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31 Abstract

32

33 It has been long assumed that abiotic factors (i.e., geography and climate) dominate 

34 the ecological and evolutionary processes underlying the distribution of species, 

35 lineages and genes at broad spatial scales and, as a result, the study of interspecific 

36 interactions has largely been overlooked in biogeography research and ignored 

37 entirely in phylogeographic inference. Here, we focus on plant-plant interactions and 

38 test whether their demographic consequences translate into broad-scale patterns of 

39 genomic variation in two Californian oak species. With our process-based analyses and 

40 statistical comparison of the likelihoods of alternative models, we show that spatial 

41 patterns of genomic variation are better explained by demographic scenarios 

42 incorporating interspecific interactions (including both competition and facilitation) 

43 than by null models that only consider heterogeneity of environmental suitability 

44 across the landscape. Collectively, our integrative approach supports the notion that 

45 the consequences of biotic interactions transcend much larger geographical and 

46 evolutionary scales than the traditional local focus.

47

48 KEYWORDS

49 Biotic interactions, competition, community ecology, demographic inference, 

50 facilitation, genetic variation, phylogeography

51

52 1. INTRODUCTION

53

54 The study of how organisms interact with landscape heterogeneity at contrasting 

55 spatiotemporal scales has figured prominently in our understanding of the ecological 

56 and evolutionary processes underlying geographical distribution of genetic variation, 

57 population divergence, and the formation of new species (Avise, 2000; Arbogast & 

58 Kenagy, 2001). Traditionally, phylogeography has focused on testing alternative 

59 hypotheses that link different abiotic (extrinsic) factors (e.g., barriers to dispersal, 

60 climate-driven range shifts, etc.) with population genetic structure (Avise, 2000; 

61 Knowles, 2009). More recently, conceptual frameworks have advocated for the 

62 importance of building and testing refined hypotheses that incorporate taxon-specific 
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63 traits (e.g., dispersal capacity, environmental niche, microhabitat preferences, etc.) to 

64 capture the biotic (intrinsic) factors structuring genetic variation (Papadopoulou & 

65 Knowles, 2016). By integrating the properties of organisms into alternative models, the 

66 relative support for the proximate biological processes underlying spatial patterns of 

67 genetic variation can be statistically evaluated and inferred, improving the predictive 

68 capacity of both distributional and phylogeographic models (Estrada, Morales-Castilla, 

69 Caplat, & Early, 2016; Papadopoulou & Knowles, 2016).

70 Despite these advances in biologically-informed models, an important biotic 

71 aspect has been essentially ignored in phylogeography research – namely, interspecific 

72 interactions (Wisz et al., 2013). As a result, we know virtually nothing about the role of 

73 this key biological component in structuring genetic variation. Only in taxa with highly 

74 specialized and tight relationships have studies attempted to address this question, 

75 and even among this class of interactors, we have very few examples (e.g., host-

76 parasite interactions: Tsai & Manos, 2010; symbionts: James et al., 2011). The paucity 

77 of studies on the effect of species interactions on spatial patterns of genetic diversity 

78 and structure contrasts with the well-established demographic consequences of 

79 interspecific interactions within and across trophic levels from theoretical and 

80 empirical studies in classical ecological and evolutionary research (e.g., Godoy, Kraft, & 

81 Levine, 2014; Miriti, Wright, & Howe, 2001; Maynard, Wootton, Servan, & Allesina, 

82 2019). This in part could reflect the arguments about the relative importance of 

83 species interactions beyond local spatial and temporal scales, with abiotic factors such 

84 as climate and geography presumably predominating at the large geographical extents 

85 at which species and population divergence occurs (Pearson & Dawson, 2003; 

86 Soberón, 2007). However, there is no reason to think that the demographic and 

87 evolutionary consequences of interspecific interactions observed at local spatial scales 

88 would not translate to broader geographical and temporal (i.e., evolutionary) scales 

89 (see Svenning et al., 2014; Godsoe, Jankowski, Holt, & Gravel, 2017) and accumulating 

90 empirical evidence point to their important role in determining species distributions 

91 (for a thorough review see Wisz et al., 2013). Moreover, it is also now broadly 

92 recognized that ignoring interspecific interactions (i.e. the community context) will 

93 most likely lead to misleading predictions about the impacts of global change on 

94 biodiversity (Gilman, Urban, Tewksbury, Gilchrist, & Holt, 2010).
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95 The other factor that contributes to the paucity of studies on the effects of 

96 biotic interactions on population genetic structure is simply that there is not a 

97 straightforward, or obvious, approach for quantifying their potential role. Despite 

98 these challenges (and admittedly simplifying assumptions that will no doubt be 

99 necessary), it is also true that without a step toward integrating species interactions 

100 into demographic inference, we may not only be mis-ascribing their effects on genetic 

101 variation to other processes, but we may also be missing the opportunity to obtain 

102 realistic predictions about how populations, species and whole communities will 

103 respond to the many different components of ongoing global change from both a 

104 demographic (Espindola et al., 2012) and an adaptive perspective (Browne, Wright, 

105 Fitz-Gibbon, Gugger, & Sork, 2019).

106 Here, we focus on plant-plant interactions and their characterization by 

107 spatially explicit models for two oak species (genus Quercus) from the California 

108 Floristic Province (CFP) to test whether their demographic consequences translate into 

109 broad-scale patterns of genomic variation. We construct models aimed at capturing 

110 negative and positive species interactions given that both are key ecological processes 

111 that structure plant assemblages (Callaway & Walker, 1997), including forest 

112 communities (e.g., Leathwick & Austin, 2001; Cavender-Bares, Ackerly, Baum, & 

113 Bazzaz, 2004; Cavender-Bares, Kozak, Fine, & Kembel, 2009; Pollock, Bayly, & Vesk, 

114 2015). For example, negative interactions (e.g., competition for limited resources, 

115 negative allelopathy, etc.) can reduce carrying capacities of subdominant species (e.g., 

116 Miriti et al., 2001), whereas positive interactions (e.g., nurse effects, enhancement of 

117 the chemical, physical or microbial environment, etc.) can facilitate seedling 

118 establishment and increase population growth rates and species expansion (Callaway, 

119 1995). We also incorporate models that account for differences in species relatedness 

120 in mediating the direction and strength of interspecific interactions, which has been 

121 addressed by ecological studies that consider the phylogenetic context of interactions, 

122 albeit with mixed conclusions (i.e., phylogenetic niche conservatism; e.g., Valiente-

123 Banuet & Verdú, 2007; Cahill, Kembel, Lamb, & Keddy, 2008; Godoy et al., 2014).

124 For competing models of genomic variation that integrate hypothetical positive 

125 and negative interactions, we specifically consider how other congeneric species (i.e. 

