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Abstract
Drone-based remote sensing is a promising new technology that combines the ben-
efits of ground-based and satellite-derived forest monitoring by collecting fine-scale 
data over relatively large areas in a cost-effective manner. Here, we explore the poten-
tial of the GatorEye drone-lidar system to monitor tropical forest succession by can-
opy structural attributes including canopy height, spatial heterogeneity, gap fraction, 
leaf area density (LAD) vertical distribution, canopy Shannon index (an index of LAD), 
leaf area index (LAI), and understory LAI. We focus on these variables’ relationship to 
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1  | INTRODUC TION

Most forest cover in human-modified tropical landscapes is 
now second-growth emerging from former agro-pastoral lands 
(Chazdon, 2014). Under suitable conditions, tropical forest regrowth 
reduces the need for extensive active restoration interventions, 
supports local biodiversity, and enhances landscape functionality 
by supplying multiple ecosystem goods and services (Brancalion & 
Chazdon, 2017; Chazdon, 2017; Chazdon et al., 2020). Natural re-
generation of forest has been a proven, cost-effective approach 
to expand forest cover in landscape restoration initiatives (Lewis, 
Wheeler, Mitchard, & Koch, 2019). In Guanacaste Province, Costa 
Rica, forest cover increased from 24% to 51% from 1986–2012 
due to forest succession on abandoned pastures (Calvo-Alvarado 
et al., 2019). Similarly, in Brazil's Atlantic Forest region, 2.7 Mha re-
generated naturally from 1996–2015, contributing 8% of current 
forest cover (Crouzeilles et al., 2020). Increasing areas covered by 
second-growth forest can be an indicator of restoration outcomes 
under favorable conditions (Chazdon & Guariguata, 2016). However, 
second-growth forest patches differ in age, size, soil type, distance 
to seed sources, land use, and disturbance histories (e.g., fire, cat-
tle grazing, logging) (Arroyo-Rodríguez et al., 2017; Crouzeilles 
et al., 2016). Tree cover established by second-growth forests in ag-
ricultural landscapes is, in fact, a heterogeneous mosaic of patches 
varying in biomass, diversity, and species composition (Poorter 
et al., 2016; Rozendaal et al., 2019; Solar et al., 2015).

The early stages of forest succession in tropical rain forests are 
dominated by low-stature pioneer trees with a relatively homoge-
neous canopy cover and dense understory vegetation (Montgomery 
& Chazdon, 2001; Nicotra, Chazdon, & Iriarte, 1999). After several 
decades, late-successional trees dominate most strata of the forest, 

and forest biomass concentrates in large, often emergent, individ-
uals that increase the complexity of the vertical structure of the 
forest (Ruiz-Jaen & Potvin, 2011). While successional changes in 
canopy structural attributes (CSA) such as height, openness, leaf 
area, and architecture have received attention in forest ecological 
studies (Chanthorn et al., 2016; Stark et al., 2012, 2015), relatively 
little is known about the complex interrelationship between the 
development of these attributes and forest recovery trajectories. 
Furthermore, these attributes likely have key impacts on forest func-
tion—how regenerating forests use nutrients, light, and water—as 
they age (Scheuermann, Nave, Fahey, Nadelhoffer, & Gough, 2018), 
and may impact forest sensitivity to disturbances related to global 
climate change, such as severe, prolonged drought (Laurance, 2004).

The methods currently used to monitor tropical forest succession 
are based on labor-intensive inventory field plots that rarely cover more 
than a few hectares. Relative to the millions of hectares in the tropics 
undergoing regrowth (Crouzeilles et al., 2019; Nanni et al., 2019), plot-
based monitoring is a limited (though valuable for certain purposes) 
approach, particularly given the challenge of accessing remote regions. 
While detailed ground-based measurements remain the gold standard 
for measuring species diversity and carbon storage, remote sensing 
approaches are beginning to offer complementary advantages even at 
the plot-scale, such as the ability to measure structural attributes like 
leaf area index and canopy height, without the need for destructive 
sampling (Calders et al., 2015). Remote sensing approaches based on 
satellite imagery have been used to map forest regeneration (Almeida, 
Stark, Valbuena, et al., 2019; Hansen et al., 2013), but the coarse spatial 
resolution and 2D images limits their utility to monitor successional 
change or meaningfully differentiate among tree cover types (e.g., 
natural regeneration versus. monoculture plantations) that are finely 
interwoven in mosaic landscapes (Hickey et al., 2019).

