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After its emergence in Wuhan, China, the rapid transmission of a novel betacoronavirus, 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to a worldwide 

pandemic, coronavirus disease 2019 (COVID-19).  Thankfully, the overwhelming 

majority of COVID-19 patients have mild respiratory symptoms or remain entirely 

asymptomatic (1). SARS-CoV-2 is highly immunogenic, and pre-existing immunity to 

SARS-CoV-2, possibly due to its homology with endemic coronaviruses causing the 

“common cold”, is observed to varying degrees in many uninfected individuals (2-4), 

and may thus explain the prevalence of asymptomatic carriers (5-7). However, a 

hyperinflammatory response to SARC-CoV-2, pathogenically analogous to that 

observed in hemophagocytic lymphohistiocytosis (HLH) promotes the development and 

progression of both acute respiratory distress syndrome (ARDS) and systemic 

manifestations of severe COVID-19, and is thus a dominant driver of mortality. The 

underlying immunologic mechanisms that promote severe COVID-19, while increasingly 

appreciated (8, 9), also have significant therapeutic implications.  

The pathogenic role of monocytes/macrophages 

High viral titers and the inflammatory response leads to a dramatic increase in the 

accumulation of monocytes/macrophages in the lungs of SARS, including COVID-19, 

patients (10, 11). Monocyte-derived macrophages are abundant in the bronchoalveolar 

lavage fluid of COVID-19 patients, whereas tissue-resident (alveolar) macrophages are 

relatively less abundant, and gene set enrichment analysis of scRNA-seq data 
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suggests, perhaps not surprisingly, that they are “classically” (M1) polarized (11).  

Macrophage hemophagocytosis, associated with classically polarized macrophages, is 

a pathologic hallmark of HLH, and is similarly observed in the lungs of patients with 

SARS (10). Similarly, scRNA-seq performed in PBMC obtained from COVID-19 patients 

and healthy controls demonstrates a significant expansion of classical monocytes and 

enrichment for TNF and IL-1β-responsive genes (12, 13). 

 A strain of SARS-CoV has been adapted for mouse studies and provides 

compelling evidence for the pathogenic role of monocytes/macrophages in SARS. 

C57BL/6 mice infected with mouse adapted SARS-CoV rapidly clear the virus and 

develop only mild symptoms, whereas infected Balb/c mice develop severe symptoms 

that are associated with a significant expansion of pulmonary monocytes/macrophages. 

As type 1 interferons contribute to the inflammatory response in severe COVID-19 (13), 

this model was utilized to further dissect their role in disease pathogenesis. In contrast 

to Balb/c mice which succumb to SARS-CoV, those lacking expression of the IFNαβ 

receptor (Ifnar-/-) developed only mild symptoms and survived (14). Interestingly, Ifnar-/- 

mice cleared SARS-CoV with similar kinetics to those observed in control Balb/c, but 

succumbed to infection with alternative RNA viruses (including influenza A). Therefore, 

the pathogenic role of type 1 interferons is apparently unique to SARS-CoV, and is not 

explained by impaired viral clearance. Instead, the loss of type 1 interferon signaling 

significantly impaired the recruitment and activation of inflammatory monocytes while 
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increasing the total number of viral-specific T cells. Antibody-mediated CCR2 blockade 

dramatically reduced monocyte infiltration in Balb/c mice and led to complete protection 

from lethal SARC-CoV challenge. SARS-CoV-2 has been detected in lymph node 

macrophages (15), and ACE2 (the SARS-CoV-2 receptor utilized for viral entry) is a 

type 1 interferon target gene (16). While the possibility of macrophage-mediated uptake 

of viral-containing immune complexes or phagocytosis of infected cells cannot be 

excluded, these observations raise the intriguing possibility that macrophages are a viral 

reservoir. Collectively, the available data suggests that monocytes/macrophages play a 

pathologic role in severe COVID-19 (8), analogous to that observed in HLH, and are 

attractive therapeutic targets. 

