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We develop model-assisted estimators for complex survey data for the propor-
tion of a population that experienced some event by a specified time t. Theory
for the new estimators uses time-to-event models as the underlying framework
but have both good model-based and design-based properties. The estimators are
compared in a simulation to traditional survey estimation methods and are also
applied to a study of nurses’ health. The new estimators take advantage of covari-
ates predictive of the event and reduce standard errors compared to conventional
alternatives.
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1 INTRODUCTION

We use time-to-event models to develop model-assisted estimators for complex survey data that can be used to estimate
the proportion of the population that have experienced an event by some time t. Such models are staples of survival anal-
ysis in medical studies. Many complex surveys also collect the time at which a sampled unit experiences a given event. As
an example, consider the National Longitudinal Study of 1972 conducted by the US National Center for Education Statis-
tics (https://nces.ed.gov/surveys/nls72/), which surveyed a nationally representative sample of high school 12th graders.
One item collected during follow-up interviews was the date after graduation at which each respondent was hired for his
or her first full-time job. From this, we can estimate the proportion of people who were 12th graders in 1972 and were hired
within five years of graduation. Another example is the Survey of Income and Program Participation (SIPP), which mea-
sures how long individuals participate in various government assistance programs like Medicaid, Supplemental Nutrition
Assistance Program (SNAP), Housing Assistance, Supplemental Security Income (SSI), and Temporary Assistance for
Needy Families (TANF).1 The Panel Study of Income Dynamics (PSID, https://psidonline.isr.umich.edu/), conducted by
the University of Michigan, is another longitudinal survey that has collected data since 1968 on health, employment,
income, wealth, expenditures, marriage, childbearing, child development, philanthropy, and education. The Health and
Retirement Study (HRS, http://hrsonline.isr.umich.edu/) is also a large longitudinal, panel survey done by the Univer-
sity of Michigan to collect data on health status, aging, income, and biomarkers. Many different endpoints can be derived
from both PSID and HRS that can be used in time-to-event modeling.

We assume that a single-stage probability sample has been selected. The size of the finite population is N, s is the set
of units sampled from the population, 𝜋i is the probability of selection for unit i, and the basic weight assigned to unit i is
di = 𝜋−1

i . The proportion of a given population that has experienced an event by time t is pN(t) = N−1 ∑N
i=1 I{Ti≤t} where

Ti is the time at which the event happened for unit i and I{⋅} is the indicator function. The population proportion pN (t)
can also be thought of as a type of cumulative distribution function. This proportion can be estimated using a 𝜋-estimator
as follows:
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p̂𝜋(t) = N−1
∑
i∈s

diI{Ti≤t}. (1)

We assume that the survey closes out before all units have experienced a given event, that is, Ti is only observed for
Ti ≤ to where to is the time at which the survey ends. This means that Ti is right censored for units for which Ti > to, in
which case the 𝜋-estimator will not correctly estimate pN(t) for t > to. Additionally this estimator cannot be used if any
units are censored before time t.

Although research on survival analysis is abundant, literature for estimating survival models from complex survey
data is much more limited. Binder2 studied point and design-based variance estimation of the regression parameter in
a Cox proportional hazards model using data from a complex survey. Lin3 formalized the theory for some of Binder’s
heuristic results. Boudreau and Lawless4 extended work on the Cox model to stratified, cluster sampling. There has been
work in the case control literature for accelerated failure time models (AFTMs) by Kong et al,5 Kong and Cai,6 and Chiou
et al7,8 for simple random samples, stratified simple random samples, and stratified simple random cluster samples. These
methods use superpopulation models to develop theory and not the design-based approach we take here. Finally, we note
that Heeringa et al9 reviewed some of the software options available for survival analysis from survey data, including
Kaplan-Meier estimation.

We propose estimators of the cumulative distribution of event times while accounting for the right-censoring and for
complex survey designs that are used in data collection. In the remainder of this section, we briefly review some options for
model-assisted estimation in finite populations for cross-sectional data (ie, non-time-to-event data) and time-to-event esti-
mation for non-survey data. The ideas of finite population model-assistance and time-to-event modeling will be combined
to produce the estimators studied here.

1.1 Model-assisted estimation in finite populations

There are a variety of model-assisted estimators in the survey literature, including generalized regression estima-
tors (GREG), calibration estimators, general difference estimators (GDEs), and model-calibrated estimators (MCEs).
Model-assisted estimators of finite population means and totals are motivated by the model

E[yi|xi] = 𝜇(xi,𝜽), V[yi|xi] = vi𝜎
2, (2)

where xi is a p-vector of covariates for unit i, 𝜽 is a parameter vector, 𝜇(xi,𝜽) is the mean of yi given the covariates, 𝜎2 is a
variance parameter, and vi is a scaling factor that can vary among the units. The form of the function 𝜇 is assumed to be
known.

Wu and Sitter10 define the GDE for the population mean of variable yi as follows:

̂Y GD = N−1

( N∑
i=1

𝜇(xi, �̂�) +
∑
i∈s

1
𝜋i
[yi − 𝜇(xi, �̂�)]

)
, (3)

where N is the size of the population and 𝜇(xi, �̂�) is the model prediction for yi based on xi found by inserting an esti-
mator of 𝜽. For use below, define X =

∑N
i=1 xi to be the vector of population totals of the covariates. If 𝜇(xi, �̂�) = xT

i �̂�,

then ̂Y GD is the classic GREG of Särndal et al.11 The GDE has the advantage in being more flexible than the GREG in
accommodating more realistic models for binary and ordinal categorical variables. Its computational disadvantage for
nonlinear models is that the individual values of covariates must be known for all units in the population to evaluate
each 𝜇(xi, �̂�).

Another estimator proposed by Wu and Sitter10 is the MCE. This estimator is based on the traditional calibration
estimator of Deville and Särndal.12 The general form of a calibration estimator is ̂Y Cal = N−1∑

i∈swiyi where wi satisfies
the constraint

∑
i∈swixi = X while minimizing the average deviation of the calibration weights wi from design weights di

under some distance metric Φs. A common distance metric is the chi-squared distance measure:

Φs =
∑
i∈s

(wi − di)2

diqi
,
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for some set of known qis which are independent of di. This distance measure results in ̂Y Cal being the GREG:

̂Y GREG = ̂Y𝜋 + N−1(X − X̂𝜋)TB̂, (4)

where X̂𝜋 =
∑

i∈sdixi and B̂ =
[∑

i∈sdiqixixT
i

]−1∑
i∈sdiqixiyi.

The MCE is derived by finding the set of weights {wi}i∈ s that satisfy the constraints:∑
i∈s

wi = N, (5)

∑
i∈s

wi𝜇(xi, �̂�) =
N∑

i=1
𝜇(xi, �̂�). (6)

The MCE estimator of the mean is

̂Y MC = ̂Y𝜋 + N−1

( N∑
i=1

𝜇(xi, �̂�) −
∑
i∈s

di𝜇(xi, �̂�)

)
B̂N , (7)

with

B̂N =

∑
i∈s

diqi(𝜇(xi, �̂�) − 𝜇)(yi − y)∑
i∈sdiqi(𝜇(xi, �̂�) − 𝜇)2

,

where ̂Y𝜋 = N−1∑
i∈sdiyi, y =

∑
i∈sdiqiyi∕

∑
i∈sdiqi and 𝜇 =

∑
i∈sdiqi𝜇(xi, �̂�)∕

∑
i∈sdiqi. Wu and Sitter also consider a MCE

without the constraint (5). This new estimator ̂Y
∗
MC replaces B̂ with

B̂∗
N =

∑
i∈sdiqi𝜇(xi, �̂�)yi∑

i∈sdiqi(𝜇(xi, �̂�))2
.