aboveground biomass (AGB) stocks and species diversity. In the Caribbean lowlands 
of northeastern Costa Rica, we analyze nine tropical forests stands (seven second-
growth and two old-growth). Stands were relatively homogenous in terms of canopy 
height and spatial heterogeneity, but not in their gap fraction. Neither species density 
nor tree community Shannon diversity index was significantly correlated with the 
canopy Shannon index. Canopy height, LAI, and AGB did not show a clear pattern as 
a function of forest age. However, gap fraction and spatial heterogeneity increased 
with forest age, whereas understory LAI decreased with forest age. Canopy height 
was strongly correlated with AGB. The heterogeneous mosaic created by succes-
sional forest patches across human-managed tropical landscapes can now be better 
characterized. Drone-lidar systems offer the opportunity to improve assessment of 
forest recovery and develop general mechanistic carbon sequestration models that 
can be rapidly deployed to specific sites, an essential step for monitoring progress 
within the UN Decade on Ecosystem Restoration.

K E Y W O R D S

aboveground biomass, Costa Rica, forest landscape restoration, forest structure, Leaf Area 
Density, Leaf Area Index, second-growth forest, unmanned aerial vehicle
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Active remote sensor lidar (light detection and ranging), in par-
ticular, is the best option for measuring three-dimensional structural 
parameters of the forest canopy (Almeida, Stark, Valbuena, et al., 
2019). Lidar emits hundreds of thousands of electromagnetic waves 
per second in the near-infrared (~900 nm wavelength). These pulses 
hit forest targets (ground, branches, and leaves), and, by analyzing 
the time delay from pulse emission to return, makes it possible to 
build an accurate three-dimensional model of the forest. One of the 
main advantages of this system is that some pulses can penetrate 
the forest canopy, recording information about the subcanopy, un-
derstory, and ground vegetation. Thus, lidar delivers a three-dimen-
sional cloud of points that represent the physical structure of the 
forest. Successional changes could be characterized using lidar-de-
rived metrics such as mean canopy height, gap fraction, and leaf 
area, enabling robust monitoring of both forest development and 
degradation (Almeida, Stark, Chazdon, et al., 2019; Caughlin, Rifai, 
Graves, Asner, & Bohlman, 2016).

Drone-based remote sensing is a promising new technology that 
provides fine-scale data over relatively large areas (hundreds and 
thousands of hectares) at a relatively low cost (Anderson & Gaston, 
2013; Zahawi et al., 2015). However, typical vegetation indices (e.g., 
NDVI), derived from multispectral imaging optical sensors, saturate 
in dense forests (Turner, Cohen, Kennedy, Fassnacht, & Briggs, 1999) 
and do not offer clear information about the detailed structural con-
figuration of the canopy. Because lidar systems can penetrate the 
canopy, they provide detailed information on vegetation beneath the 
forest canopy, as well as general information about forest height and 
spatial arrangement of leaf area (Almeida, Broadbent, et al., 2019).

The application of drone-borne lidar data for monitoring resto-
ration remains poorly explored and underdeveloped relative to its 
potential to reveal detailed functional and ecological information 
about the drivers of structure and function in regenerating tropical 
forests. Drone-borne lidar could significantly advance and broaden 
the monitoring of forest regeneration (Almeida, Broadbent, et al., 
2019), particularly in tropical regions where multiple ambitious res-
toration commitments have been recently established in an effort 
to mitigate climate change and conserve biodiversity (Brancalion 
et al., 2019). Here, we explore the potential of a drone-borne lidar 
system (GatorEye Unmanned Flying Laboratory) to monitor tropical 
forest succession by assessing canopy structural attributes, which 
are otherwise difficult to measure with traditional forest inventories. 
We also investigate the relationships between canopy structural at-
tributes and aboveground biomass and species diversity.

2  | MATERIAL AND METHODS

2.1 | Study area

The study was conducted in nine forested plots in Sarapiquí, Heredia 
Province, in the Caribbean lowlands (50–220 m a.s.l.) of northeastern 
Costa Rica (Table 1; Figure 1). Mean annual rainfall is 3,800 mm, and 

mean annual temperature is 26°C at the nearby La Selva Biological 
Station (McDade, Bawa, Hespenheide, & Hartshorn, 1994); the natu-
ral vegetation is classified as Tropical Moist Forest (sensu Holdridge, 
Grenke, Haheway, Liang, & Tosi, 1975). Soils are derived from 
weathered basalt and are classified as ultisols (Sollins, Sancho, Mata, 
& Sanford, 1994). All plots are located in a landscape consisting of 
second- and old-growth forest patches immersed in a matrix of pas-
tures and agricultural fields. Seven plots are in stands between 22 
and 45 years old, and two others are in a nearby old-growth forest 
(>100 years). All second-growth forest plots were previously used 
for pasture. Many studies of forest succession have been previously 
published using these plots (Becknell et al., 2018; Chazdon, Redondo 
Brenes, & Vilchez Alvarado, 2005; Chazdon et al., 2007; Chazdon 
et al., 2010; Dubayah et al., 2010).

