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Summary

We develop model-assisted estimators for complex survey data for the proportion
of a population that experienced some event by a specified time t. Theory for the
new estimators uses time-to-event models as the underlying framework but have both
good model-based and design-based properties. The estimators are compared in a
simulation to traditional survey estimation methods and are also applied to a study
of nurses’ health. The new estimators take advantage of covariates predictive of the
event and reduce standard errors compared to conventional alternatives.
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1 INTRODUCTION

We use time-to-event models to develop model-assisted estimators for complex survey data that can be used to estimate the
proportion of the population that have experienced an event by some time t. Such models are staples of survival analysis
in medical studies. Many complex surveys also collect the time at which a sampled unit experiences a given event. As an
example, consider the National Longitudinal Study of 1972 conducted by the US National Center for Education Statistics
(https://nces.ed.gov/surveys/nls72/), which surveyed a nationally representative sample of high school 12th graders. One item
collected during follow-up interviews was the date after graduation at which each respondent was hired for his or her first full-
time job. From this, we can estimate the proportion of people who were 12th graders in 1972 and were hired within five years
of graduation. Another example is the Survey of Income and Program Participation (SIPP), which measures how long individu-
als participate in various government assistance programs like Medicaid, Supplemental Nutrition Assistance Program (SNAP),
Housing Assistance, Supplemental Security Income (SSI), and Temporary Assistance for Needy Families (TANF)1. The Panel
Study of Income Dynamics (PSID, https://psidonline.isr.umich.edu/), conducted by the University of Michigan, is another longi-
tudinal survey that has collected data since 1968 on health, employment, income, wealth, expenditures, marriage, childbearing,
child development, philanthropy, and education. The Health and Retirement Study (HRS, http://hrsonline.isr.umich.edu/) is
also a large longitudinal, panel survey done by the University of Michigan to collect data on health status, aging, income, and
biomarkers. Many different endpoints can be derived from both PSID and HRS that can be used in time-to-event modeling.
We assume that a single-stage probability sample has been selected. The size of the finite population isN , s is the set of units

sampled from the population, �i is the probability of selection for unit i, and the basic weight assigned to unit i is di = �−1i .
The proportion of a given population that has experienced an event by time t is pN (t) = N−1∑N

i=1 I{Ti≤t} where Ti is the time
at which the event happened for unit i and I{⋅} is the indicator function. The population proportion pN (t) can also be thought
of as a type of cumulative distribution function. This proportion can be estimated using a �-estimator as follows:

p̂�(t) = N−1
∑

i∈s
diI{Ti≤t}. (1)
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We assume that the survey closes out before all units have experienced a given event, i.e., Ti is only observed for Ti ≤ to where to
is the time at which the survey ends. This means that Ti is right censored for units for which Ti > to, in which case the �-estimator
will not correctly estimate pN (t) for t > to. Additionally this estimator cannot be used if any units are censored before time t.
Although research on survival analysis is abundant, literature for estimating survival models from complex survey data ismuch

more limited. Binder2 studied point and design-based variance estimation of the regression parameter in a Cox proportional
hazards model using data from a complex survey. Lin3 formalized the theory for some of Binder’s heuristic results. Boudreau
and Lawless4 extended work on the Cox model to stratified, cluster sampling. There has been work in the case control literature
for accelerated failure time models by Kong et al.5, Kong and Cai6, and Chiou et al.7,8 for simple random samples, stratified
simple random samples, and stratified simple random cluster samples. These methods use superpopulation models to develop
theory and not the design-based approach we take here. Finally, we note that Heeringa, et al.9 reviewed some of the software
options available for survival analysis from survey data, including Kaplan-Meier estimation.
We propose estimators of the cumulative distribution of event times while accounting for the right-censoring and for complex

survey designs that are used in data collection. In the remainder of this section, we briefly review some options for model-
assisted estimation in finite populations for cross-sectional data (i.e., non-time-to-event data) and time-to-event estimation for
non-survey data. The ideas of finite population model-assistance and time-to-event modeling will be combined to produce the
estimators studied here.

1.1 Model-Assisted Estimation in Finite Populations
There are a variety of model-assisted estimators in the survey literature, including generalized regression estimators (GREG),
calibration estimators, general difference estimators (GDE), and model calibrated estimators (MCE). Model-assisted estimators
of finite population means and totals are motivated by the model

E[yi ∣ xi] = �(xi, �), V [yi ∣ xi] = vi�2 (2)

where xi is a p-vector of covariates for unit i, � is a parameter vector, �(xi, �) is the mean of yi given the covariates, �2 is a
variance parameter, and vi is a scaling factor that can vary among the units. The form of the function � is assumed to be known.
Wu and Sitter10 define the GDE for the population mean of variable yi as follows:

̂̄YGD = N−1

( N
∑

i=1
�(xi, �̂) +

∑

i∈s

1
�i

[

yi − �(xi, �̂)
]

)

, (3)

where N is the size of the population and �(xi, �̂) is the model prediction for yi based on xi found by inserting an estimator of
�. For use below, define X =

∑N
i=1 xi to be the vector of population totals of the covariates. If �(xi, �̂) = xTi �̂, then

̂̄YGD is the
classic GREG of Särndal, Swensson, and Wretman11. The GDE has the advantage in being more flexible than the GREG in
accommodating more realistic models for binary and ordinal categorical variables. Its computational disadvantage for nonlinear
models is that the individual values of covariates must be known for all units in the population to evaluate each �(xi, �̂).
Another estimator proposed by Wu and Sitter10 is the MCE. This estimator is based on the traditional calibration estimator

of Deville and Särndal12. The general form of a calibration estimator is ̂̄YCal = N−1∑
i∈swiyi where wi satisfies the constraint

∑

i∈swixi = Xwhile minimizing the average deviation of the calibration weightswi from design weights di under some distance
metric Φs. A common distance metric is the chi-squared distance measure:

Φs =
∑

i∈s

(

wi − di
)2

diqi

for some set of known qi’s which are independent of di. This distance measure results in ̂̄YCal being the GREG:

̂̄YGREG = ̂̄Y� +N−1
(

X − X̂�
)T
B̂, (4)

where X̂� =
∑

i∈s dixi and B̂ =
[
∑

i∈s diqixixTi
]−1∑

i∈s diqixiyi.
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The MCE is derived by finding the set of weights {wi}i∈s that satisfy the constraints:
∑

i∈s
wi = N, (5)

∑

i∈s
wi�(xi, �̂) =

N
∑

i=1
�(xi, �̂). (6)

The MCE estimator of the mean is

̂̄YMC = ̂̄Y� +N−1

( N
∑

i=1
�(xi, �̂) −

∑

i∈s
di�(xi, �̂)

)

B̂N , (7)

with

B̂N =

∑

i∈s diqi
(

�(xi, �̂) − �̄
)

(

yi − ȳ
)

∑

i∈s diqi
(

�(xi, �̂) − �̄
)2

,

where ̂̄Y� = N−1∑
i∈s diyi, ȳ =

∑

i∈s diqiyi∕
∑

i∈s diqi and �̄ =
∑

i∈s diqi�(xi, �̂)∕
∑

i∈s diqi. Wu and Sitter also consider a MCE
without the constraint (5). This new estimator ̂̄Y ∗MC replaces B̂ with

B̂∗N =
∑

i∈s diqi�(xi, �̂)yi
∑

i∈s diqi
(

�(xi, �̂)
)2
.

