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Purpose: Oscillating steady-state imaging (OSSI) is an SNR-efficient steady-state 
sequence with T∗

2
 sensitivity suitable for FMRI. Due to the frequency sensitivity of 

the signal, respiration- and drift-induced field changes can create unwanted signal 
fluctuations. This study aims to address this issue by developing retrospective signal 
correction methods that utilize OSSI signal properties to denoise task-based OSSI 
FMRI experiments.
Methods: A retrospective denoising approach was developed that leverages the 
unique signal properties of OSSI to perform denoising without a manually specified 
noise region of interest and works with both voxel timecourses (oscillating steady-
state correction [OSSCOR]) or FID timecourses (F-OSSCOR). Simulations were 
performed to estimate the number of principal components optimal for denoising. In 
vivo experiments at 3 T field strength were conducted to compare the performance 
of proposed methods against a standard principal component analysis-based method, 
measured using mean t score within an region of interest, number of activations, and 
mean temporal SNR.
Results: Correction using OSSCOR was significantly better than the standard 
method in all metrics. Correction using F-OSSCOR was not significantly different 
from the standard method using an equal number of principal components. Increasing 
the number of OSSCOR principal components decreased activation strength and in-
creased the number of suspected false positives. However, increasing the number of 
principal components in F-OSSCOR increased activation strength with little to no 
increase in false activation.
Conclusion: Both OSSCOR and F-OSSCOR substantially reduce physiological 
noise components and increase temporal SNR, improving the functional results of 
task-based OSSI functional experiments. F-OSSCOR demonstrates a proof of con-
cept utilization of coil-localized FID signal information for physiological noise 
correction.
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1  |   INTRODUCTION

Oscillating steady-state imaging (OSSI) is a sequence that 
combines balanced gradients with a quadratic RF phase in-
crement to produce a large, oscillating signal.1 This signal 
has been shown to exhibit frequency sensitivity, which leads 
to a T∗

2
 weighting that is similar to gradient echo, creating the 

potential for high SNR FMRI acquisitions. Whereas OSSI’s 
frequency sensitivity results in desirable T∗

2
 weighting, it also 

increases sensitivity to any temporally varying changes to B0. 
Two primary causes of B0 changes over an FMRI experiment 
are respiration and scanner drift, which are known to vary 
throughout the brain spatially.2-5 The resulting physiological 
noise is commonly addressed in FMRI using a retrospective 
method as a postprocessing step. However, OSSI exhibits a 
complex nonlinear response to frequency changes, making 
model-based correction methods that use external physio-
logical recordings, such as RETROICOR,6 poorly suited to 
correct the OSSI signal. Instead, these nonlinear changes 
to the OSSI steady state may be addressed using previous 
data-driven approaches that differentiate physiological 
noise from functional changes through a spatial or temporal 
model.7-10

To this end, we present a novel data-driven method for 
retrospective correction method titled oscillating steady-state 
correction (OSSCOR). OSSCOR uses principal components 
as nuisance regressors, similar to existing component-based 
methods (ex. CompCor).8). However, OSSCOR does not rely 
on specifying a noise region of interest (ROI) and instead 
utilizes a unique property of OSSI for which multiple im-
ages with different contrasts are acquired for each time point. 
Results from simulation reveal that signal changes caused by 
frequency changes are low rank across these images, allowing 
estimation of physiological noise using principal component 
analysis. We show that the use of OSSCOR-derived nuisance 
regressors in a task-based FMRI experiment can significantly 
reduce physiological noise compared to standard methods, as 
measured by activated voxels, mean t score, and temporal SNR 
(tSNR). Finally, we present a variation of our approach deemed 
FID-based oscillating steady-state correction (F-OSSCOR), 
for which FID timecourses are used to generate nuisance  
regressors instead of image data. By using FID data instead 
of image data, physiological noise can be sampled every TR, 
independently of the slice or volume acquisition rate.

2  |   METHODS

2.1  |  Image-based physiological noise 
estimation

During an OSSI FMRI experiment, quadratic phase cycling 
is used to create a periodically oscillating signal that repeats 

every nc TRs, for which nc is a scan parameter. The nc sig-
nals from each period are then combined into 1 time point, 
resulting in an FMRI image series with an effective temporal 
resolution of TReff = nc ∗ TR. The OSSI signal combination 
strategy is an effective way to reduce frequency-dependent 
signal variance in steady state. However, temporally vary-
ing frequency due to respiration and scanner drift result in 
transient disturbances to the steady state, resulting in un-
wanted signal fluctuations. Herein, we refer to such signal 
fluctuations caused by both sources as physiological noise 
for simplicity.

