a risk factor
for IAH had been studied quite extensively. Particularly as a
hallmark of IAH is the loss of sympathetic symptoms (e.g., pal-
pitation, tremor and anxiety) and the epinephrine responses to
hypoglycemia, it was postulated that autonomic dysfunction
including CAN might directly contribute to the development of
IAH88. However, more recent evidence showed that in some
patients IAH can be induced by a single episode of hypo-
glycemia53. This suggests that although autonomic dysfunction
and CAN might further impact IAH risk and consequences89,90,
it is unlikely to be the main mechanism involving its develop-
ment66,91,92. Furthermore, it appears that self-reported IAH does
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not predict CAN93. Yet, the associations between hypoglycemia
and CAN in particular are quite complex, and remain to be
further elucidated. There is ample evidence that CAN is inde-
pendently associated with hypoglycemia in patients with dia-
betes25,94,95. Several studies have also shown that hypoglycemia
can promote reductions in heart rate variability and the barore-
flex sensitivity in both patients with diabetes96,97 and healthy
controls98 that might last for many hours after euglycemia is
restored97. In addition, our group has reported that increased
glucose variability, particularly with a predominance of hypo-
glycemic stress measures, was associated with blunting in mea-
sures of heart rate variability in type 1 diabetes patients94.
These data lend support to a potential role of hypoglycemia in
the development of CAN and the loss of the protective cardio-
vagal mechanisms, which might directly impact cardiac electri-
cal activities and thus eventually increase the risk of cardiac
arrhythmias in these patients94,97,99–101. Experimental evidence
reported that hypoglycemia might lead to peripheral nerve axo-
nal degeneration, possibly through alterations in the glucose
uptake, depletion of energy substrates and changes in Schwann
cell metabolism affecting particularly the large myelinated
fibers102,103, although the exact mechanisms and whether these
hypoglycemia-associated changes are functional104,105, reversi-
ble106 or permanent are still unclear107,108. An additional exam-
ple of the complex interactions between hypoglycemia, CAN
and neuropathy is treatment-induced neuropathy. Treatment-
induced neuropathy is a condition described in patients who
have experienced a rapid decline in blood glucose levels after
the use of insulin, oral hypoglycemic medications, or even diet
only to control hyperglycemia, and often manifests as a painful

sensory and autonomic neuropathy, often with a dramatic
onset and course109,110.

ASSESSMENT OF IMPAIRED AWARENESS OF
HYPOGLYCEMIA AND IMPAIRED ADRENOMEDULLARY
RESPONSES TO HYPOGLYCEMIA
The hyperinsulinemic hypoglycemic clamp technique is the
gold standard of assessing hypoglycemia awareness and hor-
monal responses to hypoglycemia17,111. This validated tool
assesses the hypoglycemia awareness status by collecting hypo-
glycemic symptoms during the clamp procedure at specified
intervals to determine at what level of glucose hypoglycemic
symptoms are experienced112,113. Information is captured on
several domains that include: difficulty thinking/confused,
warm, shaky/tremulous, nausea, tired/drowsy, hungry, weak,
sweaty, headache, heart-pounding, difficulty speaking, nervous/
anxious, dizzy, faint, tingling and blurred vision112. In general,
it is accepted that individuals who do not develop significant
hypoglycemic symptoms around glucose levels of 50–54 mg/dL
are considered to have IAH114. Additional methods include the
assessment of epinephrine levels and other counterregulatory
hormones (norepinephrine, glucagon, cortisol, growth hormone,
pancreatic polypeptide) during the various stages of hypo-
glycemia17. Techniques in measuring the endogenous glucose
production for the assessment of hepatic glucose output can
also be incorporated into hypoglycemic clamps115. Both single-
step116 (from baseline to one single hypoglycemia glucose level
target) or step-wise117 (from baseline to sequentially lower
hypoglycemic level targets) clamps are commonly used. Some
studies also carry out additional hyperinsulinemic-euglycemic
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Figure 1 | Hypoglycemia counterregulatory mechanisms and the impacts of type 1 diabetes (T1D) and recurrent hypoglycemia on these
mechanisms. 1Or advanced type 2 diabetes.
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clamps117, in randomized orders with the hypoglycemic clamps,
to blind the participants, so that the participants’ hypoglycemic
symptoms and hormonal measures would not be confounded
by the knowledge of an anticipated hypoglycemic event or insu-
lin administration. Although the hypoglycemic clamp is a well-
established method to objectively measure the status of counter-
regulatory mechanisms, the pitfalls of clamp studies are the
invasiveness, expense and the significant time commitment
from the patients, and thus these studies are often restricted to
a small patient cohort. The interlaboratory variabilities in epi-
nephrine assays also prohibit the comparison among studies
(Table 1)118.
In the outpatient setting, methods to assess hypoglycemia