The GDE is a special case of MCE where B̂N = 1.
In simple random sampling without replacement (srswor), both ̂̄YGD and ̂̄YMC are design consistent in the sense that, as the

sample size increases, the difference between the estimator of the mean and the population mean converges in probability to
zero. This design-based property holds regardless of whether the model for y is specified correctly. Kennel13 extended Wu and
Sitter’s srswor theory to multistage complex samples. Both estimators are also approximately model-unbiased in the sense that
EM

(

̂̄Y − ȲU
)

≈ 0 where ȲU is the population mean and EM denotes expectation with respect to model (2) if the working
model is correctly specified. Thus, the GDE and MCE are doubly robust as in Robins, et. al14 and Kang and Schafer15.

1.2 Time-to-Event Models
There are a number of time-to-event models, including proportional hazard models (PHM)16, accelerated failure time models
(AFTM)17,18,19, and threshold regression models (TRM)20,21. We will cover only PHMs, although the theoretical results in
Theorems 1 and 2 below do apply when a TRM is used to estimate p (t ∣ x, �) (see Reist22).

1.2.1 Estimating pN (t ∣ x)
A standard use of time-to-event models is to predict the failure probability for an individual at some time t given a vector of
covariates x. PHMs model time-to-event data through the hazard function �(t ∣ x, �). The failure probability is p (t ∣ x, �) =
1 − S(t ∣ x, �) where S(t ∣ x, �) = exp(−Λ(t ∣ x, �)) is the survival function with Λ(t ∣ x, �) = ∫ t

0 �(t ∣ x, �). The quantity
p(t ∣ x, �) can be estimated as follows:

p(t ∣ �̂, x) = 1 − exp
⎛

⎜

⎜

⎝

−

t

∫
0

�(t ∣ �̂, x)dt
⎞

⎟

⎟

⎠

.

with �̂ being an estimator of �. Both parametric and semiparametric PHMs are considered below.
The hazard function in a proportional hazards model is defined as

� (t ∣ x, �) = �0 (t) g
(

�T x
)

,

where �0(t) is the baseline hazard when x = 0 and g(�T x) is a parametric function where g(0) = 1. When �0(t) also has a
parametric specification, the PHM is considered parametric. If �0(t) is left unspecified, then the PHM is considered semipara-
metric. PHMs can be fit using a traditional maximum likelihood estimation (MLE) framework if both �0 (t) and g

(

�T x
)

are
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parametric23. An example of a parametric hazard function for the PHM is the Weibull distribution specification:

� (t, x ∣ �) = �
g
(

�T x
)

[

t
g
(

�T x
)

]�−1

=
(

�t�−1
)

g
(

�T x
)−� ,

where � is known as the shape parameter 17. One common way of specifying g
(

�T x
)

in a proportional hazard context is to let
g
(

�T x
)

= exp(�T x)23.
The semiparametric Cox version of a PHM16 is one of the most widely used time-to-event models because of the flexibility

gained by not needing to specify the distribution of the baseline hazard. These models are fit using partial likelihood16,24.

1.2.2 Accelerated Failure Time Models (AFTMs)
One straightforward way to consider modeling the time-to-event T is to consider a log-linear formulation

ln (T ) = �T x + ��. (8)

A model that can be expressed in this form is called an AFTM because the effect of covariates is to accelerate or decelerate the
time-to-event17. Wei19 argues that AFTMs are easily interpreted since covariates have a direct effect on failure times.
Most of the commonly used parametric time-to-event models are AFTMs. The exponential, Weibull, log-normal, log-logistic,

gamma, inverse gaussian, and generalized gamma models are all AFTMs. For example, if � follows a logistic distribution, then
themodel in (8) becomes a log-logistic model17. Parametric AFTMs can be fit, under right censoring, using the same formulation
of the likelihood used for the parametric PHM.
Louis25 first developed a semiparametric formulation of the AFTM for a single treatment variable. Later Tsiatis26 and Wei19

generalized this to multiple treatments. Semiparametric AFTMs were put into a rank base inference framework by Jin27. In this
paper we cover only parametric AFTMs and exclude semiparametric models from the theory and simulations.

2 MODELS FOR SURVEY DATA

The standard MLE methods for estimating � will not be design consistent as defined in Fuller (Definition 1.3.1)28 because
they do not account for the way the sample was selected. Rather than maximizing a regular full or partial likelihood, pseudo
maximum likelihood estimation (PMLE) methods are used which consist of maximizing a survey-weighted likelihood (e.g., see
Binder29,2). In the context of survival data, the PMLE method has been used for the Weibull AFTM model30 and for TRMs31.
This section will review the adjustments that need to bemade to produce design consistent estimates for the time-to-event models
presented in Section 1.

2.1 Time-to-Event GDEs and MCEs
The combination of survival modeling and model-assisted estimation for finite populations can be used to construct GDE and
MCE estimators to estimate pN (t) for a given t ≤ to. The work of Wu and Sitter10 and Kennel13 can be used to construct GDE
and MCE estimators of pN (t) when general linear models (GLM) are used to model I{Ti≤t} or T . A GLM cannot be used to
predict T and estimate pN (t) with the empirical distribution function of the Ti’s if T is censored. Standard time-to-event models
such as a PHM can be used to develop GDEs and MCEs for predicting pN (t) for t ≤ to.
General difference estimators and model calibrated estimators can be constructed using the estimates of pN (t ∣ X) as follows:

p̂GD(t) = N−1

( N
∑

i=1
p(t ∣ xi, �̂) +

∑

i∈s
di
[

I{Ti≤t} − p(t ∣ xi, �̂)
]

)

(9)

and

p̂MC (t) = p̂�(t) +N−1

( N
∑

i=1
p(t ∣ xi, �̂) −

∑

i∈s
dip(t ∣ xi, �̂)

)

B̂, (10)

where options for B̂ are defined below. In (9) and (10), p(t ∣ xi, �̂) plays the role of �(xi, �̂) in (3) and (7). Although we consider
only the case of N known, in some special cases results can be extended to unknown N by using N̂ =

∑

i∈s di. The first term
in each of the GDE and MCE is a sum over all N units in the population and requires the covariate values for each individual
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unit. Suppose that strata can be formed based on combinations of the covariates so that every unit in a stratum has the same
values of the covariates and that the strata exhaust the population. If the population count of units in each stratum is either
known or estimated, then

∑N
i=1 p(t ∣ xi, �̂) can be evaluated without having a full population frame. Using estimates of N and

the stratum counts does complicate variance estimation, although replication is one approach for reflecting uncertainty due to
using estimated population counts.
Two alternatives for B̂ will be considered which are adapted from Wu and Sitter. The first is derived subject to the following

constraints:
∑

i∈s
wi = N, and (11)

∑

i∈s
wip(t ∣ xi, �̂) =

N
∑

i=1
p(t ∣ xi, �̂). (12)

and is equal to

B̂ =

∑

i∈s di
(

p(t ∣ xi, �̂) − p̄
)

(

I{Ti≤t} − Ī
)

∑

i∈s di
(

p(t ∣ xi, �̂) − p̄
)2

, (13)

where Ī =
∑

i∈s diI{Ti≤t}
/
∑

i∈s di, and p̄ =
∑

i∈s dip(t ∣ xi, �̂)
/
∑

i∈s di. The second adjustment, B̂∗, which can also be used in
(10), is derived subject to only constraint (12) and can be calculated as

B̂∗ =
∑

i∈s dip(t ∣ xi, �̂)I{Ti≤t}
∑

i∈s di
(

p(t ∣ xi, �̂)
)2

. (14)

The asymptotic variances of p̂GD(t) and p̂MC (t) and their estimators of variance are presented in Theorem 2 below.