The OSSCOR method is a data-driven method like 
CompCor, adapted to the unique acquisition strategy and 
features of the OSSI signal. First, OSSCOR seeks to remove 
physiological noise from the OSSI signal prior to the sig-
nal combination step in order to exploit shared information 
between the magnetization states. This information shar-
ing is accomplished by treating each of the nc phases in 
an OSSI cycle as separate image timecourses. We refer to 
each of these separate timecourses as a phase timecourse, 
such that each voxel will have nc phase time courses prior 
to combination.

Formally, we can represent the magnitude of an original 
OSSI voxel timecourse m ∈ ℝ

t
+
 with t time points as the fol-

lowing matrix:

where each column of M ∈ ℝ
t∕nc × nc

+
 is a phase timecourse. 

Although the nc time points in each row are acquired sequen-
tially, for the purpose of the noise analysis we assume that they 
are acquired simultaneously because the acquisition time of 
each row (∼100ms) is considerably faster than respiration or 
scanner drift-induced signal changes. The signals from each row 
of M form 1 time point in the combined timecourse c ∈ ℝ

t∕nc

+
:

Each phase timecourse will then exhibit different 
frequency-dependent physiological artifacts. An example of 
this can be seen in Figure 1A, where simulated respiration 
and drift result in different physiological artifacts for each 
phase timecourse. Figure 1B shows how combining phase 
timecourses can cause constructive or destructive interfer-
ence of these physiological artifacts, resulting in signal fluc-
tuations that change in amplitude and shape through time.

(1)M =
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We can use the matrix representation of the OSSI signal in 
Equation (1) to estimate the physiological noise components, 
which are common between phase time courses and between 
voxels. We achieve this by forming a block matrix S for all 
r voxels:

where the columns of S are the phase timecourses of all r 
voxels. Through simulation (as described below), we show 
that the physiological noise components of S are low rank 
and can be represented using principal component analysis 
(PCA). This is the central concept of OSSCOR; the signal 
properties of OSSI allow for a small number of principal 

components to sufficiently describe the physiological noise 
in any phase timecourse at any spatial location.

Once the principal components of S are determined, we 
can remove physiological noise components using the fol-
lowing signal model commonly used for BOLD FMRI:

where Si is the ith column of S; X is a matrix of experimen-
tal design variables; T is a matrix of polynomial detrending 
terms; and P is a matrix containing principal components of 
S, which act as nuisance regressors for physiological noise. 
β1, β2, and β3 contain weights for each respective matrix, 
and ε is random error. The use of polynomial terms T was 
not found to improve the performance of OSSCOR but were 

(3)S =

[
M

1
M

2
… Mr

]
, (4)Si = X�

1
+ T�

2
+ P�

3
+ �,

F I G U R E  1   Simulated gray matter signals with respiration and scanner drift effects. Plot A shows phase timecourses (3 of 6 plotted for 
clarity). Plot B shows the associated combined timecourse. Plot C shows simulated B0 changes modeled using 2 terms: 1) a respiration waveform at 
12 breaths/min and peak-to-peak amplitude of 1 Hz, and 2) a linear scanner drift term of 1 Hz/min
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included to maintain consistent degrees of freedom with 
CompCor in the later comparison.

The number of principal components was determined by 
simulating OSSI timecourses (TR = 15 ms, flip angle = 10°, 
nc = 6) with temporally varying B0. An example of how B0 
was varied can be seen in Figure 1C. The effects of respiration 
on B0 were varied by changing the amplitude from 0 to 2 Hz 
peak to peak, with a step size of 0.1 Hz (21 steps). A center fre-
quency offset was then added to each respiration waveform, for 
which each respiration waveform was initialized over ±50 Hz  
with a step size of 0.1 Hz (1001 steps). The respiration rate 
was kept constant at 12 breaths/min. A linear drift component 
of 1 Hz/min was added to the respiration component for all 
frequency amplitude values. T1 and T2 were not found to affect 
the results of the simulation and were held constant at 1286 ms 
and 110 ms, respectively. Each of the 21,021 parameter com-
binations was initialized at steady state and simulated for 90 
s, then reshaped into a matrix of 126,126 phase timecourses 
per Equation (1). PCA was then applied to the simulated time-
courses. A subsequent scree test was used to select a rank of k 
= 6 for denoising. Supporting Information Figure S2A shows 
associated scree plots of the simulated physiological noise.