The GDE is a special case of MCE where B̂N = 1.
In simple random sampling without replacement (srswor), both ̂Y GD and ̂Y MC are design consistent in the sense

that, as the sample size increases, the difference between the estimator of the mean and the population mean con-
verges in probability to zero. This design-based property holds regardless of whether the model for y is specified correctly.
Kennel13 extended Wu and Sitter’s srswor theory to multistage complex samples. Both estimators are also approximately
model-unbiased in the sense that EM( ̂Y − Y U) ≈ 0 where Y U is the population mean and EM denotes expectation with
respect to model (2) if the working model is correctly specified. Thus, the GDE and MCE are doubly robust as in Robins
et al14 and Kang and Schafer.15

1.2 Time-to-event models

There are a number of time-to-event models, including proportional hazard models (PHM),16 AFTMs,17-19 and threshold
regression models (TRM).20,21 We will cover only PHMs, although the theoretical results in Theorems 1 and 2 below do
apply when a TRM is used to estimate p(t|x,𝜽) (see Reist22).

1.2.1 Estimating pN(t | x)

A standard use of time-to-event models is to predict the failure probability for an individual at some time t given a vector
of covariates x. PHMs model time-to-event data through the hazard function 𝜆(t|x,𝜽). The failure probability is p(t|x,𝜽) =
1 − S(t|x,𝜽) where S(t|x,𝜽) = exp(−Λ(t|x,𝜽)) is the survival function with Λ(t|x,𝜽) = ∫ t

0 𝜆(t|x,𝜽). The quantity p(t|x,𝜽)
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can be estimated as follows:

p(t|�̂�, x) = 1 − exp
(
−∫

t

0
𝜆(t|�̂�, x)dt

)
,

with �̂� being an estimator of 𝜽. Both parametric and semiparametric PHMs are considered below.
The hazard function in a proportional hazards model is defined as

𝜆(t|x,𝜽) = 𝜆0(t)g(𝜽Tx),

where 𝜆0(t) is the baseline hazard when x= 0 and g(𝜽Tx) is a parametric function where g(0)= 1. When 𝜆0(t) also has
a parametric specification, the PHM is considered parametric. If 𝜆0(t) is left unspecified, then the PHM is considered
semiparametric. PHMs can be fit using a traditional maximum likelihood estimation (MLE) framework if both 𝜆0(t) and
g(𝜽Tx) are parametric.23 An example of a parametric hazard function for the PHM is the Weibull distribution specification:

𝜆(t, x|𝜽) = 𝛿

g(𝜽Tx)

[
t

g(𝜽Tx)

]𝛿−1

= (𝛿t𝛿−1)g(𝜽Tx)−𝛿,

where 𝛿 is known as the shape parameter.17 One common way of specifying g(𝜽Tx) in a proportional hazard context is to
let g(𝜽Tx) = exp(𝜽Tx).23

The semiparametric Cox version of a PHM16 is one of the most widely used time-to-event models because of the
flexibility gained by not needing to specify the distribution of the baseline hazard. These models are fit using partial
likelihood.16,24

1.2.2 Accelerated failure time models

One straightforward way to consider modeling the time-to-event T is to consider a log-linear formulation

ln(T) = 𝜽Tx + 𝜎𝜖. (8)

A model that can be expressed in this form is called an AFTM because the effect of covariates is to accelerate or
decelerate the time-to-event.17 Wei19 argues that AFTMs are easily interpreted since covariates have a direct effect on
failure times.

Most of the commonly used parametric time-to-event models are AFTMs. The exponential, Weibull, log-normal,
log-logistic, gamma, inverse gaussian, and generalized gamma models are all AFTMs. For example, if 𝜖 follows a logistic
distribution, then the model in Equation (8) becomes a log-logistic model.17 Parametric AFTMs can be fit, under right
censoring, using the same formulation of the likelihood used for the parametric PHM.

Louis25 first developed a semiparametric formulation of the AFTM for a single treatment variable. Later Tsiatis26

and Wei19 generalized this to multiple treatments. Semiparametric AFTMs were put into a rank base inference frame-
work by Jin.27 In this article, we cover only parametric AFTMs and exclude semiparametric models from the theory and
simulations.

2 MODELS FOR SURVEY DATA

The standard MLE methods for estimating 𝜽 will not be design consistent as defined in Fuller (definition 1.3.1)28 because
they do not account for the way the sample was selected. Rather than maximizing a regular full or partial likelihood,
pseudo-maximum likelihood estimation (PMLE) methods are used which consist of maximizing a survey-weighted like-
lihood (eg, see Binder2,29). In the context of survival data, the PMLE method has been used for the Weibull AFTM model30

and for TRMs.31 This section will review the adjustments that need to be made to produce design consistent estimates for
the time-to-event models presented in Section 1.



REIST and VALLIANT 4355

2.1 Time-to-event GDEs and MCEs

The combination of survival modeling and model-assisted estimation for finite populations can be used to construct GDE
and MCE estimators to estimate pN(t) for a given t ≤ to. The work of Wu and Sitter10 and Kennel13 can be used to construct
GDE and MCE estimators of pN(t) when general linear models (GLM) are used to model I{Ti≤t} or T. A GLM cannot
be used to predict T and estimate pN(t) with the empirical distribution function of the Ti’s if T is censored. Standard
time-to-event models such as a PHM can be used to develop GDEs and MCEs for predicting pN(t) for t ≤ to.

GDEs and MCEs can be constructed using the estimates of pN (t | X) as follows:

p̂GD(t) = N−1

( N∑
i=1

p(t|xi, �̂�) +
∑
i∈s

di[I{Ti≤t} − p(t|xi, �̂�)]

)
(9)

and

p̂MC(t) = p̂𝜋(t) + N−1

( N∑
i=1

p(t|xi, �̂�) −
∑
i∈s

dip(t|xi, �̂�)

)
B̂, (10)

where options for B̂ are defined below. In Equations (9) and (10), p(t|xi, �̂�) plays the role of 𝜇(xi, �̂�) in Equations (3) and
(7). Although we consider only the case of N known, in some special cases results can be extended to unknown N by
using N̂ =

∑
i∈sdi. The first term in each of the GDE and MCE is a sum over all N units in the population and requires the

covariate values for each individual unit. Suppose that strata can be formed based on combinations of the covariates so that
every unit in a stratum has the same values of the covariates and that the strata exhaust the population. If the population
count of units in each stratum is either known or estimated, then

∑N
i=1 p(t|xi, �̂�) can be evaluated without having a full

population frame. Using estimates of N and the stratum counts does complicate variance estimation, although replication
is one approach for reflecting uncertainty due to using estimated population counts.

