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30 Abbreviations: IAH, impaired awareness of hypoglycemia; T1D, type 1 diabetes; CGM, 

31 continuous glucose monitoring; CAN, cardiovascular autonomic neuropathy; DCCT, 

32 Diabetes Control and Complications Trial; T2D, type 2 diabetes; HbA1c, hemoglobin A1C; 

33 TIN, treatment-induced neuropathy; EGP, endogenous glucose production; HRV, heart 

34 rate variability; EKG, electrocardiogram; SMBG, self-monitoring of blood glucose; MDI, 

35 multiple daily injections; CSII, continuous subcutaneous insulin infusion; FGM, flash 

36 glucose monitoring.

37

38 Abstract

39 Impaired awareness of hypoglycemia (IAH) is a reduction in the ability to recognize low 

40 blood glucose levels that would otherwise prompt an appropriate corrective therapy. 

41 Identified in about 25% of patients with type 1 diabetes (T1D), IAH has complex 

42 pathophysiology and may lead to serious and potentially lethal consequences in patients 

43 with diabetes, particularly in those with more advanced disease and comorbidities. 

44 Continuous glucose monitoring (CGM) systems can provide real-time glucose information 

45 and generate timely alerts on rapidly falling or low blood glucose levels. Given their 

46 improvements in accuracy, affordability, and integration with insulin pump technology, 

47 CGMs are emerging as critical tools to help prevent serious hypoglycemia and mitigate its 

48 consequences in patients with diabetes. This review discusses the current knowledge on 

49 IAH and effective diagnostic methods, the relationship between hypoglycemia and 

50 cardiovascular autonomic neuropathy (CAN), a practical approach to evaluate CAN for 

51 clinicians, and recent evidence from clinical trials assessing the effects of the use of CGM 

52 technologies in patients with T1D with IAH.

53

54 Keywords: Hypoglycemia, impaired awareness of hypoglycemia, cardiovascular 

55 autonomic neuropathy, continuous glucose monitoring, type 1 diabetes

56

57 Introduction

58 For almost 100 years, insulin has been the fundamental therapy for type 1 diabetes 

59 (T1D)1. By suppressing ketogenesis, insulin mitigates the risk for the development of 

60 diabetic ketoacidosis, a life-threatening acute complication of diabetes. The Diabetes 
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61 Control and Complications Trial (DCCT)2 and Epidemiology of Diabetes Interventions and 

62 Complications study3 further established the use of intensive insulin therapy to prevent or 

63 delay the development of chronic microvascular and macrovascular complications. Based 

64 on recent updates, the impacts of this relatively short-term glucose control appear to 

65 confer durable metabolic benefits for at least 30 years4-8. However, intensive insulin 

66 therapy comes at a price. Intensive insulin treatment almost invariably increases the 

67 incidence of severe hypoglycemia9, 10, which is associated with altered mental status, 

68 seizures, cardiac arrhythmias and even death11-14. 

69 Hypoglycemia has traditionally been defined by blood glucose levels of <70 mg/dL 

70 (recently termed level 1 hypoglycemia15, 16), as these levels trigger the normal physiology 

71 of counterregulatory responses to hypoglycemia17. Recent revisions of hypoglycemia 

72 definitions also include glucose levels <54 mg/dL (i.e., level 2 hypoglycemia16) for its 

73 associations with major comorbidities such as increased mortality, cognitive dysfunction, 

74 and the development of impaired awareness of hypoglycemia (IAH)18, a condition in which 

75 patients have diminished or lost ability to perceive the onset of hypoglycemia19. The DCCT 

76 study defined severe hypoglycemia as hypoglycemic episodes requiring assistance of 

77 another person for recovery9. This definition was subsequently adopted as the universal 

78 definition of severe (or level 3) hypoglycemia11, 15, 16.

79 Iatrogenic hypoglycemia is not restricted to T1D patients. Both sulfonylurea usage and 

80 insulin therapy in patients with type 2 diabetes (T2D) result in increased risks for 

81 hypoglycemia20, 21. Interestingly, there has been intensive debate as to whether severe 

82 hypoglycemic events in T2D is merely a marker of, or indeed causal, with regard to the 

83 well-documented increased risk of cardiovascular events and mortality following 

84 hypoglycemia22-25.

85 Continuous glucose monitoring systems (CGMs, or real-time CGMs) are devices that 

86 measure subcutaneous interstitial glucose to estimate blood glucose levels, and report the 

87 glucose levels and trends to patients in real-time26. CGMs can also generate audible or 

88 vibrate alarms for low/high glucose levels, based on the settings customized by patients or 

89 healthcare providers, to alert the patients to hypo/hyperglycemic events. Based on their 

90 capability, 1) to improve hemoglobin A1C (HbA1c) and average glucose levels, 2) reduce 

91 the risk for serious hypoglycemic complications27-29, and 3) reduce the burden of repetitive 

92 fingerstick glucose monitoring30; CGMs are now considered the standard of care for T1D 
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93 patients31-33. CGM use has also been further established with the improvements in 

94 accuracy34, the feasibility in patients with various ages35, 36 and diabetes duration37, and the 

95 standardization of metrics for quantifying hypoglycemia18, 38. The interest and availability of 

96 CGMs that are integrated to sensor-augmented insulin pumps is also rapidly expanding39. 

97 For patients with T2D, data demonstrating the beneficial roles of CGM technology for 

98 glucose control40, weight control and lifestyle adherence41 are also emerging. 