2.2  |  FID-based 
physiological noise estimation

In addition to image data, principal components can be deter-
mined from acquiring extra samples of the signal FID prior 
to readout. We refer to this as F-OSSCOR, a FID-based varia-
tion of the previously described method. Although this signal 
source is not spatially encoded using gradients, the individual 
coils in a receive array provide spatially varying sensitivity 
to different regions of the brain, which in turn have varying 
distributions of off-resonant spins. Similar to a blind source 
separation problem, PCA can then be used to estimate the 
independent signals that comprise the low rank physiological 
noise subspace.

We implement this method by acquiring multiple samples 
at kxy = 0 before readout, which are then averaged into a sin-
gle magnitude value. This is performed coil-wise, resulting 
in ncoil measurements per TR. Considering these to be ncoil 
separate timecourses, the same methods previously described 
for image data are then applied. The number of FID samples 
was varied to determine its effect on the quality of estimates 
produced, which showed negligible improvement past 16 
samples.

2.3  |  Experimental setup

All studies (n = 6 subjects) were performed on a 3 T GE 
MR750 scanner (GE Healthcare, Waukesha, WI) with a 

32-channel head coil (Nova Medical, Wilmington, MA). All 
experiments were conducted in accordance with the local 
institutional review board, and all subjects were provided 
written informed consent. We implemented the OSSI pulse 
sequence using the vendor’s pulse programming language, 
EPIC, as well as our own in-house pulse sequence develop-
ment framework, TOPPE.11 Single-slice imaging with was 
performed using a single-shot constant-density spiral-out  
trajectory (nc = 6, TR = 17.5 ms, flip angle = 10◦, FOV = 19 ×  
19 cm2, matrix = 45 × 45 reconstructed at 64 × 64, slice 
thickness = 2.5 mm, sampling BW = 250 kHz), with 16 extra 
k-space center samples prior to readout. Spatial distortions 
due to B0 field inhomogeneity were corrected using a sepa-
rately acquired field map.

Subjects were presented with a visual stimulus composed 
of right- and left-hemifield counter-phased 10Hz flickering 
checkerboards in 40 s blocks, repeated 6 times (240 s). The 
subject was instructed to gaze at a fixation cross in the center 
of their visual field during the experiment.

2.4  |  Data analysis

Analysis of functional data was performed using MATLAB 
2019a (Mathworks, Natick, MA). A block diagram illustrat-
ing the following analysis workflow is shown in Figure 2. 
The OSSCOR and F-OSSCOR analysis methods were ap-
plied by removing physiological noise components to phase 
timecourses S using least-squares fitting of the signal model 
(Equation 4), which included the task waveform and linear/
quadratic detrending terms. Six principal components were 
used in the OSSCOR and F-OSSCOR analyses. The denoised 
phase timecourses were then combined using Equation (2), 
resulting in 1 denoised combined timecourse per voxel. For 
comparison, CompCor was implemented on combined time-
courses with linear/quadratic detrending. Temporal SD (tSD) 
was used to select the top 2% of noisy voxels, discarding any 
timecourse with task correlation higher than 0.2 (tCompCor 
variation). In all methods, the resulting denoised combined 
timecourses were then evaluated for activation using a sim-
ple correlation threshold of r > 0.5. No high-pass filtering or 
spatial smoothing was performed.