Two alternatives for B̂ will be considered which are adapted from Wu and Sitter. The first is derived subject to the
following constraints: ∑

i∈s
wi = N, and (11)

∑
i∈s

wip(t|xi, �̂�) =
N∑

i=1
p(t|xi, �̂�). (12)

and is equal to

B̂ =
∑

i∈sdi(p(t|xi, �̂�) − p)(I{Ti≤t} − Ī)∑
i∈sdi(p(t|xi, �̂�) − p)2

, (13)

where Ī =
∑

i∈sdiI{Ti≤t}

/∑
i∈sdi, and p =

∑
i∈sdip(t|xi, �̂�)

/∑
i∈sdi. The second adjustment, B̂∗, which can also be used in

Equation (10), is derived subject to only constraint (12) and can be calculated as

B̂∗ =
∑

i∈sdip(t|xi, �̂�)I{Ti≤t}∑
i∈sdi(p(t|xi, �̂�))2

. (14)

The asymptotic variances of p̂GD(t) and p̂MC(t) and their estimators of variance are presented in Theorem 2 below.

2.2 Theoretical results

This section provides asymptotic results for both the p̂GD(t) and p̂MC(t) estimators and their respective variance estimators,
where the underlying model is a time-to-event model. Specifically, results are shown for parametric and semiparametric
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PHMs. For the semiparametric PHMs, the case is addressed where the baseline hazard is estimated using a Breslow type
estimator.32-34 Both p̂GD(t) and p̂MC(t) are design consistent as shown below, and estimators of asymptotic variances are
presented that are design consistent.

2.2.1 Design consistency of p̂GD(t) and p̂MC(t)

To prove design consistency of p̂GD(t) for a fixed t, the same asymptotic formulation is used as in Fuller28 in which both
the population and sample size become large. Consider a sequence of populations indexed by j in which both the sample
size nj and the population size Nj approach infinity as j→∞. To simplify the notation, we omit the subscript j below and
in the Appendix. The following conditions are assumed to hold:

(i) �̂� = 𝜽N + Op(n−1∕2) and 𝜽N → 𝜽, where �̂� is the PMLE of 𝜽, 𝜽N is the finite population value of the parameter, and
𝜽 is its underlying constant value;

(ii) 𝜕p(t|xi, 𝜸)∕𝜕𝜸 is continuous in 𝜸 where 𝜸 is in a neighborhood of 𝜽. |𝜕p(t|xi, 𝜸)∕𝜕𝜸| ≤ c1(xi,𝜽), a constant, for all
values 𝜸 in a neighborhood of 𝜽; and N−1 ∑N

i=1 c1(xi,𝜽) = O(1).
(iii) The 𝜋-estimators (divided by N) for certain population means are asymptotically normally distributed.

Theorem 1. If p̂GD(t) is constructed using a time-to-event model and (i)-(iii) hold, then for a fixed time t

p̂GD(t) = p̂𝜋(t) + Op(n−1∕2),

where p̂𝜋(t) is the 𝜋-estimator in Equation (1) of the finite population proportion pN(t). Thus, p̂GD(t) is design consistent since
p̂𝜋(t) is.

The proof is in the Appendix. Note that p̂GD(t) is a special case of p̂MC(t), where B̂N = 1. Because of this, Theorem 1
can be generalized to show that p̂MC(t), which uses B̂, and p̂∗

MC(t), which uses B̂∗, are design consistent by noting that B̂
and B̂∗ are both Op(1) and that p̂𝜋(t) is design consistent.

2.2.2 Design consistency of V̂ [p̂GD(t)] and V̂ [p̂MC(t)]

To show design consistency of the variance estimators below, an additional condition is necessary:

(iv) 𝜕2p(t|xi, 𝜸)∕𝜕𝜸𝜕𝜸′ is continuous in 𝜸 for each xi, |𝜕2p(t|xi, 𝜸)∕𝜕𝜸𝜕𝜸′| ≤ c2(xi,𝜽), a constant, and N−1 ∑N
i=1 c2(xi,𝜽) =

O(1).

Theorem 2. If p̂GD(t) is constructed using a time-to-event model where (i)-(iv) hold, then for a fixed time t, the approximate
design variance estimator of p̂GD(t) is

V(p̂GD(t))=̇N−2
N∑
j

N∑
i<j

(𝜋i𝜋j − 𝜋ij)
(

ei

𝜋i
−

ej

𝜋j

)2

, (15)

where 𝜋ij is the joint probability of selecting the ith and jth units and ei = I{Ti≤t} − p(t|xi,𝜽N). This can be estimated by

V̂(p̂GD(t)) = N−2
∑
j∈s

∑
i<j∈s

(
𝜋i𝜋j − 𝜋ij

𝜋ij

)(
êi

𝜋i
−

êj

𝜋j

)2

, (16)

where êi = I{Ti≤t} − p(t|xi, �̂�).
The proof is in the Appendix. Furthermore, Theorem 2 can be generalized to V̂(p̂MC(t)) by noting that B̂ = BN + op(1)

and B̂∗ = BN + op(1) and substituting I{Ti≤t} − p(t|xi,𝜽N)BN for ei in the variance formula and I{Ti≤t} − p(t|xi, �̂�)B̂ or
I{Ti≤t} − p(t|xi, �̂�)B̂

∗ into the variance estimator for êi.
In the special case of stratified simple random sampling without replacement used in the simulation study in Section 3,

the design variance and its estimator can be simplified. Let h= 1, … , H index the strata, Nh be the population count of
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units in stratum h, and W h =Nh/N. The variance of p̂GD(t) and its estimator are then

V(p̂GD(t)) =
H∑

h=1
W2

h (1 − fh)S2
he∕nh

V̂(p̂GD(t)) =
H∑

h=1
W2

h (1 − fh)Ŝ2
he∕nh, (17)

where nh is the sample size in stratum h, f h =nn/Nh is the proportion of the units in stratum h that are in the sample,
S2

he = (Nh − 1)−1 ∑Nh
i=1 (ehi − ēh)2, ehi = I{Thi≤t} − p(t|xhi,𝜽N), Thi is the event time for individual hi, and xhi is the vector of

covariates for individual hi. The other terms are ēh = N−1
h

∑Nh
i=1 ehi, Ŝ2

he = (nh − 1)−1 ∑nh
i=1 (êhi − ̂̄ehs)2 with êhi = I{Thi≤t} −

p(t|xhi, �̂�), and ̂̄ehs = n−1
h

∑nh
i=1 êhi for the GDE. Similar forms apply for the variance and variance estimator for the MCE

with the estimated residual defined as êhi = I{Thi≤t} − p(t|xhi, �̂�)B̂ if constraints (11) and (12) are used. If only (12) is used,
the residual is defined with B̂∗.

Although it is difficult to say theoretically whether the GDE or MCE will have a smaller variance, an intuitive com-
parison is possible. The variances of both depend on residuals of the form, I{Ti≤t} − Î{Ti≤t} where Î{Ti≤t} = p(t|xi, �̂�) for the
GDE and Î{Ti≤t} = p(t|xi, �̂�)B̃ where B̃ is one of the slope estimators for the MCE. The estimator with smaller squared
residuals will be more precise. In cases where the hazard function is modeled accurately, B̂ or B̂∗ will only add extra noise
without reducing bias. On the other hand, if 𝜆(t|x, 𝜃) is poorly modeled, injecting a slope estimator into the residuals for
an MCE can help reduce its variance.