99 The current review gives a brief overview of the current knowledge of the IAH and its 

100 assessment methods, the relationships between hypoglycemia and cardiovascular 

101 autonomic neuropathy (CAN), a practical approach on CAN evaluations in clinical care, 

102 and the recent clinical trial evidence on the role of CGMs use in the IAH population. 

103

104 Impaired Awareness of Hypoglycemia as a Barrier for Glucose Control

105 Patients with IAH develop unrecognized hypoglycemic events and thereby can often miss 

106 the opportunity to timely treat their hypoglycemia19. Commonly co-existing with IAH is the 

107 attenuation or loss of sympathoadrenal mechanisms, that limits the endogenous 

108 glucoregulatory recovery from hypoglycemia (specifically, catecholaminergic stimulation of 

109 hepatic glucose output and restraint of muscle glucose uptake)42. Thus for people with 

110 T1D, who have already lost the ability to decrease endogenous insulin secretion and 

111 increase glucagon production as counterregulatory mechanisms, IAH and impaired 

112 adrenomedullary responses result in a further significant loss of defense mechanisms to 

113 avoid severe hypoglycemia19. (Figure 1) Indeed, IAH is associated with about six-fold 

114 increased risk of developing severe hypoglycemia43, 44. Clinically, due to the risk of 

115 developing dangerously low glucose levels, patients and healthcare providers alike are 

116 often reluctant to practise/advocate tight glucose control to achieve proposed glycemic 

117 targets45.

118 Approximately 25-40% of T1D patients were found to have IAH, with a stable prevalence 

119 over the last two decades43, 44, 46, 47. This value is most certainly an underestimation, as 

120 even patients who report having intact hypoglycemia awareness are indeed unaware of 

121 CGM confirmed hypoglycemia48. In the T2D population, the IAH prevalence ranges from 

122 about 6-17% in those using insulin injection programs, and the IAH status is associated 

123 with 9-17 folds increased risk for severe hypoglycemia49-51.
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124 A major cause of IAH and impaired adrenomedullary responses to hypoglycemia is 

125 recurrent episodes of hypoglycemia, which (as part of a vicious cycle) perpetuate these 

126 conditions52-54. There is also evidence that IAH can be induced by sleep55, 56, psychological 

127 stress57 and alcohol58,  yet there are still controversies as to whether exercise59, 60 and 

128 beta-adrenergic blockers61, 62 have detrimental or beneficial effects on hypoglycemia 

129 awareness status.

130 The mechanisms for the development of IAH remain to be elucidated63. Earlier studies 

131 evaluated the relationships between this condition and adrenal medulla destruction64, 

132 cortisol (as a systemic mediator)65 or CAN66. Some studies have focused on the glucose-

133 sensing in the brain and how it is altered with antecedent hypoglycemia. Consistent with 

134 this CNS impaired glucose sensing, recent studies have implicated the use of alternative 

135 fuels (e.g., lactate67 or monocarboxylic acids68) and changes in the neurotransmitter 

136 signaling in the brain (e.g., GABAergic69, glutaminergic and opioidergic70 signaling) as 

137 likely causes for IAH and the impaired sympathoadrenal response to hypoglycemia.

138 Since these impaired responses are purported to be caused by recurrent antecedent 

139 hypoglycemia, it is logical that a reduction in the incidence of hypoglycemia would be 

140 expected to improve hypoglycemia awareness and adrenomedullary responses. In support 

141 of this notion, studies have shown that strict hypoglycemia avoidance with rigorous 

142 monitoring and behavioral modifications can help improve hypoglycemia awareness in as 

143 short as two weeks71-74. Additionally, blood glucose awareness training75, education to 

144 optimize insulin dosing76, and hypoglycemia avoidance motivational program77 have also 

145 been shown to improve hypoglycemia awareness. 

146

147 Hypoglycemia and Cardiovascular Autonomic Neuropathy

148 Diabetic CAN, defined as the impairment of autonomic control of cardiovascular system in 

149 the setting of diabetes after exclusion of other causes78, is a major diabetic comorbidity 

150 that has been associated with a significant increase in mortality in both patients with T1D79-

151 81 and T2D82-84. Despite the association between CAN and increased mortality, currently 

152 there is no effective therapy to prevent or reverse this condition beyond glycemic control6, 

153 85, 86 and symptomatic management87. The role of autonomic dysfunction as a risk factor 

154 for IAH had been studied quite extensively. Particularly since a hallmark of IAH is the loss 
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155 of sympathetic symptoms (e.g., palpitation, tremor and anxiety) and the epinephrine 

156 responses to hypoglycemia, it was postulated that autonomic dysfunction including CAN 

157 may directly contribute to the development of IAH88. However, more recent evidence 

158 demonstrated that in some patients IAH can be induced by a single episode of 

159 hypoglycemia53. This suggests that although autonomic dysfunction and CAN may further 