2.2 | Field data collection

Five of the study plots were established in 1997 (LEPS, CR1, CR2, 
TIR, and LSUR; see Table 1), and four were established in 2006 (JE, 
FEB, SV, and LEPP; see Table 1). In each plot, all trees ≥5 cm in di-
ameter at breast height (DBH) were tagged, mapped, identified, and 
measured within 10 × 10 m subplots. DBH was measured at 1.3 m 
height or above stem anomalies (buttresses or stilt roots; ladders 
were used when needed). Vouchers were collected for identification 
and compared with specimens in the La Selva Herbarium. Every year 
through 2017, the plots were remeasured, and new recruits were 
tagged, measured, and identified.

2.3 | Drone lidar data collection

Plots were overflown using the GatorEye Unmanned Flying 
Laboratory over the course of two weeks in August 2017. The 
sensor suite was comprised of a Phoenix Scout system (hardware 
system that integrates lidar and other sensors with inertial and geo-
referencing systems to data collection and preparing), a Velodyne 

TA B L E  1   Descriptive information about the study plots

Site Site id Plot size (ha)
Age in 2017 
(years)

Juan Enriquez JE 1 22

Finca El Bejuco FEB 1 22

Lindero Sur LSUR 1 32

Tirimbina TIR 1 35

LEP Secondary LEPS 1 40

Cuatro Rios I CR1 0.5 45

Cuatro Rios II CR2 0.5 45

Selva Verde SV 1 >100

LEP Primary LEPP 1 >100
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VLP-16 Puck Lite laser scanner (lidar sensor), an onboard single-
antenna global navigation satellite system (GNSS) receiver (that 
performs georeferencing of data), and a STIM300 inertial meas-
urement unit (IMU) (which measures the drone's multi-directional 
movements and orientation, and assists in increasing the accuracy 
of data georeferencing). A ground base station X900S-OPUS GNSS 
receiver collected static GNSS data during the flight, which were 
used to calculate a post-processed kinematic (PPK) trajectory via 
Novatel Inertial Explorer software (which enables the high accuracy 
and precision of data geolocation). More details can be found at the 
GatorEye website (www.gator eye.org). Absolute point accuracy has 
been tested using ground-surveyed checkpoints, showing a root 
mean square error (RMSE) of 5 cm (Wilkinson et al., 2019). The au-
tonomous flight was programmed to take place at a speed of 8 m/s 
at 60 m above ground. The transects were spaced 15 meters apart 
(Figure 2), producing a high-density point cloud (458 ± 170 pts/m2; 
mean ± SD).

2.4 | Data processing and analysis

We filtered the drone-derived lidar point clouds to eliminate spuri-
ous returns, as described by Almeida, Broadbent, et al. (2019). A digi-
tal terrain model (DTM) with 0.5 m resolution was created for each 
site from the interpolation of ground returns. The algorithm by Zhang 
et al. (2016) was used for ground classification, as implemented in the 
“lidR” package of R (Roussel & Auty, 2019). This DTM was used to nor-
malize the drone-lidar point cloud (i.e., calculate heights above ground), 
and also to interpolate a canopy height model (CHM) with 0.5-m reso-
lution. The CHM and normalized lidar point clouds were clipped based 
on the polygons of the georeferenced field plots. The four corners of 
each rectangular plot were georeferenced using a handheld Garmin 
60x GNSS unit (2 m precision through waypoint averaging).

From the normalized point clouds at each plot, we computed the 
leaf area density (LAD) profiles and leaf area index (LAI). The LAD 
is the area of leaves found in one unit of canopy volume. It can be 