3 SIMULATION STUDY USING GENERATED DATA

To evaluate the performance of the estimators, a simulation study was conducted in which the following were manipu-
lated:

• Correlation between ln(T) and predictor Z,
• Distribution of T, the time to an event,
• Amount of censoring, %C,
• Sample size, n,
• Prevalence of the event at time t in the finite population, pN (t).

The simulations are limited to GDEs and MCEs constructed using lognormal, Weibull, semiparametric PH, and logis-
tic models. These estimators are compared to more traditional estimators: the 𝜋-estimator and the GREG with a linear
model.

3.1 Populations

Three types populations were generated based on the log of event time: lognormal (LN), Weibull with a common baseline
hazard (WCB), and Weibull with a mixture of two baseline hazards (WMB). Finite populations with N = 100 000 were
generated as independent and identically distributed samples from:

ln(T) = 1 + 𝜃1X + Z + W , (18)

where Z was generated from a gamma distribution with shape and scale parameters equal to 1. For the LN populations, W
was drawn from a normal distribution with mean zero, standard deviation 𝜎 (discussed below), and X = 0. For the WCB
and the WMB populations, W was drawn from a generalized extreme value (GEV) distribution with the location param-
eter and shape parameters set to zero and shape parameter 𝜎. For the WCB populations that have a common baseline
hazard, X = 0. For populations with a mixture of two baseline hazards, X was drawn from a Bernoulli distribution with
p= 0.4. Parameter values used in generating the ln(T)s are summarized in Table 1. For each population, the proportion
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Population 𝜽1 X Z W

Lognormal (LN) 0 0 Γ(1, 1) N(0, 𝜎2)

Weibull, common baseline (WCB) 0 0 Γ(1, 1) GEV(0, 0, 𝜎)

Weibull, mixture baseline (WMB) 1 B(0.4) Γ(1, 1) GEV(0, 0, 𝜎)

T A B L E 1 Parameters used to generate
ln(T) in Equation (18)

of units that have experienced the event at or before any time t is computed as pN(t) = N−1 ∑N
i=1 ITi≤t where each Ti was

generated from Equation (18).
In all cases, 𝜎 was set to generate finite populations in which the correlation between ln(T) and Z was a given 𝜌. Nine

populations were generated by crossing the LN, WCB, and WMB distributions with the correlations 𝜌 = 0.8, 0.6, and 0.4.
For each population, three sets of censored values of T and censor indicators were derived as follows:

T̃(j)
i = min(Ti,Qj), (19)

c(j)i = I{Ti≤Qj} (20)

for j= 1,2,3, where Qj is the jth finite population quartile of T. This generated censored values of T such that 75%, 50%,
or 25% of the cases in the population were censored in the sense that there is no observation after time to =Qj. These
censoring times can be thought of as the times at which survey data collection ends. Although such high levels of censoring
would be unusual in clinical studies, they would be more common in longitudinal, sample surveys when analyses are
done periodically throughout the life of the study. For example, the HRS recruits cohorts of persons when they are in the
age range 50-56. Assuming that death is the event, in the early years in which a cohort is in the sample, there can be very
high levels of censoring since most people are still alive.

3.2 Sample design

For this simulation, a stratified simple random sample design was used with strata based on the values of Z. The units
were sorted in ascending order based on Z, then the first 10 000 were assigned to stratum 1, the next 20 000 were assigned
to stratum 2, the next 30 000 were assigned to stratum 3, and the last 40 000 were assigned to stratum 4. Two sample
sizes were used: n= 200 and 1000. The sample was allocated equally to each stratum, that is, nh =n/4 for all h. For each
population-sample size combination, L= 10 000 samples were drawn.

3.3 Estimators

For each sample, four time-to-event models for estimating pN(t) were paired with the general difference and
model-calibrated estimators. All of the time-to-event models were fit with an intercept and one predictor, Z. The models
were lognormal, Weibull, semiparametric PH, and logistic. Each of these was tested with the censoring conditions 75%,
50%, and 25%. The �̂� parameter estimates were PMLEs. For the semiparametric PH estimator, the baseline hazard was
estimated using a Breslow estimator.33 For each model, three estimates of pN (t) were calculated, a GDE in Equation (9)
and two versions of the MCE in Equation (10). These are denoted as GD, MC1, and MC2 in the subsequent tables. MC1 is
the MCE with one constraint defined by Equation (12) and uses B̂∗ as the slope estimate, and MC2 is the MCE estimator
with two constraints defined by Equations (11) and (12) and uses B̂. To distinguish in the discussion which time-to-event
model was used for estimating pN(t), LN (lognormal) and LG (logistic) are paired with the estimator labels. For example,
LN-GD denotes the GDE using the lognormal time-to-event model; LG-GD is the GDE paired with logistic.

Since there are three types of populations (LN, WCB, and WMB) and four models used for estimating each p(t|xi,𝜽),
we summarize which combinations of population and model give correctly specified time-to-event models:

• LN population with lognormal model used to estimate the probability, p(t|xi, �̂�), that an event occurs at or before time t.
• WCB with either Weibull or semiparametric PH time-to-event model.
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• WMB with semiparametric PH time-to-event.

All other combinations are ones where the time-to-event model is misspecified compared to how the population was
generated. Note that using a logistic time-to-event model is always a misspecification in our simulation.

Estimates of pN(t) were then generated for three values of t. The three values were selected so that the finite population
value of pN(t) was 0.75, 0.50, or 0.25. Note that for 75% censoring only pN (t)= 0.25 could be estimated. Likewise for 50%
censoring, only pN(t)= 0.50 or pN (t)= 0.25 could be estimated. Additionally, to compare these alternatives with existing
methods, we computed the 𝜋-estimator and a GREG based on a linear model with an intercept and one predictor, Z.

3.4 Evaluation criteria

A number of criteria were used to evaluate the performance of the time-to-event based GDE and MCE related to efficiency,
bias, and performance of variance estimators. These criteria are also used in evaluating the simulation results in Section 4.
The simulated RMSE at a fixed time t was estimated as follows:

RMSE(t) =

(
L−1

L∑
k=1

[p̂k(t) − pN(t)]2

)1∕2

,

where L represents the 10 000 simulations, and p̂k(t) is an estimate of pN(t) for the kth simulation. To compare the simu-
lated RMSE of an estimator A with the RMSE of the 𝜋-estimator, the percent reduction in RMSE (ΔRMSE) was calculated
as follows:

ΔRMSE(t) = 100
[

1 −
(

RMSEA(t)
RMSE𝜋(t)

)]
.

Two measures were calculated to evaluate the bias of GDE and MCE that were derived from time-to-event models. The
first measure is the simulated relative bias (RB) calculated as:

RB(t) = 1
L

L∑
k=1

(
p̂k(t) − pN(t)

pN(t)

)
.