160 impact IAH risk and consequences89, 90, it is unlikely to be the main mechanism involving 

161 its development66, 91, 92. Furthermore, it appears that self-reported IAH does not predict 

162 CAN93. Yet, the associations between hypoglycemia and CAN in particular are quite 

163 complex and remain to be further elucidated. There is ample evidence that CAN is 

164 independently associated with hypoglycemia in patients with diabetes25, 94, 95. Several 

165 studies have also shown that hypoglycemia can promote reductions in heart rate variability 

166 and the baroreflex sensitivity in both patients with diabetes96, 97 and healthy controls98 that 

167 may last for many hours after euglycemia is restored97. In addition, our group has reported 

168 that increased glucose variability, particularly with a predominance of hypoglycemic stress 

169 measures, was associated with blunting in measures of heart rate variability in T1D 

170 patients94. These data lend support to a potential role of hypoglycemia in the development 

171 of CAN and the loss of the protective cardiovagal mechanisms, that may directly impact 

172 cardiac electrical activities and thus eventually increase the risk of cardiac arrhythmias in 

173 these patients94, 97, 99-101. Experimental evidence reported that hypoglycemia may lead to 

174 peripheral nerve axonal degeneration possibly via alterations in the glucose uptake, 

175 depletion of energy substrates, changes in Schwann cell metabolism affecting particularly 

176 the large myelinated fibers102, 103, although the exact mechanisms and whether these 

177 hypoglycemia-associated changes are functional104, 105, reversible106 or permanent is still 

178 unclear107, 108. An additional example of the complex interactions between hypoglycemia, 

179 CAN and neuropathy is treatment-induced neuropathy (TIN). TIN is a condition described 

180 in patients who have experienced a rapid decline in the blood glucose levels following the 

181 use of insulin, oral hypoglycemic medications, or even diet only to control hyperglycemia, 

182 and often manifests as a painful sensory and autonomic neuropathy often with a dramatic 

183 onset and course109, 110.

184

185 Assessment of Impaired Awareness of Hypoglycemia and Impaired 

186 Adrenomedullary Responses to Hypoglycemia
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187 The hyperinsulinemic-hypoglycemic clamp technique is the gold standard of assessing 

188 hypoglycemia awareness and hormonal responses to hypoglycemia17, 111. This validated 

189 tool assesses the hypoglycemia awareness status by collecting hypoglycemic symptoms 

190 during the clamp procedure at specified intervals to determine at what level of glucose 

191 hypoglycemic symptoms are experienced112, 113. Information is captured on several 

192 domains that include: difficulty thinking/confused, warm, shaky/tremulous, nausea, 

193 tired/drowsy, hungry, weak, sweaty, headache, heart-pounding, difficulty speaking, 

194 nervous/anxious, dizzy, faint, tingling and blurred vision112. In general it is accepted that 

195 subjects who do not develop significant hypoglycemic symptoms around glucose levels of 

196 50-54 mg/dL are considered to have IAH114. Additional methods include the assessment of 

197 epinephrine levels and other counterregulatory hormones (norepinephrine, glucagon, 

198 cortisol, growth hormone, pancreatic polypeptide) during the various stages of 

199 hypoglycemia17. Techniques in measuring the endogenous glucose production (EGP) for 

200 the assessment of hepatic glucose output can also be incorporated into hypoglycemic 

201 clamps115. Both single-step116 (from baseline to one single hypoglycemia glucose level 

202 target) or step-wise117 (from baseline to sequentially lower hypoglycemic level targets) 

203 clamps are commonly used. Some studies also conduct additional hyperinsulinemic-

204 euglycemic clamps117, in randomized orders with the hypoglycemic clamps, to blind the 

205 participants, so that the participants’ hypoglycemic symptoms and hormonal measures 

206 would not be confounded by the knowledge of an anticipated hypoglycemic event or 

207 insulin administration. While the hypoglycemic clamp is a well-established method to 

208 objectively measure the status of counterregulatory mechanisms, the pitfalls of clamp 

209 studies are the invasiveness, expense, and the significant time commitment from the 

210 patients, and thus these studies are often restricted to a small patient cohort. The inter-

211 laboratory variabilities in epinephrine assays also prohibit the comparison among 

212 studies118. (Table 1)

213 In the outpatient setting, methods to assess hypoglycemia awareness based on 

214 questionnaires (i.e., “self-reported hypoglycemia awareness”) have also been developed 

215 and widely utilized, particularly for studies requiring larger sample sizes. The Gold 

216 questionnaire43 contains a single question (besides two questionnaire-validation questions) 

217 asking individuals to report their experience in detecting hypoglycemic events with scores 

218 ranging from 1 (always aware) to 7 (never aware) on a Likert-type scale. In contrast, the 
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219 Clarke questionnaire44 is comprised of eight questions evaluating participants’ prior 

220 hypoglycemia experiences, such as the history of severe hypoglycemia developments and 

221 the glucose levels at which patients start to detect hypoglycemic symptoms, and generates 

222 a score (0 to 7) based on the responses. Scores ≥4 are indicative of IAH and ≤2 indicates 

223 normal awareness for both the Gold and Clark questionnaires. The Pedersen-Bjergaard 