126 oak-oak interactions) impact the demography of two focal oak taxa widely distributed 
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127 in the CFP – Quercus berberidifolia (section Quercus) and Quercus chrysolepis (section 

128 Protobalanus) (Manos, 1997; Nixon & Muller, 1997; Nixon, 2002). The two species 

129 belong to different sections that also differ with respect to their species richness 

130 within the CFP, with 12 species in section Quercus vs. 4 species in section Protobalanus 

131 (Manos, 1997; Nixon & Muller, 1997; Denk, Grimm, Manos, Deng, & Hipp, 2017) 

132 (Figure 1). Because interspecific gene flow generally only takes place among species 

133 within the same section (Manos, Doyle, & Nixon, 1999; Nixon, 2002; Pham, Hipp, 

134 Manos, & Cronn, 2017), the two focal taxa also differ with respect to the number of 

135 closely related species they have the potential to hybridize with. Thus, by selecting 

136 these species, our tests can be used to examine the effects of phylogenetic relatedness 

137 (i.e., comparing hypothetical interactions exerted by oak species belonging to the 

138 same vs. different taxonomic sections than the focal taxa), as well as species-specific 

139 interactions (i.e., they provide independent tests of either the positive or negative 

140 effects of species interactions). This makes our study especially well-suited for testing 

141 alternative biogeographic scenarios from a comparative perspective about the 

142 potential role of phylogenetic relatedness on interspecific interactions, and how these 

143 impact range-wide patterns of genomic variation. Nevertheless, we acknowledge that 

144 there are a lot of unknowns and consequent assumptions that we must make in this 

145 study, the caveats of which are discussed thoroughly in the context of our findings and 

146 conclusions. As such, this work should be viewed as providing insights into the 

147 potential impact of species interactions on broad-scale genomic variation, which itself 

148 is novel and opens new avenues of research in phylogeographic inference from a 

149 community-level perspective. We discuss the utility of our analytical framework for 

150 stimulating future independent research aimed at corroborating the nature (i.e. 

151 underlying mechanisms) of the interspecific interactions we test here and whether the 

152 direction of these interactions (or lack of such interactions) depend upon the 

153 phylogenetic relatedness with the focal taxa.

154

155 2. MATERIALS AND METHODS

156

157 2.1. Population sampling and genomic library preparation and processing 

158

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

159 Between 2010 and 2014, we sampled eight populations of California scrub oak 

160 (Quercus berberidifolia) (n = 63 individuals) and ten populations of canyon live oak (Q. 

161 chrysolepis) (n = 80 individuals) representative of their respective distributions in 

162 California (Manos, 1997; Nixon & Muller, 1997) (Figure 2; Table S1). We used a mixer 

163 mill to grind ~50 mg of frozen leaf tissue in tubes with a tungsten bead and performed 

164 DNA extraction and purification with NucleoSpin Plant II kits (Macherey-Nagel, Düren, 

165 Germany). We processed genomic DNA into genomic libraries using the double-

166 digestion restriction-fragment-based procedure (ddRADseq) described in Peterson et 

167 al., (2012) (Methods S1) and used the different programs distributed as part of the 

168 STACKS v. 1.35 pipeline (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013) to 

169 filter and assemble our sequences into de novo loci and call genotypes (Methods S2).

170

171 2.2. Quantifying population genetic structure

172

173 We analysed population genetic structure of the two focal species using the Bayesian 

174 Markov chain Monte Carlo clustering method implemented in the program STRUCTURE v. 

175 2.3.3 (Pritchard, Stephens, & Donnelly, 2000). We ran STRUCTURE assuming correlated 

176 allele frequencies and admixture without using prior population information. We 

177 conducted 15 independent runs with 200,000 MCMC cycles, following a burn-in step of 

178 100,000 iterations, for each of the different possible K genetic clusters (from K = 1 to K 

179 = 10). We retained the ten runs having the highest likelihood for each value of K and 

180 inferred the number of populations best fitting the dataset using log probabilities 

181 [Pr(X|K)] (Pritchard et al., 2000) and the ΔK method (Evanno, Regnaut, & Goudet, 

182 2005). To complement and confirm the results yielded by Bayesian clustering analyses 

183 (see Janes et al., 2017), we performed a principal component analysis (PCA) as 

184 implemented in the R v. 3.3.2 (R Core Team, 2020) package adegenet (Jombart, 2008). 

185 Before running PCAs, we scaled and centred allele frequencies and replaced missing 

186 data with mean allele frequencies using the scaleGen function as recommended by 

187 Jombart (2008).

188

189 2.3. Incorporating interspecific interactions into phylogeographic models

190
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191 Species interactions (positive, negative or neutral), as well as the magnitude of their 

192 effects (which may vary depending on the number of species that overlap in 

193 distribution with the focal taxa), were incorporated into a spatiotemporally explicit 

194 integrative distributional, demographic and coalescent (iDDC) modelling framework 

195 (He, Edwards, & Knowles, 2013) (Figure 1). To account for the impact of environmental 

196 heterogeneity across space and time on genomic variation, we translated current and 

197 last glacial maximum (LGM) suitability maps obtained for each focal taxon via 

198 environmental niche modelling (ENM) into layers of carrying capacities (see He et al., 

199 2013). To model the effects of species-interactions (or their lack thereof) under 

200 different hypothetical scenarios, the local carrying capacities of the focal taxa across 

201 their respective distributions and time periods (LGM to present) remained unaltered 

202 (i.e., a null model of no species-interaction effects) or either increased (positive 

203 interactions) or decreased (negative interactions) in the presence of other oak species, 

204 whose distributions were also estimated through ENMs (see below for details).

205 Because the nature of species interactions may differ as a function of 

206 phylogenetic relatedness, we tested eight hypothetical interaction models (plus the 

207 null model) representing of a diverse suite of alternative scenarios that included the 

208 potential importance of phylogenetic relatedness (i.e., to belong or not to the same 

209 taxonomic section than the focal taxon) on the direction of interspecific interactions 

210 (Table 1; Figure S1). Note that the impact of species phylogenetic relatedness on the 

211 direction of interactions is mixed across different studies; some have supported, 

212 whereas others have rejected, the hypothesis that more distantly related species show 

213 lower niche overlap and compete less strongly than recently diverged species with 

214 more similar phenotypes and shared resource requirements (e.g., Cavender-Bares et 

215 al., 2004; Valiente-Banuet & Verdú, 2007; Cahill et al., 2008; Godoy et al., 2014; 

216 Narwani et al., 2017). As such, the specific models explored here consider (i) similar 

217 positive or negative interactions with all other oak species regardless of their 

218 phylogenetic relatedness (i.e., taxonomic section) with the focal taxon, and (ii) 

219 interactions in which co-distributed species belonging to either the same or different 

220 sections as the focal taxon exert contrasting effects (positive, negative or neutral) 

221 (Table 1; Figure S1). 
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222 The demographic consequences of species interactions (i.e., effects on local 

223 carrying capacities) and subsequent genetic expectations under each scenario were 

224 generated via spatiotemporally explicit coalescent-based simulations (1 × 106 

225 simulations per model) as implemented in SPLATCHE2 (Ray, Currat, Foll, & Excoffier, 

226 2010) and compared with empirical genomic data within an approximate Bayesian 

227 computation (ABC) framework (Beaumont, Zhang, & Balding, 2002) in order to 

228 determine the relative statistical support of each model and estimate the posterior 

229 distribution of the demographic parameters of the spatially explicit coalescent (e.g., 

230 Bemmels, Title, Ortego, & Knowles, 2016; He et al., 2013; Knowles & Massatti, 2017). 

231 In the next sections we provide all the specific details about the construction of the 

232 alternative phylogeographic scenarios, spatiotemporally explicit simulations, 

233 parameter estimation, and model testing and validation (also see illustrative summary 

234 of the general workflow in Figure 1).