The rationale for cytokine (and JAK/STAT) blockade in COVID-19: Lessons 

learned in HLH 

While cytokine blockade is a rational therapeutic strategy, and despite initially promising 

outcomes, a phase III trial (COVACTA trial) investigating tocilizumab in severe COVID-

19 failed to meet its primary or key secondary endpoints. However, the pleiotropic and 

partially redundant functions associated with most cytokines may pose a challenge for 

therapeutic strategies targeting a single cytokine. As most cytokines implicated in 

severe COVID-19 converge on the JAK/STAT pathway, JAK inhibition is a rational 

alternative strategy, and one that is further supported by the experience with this 

strategy in secondary HLH. 
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 As interferons are pathogenic in secondary HLH, ruxolitinib was investigated in 

pre-clinical HLH models and was shown to significantly reduce HLH-associated 

laboratory and clinical abnormalities (17), and was superior to more targeted, cytokine 

(IFNγ)-specific blockade (18). The first prospective clinical trial investigating ruxolitinib in 

adults with secondary HLH further supports this strategy (19). In this small study, seven 

patients with secondary HLH received ruxolitinib, all of whom experienced the rapid 

resolution of HLH-associated symptoms and laboratory abnormalities following 

treatment. Cytopenias significantly improved within the first week of treatment and 

transfusion independence was rapidly achieved. Therefore, treatment was associated 

with relatively rapid hospital discharge and superior survival when compared with 

historic controls. In a similar population of historic controls, the 120-day mortality was 

49%. By comparison, no deaths were observed in patients treated with ruxolitinib. The 

macrophage-specific hemoglobin-haptoglobin scavenger receptor (CD163), while not 

specific for HLH-associated macrophage activation, was examined as a 

pharmacodynamics biomarker for macrophage activation, and a significant reduction in 

plasma soluble CD163 was observed following treatment. Therefore, the immunologic 

similarities between severe COVID-19 and secondary HLH, combined with ruxolitinib’s 

clinical activity in HLH, should bolster enthusiasm for the JAK inhibitors being 

investigated in a number of COVID-19 clinical trials (Table 1).  
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JAK inhibitor target selectivity: Is a JAK of all trades beneficial in severe COVID-

19? 

 Given the central role of monocyte/macrophages in severe COVID-19, therapeutic 

strategies to either target their polarization state or deplete them outright are certainly 

rational. Colony-stimulating factor-1 (CSF-1, or M-CSF) is required for normal 

macrophage homeostasis and viability, as mice lacking functional CSF-1 or CSF-1 

receptor (CSF-1R, c-fms, CD115) have a marked decrease in tissue resident 

macrophages (20, 21). Therefore, CSF-1R antagonists, including both tyrosine-kinase 

inhibitors and antagonistic monoclonal antibodies, are being exploited as a strategy to 

deplete tissue resident macrophages, particularly in many cancers, and in COVID-19 

(NCT04415073). However, recent evidence suggests that alternative (and CSF-1 

independent) cytokines promote monocyte/macrophage expansion in virally infected 

mice (22). Therefore, in addition to the well-described role of cytokine- (and JAK-

dependent) signaling in regulating macrophage polarization (23), JAK inhibition may 

also impair their expansion and/or survival, particularly in combination with CSF-1R 

antagonists. In fact, CSF-1R has been identified as an “off target” for the JAK inhibitors 

pacritinib and fedratinib, and these agents were shown to deplete monocyte-derived 

macrophages in ex vivo studies (24). Pacritinib is being investigated in a randomized, 

placebo-controlled, phase III study in patients with severe COVID-19, including those 

with cancer (PRE-VENT study, NCT04404361).  
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 Cytokine production by monocytes/macrophages upon recognition of viral RNA is 

mediated by Toll-like receptors (TLRs), and TLR signaling is particularly important for 

the early production of type 1 interferons and for classical macrophage polarization (25). 

TLR signaling is dependent upon the formation of the Myddosome, which includes 

MyD88 in complex with the IRAK family of serine-threonine kinases, IRAK1 and IRAK4. 

