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Summary

In this paper, the dynamics and stability of a linear system with stochastic delay and
additive noise are investigated. It is assumed that the delay value is sampled peri-
odically from a stationary distribution. A semi-discretization technique is used to
time-discretize the system and derive the mean and second-moment dynamics. These
dynamics are used to obtain the stationary moments and the corresponding neces-
sary and sufficient stability conditions. The application of the proposed method is
illustrated through the analysis of the Hayes equation with stochastic delay and addi-
tive noise. The method is also applied to the control design of a connected automated
vehicle. These examples illuminate the effects of stochastic delays on the robustness
of dynamical systems.
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1 INTRODUCTION

Time delays in the control loops can cause instabilities and lead to unwanted oscillations. Analysing the corresponding delay
differential equations is necessary to design control algorithms1. Time delay-induced vibrations may occur in many applications
including traffic dynamics2, population dynamics3, gene regulatory networks4, and machine tool vibrations5,6,7. When the
system parameters (including the delays) are constant and no external excitation occurs, there are well-established methods to
investigate the linear as well as the nonlinear dynamics of these systems8,9,10,11,12,13. With added noise, stability investigations
become more challenging and the stationary motion of a system needs to be carefully characterized14,15,16,17. Moreover, the
system parameters (including the delays) may also vary stochastically requiring sophisticated mathematical tools for stability
analysis18,19,20. In this paper, control systems are considered where both effects are present: the time delays vary stochastically
while the system is excited by additive noise.
For example, in vehicular traffic the driver reaction time typically varies stochastically21, while the additive noise comes from

the other vehicles whose motion the driver needs to respond to. In network control systems, delays may vary stochastically due to
packet drops, and in the meantime agents need to respond to noisy environment18,22,23,24,25,26,27. In complex biological networks,
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like those within cells, external noise is ubiquitous and stochastic delays may be used to model a sequence of reactions28,29. In
machining applications, in order to suppress chatter, one may stochastically vary the spindle speed30, which leads to stochastic
delays in the corresponding mathematical model.
One of the most important performance measures for control systems is stability. For stochastic systems there exist multiple

stability definitions. For example, almost sure exponential stability characterizes the mean decay rate of the exponential envelope
of the solution of the system31,32,33. However, this approach does not guarantee the existence of a stationary solution in the
presence of additive noise since there can be a finite number of “bursts” as time evolves. A more conservative approach is to
consider the first moment (or mean) and second moment (or mean square) stability. This allows one to determine whether the
system has bounded stationary solutions or so-called stochastic coherence resonance15,16 occurs due to additive noise. Thus,
this approach can be utilized to characterize the robustness of the control system34.
For stochastic systems without stochastic time delays earlier works14,15 investigated not only the stability of the system, but

also the effects of external noise near critical parameters. In particular, small perturbation of a critical parameter were utilized for
small degree-of-freedom dynamical systems. The moment stability and stationary second moment of larger stochastic systems
has been considered17 while the time delays were assumed to be constant. Incorporating stochastic delay variations lead to
switching systems, whose analysis require sophisticated mathematical approaches. For example, sufficient conditions for second
moment stability for switching systems with multiplicative noise were derived35. Also, necessary and sufficient conditions
were given in the presence switching delays4,20. However, the sensitivity against external excitations was not investigated. The
stationary behavior was considered for a systemwith additive noise in optimal control designs19,36 and amodel predictive control
design37 as part of the cost function. However, the resulting controllers are optimal with respect to the prescribed cost function
only without leaving any room for more general analysis that is needed for a general control design.
In this work the stability and stationary solution of continuous time systems with stochastic time delays and additive noise

are discussed, without requiring the independence of the two different stochastic excitations. The resulting stochastic dynamical
system is approximated using semi-discretization38,4,17, and the corresponding discrete time stochastic map is determined ana-
lytically. This map is utilized to obtain the first and second moment dynamics, which in turn, allow us to derive necessary and
sufficient conditions for first and second moment stability and to calculate the stationary first and second moments. The effects
of the stochastic delays on the moment dynamics are illustrated through a simple system, called the Hayes equation, where the
moments are calculated along the delay-interval for different values of the system parameters (including the holding time). The
obtained methods are also applied to the control design of a connected automated vehicle (CAV) subject to packet losses while
responding to the noisy motion of its human-driven predecessor.
The paper is organized as follows. In Sec. 2 the semi-discretization is applied to the stochastically delayed systemwith additive

noise and the first and second moment maps are constructed. The computation of the stationary first and second moments of
systems driven by white and delay-induced additive noise are discussed in Secs. 3 and 4, respectively. In Sec. 5 some properties
of the stationary moments are highlighted through the stochastically delayed Hayes equation, while in Sec. 6 a control design
for a connected automated vehicle is presented that is robust against stochastic delays. Finally, conclusions are drawn in Sec. 7.

2 MODELING AND DISCRETIZATION

In this paper linear systems with stochastic delay and additive noise are considered:

ẋ(t) = Ax(t) + Bx(t − �(t)) + (t), (1)

where the dot indicates the derivative with respect to time t, x ∈ ℝd is the d-dimensional state vector, �(t) represents a stochas-
tically varying time-delay, A,B ∈ ℝd×d are the coefficient matrices and (t) ∈ ℝd is an arbitrary stochastic noise process with
an appropriate probability space. We emphasize that (t) and �(t) are not required to be independent for the results presented in
this section to be valid.
While no particular assumptions are made for the additive stochastic process (t), a specific stochastic process is considered

for the time delay �(t) which is motivated by applications of wireless communication-based control systems. Namely, the delay
process �(t) is considered to have piecewise constant trajectories. In particular, the delay is assumed to stay constant for a holding
time T before potentially taking on a new value from a finite set {�1, �2,… , �J}, such that �1 < �2 < … < �J ; see Fig. 1 for a
sample realization of this process. The delays are assumed to be independent and identically distributed (IID) across the holding
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intervals. The probabilities of the delays can be described as

ℙ(�(t) = �j) = wj , �j ∈ {�1, �2,… , �J} , (2)

while remaining constant for each interval t ∈
(

kT , (k + 1)T
]

.

FIGURE 1 A sample realization of the delay process �(t).

In order to investigate the stability and stationary solution of the delayed system in Eq. (1), the continuous time dynamics can
be approximated by a discrete one. This discrete approximation can be constructed using full discretization (such as the Euler
method) or semi-discretization38,4,17. Since the latter has superior convergence properties, in this paper this approach is utilized.
The zeroth order semi-discretization is discussed in the main body of the paper, while higher order semi-discretization is shown
in Appendix A.
Equation (1) can be discretized to:

ẋ(t) ≈ Ax(t) + Bx
(

(

n − r(n)
)

Δt
)

+ (t), t ∈
[

nΔt, (n + 1)Δt
)

, (3)

where n ∈ ℕ counts the time step under the time resolution Δt = T ∕l; see Fig. 2.

FIGURE 2 Sketch of the time discretization used for the construction of the stochastic map.