224 questionnaire46 asks individuals to report whether they recognize symptoms during 

225 hypoglycemic events and, based on the answer, the hypoglycemia awareness status is 

226 categorized as “normal”, “impaired awareness”, “unawareness” and “undetermined”. All of 

227 these questionnaires have been previously validated based on their associations with 

228 severe hypoglycemia. The Clarke questionnaire has also been validated with 

229 hypoglycemic clamps114. HypoA-Q119 is a 33-item questionnaire assessing hypoglycemia 

230 awareness when awake/sleep, and the hypoglycemia frequency, severity and impacts on 

231 patients. This questionnaire was validated with strong correlations with the Gold and 

232 Clarke questionnaires, together with weak correlations with diabetes-related distress and 

233 HbA1c. Other than wide usability with their non-invasiveness and no/minimal cost, self-

234 reported hypoglycemia awareness assessments may also benefit from the direct reporting 

235 of patients’ experiences in the real life120, rather than in highly controlled inpatients settings 

236 of hypoglycemic clamps. On the other hand, the subjectivity of the experience (e.g., 

237 possibly influenced more by the recent events) or lack of a controlled environment may 

238 generate biases for the awareness reporting.

239

240 Diagnosis of Diabetic Cardiovascular Autonomic Neuropathy in Clinical Care

241 The American Diabetes Association recommends that screening for CAN should be done 

242 in patients with evidence of other chronic complications such as nephropathy, peripheral 

243 neuropathy, retinopathy and cardiovascular disease, as well as in patients with IAH121, with 

244 high glucose variability, prior to insulin dose adjustments and/or perioperatively79. The 

245 symptoms of CAN are less prevalent in contemporary cohorts of patients with diabetes, 

246 and most patients with CAN may be completely asymptomatic101, 121. Weakness, 

247 lightheadedness, palpitations, syncope with standing, or exercise intolerance are usually 

248 associated with advanced CAN6, 85, 122. 
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249 Clinical signs such as resting tachycardia (>100 bpm) and orthostatic hypotension (a fall in 

250 systolic or diastolic blood pressure by >20 mmHg or >10 mmHg, respectively, upon 

251 standing without an appropriate increase in heart rate) are both easy to be documented in 

252 office78, 123, but in general present in later stages of CAN121, 124. A decrease in heart rate 

253 variability (HRV) is the earliest sign of CAN78, 125, 126 and could be assessed in office by 

254 obtaining an electrocardiogram (EKG) during 1-2 minutes of deep breathing and 

255 calculating indices of HRV127, 128. However, given that both the symptoms and signs 

256 described are non-specific, a careful differential diagnosis is needed to exclude other 

257 common medical causes (e.g. hyperthyroidism, anemia, dehydration, adrenal insufficiency, 

258 arrhythmic disorders ), prescription medications effects (e.g., antihypertensive agents, 

259 antimuscarinic agents, diuretics), over-the-counter supplements and recreational 

260 agents121.

261 The cardiovascular reflex tests that assess changes in heart rate and blood pressure in 

262 response to several simple physiological maneuvers, such as deep breathing, standing or 

263 Valsalva, remain the gold standard diagnostic for autonomic testing in both clinical care 

264 and research settings, although these are more expensive and add burden for both 

265 clinicians and patients121.

266

267 Clinical Trials Testing the Use of Continuous Glucose Monitoring Systems in Type 1 

268 Diabetes Patients with Impaired Awareness of Hypoglycemia

269 Early CGM clinical trials primarily focused on the CGMs’ impact on glucose control, 

270 hypoglycemia reduction and quality of life129. Additional questions were raised regarding 

271 the potential benefits of the CGM technology in improving the hypoglycemia awareness 

272 and epinephrine responses in patients with IAH. Below we summarize some of the most 

273 relevant trials that have addressed these questions.

274 In 2011, Ly and colleagues130 conducted a small group randomized clinical trial study to 

275 evaluate whether the use of CGMs vs. self-monitoring of blood glucose (SMBG) may 

276 improve epinephrine responses during hypoglycemic clamps in adolescents with T1D and 

277 IAH. (Table 2) The target glucose levels were 108-180 mg/dL in both groups, and the 

278 CGM group had the hypoglycemia alarm thresholds set at 108 mg/dL. Although after four 

279 weeks the CGM group had greater epinephrine responses during the hypoglycemic 
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280 clamps (Table 3), suggesting a potential benefit of CGMs in improving hypoglycemia 

281 awareness, these findings were limited by the small sample size and to a group of 

282 relatively short diabetes duration.

283 Subsequently, the HypoCOMPaSS group131 conducted a 2 x 2 factorial (SMBG vs. CGM; 

284 multiple daily injections, MDI, vs. continuous subcutaneous insulin infusion, CSII) 

285 randomized trial to assess whether hypoglycemia avoidance with intensive education 

286 could improve hypoglycemia awareness regardless the glucose monitoring and insulin 

287 delivery models. At the study end, the incidence of hypoglycemia was reduced in all study 

288 arms, and the degree of hypoglycemia awareness improvements was similar between the 

289 CGM and SMBG groups, including the hypoglycemia symptoms scores during the 

290 hypoglycemic clamps in a sub-cohort study132. However, the low CGM usage time (<50%) 

291 in about 40% of the participants could have significantly confounded the results. 