2.2 Theoretical Results
This section provides asymptotic results for both the p̂GD(t) and p̂MC (t) estimators and their respective variance estimators, where
the underlying model is a time-to-event model. Specifically, results are shown for parametric and semiparametric PHMs. For
the semiparametric PHMs, the case is addressed where the baseline hazard is estimated using a Breslow type estimator32,33,34.
Both p̂GD(t) and p̂MC (t) are design consistent as shown below, and estimators of asymptotic variances are presented that are
design consistent.

2.2.1 Design Consistency of p̂GD(t) and p̂MC(t)
To prove design consistency of p̂GD(t) for a fixed t, the same asymptotic formulation is used as in Fuller28 in which both the
population and sample size become large. Consider a sequence of populations indexed by j in which both the sample size nj
and the population size Nj approach infinity as j → ∞. To simplify the notation, we omit the subscript j below and in the
Appendix. The following conditions are assumed to hold:

(i) �̂ = �N + Op
(

n−1∕2
)

and �N → �, where �̂ is the PMLE of �, �N is the finite population value of the parameter, and � is
its underlying constant value;

(ii) )p(t ∣ xi, 
)∕)
, is continuous in 
 where 
 is in a neighborhood of �. |)p(t ∣ xi, 
)∕)
| ≤ c1
(

xi, �
)

, a constant, for all
values 
 in a neighborhood of �; andN−1∑N

i=1 c1
(

xi, �
)

= O(1).

(iii) The �-estimators (divided byN) for certain population means are asymptotically normally distributed.

Theorem 1. If p̂GD(t) is constructed using a time-to-event model and (i)-(iii) hold, then for a fixed time t

p̂GD(t) = p̂�(t) + Op
(

n−1∕2
)

,

where p̂�(t) is the �-estimator in (1) of the finite population proportion pN (t). Thus, p̂GD(t) is design consistent since p̂�(t) is.

The proof is in the Appendix. Note that p̂GD(t) is a special case of p̂MC (t), where B̂N = 1. Because of this, Theorem 1 can be
generalized to show that p̂MC (t), which uses B̂, and p̂∗MC (t), which uses B̂∗, are design consistent by noting that B̂ and B̂∗ are
both Op(1) and that p̂�(t) is design consistent.
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2.2.2 Design Consistency of V̂ [p̂GD(t)] and V̂ [p̂MC(t)]
To show design consistency of the variance estimators below an additional condition is necessary :

(iv) )2p(t ∣ xi, 
)∕)
)
′ is continuous in 
 for each xi, |)2p(t ∣ xi, 
)∕)
)
′| ≤ c2
(

xi, �
)

, a constant, andN−1∑N
i=1 c2

(

xi, �
)

=
O(1).

Theorem 2. If p̂GD(t) is constructed using a time-to-event model where (i)-(iv) hold, then for a fixed time t, the approximate
design variance estimator of p̂GD(t) is

V
(

p̂GD(t)
)

=̇N−2
N
∑

j

N
∑

i<j

(

�i�j − �ij
)

(

ei
�i
−
ej
�j

)2

, (15)

where �ij is the joint probability of selecting the itℎ and jtℎ units and ei = I{Ti≤t} − p(t ∣ xi, �N ). This can be estimated by

V̂
(

p̂GD(t)
)

=N−2
∑

j∈s

∑

i<j∈s

(�i�j − �ij
�ij

)(

êi
�i
−
êj
�j

)2

, (16)

where êi = I{Ti≤t} − p(t ∣ xi, �̂).

The proof is in the Appendix. Further, Theorem 2 can be generalized to V̂
(

p̂MC (t)
)

by noting that B̂ = BN + op(1) and
B̂∗ = BN + op(1) and substituting I{Ti≤t} − p

(

t ∣ xi, �N
)

BN for ei in the variance formula and I{Ti≤t} − p
(

t ∣ xi, �̂
)

B̂ or

I{Ti≤t} − p
(

t ∣ xi, �̂
)

B̂∗ into the variance estimator for êi.
In the special case of stratified simple random sampling without replacement used in the simulation study in section 3 the

design variance and its estimator can be simplified. Let ℎ = 1,… ,H index the strata, Nℎ be the population count of units in
stratum ℎ, andWℎ = Nℎ∕N . The variance of p̂GD(t) and its estimator are then

V
(

p̂GD(t)
)

=
H
∑

ℎ=1
W 2
ℎ

(

1 − fℎ
)

S2ℎe∕nℎ

V̂
(

p̂GD(t)
)

=
H
∑

ℎ=1
W 2
ℎ

(

1 − fℎ
)

Ŝ2ℎe∕nℎ (17)

where nℎ is the sample size in stratum ℎ, fℎ = nn∕Nℎ is the proportion of the units in stratum ℎ that are in the sample, S2ℎe =
(Nℎ−1)−1

∑Nℎ
i=1(eℎi− ēℎ)

2, eℎi = I{Tℎi≤t}−p
(

t ∣ xℎi, �N
)

, Tℎi is the event time for individual hi, and xℎi is the vector of covariates
for individual hi. The other terms are ēℎ = N−1

ℎ
∑Nℎ
i=1 eℎi, Ŝ

2
ℎe = (nℎ − 1)

−1∑nℎ
i=1(êℎi − ̂̄eℎs)2 with êℎi = I{Tℎi≤t} − p

(

t ∣ xℎi, �̂
)

,
and ̂̄eℎs = n−1ℎ

∑nℎ
i=1 êℎi for the GDE. Similar forms apply for the variance and variance estimator for the MCE with the estimated

residual defined as êℎi = I{Tℎi≤t}−p
(

t ∣ xℎi, �̂
)

B̂ if constraints (11) and (12) are used. If only (12) is used, the residual is defined
with B̂∗.
Although it is difficult to say theoretically whether the GDE or MCE will have a smaller variance, an intuitive comparison is

possible. The variances of both depend on residuals of the form, I{Ti≤t} − Î{Ti≤t} where Î{Ti≤t} = p
(

t ∣ xi, �̂
)

for the GDE and

Î{Ti≤t} = p
(

t ∣ xi, �̂
)

B̃ where B̃ is one of the slope estimators for the MCE. The estimator with smaller squared residuals will
be more precise. In cases where the hazard function is modeled accurately, B̂ or B̂∗ will only add extra noise without reducing
bias. On the other hand, if �(t ∣ x, �) is poorly modeled, injecting a slope estimator into the residuals for an MCE can help reduce
its variance.

3 SIMULATION STUDY USING GENERATED DATA

To evaluate the performance of the estimators, a simulation study was conducted in which the following were manipulated:

• Correlation between ln(T ) and predictor Z,

• Distribution of T , the time to an event,
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• Amount of censoring, %C ,

• Sample size, n,

• Prevalence of the event at time t in the finite population, pN (t).