F I G U R E  1   Study Area located in the Caribbean lowlands (50–220 m a.s.l.) of Heredia Province in northeastern Costa Rica. Land use 
classification based on satellite imagery from 2011 (Fagan et al., 2013)

http://www.gatoreye.org
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seen as the decomposition of the LAI among the vertical strata of 
the forest canopy (more details in Almeida, Stark, Shao, et al., 2019). 
We computed LAD and LAI based on the MacArthur-Horn equation 
(MacArthur & Horn, 1969) as described in Almeida, Stark, Shao, et al. 
(2019). This method provides a basis to estimate variation in vegeta-
tion density from optical transmission rates. LAD profiles were cal-
culated from 1 m above the ground (to avoid possible ground returns 
– lidar cloud points that represent the ground but can be errone-
ously quantified as vegetation), using 4 m3 voxels (three-dimensional 
pixels). The voxels had 2 × 2 m horizontal resolution and 1 m vertical 
resolution. Only first returns within 5° of the scan nadir view angle 
were considered in the computation. We fixed K = 1 (MacArthur-
Horn equation; see details in Almeida, Stark, Shao, et al., 2019) to 
calculate the “effective LAD” and “effective LAI”, which are hereaf-
ter referred to as simply LAD and LAI, for convenience. At each plot, 
LAI was calculated as the sum of LAD values obtained along with the 
profile. For visual comparisons, we also calculated a mean leaf area 
density (LAD, m2/m3) profile of all the LAD profiles calculated within 
each plot. We also carried out a forest gap analysis from the CHM 
(Silva et al., 2019) to compute the gap fraction. We considered as a 
forest gap any group of pixels with a height lower than 5 m and an 
area of at least 10 m2 (see also Stark et al., 2012).

Six canopy structural attributes (CSA) were derived from the 
lidar data: three from the CHM and three from the normalized cloud. 
For each plot, we computed: (a) canopy height (mean of the CHM); 
(b) gap fraction (proportion of area with gaps); (c) spatial heterogene-
ity (CHM standard deviation); (d) leaf area index (sum of LAD); (e) un-
derstory LAI (LAIunderstory; the sum of LAD between 1–5 m above the 
ground); (d) the leaf area height volume (LAHV, Equation 1). LAHV 
was calculated as the sum of the products of height and mean LAD at 

that height, for each of the 1 m height intervals i in the LAD profile. 
LAHV was introduced for the first time in Almeida, Stark, Chazdon, 
et al. (2019), who found that LAHV has the potential to estimate 
forest biomass in forests with different allometric relationships (i.e., 
height and AGB ratio). Biologically, the assumptions are that leaf area 
and basal area are directly proportional, while cross-sectional area 
of branches are approximately constant over branching generations, 
and the number of branching generations increases linearly with 
height (West, Brown, & Enquist, 1999). Thus, LAHV is positively cor-
related with forest AGB (see the model in Stark et al., 2015).

where i (i = 1, 2, 3, …, maximum height) is the height within the 
canopy, and LADi is the horizontal mean of leaf area densities at that 
respective height (Figure 3).

Using the data measured in the field (inventory data of all trees 
with DBH ≥ 5 cm), we calculated the aboveground dry woody bio-
mass (agb, in kg) of each tree, using the formula of Chave et al. (2014):

where E is a measure of environmental stress, wd is the spe-
cies-specific wood density, and d is the DBH of each tree. The E co-
efficient for the study area (E = −0.0625) was obtained using the 
retrieve_raster function developed by Réjou-Méchain and Chave 
(2014) for accessing their datasets in R (R Core Team, 2019). Wood 
density data were collected from trees within the plots (Plourde, 
Boukili, & Chazdon, 2015). For species with no local wood density 
data, values from the “Global Wood Density Database” (Zanne 

(1)LAHV=
∑

(

i×LADi

)

(2)
agb=exp

(

−1.803−0.976∗E+0.976∗ ln (wd)+2.673∗ ln (d)−0.0299∗
[

ln (d)
]2
)

F I G U R E  2   Flight plan of data collection and lidar-derived metrics. Example of a single flight in which two plots were overflown within the 
maximum flight time of 15 min for the DJI Matrice 600 Pro used to transport the sensor suite
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et al., 2009) were used. For each plot, we totaled the agb of all trees 
to calculate the density of aboveground biomass (AGB, in Mg/ha) in 
that forest area.

We related the six CSAs and the estimated AGB to forest age 
using a linear model (for gap fraction and spatial heterogeneity, 

Equation 3) or an exponential model (for AGB, canopy height, LAI, 
and LAI understory, Equation 4):

where β0 and β1 are the intercept and slope of the model, 
respectively.

where α is the asymptote of the model representing CSA, β is 
the intercept of the model, and γ is related to the rate of change 
in CSA with increasing age. The model was fit with a nonlinear 
least-squares method, and its significance tested with a Fisher's 
test. Assuming that 100 years would be enough to reach forest 
structural maturity, the old-growth forests were assigned an age 
of 100 years for all analyses involving age (Guariguata, Chazdon, 
Denslow, Dupuy, & J.M. and L. Anderson., 1997). To identify and 
eliminate outliers, we used t tests based on studentized residuals 