Method performance was evaluated using average t score, 
number of activated voxels, and average tSNR. Average t 
score was calculated within a per-subject ROI defined by the 
union of the activated voxels found in all correction methods, 
with df = 2079 for each voxel. In counting the total number 
of activations, only voxels from the bottom-third of the brain 
could be considered true active, approximately correspond-
ing to the visual cortex. Additionally, because the visual 
stimulus was counter-phased, only negative correlations were 
considered from the left hemisphere and positive correlations 
from the right hemisphere. For comparison, an additional 
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nonparametric analysis was conducted using a random block-
wise permutation approach with randomized circular shift-
ing, 1 million permutations, and 10 blocks.12

3  |   RESULTS

Detailed results from 1 subject (no. 4) are described here, 
with results for other subjects summarized in Table 1.  
Figure 3A shows activation and tSNR maps for the proposed 
methods, with CompCor for comparison. Using a paired t 
test, OSSCOR, F-OSSCOR, and CompCor all significantly 
improved the number of activated voxels (all P < .03, d > 
1.26), average t score (all P < .001, d > 4.44), and tSNR (all 
P < .001, d > 6.36) compared to only polynomial detrend-
ing (Table 1). OSSCOR performed significantly better than 
CompCor in all 3 metrics (P = .025, P = .042, P = .0025; and 
d = 1.29, d = 1.11, d = 2.29, respectively). F-OSSCOR re-
sults were not found to be significantly different compared to 

CompCor. An example uncorrected and OSSCOR corrected 
phase timecourse is shown in Figure 4, illustrating successful 
reduction of high-frequency respiratory noise as well as drift-
induced low-frequency components. The OSSCOR nuisance 
regressors for subject 4 are shown in Supporting Information 
Figure S1.

Increasing the number of principal components used in 
OSSCOR resulted in decreased activation area and mean t 
score, as well as an increase in false positives as defined by 
activations outside of the visual task ROI. This reduction of 
performance was observed across all subjects. However, in-
creasing the rank of the F-OSSCOR analysis improved the 
number of activations and mean t score across all subjects, 
with little to no increase in false activation. Activation maps 
for representative principal component numbers are shown 
in Figure 3B. Scree plots for OSSCOR and F-OSSCOR are 
shown in the Supporting Information Figure S2B,C. The 
results of the random blockwise permutation analysis are 
shown in Supporting Information Figure S3 and Supporting 

F I G U R E  2   A diagram outlining the steps implemented for each analysis method. OSSCOR and F-OSSCOR both calculate principal 
components and perform denoising before phase timecourse combination, whereas CompCor was applied on the final combined timecourse. 
CompCor, component-based method; F-OSSCOR, FID-based oscillating steady-state correction; OSSCOR, oscillating steady-state corrrection
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Information Table S1, showing general agreement with the 
performance results from the correlation analysis.

4  |   DISCUSSION

The phase timecourse analysis of OSSCOR assumes that the 
time to acquire each period of nc TRs is much shorter than 
the timescales at which respiration and drift occur. Therefore, 
temporally varying frequency and resulting transient effects 
can be treated as quasi-static over the duration of a full nc 
OSSI period. This assumption does not imply that transient 
effects are negligible but rather are slowly varying compared 
to the speed to acquire a period, TReff. This assumption per-
forms well at the chosen parameters (nc = 6, TReff = 105 
ms), although we found in initial tests that longer readouts 
or higher nc values reduced the effectiveness of OSSCOR. 
Furthermore, higher values of nc result in reduced amplitude 
of respiration and drift artifacts due to a more stable com-
bined frequency response, reducing the need for retrospective 
correction. For example, a period of nc = 10 was shown to  
have a combined frequency response variation of less than 
5% compared to the 17% variation of nc = 6, although at the 
cost of a 66% longer TReff.

F-OSSCOR extends the OSSCOR method by using FID 
timecourses instead of voxel timecourses. Although not spa-
tially encoded, the FID time series data can be used to esti-
mate spatially varying physiological noise due to 2 sources 
of signal diversity: coil sensitivity and B0 inhomogeneity. 
Because the FID signal is detected independently per coil, 
each coil will only be sensitive to a spatially localized distri-
bution of off-resonant spins with certain physiological noise 
structure. Furthermore, OSSI effectively acquires a sequence 
of nc different images with different center frequencies, re-
sulting in each coil receiving FID signals from nc different 
regions of the frequency response. In our experimental setup 
using a 32-channel head array and nc = 6, the 192 separate 
FID timecourses produced for the F-OSSCOR analysis were 
sufficient for correcting the data. An additional benefit of 
the F-OSSCOR approach is that the requisite FID signals are 
measured every TR regardless of the encoding strategy and 
are therefore compatible with any multishot, 3D, or under-
sampling scheme.