The second measure is the bias ratio (BR). The BR compares the magnitude of the simulated bias of an estimator to the
magnitude of the simulated standard error of the same estimator. The BR is calculated as follows:

BR(t) =
L−1 ∑L

k=1[p̂k(t) − pN(t)](
L−1 ∑L

k=1 [p̂k(t) − p(t)]2
) 1

2

,

where p(t) = L−1 ∑L
k=1 p̂k(t). For confidence intervals to cover at the desired rate, BR must converge to 0 with increasing

sample size in addition to p̂k(t) − pN(t) converging to 0.
Two measures were calculated to evaluate the performance of the variance estimators. The first is the variance ratio

(VR), which is the ratio of the simulation mean of the estimated sampling variance to the empirical variance of the
estimator. This was calculated as:

VR(t) =
L−1 ∑L

k=1 V̂(p̂k(t))

L−1 ∑L
k=1 [p̂k(t) − p(t)]2

,

where for the GDE V̂(p̂k(t)) is defined by Equation (17) for the kth sample. The variance estimator for MC1 has the same
form as Equation (17) with the residual modified by B̂ as described below that equation; for MC2, the residual is defined
using B̂∗. The BR and VR measures will be used in Section 4. The second measure is confidence interval coverage. For the
kth sample, the normal approximation, 95% confidence interval was calculated as
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CIi = (p̂k(t) − 1.96
√

V̂(p̂k(t)), p̂k(t) + 1.96
√

V̂(p̂k(t))).

The proportion of times that the confidence intervals included the population value was then tabulated across the
simulations and is labeled “Coverage” when it is used in tables.

3.5 Results

Biases and relative biases for all estimators in all scenarios in the generated populations were minimal and are not
presented here. Differences in RMSEs were more substantial. An estimator’s reduction in RMSE when compared to
the 𝜋-estimator was affected by three conditions: the correlation between ln(T) and predictor Z, sample size, and the
proportion of the individuals in the finite population that have experienced the event by time t.

Tables 2 and 3 provide the simulated reductions in RMSE when compared to the 𝜋-estimator for the LN lognormal
population with n= 200 and n= 1000, respectively. Comparisons for other populations (Weibull with a common baseline
hazard, WCB, and Weibull for a mixture of baseline hazards, WMB) were similar. The rows in these tables are sorted by
𝜌, then pN(t), and finally % censored. These parameters were described in Section 3.1. The time-to-event estimators, that
is, ones in which pN(t) is estimated based on Weibull, lognormal, or proportional hazards models, are shown in columns
5-13 (Weibull/GD through Proportional hazard/MC2); for each of these models the final three columns labeled “Logistic”
are cases where pN(t) is estimated via a logistic model. Some of the conclusions about RMSEs that can be drawn from
these tables are:

1. The time-to-event model-based estimators never underperformed the 𝜋-estimator.
2. The GREG is less precise than the 𝜋-estimator for a number of combinations—𝜌 = 0.8 plus pN(t)= 0.25 and 0.50 and

all levels of censoring; 𝜌 = 0.6 plus pN (t)= 0.25 and all levels of censoring. For other combinations the GREG achieves
some small reductions in RMSE.

3. The time-to-event model-based estimators never underperformed, and in many cases outperformed, the GREG (col.
4) and logistic-based GD, MC1, and MC2 estimators (LG-GD, LG-MC1, LG-MC2 in cols. 14-16).

4. The reductions in RMSE for the nine estimators based on time-to-event models (Weibull, lognormal, and proportional
hazard) were similar.

5. The reduction in RMSE for the nine estimators based on time-to-event models and the GREG generally increased as
the failure rate pN (t) increased. For example, when pN(t)= 0.75 with 𝜌 = 0.8 and 25% censoring, reductions in RMSE
are nearly 15% for both n= 200 and 1000.

6. RMSE reductions for the nine estimators based on time-to-event models, the GREG, and LG-MC1 increased with
increasing 𝜌.

7. Reductions in RMSE for the nine estimators based on time-to-event models and the GREG were similar at both sample
sizes.

8. Reduction in RMSE for GD, MC1, and MC2 were substantially decreased or eliminated when prevalences were esti-
mated using the logistic model when n= 200. MC1 and MC2 generally reduce RMSEs compared to the 𝜋-estimator
and are more efficient than the GD, which often has a larger RMSE than the 𝜋-estimator. This is consistent with the
observation in Section 2.2.2 that inclusion of a slope estimator in the MCEs can reduce variances when the hazard
function used in the estimators is misspecified.

9. The amount of censoring had a limited effect on all of the estimators. However, we assume a uniform censoring time
for all units due to stoppage of data collection. If censoring could occur at random times, results could be affected.

Figures 1 to 3 plot the percent reduction in RMSE compared to that of the 𝜋-estimator versus values of pN(t) for the
lognormal GD (LN-GD), logistic GD (LG-GD), LG-MC1, LG-MC2, and GREG estimators. Nonparametric smoothers are
plotted to make the patterns more apparent. All three figures are for 25% censoring only. Comparisons for other levels of
censoring were similar. We include only LN-GD in the figures since all of the estimators based on time-to-event models
(LN, WB, and PH paired with GD, MC1, and MC2) perform about the same. Subplots (a) and (b) show results for n= 200
and n= 1000. In Figure1B, only the LN-GD and GREG are presented, because the LN-GD, LG-MC1, LG-MC2, and LG-GD
curves were indistinguishable.

In the three figures, the logistic general difference estimator (LG-GD) is generally the poorest performer relative to
the 𝜋-estimator. Regardless of the size of the correlation between the log failure time, ln(T), and the covariate, Z, LN-GD
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T A B L E 2 Simulated percent reduction of RMSE relative to the 𝜋-estimator: lognormal population, N = 100 000; n= 200; L= 10 000

T A B L E 3 Simulated percent reduction of RMSE relative to the 𝜋-estimator: lognormal population, N=100 000; n=1000; L=10 000

is the best or nearly best performer. The RMSE reduction for LN-GD increases as pN(t) and 𝜌 increase. Although there
are cases where the logistic models reduce the RMSE slightly, estimators based on the underlying lognormal model
are generally more efficient. In particular, the LN-GD estimator performs best because it correctly models pN(t). (This
is also true for the model-calibrated estimators, LN-MC1 and LN-MC2, not shown in the figures.) The LG estimators
are inferior because they use the wrong model for pN(t)—a problem that is especially clear for the smaller values of 𝜌.
Although the GREG is reasonably efficient compared to LN-GD, it is limited by requiring that the model for pN (t) must be
linear.

As noted at the beginning of this section, the ratios of the variance estimators to the empirical variance and the cover-
age of the 95% normal approximation confidence intervals were also evaluated. In all cases, the variance estimators were
approximately unbiased and the confidence intervals covered at the desired rate. Thus, we do not report the details here.

4 NURSES’ HEALTH STUDY APPLICATION

To test the estimators on a real population, we used data from the Nurses’ Heath Study (NHS).35 We estimate the pro-
portion of a population who have experienced death using only a sample of the population. A subset of the nurses’ data
serves as a simulation population that uses the same estimators and evaluation criteria as in Section 3. We do not attempt
to make estimates for the full population of nurses.