(3)CSA=�0+�1 Age

(4)CSA=�+(�−�) exp

(

− (Age)

�

)

F I G U R E  3   Lidar-derived leaf area 
density (LAD) profiles of nine plots in 
forests of different ages in Sarapiquí 
province, Costa Rica. The LAD is 
the area of leaves found in a unit of 
canopy volume. It can be seen as the 
decomposition of the leaf area index (LAI) 
among the vertical strata of the forest 
canopy

TA B L E  2   Stand-level mean, standard deviation (SD), coefficient 
of variation (CV), and range of lidar-derived canopy structural 
variables for the nine plots

Mean ± SD CV Range

Canopy height (m) 21.91 ± 2.31 10.6 17.21–25.08

spatial heterogeneity 
(m)

5.97 ± 1.56 26.2 4.11–8.53

Gap fraction (%) 1.12 ± 1.13 100.1 0.00–3.90

LAI (m2/m2) 7.24 ± 0.36 5.0 6.61–7.67

LAI understory (m2/
m2)

1.28 ± 0.3 23.7 0.95–1.66

Shannon canopy index 3.33 ± 0.12 3.6 3.09–3.51

LAHV 145.61 ± 33.85 23.2 81.57–197.53
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implemented using the function outlier.test in R package “car” (Fox 
& Weisberg, 2019).

We further estimated AGB from lidar-derived canopy height, 
gap fraction, spatial heterogeneity, and LAHV using ordinary least-
squares linear regression. The assessment of model accuracy was 
performed by a leave-one-out cross-validation (LOOCV) procedure, 
which re-calculates the model for each set of n-1 observations and 
uses that model to predict the omitted observation. The relationship 
between the observed (measured) and predicted (via LOOCV) values 
was evaluated by testing their 1:1 correspondence under the null 

hypothesis that their regression intercept and slope were 0 and 1, 
respectively (Valbuena et al., 2017).

Finally, we examined the relationship between tree species di-
versity and forest structure. We considered two measures of tree 
species diversity: (a) species density (number of species per area 
using a fixed area); and (b) tree community Shannon diversity index 
(entropy of species’ proportional stem-wise abundances). The po-
tential of lidar to provide a proxy for tree diversity was examined 
with an additional variable, the structure-based “canopy Shannon 

F I G U R E  4   Gap fraction, canopy spatial heterogeneity, and 
understory leaf area index (LAIunderstory) as a function of forest age. 
The “*” point is an outlier not included in these regressions. Old-
growth forests were assigned an age of 100 years

F I G U R E  5   Field-derived aboveground dry wood biomass (ABG), 
lidar-derived canopy height, and leaf area index (LAI) as a function 
of forest age. The parameter α is the asymptote of the model, β is 
the intercept of the model, and γ determines the rate of change. 
Old-growth forests were assigned an age of 100 years



     |  1163de ALMeIdA et AL.

index”, based on the mean LAD profile of a plot (Stark et al., 2012; 
Valbuena, Packalén, Martı́ n-Fernández, & Maltamo, 2012). The 
canopy Shannon Index increases with the number of heights having 
vegetation present and with the equitability of LAD among those 
vegetated heights (see more details in Almeida, Stark, Chazdon, 
et al., 2019). Spearman correlations were calculated for the canopy 
Shannon index as a function of each of these two aspects of tree 
biodiversity.

3  | RESULTS

3.1 | Canopy structural attributes and forest age

Canopy structural attributes differed in their between-plot coef-
ficients of variation (CV ) (Table 2). Plots were relatively homog-
enous in terms of canopy height (10.6%) and spatial heterogeneity 
(26.2%) but not in their gap fraction (100.1%). In fact, the gap 
fraction was the structural attribute that showed the highest vari-
ability among plots, ranging between 0.0% and 3.9%. LAI was, on 
average 7.24 ± 0.36 (mean ± SD) (Table 2), and all plots had an 
LAI between 6.6 and 7.6 (Figure 3). However, each plot showed a 
distinct LAD profile (Figure 3). In general, LAI varied among plots 
(CV = 5%), and was more variable in the understory (CV = 23.7%) 
(Table 2).

