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Coordinate-based meta-analyses (CBMA) allow researchers to combine the

results from multiple functional magnetic resonance imaging experiments

with the goal of obtaining results that are more likely to generalize. However,

the interpretation of CBMA findings can be impaired by the file drawer prob-

lem, a type of publication bias that refers to experiments that are carried out

but are not published. Using foci per contrast count data from the BrainMap

database, we propose a zero-truncated modeling approach that allows us to

estimate the prevalence of nonsignificant experiments. We validate our

method with simulations and real coordinate data generated from the Human

Connectome Project. Application of our method to the data from BrainMap

provides evidence for the existence of a file drawer effect, with the rate of miss-

ing experiments estimated as at least 6 per 100 reported. The R code that we

used is available at https://osf.io/ayhfv/.
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1 | INTRODUCTION

Now over 25 years old, functional magnetic resonance
imaging (fMRI) has made significant contributions in
improving our understanding of the human brain function.

However, the inherent limitations of fMRI experiments
have raised concerns regarding the validity and replicability
of findings.1 These limitations include poor test-retest reli-
ability,2 excess of false-positive findings3 and small sample
sizes.4 Meta-analyses play an important role in the field of
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task-activation fMRI as they provide a means to address the
aforementioned problems by synthesizing the results from
multiple experiments and thus draw more reliable conclu-
sions. Since the overwhelming majority of authors rarely
share the full data, coordinate-based meta-analyses (CBMA),
which use the x − y − z coordinates (foci) of peak activa-
tions that are typically published, are the main approach for
the meta-analysis of task-activation fMRI data.

As in any meta-analysis, the first step in a CBMA is a
literature search. During this step investigators use data-
bases to retrieve all previous work which is relevant to the
question of interest.5 Ideally, this process will yield an
exhaustive or at least representative sample of studies on a
specific topic. Unfortunately, the literature search is subject
to the file drawer problem.6,7 This problem refers to research
studies that are initiated but are not published. When these
studies are missing at random (ie, the reasons that they
remain unpublished are independent of their findings),
then the pool of studies reduces but the results of a meta-
analysis remain reliable. However, if the censoring relates
to the findings of a study (eg, due to rejection by journals
reluctant to publish negative results), then meta-analyses
may yield biased estimates of the effect of interest.8,9

In CBMA, the unit of observation is a contrast/experi-
ment (these terms are used interchangeably throughout
the paper) and not a study/paper (these terms are also
used interchangeably throughout the paper), because the
latter may include multiple contrasts that can be used in
a single meta-analysis. Hence the file drawer includes
contrasts that find no significant activation clusters, that
is, ones that report no foci. Such experiments often remain
unpublished because when writing a paper, authors focus
on the other, significant experiments that they conducted.
Moreover, even if mentioned in the final publication, these
contrasts are typically not mentioned in the table of foci,
and are not registered in the databases which researchers
use to retrieve data for their CBMA. The bias introduced

by not considering contrasts with no foci depends on how
often these occur in practice. For example, if only 1 out of
100 contrasts is null then not considering zero-count con-
trasts is unlikely to have an impact on the results of a
CBMA. However, if this relative proportion is high, then
the findings of a CBMA will be misleading in that they
will overestimate the effect of interest.

Some authors have attempted to assess the evidence
for the existence of publication biases in the field of
fMRI. One example is, Reference 10 who found evidence
for publication biases in 74 studies of tasks involving
working memory. The authors used the maximum test
statistic reported in the frontal lobe as the effect estimate
in their statistical tests. Another example is Reference 11
who studied the relation between sample size and the
total number of activations and reached similar conclu-
sions as Referenece 10. However, to date there has been
no work on estimating a fundamental file drawer quan-
tity, that is the prevalence of null experiments.