235

236 2.3.1. Environmental niche modelling

237 We used the maximum entropy algorithm from MAXENT v. 3.3.3 (Elith et al., 2006, 2011; 

238 Phillips, Anderson, & Schapire, 2006) implemented in the R package dismo v. 1.1-4 

239 (Hijmans, Phillips, & Elith, 2017) to build environmental niche models (ENMs) and 

240 generate suitability maps for both the present and the last glacial maximum (LGM, 

241 21.5 ka) for each of our two focal taxa. We also built ENMs for each of the other oak 

242 species from California (Jensen, 1997; Manos, 1997; Nixon & Muller, 1997; Figure 1) 

243 and used projections of their geographical distributions during the present and the 

244 LGM to generate phylogeographic models of their potential hypothetical effects on our 

245 two focal taxa as detailed below. To build the models, we used species occurrence 

246 data from our own records, as well as those available at the Global Biodiversity 

247 Information Facility (http://www.gbif.org/), Calflora database 

248 (http://www.calflora.org/), the Consortium of California Herbaria 

249 (http://ucjeps.berkeley.edu/consortium/), the Consortium of Pacific Northwest 

250 Herbaria (http://www.pnwherbaria.org/) and the University of Arizona Herbarium 

251 (http://ag.arizona.edu/herbarium/) (Table S2). As environmental layers, we used the 

252 19 bioclimatic variables available in WORLDCLIM v. 1.4 at 30 arc-second resolution 

253 (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) plus a layer of slope generated using 
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254 ARCMAP v. 10.2.1 (ESRI, Redlands, CA, USA) from a 30 arc-second digital elevation and 

255 bathymetry model (Becker et al., 2009). We conducted species-specific model 

256 parameter tuning using the R package ENMeval (Muscarella et al., 2014). Specifically, 

257 for each species, we tested a total of 248 models of varying complexity by combining a 

258 range of regularization multipliers (RM) (from 0 to 15 in increments of 0.5) with eight 

259 different feature classes (FC) combinations (L, LQ, LQP, H, T, LQH, LQHP, LQHPT, where 

260 L = linear, Q = quadratic, H = hinge, P = product and T = threshold; Muscarella et al., 

261 2014). We compared MAXENT models with different settings using the Akaike 

262 information criterion corrected for small sample size (AICc) (Burnham & Anderson, 

263 2002; Warren & Seifert, 2011). We performed a three-stage approach to select the 

264 species-specific set of environmental variables and model parameters (RM and FC) 

265 (Warren, Wright, Seifert, & Shaffer, 2014). In a first step, we built a full set of models 

266 including all variables, retained the model with the lowest AICc score, and among 

267 those variables that were spatially correlated (Pearson’s correlation coefficient > 0.7, 

268 estimated using ENMTOOLS; Warren, Glor, & Turelli, 2010) we only retained for the next 

269 step the one with the highest percent contribution to the model. In a second step, we 

270 ran another full set of models with the subset of variables retained in the first step, 

271 selected the model with the lowest AICc score, and (if any) removed variables with 

272 zero percent contribution to the model. In a third step, we re-ran a final full set of 

273 models with the environmental variables retained in the previous step and used for all 

274 downstream analyses the model with the lowest AICc score. We projected final models 

275 for each species to the last glacial maximum (LGM) conditions derived from the 

276 Community Climate System Model v. 4 (CCSM4; Gent et al., 2011), which has been 

277 shown to perform well for predicting terrestrial climate conditions during this period 

278 (Harrison et al., 2014). To create maps of presence/absence for the species that may 

279 interact with the focal taxa, we converted the logistic output from MAXENT into binary 

280 maps (Figures S2 and S3) using the maximum training sensitivity plus specificity (MTSS) 

281 threshold values for occurrence obtained for each oak species (Table S2; see Liu, Berry, 

282 Dawson, & Pearson, 2005). 

283

284 2.3.2. Translating ENMs into alternative phylogeographic models
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285 We used information from ENMs to describe geographic variation in carrying 

286 capacities for our two focal species. For the null model of no species-interaction 

287 (Model A), the carrying capacities (K) of demes were scaled proportionally to logistic 

288 habitat suitability scores (ranging from 0 to 1) obtained from MAXENT for each focal 

289 species (e.g., Bemmels et al., 2016; González-Serna, Cordero, & Ortego, 2019; Knowles 

290 & Massatti, 2017; Massatti & Knowles, 2016). In models considering interspecific 

291 interactions, carrying capacities of the focal species were reduced (negative 

292 interactions) or increased (positive interactions) by the presence of other oak species 

293 in the same grid cell (Table 1). Specifically, the effect of each oak species projected to 

294 be present in the same grid cell (based on species-specific ENMs) as the focal taxon 

295 was modeled by either reducing (negative interaction) or increasing (positive 

296 interaction) the habitat suitability of the focal species by 0.05 (i.e., 5% from a 

297 maximum K of 100%). Although the magnitude of the potential effect of each oak 

298 species on the focal taxa is admittedly arbitrary, this value was selected because it is 

299 one that generated statistically distinguishable models of biological significance (see 

300 Papadopoulou & Knowles, 2016). Specifically, visual inspection of habitat suitability 

301 maps under the different scenarios suggested that smaller values did not result in any 

302 appreciable differences in the spatial distribution of carrying capacities among 

303 scenarios, whereas larger values would produce gaps in the distribution of the focal 

304 taxa when modeling negative interactions or resulted in little heterogeneity in local 

305 carrying capacities across the landscape when modelling positive interactions.  In all 

306 models, the negative or positive impact of other oak species was always bounded 

307 within the range (0-1) of habitat suitability scores provided by the logistic output of 

308 MAXENT (i.e., the negative and positive effects of other oak species never increased the 

309 probability of occurrence of the focal species above one, or a k = 100%, or reduced it 

310 below zero, or a k = 0%, respectively). In other words, the parameter space in which 

311 the effects of overlapping with multiple species (as opposed to limited overlap) with 

312 the focal taxa was constrained. We recognize that our models do not capture other 

313 more complex interactions (e.g., multiplicative interactions or varying effects by 

314 species) and assume the positive or negative effects of potential interactions vary as a 

315 function of the number of species with distributional overlap (see Figure S1). 