Gap fraction (r2 = .72, p = .008), and spatial heterogeneity 
(r2 = .83, p = .002) were positively associated with forest age, while 
LAIunderstory was negatively associated with forest age (r2 = .52, 
p = .045; Figure 4). However, none of these variations showed a sig-
nificant correlation when the two old-growth plots were eliminated 
from the regression (p-values > .05). LAI, AGB, and canopy height 
did not show any pattern with forest age (Figure 5). In our analysis, 
the old-growth forests were assigned an age of 100 years (enough 

to reach the forest's structural maturity); however, the results were 
similar when we performed the analysis with a 200 year forest ma-
turity value.

3.2 | Predicting biomass and diversity

Canopy height (lidar-derived) significantly predicted AGB (r2 = .80, 
p = .001, Figure 6). LAHV, gap fraction and spatial heterogene-
ity showed no significant linear correlation with AGB (Figure S1). 
Neither species density nor tree community Shannon diversity 
index was significantly correlated (Spearman correlation) with lidar-
derived canopy Shannon index (p = .168 and p = .385, respectively; 
Figure S2).

4  | DISCUSSION

Our study demonstrates the potential of drone-borne lidar to as-
sess the structure and biomass of tropical forests at different suc-
cessional stages. To our knowledge, this is the first study to use this 
technology to study or monitor tropical forest succession. Forest age 
was positively correlated with spatial heterogeneity and gap frac-
tion, and negatively with understory LAI. The accuracy of AGB es-
timates from lidar-derived variables (canopy height and LAHV) was 
high and supports other reports considering primary and disturbed 
tropical forests (Longo et al., 2016). The canopy structure attributes 
observed with lidar were not clearly related to taxonomic diversity 
but may be related to forest structure and function variables neces-
sary for monitoring forest recovery. Below, we briefly review these 
likely connections to highlight frontiers for further exploring the ca-
pacity of lidar to monitor successional changes in forest structure, 
function, and ecosystem services.

F I G U R E  6   (a) Field-measured aboveground biomass (ABG) as a function of lidar-derived canopy height in nine forest plots in Sarapiquí, 
Costa Rica (r2 = .80, p = .001, RMSE = 24.9, relative RMSE = 9.0%). Numbers in parentheses are the standard errors for each coefficient. 
(b) Leave-one-out cross-validation (LOOCV) of aboveground biomass. The solid line represents a 1:1 correspondence, and the dashed 
line (virtually indistinguishable from the solid line) is the linear regression fit between observed and leave-one-out predicted values 
(obsi = α + β·predi). The values of α and β showed no significant difference from 0 and 1, respectively
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4.1 | Canopy structural attributes and forest age

Previous studies have investigated the use of drone-borne lidar 
systems in restoration plantations in the Brazilian Atlantic Forest 
(Almeida, Broadbent, et al., 2019) and in natural forests in Arizona 
(Sankey, Donager, McVay, & Sankey, 2017). For the first time, this 
study describes canopy structural attributes and foliage-height pro-
files for a series of nine tropical forest plots with a range of ages, 
allowing a quantitative analysis of successional changes in structure. 
Almeida, Broadbent, et al. (2019), also using the GatorEye system, 
found LAD profiles with a monomodal shape (leaf area concentrated 
in a single vertical stratum) in forest restoration plantations in Brazil's 
Atlantic Forest. This monomodal pattern seems to be characteristic 
of relatively young even-aged plantations (<20 years old), even when 
the species are highly diverse (Almeida, Stark, Chazdon, et al., 2019). 
The natural regeneration studied here showed a LAD with more 
evenly distributed vegetation along the vertical profile (i.e., without 
a concentration of lidar returns at any given height), or with multi-
ple peaks corresponding to vegetation stratification (Figure 3). This 
characteristic appears to be more typical of old-growth forests, or 
advanced stages of natural regeneration, and likely results from the 
development of an uneven age structure related to natural estab-
lishment and gap formation and closure dynamics (occupying multi-
ple vertical positions in the canopy) (Almeida et al., 2016; Almeida, 
Stark, Chazdon, et al., 2019; Stark et al., 2012; Valbuena et al., 2012).

The decline of understory LAI in old-growth forests has also 
been observed in other studies (Almeida, Stark, Chazdon, et al., 
2019). This pattern is clearly driven by the old-growth forest data. 
These results are consistent with theories of competition for light 
in tropical forests, which show that recruitment declines due to 
growth of smaller trees into the intermediate canopy strata and the 
closure of the upper canopy (Rüger, Huth, Hubbell, & Condit, 2009). 
For example, while carrying out field inventories for this study, it 
was clear that the understory of old-growth forests is much easier to 
walk through than in second-growth forests, in agreement with the 
lidar results. Metrics of light transmission, with varying degrees of 
realism, can also be modeled from vegetation profiles to help explain 
forest successional dynamics (Stark et al., 2012). In the same study 
area featured here, Montgomery and Chazdon (2001), found that 
understory (1–4 m high) light availability was higher in old-growth 
than in 15–20 years old second-growth forests, and was reduced in 
second-growth forests by the higher density of saplings and shrubs.