292 The IN CONTROL study group133 evaluated glucose control (CGM vs. SMBG) in IAH 

293 patients with a crossover trial. The CGM phase was related to 15% more time-in-range 

294 (72-180 mg/dL) and 41% and 55% reduction of the time in hypoglycemia and the number 

295 of patients who developed severe hypoglycemia, respectively. The Gold scores at the end 

296 of the CGM phase were lower and tended to be lower compared to the end of the SMBG 

297 phase and to the baseline, respectively. Similar findings, however, were not observed in 

298 the Clarke scores. While the crossover design allows more “individualized” comparisons to 

299 evaluate CGMs’ impact, it was unclear if a 16-week CGM intervention was long enough to 

300 significantly improve self-reported hypoglycemia awareness, and whether the 12-week 

301 washout period could sufficiently “reset” the hypoglycemia awareness to the baseline.

302 In 2018, Rickels and colleagues134 conducted a small cohort, 18-month pre-post trial 

303 evaluating the changes in the EGP and epinephrine responses with CGM interventions. In 

304 this IAH population with severely problematic hypoglycemia, the incidence of severe 

305 hypoglycemia decreased nearly 60% during the intervention. The hypoglycemic clamps 

306 also revealed a doubled EGP at 18 months, with no statistically significant improvements 

307 in epinephrine responses. Improvements in autonomic symptom scores and self-reported 

308 hypoglycemia awareness were also observed.

309 HypoDE135 is the largest randomized trial (CGM vs. SMBG) to-date testing CGMs’ effects 

310 in patients with IAH or severe hypoglycemia history. The CGM group demonstrated 72% 
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311 less hypoglycemic episodes with glucose ≤54 mg/dL, along with 64% less severe 

312 hypoglycemic episodes. The entire cohort also had a 40% improvement in hypoglycemia 

313 awareness scores, although with no difference was found between the CGM and SMBG 

314 groups. 

315 Flash glucose monitoring systems (FGMs; e.g., FreeStyle LibreTM), alike CGMs, can 

316 provide glucose levels and trends, but without the feature of automated low/high glucose 

317 alarms136. FMGs have been documented to reduce the time in hypoglycemia137 and severe 

318 hypoglycemia138 for T1D patients, and reduce hypoglycemia139 and improve HbA1c140 in 

319 the T2D population. Reddy and colleagues compared the efficacy of CGMs vs. FGMs in 

320 reducing hypoglycemia in T1D patients with IAH or severe hypoglycemia history141. The 

321 CGM group demonstrated greater hypoglycemia reduction, particularly at nights, attributed 

322 to the low glucose alarm systems. However, the improvements in hypoglycemia 

323 awareness in these two groups were statistically indistinguishable. Potential confounders 

324 include FGMs’ lower glucose accuracy in the low glucose range136, 142, 143 that might have 

325 falsely reported more hypoglycemia.

326 While CGMs have clearly demonstrated the benefit of hypoglycemia reduction without 

327 compromising the overall glycemic control, the extent to which CGMs can help improve 

328 hypoglycemia awareness and epinephrine responses remains unclear. Although 

329 meticulous avoidance of hypoglycemia has been shown to improve hypoglycemia 

330 awareness within 2-16 weeks71-74, none of the above studies demonstrated an absolute 

331 avoidance of hypoglycemia, which could explain this finding. Recent observational data144-

332 146 indicate that IAH is still common and problematic in T1D patients despite CGM use, and 

333 thus IAH may unfortunately remain an important clinical obstacle in diabetes management 

334 in CGM users.

335 To definitively determine whether CGMs/diabetes technologies could improve 

336 hypoglycemia awareness, more optimal trial design that eliminates confounders and 

337 provides sufficient intervention duration is important131. This includes matching subjects for 

338 age, duration of diabetes, HbA1c, hypoglycemia awareness scores and hypoglycemia 

339 cognition145 to reduce some effects from the individual variabilities. It also would be of 

340 interest whether a treat-to-target approach (e.g., time in hypoglycemia targets of <4%147 or 

341 even <1%148), with techniques such as more rigorous strategies to engage patients to 
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342 CGMs149 or CGM alarm setting adjustments150, 151, could improve hypoglycemia awareness 

343 or epinephrine responses to hypoglycemia. 

344

345 Conclusion

346 CGM is an effective tool to help reduce hypoglycemia and severe hypoglycemic episodes 

347 in T1D patients, including those with IAH. Whether CGMs could help improve 

348 hypoglycemia awareness, and how CAN and IAH are interrelated, remain to be 

349 determined or further elucidated. 
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Table 1. Current Measures for Assessing Hypoglycemia Awareness 

 Measurements Advantages Disadvantages 

Outpatient Questionnaires:  

 Gold43 

 Clark44  

 Pedersen-Bjergaard46 

 HypoA-Q119 

 Non-invasive 

 No/minimal cost 

 Reporting of experience from 

real-life hypoglycemic episodes 

 Amenable to use in large patient 

cohorts 

 Feasible for clinical use 

 Subjectivity bias 

 Recall bias 

 Uncontrolled environment 

 Lack of sensitivity to 

detect/quantify changes in 

awareness with short-term 

interventions 

Inpatient Edinburgh Hypoglycemia 

Scores112 determined during 

the hyperinsulinemic 

hypoglycemic clamp. 