In this paper, we propose a model for estimating the
prevalence of zero-count contrasts in the context of
CBMA. Our approach is outlined in Figure 1. Let the
sampling frame be all K neuroimaging experiments of
interest that were completed, published or not, where
each element of the sampling frame is a statistic map for
a contrast. For any contrast in the sampling frame, let
π(n| θ) be the probability mass function of the number of
foci per contrast, where θ is a vector of parameters.
Hence, null contrasts occur with probability p0 = π(0| θ)
and there are Kp0 in total. These are unavailable for
meta-analysis due to lack of significance. However, the
remaining k = K(1 − p0) significant experiments are pub-
lished and are available to draw inference regarding θ.
This allows us estimate p0 and thus the prevalence of
zero-count contrasts in the population.

Note that rarely if ever will be able to know the total
count of contrasts k, no less K. Hence our approach can
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be used to learn the relative but not the absolute fre-
quency of null contrasts. For the latter, it would be neces-
sary to know k, however it is not possible. While our
method cannot estimate p0 in individual meta-analyses,
p0 reflects the sampled population, and thus relates to all
studies that make up the population.

Finally, we are careful not to describe our estimators
as “null study” prevalence. Rather, we are estimating the
prevalence of null contrasts. Each study (paper) consists
of multiple contrasts, some of which might be null. There-
fore, since studies typically involve multiple contrasts, we
expect that the prevalence of missing studies is much
lower compared to the prevalence of missing experiments.

The remainder of the paper is organized as follows. In
Section 2, we describe the CBMA data, both real and sim-
ulated, that we used and the statistical model for point
data that accounts for missing experiments. In Section 3,
we present the results of our simulation studies and real
data analyses. Finally, in Section 4 we conclude with a
discussion of our main findings and set directions for
future research.

2 | METHODS AND MATERIALS

2.1 | BrainMap database

Our analysis is motivated by coordinate data from
BrainMap.12-15,* BrainMap is an online, freely accessible
database of coordinate-based data from both functional and
structural neuroimaging experiments. The data are exclu-
sively obtained from peer-reviewed papers on whole-brain,
voxel-wise studies, that are written in English language.

There are three possible routes via which a paper can
enter the database. Firstly, some of the papers are coded
by their authors in Scribe† and are then submitted to the
BrainMap team for quality control, either in the process of
performing a meta-analysis or subsequently. This accounts
for approximately one-half of all data. Secondly, some of
them are submitted by authors in alternative formats (eg,
spreadsheet) after publication and are then coded into the
database by BrainMap staff through Scribe. Thirdly, some
papers are retrieved and coded exclusively by BrainMap
staff who perform regular scans of the literature, with a
focus on large-scale CBMAs. In these cases, BrainMap staff
solicits data from the authors of each paper.

Thanks to these contributions, BrainMap has been con-
tinuously expanding since being introduced in 1992. It cur-
rently includes three sectors: task activation (TA), voxel-
based morphometry (VBM) and voxel-based physiology
(VBP). As of April 2019, the TA sector consists of results
obtained from 3502 scientific papers, including both posi-
tron emission tomography (PET) and fMRI task-activation

data. Each scan condition is coded by stimulus, response,
and instruction and experiments are coded most typically
as between-condition contrasts. BrainMap TA is publicly
available and is the sector which we use in this paper.
BrainMap VBM has been recently introduced and contains
results from 992 papers (as of April 2019). It consists largely
of between-group morphometric contrasts, typically of
patients to controls. VBM data include both gray-matter
and white-matter contrasts, coded separately. This sector is
publicly available. For more details about BrainMap VBM,
see Reference 16. The VBP sector consists largely of
between-group physiological contrasts, typically of patients
to controls VBP data include cerebral blood flow (PET, sin-
gle-photon emission computed tomography, and fMRI),
cerebral glucose metabolism (PET), cerebral oxygen metab-
olism (PET), and indices of neurovascular coupling (fMRI
amplitude of low frequency fluctuations, regional homoge-
neity, and others). BrainMap VBP is not yet public but can
be accessed upon request.