Note that we choose l such that Δt < �j , j = 1,… , J . The discretized delay is given by

r(n) =
⌊

�(nΔt)
Δt

⌋

, (4)

where ⌊.⌋ denotes the floor operation. Note that r(n) follows a similar stochastic process as �(t), that is,

ℙ
(

r(n) = rj
)

= wj , (5)

where rj =
⌊

�j
Δt

⌋

, j = 1,… , J ; cf. (2). The differential equation (3) can be solved analytically for one period of length Δt:

x
(

(n + 1)Δt
)

= eAΔtx(nΔt) +
(n+1)Δt

∫
nΔt

eA((n+1)Δt−s)Bds x((n − r(n))Δt) +
(n+1)Δt

∫
nΔt

eA((n+1)Δt−s)(s)ds. (6)
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By defining the augmented vector

y(n) = [x⊤(nΔt), x⊤
(

(n − 1)Δt
)

, … , x⊤
(

(n − rJ )Δt
)

]⊤, (7)

system (6) can be written in the compact form

y(n + 1) = F(n)y(n) + f (n), (8)

where the coefficient matrix and the disturbance vector are

F(n) =

1 2 3 ⋯ r(n)+1 ⋯ rJ+1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

P 0 0 ⋯ R ⋯ 0
I 0 0 ⋯ 0 ⋯ 0
0 I 0 ⋯ 0 ⋯ 0
⋮ 0 ⋱ ⋮

0 0 0 ⋯ 0 I 0

, f (n) =

⎡

⎢

⎢

⎢

⎢

⎣

w(n)
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

, (9)

and

P = eAΔt, R =
(n+1)Δt

∫
nΔt

eA((n+1)Δt−s)Bds, w(n) =

(n+1)Δt

∫
nΔt

eA((n+1)Δt−s)(s)ds, (10)

where in case of an invertible coefficient matrix A, the matrix R can be expressed as R = (eAΔt − I)A−1B. Note that in (9) the
block matrix R is in the

(

r(n) + 1
)th block-column of matrix F(n). In other words, the position of the block matrix R in the first

block-row of F(n) depends on the instantaneous value of the delay: if �(t) = �j in the time interval (kT , (k+1)T ], then r(n) = rj .
In this case, F(n) can be substituted by Fj and, based on (5), F(n) is IID and follows the probability distribution

ℙ
(

F(n) = Fj
)

= wj . (11)

Note that the delay value �(t) does not change during one holding period T = lΔt; see Fig. 1. Therefore, defining the state
vector

z(k) = y(kl) , k = 0, 1, 2,… (12)
for each holding periods and applying (8) iteratively, the system dynamics can be written as

z(k + 1) = G(k)z(k) + g(k), (13)

where
G(k) = F(kl)l ,

g(k) =
l−1
∑

m=0
F(kl)l−1−mf (kl + m) ,

(14)

and
ℙ
(

G(k) = Flj
)

= wj . (15)
We emphasize that since the stochastic process �(t) generates the process r(n) which generates F(n) and G(k), they all share

the same probability distribution function that hase been defined in (2).

2.1 Moment dynamics
Here the general expressions are stated for the time evolution of the mean and second moment of system (13) for a general noise
term (t). In the next section, the dynamics are discussed in more detail when (t) is a Gaussian white noise.
First, note that the random variablesG(k) and z(k) in (13) are independent. The matrixG(k) depends only on the delay value

in the time interval kT ≤ t ≤ (k+1)T with probability mass function given by (15), while the vector z(k) depends on the values
of the delay �(t) and the noise (t) in the time interval 0 ≤ t ≤ kT . Therefore, given the assumption that the delay switchings are
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IID,G(k) and z(k) are independent. Now by taking the expected value of both sides of Eq. (13) and exploiting the independence
of G(k) and z(k), the mean dynamics

z̄(k + 1) = Ḡz̄(k) + ḡ(k), (16)
is obtained, where

z̄(k) ∶= E
(

z(k)
)

,
ḡ(k) ∶= E

(

g(k)
)

,

Ḡ ∶= E
(

G(k)
)

=
J
∑

j=1
wjFlj

(17)

and E (.) denotes the expected value operator.
To obtain the second moment dynamics, the vector

̄̄z(k) ∶= E
(

z(k)⊗ z(k)
)

, (18)

is defined, where ⊗ denotes the Kronecker product. Here the fact that E
(

z(k)⊗ z(k)
)

= vec
(

E
(

z(k)z(k)⊤
)

)

is used, where
vec(.) is the vectorization operator that places the columns of a matrix below each other. The definition using the Kronecker
product in (18) is suitable for the second moment dynamics analysis carried out in this paper. By the properties of Kronecker
product and the independence of G(k) and z(k), the second moment dynamics

̄̄z(k + 1) = ̄̄G ̄̄z(k) + ̄̄cz(k) + ̄̄g(k), (19)

is derived, where

̄̄G ∶= E
(

G(k)⊗G(k)
)

=
J
∑

j=1
wjFlj ⊗ F

l
j ,

̄̄cz(k) ∶= E
(

(

g(k)⊗G(k) +G(k)⊗ g(k)
)

z(k)
)

,

̄̄g(k) ∶= E
(

g(k)⊗ g(k)
)

.

(20)

The details of the derivation of the term ̄̄cz(k) are shown in Appendix B.
In the next section, the specific forms of Eqs. (17), (18), (19) and (20) are derived, while considering an additive Gaussian

white noise.

3 DYNAMICS AND STABILITY WITH GAUSSIAN WHITE NOISE

So far no particular type of stochastic process was assumed for the noise (t) in (13). Thus, (17), (18), (19) and (20) are valid in
general. For simplicity, in this section, (t) is considered as a Gaussian white noise process with the form

(t) =
d�
∑

i=1
�i�i(t), (21)

where �i, i = 1,… , d� , are mutually independent Gaussian white noise processes with mean E
(

�i(t)
)

= 0 and correlation
function E

(

�i(t)�j(s)
)

= �(t− s)�ij . The vectors �i ∈ ℝd , i = 1,… , d� , denote the noise intensities. The noise process defined
in (21) can be written in the compact form

(t) = 
�(t), (22)
where the ith column of the matrix 
 ∈ ℝd×d� is �i and the ith component of the vector �(t) is �i(t). Observe that E

(

(t)
)

= 0.
Next, the behavior and stability of the mean dynamics (16) and the second moment dynamics (19) are investigated when (t) is
given by (21).

3.1 Mean dynamics
In this section it is illustrated that the mean dynamics (16) can be simplified to

z̄(k + 1) = Ḡz̄(k), (23)
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by showing that ḡ(k) = 0 when the noise (t) is given by (21).
According to (14) and (16) the additive vector is given as

ḡ(k) =
l−1
∑

m=0
E
(

F(kl)l−1−mf (kl + m)
)

. (24)

Notice that F(kl) only depend on the delay �(t) in the interval (kT , (k+ 1)T ] while f (kl +m), m = 0, 1,… , l − 1, depends only
on the Gaussian white noise �(t) in the interval (kT + mΔt, kT + (m + 1)Δt]. Since �(t) and �(t) are independent F(kl) and
f (kl + m) are also independent. Thus, (24) becomes

ḡ(k) =
l−1
∑

m=0
E
(

F(kl)l−1−m
)

E
(

f (kl + m)
)

. (25)

On the other hand with Gaussian white noise (10) yields

E
(

w(kl + m)
)

= E
⎛

⎜

⎜

⎜

⎝

(kl+m+1)Δt

∫
(kl+m)Δt

eA((kl+m+1)Δt−s)
dWs

⎞

⎟

⎟

⎟

⎠

= E
⎛

⎜

⎜

⎜

⎝

Δt

∫
0

eA(Δt−s)
dWs

⎞

⎟

⎟

⎟

⎠

= 0,

(26)

whereWt is the Wiener process vector corresponding to the white noise �(t), namely

Wt =

t

∫
0

�(s)ds. (27)

The last equality in (26) follows from the zero mean property of the Itô integral39. Now according to the definition (9) we have