TLR engagement and Myddosome assembly leads to autophosphorylation and 

activation of IRAK1, eventually culminating in NFκB and MAPK activation. In addition to 

CSF-1R, IRAK-1 is an additional “off target” for pacritinib (IC50 <50nM), both of which 

may be inhibited at clinically achievable concentrations (26).  

 In addition to immunologically relevant targets, selected agents may also impair 

viral entry. Upon binding its cell surface receptor (ACE2), SARS-CoV-2 viral particles 

gain entry into the cell by clathrin-mediated endocytosis, a process which requires a 

number of adaptor proteins and kinases, including adaptor-associated protein kinase 1 

(AAK1). AAK1-dependent endocytosis is utilized by manner viruses, and targeted 

agents that impair its activity inhibit viral entry (27). Baricitinib, a JAK1/JAK2/TYK2 

inhibitor, was observed to inhibit AAK1 (and related kinases) at clinically achievable 

concentrations (IC50 <50nM)(28). This activity may be relatively specific to baricitinib, as 

inhibition by alternative JAK inhibitors (ruxolitinib and fedratinib) was less significant, 

with IC50’s in cell-based assays approaching 1 μM. Additional JAK inhibitors, including 

pacritinib, were not examined. A pilot study compared outcomes in moderate COVID-19 
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patients receiving baricitinib (n=12) or hydroxychloroquine (n=12). All patients received 

lopinavir/ritonavir. More rapid improvements in clinical and laboratory indicators of 

disease severity were noted in baricitinib treated patients (29). These preliminary 

findings were subsequently confirmed in a larger, multicenter study that included 

consecutive patients treated with either baricitinib (n=113) or hydroxychloroquine 

(n=78). Again, more rapid clinical improvement was noted in patients receiving 

baricitinib (30). 

 The variable selectivity of JAK inhibitors for non-JAK (“off”) targets may certainly 

contribute to clinically significant differences in their anti-viral and immunologic effects. 

Pacritinib, for example, given its ability to inhibit CSF-1R may be particularly promising, 

as monocytes/macrophages are a therapeutic target, whereas baricitinib, given its 

ability to impair AAK1-dependent viral entry may have unique anti-viral properties. In 

addition to their “off targets”, the JAK inhibitors also have significant differences in 

selectivity for each of the four JAK isoforms (JAK1, JAK2, TYK2, JAK3), which is 

summarized in Table 1. Different cytokine receptors utilize different JAK isoforms, and 

those receptors utilizing more than a single JAK isoform may be variably dependent 

upon a given isoform. Therefore, the relative selectivity of currently available JAK 

inhibitors, and the pleiotropic, yet non-redundant, role of the JAK isoforms, suggest that 

differences in JAK selectivity among JAK inhibitors may be associated with clinically 

significant differences in immunologic effects. As these differences in selectivity are not 
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absolute, the immunologic disparities among clinically available JAK inhibitors are 

complex, potentially subtle, but likely dose-, time-, and context-dependent, and certainly 

warrant further study. The immunologic similarities between severe COVID-19 and HLH 

not only support the many ongoing clinical trials with JAK inhibitors in COVID-19, but 

also suggest that hope for the future may not be limited to the development of an 

effective vaccine, but may also be found in the hematologist’s medicine cabinet.    

 
Data Availability Statement: Data sharing is not applicable to this article as no new data 
were created or analyzed in this study. 
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Table 1. Janus family kinase inhibitors being studied in COVID-19. 
 

Target Specificity 
 

Agent JAK1 JAK2 TYK2 JAK3 CSF1R IRAK1 AAK1 Clinical Trial(s) 
Baricitinib ++ ++ + - NR - + ACTT-2 

(randomized, 
phase III) 
 

Pacritinib - ++ ++ ++ ++ ++ NR PRE-VENT 
(randomized, 
phase III) 
 

Ruxolitinib ++ ++ ++ ++ - - - Phase II/III 
 

Tofacitinib ++ ++ + ++ NR - - Randomized 
phase IIb 
 

++IC50 <25 nM; +IC50 25-100 nM; -IC50 >100 nM; NR, not reported  
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