4.1 About the nurses’ health study

The NHS is based on a panel of over 120 000 female nurses that has been followed since the mid-1970s. Originally, the
NHS focused on the long-term effects of oral contraceptives. Although this is still a main focus of the NHS, the NHS now
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F I G U R E 1 Percent reduction in RMSE as a function of pN (t): lognormal population, 𝜌 = 0.8, 25% censoring. A, n= 200. B, n= 1000 (In
B, only LN-GD and GREG are presented, because the LN-GD, LG-MC1, LG-MC2, and LG-GD curves were indistinguishable.) [Colour figure
can be viewed at wileyonlinelibrary.com]

F I G U R E 2 Percent reduction in RMSE as a function of pN (t): Lognormal population, 𝜌 = 0.6, 25% censoring. A, n= 200. B, n= 1000
[Colour figure can be viewed at wileyonlinelibrary.com]

also focuses on smoking, cancer, and heart disease. It asks about lifestyle factors, such as nutrition and quality of life and
also collects information on more than 30 diseases.

The target population for the NHS is female registered nurses in the 11 most populated states who were married and
ages 30-55 in 1976. The frame was constructed using membership roles from nursing boards who agreed to participate
in the NHS. In 1976, the 238 026 nurses on the frame were mailed an initial questionnaire. Of these, 121 700 nurses
returned a completed questionnaire and were enrolled in the study. Every other year since 1976, study participants have
received a follow-up questionnaire to collect information about disease and health-related topics. In addition, biological
samples have been collected from subsamples of the panel. More information about the NHS can be found at http://www.
nurseshealthstudy.org.

4.2 Finite population creation

The finite population used in this application is a subset of the NHS population. The population is similar to other stud-
ies that used time-to-event models to study the incidence of lung disease (see Bain et al36 and Lee et al37). This extract

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://www.nurseshealthstudy.org
http://www.nurseshealthstudy.org


REIST and VALLIANT 4363

F I G U R E 3 Percent reduction in RMSE as a function of pN (t): Lognormal population, 𝜌 = 0.4, 25% censoring. A, n= 200. B, n= 1000
[Colour figure can be viewed at wileyonlinelibrary.com]

contained information from 1986 through 2012. To be eligible for the population, a panel participant had to meet the
following criteria:

• Alive in 1986,
• Not diagnosed with cancer prior to 1986 (with the exception of non-melanoma skin cancer),
• Known smoking status in 1986,
• Known pack years in 1986,
• Known body mass index (BMI) for at least one year during 1986 to 2012.

Pack years is calculated by multiplying the packs of cigarettes smoked per day for a year’s time by the number of years
that a person smoked. One pack year is equal to smoking 20 cigarettes per day for one year. BMI is equal to a person’s
weight in kilograms divided by the square of the person’s height in meters. These restrictions resulted in a finite population
of 103 878 nurses. The following variables were retained on the file:

• Death indicator (died between 1986 and 2012);
• Age at death (in years, to the tenth of a year);
• Age in 1986 (in years, to the tenth of a year);
• BMI for every observation between 1986 and 2012 (based on height reported in 1976);
• Smoking status in 1986 (Current Smoker, Past Smoker, Never Smoked);
• Pack years smoked as of 1986.

The following variables were derived from these variables:

• BMI in 1986, where missing values of BMI were imputed using the BMI closest to 1986 that was observed;
• A six level classification of BMI (Underweight, Normal, Overweight, Class 1 Obesity, Class 2 Obesity, Class 3

Obesity);
• A four level classification of BMI, which groups all three levels of obesity into one category (Underweight, Normal,

Overweight, Obese);
• A three level classification of age in 1986 (<50, 50 to 60, >60);
• Years to death after 1986 calculated to the tenth of a year (with a value of 26 if alive in 2012).

http://wileyonlinelibrary.com
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Alive Deceased Total

Status in 1986 Count % Count % Count %

Never Smoked 37 789 80.0 9445 20.0 47 234 100

Current Smoker 13 698 61.8 8463 38.2 22 161 100

Past Smoker 26 277 76.2 8206 23.8 34 483 100

All nurses 77 764 74.9 26 114 25.1 103 878 100

T A B L E 4 Smoking status by death
indicator: counts and row percentages (as
of 2012)

Alive Deceased

Age in 1986 Count % Count %

<50 36 077 91.1 3531 8.9

50-60 31 286 61.8 11 243 26.4

>60 10 401 47.8 11 349 52.2

T A B L E 5 Age group by death indicator: counts and row
percentages (as of 2012)

Alive Deceased

BMI in 1986 Classification Count % Count %

<18.5 Underweight 816 56.8 621 43.2

18.5-24.9 Normal Weight 42 302 77.8 12 079 22.2

25.0-29.5 Overweight 22 991 74.1 8043 25.9

30.0-34.9 Class 1 Obesity 8133 70.6 3392 29.4

35.0-39.9 Class 2 Obesity 2532 66.2 1292 33.8

≥ 40.0 Class 3 Obesity 990 59.0 687 41.0

T A B L E 6 Six-level BMI by death
indicator: counts and row percentages (as of
2012)

4.3 Sample design

Two stratified simple random sample designs were used in this simulation study. The first had three strata based on the
three levels of smoking status. The second had 36 strata formed by crossing smoking status, 3-level age group, and 4-level
BMI. Both of these designs used strata that are related to death, with the 36 strata design expected to be more effective
in reducing variance for estimates of the proportion of persons experiencing the event. Tables 4 to 6 show the counts and
row percentages of smoking status, age group, and six level BMI—all in 1986—crossed with the death-by-2012 indicator
in the finite population.

For all three tables, the chi-squared test of independence rejected the null hypothesis of independence for 𝛼 = 0.01.
The finite population sample size was large, meaning that very small differences could be detected. However, there is
variation in the percentage of nurses who have died across subgroups, which suggests that these variables do have some
value in predicting death by 2012 and, thus, also time to death.

Two sample sizes were used to mimic the simulation study in Section 3. For each sample design, samples of 216
and 1008 were selected. These total samples were allocated equally to each of the strata. For example, for the case of
36 strata and the total sample size of 216, simple random samples of 6 persons were selected without replacement from
each stratum. For the total sample size of 1008, 28 persons were selected from each of the 36 strata. This design creates
sampling weights, di, that vary among strata.

4.4 Model development

As with the simulation study in Section 3, five different models were fit to estimate the proportion of the population
who had died at or before time t, which in this study was the year 2012 or 26 years after the recruitment of the nurses
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F I G U R E 4 Pack years by death indicator

population. The five models were a linear model, logistic model, Weibull model, lognormal model, and semiparametric
proportional hazards model. All five models were fit using the same set of predictor variables: smoking status, continuous
BMI, BMI squared, continuous age, pack years, and pack years squared. The squared term for BMI was used to account
for the fact that both small and large values of BMI result in higher risk of death. In an attempt to reduce collinearity
between BMI and BMI squared, mean BMI was subtracted from BMI before it was squared.

The box plot of pack years is displayed in Figure 4. This box plot shows that death generally seems more likely among
nurses with more pack years by 1986. A squared term was introduced, because in similar studies, it was thought that an
increase in smoking has a negative effect on time to death, but this effect moderates for higher levels of pack years.37 As
with BMI squared, mean pack years was subtracted from pack years before it was squared to reduce collinearity between
pack years and pack years squared.