E
(

f (kl + m)
)

= 0, (28)

and hence (25) yields ḡ(k) = 0 and the mean dynamics are given by system (23).
From system (23), it is concluded that the mean z̄(k) converges to 0 as k→∞, if and only if

�
⎛

⎜

⎜

⎝

Ḡ =
J
∑

j=1
wjFlj

⎞

⎟

⎟

⎠

< 1, (29)

where �(.) denotes the spectral radius, namely

�
(

Ḡ
)

= max
z

{

abs (z) , z ∈ ℂ ∶ det
(

Ḡ − zI
)

= 0
}

. (30)

3.2 Second moment dynamics
In this subsection the second moment dynamics (19) is simplified to the following form

̄̄z(k + 1) = ̄̄G ̄̄z(k) + ̄̄g, (31)

and the disturbance term ̄̄g is calculated explicitly. To do this, first the term ̄̄cz(k) in (19) is considered. Note that similarly to the
independence of z(k) and G(k) that was described at the beginning of Section 2.1, z(k) is also independent of g(k) in view of
(14). Therefore, from (20) it follows that

̄̄cz(k) = E
(

g(k)⊗G(k) +G(k)⊗ g(k)
)

E
(

z(k)
)

. (32)
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Now observe that

E
(

g(k)⊗G(k)
)

= E
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

l−1
∑

m=0
F(kl)l−1−mf (kl + m)

⎞

⎟

⎟

⎠

⊗G(k)
⎞

⎟

⎟

⎟

⎠

=
l−1
∑

m=0
E
(

(F(kl)l−1−m ⊗G(k))(f (kl + m)⊗ I)
)

=
l−1
∑

m=0
E
(

(F(kl)l−1−m ⊗G(k)
)

E
(

f (kl + m)⊗ I
)

= 0.

(33)

In the second line above, the mixed-product property of the Kronecker product was used and I denotes the identity matrix, while
the last equality comes form (28). Similarly to (33), it can be shown that E

(

G(k)⊗ g(k)
)

= 0, and therefore, (32) leads to
̄̄cz(k) = 0. (34)

Finally, the last term ̄̄g(k) in (19) is expressed as:
̄̄g(k) = E

(

g(k)⊗ g(k)
)

= E
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

l−1
∑

m=0
F(kl)l−1−mf (kl + m)

⎞

⎟

⎟

⎠

⊗
⎛

⎜

⎜

⎝

l−1
∑

m=0
F(kl)l−1−mf (kl + m)

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

.
(35)

Using the definition of w (n) from (10) considering (22) we obtain

f (kl + m) =

⎡

⎢

⎢

⎢

⎢

⎣

w(kl + m)
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

∫ Δt
0 eA(Δt−s)
dWs

0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

.

(36)

By defining

rw,m ∶=
Δt

∫
0

eA(Δt−s)
dWs, fw,m ∶=

⎡

⎢

⎢

⎢

⎢

⎣

rw,m
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

, (37)

(35) can be written as

̄̄g(k) = E
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

l−1
∑

m=0
F(kl)l−1−mfw,m

⎞

⎟

⎟

⎠

⊗
⎛

⎜

⎜

⎝

l−1
∑

m=0
F(kl)l−1−mfw,m

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

= E
⎛

⎜

⎜

⎝

l−1
∑

m=0

l−1
∑

m′=0

(

F(kl)l−1−m ⊗ F(kl)l−1−m′
)(

fw,m ⊗ fw,m′
)
⎞

⎟

⎟

⎠

=
l−1
∑

m=0

l−1
∑

m′=0
E
(

F(kl)l−1−m ⊗ F(kl)l−1−m′
)

E
(

fw,m ⊗ fw,m′
)

.

(38)
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Note that the terms fw,m and fw,m′ are independent for m ≠ m′ because of the independent increments property of the Wiener
process39. Thus,

E
(

fw,m ⊗ fw,m′
)

= E
(

fw,m
)

⊗ E
(

fw,m′
)

= 0, for m ≠ m′. (39)
Therefore, (38) can be reduced to

̄̄g(k) =
l−1
∑

m=0
E
(

F(kl)l−1−m ⊗ F(kl)l−1−m
)

E
(

fw,m ⊗ fw,m
)

. (40)

Furthermore, using (37) we obtain

E
(

fw,m ⊗ fw,m
)

= E

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

rw,m
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

⊗

⎡

⎢

⎢

⎢

⎢

⎣

rw,m
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= vec

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

Q 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (41)

where

Q = E
(

rw,mr⊤w,m
)

= E
⎛

⎜

⎜

⎜

⎝

Δt

∫
0

eA(Δt−s)
dWs

Δt

∫
0

eA(Δt−s)
dWs

⎞

⎟

⎟

⎟

⎠

. (42)

Using the Itô isometry39

E
⎛

⎜

⎜

⎜

⎝

Δt

∫
0

f (t)dWt

Δt

∫
0

g(t)dWt

⎞

⎟

⎟

⎟

⎠

=

Δt

∫
0

f (t)g(t)dt, (43)

one can simplify the stochastic integral (42) to the deterministic one

Q =
Δt

∫
0

eA(Δt−t)

⊤eA⊤(Δt−t)dt. (44)

Now, by defining

̂̂Fj ∶=
l−1
∑

m=0
(Fl−1−mj ⊗ Fl−1−mj ) = I⊗ I + Fj ⊗ Fj +⋯ + Fl−1j ⊗ Fl−1j , ̄̄fw ∶= vec

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

Q 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (45)

(40) can be reduced to

̄̄g(k) =
J
∑

j=1
wj

l−1
∑

m=0
(Fl−1−mj ⊗ Fl−1−mj ) ̄̄fw

=
⎛

⎜

⎜

⎝

J
∑

j=1
wj
̂̂Fj
⎞

⎟

⎟

⎠

̄̄fw

∶= ̄̄g.

(46)

That is, the second moment dynamics originally defined in (19) are given by the second moment map (31) since ̄̄cz(k) = 0
(cf. (34)) where the disturbance term ̄̄g is given by (46).
System (31) converges to the stationary solution

̄̄z∗ =
(

I − ̄̄G
)−1

̄̄g, (47)

as k→∞ if and only if

�
⎛

⎜

⎜

⎝

̄̄G =
J
∑

j=1
wjFlj ⊗ F

l
j

⎞

⎟

⎟

⎠

< 1. (48)
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4 DYNAMICS AND STABILITY WITH GAUSSIAN WHITE NOISE AND DELAY-INDUCED
NOISE

In this section, generalizations of the results obtained in the previous section are provided in the case of when the noise is given
by

(t) = 
�(t) + �(�(t) − �̄), (49)
where �̄ =

∑J
j=1wj�j is the mean delay and � is a constant vector; cf (22). This generalization is motivated by the fact that in

some applications delay fluctuations may result is an additive noise term in the dynamics. This situation is further discussed in
Section 6 where such delay-induced noise term arises in the control design of a connected automated vehicle.
When the noise (t) is given by (49), the mean dynamics are described by

z̄(k + 1) = Ḡz̄(k) + ḡ, (50)

where

ḡ =
J
∑

j=1
wj F̂j f̄j , (51)

and

F̂j =
l−1
∑

m=0
Fl−1−mj = I + Fj +⋯ + Fl−1j ,

f̄j =
[ (

(eAΔt − I)A−1�(�j − �̄)
)⊤
, 0⊤,… , 0⊤

]⊤
.