The concept of using FID-based nuisance regressors as-
sumes that FID signal variance is dominated by respiration 
or drift artifacts that are of lower rank than functional signal 
changes. This is supported by the comparison shown in Figure 
3B, which shows OSSCOR and F-OSSCOR activation maps 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Average t score with 
detrending

15.1 26.4 38.3 19.0 19.2 27.5

Average t score with 
CompCor

31.6 43.4 47.0 33.5 31.1 41.7

Average t score with 
OSSCOR

34.5 44.3 49.4 38.6 41.5 43.2

Average t score with 
F-OSSCOR

32.8 43.9 48.1 35.7 36.6 41.4

No. activated voxels 
with detrending

0 16 53 27 10 39

No. activated voxels 
with CompCor

22 32 66 91 19 67

No. activated voxels 
with OSSCOR

30 31 71 109 34 75

No. activated voxels 
with F-OSSCOR

28 28 70 87 27 63

Average tSNR with 
detrending

47.9 41.4 83.9 60.2 46.1 67.2

Average tSNR with 
CompCor

88.1 72.0 125.6 94.0 74.1 106.4

Average tSNR with 
OSSCOR

94.9 94.3 135.9 106.1 83.5 119.2

Average tSNR with 
F-OSSCOR

87.3 75.9 132.6 95.1 80.4 106.7

CompCor, component-based method; F-OSSCOR, FID-based oscillating steady-state correction; OSSCOR, 
oscillating steady-state correction; tSNR, temporal SNR.

T A B L E  1   Summary of functional 
experimental results
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denoised using different numbers of principal components. As 
the number of principal components was increased past the 
theorized rank of the physiological noise, OSSCOR functional 
sensitivity and specificity decreased in all subjects. In contrast, 
increasing the number of principal components in F-OSSCOR 
increased activation strength with minimal reduction in spec-
ificity across subjects while maintaining similar activation 
areas. We conclude that OSSCOR is more sensitive to the 
number of PCs used and begins to capture functional activity 
in its regressors when the selected rank is too high. Conversely, 
F-OSSCOR performance is relatively insensitive to exceeding 
the rank of the physiological noise.

Both OSSCOR and F-OSSCOR use PCA to produce nui-
sance regressors for subsequent functional analysis, similar to 
the CompCor denoising approach. However, a fundamental 
difference is that CompCor seeks to target noisy voxels and ex-
clude activated voxels from the PCA by specifying a noise ROI, 
whereas OSSCOR and F-OSSCOR include all data. Despite 
including activated voxels in the PCA analysis, OSSCOR per-
formed significantly better than CompCor in all 3 metrics, and 
F-OSSCOR performed comparably to CompCor. In fact, our 
testing showed that including all voxels as inputs was found 
to be critical for OSSCOR because excluding voxels via a tSD 
threshold resulted in a loss of denoising performance. This 

F I G U R E  3   (A) Activation and tSNR map for each respective correction methods: polynomial detrending only; and CompCor, OSSCOR, 
and F-OSSCOR with 6 PCs each. OSSCOR outperformed both CompCor and F-OSSCOR, but all 3 correction methods significantly increased 
the number of activated voxels and mean tSNR. Voxels with a significant vascular component were observed to have lower tSNR than their 
surroundings, which is thought to be the effect of through-plane flow unable to reach steady state due to the single-slice acquisition. (B) Activation 
maps for OSSCOR and F-OSSCOR with varying number of PCs. Increasing the number of OSSCOR PCs reduced activation sensitivity and 
increased the number of false positives, whereas increasing the number of F-OSSCOR PCs increased sensitivity without increasing false positives. 
PCs, principal components; tSNR, temporal SNR
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implies that a sufficient range of off-resonant signals needs to 
be included in the analysis and that only selecting timecourses 
with high tSD results in a limited range of off-resonant behav-
iors represented in the nuisance regressors.

Our implementation of CompCor excluded timecourses 
that were correlated with the task above a threshold, although 
this preprocessing step was found to be unimportant for an-
alyzing OSSI data. This result was confirmed by manually 
inspecting the unmodified tSD-derived ROI, which did not 
include voxels near the activated regions of the visual cortex. 
This preprocessing step was tested with OSSCOR to exclude 
phase timecourses potentially containing functional signal but 
was also found to have a negligible impact. Preprocessing the 
data using second-order polynomial detrending was effective at 
removing slowly varying noise components attributed to drift. 
This detrending step was found to be essential for defining the 
CompCor noise ROI based on tSD because respiration-induced 
noise magnitude is small compared to drift. However, the de-
trending step had a negligible effect on OSSCOR because no 
ROI is used, and low-frequency components are captured in the 
principal components. Although not necessary, polynomial de-
trending terms were included in OSSCOR and F-OSSCOR in 
order to match the degrees of freedom in method comparisons.