awareness based on questionnaires (i.e., “self-reported hypo-
glycemia awareness”) have also been developed and widely uti-
lized, particularly for studies requiring larger sample sizes. The
Gold questionnaire43 contains a single question (besides two
questionnaire-validation questions) asking individuals to report
their experience in detecting hypoglycemic events with scores
ranging from 1 (always aware) to 7 (never aware) on a Likert-
type scale. In contrast, the Clarke questionnaire44 is comprised
of eight questions evaluating participants’ prior hypoglycemia
experiences, such as the history of severe hypoglycemia devel-
opments and the glucose levels at which patients start to detect
hypoglycemic symptoms, and generates a score (0–7) based on
the responses. Scores ≥4 are indicative of IAH, and ≤2 indicates
normal awareness for both the Gold and Clark questionnaires.
The Pedersen-Bjergaard questionnaire46 asks individuals to
report whether they recognize symptoms during hypoglycemic
events and, based on the answer, the hypoglycemia awareness
status is categorized as “normal,” “impaired awareness,”
“unawareness” and :undetermined.” All of these questionnaires
have been previously validated based on their associations with
severe hypoglycemia. The Clarke questionnaire has also been
validated with hypoglycemic clamps114. HypoA-Q119 is a 33-
item questionnaire assessing hypoglycemia awareness when

awake/sleep, and the hypoglycemia frequency, severity and
impacts on patients. This questionnaire was validated with
strong correlations with the Gold and Clarke questionnaires,
together with weak correlations with diabetes-related distress
and HbA1c. Other than wide usability with their non-invasive-
ness and no/minimal cost, self-reported hypoglycemia aware-
ness assessments might also benefit from the direct reporting of
patients’ experiences in real life120, rather than in highly con-
trolled inpatients settings of hypoglycemic clamps. In contrast,
the subjectivity of the experience (e.g., possibly influenced more
by the recent events) or lack of a controlled environment might
generate biases for the awareness reporting.

DIAGNOSIS OF DIABETIC CARDIOVASCULAR
AUTONOMIC NEUROPATHY IN CLINICAL CARE
The American Diabetes Association recommends that screening
for CAN should be carried out for patients with evidence of
other chronic complications, such as nephropathy, peripheral
neuropathy, retinopathy and cardiovascular disease, as well as
for patients with IAH121, with high glucose variability, before
insulin dose adjustments and/or perioperatively79. The symp-
toms of CAN are less prevalent in contemporary cohorts of
patients with diabetes, and most patients with CAN are com-
pletely asymptomatic101,121. Weakness, lightheadedness, palpita-
tions, syncope with standing or exercise intolerance are usually
associated with advanced CAN6,85,122.
Clinical signs, such as resting tachycardia (>100 b.p.m.) and

orthostatic hypotension (a fall in systolic or diastolic blood
pressure by >20 mmHg or >10 mmHg, respectively, on stand-
ing without an appropriate increase in heart rate) are both easy
to document in an office78,123, but in general present in later
stages of CAN121,124. A decrease in heart rate variability is the
earliest sign of CAN78,125,126, and can be assessed in an office
by obtaining an electrocardiogram during 1–2 min of deep
breathing and calculating indices of heart rate variability127,128.
However, given that both the symptoms and signs described