316 Nevertheless, by capturing the potential effects of community composition on the 
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317 focal taxa, our models provide a good starting point for examining the potential effects 

318 of species interactions on broad-scale patterns of genetic variation of the focal taxa. It 

319 is in this spirit (and in recognition of all the assumptions about the nature of species 

320 interactions) that there is merit in the approach we apply here.  

321

322 2.3.3. Spatiotemporally explicit simulations

323 We used the integrative distributional, demographic and coalescent (iDDC) framework 

324 (He et al., 2013), which applies SPLATCHE2 (Ray et al., 2010), to generate genetic 

325 expectations for the nine alternative models we test here (Table 1 and Figure S1) 

326 where the habitat suitabilities, and hence, carrying capacities, for the two focal species 

327 differ through time and across the landscape. For each model (see Figure 1), 

328 demographic simulations are carried out in which the suitability of the landscape 

329 varies across three temporal periods, i.e., input from ENMs incorporated based on 

330 bioclimatic/paleobioclimatic data for the LGM and present (e.g., Bemmels et al., 2016; 

331 Knowles & Massatti, 2017). For the intervening time period, we generated a new 

332 raster map with intermediate habitat suitability values between current and LGM 

333 layers obtained under each scenario. Habitat suitability bins corresponding to each of 

334 the three temporal periods (LGM, intermediate, current) were applied to one-third of 

335 the total number of simulated generations (see Figure 1 and 3).

336 To have a computationally tractable number of demes for demographic 

337 simulations, we statistically downscaled cell sizes to 5-arcminutes (~9 km2) (e.g., 

338 Massatti & Knowles, 2016). Given that SPLATCHE2 requires a single raster file with 

339 positive integer numbers, we first categorized cell values (ranging continuously from 0 

340 to 1) under each scenario and time period into 20 bins of equal magnitude (i.e., 

341 intervals of 0.05) with ARCMAP v. 10.2.1 and used a custom PYTHON script written by Q. 

342 He (deposited in Dryad; Bemmels et al., 2016) to convert the maps from the different 

343 time periods into a single raster map in which each category (LGM, intermediate, 

344 current) represents a unique combination of habitat suitability bins across the three 

345 time periods (e.g., He et al., 2013; Bemmels et al., 2016; Massatti & Knowles, 2016). 

346 Assuming a generation time of 50 years for oaks (Ortego, Noguerales, Gugger, & Sork, 

347 2015; Bemmels et al., 2016; Ortego, Gugger, & Sork, 2018), a total of 430 generations 

348 from the LGM to present (21.5 ka) was modeled for each scenario with 1 × 106 
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349 simulations (9 × 106 simulations per species) generated using the same uniform priors 

350 for the three demographic parameters of the spatially explicit coalescent: the 

351 migration rate per deme per generation (m; range of log(m): -2.0, -0.2), the maximum 

352 carrying capacity of a deme (KMAX, which is the value for demes with the highest 

353 suitability value; range of log(KMAX): 2.9, 3.7), and the ancestral population size (NANC; 

354 range of log(NANC): 2.5, 5.5). The parameter space defined by the prior was chosen 

355 based on pilot runs across a broad parameter space which identifed parameters in 

356 which the colonization of the landscape within the time spanning from the LGM to the 

357 present generated genetic data within the range of observed empirical data (e.g., 

358 Bemmels et al., 2016). Demographic simulations were initialized 21.5 ka from 

359 hypothesized ancestral source populations for each focal species. These source 

360 populations corresponded to grid cells of the LGM map with habitat suitabilities higher 

361 than the 10th percentile of habitat suitability values of all grid cells of the current map 

362 containing an occurrence record (see Brown & Knowles, 2012). The carrying capacities 

363 of source populations were defined according to their habitat suitabilities during the 

364 LGM and categorized into the same bins described above for layers corresponding to 

365 each of the three temporal periods. 

366 Following each time-forward demographic simulation (see Figure 1), a spatially-

367 explicit time-backward coalescent model informed by the deme-specific demographic 

368 parameters (K, m and NANC) was used to generate genetic data (Currat, Ray, & 

369 Excoffier, 2004; Ray et al., 2010). To make simulations computationally tractable, we 

370 randomly selected 1,250 loci for each focal taxon (e.g., Massatti & Knowles, 2016) and 

371 run an independent coalescent process to trace the genealogy for each locus from the 

372 present to the onset of population expansion from ancestral source populations 21.5 

373 ka, with an additional period of 107 generations for all alleles to coalesce in a single 

374 ancestor (Ray et al., 2010). Simulated datasets were sampled from the same 

375 geographical locations (grid cells) from which the empirical genomic data were 

376 obtained (Table S1) and consisted of the same number of loci, number of individuals, 

377 and amount and pattern of missing data as the empirical data (see Massatti & 

378 Knowles, 2016). Finally, we used ARLSUMSTAT v. 3.5.2 to calculate a set of summary 

379 statistics for each empirical and simulated dataset, including the mean heterozygosity 

380 across loci for each population (H), the number of segregating sites for each population 
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381 (S), and the pairwise population FST -values (Excoffier & Lischer, 2010), for a total of 44 

382 summary statistics for the eight populations of Q. berberidifolia, and 65 summary 

383 statistics for the ten populations of Q. chrysolepis (the different number of summary 

384 statistics reflects the larger number of sampled populations of Q. chrysolepis). All 

385 simulations were performed on the high-performance computing cluster from Centro 

386 de Supercomputación de Galicia (CESGA, Spain) and required ~432,000 hours of CPU 

387 time (i.e., ~24,000 CPU hours per model and species).

388

389 2.4. Model selection and parameter estimation

390

391 We used ABC for model selection and parameter estimation, as implemented in 

392 ABCTOOLBOX (Wegmann, Leuenberger, Neuenschwander, & Excoffier, 2010). We used 

393 the R (R Core Team, 2020) package pls v. 2.6-0 (Mevik & Wehrens, 2007) and the 

394 findPLS script (Wegmann et al., 2010) to extract partial least squares (PLS) components 

395 (with Box-Cox transformation) from the summary statistics of the first 10,000 

396 simulations for each model and species (Wegmann, Leuenberger, & Excoffier, 2009). 

397 The first four PLSs extracted from the summary statistics were used for ABC analyses, 

398 as the root-mean-squared error (RMSE) of the three demographic parameters (KMAX, 

399 m, NANC) for the two species did not decrease significantly with additional PLSs (Figures 

400 S4 and S5). The linear combinations of summary statistics obtained from the first 

401 10,000 simulations for each model and species were used to transform all simulated 

402 datasets (Wegmann et al., 2010). For each model and species, the 5,000 simulations 

403 (0.5%) closest to empirical data were retained and used for model selection and to 

404 obtain posterior distributions of the parameters with an ABC-GLM adjustment 

405 (Leuenberger & Wegmann, 2010). We used Bayes factors (BF) for model selection 

406 (Jeffreys, 1961; Kass & Raftery, 1995).