The simulations are limited to GDEs and MCEs constructed using lognormal, Weibull, semiparametric PH, and logistic models.
These estimators are compared to more traditional estimators: the �-estimator and the GREG with a linear model.

3.1 Populations
Three types populations were generated based on the log of event time: lognormal (LN),Weibull with a common baseline hazard
(WCB), and Weibull with a mixture of two baseline hazards (WMB). Finite populations with N = 100, 000 were generated as
independent and identically distributed samples from:

ln(T ) = 1 + �1X +Z +W , (18)

where Z was generated from a gamma distribution with shape and scale parameters equal to 1. For the LN populations, W
was drawn from a normal distribution with mean zero, standard deviation � (discussed below), and X = 0. For the WCB and
the WMB populations, W was drawn from a generalized extreme value (GEV) distribution with the location parameter and
shape parameters set to zero and shape parameter �. For the WCB populations that have a common baseline hazard,X = 0. For
populations with a mixture of two baseline hazards, X was drawn from a Bernoulli distribution with p = 0.4. Parameter values
used in generating the ln(T )’s are summarized in Table 1 . For each population the proportion of units that have experienced
the event at or before any time t is computed as pN (t) = N−1∑N

i=1 ITi≤t where each Ti was generated from (18).

TABLE 1 Parameters used to generate ln(T ) in (18)

Population �1 X Z W
Lognormal (LN) 0 0 Γ(1, 1) N(0, �2)
Weibull, common baseline (WCB) 0 0 Γ(1, 1) GEV (0, 0, �)
Weibull, mixture baseline (WMB) 1 B(0.4) Γ(1, 1) GEV (0, 0, �)

In all cases, � was set to generate finite populations in which the correlation between ln(T ) and Z was a given �. Nine
populations were generated by crossing the LN, WCB, and WMB distributions with the correlations � = 0.8, 0.6, and 0.4. For
each population, three sets of censored values of T and censor indicators were derived as follows:

T̃ (j)i = min(Ti, Qj), (19)
c(j)i = I{Ti≤Qj} (20)

for j = 1, 2, 3, whereQj is the jtℎ finite population quartile of T . This generated censored values of T such that 75%, 50%, or 25%
of the cases in the population were censored in the sense that there is no observation after time to = Qj . These censoring times
can be thought of as the times at which survey data collection ends. Although such high levels of censoring would be unusual in
clinical studies, they would be more common in longitudinal, sample surveys when analyses are done periodically throughout
the life of the study. For example, the HRS recruits cohorts of persons when they are in the age range 50-56. Assuming that
death is the event, in the early years in which a cohort is in the sample there can be very high levels of censoring since most
people are still alive.

3.2 Sample Design
For this simulation a stratified simple random sample design was used with strata based on the values of Z. The units were
sorted in ascending order based onZ, then the first 10,000 were assigned to stratum 1, the next 20,000 were assigned to stratum
2, the next 30,000 were assigned to stratum 3, and the last 40,000 were assigned to stratum 4. Two sample sizes were used:
n = 200 and 1000. The sample was allocated equally to each stratum, i.e., nℎ = n∕4 for all ℎ. For each population-sample size
combination, L = 10, 000 samples were drawn.
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3.3 Estimators
For each sample, four time-to-event models for estimating pN (t) were paired with the general difference and model-calibrated
estimators. All of the time-to-event models were fit with an intercept and one predictor,Z. The models were lognormal, Weibull,
semiparametric PH, and logistic. Each of these was tested with the censoring conditions 75%, 50%, and 25%. The �̂ parameter
estimates were PMLEs. For the semiparametric PH estimator the baseline hazard was estimated using a Breslow estimator33.
For each model, three estimates of pN (t) were calculated, a GDE in (9) and two versions of the MCE in (10). These are denoted
as GD, MC1, and MC2 in the subsequent tables. MC1 is the MCE with one constraint defined by (12) and uses B̂∗ as the
slope estimate, and MC2 is the MCE estimator with two constraints defined by (11) and (12) and uses B̂. To distinguish in
the discussion which time-to-event model was used for estimating pN (t), LN (lognormal) and LG (logistic) are paired with
the estimator labels. For example, LN-GD denotes the general difference estimator using the lognormal time-to-event model;
LG-GD is the GDE paired with logistic.
Since there are three types of populations (LN, WCB, and WMB) and four models used for estimating each p(t ∣ xi, �), we

summarize which combinations of population and model give correctly specified time-to-event models:

• LN population with lognormal model used to estimate the probability, p(t ∣ xi, �̂), that an event occurs at or before time t

• WCB with either Weibull or semiparametric PH time-to-event model

• WMB with semiparametric PH time-to-event

All other combinations are ones where the time-to-event model is misspecified compared to how the population was generated.
Note that using a logistic time-to-event model is always a misspecification in our simulation.
Estimates of pN (t) were then generated for three values of t. The three values were selected so that the finite population value

of pN (t)was 0.75, 0.50, or 0.25. Note that for 75% censoring only pN (t) = 0.25 could be estimated. Likewise for 50% censoring,
only pN (t) = 0.50 or pN (t) = 0.25 could be estimated. Additionally, to compare these alternatives with existing methods, we
computed the �-estimator and a GREG based on a linear model with an intercept and one predictor, Z.

3.4 Evaluation Criteria
A number of criteria were used to evaluate the performance of the time-to-event based GDE and MCE related to efficiency,
bias, and performance of variance estimators. These criteria are also used in evaluating the simulation results in Section 4. The
simulated RMSE at a fixed time t was estimated as follows:

RMSE(t) =

(

L−1
L
∑

k=1

[

p̂k(t) − pN (t)
]2
)1∕2

,

where L represents the 10,000 simulations, and p̂k(t) is an estimate of pN (t) for the ktℎ simulation. To compare the simulated
RMSE of an estimatorAwith the RMSE of the �-estimator, the percent reduction in RMSE (ΔRMSE) was calculated as follows:

ΔRMSE(t) = 100
[

1 −
(

RMSEA(t)
RMSE�(t)

)]

,

Two measures were calculated to evaluate the bias of GDE and MCE that were derived from time-to-event models. The first
measure is the simulated Relative Bias (RB) calculated as:

RB(t) = 1
L

L
∑

k=1

(

p̂k(t) − pN (t)
pN (t)

)

.

The second measure is the Bias Ratio (BR). The BR compares the magnitude of the simulated bias of an estimator to the
magnitude of the simulated standard error of the same estimator. The BR is calculated as follows:

BR(t) =
L−1

∑L
k=1

[

p̂k(t) − pN (t)
]

(

L−1
∑L
k=1

[

p̂k(t) − p̄(t)
]2
)

1
2

,

where p̄(t) = L−1
∑L
k=1 p̂k(t). For confidence intervals to cover at the desired rate, BRmust converge to 0 with increasing sample

size in addition to p̂k(t) − pN (t) converging to 0.
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Two measures were calculated to evaluate the performance of the variance estimators. The first is the Variance Ratio (VR),
which is the ratio of the simulation mean of the estimated sampling variance to the empirical variance of the estimator. This was
calculated as:

V R(t) =
L−1

∑L
k=1 V̂ (p̂k(t))

L−1
∑L
k=1

[

p̂k(t) − p̄(t)
]2

where for the GDE V̂ (p̂k(t)) is defined by (17) for the ktℎ sample. The variance estimator for MC1 has the same form as (17) with
the residual modified by B̂ as described below that equation; for MC2 the residual is defined using B̂∗. The BR and VRmeasures
will be used in sec. 4. The second measure is confidence interval coverage. For the ktℎ sample, the normal approximation, 95%
confidence interval was calculated as

CIi =
(

p̂k(t) − 1.96
√

V̂ (p̂k(t)), p̂k(t) + 1.96
√

V̂ (p̂k(t))
)

.