Table 1 | Current measures for assessing hypoglycemia awareness

Measurements Advantages Disadvantages

Outpatient Questionnaires:
• Gold43

• Clark44

• Pedersen-Bjergaard46

• HypoA-Q119

• Non-invasive

• No/minimal cost

• Reporting of experience from
real-life hypoglycemic episodes

• Amenable to use in large patient cohorts

• Feasible for clinical use

• Subjectivity bias

• Recall bias

• Uncontrolled environment

• Lack of sensitivity to detect/quantify
changes in awareness with short-term
interventions

Inpatient Edinburgh Hypoglycemia Scores112

determined during the
hyperinsulinemic
hypoglycemic clamp.

• Controlled environment, including
reproducible hypoglycemic levels

• Invasiveness

• Expense

• Patient time commitment

• Small patient cohorts
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are non-specific, a careful differential diagnosis is required to
exclude other common medical causes (e.g., hyperthyroidism,
anemia, dehydration, adrenal insufficiency, arrhythmic disor-
ders), prescription medications effects (e.g., antihypertensive
agents, antimuscarinic agents, diuretics), over-the-counter sup-
plements and recreational agents121.
The cardiovascular reflex tests that assess changes in heart

rate and blood pressure in response to several simple physiolog-
ical maneuvers, such as deep breathing, standing or Valsalva,
remain the gold standard diagnostic for autonomic testing in
both clinical care and research settings, although these are more
expensive and add burden for both clinicians and patients121.

CLINICAL TRIALS TESTING THE USE OF CONTINUOUS
GLUCOSE MONITORING SYSTEMS IN TYPE 1 DIABETES
PATIENTS WITH IMPAIRED AWARENESS OF
HYPOGLYCEMIA
Early CGM clinical trials primarily focused on the CGMs’
impact on glucose control, hypoglycemia reduction and quality
of life129. Additional questions were raised regarding the poten-
tial benefits of the CGM technology in improving the hypo-
glycemia awareness and epinephrine responses in patients with
IAH. Below we summarize some of the most relevant trials that
have addressed these questions.
In 2011, Ly et al.130 carried out a small group randomized

clinical trial study to evaluate whether the use of CGMs versus
self-monitoring of blood glucose (SMBG) might improve epi-
nephrine responses during hypoglycemic clamps in adolescents
with type 1 diabetes and IAH (Table 2). The target glucose
levels were 108–180 mg/dL in both groups, and the CGM group
had the hypoglycemia alarm thresholds set at 108 mg/dL.
Although after 4 weeks the CGM group had greater epinephrine
responses during the hypoglycemic clamps (Table 3), suggesting
a potential benefit of CGMs in improving hypoglycemia aware-
ness, these findings were limited by the small sample size and to
a group with relatively short diabetes duration.
Subsequently, the comparison of optimised MDI versus pumps

with or without sensors in severe hypoglycaemia group131 carried
out a 2 9 2 factorial (SMBG vs CGM; multiple daily injections,
MDI vs continuous subcutaneous insulin infusion) randomized
trial to assess whether hypoglycemia avoidance with intensive
education could improve hypoglycemia awareness regardless of
the glucose monitoring and insulin delivery models. At the study
end, the incidence of hypoglycemia was reduced in all study
arms, and the degree of hypoglycemia awareness improvements
was similar between the CGM and SMBG groups, including the
hypoglycemia symptoms scores during the hypoglycemic clamps
in a subcohort study132. However, the low CGM use time (<50%)
in approximately 40% of the participants could have significantly
confounded the results.
The effects of RT-CGM on glycemia and QoL in patients

with T1DM and IHA study group133 evaluated glucose control
(CGM vs SMBG) in IAH patients with a cross-over trial. The
CGM phase was related to 15% more time-in-range (72–