Forest canopy variables are fundamental to understanding many 
ecological processes. Forest structure, including foliage density, 
canopy cover, and stratification, influence light availability and con-
sequently affect light use and ecosystem productivity (Ishii, Tanabe, 
& Hiura, 2004; Montgomery & Chazdon, 2001; Nicotra et al., 1999). 
The quantity and distribution of foliage drive the rates of energy, 
water, and nutrient flux, which are directly related to forest succes-
sion (Feldpausch, Riha, Fernandes & Wandelli, 2005). Differences 
in vertical and horizontal distribution of LAD may provide insights 
into the relationship between tree LAI and ecosystem functions, 
especially hydrological processes such as water storage (Keim & 

Link, 2018; Llorens & Gallart, 2000) and kinetic energy dissipation 
of raindrops (Geißler et al., 2013; Song et al., 2018).

Not all forest canopy variables in our study showed clear age-re-
lated trends. Differences in AGB, canopy height, and LAI across sites 
were not explained by stand age. We believe the cause for this is 
that the youngest forests in this study were already 22 years old, 
which is sufficient time for significant structural and biomass for-
mation. Furthermore, the presence of larger remnant trees within 
some of the second-growth forests may have obscured the ef-
fects of stand age in the chronosequence analysis (Chazdon, 2014). 
Becknell et al. (2018), using airborne lidar, showed that chronose-
quence results are robust at the landscape scale, and the sample 
area required to produce estimates of canopy height and AGB ap-
proximating the landscape-scale mean is larger than the typical area 
sampled in second-growth forest chronosequence studies. The rela-
tionship between forest age and AGB is apparent when we analyze 
long-term changes within each plot (Figure S3). Regression results 
support ground-level research in the same study area that con-
cluded that old-growth forests have a higher gap fraction and spa-
tial heterogeneity than young second-growth forests (Montgomery 
& Chazdon, 2001; Nicotra et al., 1999). Nicotra et al. (1999) in the 
same study area, found that 15–20 years old second-growth forest 
canopies are more homogeneous (or have less gap) than old-growth 
canopies. Another study using lidar measurements also found higher 
spatial heterogeneity in old-growth forests than in second-growth 
forests in the Brazilian Atlantic Forest biome (Almeida, Stark, 
Chazdon, et al., 2019).

One of the main limitations of the present study is the low num-
ber of samples (nine plots), which limits model development and test-
ing. A valuable approach would be to use a much larger set of plots 
and try to develop more complex models using multivariate regres-
sion or machine learning (Valbuena, Maltamo, & Packalen, 2016). In 
addition, we found outliers in some models. The outlier found for 
gap fraction, spatial heterogeneity, and understory LAI corresponds 
to the 35-years old “Tirimbina” plot. The lidar point cloud for this 
plot (Figure S4) shows large gaps (and consequent higher spatial het-
erogeneity and understory LAI), when compared, for example, with 
the similarly aged (40 years) “LEP Secondary” plot. These gaps are 
caused by the mortality of large-crowned canopy trees of Vochysia 
ferruginea, that dominate this plot.

4.2 | Predicting biomass and species diversity

In our analysis, AGB was well explained by canopy height, in 
agreement with many previous studies (e.g., Almeida, Broadbent, 
et al., 2019; Almeida, Stark, Schietti, et al., 2019; Longo et al., 2016; 
Valbuena et al., 2017). Here, the LAHV, did not significantly im-
prove AGB prediction. This likely happened because we analyzed 
one forest type only, and for this forest type, the allometric rela-
tionship between AGB and canopy height did not show much vari-
ation. Almeida, Stark, Chazdon, et al. (2019), however, found great 
potential of LAHV in AGB prediction when comparing forest types 
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with greater structural differences (old- and second-growth forests, 
monoculture plantations, and high-diversity plantations).