Due to its size, BrainMap is a widely used resource
for neuroimaging meta-analysis. More specifically, there
are currently (as of April 2019) 861 peer-reviewed articles
using the BrainMap and/or its CBMA software. Some
recent examples include References 17-19. Throughout
this paper, we assume that the database is indicative of
the population of non-null neuroimaging studies; we dis-
cuss the plausibility of this assumption in Section 4.

In this work we do not consider any of the resting-state
(because resting-state studies are currently under-repre-
sented) studies registered in BrainMap TA. Our unit of
observation is a contrast, and hence our dataset consists of
16 285 observations; these are all the contrasts retrieved
from the 3492 papers that we considered. Each observa-
tion (contrast) consists of a list of three-dimensional coor-
dinates zi, the foci, typically either local maxima or centers
of mass of voxel clusters with significant activations. For
the purposes of this work, we do not use the coordinates,
and model the file drawer solely based on the total num-
ber of foci per contrast ni. Table 1 presents some summary

TABLE 1 BrainMap database summaries

Database composition

Publications Contrasts Foci

3492 16 285 127 713

Contrasts per publication

Min. Q1 Median Mean Q3 Max.

1 2 4 4.7 6 63

Foci per contrast

Min. Q1 Median Mean Q3 Max.

1 2 5 7.8 11 98
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statistics for the subset of the BrainMap dataset that we
use (ie, functional experiments excluding resting state),
whereas Figure 2 shows the empirical distribution of the
total number of foci per contrast.

The barplot of Figure 2 (right) identifies a fundamental
aspect of this data: even though the distribution of ni has
most of its mass close to zero, there are no contrasts with
zero foci. This is expected as by design, the contrasts from a
paper that report no activations are not registered into the
BrainMap database. The objective of this work is to identify
the relative proportion of these contrasts compared to the
ones that are registered. Some of these null contrasts may
in fact be clearly reported in the papers but not registered
in the BrainMap database. However, given the stigma of
the negative findings, we suspect that they are rare.

2.2 | Models

As discussed earlier, our model uses count data from the
observed, reported experiments to infer on the file drawer
quantity. At this point, we list the two critical assump-
tions: (I) data nif gki=1, both observed and unobserved, are
taken to be independent and identically distributed (i.i.
d.) samples from a count distribution N of a given para-
metric form (we will relax this assumption later, to allow
for inter-experiment covariates); (II) the probability of
publication equals zero for experiments (contrasts) with
ni = 0. Assumption II implies that a paper will not appear
in BrainMap only if all its contrasts are negative. For a
detailed discussion of the implications of assumptions I
and II, see Section 4.

As each paper in the BrainMap database has multiple
contrasts, potentially violating the independence assump-
tion, we draw subsamples such that exactly one contrast
from each publication is used. Specifically, we create five

subsamples (A-E) drawing five different contrasts for
each subsample, if possible; for publications with less
than five contrasts we ensure that every contrast is used
in at least one subsample, and then randomly select one
for the remaining subsamples.

If assumptions I and II described above hold, then a
suitable model for the data is a zero-truncated count dis-
tribution. A zero-truncated count distribution occurs
when we restrict the support of a count distribution to
the positive integers. For a probability mass function
(pmf) π(n| θ) defined on n = 0, 1, …, where θ is the
parameter vector, the zero truncated pmf is:

πZT njθð Þ=P N =nð Þ= π njθð Þ
1−π 0jθð Þ , n=1,2,…: ð1Þ

We consider three types of count distributions π(n| θ):
the Poisson, the Negative Binomial, and the Delaporte. The
Poisson is the classic distribution for counts arising from a
series of independent events. In particular, if the foci in a
set of experiments arise from a spatial Poisson process with
common intensity function, then the resulting counts will
follow a Poisson distribution. Poisson models often fit
count data poorly due to over-dispersion, that is, the
observed variability of the counts is higher than what
would be anticipated by a Poisson distribution. More specif-
ically, if a spatial point process has a random intensity
function, one that changes with each experiment, the distri-
bution of counts will show this over-dispersion.