180 mg/dL), and 41% and 55% reduction of the time in hypo-
glycemia and the number of patients who developed severe
hypoglycemia, respectively. The Gold scores at the end of the
CGM phase were lower, and tended to be lower compared with
the end of the SMBG phase and to the baseline, respectively.
Similar findings, however, were not observed in the Clarke
scores. Although the cross-over design allows more “individual-
ized” comparisons to evaluate CGMs’ impact, it was unclear if
a 16-week CGM intervention was long enough to significantly
improve self-reported hypoglycemia awareness, and whether
the 12-week washout period could sufficiently “reset” the hypo-
glycemia awareness to the baseline.
In 2018, Rickels et al.134 carried out a small cohort, 18-month

pre-post trial evaluating the changes in the endogenous glucose
production and epinephrine responses with CGM interventions.
In this IAH population with severely problematic hypoglycemia,
the incidence of severe hypoglycemia decreased nearly 60% dur-
ing the intervention. The hypoglycemic clamps also showed a
doubled endogenous glucose production at 18 months, with no
statistically significant improvements in epinephrine responses.
Improvements in autonomic symptom scores and self-reported
hypoglycemia awareness were also observed.
The HypoDE (or "Hypoglycemia in Deutschland") study135 is

the largest randomized trial (CGM vs SMBG) to date testing
CGMs’ effects in patients with IAH or severe hypoglycemia his-
tory. The CGM group showed 72% fewer hypoglycemic epi-
sodes with glucose ≤54 mg/dL, along with 64% fewer severe
hypoglycemic episodes. The entire cohort also had a 40%
improvement in hypoglycemia awareness scores, although no
difference was found between the CGM and SMBG groups.
Flash glucose monitoring systems (e.g., FreeStyle LibreTM), like

CGMs, can provide glucose levels and trends, but without the fea-
ture of automated low/high glucose alarms136. Flash glucose mon-
itoring systems have been documented to reduce the time in
hypoglycemia137 and severe hypoglycemia138 for type 1 diabetes
patients, and reduce hypoglycemia139 and improve HbA1c140 in
the type 2 diabetes population. Reddy et al. compared the efficacy
of CGMs versus Flash glucose monitoring systems in reducing
hypoglycemia in type 1 diabetes patients with IAH or severe
hypoglycemia history141. The CGM group showed greater hypo-
glycemia reduction, particularly at night, attributed to the low glu-
cose alarm systems. However, the improvements in hypoglycemia
awareness in these two groups were statistically indistinguishable.
Potential confounders include flash glucose monitoring systems’
lower glucose accuracy in the low glucose range136,142,143 that
might have falsely reported more hypoglycemia.
Although CGMs have clearly shown the benefit of hypo-

glycemia reduction without compromising the overall glycemic
control, the extent to which CGMs can help improve hypo-
glycemia awareness and epinephrine responses remains unclear.
Although meticulous avoidance of hypoglycemia has been
shown to improve hypoglycemia awareness within 2–16
weeks71–74, none of the aforementioned studies showed an
absolute avoidance of hypoglycemia, which could explain this
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Table 3 | Reported time in hypoglycemia, hypoglycemia awareness and autonomic response outcomes in clinical trials evaluating continuous
glucose monitoring use in type 1 diabetes patients with impaired awareness of hypoglycemia

Author Time in hypoglycemia at
study end† (%)

Hypoglycemia
awareness outcomes

Endogenous Glucoregulatory
Response Outcomes

Ly et al. (2011)130 NA NA Changes in epinephrine levels during
hypoglycemic clamps compared with
euglycemic clamps (%)

Baseline:
CGM: 214 – 72%
Standard: 288 – 151% (P = 0.688)
Study end (4 weeks):

CGM: 604 – 234%
Standard: 114 – 83% (P = 0.048)‡

Changes in epinephrine levels during
hypoglycemic clamps at baseline vs
study end:

CGM: P = 0.031
Standard: P = 0.375

Little et al.
(HypoCOMPaSS;
2014)131;
Leelarathna, et al.
(HypoCOMPaSS
clamp subcohort
study; 2013)132