(52)

Compared to (23), here the disturbance term ḡ arises in the mean dynamics which is a result of the additive noise term in (49)
due to the delay stochasticity. The details of the derivation of the disturbance term ḡ are shown in Appendix C.
From system (50) it can be concluded that the mean z̄(k) converges to the equilibrium

z̄∗ = (I − Ḡ)−1ḡ, (53)

as k → ∞, if and only if (29) holds. That is, the stability condition for the mean is the same as in the previous section. The
difference is that when the noise is given by (49), the equilibrium mean is non-zero and given by (53).
The second moment dynamics, for the noise (t) given by (49), are described by

̄̄z(k + 1) = ̄̄G ̄̄z(k) + ̄̄Hz̄(k) + ̄̄g2, (54)

where
̄̄H ∶=

J
∑

j=1
wj

(

F̂j f̄j ⊗ Flj + F
l
j ⊗ F̂j f̄j

)

, (55)

and

̄̄g2 =
(

J
∑

j=1
wj
̂̂Fj
)

̄̄fw +
J
∑

j=1
wj(F̂j ⊗ F̂j)(f̄j ⊗ f̄j)

= ̄̄g +
J
∑

j=1
wj(F̂j ⊗ F̂j)(f̄j ⊗ f̄j).

(56)

The derivations of (54)-(56) are detailed in Appendix C .
Note that the difference between (54) and (31) is, that in (54) an additional term ̄̄Hz̄(k) appears which is a result of the

interaction between the Gaussian noise and the delay-induced noise. Also, the disturbance term ̄̄g2 differs from ̄̄g as it has an
extra term stemming from delay-induced noise; cf. (45) and (56).
Combining systems (50) and (54), one can write

[

z̄(k)
̄̄z(k + 1)

]

=

[

Ḡ 0
̄̄H ̄̄G

][

z̄(k)
̄̄z(k)

]

+

[

ḡ
̄̄g2

]

, (57)

This article is protected by copyright. All rights reserved.



10 Henrik T Sykora ET AL.

which has the stationary solution

z̄∗ =
(

I − Ḡ
)−1

ḡ,

̄̄z∗ =
(

I − ̄̄G
)−1 (

̄̄g2 + ̄̄Hz̄∗
)

,
(58)

if and only if both (29) and (48) hold. That is, the condition for the stationary moments are the same as in the previous section.
However, the stationary mean is not zero, while the stationary second moment is different, cf. (47) and (58).

5 AN ILLUSTRATIVE EXAMPLE

To illustrate the dynamics and stability analysis of the mean and the second moment established in the previous sections, the
scalar Hayes equation with stochastic delay is considered. Assuming additive noise that is the sum of a Gaussian noise and a
delay-induced noise we obtain

ẋ(t) = ax(t) + bx
(

t − �(t)
)

+ ��(t) + �
(

�(t) − �̄
)

, (59)
(cf. (49)) where a, b, �, � ∈ ℝ. The delay �(t) is assumed to take one of the values �1 = 0.2, �2 = 0.3, or �3 = 0.4 at each holding
period with equal probability wj = 1∕3, j = 1, 2, 3 resulting the mean delay �̄ =

∑J=3
j=1 wj�j = 0.3.

To investigate the stability properties and the stationary first and second moments of (59) the system (57) is constructed. The
condition (29) is used to calculate mean stability while (48) is utilized for second moment stability. The stationary mean and
second moment are given in (58). The scalar versions of the terms that appear in conditions (29) and (48) and (58) are provided
below.
Here we have the matrices

Fj =

1 2 ⋯ rj+1 ⋯ rJ+1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

eaΔt 0 ⋯ b
a

(

eaΔt − 1
)

⋯ 0
1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 0

, (60)

where rj = ⌊�j∕Δt⌋ and rJ = ⌊�J∕Δt⌋; cf.(9). Furthermore, (52) yields

f̄j =
[

�
a
(eaΔt − 1)

(

�j − �̄
)

, 0, … , 0
]⊤

, (61)

and from (37) fw,m can be derived as

fw,m =
[

rw,m, 0, … , 0
]⊤
, where rw,m = �

Δt

∫
0

ea(Δt−s)dWs. (62)

Finally, (45) becomes

̄̄fw = [Q, 0, … , 0]⊤, where Q = �2
Δt

∫
0

e2a(Δt−t)dt = �2

2a
(e2aΔt − 1). (63)

Given the terms in (60)-(63), to use condition (29) one can obtain Ḡ from (17), and to use condition (48) one can obtain ̄̄G
from (20). For the stationary mean and second moments (58), one can obtain ḡ from (51) and (52), ̄̄g2 from (45), (52), and (56),
and ̄̄H from (55).
To generate the results below the time step Δt = 0.01 is used. This is sufficiently small to approximate well the stability

boundaries of this example (see also the discussion in28 where this example is taken from). To determine the mean and second
moment stability, conditions (29) and (48) are used, i.e., if �(Ḡ) < 1 and �( ̄̄G) < 1 hold, then the system is mean and second
moment stable, respectively.
The left panel in Fig. 3 shows the stability boundaries in the (a, b) parameter space for holding times T = 0.1, 0.3, 0.5, and 1

as indicated by color. Notice that the holding time values are chosen such that they span a relatively large range with respect to
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FIGURE 3 (Left) Mean (dashed) and second moment (solid) stability boundaries for the Hayes equation (59) for different
values of the holding time T as indicated by color. The charts were determined using Δt = 0.01 and using a bisection method40.
(Right) Numerical simulation results for points A,B,C when T = 1, with the mean and standard deviations highlighted.

the delay values, i.e., T = 0.1 is smaller than all the delays, T = 0.3 is the mean delay, and T = 0.5 and 1 are larger than all the
delays. Dashed lines indicate mean stability boundaries while solid lines bound the second moment stability regions. That is,
on the left side of the dashed lines the the mean converges to the stationary solution (58) while on the right side is diverges to
infinity. Similarly, on the left side of the solid lines the second moment converges to the stationary solution (58) and it diverges
on the right side of these boundaries.
The right panel in Fig. 3 shows three different moment realizations to demonstrate the three types of stability states: moment

stable, first moment stable - second moment unstable, and moment unstable. In order to illustrate the behaviour of the dynamical
system (57) in the different parameter domains the ensemble standard deviation is given by

StD(x) =
√

E(x2) −
(

E(x)
)2 , (64)

is used. It can be observed, that when the system (59) is moment stable (case A), then both the first and second moments
converge. However, as the parameters are moved towards the unstable areas first the second moment diverges (case B), then the
first moment also loses stability (case C).
Next, to validate the analytical result the stationary mean and standard deviation are calculated utilizing (58) with time reso-

lution Δt = 0.01, and the results are compared with statistical evaluations of the mean and second moment obtained by Monte
Carlo simulations of system (59). For these simulations, we use the Euler-Maruyama method with a time step �t = 0.001.
In Fig. 4(a) the stationary standard deviations are shown over as a function of time for different holding times when the

additive noise is purely due to the white noise excitation, i.e., � = 0 and � = 1 in (59). The results are shown up to s = 1 for
all holding times, that is, the augmented vector (7) includes the time history up to the largest holding time T = 1. The results
of the semi-discretization (solid lines) are compared with the results obtained by Monte Carlo simulations (×-s). Notice that the
stationary standard deviation gained by both methods show periodic variation with period T due to the periodic switching of
the delay process �(t), even though the additive noise gives no periodic excitation41.
In Fig. 4(b) we show the maximum value of the stationary standard deviation within a holding interval while setting a = −1

and varying bwithin
[

−6.5, 1
]

; see the dashed-dotted line in the stability chart in Fig. 3. As the parameters of the system approach
the stability boundary, the effect of the noise on the stationary standard deviation is magnified, leading to the so-called stochastic
coherence resonance15,14,16. Note that the stationary mean is constantly zero for any holding time T . This is due to the fact that
the white noise excitation is independent of the random delay fluctuations. This can also be verified by observing that ḡ = 0 in
(51), because f̄j = 0 in (61) due to � = 0 as shown in Section 3.2.
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FIGURE 4 a) Stationary standard deviation over a holding period T for the Hayes equation (59) with parameters a = −1, b =
−4.5 and white noise excitation (� = 0, � = 1). b) The maximum values of the stationary standard deviation over a holding
time along the dashed-dotted line in Fig. 3. The continuous line denotes the analytical results, while the ×-s are obtained by
Monte Carlo simulations.