4.5 Results

A total of 10 000 samples were drawn for each of the four sample design-sample size combinations. The same estimators
as in Section 3 were used here to estimate the percentage of the population that had died by the end of 2012, that is,
pN(26)≈ 0.25. Table 7 shows the results using the same five metrics as in Section 3.4 for each estimator and sample
design-sample size combination.

All of the estimators were approximately unbiased. (See the rows in Table 7 for %RB.) (Note that the RBs in this
application were much smaller that those in Wu and Sitter,10 who reported RBs as high as 5.71% in a different population.)
Because all estimators were essentially unbiased, the RMSEs and standard errors are nearly equal. Thus, selection of an
estimator can be based on RMSE and confidence interval coverage, at least in this application.

The RMSE performance of the nine time-to-event model-based estimators was similar. (See the rows in Table 7 for
ΔRMSE.) Therefore, for simplicity, only the LN-GD is compared in this discussion to the other methods when examin-
ing efficiency. Figure 5 shows the percent reduction in RMSE of each of the estimators compared to the 𝜋-estimator.
Negative values mean that an estimator had a larger RMSE than the 𝜋-estimator. The LN-GD and GREG outperformed
the estimators based on logistic models for every condition. The LG-GD estimator had significantly larger RMSEs than
the 𝜋-estimator. Similar to Section 3 simulation study, the LG-MC2 slightly under-performed the 𝜋-estimator for two
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F I G U R E 5 Nurses population: simulated
percent reduction of RMSE relative to the
𝜋-estimator by sample size and number of strata
[Colour figure can be viewed at
wileyonlinelibrary.com]

T A B L E 7 Nurses’ Health Study simulation results for two sample designs: (3 strata, n= 216) and (36 strata, n= 1008)

combinations (3 or 36 strata, n= 216) and had little if any gains for the other combinations. This finding is also in contrast
to those of Wu and Sitter.10

Figure 5 shows the importance of number of strata on the LN-GD and the GREG. For both estimators, the per-
cent reduction in RMSE relative to the 𝜋-estimator for samples with three strata is four times larger than the RMSE
for samples with 36 strata. Although this may seem counterintuitive, there are two explanations for it. First, an equal
allocation is likely not optimal for predicting death. Second, the 3-strata design uses covariates in estimates that are
some of the same as those used to form the 36 strata. Hence, for the GREG and LN-GD to see significant reduc-
tions in RMSE in the 36-strata design, either a more efficient allocation would be needed or covariates would need
to be used that are not in the sample design. In the 36 strata design, BMI, age, and smoking status were used to
define the strata. Besides the fact that continuous versions of BMI and age were used in the model, pack years was
the only new information. In the 3-strata design, only smoking status was used to define the strata. This means
that BMI, age, and pack years were all providing new information to the estimators that was not part of the sample
design.

Table 7 shows that when n= 1008 the VRs were close to 1 for all of the estimators. Although not reported there, this was
also the case for the simulations in Section 3 and tells us that on average the asymptotic variance estimator was unbiased
for the empirical variance of the estimator. Additionally, the simulated 95% confidence interval provided approximately
nominal coverage, especially at the larger sample size.

http://wileyonlinelibrary.com
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T A B L E 8 Number of samples out of 10 000 where the model calibrated
logistic estimate was greater than 1 or less than 0 in the NHS simulation

n Strata LG-MC1 LG-MC2

216 3 146 146

216 36 81 81

1008 3 12 12

1008 36 6 6

4.6 Computational problems with the model calibrated logistic estimators

Finally, it is worth noting that fitting logistic models to estimate pN(t) can lead to computational problems in small sam-
ples. This was due to the separation phenomenon, which is well known.38 In both Section 3 simulation and the nurses
simulation, the LG-MC1 and LG-MC2 had some simulated samples that were excluded from analysis, because p̂(t) was
less than 0 or greater than 1. This affected only a small proportion of the samples. This issue did not affect any of the
time-to-event model-based MCEs. Table 8 shows the number of samples thrown out for each set of conditions in the
NHS study. The problems with the logistic model-calibrated approach are caused by some combinations of covariates all
having the event or not having the event. The fitting alogrithm sends one or more of the parameter estimates to ±∞. A
potential fix is to combine levels of factors to create combinations where there is a mixture of events and nonevents.

The number of samples excluded was influenced by number of strata and sample size. A smaller sample size and fewer
strata resulted in more excluded simulates, that is, a less efficient design resulted in more samples being excluded. The
most severe problem was with n= 216 and 3 strata, where 146 (or 1.46%) of the samples could not be included. Although
this computational problem was rare, the fact that it happened at all is another reason not to use a logistic time-to-event
model paired with the MCEs, LG-MC1 and LG-MC2, to estimate pN (t).

5 CONCLUSION

This article introduced GDE and MCEs of failure probabilities using time-to-event models for the failure rates of individ-
ual cases. The new point estimators, which make use of covariates, and their variance estimators are design-consistent
whether the time-to-event model is correctly specified or not. If the time-to-event model is correct, then the estimators
are doubly robust. Two simulation studies showed that, for all of the conditions tested, the time-to-event based GDEs and
MCEs performed as well, if not better, than the survey-weighted failure estimator that ignores covariates and a general
regression estimator based on a linear model that incorporates the same covariates. However, in small samples, the esti-
mators are more sensitive to the choice of time-to-event model. A logistic model, in particular, can cause computational
problems while lognormal, Weibull, and proportional hazards models did not. In the nurses simulation, the logistic-based
estimators performed poorly under every condition with the smaller sample size, where the logistic general difference
(LG-GD) estimator had RMSEs that were noticeably higher than those of the 𝜋-estimator. In the nurses population, a
logistic model is a poorer approximation than the lognormal to pN(t), the proportion of the population that experiences
an event at or before time t. Considering their statistical inefficiency and computational issues, it is clear that estimators
based on a logistic time-to-event model will not be a good choice for some datasets.

The time-to-event MCE did not perform better than the GDE, even when the relationship between the predictor Z
and ln(T) was weak. This is contrary to the results in Wu and Sitter,10 who did not study time-dependent events. In their
study, MCE outperformed GDE for all values of the correlation between a covariate and an analysis variable. In our study,
reductions in RMSE, compared to that of the 𝜋-estimator, were positively correlated with pN(t), which is consistent with
the results in Wu and Sitter.

An important practical finding from the nurses’ data simulation is that the time-to-event based GDEs and MCEs
performed particularly well, compared to the basic survey-weighted 𝜋-estimator, when model information was not also
used in the sample design. Therefore, these estimators will perform best when covariates are available that are both
predictive of the time-to-event and not used in the sample design. This might occur if good covariate information is not
available at the time of data collection but is available afterwards, or if the sample is not specifically designed to estimate
times to events. For example, when covariate information is obtained from administrative records, the lag time between
the survey data collection and the acquisition, preparation, and linking of administrative data can be lengthy. Another
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example is a longitudinal survey where the sample is drawn at the beginning of a panel and covariates are collected
sometime after the panel is originally fielded as in the HRS or the PSID.