 Controlled environment, 

including reproducible 

hypoglycemic levels 

 Invasiveness 

 Expense 

 Patient time commitment 

 Small patient cohorts 

 

 

Table 2. Clinical Trials Evaluating CGM Use in T1D Patients with IAH 

Authors (Year) Main Objective Trial Design &  

Targeted 

Population 

Primary Outcome(s) Baseline Population 

Characteristics 

CGM Models 

(active usage 

time) 

Ly, et al. (2011)130 Assess if the use of 

CGMs with preset hypo 

alarms (at glucose 108 

mg/dL) improves 

counterregulatory 

response to 

hypoglycemia. 

Randomized, 

controlled. 

 

Two arms (CGM vs. 

SMBG). 

Duration: 4 weeks. 

 

Epinephrine response 

to hypoglycemia 

measured during 

hypoglycemia clamp 

study. 

CGM n=6; SMBG n=5 

Female: Not reported 

Age:  

CGM:13.7±0.7 yrs 

Standard: 15±0.8 yrs 

DoD: 

CGM: 5.2±1.4 yrs 

Medtronic 

Minimed 

paradigm real-

time system (not 

reported) A
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th
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Adolescents (aged 

12-18 years old) with 

IAH defined per 

modified Clarke 

(N=11). 

 

Standard: 6.5±1.2 yrs 

HbA1c: 

CGM: 7.7±0.2% 

Standard: 7.9±0.3% 

MDI: Not reported 

Little, et al. 

(HypoCOMPaSS; 

2014)131;  

Leelarathna, et al. 

(HypoCOMPaSS 

clamp sub-cohort 

study; 2013)132 

Determine if rigorous 

hypoglycemia prevention 

improves hypoglycemia 

awareness and prevents 

SH development in 

patients with IAH, 

independent of insulin 

delivery and glucose 

monitoring modalities. 

Randomized, 

controlled. 

 

2 x 2 factorial (CGM 

vs. SMBG, CSII vs. 

MDI).  

Duration: 24 weeks. 

 

Patients with IAH 

defined per Gold. 

(N=96) 

 

 

 

 

Difference in 

hypoglycemia 

awareness (assessed 

with Gold) between the 

CGM and SMBG 

groups, and between 

the MDI and CSII 

groups. 

 

Clamp sub-cohort 

study: the glucose 

concentration at which 

participants felt 

hypoglycemic during 

progressive 

hypoglycemia. 

83 patients completed study; 

CGM n=42 and SMBG n=41 

Female: 64% 

Age: 48.6±12.2 yrs 

DoD: 28.9±12.3 yrs 

HbA1c: 8.2±1.2% 

MDI: 97% 

 

 

Clamp Sub-cohort 

N=18 (CGM n=11, SMBG n=7) 

Female: 66.7% 

Age: 50±9 yrs 

DoD: 35±10 yrs 

HbA1c: 8.1±1% 

MDI: 50% 

Medtronic 

(median 57%) 

 

van Beers, et al. 

(IN CONTROL; 

2016)133 

Assess whether CGM 

use improves glycemia 

control and prevents 

severe hypoglycemia in 

patients with IAH. 

Randomized, 

crossover. 

 

Two arms (CGM vs. 

SMBG). 

Mean difference in the 

percentages of time in 

normoglycemia. 

 

CGM n=26, SMBG n=26 

Female: 46% 

Age: 48.6±11.6 yrs 

DoD: 30.5±40.8 yrs 

HbA1c: 7.5±0.8% 

MDI: 56% 

Medtronic Enlite 

glucose sensor 

(median 89.4; 

IQR 80.8-95.5);  
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Duration: 16-week 

intervention with 12-

week washout. 

 

Patients with IAH 

defined per Gold, 

either on CSII or 

MDI. (N=52) 

Rickels, et al. 

(2018)134 

Assess if hypoglycemia 

avoidance with CGMs 

improves glucose 

counterregulation in 

patients with long-

standing diabetes and 

IAH. 

Single arm (CGM). 

 

Duration: 18 months. 

 

Patients with IAH 

defined per Clarke 

and other criteria†. 

(N=11) 

Difference in the 

endogenous glucose 

production response 

during stepped-

hypoglycemic and 

euglycemic clamps. 

Female: 55% 

Age: 44±4 yrs 

DoD: 31±4 yrs 

HbA1c: 7.2±0.2% 

MDI: 27% 

Dexcom seven 

plus/G4 or 

Medtronic Sof-

Sensor (n= 7/4) 

(median 100%) 

 

Heinemann, et al. 

(HypoDE; 

2018)135 

Ascertain whether the 

incidence and severity of 

hypoglycemia can be 

reduced through CGM 

use in patients on MDI 

and with high risk for 

developing SH. 

Randomized, 

controlled. 

 

Two arms (CGM vs. 

SMBG).  

Duration: 22-week 

intervention and 4-

week follow-up. 