In this study, we failed to find significant relationships be-
tween tree species density and canopy structure measures. While 
Almeida, Stark, Chazdon, et al. (2019) found a weak relationship 
between the canopy Shannon index and the tree species Shannon 
index, the canopy complexity of second- and old-growth tropical 
forests seems to saturate at a relatively low species density. Other 
studies have shown the combination of lidar and hyperspectral 
data to be a promising path to assess tree diversity (Asner, Ustin, 
Townsend, Martin, & Chadwick, 2015; Sankey et al., 2017). Due 
to the difficulty and complexity of finding clear relationships be-
tween canopy structures (and their possible combinations) with 
diversity, new machine learning tools (Valbuena et al., 2016) could 
be good alternatives for exploring these relationships and creat-
ing efficient models. However, these approaches usually require a 
relatively high number of samples (many more than we have in the 
present study). Most studies of second-growth forests are based 
on much smaller plots and have larger sample sizes when com-
pared to the present study. It is not clear what the best spatial 
scale is to detect these relationships. In the same study plots fea-
tured here, Lasky et al. (2014) found that the relationship between 
species richness and biomass change was not significant in the 
mid-successional and old-growth stands when 100 m2 quadrats 
were sampled.

4.3 | Implications for monitoring tropical forest 
succession using drone-borne lidar systems

Canopy structural metrics are important attributes that may 
evince forest changes through time. Our findings provide insights 
into forest structure development and ecological processes oc-
curring in the naturally regenerating forests. Other links between 
forest structure and function could be derived directly from com-
bining the three-dimensional data opening new opportunities for 
mapping more complex variables such as leaf chlorophyll and N 
content, and even ecosystem functions such as photosynthetic 
performance (Eitel, Vierling, & Long, 2010; Eitel, Vierling, Long, & 
Hunt, 2011; Magney et al., 2014). In this way, lidar could provide 
meaningful information for developing ecological models and for-
est change monitoring, in both naturally regenerated and planted 
forests. As a high resolution, non-destructive, and efficient tool, 
lidar systems are increasingly applied for reliable three-dimen-
sional data acquisition and comparison in forest inventories (Song 
et al., 2018).

We highlight the usefulness of drone-based lidar to monitor and 
estimate the structural parameters of trees from the forest stand 
level to landscape with three-dimensional structure information 
(Mascaro, Detto, Asner, & Muller-Landau, 2011; Baccini et al., 2012). 
Our field data came from a long-term study of tropical forest suc-
cession in wet lowland forests of Costa Rica (Chazdon et al., 2010), 
so it would not necessarily be suitable for calibrating lidar-derived 

biomass calculations in other regions. Field data required to calibrate 
models of lidar-derived biomass estimates may be available for other 
regions or forest types. In this sense, we need systematic analyses 
bringing together lidar data from plots around the world, across deg-
radation gradients to see what patterns emerge when we include 
more complete data.

Despite the great practicality and autonomy that drone systems 
provide, the price and accessibility of complex systems with lidar 
and hyperspectral sensors are still limited. Drone-lidar and drone-li-
dar-hyperspectral systems still have very high prices (~US $ 100,000 
to US $ 450,000; The GatorEye falls within that range) when com-
pared to drone systems with conventional RGB (red, green and blue 
channels) cameras (~US $ 1,500). However, we expect that this type 
of technology will become much less expensive in the coming years. 
Also, it is necessary to keep in mind that these systems are quite 
fragile and require a high degree of technical knowledge for their op-
eration. However, 3D photogrammetry techniques (a.k.a. Structure 
from Motion) (Cruzan et al., 2016; Swinfield et al., 2019) make it 
possible to obtain highly accurate digital surface models. However, 
this technique has two major limitations: the first is the high compu-
tational cost for processing 3D photogrammetry data. Most com-
mercial structure from motion software companies (e.g., Pix4D and 
Dronedeploy) now have these processing features through cloud-
based computing and at a reasonable cost. That greatly reduces the 
need to have powerful desktop computers, as images are essentially 
uploaded in batches and processed remotely. The second is that this 
technique cannot calculate leaf area density profiles and the ground 
elevation below the forest (like lidar does). Therefore, to calculate 
the canopy height, it is necessary to have a priori knowledge of the 
ground elevation (Zahawi et al., 2015).

International accords, such as the Paris Agreement on climate 
change and the Convention on Biological Diversity, require report-
ing aspects of forest structure and health, including for forests out-
side of protected areas. But there is also an urgent need to track and 
monitor forest recovery not just for carbon sequestration but also 
for other significant benefits, such as biodiversity, water recharge, 
and evapotranspiration (Bryan et al., 2015; Chazdon et al., 2016; 
Mukul, Herbohn, & Firn, 2016). Drone-borne lidar data opens up the 
possibility of replacing intermittently measured field plots (e.g., big-
plotnetwork.org), guesswork, and general models with site-specific 
and up-to-date data, and offer a critical contribution for the 2021–
2030 United Nations Decade on Ecosystem Restoration.
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