The Negative Binomial distribution is the count distri-
bution arising from the Poisson-Gamma mixture: if the
true Poisson rate differs between experiments and is dis-
tributed as a Gamma random variable, then the resulting
counts will follow a Negative Binomial distribution. For
the Negative Binomial distribution we use the mean-dis-
persion parametrization:
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π njμ,ϕð Þ= ϕ

ϕ+ μ

� �ϕΓ ϕ+nð Þ
Γ ϕð Þ

μ

μ+ϕ

� �n

, ð2Þ

where μ is the mean, ϕ > 0 is the dispersion parameter
and Γ(�) represents the gamma function; with this param-
etrization the variance is μ + (μ2/ϕ). Hence, the excess of
variability compared to the Poisson model is accounted
for through the additional term μ2/ϕ.

The Delaporte distribution is obtained by modeling
the foci counts ni of experiment i as Pois(μγi) random var-
iables; the γi follows a particular shifted Gamma distribu-
tion with parameters σ and ν, σ > 0 and 0 ≤ ν < 1.

20 The
pmf of the Delaporte distribution can be written as:

π njμ,σ,νð Þ= exp −μνð Þ
Γ 1

σ

� � 1+ μσ 1−νð Þ½ �− 1
σS, ð3Þ

where μ is the mean and:

S=
Xn
j=0

n
j

μnνn− j

n!
μ+

1
σ 1−νð Þ

� �− j

Γ
1
σ
+ j

� �
: ð4Þ

With this parametrization the variance of the
Delaporte distribution is μ + μ2σ(1 − ν)2.

Once the parameters of the truncated distribution are
estimated, one can make statements about the original,
untruncated distribution. One possible way to express the
file drawer quantity that we are interested in is the per-
cent prevalence of zero count contrasts pz, that is, the
total number of missing experiments per 100 published.
This can be estimated as:

p̂z =
π 0jθ̂
� 	

1−π 0jθ̂
� 	 × 100: ð5Þ

Here, π 0jθ̂
� 	

denotes the probability of observing a
zero count contrast, and θ̂ denotes the estimated parame-
ter values from the truncated model (eg, θ = (μ, σ, ν)T for
the Delaporte model).

Our statistical model is based on homogeneous data,
and we can reasonably expect that differences in experi-
ment type, sample size, etc., can introduce systematic dif-
ferences between experiments. To explain as much of this
nuisance variability as possible, we further model the
expected number of foci per experiment as a function of
its characteristics in a log-linear regression:

μ=exp xTi β
� �

, ð6Þ

where xi is the vector of covariates and β is the vector of
regression coefficients. The covariates that we consider are:
(a) the year of publication ranging from 1985 to 2018; (b) the
square root of the number of participants‡ ranging from 1 to
395; (c) the experimental context. In each subsample, we
merge all the labels of the variable context that are missing
or appear less than 20 times into the “Other” category. The
remaining categories (that appear in at least one subsample)
are: aging, disease, disease/emotion, disease/pharmacology,
disease/treatment, experimental design/normal mapping,
gender, language, learning, normal mapping and pharma-
cology. Summaries of the BrainMap subsamples A-E data
for each level of context can be found in A.

Parameter estimation is done under the generalized addi-
tive models for location scale and shape (GAMLSS) frame-
work of Rigby and Stasinopoulos.21 The fitting is done in
R22,§ with the gamlss library.23 Confidence intervals are
obtained with the bootstrap. When covariates are included
in the model, we use the stratified bootstrap to ensure the
representation of all levels of the experimental context vari-
able. In particular, for each level of the categorical variable a
bootstrap subsample is drawn using the data available for
this class and subsequently, these subsamples are merged to
provide the bootstrap dataset. Model comparison is done
using the Akaike information criterion (AIC) and the Bayes-
ian information criterion (BIC) provided by the package.