407

408 2.5. Model validation

409

410 To evaluate the ability of each model to generate the empirical data, we calculated 

411 Wegmann’s p-value from the 5,000 retained simulations (Wegmann et al., 2010). We 

412 also assessed the potential for a parameter to be correctly estimated by computing the 
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413 proportion of parameter variance that was explained (i.e., the coefficient of 

414 determination, R2) by the retained PLSs (Neuenschwander et al., 2008). For the most 

415 supported model for each species, we determined the accuracy of parameter 

416 estimation using a total of 1,000 pseudo-observation datasets (PODs) generated from 

417 prior distributions of the parameters. If the estimation of the parameters is unbiased, 

418 posterior quantiles of the parameters obtained from PODs should be uniformly 

419 distributed (Wegmann et al., 2010). As with the empirical data, the posterior quantiles 

420 of true parameters for each pseudo run were calculated based on the posterior 

421 distribution of the regression-adjusted 5,000 simulations closest to each pseudo-

422 observation. 

423

424 3. RESULTS

425

426 3.1. Genomic data

427

428 After quality filtering, we retained a total of 102,086,259 reads for Q. berberidifolia 

429 (mean ± SD = 1,620,416 ± 328,146 reads per individual) and 119,011,704 reads for Q. 

430 chrysolepis (mean ± SD = 1,487,646 ± 259,978 reads per individual) (Figure S6). After 

431 filtering loci, the final datasets contained 3,589 SNPs for Q. berberidifolia and 2,977 

432 SNPs for Q. chrysolepis. The proportion of missing data in individuals of Q. 

433 berberidifolia and Q. chrysolepis averaged 1.77 % and 1.52 %, respectively.

434

435 3.2. Genetic structure

436

437 For Q. berberidifolia, log probabilities [Pr(X|K)] from STRUCTURE analyses reached a 

438 plateau for K = 2 and the ΔK statistic indicated an “optimal” clustering for the same K-

439 value (Figure S7a). The two genetic clusters presented some degree of genetic 

440 admixture and showed a latitudinal cline of genetic differentiation (Figure 2a), which 

441 was also supported by the PCA (Figure S8a) and previous microsatellite-based studies 

442 (Ortego et al., 2015; Ortego, Gugger, & Sork, 2017). For Q. chrysolepis, log probabilities 

443 [Pr(X|K)] reached a plateau for K = 3, a K-value also identified by the ΔK statistic as the 

444 “optimal” clustering solution (Figure S7b). As shown in previous studies on this species 
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445 (Bemmels et al., 2016; Ortego et al., 2018), the three genetic clusters were structured 

446 hierarchically and presented considerable genetic admixture in geographic areas of 

447 contact (Figure 2b). The two genetic clusters identified for K = 2 separated populations 

448 located north and south of the Transverse Ranges, whereas the third genetic cluster 

449 was mostly represented in the North Coast Ranges and in admixed populations from 

450 adjacent regions (northern Sierra Nevada and South Coast Ranges) (Figure 2b). PCA 

451 yielded analogous results. Namely, populations grouped into three main genetic 

452 clusters and populations with high admixed ancestry (HAS, SHA, and TAH; Figure 2b) 

453 occurred at intermediate positions along the main axes (PC1 and PC2) of genomic 

454 variation (Figure S8b).

455

456 3.3. Phylogeographic model testing and validation

457

458 Environmental niche models predicted well the current distribution of the different 

459 species (Figure S2; Table S2; Jensen, 1997; Manos, 1997; Nixon & Muller, 1997). As 

460 shown in previous studies on different Californian organisms (e.g., Ortego et al., 2015; 

461 Starrett, Hayashi, Derkarabetian, & Hedin, 2018), projections of ENMs to the LGM 

462 predicted that most species likely experienced local distributional shifts in response to 

463 Pleistocene glaciations (Figure S3). 

464 Based on marginal densities calculated from the 5,000 simulations retained for 

465 each model and focal species, the best fitting model differed between taxa (Table 1). 

466 Specifically, for Q. berberidifolia, the model with a negative effect of all other oak 

467 species (Model B) was the best fit with the empirical data (Table 1; Figure 3a). The 

468 second and third most supported models were also those in which co-distributed 

469 species have a negative effect on the focal taxon (i.e., Model C and D, where the 

470 negative effect was associated with taxa from the same or a different taxonomic 

471 section as the focal taxon, respectively; Table 1). However, these two models had 

472 considerably lower marginal densities and a difference in Bayes factors > 25 with the 

473 most supported model in which all species negatively affect the focal taxon (Table 1), 

474 indicating strong support for Model B (Jeffreys, 1961; Kass & Raftery, 1995). Moreover, 

475 Model B was the only one in which the simulated genetic data were comparable with 

476 empirical data (Wegmann’s p-value = 0.705), unlike the other models in which there 
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477 was a substantial difference between the likelihoods of the simulated data compared 

478 with the empirical data (Wegmann’s p-values < 0.06; Table 1). 

479 For Q. chrysolepis, the model that best explained the data was one in which co-

480 distributed species from the same section had a positive effect on the focal taxon, 

481 whereas species from different sections had the opposite effect (Model I; Table 1; 

482 Figure 3b). However, three other models (Models D, F, B) also fit the data; small Bayes 

483 factors (BF<8) (Table 1) suggests that they are statistically indistinguishable from the 

484 best supported model (Kass & Raftery, 1995). Two of these models represent the 

485 individual components that Model I integrates; that is, negative effects of species from 

486 different sections (Model D) vs. positive effects of species within the same section 

487 (Model F). The third supported model was one in which all species negatively affect 

488 the focal taxon Q. chrysolepis (Model B) (Table 1). All of these models were capable of 

489 generating data compatible with empirical data (Wegmann’s p-values > 0.1), in 

490 contrast with the very low Wegmann’s p-values (< 0.05) obtained for the rest of 

491 models, which also were not probable models (BF > 5,000; Table 1).

492 Posterior distributions of parameters under the most probable models were 

493 considerably distinct from the prior, indicating that the simulated data contained 

494 information relevant to estimating the parameters (Figure 4). Comparison of the 

495 posterior distributions before and after the ABC-GLM also showed the improvement 

496 that this procedure had on parameter estimates (Figure 4). In the two focal species, 

497 the posterior distributions of maximum carrying capacity (KMAX) and migration rates 

498 (m) were flatter than those obtained for ancestral population size (NANC), indicating 

499 that the former parameters were estimated at a comparatively lower precision (i.e., 

500 higher uncertainty). The coefficients of determination (R2) between each demographic 

501 parameter and the four extracted PLS indicated that the employed summary statistics 

502 had a high potential to correctly estimate all the parameters (Table 1). However, the 

503 histograms of the posterior quantiles of m in Q. berberidifolia, and NANC in both focal 

504 taxa, significantly deviated from a uniform distribution, suggesting a potential bias in 

505 the estimation of these parameters (Figure S9).