0.030

FIGURE 5 a) Stationary mean and b) standard deviation over a holding period T for the Hayes equation (59) with parameters
a = −1, b = −4.5 and delay excitation (� = 1, � = 0). Maximum values of c) the mean and d) the stationary standard deviation
along the dashed-dotted line in Fig. 3. The continuous line denotes the analytical results while the ×-s denote the results obtained
by Monte Carlo simulations.

In Fig. 5(a)-(b) the stationary mean and standard deviation are shown as function of time over a holding time interval for the
delay-induced noise scenario (� = 1 and � = 0 in (59)). Notice that since the delay �(t) switches at every kT , the stationary
behavior shows a periodic behavior with period T . This can be observed in both the stationary mean and standard deviation.
In Fig. 5(c)-(d) the maximum value of the stationary mean and standard deviation over a holding interval are depicted for the
delay-induced noise case when considering parameters a = −1, b ∈

[

−6.5, 1
]

. In Fig. 5(d) the stochastic resonance can be
observed again for the parameters in the vicinity of the stability boundary. Meanwhile a stability loss can be observed for the
stationary first moment in Fig. 5(c) near b = 1 (upper stability boundary).
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FIGURE 6 Maxima of the a) stationary mean and b) standard deviation over a holding period T for the Hayes equation (59)
with parameters a = −1, b = −4.5 and different T holding times for delay excitation (� = 1, � = 0). The continuous line
denotes the analytical results while the ×-s denote the results obtained by Monte Carlo simulations. Note that first moment is
zero for T < �1.

In Fig. 6 the maxima of the stationary moments are shown as a function of the holding time T . In Fig. 6(a) it can be observed
that if the holding time T is larger than the smallest delay value �1, the stationary mean is not zero anymore. In particular, exam-
ining ḡ in (51) one can see that for T > �1 the quantity ḡ is nonzero yielding non-zero stationary mean, even though the excitation
term �(�(t) − �̄) has a zero expected value. The stationary standard deviation does not show any special behaviour with respect
to the holding time T around the smallest delay value �1, however, after reaching a maximum it decreases as T increases. This
can be due to the reason that as T takes greater values, the delay-induced noise causes resonance-like phenomenon. However,
if T is further increased, the same time delay is held for longer time allowing the variations around the temporary equilibrium
state to settle before the next additive time delay-induced switching in �

(

�(t) − �̄
)

perturbs system (59).
Notice that the Monte-Carlo simulations approximate the analytical results well. However, the analytical approach only

requires a few matrix multiplications and solving a system of linear equations, which are orders of magnitudes faster than cal-
culating thousands of realizations and statistically evaluating them. This suggests that the proposed method is a very efficient
tool to investigate the behavior of such systems, especially for higher dimensional state variables.
To summarize, in this section the capabilities of the general method were demonstrated on the Hayes equation, namely, that it

can be utilized to determine second moment stability (Fig. 3) and the stationary moments (Figs. 4,5,6) efficiently. It was shown
that the stationary moments show periodic behavior and their maximum values vary with respect the parameters a and b and the
holding time T . The results were validated with the help of Monte-Carlo simulations.

6 STOCHASTIC EFFECTS IN CONNECTED VEHICLE SYSTEMS

In this section we consider the influence of stochastic time delay and addtive noise on connected vehicle systems. In particular,
we focus on the longitudinal dynamics of a connected automated vehicle following a connected human-driven vehicle (CHV)
that broadcasts its GPS position and speed via wireless vehicle-to-vehicle (V2V) communication.When receiving the packets the
CAV can respond to the motion of the CHV by adjusting the throttle or applying the brakes. This is referred as connected cruise
control and the effects of time delays in such systems have been investigated both theoretically and experimentally42,43. There
are two sources of delay-in the this example. On one hand, the actuator delay of the CAV is typically constant and in the range
of 0.3-0.6 seconds. On the other hand, the communication delay is in the range of 0.1-0.3 sec and this changes stochastically
based on the random nature of packet scheduling algorithms and the packet drops in wireless communication.
The stochastic process describing the motion of the CAV is characterized by its second moment dynamics. First, the solution

of the stochastic system describing the dynamics of the CAV is partitioned into a deterministic part and into a stochastic part.
Next, the second moment stability and the steady-state second moment of the stochastic part are investigated with the help of the
method introduced above. Finally, it is shown how the CAV can benefit from applying the so-called delay matching to suppress
the fluctuations induced by the stochastic delay while maintaining its robustness against the external noise presented by the CHV
ahead.
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The stochastically delayed differential equation describing the motion of the CAV can be written as
ṡ(t) = v(t),

v̇(t) = �
(

V
(

s1(t − �1(t)) − s(t − �(t)) − l
)

− v(t − �(t))
)

+ �
(

v1(t − �1(t)) − v(t − �(t))
)

.
(65)

Here the dot stands for differentiation with respect to time t, s and s1 denote the positions of the rear bumpers of the CAV and
the CHV ahead while v and v1 denote their velocities, respectively; see Fig. 7(a). The length of the CAV is denoted with l and
the headway is defined by

ℎ = s1 − s − l . (66)

v1

l1h
s1

s

v

l

a) b)

hstop hgo

vmax

V

hh*

v*

FIGURE 7 Connected car-following example: a) Sketch of a connected automated vehicle following a connected human-driven
vehicle and b) the range policy (67).

In (65), the gains � and � are used to correct velocity errors, � represents the actuator delay of the CAV, while �1 incorporates
the communication delay as well as the actuator delay. The desired velocity is determined by the nonlinear (piecewise linear)
range policy function

V (ℎ) =

⎧

⎪

⎨

⎪

⎩

0 if ℎ ≤ ℎst ,
� (ℎ − ℎst) if ℎst < ℎ < ℎgo ,
vmax if ℎ ≥ ℎgo ,

(67)

shown in Fig. 7(b), where � = vmax∕(ℎgo − ℎst). That is, the desired velocity is zero for small headways (ℎ ≤ ℎst) and equal to
the speed limit vmax for large headways (ℎ ≥ ℎgo). Between these, the desired velocity increases with the headway linearly, with
gradient �. Note that when ℎst = 0, the qunatity 1∕� is often referred to as the time headway.
We consider that the CHV’s velocity satisfy E

(

v1(t)
)

= v∗ which allows us to partition its position and velocity as
[

s1(t)
v1(t)

]

=

[

v∗

0

]

t +

[

s∗1
v∗

]

+

[

x1,s(t)
x1,v(t)

]

. (68)

To describe the sum of the measurement error and the perturbation of the motion of the lead vehicle, x1 ∶=
[

x1,s, x1,v
]⊤

is
defined, that is, E

(

x1
)