Glucose <72 mg/dL
CGM: 6.3 – 9.1%
SMBG: 5.2 – 4.2%
(P = 0.47)
Glucose ≤54 mg/dL

CGM: 2.1 – 5.1%
SMBG: 1.3 – 2.1%
(P = 0.36)
Clamp Study Subcohort
– AUC of the % of time
spent with glucose
<54 mg/dL (mean – s-
tandard error):

CGM: 658 – 223
SMBG: 797 – 193
(P = 0.64)

Gold scores
Baseline: 5.1 – 1.1
Study end: 4.1 – 1.4 (P < 0.001)‡

Clarke scores

Baseline: 4.1 – 1.6
Study end: 3.2 – 1.7 (P < 0.001)
HypoA-Q scores

Baseline: 13.4 – 3.4
Study end: 9.1 – 4.2 (P < 0.001)
No differences in hypoglycemia awareness
scores between the CGM vs SMBG and CSII
vs MDI models.

Clamp Study Subcohort
Plasma glucose level of first felt hypoglycemia

Baseline: 47 – 2 mg/dL
Study end: 56 – 4 mg/dL (P = 0.02)‡

Symptom score AUC

Baseline: 500 (364–685)
Study end: 650 (365–1,285) (P = 0.02)
No differences in the above measures between
CGM vs SMBG and CSII vs MDI models.

Clamp Study Subcohort –AUC of
incremental metanephrine levels
Baseline: 2,412 (-3,026 to 7,279)
Study end: 5,180 (-771 to 11,513)
(P = 0.02)
Glucose thresholds for metanephrine
response

Baseline: 43 (41–45) mg/dL
Study end: 49 (41–58) mg/dL
(P = 0.03)
No differences in the above measures
between the CGM vs SMBG and CSII
vs MDI models.

van Beers et al. (IN
CONTROL; 2016)133

Glucose ≤70 mg/dL
CGM: 6.8% [5.2–8.3]
SMBG: 11.4% [9.9–13.0]
(P < 0.0001)

Gold scores
End of CGM phase: 4.6 [4.3–5.0]
End of SMBG phase: 5.0 [4.6–5.4] (P = 0.035)
Change in Gold scores from baseline

End of CGM phase: -0.5 [-0.8 to -0.1]
End of SMBG phase: -0.1 [-0.4–0.2]
(P = 0.076)Clarke scores

End of CGM phase: 4.4 [3.9–4.8]
End of SMBG phase: 4.4 [3.9–4.8] (P = 0.953)
Change in Clarke scores from baseline

End of CGM phase: -0.1 [-0.5–0.3]
End of SMBG phase: -0.4 [-0.8–0.0]
(P = 0.216)

NA
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Table 3 (Continued)

Author Time in hypoglycemia at
study end† (%)

Hypoglycemia
awareness outcomes

Endogenous Glucoregulatory
Response Outcomes

Rickels et al.
(2018)134

Glucose <60 mg/dL
Run-in: 6.5 – 1.6%
Study end (18-months):
4.0 – 0.7% (P = NS)

Clark scores
Baseline: 6 (6–7)
6 months: 4 (4–5)
12 months: 3 (2–5)
18 months: 3 (2–5)
(P < 0.01)Clamp Study

Autonomic symptoms during hypoglycemic vs
euglycemic clamps:
Baseline: 3.7 – 0.9 vs 2.5 – 0.3 (P = NS)
6 months: 5.1 – 1.0 vs 1.5 – 0.7) (P < 0.05)
18 months: 5.6 – 1.2 vs 2.2 – 0.6 (P < 0.05)
No statistical significance when comparing
the symptom scores at 6 and 18 months to
baseline.