506

507 4. DISCUSSION

508
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509 Our process-based analyses indicate that spatial patterns of genomic variation in the 

510 two focal taxa are better explained by demographic models that incorporate 

511 interspecific interactions than by null models that only consider heterogeneity of 

512 environmental suitability across the landscape. In fact, models with no species 

513 interactions provided a very poor fit to our empirical data (Wegmann’s p-values < 

514 0.01), indicating that such models are not able to reproduce the demographic 

515 processes experienced by the focal taxa. Collectively, our results support the 

516 hypothesis that interactions with other congeneric taxa shape species´ distributions 

517 and range-wide patterns of genetic variation. Our study makes specific assumptions 

518 when modelling the potential effects of species interactions (e.g., it captures 

519 community-wide effects, but not taxon-specific or multiplicative interaction effects), 

520 which imposes constraints on making conclusions about the precise mechanisms 

521 involved (thoroughly discussed below). Nonetheless, our integrative approach provides 

522 empirical support not only for the demographic, but also the evolutionary 

523 consequences of interspecific interactions that transcend much larger geographical 

524 and evolutionary scales than the traditional local focus (Jablonski, 2008; Wisz et al., 

525 2013; Araujo & Rozenfeld, 2014).

526

527 4.1. Predominance of negative species-interactions

528

529 Although previous research suggests that niche partitioning can minimize negative 

530 interactions among closely related taxa (e.g., Cavender-Bares et al., 2004, 2018), our 

531 analyses indicate that such interactions can still play an important role in limiting 

532 species´ distributions and shaping their range-wide patterns of genomic variation. The 

533 most supported models for each of the two focal taxa were dominated by the negative 

534 effects of co-distributed species, which in our framework are modelled as reductions in 

535 local population sizes. Different mechanisms can explain the inferred reduction of local 

536 carrying capacities of the focal taxa exerted by other congeneric species, including 

537 competition for resources in limited supply (Craine & Dybzinski, 2013), alteration of 

538 biotic and abiotic soil properties that reduce their competitive performance (Bennett 

539 & Cahill 2016), and increased impact of phytophagous insects and infectious diseases 

540 shared with closely related species in the community (Yguel et al., 2011). In wind 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

541 pollinated trees separated by weak reproductive barriers, the genetic neighbourhood 

542 can be several orders of magnitude larger than the ecological neighbourhood and, as a 

543 result, interspecific interactions are not limited to narrow local scales (Levin, 2006). 

544 Accordingly, hybridization could reduce species performance and abundance through 

545 reproductive interference (Levin, 2006; Pollock et al., 2015) and genetic or 

546 demographic swamping by the most abundant congener (Levin, Francisco-Ortega, & 

547 Jansen, 1996; Rhymer & Simberloff, 1996; Louthan, Doak, & Angert, 2015). It should be 

548 noted that the two focal taxa studied here are keystone and dominant species in 

549 different ecosystems from the CFP and, thus, negative interactions are expected to 

550 play even a more prominent role in shaping the distribution of genetic variation in 

551 subdominant species such as herbs or small scrubs (DeBach, 1966).

552

553 4.2. Taxon-specific interactions and corroborative evidence from other studies

554

555 Our model-based comparative phylogeography framework has also proven useful to 

556 unravel taxon-specific effects of interspecific interactions. Interpreted in the light of 

557 the contrasting life-histories and ecologies of the taxa involved, such results can 

558 provide important biological insights into the processes structuring genomic variation 

559 (Papadopoulou & Knowles, 2016) and, ultimately, may help to forecast the 

560 idiosyncratic demographic responses of species to environmental change (Gilman et 

561 al., 2010; Estrada et al., 2016). Although demographic models that best fitted empirical 

562 genomic data for the two focal taxa were mostly dominated by negative interspecific 

563 interactions, the two taxa also presented some notable differences. For example, 

564 although the most supported model for the California scrub oak (Q. berberidifolia) was 

565 the one considering a negative effect of all other oak species, the spatial distribution of 

566 genomic variation in the canyon live oak (Q. chrysolepis) was best explained by a 

567 scenario combining a negative impact of species from different sections and positive 

568 effects by closely related species within the same section. These differences are 

569 especially intriguing when the natural histories of the focal taxa are considered. 

570 Quercus berberidifolia is a scrubby oak (< 2 m of height) that is often the dominant 

571 species in chaparral formations and the margins of coastal sage scrub habitats where 

572 tree life-forms are absent (Nixon & Muller, 1997). In tree-dominated habitats, Q. 
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573 berberidifolia only persist in forest margins or becomes a subdominant understory 

574 species at very low densities, suggesting that it experiences competitive displacement 

575 (DeBach, 1966). This species has also been recorded to hybridize with most Californian 

576 white oaks, including trees (Ortego et al., 2015, 2017; Kim et al., 2018; Nixon & Muller, 

577 1997). Although hybridization with other oak trees from the same section could assist 

578 gene flow of our focal species (Potts & Reid 1988), it might not compensate for the 

579 negative effects of competitive exclusion (Craine & Dybzinski, 2013) or, as mentioned 

580 above, could be responsible for reducing local carrying capacities through reproductive 

581 interference (Levin, 2006; Pollock et al., 2015) or demographic swamping in 

582 suboptimal habitats dominated by tree oaks (Levin et al., 1996; Rhymer & Simberloff, 

583 1996). In contrast, Q. berberidifolia is mostly allopatric or parapatric with respect to 

584 the rest of scrub oak taxa from the CFP (Nixon & Muller, 1997), suggesting that any 

585 impact on the demography of this focal species is likely to be limited, beyond perhaps 

586 sporadic hybridization in narrow contact zones (Ortego et al., 2015, 2017). The only 

587 exception is the sister species of Q. berberidifolia, the serpentine-soil specialist leather 

588 oak (Q. durata) (Nixon & Muller, 1997; Ortego et al., 2017). The broad-scale 

589 distribution of Q. durata is similar to that of Q. berberidifolia and the two species are 

590 often found living in close geographical proximity, but rarely in the same patches, with 

591 the former growing in scattered serpentine outcrops, whereas the latter is unable to 

592 form stable populations in such areas (Nixon & Muller, 1997). Hybridization between 

593 these two species is common and coalescent-based migration models have supported 

594 asymmetric gene flow from Q. durata into Q. berberidifolia, which has been 

595 interpreted as a consequence of low hybrid performance in serpentine soils (Ortego et 

596 al., 2017). Thus, Q. durata could negatively impact Q. berberidifolia through 

597 reproductive interference and maladaptive gene flow even if the two species occupy 

598 well differentiated edaphic niches (Ting & Cutter, 2018). Although beyond the scope of 

599 this study, incorporating more mechanistic models for comparison to the ones 

600 considered here would provide a potential way to corroborate the long-term 

601 consequences of interspecific gene flow (i.e., demonstrate its impact on range-wide 

602 levels of genetic variation).