The proportion of times that the confidence intervals included the population value was then tabulated across the simulations
and is labeled “Coverage” when it is used in tables.

3.5 Results
Biases and relative biases for all estimators in all scenarios in the generated populations were minimal and are not presented
here. Differences in RMSEs were more substantial. An estimator’s reduction in RMSE when compared to the �-estimator was
affected by three conditions: the correlation between ln(T ) and predictor Z, sample size, and the proportion of the individuals
in the finite population that have experienced the event by time t.
Tables 2 and 3 provide the simulated reductions in RMSE when compared to the �-estimator for the LN lognormal popu-

lation with n = 200 and n = 1000, respectively. Comparisons for other populations (Weibull with a common baseline hazard,
WCB, and Weibull for a mixture of baseline hazards, WMB) were similar. The rows in these tables are sorted by �, then pN (t),
and finally % censored. These parameters were described in section 3.1. The time-to-event estimators, i.e., ones in which pN (t) is
estimated based on Weibull, lognormal, or proportional hazards models, are shown in columns 5-13 (Weibull/GD through Pro-
portional hazard/MC2); for each of these models the final three columns labeled "Logistic" are cases where pN (t) is estimated
via a logistic model. Some of the conclusions about RMSEs that can be drawn from these tables are:

1. The time-to-event model-based estimators never underperformed the �-estimator.

2. The GREG is less precise than the �-estimator for a number of combinations—� = 0.8 plus pN (t) = 0.25 and 0.50 and
all levels of censoring; � = 0.6 plus pN (t) = 0.25 and all levels of censoring. For other combinations the GREG achieves
some small reductions in RMSE.

3. The time-to-event model-based estimators never underperformed, and in many cases outperformed, the GREG (col. 4)
and logistic-based GD, MC1, and MC2 estimators (LG-GD, LG-MC1, LG-MC2 in cols. 14-16).

4. The reductions in RMSE for the nine estimators based on time-to-event models (Weibull, lognormal, and proportional
hazard) were similar.

5. The reduction in RMSE for the nine estimators based on time-to-event models and the GREG generally increased as the
failure rate pN (t) increased. For example, when pN (t) = 0.75 with � = 0.8 and 25% censoring, reductions in RMSE are
nearly 15% for both n = 200 and 1000.

6. RMSE reductions for the nine estimators based on time-to-event models, the GREG, and LG-MC1 increased with
increasing �.

7. Reductions in RMSE for the nine estimators based on time-to-event models and the GREG were similar at both sample
sizes.

8. Reduction in RMSE for GD, MC1, and MC2 were substantially decreased or eliminated when prevalences were estimated
using the logistic model when n = 200. MC1 and MC2 generally reduce RMSEs compared to the �-estimator and are
more efficient than the GD, which often has a larger RMSE than the �-estimator. This is consistent with the observation
in sec. 2.2.2 that inclusion of a slope estimator in the MCEs can reduce variances when the hazard function used in the
estimators is misspecified.
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9. The amount of censoring had a limited effect on all of the estimators. However, we assume a uniform censoring time for
all units due to stoppage of data collection. If censoring could occur at random times, results could be affected.
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(a) n = 200 (b) n = 1000

FIGURE 1 Percent reduction in RMSE as a function of pN (t): Lognormal population, � = 0.8, 25% censoring. (In 1(b) only
LN-GD and GREG are presented, because the LN-GD, LG-MC1, LG-MC2, and LG-GD curves were indistinguishable.)

(a) n = 200 (b) n = 1000

FIGURE 2 Percent reduction in RMSE as a function of pN (t): Lognormal population, � = 0.6, 25% censoring

(a) n = 200 (b) n = 1000

FIGURE 3 Percent reduction in RMSE as a function of pN (t): Lognormal population, � = 0.4, 25% censoring
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Figures 1 -3 plot the percent reduction in RMSE compared to that of the �-estimator versus values of pN (t) for the lognormal
GD (LN-GD), logistic GD (LG-GD), LG-MC1, LG-MC2, and GREG estimators. Nonparametric smoothers are plotted to make
the patterns more apparent. All three figures are for 25% censoring only. Comparisons for other levels of censoring were similar.
We include only LN-GD in the figures since all of the estimators based on time-to-event models (LN, WB, and PH paired with
GD, MC1, and MC2) perform about the same. Subplots (a) and (b) show results for n = 200 and n = 1000. In Figure1 (b) only
the LN-GD and GREG are presented, because the LN-GD, LG-MC1, LG-MC2, and LG-GD curves were indistinguishable.
In the three figures, the logistic general difference estimator (LG-GD) is generally the poorest performer relative to the �-

estimator. Regardless of the size of the correlation between the log failure time, ln(T ), and the covariate, Z, LN-GD is the best
or nearly best performer. The RMSE reduction for LN-GD increases as pN (t) and � increase. Although there are cases where
the logistic models reduce the RMSE slightly, estimators based on the underlying lognormal model are generally more efficient.
In particular, the LN-GD estimator performs best because it correctly models pN (t). (This is also true for the model-calibrated
estimators, LN-MC1 and LN-MC2, not shown in the figures.) The LG estimators are inferior because they use the wrong model
for pN (t)—a problem that is especially clear for the smaller values of �. Although the GREG is reasonably efficient compared
to LN-GD, it is limited by requiring that the model for pN (t) must be linear.
As noted at the beginning of this section, the ratios of the variance estimators to the empirical variance and the coverage of

the 95% normal approximation confidence intervals were also evaluated. In all cases the variance estimators were approximately
unbiased and the confidence intervals covered at the desired rate. Thus, we do not report the details here.

4 NURSES’ HEALTH STUDY APPLICATION

To test the estimators on a real population we used data from the Nurses’ Heath Study (NHS)35. We estimate the proportion
of a population who have experienced death using only a sample of the population. A subset of the nurses’ data serves as a
simulation population that uses the same estimators and evaluation criteria as in section 3. We do not attempt to make estimates
for the full population of nurses.

4.1 About the Nurses’ Health Study
The NHS is based on a panel of over 120,000 female nurses that has been followed since the mid-1970s. Originally, the NHS
focused on the long-term effects of oral contraceptives. Although this is still a main focus of the NHS, the NHS now also
focuses on smoking, cancer, and heart disease. It asks about lifestyle factors, such as nutrition and quality of life and also collects
information on more than 30 diseases.
The target population for the NHS is female registered nurses in the 11 most populated states who were married and ages

30-55 in 1976. The frame was constructed using membership roles from nursing boards who agreed to participate in the NHS.
In 1976, the 238,026 nurses on the frame were mailed an initial questionnaire. Of these, 121,700 nurses returned a completed
questionnaire and were enrolled in the study. Every other year since 1976, study participants have received a follow-up ques-
tionnaire to collect information about disease and health-related topics. In addition, biological samples have been collected from
subsamples of the panel. More information about the NHS can be found at http://www.nurseshealthstudy.org.