= 0. In the case of the CAV the same partitioning leads to
[

s(t)
v(t)

]

=

[

v∗

0

]

t +

[

s∗

v∗

]

+

[

xs(t)
xv(t)

]

, (69)

where the vector x ∶=
[

xs, xv
]⊤ collects the position and velocity perturbations of the CAV. Note that for connected cars the

holding time is always smaller than the minimum time delay of the system, that is T < �1, leading to E
(

x(t)
)

= 0.
Substituting the definitions of the positions and the velocities of the vehicles from (68) and (69) into (65), using the range

policy (67), and taking the expected value of the resulting equation, the stationary average headway distance can be determined:

lim
t→∞

E
(

ℎ(t)
)

= lim
t→∞

E
(

s1(t) − s(t) − l
)

= s∗1 − s
∗ − l = V −1(v∗) +

(

�̄1 − �̄
)

v∗. (70)

Here �̄ and �̄1 denote the average values of the delays and V −1 is only unique for 0 < v∗ < vmax; cf. (67). This shows that the
average mismatch between the delays may result in an (undesired) increase of the stationary headway.
To characterize the quality of the CAV control in case of a dense, but continuously flowing traffic scenario

(

ℎstop < ℎ(t) < ℎgo, ∀t
)

, the dynamics in the middle linear section of the range policy V (ℎ) need to be studied. This is described

This article is protected by copyright. All rights reserved.



Henrik T Sykora ET AL. 15

by the linear system

ẋ(t) = Ax(t) + Bx(t − �(t)) + B1x1(t − �1(t)) −
(

(

�(t) − �̄
)

B +
(

�1(t) − �̄1
)

B1
)

v0, (71)

where

A =
[

0 1
0 0

]

, B =
[

0 0
−�� −(� + �)

]

, B1 =
[

0 0
�� �

]

, v0 =
[

v∗

0

]

. (72)

Note that in (71) the terms containing x1(t) and v0 act as excitations on the system. Furthermore, it is assumed that the
perturbation x is small and the headway ℎ does not leave the interval [ℎstop, ℎgo].

6.1 Effect of delay matching on connected cruise control
It was shown by (70) that a mismatch between the delays � and �1 result in a shift from the desired stationary solution. Since the
packets sent via V2V communication are time stamped one may add some delay to the actuation delay to � so that it matches
�1. Here we utilize the analytical techniques established above to evaluate the performance of the CAV when we apply vs. do
not apply such delay matching.
In case of delay matching the controller sets

�(t) = �1(t), (73)
and, since the vector v0 is in the nullspace of the sum B + B1, the linear system (71) simplifies to

ẋ(t) = Ax(t) + Bx(t − �1(t)) + B1x1(t − �1(t)). (74)

In case of no delay matching the actuation delay is left constant, that is,

�(t) ≡ � = �̄. (75)

and (71) becomes
ẋ(t) = Ax(t) + Bx(t − �) + B1x1(t − �1(t)) − B1v0 ⋅

(

�1(t) − �̄1
)

. (76)
with no stochasticity in the delay �.

2

1

0.5

0.25
0.1

No Delay Matching

P

a) b)

c)

Delay Matching

FIGURE 8 Performance of connected cruise control without added noise. a) Second moment stability charts with the stable
parameter domains shaded. The lines with the numbers denote contours of stationary standard deviations of xv(t). b) and c):
The results of Monte Carlo simulations conducted for gain parameters � = 0.4 and � = 0.5 (marked as P on the stability chart)
the mean and the standard deviation are highlighted by the colored lines.

For simplicity the case when the leading vehicle is moving with a constant speed is considered, that is, x1(t) ≡ 0. In this
case (74) has no added noise while (76) is only excited by the delay noise. When presenting the results we use the parameter
� = 0.6 [1∕s], stationary velocity v∗ = 20 [m∕s], actuation delay � = 0.5 [s], holding time T = 0.1 [s]. We also assume that the
stochastic delay �1(t) can take values from the set �1(t) ∈

{

0.55 [s], 0.65 [s], 0.75 [s]
}

with probabilities wi ∈
{

0.25, 0.5, 0.25
}

,
respectively. Note that with these parameters the delay matching not only causes the delay �(t) to be stochastic, but it also
increases its mean �̄.
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FIGURE 9 Performance of connected cruise control with added white noise. The same notations are used as in Fig. 8.

The stability charts are plotted in the plane of the control gains � and � in Fig. 8(a) by utilizing (48). Notice that the stability
domain is smaller for the case with delaymatching due to the fact that � is increased in this case (unlike in case of e.g., suppressing
chatter in machine tool vibrations via spindle speed variation, where the delay is varied around the original constant delay30).
However, since there is no added noise in this case we obtain limt→∞ x2s = 0 and limt→∞ x2v = 0 for the stationary second
moments. This is illustrated by the numerical simulation in Fig. 8(b) corresponding to point P located at (�, �) = (0.4, 0.5) in
the stability chart. The simulated trajectories (grey curve) approach zero quickly bringing the mean (thick green curve) and the
standard deviation (thin green curve) to zero too.
When no delay matching is used, the stable domain is larger but, due to the delay-induced noise added to the system, the

stationary second moment is not zero. The contours of limt→∞ x2v are calculated using (58) are shown in Fig. 8(a). The numerical
simulations in Fig. 8(c) illustrate the dynamics for point P marked in the stability chart. The sample trajectory (grey curve) shows
that the velocity of the CAV keeps changing in time so that the mean (thick blue curve) approaches zero while the standard
deviation approaches the constant value calculated analytically.
Remark that while delay matching reduces the size of the stability domain one may still have a large range of gain parameters

to choose from. In particular, in the experimentally realistic range of � ∈ [0, 1], � ∈ [0, 1] stability is still ensured. Furthermore,
the delay matching eliminates the unwanted stationary oscillations that lead to “jerky ride”, which typically has a negative effect
on driver comfort and energy consumption. Note that in case of no delay matching the delay-induced noise is magnified to an
extent, where (71) is not valid anymore (the range policy V (ℎ) saturates). However, in terms of control design, these parameter
regions should be avoided, and instead of the stability boundary, the stationary second moment contours should be considered
when choosing control parameters for the CAV to limit the amplitude of the perturbation x.
The positive effects of delay matching can also be observed when the CHV ahead varies its velocity slowly (that is typical

in real traffic situations)44. In order to evaluate the effects for more severe motion perturbations we model the perturbation
dynamics of the CHV using white noise, that is,

x1(t − �1(t)) ∶=
[

�s(t), �v(t)
]⊤ . (77)

where �s(t) and �v(t) are uncorrelated Gaussian white noise. This is indeed an over estimation of the severity of perturbations
but provides a way to compare the behavior with and without delay matching. This leads to a noise excitation (49) with


 = B1, � =

{

0, in case of delay matching
B1v0, in case of no delay matching.

(78)

The results are summarized in Fig. 9 where panel (a) depicts the stability charts. The stability boundaries are identical to
those in Fig. 8(a) as these are still obtained by (48) while the contours calculated by (58) change due to the added white noise.
Notice that the contours obtained for the delayed matching case are quite similar to those obtained without delayed matching
for small gain values, including the experimentally realistic range � ∈ [0, 1], � ∈ [0, 1]. For point P at (�, �) = (0.4, 0.5) this
behavior is also illustrated by the numerical simulations shown in panels (b) and (c). This means that when responding to severe
perturbations using delay matching neither improves nor degrades the performance of the CAV.
To summarizes this section, we demonstrated how the developed mathematical tools can be utilized for the control design

of a connected vehicle system where stochastic packet loss results in stochasticity in the delay. Note that no external noise was
added to the control system (65). However, some delay-induced additive noise was inherently present due to the packet drops
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(see equations (68)-(72)), which had the same stochastic switching behavior as the stochastic delay. It was shown that this delay-
induced additive term can be eliminated by delay-matching, that is, by deliberately delaying actuation of the CAVwhen a packet
drop occurs. In (77) and (78) an additional white noise excitation, coming from the stochastic perturbation of the lead vehicle, was
introduced, and it was shown that with delay-matching the controller maintains its robustness against external noise excitation.