 

Patients on MDI with 

SH within the last 

The mean difference in 

the number of 

hypoglycemic events 

(defined as CGM 

glucose ≤54mg/dL for 

≥20 minutes) between 

baseline and the follow-

up phase. 

 

141 patients in final analysis; 

CGM n=75, SMBG n=66 

Female:  

CGM: 47% 

Control: 34% 

Age: 

CGM: 45.8±12.0 yrs 

Control: 47.3±11.7 yrs 

DoD: 

CGM: 21.6±13.9 yrs 

Control: 20.9±14.0 yrs 

HbA1c:  

Dexcom G5 

(mean 90.7%) 
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year or IAH defined 

per Clarke. (N=149) 

 

 

 

 

CGM: 7.6±1.0% 

Control: 7.3±1.0% 

MDI: 100% 

Reddy et al. ( 

I-HART; 2018)141 

Assess the impacts of 

CGMs and FGMs on 

hypoglycemia reduction 

in patients on MDI with 

high risk for developing 

SH. 

Randomized. 

 

Two arms (CGM vs. 

FGM). 

Duration: 8 weeks. 

 

Patients on MDI with 

SH within the last 

year or IAH defined 

per Gold. (N=40) 

The median difference 

between the change of 

time in hypoglycemia 

(<59 mg/dL) from 

baseline to endpoint. 

 

CGM n=20, SMBG n=20 

Female: 40% 

Age: 49.5 yrs (37.5-63.5) 

DoD: 30.0 yrs (21.0-36.5) 

HbA1c: 7.3% (6.5-7.8) 

MDI: Not reported‡ 

Dexcom G5 (not 

reported) 

 

 

Data presented in mean±standard deviation, mean/median [95% confidence interval] or median (IQR). 

†Severely problematic hypoglycemia (HYPO score ≥1047), marked glycemic lability (glycemic lability index ≥433 mmol/L2/h/week, or a composite of HYPO 

score ≥423 and glycemic liability index ≥329 mmol/L2/h/week, and either at least one episode of severe hypoglycemia in the past 12 months or presence of 

>5% of time spent at <60 mg/dL by 72-hour blinded CGM.  

‡The study aimed to assess the CGM effects on MDI-using population; actual percentage not reported.  

CGM, continuous glucose monitoring; T1D, type 1 diabetes; IAH, impaired awareness of hypoglycemia; MDI, multiple daily injection; SMBG, self-monitoring 

of blood glucose; DoD, duration of diabetes ; HbA1c, hemoglobin A1C; CSII, continuous subcutaneous insulin infusion; AUC, area under the curve; IQR, 

interquartile range; SH, severe hypoglycemia. 
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Table 3. Reported Time in Hypoglycemia, Hypoglycemia Awareness and Autonomic Response Outcomes in Clinical Trials 

Evaluating CGM Use in T1D Patients with IAH 

Author Time in Hypoglycemia at Study 

End† (%)  

Hypoglycemia Awareness 

Outcomes 

Endogenous Glucoregulatory Response Outcomes 

Ly, et al. (2011)130 N/A N/A Changes in epinephrine levels during hypoglycemic 

clamps compared to euglycemic clamps (%) 

Baseline:  

CGM: 214±72% 

Standard: 288±151% (P=0.688) 

Study end (4 weeks):  

CGM: 604±234% 

Standard: 114±83% (P=0.048)‡ 

 

Changes in epinephrine levels during hypoglycemic 

clamps at baseline vs. study end: 

CGM: P=0.031 

Standard: P=0.375 

Little, et al. 

(HypoCOMPaSS; 

2014)131;  

Leelarathna, et al. 

(HypoCOMPaSS 

clamp sub-cohort 

study; 2013)132 

Glucose <72 mg/dL 

CGM: 6.3±9.1% 

SMBG: 5.2±4.2% (P=0.47) 

 

Glucose ≤54 mg/dL 

CGM: 2.1±5.1% 

SMBG: 1.3±2.1% (P=0.36) 

Gold scores  

Baseline: 5.1±1.1 

Study end: 4.1±1.4 (P<0.001)‡ 

 

Clarke scores  

Baseline: 4.1±1.6 

Study end: 3.2±1.7 (P<0.001) 

Clamp Study Sub-cohort –  

AUC of incremental metanephrine levels  

Baseline: 2,412 (-3,026 to 7,279) 

Study end: 5,180 (-771 to 11,513) (P=0.02) 

 

Glucose thresholds for metanephrine response 

Baseline: 43 (41-45) mg/dL 
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Clamp Study Sub-cohort –  

AUC of the % of time spent with 

glucose <54 mg/dL 

(mean±standard error):  

CGM: 658 ± 223 

SMBG: 797±193 (P=0.64) 

 

 

HypoA-Q scores  

Baseline: 13.4±3.4 

Study end: 9.1±4.2 (P<0.001) 

 

No differences in hypoglycemia 

awareness scores between the 

CGM vs. SMBG and CSII vs. MDI 

models. 

 

 

Clamp Study Sub-cohort 

Plasma glucose level of first felt 

hypoglycemia  

Baseline: 47±2 mg/dL 

Study end: 56±4 mg/dL (P=0.02)‡ 

 

Symptom score AUC  

Baseline: 500 (364-685) 

Study end: 650 (365-1,285)  

(P=0.02) 

 

No differences in the above 

measures between CGM vs. 