4.2 Finite Population Creation
The finite population used in this application is a subset of the NHS population. The population is similar to other studies that
used time-to-event models to study the incidence of lung disease (Bain et al.36, Lee et al.37). This extract contained information
from 1986 through 2012. To be eligible for the population, a panel participant had to meet the following criteria:

• Alive in 1986,

• Not diagnosed with cancer prior to 1986 (with the exception of non-melanoma skin cancer)

• Known smoking status in 1986,

• Known pack years in 1986,
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http://www.nurseshealthstudy.org


Reist ET AL 15

• Known body mass index (BMI) for at least one year during 1986 to 2012

Pack years is calculated by multiplying the packs of cigarettes smoked per day for a year’s time by the number of years that
a person smoked. One pack year is equal to smoking 20 cigarettes per day for one year. BMI is equal to a person’s weight in
kilograms divided by the square of the person’s height in meters. These restrictions resulted in a finite population of 103,878
nurses. The following variables were retained on the file:

• Death indicator (died between 1986 and 2012)

• Age at death (in years, to the tenth of a year)

• Age in 1986 (in years, to the tenth of a year)

• BMI for every observation between 1986 and 2012 (based on height reported in 1976)

• Smoking status in 1986 (Current Smoker, Past Smoker, Never Smoked)

• Pack years smoked as of 1986

The following variables were derived from these variables:

• BMI in 1986, where missing values of BMI were imputed using the BMI closest to 1986 that was observed

• A six level classification of BMI (Underweight, Normal, Overweight, Class 1 Obesity, Class 2 Obesity, Class 3 Obesity)

• A four level classification of BMI, which groups all three levels of obesity into one category (Underweight, Normal,
Overweight, Obese)

• A three level classification of age in 1986 (<50, 50 to 60, >60)

• Years to death after 1986 calculated to the tenth of a year (with a value of 26 if alive in 2012)

4.3 Sample Design
Two stratified simple random sample designs were used in this simulation study. The first had three strata based on the three
levels of smoking status. The second had 36 strata formed by crossing smoking status, 3-level age group, and 4-level BMI. Both
of these designs used strata that are related to death, with the 36 strata design expected to be more effective in reducing variance
for estimates of the proportion of persons experiencing the event. Tables 4 -6 show the counts and row percentages of smoking
status, age group, and six level BMI—all in 1986—crossed with the death-by-2012 indicator in the finite population.

TABLE 4 Smoking Status by Death Indicator: Counts and Row Percentages (as of 2012)

Alive Deceased Total
Status in 1986 Count % Count % Count %
Never Smoked 37,789 80.0 9,445 20.0 47,234 100
Current Smoker 13,698 61.8 8,463 38.2 22,161 100
Past Smoker 26,277 76.2 8,206 23.8 34,483 100

All nurses 77,764 74.9 26,114 25.1 103,878 100
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TABLE 5 Age Group by Death Indicator: Counts and Row Percentages (as of 2012)

Alive Deceased
Age in 1986 Count % Count %
<50 36,077 91.1 3,531 8.9
50-60 31,286 61.8 11,243 26.4
>60 10,401 47.8 11,349 52.2

TABLE 6 Six-level BMI by Death Indicator: Counts and Row Percentages (as of 2012)

Alive Deceased
BMI in 1986 Classification Count % Count %
<18.5 Underweight 816 56.8 621 43.2
18.5-24.9 Normal Weight 42,302 77.8 12,079 22.2
25.0-29.5 Overweight 22,991 74.1 8,043 25.9
30.0-34.9 Class 1 Obesity 8,133 70.6 3,392 29.4
35.0-39.9 Class 2 Obesity 2,532 66.2 1,292 33.8
≥ 40.0 Class 3 Obesity 990 59.0 687 41.0

For all three tables, the chi-squared test of independence rejected the null hypothesis of independence for � = 0.01. The
finite population sample size was large, meaning that very small differences could be detected. However, there is variation in
the percentage of nurses who have died across subgroups, which suggests that these variables do have some value in predicting
death by 2012 and, thus, also time to death.
Two sample sizes were used to mimic the simulation study in section 3. For each sample design, samples of 216 and 1,008

were selected. These total samples were allocated equally to each of the strata. For example, for the case of 36 strata and the
total sample size of 216, simple random samples of 6 persons were selected without replacement from each stratum. For the
total sample size of 1008, 28 persons were selected from each of the 36 strata. This design creates sampling weights, di, that
vary among strata.

4.4 Model Development
As with the simulation study in section 3, five different models were fit to estimate the proportion of the population who had
died at or before time t, which in this study was the year 2012 or 26 years after the recruitment of the nurses population. The five
models were a linear model, logistic model, Weibull model, lognormal model, and semiparametric proportional hazards model.
All five models were fit using the same set of predictor variables: smoking status, continuous BMI, BMI squared, continuous
age, pack years, and pack years squared. The squared term for BMI was used to account for the fact that both small and large
values of BMI result in higher risk of death. In an attempt to reduce collinearity between BMI and BMI squared, mean BMI
was subtracted from BMI before it was squared.

This article is protected by copyright. All rights reserved.
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FIGURE 4 Pack Years by Death Indicator

The box plot of pack years is displayed in Figure 4 . This box plot shows that death generally seems more likely among nurses
with more pack years by 1986. A squared term was introduced, because in similar studies it was thought that an increase in
smoking has a negative effect on time to death, but this effect moderates for higher levels of pack years37. As with BMI squared,
mean pack years was subtracted from pack years before it was squared to reduce collinearity between pack years and pack years
squared.

4.5 Results
A total of 10,000 samples were drawn for each of the four sample design-sample size combinations. The same estimators as in
section 3 were used here to estimate the percentage of the population that had died by the end of 2012, i.e., pN (26) ≈ 0.25. Table
7 shows the results using the same five metrics as in section 3.4 for each estimator and sample design–sample size combination.
All of the estimators were approximately unbiased. (See the rows in Table 7 for %RB.) (Note that the RBs in this application

were much smaller that those in Wu and Sitter10, who reported RBs as high as 5.71% in a different population). Because all
estimators were essentially unbiased, the RMSEs and standard errors are nearly equal. Thus, selection of an estimator can be
based on RMSE and confidence interval coverage, at least in this application.
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FIGURE 5 Nurses population: Simulated percent reduction of RMSE relative to the �-estimator by sample size and number
of strata