7 CONCLUSIONS

In this paper dynamical systems with stochastic delays and additive noise were investigated. The delay was assumed to jump
between finitely many different values while remaining constant for a given holding time between the jumps. The additive noise
was constructed from two different stochastic processes: one was an independent Gaussian white noise, called Wiener process,
while the other was a process generated by the stochastically changing delay. A discrete time stochastic map was derived using
semi-discretization and this was used to determine the dynamics of the first and second moments. Stability of the stationary
moments were ensured by making the spectral radii of the corresponding coefficient matrices smaller than 1 and the stationary
first and second moments were calculated.
The developed methods were applied to the stochastically delayed Hayes equation and it was demonstrated that the stationary

first and second moments are periodic with period equal to the delay holding time. It was also shown that when the holding time
was larger than the smallest possible time delay, the stationary first and second moments were not zero even when the noise
exciting the system had zero mean. These results were also confirmed by statistical evaluation of Monte-Carlo simulations.
Finally, the established mathematical tools were used to support the claim, that matching the actuation delay (thus making it

stochastic) in a connected vehicle system can improve the performance of connected automated vehicles. This occurs because
delaymatching eliminates the additive noise caused by the stochastically arriving information packets. It was shown that carefully
choosing the control parameters one can preserve the robustness of the delay matched system even in the presence of a harsh
white noise excitation.
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APPENDIX

A HIGHER ORDER SEMI-DISCRETIZATION METHOD

Using the methods in38, system (1) can be discretized to:

ẋ(t) = Ax(t) + B
⎛

⎜

⎜

⎝

q
∑

iq=0
L(q)iq (t)x(nΔt − (r(n) − iq)Δt)

⎞

⎟

⎟

⎠

+ (t), (A1)

where t ∈
[

nΔt, (n + 1)Δt
)

, n ∈ ℕ and the time resolution is Δt = T ∕l is given by the holding time T and l ∈ ℕ. Here the
delayed state is approximated by a q-th order Lagrange polynomial, where

L(q)iq (t) =
q
∏

jq=0,l≠iq

t − � − (n + jq − r(n))Δt
(

iq − jq
)

Δt
, (A2)
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and
r(n) =

⌊

�(nΔt)
Δt

+
q
2

⌋

. (A3)

In the main body of the paper the zeroth order semi-discretization is used and indeed (A1), (A2) and (A3) give (1) and (4) when
q = 0.
Solving the differential equation (A1) on the interval

[

nΔt,
(

n + 1
)

Δt
)

leads to

x
(

(n + 1)Δt
)

= eAΔtx(nΔt) +
q
∑

iq=0

⎛

⎜

⎜

⎜

⎝

(n+1)Δt

∫
nΔt

eA((n+1)Δt−s)BL(q)iq (s)ds x
(

(n − r(n) − iq)Δt
)

⎞

⎟

⎟

⎟

⎠

+

(n+1)Δt

∫
nΔt

eA((n+1)Δt−s)(s)ds. (A4)

B DERIVATION OF THE SECONDMOMENT DYNAMICS

In this section the derivation of the second moment dynamics is shown, namely, how

̄̄z(k + 1) ∶= E
(

z(k + 1)⊗ z(k + 1)
)

= E
(

(

G(k)z(k) + g(k)
)

⊗
(

G(k)z(k) + g(k)
)

)

(B5)

reduces to the form defined in (19) with the terms in (20).
Utilizing the bilinearity and associativity of the Kronecker product, namelyA⊗

(

B + C
)

= A⊗B+A⊗C45 and the linearity
of the expected value, (B5) yields

̄̄z(k + 1) = E
(

G(k)z(k)⊗G(k)z(k)
)

+ E
(

G(k)z(k)⊗ g(k)
)

+ E
(

g(k)G(k)⊗ z(k)
)

+ E
(

g(k)⊗ g(k)
)

. (B6)

Now applying the property
(

AB
)

⊗
(

CD
)

=
(

A⊗ C
)(

B⊗ D
)

to the first term of (B6) and the using independence of G(k)
and z(k), Equation (B6) can be reduced to the form given in (19), namely,

̄̄z(k + 1) = ̄̄G ̄̄z(k) + ̄̄cz(k) + ̄̄g(k), (B7)

where
̄̄G ∶= E

(

G(k)⊗G(k)
)

,
̄̄cz(k) ∶= E

(

G(k)z(k)⊗ g(k)
)

+ E
(

g(k)⊗G(k)z(k)
)

,
̄̄g(k) ∶= E

(

g(k)⊗ g(k)
)

.

(B8)

Next, the term ̄̄cz(k) is further simplified using the definition of the Kronecker product of two vectors a and b of the same
length, namely, a ⊗ b = vec

(

ba⊤
)

and the properties of the vectorization vec
(

ABC
)

=
(

C⊤ ⊗ A
)

vec
(

B
)

and vec(a) =

vec
(

a⊤
)

= a45 resulting in

E
(

G(k)z(k)⊗ g(k)
)

= E
(

vec
(

g(k)z(k)⊤G(k)⊤
)

)

= E
(

(

G(k)⊗ g(k)
)

z(k)
)

,

E
(

g(k)⊗G(k)z(k)
)

= E
(

vec
(

G(k)z(k)g(k)⊤
)

)

= E
(

(

g(k)⊗G(k)
)

z(k)
)

.
(B9)

Substituting these terms into (B8) the form of ̄̄cz(k) defined in (20) is obtained, namely,

̄̄cz(k) ∶= E
(

(

g(k)⊗G(k) +G(k)⊗ g(k)
)

z(k)
)

. (B10)

C DERIVATION OF THE MEAN AND SECONDMOMENT DYNAMICS WITH GAUSSIAN
WHITE NOISE AND DELAY-INDUCED NOISE

C.1 Derivation of mean dynamics
Here we want to show that when the additive noise is given by (49), the mean dynamics (16) reduce to

z̄(k + 1) = Ḡz̄(k) + ḡ, (C11)
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and we want to derive the disturbance term ḡ; see (50), (51) and (52). Let us first repeat the disturbance term from (16) here

ḡ(k) =
l−1
∑

m=0
E
(

F(kl)l−1−mf (kl + m)
)

. (C12)

Note that F(kl) only depends on the delay �(t) in the interval (kT , (k + 1)T ] while f (kl + m), m = 0, 1,… , l − 1 depends
both on the delay-in the interval (kT , (k+ 1)T ] and on the Gaussian noise �(t) in the interval (kT +mΔt, kT + (m+ 1)Δt]. The
interval

(

kT , (k + 1)T
]

is denoted by Ik for simplicity of notation in the rest of this section. Now (C12) is expanded as

ḡ(k) =
l−1
∑

m=0

J
∑

j=1
E
(

F(kl)l−1−mf (kl + m)||
|

�(t) = �j , t ∈ Ik
)

ℙ(�(t) = �j , t ∈ Ik)

=
l−1
∑

m=0

J
∑

j=1
wjFl−1−mj E

(

f (kl + m)||
|

�(t) = �j , t ∈ Ik
)

.