Additional work can be done in applying survival models to complex survey data. Although we covered only
single-stage sampling, the theory can be extended to multistage sampling using standard methods in Fuller.28 Multistage
sampling is used in many household surveys like the HRS and PSID and will affect the form of variance estimators. The
variance estimator presented here did perform well in simulations, but it does treat the estimated failure rate, p̂(t), at a
particular time t as fixed when it, in fact, is estimated. Theoretical and empirical work is needed to determine whether
replication estimators, like the bootstrap, can reflect this extra source of variation and would be preferable, especially in
multistage samples. Adapting existing diagnostics or developing new ones for assessing model fit when using survey data
is another important area for research. Finally, work is needed on additional time-to-event models. Threshold regression
models, in particular, have been shown to have advantages when a proportional hazard assumption is incorrect.
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APPENDIX

Proof of Theorem 1. Since Equation (9) can be rewritten as

p̂GD(t) = p̂𝜋(t) + N−1

( N∑
i=1

p(t|xi, �̂�) −
∑
i∈s

dip(t|xi, �̂�)

)
,

and p̂𝜋(t) is design-consistent, it suffices to show that(
N−1

N∑
i=1

p(t|xi, �̂�) − N−1
∑
i∈s

dip(t|xi, �̂�)

)
= Op(n−1∕2).

Using assumptions (i) and (ii) and applying a Taylor series approximation to p(t|xi, �̂�) at �̂� = 𝜽N , we get

https://drum.lib.umd.edu/handle/1903/20303
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https://doi.org/10.1093/biomet/71.1.1
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p(t|xi, �̂�) = p(t|xi,𝜽N) +
[
𝜕p(t|xi, 𝜸)

𝜕𝜸
|𝜽∗]T

(�̂� − 𝜽N), (A1)

where 𝜽∗ ∈ (�̂�,𝜽N) or (𝜽N , �̂�). Now by Equation (A1) and assumptions (i) and (ii),

N−1
N∑

i=1
p(t|xi, �̂�) = N−1

N∑
i=1

p(t|xi,𝜽N) + Op(n−1∕2), (A2)

and

N−1
∑
i∈s

dip(t|xi, �̂�) = N−1
∑
i∈s

dip(t|xi,𝜽N) + Op(n−1∕2). (A3)

Note that because of condition (iii)

N−1
N∑

i=1
p(t|xi,𝜽N) − N−1

∑
i∈s

dip(t|xi,𝜽N) = Op(n−1∕2). (A4)

Now, by putting together Equations (A2), (A3), and (A4), we get

N−1
N∑

i=1
p(t|xi, �̂�) − N−1

∑
i∈s

dip(t|xi, �̂�) = Op(n−1∕2), (A5)

as desired. ▪

Proof of Theorem 2. Using assumptions (i), (ii), (iv) and applying a Taylor series second order approximation to p(t|xi, �̂�)
at �̂� = 𝜽N , we get

p(t|xi, �̂�) = p(t|xi,𝜽N) +
[
𝜕p(t|xi, 𝜸)

𝜕𝜸
|𝜽∗]T

(�̂� − 𝜽N) +
1
2
(�̂� − 𝜽N)T

[
𝜕2p(t|xi, 𝜸)
𝜕𝜸𝜕𝜸T |𝜽∗] (�̂� − 𝜽N), (A6)

where 𝜽∗ ∈ (�̂�,𝜽N) or (𝜽N , �̂�) and
[
𝜕2p(t|xi,𝜸)
𝜕𝜸𝜕𝜸T |𝜽∗] is the p× p matrix of second derivatives evaluated at 𝜽∗. Now, by Equation

(A6) and assumption (iv),

N−1
N∑

i=1
p(t|xi, �̂�) = N−1

N∑
i=1

p(t|xi,𝜽N) +

{
N−1

N∑
i=1

𝜕p(t|xi, 𝜸)
𝜕𝜸

|𝜽∗
}T

(�̂� − 𝜽N) + Op(n−1), (A7)

and

N−1
∑
i∈s

dip(t|xi, �̂�) = N−1
∑
i∈s

dip(t|xi,𝜽N) +

{
N−1

∑
i∈s

di
𝜕p(t|xi, 𝜸)

𝜕𝜸
|𝜽∗

}T

(�̂� − 𝜽N) + Op(n−1). (A8)

By assumptions (i) and (iii), we have{
N−1

N∑
i=1

𝜕p(t|xi, 𝜸)
𝜕𝜸

|𝜽∗
}

−

{
N−1

∑
i∈s

di
𝜕p(t|xi, 𝜸)

𝜕𝜸
|𝜽∗

}
= Op(n−1∕2). (A9)

Therefore, by subtracting Equation (A8) from Equation (A7), and using assumption (i) that (�̂� − 𝜽N) = Op(n−1∕2), we get

N−1
N∑

i=1
p(t|xi, �̂�) − N−1

∑
i∈s

dip(t|xi, �̂�) = N−1
N∑

i=1
p(t|xi,𝜽N) − N−1

∑
i∈s

dip(t|xi,𝜽N) + Op(n−1). (A10)
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Using Theorem 1 and Equation (A10) to replace �̂� with 𝜽N in p̂GD(t) gives

p̂GD(t) = p̂𝜋(t) +

(
N−1

N∑
i=1

p(t|xi,𝜽N) − N−1
∑
i∈s

dip(t|xi,𝜽N)

)
+ Op(n−1∕2)

= N−1
N∑

i=1
p(t|xi,𝜽N) + N−1

∑
i∈s

di[I{Ti≤t} − p(t|xi,𝜽N)] + Op(n−1∕2). (A11)

Finally, by noticing that N−1 ∑N
i=1 p(t|xi,𝜽N) is constant, the asymptotic variance of p̂GD(t) is the asymptotic variance of the

𝜋-estimator of the population total of the ei = I{Ti≤t} − p(t|xi,𝜽N). It now follows that the asymptotic variance estimator
of p̂GD(t) is the asymptotic variance estimator evaluated using the êi = I{Ti≤t} − p(t|xi, �̂�). The design-based formula for
whatever sample design was used then applies for estimating the design-variance of N−1∑

i∈sdi[I{Ti≤t} − p(t|xi, �̂�)], which
is an estimated total (eg, see Cochran, sec. 9.1439) for the formula used in Theorem 2. ▪

The case in which an estimator, N̂ =
∑

sdi, is used in the general difference estimator can be handled by using
approximations similar to those above. We sketch the result here for p̂∗

GD(t) = (N∕N̂)p̂GD(t). To simplify notation, we use
Ii(t) = I{Ti≤t}, pi(t) = p(t|xi, 𝛉), and p̂i(t) = p(t|xi, �̂�). Using first order Taylor series approximations gives

p̂∗
GD(t) = (N∕N̂)p̂𝜋(t) + N̂−1

( N∑
i=1

p̂i(t) −
∑
i∈s

dip̂i(t)

)

= pN(t) + N−1
∑
i∈s

di(Ii(t) − pN(t)) + N−1

( N∑
i=1

pi(t) −
∑
i∈s

dipi(t)

)
+ Op(n−1) (A12)

The second and third terms in (A12) converge in probability to 0, leading to p̂∗
GD(t) being consistent. By rearrang-

ing (A12), the design-variance is approximately equal to V(p̂∗
GD(t)) =̇ V

(∑
i∈sdizi

)
where zi = ei − pN(t). This variance can

be estimated using an estimator appropriate to the sample design that has been used.