The RMSE performance of the nine time-to-event model-based estimators was similar. (See the rows in Table 7 forΔRMSE)
Therefore, for simplicity, only the LN-GD is compared in this discussion to the other methods when examining efficiency. Figure
5 shows the percent reduction in RMSE of each of the estimators compared to the �-estimator. Negative values mean that
an estimator had a larger RMSE than the �-estimator. The LN-GD and GREG outperformed the estimators based on logistic
models for every condition. The LG-GD estimator had significantly larger RMSEs than the �-estimator. Similar to the section
3 simulation study, the LG-MC2 slightly under-performed the �-estimator for two combinations (3 or 36 strata, n = 216) and
had little if any gains for the other combinations. This finding is also in contrast to those of Wu and Sitter10.
Figure 5 shows the importance of number of strata on the LN-GD and the GREG. For both estimators, the percent reduction

in RMSE relative to the �-estimator for samples with three strata is four times larger than the RMSE for samples with 36 strata.
Although this may seem counterintuitive, there are two explanations for it. First, an equal allocation is likely not optimal for
predicting death. Second, the 3-strata design uses covariates in estimates that are some of the same as those used to form the 36
strata. Hence, for the GREG and LN-GD to see significant reductions in RMSE in the 36-strata design, either a more efficient
allocation would be needed or covariates would need to be used that are not in the sample design. In the 36 strata design, BMI,
age, and smoking status were used to define the strata. Besides the fact that continuous versions of BMI and age were used in the
model, pack years was the only new information. In the 3 strata design, only smoking status was used to define the strata. This
means that BMI, age, and pack years were all providing new information to the estimators that was not part of the sample design.
Table 7 shows that when n = 1008 the VRs were close to 1 for all of the estimators. Although not reported there, this was

also the case for the simulations in section 3 and tells us that on average the asymptotic variance estimator was unbiased for
the empirical variance of the estimator. Additionally, the simulated 95% confidence interval provided approximately nominal
coverage, especially at the larger sample size.
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4.6 Computational Problems with the Model Calibrated Logistic
Estimators
Finally, it is worth noting that fitting logistic models to estimate pN (t) can lead to computational problems in small samples. This
was due to the separation phenomenon, which is well-known38. In both the section 3 simulation and the nurses simulation, the
LG-MC1 and LG-MC2 had some simulated samples that were excluded from analysis, because p̂(t) was less than 0 or greater
than 1. This affected only a small proportion of the samples. This issue did not affect any of the time-to-event model-based
MCEs. Table 8 shows the number of samples thrown out for each set of conditions in the NHS study. The problems with the
logistic model-calibrated approach are caused by some combinations of covariates all having the event or not having the event.
The fitting alogrithm sends one or more of the parameter estimates to ±∞. A potential fix is to combine levels of factors to
create combinations where there is a mixture of events and non-events.

TABLE 8 Number of Samples out of 10,000 where the Model Calibrated Logistic Estimate was Greater than 1 or Less than 0
in the NHS simulation

n Strata LG-MC1 LG-MC2
216 3 146 146
216 36 81 81

1,008 3 12 12
1,008 36 6 6

The number of samples excluded was influenced by number of strata and sample size. A smaller sample size and fewer strata
resulted in more excluded simulates, i.e., a less efficient design resulted in more samples being excluded. The most severe
problem was with n = 216 and 3 strata, where 146 (or 1.46%) of the samples could not be included. Although this computational
problem was rare, the fact that it happened at all is another reason not to use a logistic time-to-event model paired with the model
calibrated estimators, LG-MC1 and LG-MC2, to estimate pN (t).

5 CONCLUSION

This article introduced general difference estimators (GDE) and model-calibrated estimators (MCE) of failure probabilities
using time-to-event models for the failure rates of individual cases. The new point estimators, which make use of covariates,
and their variance estimators are design-consistent whether the time-to-event model is correctly specified or not. If the time-
to-event model is correct, then the estimators are doubly robust. Two simulation studies showed that, for all of the conditions
tested, the time-to-event based GDEs and MCEs performed as well, if not better, than the survey-weighted failure estimator that
ignores covariates and a general regression estimator based on a linear model that incorporates the same covariates. However,
in small samples the estimators are more sensitive to the choice of time-to-event model. A logistic model, in particular, can
cause computational problems while lognormal, Weibull, and proportional hazards models did not. In the nurses simulation,
the logistic-based estimators performed poorly under every condition with the smaller sample size, where the logistic general
difference (LG-GD) estimator had RMSEs that were noticeably higher than those of the �-estimator. In the nurses population,
a logistic model is a poorer approximation than the lognormal to pN (t), the proportion of the population that experiences an
event at or before time t. Considering their statistical inefficiency and computational issues, it is clear that estimators based on
a logistic time-to-event model will not a good choice for some datasets.
The time-to-event MCE did not perform better than the GDE, even when the relationship between the predictor Z and ln(T )

was weak. This is contrary to the results in Wu and Sitter10, who did not study time-dependent events. In their study MCE
outperformed GDE for all values of the correlation between a covariate and an analysis variable. In our study, reductions in
RMSE, compared to that of the �-estimator, were positively correlated with pN (t), which is consistent with the results in Wu
and Sitter.
An important practical finding from the nurses’ data simulation is that the time-to-event based GDEs and MCEs performed

particularly well, compared to the basic survey-weighted �-estimator, when model information was not also used in the sample
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design. Therefore, these estimators will perform best when covariates are available that are both predictive of the time-to-
event and not used in the sample design. This might occur if good covariate information is not available at the time of data
collection but is available afterwards, or if the sample is not specifically designed to estimate times to events. For example,
when covariate information is obtained from administrative records, the lag time between the survey data collection and the
acquisition, preparation, and linking of administrative data can be lengthy. Another example is a longitudinal survey where the
sample is drawn at the beginning of a panel and covariates are collected sometime after the panel is originally fielded as in the
Health and Retirement Study (HRS) or the Panel Study of Income Dynamics (PSID).
Additional work can be done in applying survival models to complex survey data. Although we covered only single-stage

sampling, the theory can be extended to multistage sampling using standard methods in Fuller28. Multistage sampling is used in
many household surveys like the HRS and PSID and will affect the form of variance estimators. The variance estimator presented
here did perform well in simulations, but it does treat the estimated failure rate, p̂(t), at a particular time t as fixed when it, in
fact, is estimated. Theoretical and empirical work is needed to determine whether replication estimators, like the bootstrap, can
reflect this extra source of variation and would be preferable, especially in multistage samples. Adapting existing diagnostics
or developing new ones for assessing model fit when using survey data is another important area for research. Finally, work is
needed on additional time-to-event models. Threshold regression models, in particular, have been shown to have advantages
when a proportional hazard assumption is incorrect.
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APPENDIX

Proof of Theorem 1. Since (9) can be rewritten as

p̂GD(t) = p̂�(t) +N−1

( N
∑

i=1
p(t ∣ xi, �̂) −

∑

i∈s
dip(t ∣ xi, �̂)

)

and p̂�(t) is design-consistent, it suffices to show that
(

N−1
N
∑

i=1
p(t ∣ xi, �̂) −N−1

∑

i∈s
dip(t ∣ xi, �̂)

)

= Op
(

n−1∕2
)

.

Using assumptions (i) and (ii) and applying a Taylor series approximation to p
(

t ∣ xi, �̂
)

at �̂ = �N , we get

p
(

t ∣ xi, �̂
)

= p
(

t ∣ xi, �N
)

+

[

)p
(

t ∣ xi, 

)

)

|

|

|�∗

]T
(

�̂ − �N
)

, (1)

where �∗ ∈ (�̂, �N ) or (�N , �̂). Now by (1) and assumptions (i) and (ii),

N−1
N
∑

i=1
p
(

t ∣ xi, �̂
)

= N−1
N
∑

i=1
p
(

t ∣ xi, �N
)

+ Op
(

n−1∕2
)

, (2)

and
N−1

∑

i∈s
dip

(

t ∣ xi, �̂
)

= N−1
∑

i∈s
dip

(

t ∣ xi, �N
)

+ Op
(

n−1∕2
)

. (3)

Note that because of condition (iii)

N−1
N
∑

i=1
p
(

t ∣ xi, �N
)

−N−1
∑

i∈s
dip

(

t ∣ xi, �N
)

= Op
(

n−1∕2
)

. (4)
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Now, by putting together (2), (3), and (4), we get

N−1
N
∑

i=1
p
(

t ∣ xi, �̂
)

−N−1
∑

i∈s
dip

(

t ∣ xi, �̂
)

= Op
(

n−1∕2
)

, (5)

as desired.