Epinephrine levels during hypoglycemia
Baseline: 152 – 37 pg/mL
6 months: 204 – 37 pg/mL (P = NS)
18 months: 152 – 36 pg/mL (P = NS)
Norepinephrine levels during hypo-
glycemia

Baseline: 378 – 44 pg/mL
6 months: 317 – 38 pg/mL (P = NS)
18 months: 362 – 60 pg/mL (P = NS)
Endogenous glucose production
(compared to baseline):‡

Baseline: 0.42 – 0.08 mg/kg/min
6 months: 0.54 – 0.07 mg/kg/min
(P = NS)
18 months: 0.84 – 0.15 mg/kg/min
(P < 0.05)

Heinemann et al.
(HypoDE; 2018)135

Glucose ≤70 mg/dL
CGM: 1.6% (0.9–3.7)
Control: 6.4% (3.7–12.0)
Adjusted between-
group differences:
P < 0.0001Glucose
≤54 mg/dL

CGM: 0.3% (0.1–0.9)
Control: 2.5% (1.0–6.1)
Adjusted between-
group differences:
P < 0.0001

Clark scores
Baseline

CGM: 5.0 (4.0–6.0)
Control: 5.0 (4.0–6.0)Follow up

CGM: 3.0 (1.0–4.0)
Control: 3.0 (1.0–5.0)Adjusted between-group
differences: P = 0.7662

NA

Reddy et al. (I-HART;
2018)141

Glucose <70 mg/dL
CGM: 6.2% (3.1–10.2)
FGM: 11.0% (8.2–17.0)
Median change from
baseline: P < 0.01Glu-
cose <50 mg/dL

CGM: 0.9% (0.2–1.8)
FGM: 3.8% (3.0–6.4)
Median change from
baseline: P < 0.003

Gold scores
Baseline:

CGM: 5 (5–6)
FGM: 5 (4–5)Study end (8 weeks):

CGM: 4.5 (3.0–5.0)
FGM: 5.0 (3.5–6.0)Median change from base-
line:

CGM: 0.0 [-1.0 to 0.0] (P = NS)
FGM: 0.0 [-0.8 to 0.0] (P = NS)Differences in
median changes from baseline to study end:
P = 0.23

NA

Data presented in mean – standard deviation or median (interquartile range) or mean/median [95% confidence interval], unless noted otherwise.
AUC, area under the curve; CSII, continuous subcutaneous insulin infusion; FGM, flash glucose monitoring; HypoCOMPaSS, comparison of optimised
MDI versus pumps with or without sensors in severe hypoglycaemia; HypoDE, hypoglycemia in Deutschland; IAH, impaired awareness of hypo-
glycemia; I-HART, impact on hypoglycaemia awareness of real time CGM and intermittent continuous glucose data; IN CONTROL, effects of RT-
CGM on glycemia and QoL in patients with T1DM and IHA; MDI, multiple daily injections; NA, not available; NS, not significant; T1D, type 1 dia-
betes. † Variable definitions for hypoglycemia were used. These trials were performed prior to the current continuous glucose monitoring (CGM)/hy-
poglycemia guidelines. For self-monitoring of blood glucose level (SMBG) groups or run-in phase, time in hypoglycemia were assessed with
blinded CGMs. ‡ Primary outcomes of the trials.
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finding. Recent observational data144–146 show that IAH is still
common and problematic in type 1 diabetes patients, despite
CGM use, and thus IAH might unfortunately remain an
important clinical obstacle in diabetes management for CGM
users.
To definitively determine whether CGMs/diabetes technolo-

gies could improve hypoglycemia awareness, more optimal trial
design that eliminates confounders and provides sufficient
intervention duration is important131. This includes matching
individuals for age, duration of diabetes, HbA1c, hypoglycemia
awareness scores and hypoglycemia cognition145 to reduce some
effects from the individual variabilities. It would also be of
interest whether a treat-to-target approach (e.g., time in hypo-
glycemia targets of <4%147 or even <1%148), with techniques
such as more rigorous strategies to engage patients to CGMs149

or CGM alarm setting adjustments150,151, could improve hypo-
glycemia awareness or epinephrine responses to hypoglycemia.

CONCLUSION
CGM is an effective tool to help reduce hypoglycemia and sev-
ere hypoglycemic episodes in type 1 diabetes patients, including
those with IAH. Whether CGMs could help improve hypo-
glycemia awareness, and how CAN and IAH are interrelated,
remain to be determined or further elucidated.
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