2.3 | Monte Carlo evaluations

We perform a simulation study to assess the quality of
estimates of pz, the total number of experiments missing
per 100 published, obtained by the zero-truncated Nega-
tive Binomial and Delaporte models (initial work found
BrainMap counts completely incompatible with the
Poisson model, and hence we did not consider it for sim-
ulation). For both approaches, synthetic data are gener-
ated as follows. First, we fix the values of the parameters,
that is, μ, ϕ for the Negative Binomial distribution and μ,
σ, ν for the Delaporte distribution. We then generate k*/
(1 − π(0| θ)) samples from the untruncated distributions,
where k* is chosen such that the expected number of non-
zero counts is k. We remove the zero-count instances
from the simulated data and the corresponding zero-trun-
cated model is fit to the remaining observations. Finally,
we estimate the probability of observing a zero count
experiment based on our parameter estimates.

We set our simulation parameter values to cover typi-
cal values found in BrainMap (see Appendix C,
Table C1). For the Negative Binomial distribution we
consider values 4 and 8 for the mean and values 0.4, 0.8,
1.0 and 1.5 for the dispersion, for a total of eight parame-
ter settings. For the Delaporte distribution, we set μ to 4
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and 8, σ to 0.5, 0.9, and 1.2, and ν to 0.02, 0.06, and 0.1
(18 parameter settings). The expected number of
observed experiments is set to k = 200, 500, 1000, and
2000. For each combination of (k, μ, ϕ) and (k, μ, σ, ν) of
the Negative Binomial and Delaporte models, respec-
tively, we generate 1000 datasets from the corresponding
model, for each parameter setting, and record the esti-
mated value of pz for each fitted dataset.

2.4 | Human Connectome Project real
data evaluations

As an evaluation of our methods on realistic data for which
the exact number of missing contrasts is known, we gener-
ate synthetic meta-analysis datasets using the Human
Connectome Project (HCP) task fMRI data. We start with a
selection of 80 unrelated subjects and retrieve data for all
86 tasks considered in the experiment. For each task, we
randomly split the 80 subjects into eight groups of 10 sub-
jects. Hence, we obtain a total of 86 × 8 = 688 synthetic
fMRI experiments. For each experiment, we perform a one-
sample group analysis, using ordinary least squares in
FSL,** and recording nv

i , the total number of surviving
peaks after random field theory thresholding at the voxel
level, 1% familywise error rate (FWE), where i = 1, …,
688. We also record the total number of peaks (one peak
per cluster) after random field theory thresholding at the
cluster level, cluster forming threshold of uncorrected
P = .00001 and 1% FWE, nc

i . These rather stringent signif-
icance levels were needed to induce sufficient numbers of
results with no activations. We then discard the zero-
count instances from nvi and nci , and subsequently ana-
lyze the two truncated samples in two separate analyses,
using the zero-truncated Negative Binomial and
Delaporte models. Finally, the estimated number of miss-
ing experiments is compared to the actual number of dis-
carded contrasts. Note that we repeat the procedure
described above six times, each time using different ran-
dom splits of the 80 subjects (HCP splits 1-6).

3 | RESULTS

3.1 | Simulation results

The percent relative bias of the estimates of pz,
p̂z−pzð Þ=pz½ �× 100, and its bootstrap SE for the zero-trun-

cated Negative Binomial and Delaporte models are
shown in Tables 2 and 3, respectively. The results indi-
cate that, when the model is correctly specified, both
approaches perform adequately. In particular, in Table 2
we see that the bias of p̂z is small, never exceeding 8%

when the sample size is comparable to the sample size of
the BrainMap database (k = 3492) and the mean number
of foci is similar to the average foci count found in
BrainMap (≈9). The bootstrap SE estimates produced by
the Negative Binomial model are also accurate with rela-
tive bias below 5% in most scenarios with more than
500 contrasts, while Delaporte tends to underestimate
SEs but never more than −15% (see Table 3).