SMBG and CSII vs. MDI models. 

Study end: 49 (41-58) mg/dL (P=0.03) 

 

No differences in the above measures between the 

CGM vs. SMBG and CSII vs. MDI models. 

van Beers, et al. 

(IN CONTROL; 

2016)133 

Glucose ≤70 mg/dL 

CGM: 6.8% [5.2-8.3] 

Gold scores  

End of CGM phase: 4.6 [4.3-5.0] 
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SMBG: 11.4% [9.9-13.0] 

(P<0.0001) 

End of SMBG phase: 5.0 [4.6-5.4] 

(P=0.035) 

 

Change in Gold scores from 

baseline  

End of CGM phase: -0.5 [-0.8 -     

-0.1] 

End of SMBG phase: -0.1 [-0.4-

0.2] (P=0.076) 

 

Clarke scores  

End of CGM phase: 4.4 [3.9-4.8] 

End of SMBG phase: 4.4 [3.9-4.8] 

(P=0.953) 

 

Change in Clarke scores from 

baseline  

End of CGM phase: -0.1 [-0.5-0.3] 

End of SMBG phase: -0.4 [-0.8-

0.0] (P=0.216) 

Rickels, et al. 

(2018)134 

Glucose <60 mg/dL 

Run-in: 6.5±1.6% 

Study end (18-months): 4.0±0.7% 

(P=NS) 

 

Clark scores  

Baseline: 6 (6-7) 

6 months: 4 (4-5) 

12 months: 3 (2-5) 

18 months: 3 (2-5) 

(P<0.01) 

 

Clamp Study 

Epinephrine levels during hypoglycemia  

Baseline: 152±37 pg/mL 

6 months: 204±37 pg/mL (P=NS) 

18 months: 152±36 pg/mL (P=NS) 

 

Norepinephrine levels during hypoglycemia 

Baseline: 378±44 pg/mL 

6 months: 317±38 pg/mL (P=NS) 
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Autonomic symptoms during 

hypoglycemic vs. euglycemic 

clamps: 

Baseline: 3.7±0.9 vs. 2.5±0.3 (P= 

NS) 

6 months: 5.1±1.0 vs. 1.5 ±0.7) 

(P<0.05) 

18 months: 5.6±1.2 vs. 2.2±0.6 

(P<0.05) 

 

No statistical significance when 

comparing the symptom scores at 

6 and 18 months to baseline. 

18 months: 362±60 pg/mL (P=NS) 

 

Endogenous glucose production (compared to 

baseline):‡ 

Baseline: 0.42±0.08 mg/kg/min 

6 months: 0.54±0.07 mg/kg/min (P=NS) 

18 months: 0.84±0.15 mg/kg/min (P<0.05) 

 

Heinemann, et al. 

(HypoDE; 2018)135 

Glucose ≤70 mg/dL 

CGM: 1.6% (0.9-3.7) 

Control: 6.4% (3.7-12.0) 

Adjusted between-group 

differences: P<0.0001 

 

Glucose ≤54 mg/dL 

CGM: 0.3% (0.1-0.9) 

Control: 2.5% (1.0-6.1) 

Adjusted between-group 

differences: P<0.0001 

Clark scores 

Baseline 

CGM: 5.0 (4.0-6.0) 

Control: 5.0 (4.0-6.0) 

Follow-up 

CGM: 3.0 (1.0-4.0) 

Control: 3.0 (1.0-5.0) 

Adjusted between group 

differences: P=0.7662 

N/A 

Reddy et al.  

(I-HART; 2018)141 

Glucose <70 mg/dL 

CGM: 6.2% (3.1-10.2) 

FGM: 11.0% (8.2-17.0) 

Gold scores 

Baseline: 

CGM: 5 (5-6) 

FGM: 5 (4-5) 

N/A 
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Median change from baseline: 

P<0.01 

 

Glucose <50 mg/dL 

CGM: 0.9% (0.2-1.8) 

FGM: 3.8% (3.0-6.4) 

Median change from baseline: 

P<0.003 

Study end (8 weeks): 

CGM: 4.5 (3.0-5.0) 

FGM: 5.0 (3.5-6.0) 

 

Median change from baseline:  

CGM: 0.0 [-1.0-0.0] (P=NS) 

FGM: 0.0 [-0.8-0.0] (P=NS) 

Differences in median changes 

from baseline to study end: P=0.23 

Data presented in mean±standard deviation or median (interquartile range), unless noted otherwise. 

† Variable definitions for hypoglycemia were used. These trials were performed prior to the current CGM/hypoglycemia guidelines. For SMBG groups or run-

in phase, time in hypoglycemia were assessed with blinded CGMs. 

‡Primary outcomes of the trials. 

CGM, continuous glucose monitoring; T1D, type 1 diabetes; IAH, impaired awareness of hypoglycemia; SMBG, self-monitoring of blood glucose level; CSII, 

continuous subcutaneous insulin infusion; MDI, multiple daily injections; AUC, area under the curve.  
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