Proof of Theorem 2. Using assumptions (i), (ii), (iv) and applying a Taylor series second order approximation to p
(

t ∣ xi, �̂
)

at
�̂ = �N , we get

p
(

t ∣ xi, �̂
)

= p
(

t ∣ xi, �N
)

+

[

)p
(

t ∣ xi, 

)

)

|

|

|�∗

]T

(�̂ − �N )

+ 1
2
(�̂ − �N )T

[

)2p(t ∣ xi, 
)
)
)
T

|

|

|�∗

]

(�̂ − �N ),

(6)

where �∗ ∈ (�̂, �N ) or (�N , �̂) and
[

)2p(t∣xi,
)
)
)
T

|

|

|�∗

]

is the p × p matrix of second derivatives evaluated at �∗. Now, by (6) and
assumption (iv),

N−1
N
∑

i=1
p
(

t ∣ xi, �̂
)

=N−1
N
∑

i=1
p
(

t ∣ xi, �N
)

+

{

N−1
N
∑

i=1

)p
(

t ∣ xi, 

)

)

|

|

|�∗

}T

(�̂ − �N )

+ Op
(

n−1
)

(7)

and

N−1
∑

i∈s
dip

(

t ∣ xi, �̂
)

=N−1
∑

i∈s
dip

(

t ∣ xi, �N
)

+

{

N−1
∑

i∈s
di
)p

(

t ∣ xi, 

)

)

|

|

|�∗

}T

(�̂ − �N )

+ Op
(

n−1
)

.

(8)

By assumptions (i) and (iii), we have
{

N−1
N
∑

i=1

)p
(

t ∣ xi, 

)

)

|

|

|�∗

}

−

{

N−1
∑

i∈s
di
)p

(

t ∣ xi, 

)

)

|

|

|�∗

}

= Op
(

n−1∕2
)

. (9)

Therefore, by subtracting (8) from (7), and using assumption (i) that (�̂ − �N ) = Op
(

n−1∕2
)

, we get

N−1
N
∑

i=1
p
(

t ∣ xi, �̂
)

−N−1
∑

i∈s
dip

(

t ∣ xi, �̂
)

= N−1
N
∑

i=1
p
(

t ∣ xi, �N
)

−N−1
∑

i∈s
dip

(

t ∣ xi, �N
)

+ Op
(

n−1
)

.

(10)

Using Theorem 1 and (10) to replace �̂ with �N in p̂GD(t) gives

p̂GD(t) = p̂�(t) +

(

N−1
N
∑

i=1
p
(

t ∣ xi, �N
)

−N−1
∑

i∈s
dip

(

t ∣ xi, �N
)

)

+ Op
(

n−1∕2
)

= N−1
N
∑

i=1
p
(

t ∣ xi, �N
)

+N−1
∑

i∈s
di
[

I{Ti≤t} − p
(

t ∣ xi, �N
)]

+ Op
(

n−1∕2
)

.

(11)

Finally, by noticing that N−1∑N
i=1 p

(

t ∣ xi, �N
)

is constant, the asymptotic variance of p̂GD(t) is the asymptotic variance of
the �-estimator of the population total of the ei = I{Ti≤t} − p

(

t ∣ xi, �N
)

. It now follows that the asymptotic variance estimator
of p̂GD(t) is the asymptotic variance estimator evaluated using the êi = I{Ti≤t} − p

(

t ∣ xi, �̂
)

. The design-based formula for
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whatever sample design was used then applies for estimating the design-variance ofN−1∑
i∈s di

[

I{Ti≤t} − p
(

t ∣ xi, �̂
)]

, which
is an estimated total (e.g., see Cochran, sec. 9.1439) for the formula used in Theorem 2.

The case in which an estimator, N̂ =
∑

s di, is used in p̂GD can be handled by using approximations similar to those above.
We sketch the result here. Using a first order Taylor series approximation gives

p̂GD(t) = N̂−1

( N
∑

i=1
p(t ∣ xi, �̂) +

∑

i∈s
di
[

I{Ti≤t} − p(t ∣ xi, �̂)
]

)
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GD MC1 MC2 GD MC1 MC2 GD MC1 MC2 GD MC1 MC2
3 0.00% 7.38% 8.24% 8.13% 8.17% 8.22% 8.04% 8.15% 8.20% 8.13% 8.16% -14.07% 1.30% -0.01%

36 0.00% 1.07% 1.68% 1.62% 1.64% 1.79% 1.65% 1.71% 1.65% 1.60% 1.62% -13.31% -0.30% -1.91%
3 0.00% 8.61% 9.58% 9.57% 9.58% 9.20% 9.38% 9.35% 9.59% 9.58% 9.58% -15.97% 2.59% 1.57%

36 0.00% 1.62% 2.22% 2.22% 2.22% 2.11% 2.12% 2.14% 2.23% 2.23% 2.23% -7.21% 1.21% 0.27%
3 -0.02% 0.10% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.00% 0.00% 0.00% 0.90% 0.27% 0.41%

36 -0.02% 0.14% -0.07% -0.07% -0.07% 0.02% 0.03% 0.02% -0.07% -0.07% -0.07% 0.53% 0.19% 0.31%
3 0.02% 0.02% 0.01% 0.01% 0.01% 0.02% 0.02% 0.02% 0.01% 0.01% 0.01% 0.20% 0.02% 0.06%

36 0.05% 0.10% 0.07% 0.07% 0.07% 0.08% 0.08% 0.08% 0.07% 0.07% 0.07% 0.21% 0.08% 0.11%
3 -0.001 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.067 0.023 0.035

36 -0.001 0.011 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 0.035 0.014 0.022
3 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.031 0.004 0.012

36 0.008 0.016 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.032 0.013 0.018
3 1.01 0.96 0.95 0.95 0.95 0.96 0.95 0.96 0.95 0.95 0.95 0.98 0.98 0.97

36 1.00 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.96 0.96 0.96 0.97 0.98 0.97
3 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 0.99

36 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99
3 0.949 0.941 0.942 0.940 0.941 0.943 0.940 0.942 0.941 0.940 0.941 0.944 0.945 0.943

36 0.940 0.937 0.935 0.935 0.935 0.937 0.937 0.937 0.935 0.935 0.935 0.942 0.938 0.939
3 0.952 0.951 0.952 0.952 0.952 0.951 0.953 0.952 0.952 0.952 0.952 0.950 0.951 0.949

36 0.947 0.948 0.950 0.950 0.950 0.948 0.948 0.948 0.950 0.950 0.950 0.945 0.948 0.947

Lognormal Proportional Hazard Logistic

 % ∆ RMSE 216
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Metric n # Strata π GREG
Weibull 

% RB 216
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BR 216

1008

VR 216

1008
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1008
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