603 Evaluation of the relative support of the different demographic scenarios for Q. 

604 chrysolepis revealed that four models were statistically indistinguishable from each 
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605 other (BF < 20) and able to generate data compatible with empirical genomic data 

606 (Wegmann’s p-values > 0.1). These models represent different sides of the same coin 

607 and collectively highlight the impact of phylogenetic relatedness (same vs. different 

608 taxonomic sections) on the inferred interspecific interactions: a positive effect of 

609 species within the same section vs. negative effects exerted by species from different 

610 sections than the focal taxon. An exception is the strong relative support for the model 

611 considering a negative effect of all other oak species (Model B). However, given that 

612 there are only three other oak species belonging to the same section as Q. chrysolepis 

613 with somewhat limited geographic and/or ecological overlap (i.e., the narrow endemic 

614 Channel Island oak, Q. tomentella, the Palmer oak, Q. palmeri, and the huckleberry 

615 oak, Q. vaccinifolia; Manos, 1997), the fit of this model is not entirely unexpected. That 

616 is, the expectations in terms of carrying capacities of a model considering a negative 

617 effect of all oak species are pretty similar to those from a model in which essentially all 

618 but two taxa are modelled to exert a negative effect (see Figure S1). Quercus 

619 chrysolepis can become large trees (>20 m) and it is often the dominant species in its 

620 specific microhabitats (mountain ridges, canyons and moist slopes), whereas the two 

621 other species from section Protobalanus distributed in continental California have a 

622 shrubby life form (Manos, 1997). Quercus palmeri is ecologically isolated from Q. 

623 chrysolepis and interspecific hybridization between the two species has not been 

624 recorded in California, suggesting that interactions between these two taxa are 

625 probably very limited (Tucker, 1980; Nixon, 2002; Ortego et al., 2018). In contrast, Q. 

626 chrysolepis is often sympatric with Q. vaccinifolia in northern and eastern California 

627 where the distribution of the two species overlap and the presence of intermediate 

628 individuals resulting from hybridization between them is fairly frequent (Manos, 1997; 

629 Nixon, 2002; Ortego et al., 2018). Quercus vaccinifolia presents a low spreading 

630 scrubby life form (up to 1.5 m) and is often an understory species (Manos, 1997; Mohr, 

631 Whitlock, & Skinner, 2000). As a result, it probably receives a massive pollen rain from 

632 Q. chrysolepis, which could explain anecdotal evidence of asymmetric gene flow from 

633 Q. chrysolepis into Q. vaccinifolia (Ortego et al., 2018). Given that Q. vaccinifolia is a 

634 cold adapted species living at high elevations (up to 2,800 m; Mohr et al., 2000; Briles, 

635 Whitlock, Skinner, & Mohr, 2011), one possibility is that our focal species has benefited 

636 from assisted dispersal and postglacial colonization through hybridization with this 
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637 closely related species (see Potts & Reid, 1988; Petit, Bodenes, Ducousso, Roussel, & 

638 Kremer, 2004). Likewise, previous studies on Californian oaks have demonstrated 

639 facilitative relationships between shrubs and tree oak seedlings (Callaway, 1992). Thus, 

640 another non-mutually exclusive explanation for the observed positive effects is that Q. 

641 vaccinifolia facilitates seedling establishment and increases recruitment rates of Q. 

642 chrysolepis through different nursing effects, including the improvement of the 

643 physical environment, protection against herbivores, and enhanced nutrient uptake 

644 (Cavender-Bares et al., 2018). 

645

646 4.3. Limitations and future directions

647

648 It is also important to acknowledge some of the limitations of our model-based 

649 framework. First, our approach does not provide mechanistic insights (i.e., we cannot 

650 speak about the relative likelihood of different specific processes invoked in the 

651 interpretations of our results) because the effects are expressed through the 

652 demographic parameter of the focal species – the local carrying capacity. 

653 Nevertheless, given that species distributions vary spatially, the demographic 

654 consequences of co-distributed species, and hence patterns of genetic variation, as 

655 modelled here are fairly specific. For example, changing the relationship between a 

656 focal taxon’s local population size and the environment (Brown & Knowles, 2012) by 

657 itself would not produce similar genetic consequences to those associated with 

658 species-interactions. We also caution that conclusions about the relative statistical 

659 support of alternative demographic scenarios, including whether models with or 

660 without interactions explain better patterns of genomic variation across the landscape, 

661 need to always consider uncertainty regarding the strength and nature of the 

662 interactions that are modelled here. Likewise, our models ignored many other 

663 interspecific interactions, including some recognized in oaks such as 

664 competition/facilitation by other non-oak trees (Petritan, Marzano, Petritan, & Lingua, 

665 2014), interactions with seed dispersers and predators (Pesendorfer, Sillett, Morrison, 

666 & Kamil, 2016), infectious diseases (Rizzo, Garbelotto, Davidson, Slaughter, & Koike, 

667 2002), and multiple complex non-mutually exclusive interconnections among them 

668 (Shi, Gao, Zheng, & Guo, 2017). In the same line, ENMs are unlikely to capture all 
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669 environmental constraints (e.g., adaptive/non-adaptive processes) that plants are 

670 responding to (Hampe, 2004), some of which could be spatially correlated with the 

671 presence of other oaks species from the community, and which might potentially get 

672 confounded with positive/negative interactions in our tested models (Keitt, Bjornstad, 

673 Dixon, & Citron-Pousty, 2002; Koenig, 1999). Finally, our approach assumed 

674 interspecific interactions to be constant across space and time and of equal magnitude 

675 across species within sections, when their intensity is expected to change across 

676 environmental gradients and be context- and species-specific (Wisz et al., 2013). 

677 However, it must be noted that with an almost infinite number of alternative scenarios 

678 that might be tested, which includes incorporating other types of interactions and 

679 species-specific strengths and directions, the analyses would become computationally 

680 intractable and the selection of one model over another would probably be difficult to 

681 interpret and provide few biological insights (Massatti & Knowles, 2016). An 

682 interesting line of future research would be to explore how the expectations of 

683 alternative joint species distribution models (JSDM) that simultaneously consider a 

684 wider range of species-interactions (Pollock et al., 2014) fit to genomic data in 

685 comparison with only environment-based niche models. Nevertheless, at this point, 

686 the lack of information about species co-occurrence in the past would limit such tests 

687 to temporally static models (i.e., one snapshot in time related to the current species 

688 distribution; see He et al., 2013). Yet, such an approach could still be useful and worth 

689 exploring in highly stable and species-rich regions such as the tropics (Costa et al., 

690 2018). 

691 Acknowledging the limitations inherent to any model-based approach, our 

692 integrative framework demonstrates that interspecific interactions leave signals on 

693 spatial patterns of genomic variation that can be informative to unravel the 

694 evolutionary and ecological processes determining species distributions and 

695 community assembly beyond local scales. Collectively, this study opens new avenues 

696 of research to integrate the community-context in which species respond to landscape 

697 heterogeneity (and shifts in the environment), which is especially relevant to questions 

698 where such context has been identified to be a critical factor, as for forecasting the 

699 impact of ongoing climate change at different biodiversity levels (Gilman et al., 2010).