(C13)

Consider the last term above. In view of (9) and (10), we have

E
(

w(kl + m)
|

|

|

�(t) = �j , t ∈ Ik
)

= E
⎛

⎜

⎜

⎜

⎝

(kl+m+1)Δt

∫
(kl+m)Δt

eA((kl+m+1)Δt−s)
(


dWs + �(�(s) − �̄)ds
)

|

|

|

�(t) = �j , t ∈ Ik

⎞

⎟

⎟

⎟

⎠

= E
⎛

⎜

⎜

⎜

⎝

(kl+m+1)Δt

∫
(kl+m)Δt

eA((kl+m+1)Δt−s)
dWs

⎞

⎟

⎟

⎟

⎠

+ E
⎛

⎜

⎜

⎜

⎝

(kl+m+1)Δt

∫
(kl+m)Δt

eA((kl+m+1)Δt−s)�(�j − �̄)ds
⎞

⎟

⎟

⎟

⎠

.

(C14)

In view of (10), we have E
(

∫ Δt
0 eA(Δt−s)
dWs

)

= 0, and therefore, (C14) reduces to

E
(

w(kl + m)
|

|

|

�(t) = �j , t ∈ Ik
)

=
(

eAΔt − I
)

A−1�(�j − �̄), (C15)

assuming that A is invertible. Substituting (C15) in (C13), we get

ḡ(k) =
l−1
∑

m=0

J
∑

j=1
wjFl−1−mj f̄j

=
J
∑

j=1
wj F̂j f̄j

∶= ḡ

(C16)

where f̄j and F̂j are given in (52).

C.2 Derivation of second moment dynamics
Recall the second moment dynamics given by (19). Here (19) is simplified to the form

̄̄z(k + 1) = ̄̄G ̄̄z(k) + ̄̄Hz̄(k) + ̄̄g2, (C17)

and obtain the terms ̄̄H and ̄̄g2 when the noise is given by (49); see (53), (55) and (56). Recall that z(k) is independent of g(k)
and G(k) as mentioned before. Therefore, from (20) we have

̄̄cz(k) = E
(

g(k)⊗G(k) +G(k)⊗ g(k)
)

E
(

z(k)
)

. (C18)
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Now observe that

E
(

g(k)⊗G(k)
)

= E
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

l−1
∑

m=0
F(kl)l−1−mf (kl + m)

⎞

⎟

⎟

⎠

⊗G(k)
⎞

⎟

⎟

⎟

⎠

=
J
∑

j=1
wjE

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

l−1
∑

m=0
F(kl)l−1−mf (kl + m)

⎞

⎟

⎟

⎠

⊗G(k)
|

|

|

|

�(t) = �j , t ∈ Ik

⎞

⎟

⎟

⎟

⎠

=
J
∑

j=1
wj

⎛

⎜

⎜

⎝

l−1
∑

m=0
Fl−1−mj E

(

f (kl + m)||
|

�(t) = �j , t ∈ Ik
)
⎞

⎟

⎟

⎠

⊗ Flj

=
J
∑

j=1
wj

⎛

⎜

⎜

⎝

l−1
∑

m=0
Fl−1−mj f̄j

⎞

⎟

⎟

⎠

⊗ Flj

=
J
∑

j=1
wj F̂j f̄j ⊗ Flj ,

(C19)

cf. (52). Now, from (C18) and (C19) we have
̄̄cz(k) = ̄̄Hz̄(k), (C20)

where
̄̄H ∶=

J
∑

j=1
wj

(

F̂j f̄j ⊗ Flj + F
l
j ⊗ F̂j f̄j

)

. (C21)

Let us now consider the last term in (19), i.e., ̄̄g(k). We have that
̄̄g(k) = E

(

g(k)⊗ g(k)
)

=
J
∑

j=1
wjE

(

g(k)⊗ g(k)||
|

�(t) = �j , t ∈ Ik
)

=
J
∑

j=1
wjE

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

l−1
∑

m=0
Fl−1−mj f (kl + m)

⎞

⎟

⎟

⎠

⊗
⎛

⎜

⎜

⎝

l−1
∑

m=0
Fl−1−mj f (kl + m)

⎞

⎟

⎟

⎠

|

|

|

�(t) = �j , t ∈ Ik

⎞

⎟

⎟

⎟

⎠

.

(C22)

Note that, given �(t) = �j , t ∈ Ik, we can write f (kl + m) as

f (kl + m) =

⎡

⎢

⎢

⎢

⎢

⎣

w(kl + m)
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

= f̄j + fw,m, (C23)

in view of (10), (37), (49), and (52).
Substituting (C23) into (C22), leads to

̄̄g(k) =
J
∑

j=1
wjE

(

( l−1
∑

m=0
Fl−1−mj

)

f̄j ⊗
( l−1
∑

m=0
Fl−1−mj

)

f̄j +
( l−1
∑

m=0
Fl−1−mj fw,m

)

⊗
( l−1
∑

m=0
Fl−1−mj fw,m

)

+
( l−1
∑

m=0
Fl−1−mj

)

f̄j ⊗
( l−1
∑

m=0
Fl−1−mj fw,m

)

+
( l−1
∑

m=0
Fl−1−mj fw,m

)

⊗
( l−1
∑

m=0
Fl−1−mj

)

f̄j

)

.

(C24)
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The last two terms in (C24) are zero, because E
(

fw,m
)

= 0, in view of (37). Therefore,

̄̄g(k) =
J
∑

j=1
wj F̂j f̄j ⊗ F̂j f̄j +

J
∑

j=1
wjE

⎛

⎜

⎜

⎝

l−1
∑

m=0

l−1
∑

m′=0
Fl−1−mj fw,m ⊗ Fl−1−m

′

j fw,m′
⎞

⎟

⎟

⎠

=
J
∑

j=1
wj(F̂j ⊗ F̂j)(f̄j ⊗ f̄j) +

J
∑

j=1
wjE

⎛

⎜

⎜

⎝

l−1
∑

m=0

l−1
∑

m′=0
(Fl−1−mj ⊗ Fl−1−m′j )(fw,m ⊗ fw,m′)

⎞

⎟

⎟

⎠

=
J
∑

j=1
wj

⎡

⎢

⎢

⎣

(F̂j ⊗ F̂j)(f̄j ⊗ f̄j) +
l−1
∑

m=0

l−1
∑

m′=0
(Fl−1−mj ⊗ Fl−1−m′j )E

(

fw,m ⊗ fw,m′
)
⎤

⎥

⎥

⎦

.

(C25)

Using (39) we obtain

̄̄g(k) =
J
∑

j=1
wj

[

(F̂j ⊗ F̂j)(f̄j ⊗ f̄j) +
l−1
∑

m=0
(Fl−1−mj ⊗ Fl−1−mj )E

(

fw,m ⊗ fw,m
)

]

∶= ̄̄g2.

(C26)

This can be written in the form

̄̄g2 =
J
∑

j=1
wj(F̂j ⊗ F̂j)(f̄j ⊗ f̄j) +

(

J
∑

j=1
wj
̂̂Fj
)

̄̄fw

=
J
∑

j=1
wj(F̂j ⊗ F̂j)(f̄j ⊗ f̄j) + ̄̄g,

(C27)

using the definitions (45), where ̄̄g is given in (46). Finally, the second moment dynamics can be obtained by substituting (C20)
and (C27) into (19) which results in (C17).
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