Whereas OSSCOR and F-OSSCOR demonstrate the abil-
ity to mitigate the effects of respiratory and scanner drift-in-
duced frequency changes in OSSI, both methods inherit 
limitations of data-driven correction approaches. The first is 
the selection of how many principal components should be 
included in the analysis. Here, we have shown a rank can be 
selected through simulation; however, this does not account 
for subject-specific B0 distributions or temporally varying 

respiration rates. This can lead to a deterioration of perfor-
mance for some frequencies, as shown in the last 2 stimulus 
blocks in Figure 4, where no respiration artifacts are removed. 
Furthermore, flow-related artifacts in OSSI result in complex 
frequency-dependent signal evolutions, which were not well 
corrected by either proposed methods or CompCor. This ef-
fect can be seen in Figure 2, where tSNR did not improve in 
areas with significant vascular components.

Including all timecourses in OSSCOR creates the possi-
bility of the nuisance regressors representing functional signal 
instead of noise, which would result in decreased functional 
sensitivity. This is of concern in the event of widespread acti-
vation or in cases in which there is no predefined task activity, 
such as in resting-state fMRI. For OSSCOR, such an issue may 
potentially be addressed through a CompCor-like strategy in 
which only white matter and CSF voxels are used as inputs. It 
is possible that F-OSSCOR would be less sensitive to the loss 
of resting-state activity since F-OSSCOR uses FID timecourses 
instead of voxel timecourses. This notion is supported by  
Figure 3B, where increasing the number of F-OSSCOR PCs 
did not appear to increase the number of false positives at the 
threshold used. Either of these modifications could be combined 
with common preprocessing steps such as band-pass filtering to 
exclude resting-state frequencies prior to applying PCA.

5  |   CONCLUSION

We have shown that the application of OSSCOR and 
F-OSSCOR can significantly reduce physiological noise due 
to temporally varying off-resonance during an OSSI-based 

F I G U R E  4   An example of uncorrected and OSSCOR-corrected phase timecourses, with the visual task indicated by black bars on the x axis. 
Although the uncorrected timecourse shows high sensitivity to respiration changes in the first minute of the scan, the OSSCOR method is able to 
regress out these physiological effects
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fMRI acquisition. Unlike the previous PCA-based methods 
such as CompCor, OSSCOR does not require the selection of 
a designated noise ROI and instead uses OSSI-specific signal 
properties to determine correlated physiological noise com-
ponents. Similarly, we show through F-OSSCOR that FID 
samples can be used to produce nuisance regressors inde-
pendent of the image encoding strategy.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

FIGURE S1 Individual OSSCOR nuisance regressors plot-
ted for k = 6. Each principal component can be seen to con-
tain low frequency components due to drift effects, as well 
as high frequency components due to respiration. Note that 
while each of the 6 regressors contains fluctuations due to 
respiration, the phase of the fluctuations varies between 
regressors
FIGURE S2 Scree plots for simulated physiological noise 
(A), as well as OSSCOR (B) and F-OSSCOR (C) applied to 
n = 6 subject scans. In the experimental data, the plots show 
that energy of the PCs is reduced by slightly reduced amount 
for OSSCOR and a similar amount for F-OSSCOR, in com-
parison to the simulated physiological noise
FIGURE S3 Activation maps for all n = 6 subjects com-
puted for each denoising approach using a random blockwise 
permutation analysis, thresholded at P = .001. Each analysis 
used 1,000,000 permutations of 10 timecourse blocks, with 
random circular shifts added before block randomization. 
Masks for each subject are shown, indicating voxel regions 
that were counted as true activation. See “Data Analysis” for 
a description of how true and false activation regions were 
estimated
TABLE S1 Summary of permutation test results, showing 
the number of true and false activated voxels from the ac-
tivation maps and masks shown in Supporting Information 
Figure S3
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