700
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1078

1079 Additional supporting information may be found online in the Supporting Information 

1080 section at the end of the article.Legends to figures

1081

1082 FIGURE 1 Workflow illustrating the integrative distributional, demographic and 

1083 coalescent framework (iDDC; He et al., 2013) employed in this study to test alternative 

1084 phylogeographic models, but modified here to incorporate interspecific interactions. 

1085 We use Californian oaks as a case study to illustrate the workflow. Here we illustrate 

1086 by reference to the canyon live oak (Quercus chrysolepis) as the focal taxon and the 

1087 hypothetical neutral (0), negative (-) or positive (+) effects exerted by the rest of oak 

1088 species. We used ENMs to translate such interactions into nine phylogeographic 

1089 models (described in Table 1), where the nature of the interaction may differ 

1090 depending upon the phylogenetic relationships among oak taxa (Hipp et al., 2018; 

1091 Ortego et al., 2018), as indicated by taxonomic sections. Note that the small black 

1092 boxes in the schematic correspond to the specific subsections in the Materials and 

1093 Methods detailing each step. LGM, last glacial maximum; PLS, partial least square; BF, 

1094 Bayes Factor; KMAX, carrying capacity of the deme with highest suitability; m, migration 

1095 rate per deme per generation; NANC, ancestral population size.

1096

1097 FIGURE 2 Studied populations of (a) California scrub oak (Quercus berberidifolia) and 

1098 (b) canyon live oak (Q. chrysolepis). Pie charts show the probability of membership of 

1099 the studied populations to each of the most likely number of genetic clusters inferred 

1100 by the Bayesian method implemented in the program STRUCTURE. Bar plots at the 

1101 bottom show individual probabilities of membership to each genetic cluster, with thin 

1102 vertical black lines separating different populations. Grey shading shows the current 

1103 distribution of each species based on an environmental niche model (ENM). Dashed 

1104 lines on map from panel (a) illustrate the location of the main mountain ranges of the 

1105 region (text in italics). Population codes are described in Table S1. 

1106

1107 FIGURE 3 Spatiotemporally explicit demographic scenarios most supported for (a) 

1108 California scrub oak (Quercus berberidifolia) (Model B) and (b) canyon live oak (Q. 

1109 chrysolepis) (Model I). Local carrying capacities (K, colored scale bar) change across the 
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1110 landscape and three time periods (from the last glacial maximum to present), with 

1111 each snapshot used for one-third (7.2 ka) of the total number (21.5 ka) of simulations. 

1112 Local carrying capacities for the focal species range from 0 (minimum) to 1 (maximum) 

1113 and were scaled based on habitat suitabilities estimated from environmental niche 

1114 models (ENMs) and considering interspecific interactions (Model B: negative effect of 

1115 all other oak species; Model I: positive effect of other species within the same section 

1116 + negative effect of species from different sections). ka, thousands years ago

1117

1118 FIGURE 4 Posterior distribution (solid black line) and mode (vertical dotted black line) 

1119 of parameter estimates (KMAX, m, NANC) for the most supported model for (a) California 

1120 scrub oak (Quercus berberidifolia) (Model B) and (b) canyon live oak (Q. chrysolepis) 

1121 (Model I) based on a general linear model (GLM) regression adjustment of the 5,000 

1122 retained simulations (0.5%) closest to empirical data. The comparison of posterior 

1123 distributions before (blue shading) and after (solid black line) the ABC-GLM shows the 

1124 improvement that this procedure had on parameter estimates. The comparison of 

1125 prior (red shading) and posterior (solid black line and blue shading) distributions 

1126 demostrates that the data contained information relevant to estimating the 

1127 parameters. Note that y-axes are scaled differently. KMAX, carrying capacity of the 

1128 deme with highest suitability; m, migration rate per deme per generation; NANC, 

1129 ancestral population size.

1130

1131

1132
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1133 TABLE 1 Statistics from the ABC procedure used for evaluating the relative support of each model in the two focal species. A higher marginal 

1134 density corresponds to a higher model support and a high (i.e., non-significant) Wegmann`s p-value (p > .05) indicates that the model is able to 

1135 generate data in agreement with empirical data. Bayes factors represent the degree of relative support for the model with the highest marginal 

1136 density (in bold) over the other models. Bayes factors >20 indicate strong support, while those >150 indicate very strong support (Kass & 

1137 Raftery, 1995). R2 is the coefficient of determination from a regression between each demographic parameter (KMAX, m, NANC) and the four 

1138 partial least squares (PLS) extracted from all summary statistics. 

1139

R2

Model - Interactions by other oak species
Marginal 

density

Wegmann´s

p-value

Bayes

factor KMAX m NANC

(a) Quercus berberidifolia

 A Null 1.33 × 10-09 <0.001 2.87 × 1006 0.80 0.95 0.87

 B Negative (by all species) 3.81 × 10-03 0.705 — 0.81 0.94 0.92

 C Negative (by species within the same section) 9.22 × 10-05 0.029 41 0.84 0.95 0.90

 D Negative (by species from different sections) 1.43 × 10-04 0.055 27 0.86 0.95 0.91

 E Positive (by all species) 1.39 × 10-18 <0.001 2.75 × 1015 0.65 0.93 0.81

 F Positive (by species within the same section) 3.59 × 10-15 <0.001 1.06 × 1012 0.72 0.94 0.85

 G Positive (by species from different sections) 1.09 × 10-15 <0.001 3.51 × 1012 0.68 0.94 0.84

 H Negative (same section) + Positive (different sections) 1.13 × 10-08 0.001 3.38 × 1005 0.81 0.95 0.87

 I Positive (same section) + Negative (different sections) 3.22 × 10-15 <0.001 1.18 × 1012 0.78 0.94 0.87

(b) Quercus chrysolepis

 A Null 8.27 × 10-07 0.007 5.56 × 1003 0.52 0.78 0.85

 B Negative (by all species) 5.81 × 10-04 0.839 7.92 0.81 0.88 0.89

 C Negative (by species within the same section) 3.76 × 10-16 <0.001 1.22 × 1013 0.56 0.77 0.84

 D Negative (by species from different sections) 3.06 × 10-03 0.989 1.50 0.80 0.88 0.89

 E Positive (by all species) 4.04 × 10-08 0.002 1.14 × 1005 0.35 0.75 0.79
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 F Positive (by species within the same section) 8.17 × 10-04 0.112 5.63 0.48 0.79 0.84

 G Positive (by species from different sections) 3.80 × 10-08 0.001 1.21 × 1005 0.36 0.74 0.82

 H Negative (same section) + Positive (different sections) 1.66 × 10-07 0.003 2.77 × 1004 0.38 0.74 0.82

 I Positive (same section) + Negative (different sections) 4.60 × 10-03 0.998 — 0.74 0.87 0.88

1140

1141 KMAX, carrying capacity of the deme with highest suitability

1142 m, migration rate per deme per generation

1143 NANC, ancestral population size

1144 FIGURE 1
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1146 FIGURE 2
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