3.2 | HCP synthetic data results

Results of the analysis of the HCP synthetic datasets
using the zero-truncated Negative Binomial and
Delaporte models are shown in Figure 3 and Table 4. In
Figure 3 we plot the empirical count distributions and
the fitted pmfs for the 12 datasets considered. For
datasets obtained with voxelwise thresholding of the
image data, we see that the Delaporte distribution pro-
vides a better fit compared to the Negative Binomial qual-
itatively, by AIC in all six datasets, and by BIC in five out
of six datasets (Table 4). For clusterwise thresholding,
there are fewer peaks in general and their distribution is
less variable compared to voxelwise thresholding. Both
distributions achieve a similar fit. Here, AIC supports the
Negative Binomial model in four out of six datasets and
BIC in five out of six datasets.

Table 4 reports the true number of missing contrasts
n0, along with point estimates n̂0 and the 95% bootstrap
intervals obtained by the zero-truncated models. For
voxelwise data, the Negative Binomial model overesti-
mates the total number of missing experiments in all six
datasets as a consequence of the poor fit to the nonzero
counts, while the Delaporte model bootstrap intervals
include the true value of n0 in five out of six datasets,
greatly underestimating n0 in one dataset. For clusterwise
counts, the point estimates obtained by the zero-trun-
cated Negative Binomial model are very close to the true
values. Notably, n0 is included within the bootstrap inter-
vals for all six datasets. The Delaporte model underesti-
mates the values of n0 in all six datasets, but the
bootstrap intervals include n0 for four out of six datasets.

Overall, we find that the zero-truncated modeling
approach generally provides good estimates of n0, with
the Negative Binomial sometimes overestimating and the
Delaporte sometimes underestimating n0. A conservative
approach, therefore, favors the Delaporte model.

3.3 | Application to the BrainMap data

We found the Poisson distribution to be completely
incompatible with the BrainMap count data (Appendix B,
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Figure B1), and we do not consider it further. We start by
fitting the Negative Binomial and Delaporte zero-trun-
cated models without any covariates. The estimates of the
scalar parameters obtained for both models are shown in
Appendix C. Figure 4 shows the empirical and fitted
probability mass functions for the five subsamples. We
see that both distributions provide a good fit for the
BrainMap data. The Negative Binomial model is

preferred based on AIC in four out of five subsamples,
and based on BIC in five out of five subsamples (Table 6),
but with little difference in both criteria. The estimated
prevalence of missing contrasts, along with 95% bootstrap
intervals are shown in Table 5. Note that while there is
considerable variation in the estimates over the two
models, the confidence intervals from all subsamples do
not include zero, thus suggesting a file drawer effect.

TABLE 2 Percent relative bias for

estimation of pz, the zero-count

experiment rate as a percentage of

observed experiments, for Negative

Binomial and Delaporte models as

obtained from 1000 simulated datasets

Negative Binomial

Parameter values % relative bias of p̂z

μ ϕ pz  k½ �= 200 500 1000 2000

4 0.4 62.1 8.76 2.85 1.40 0.80

4 0.8 31.3 2.72 1.97 −0.78 0.32

4 1.0 25.0 1.70 1.21 0.72 0.16

4 1.5 16.6 2.85 1.66 0.71 0.13

8 0.4 42.0 7.07 3.17 0.70 −0.22

8 0.8 17.2 4.35 1.57 0.49 0.21

8 1.0 12.5 3.32 0.84 0.63 0.04

8 1.5 6.7 2.53 0.90 0.69 0.21

Delaporte

Parameter values % relative bias of p̂z

μ σ ν pz  k½ �=200 500 1000 2000

4 0.5 0.02 11.8 −12.65 −10.66 −9.69 −8.02

4 0.9 0.02 20.8 −17.47 −12.35 −10.28 −10.10

4 1.2 0.02 27.6 −20.46 −18.59 −16.64 −13.83

4 0.5 0.06 10.5 −6.13 −5.58 −4.77 −3.73

4 0.9 0.06 18.0 −4.08 −4.18 −1.32 0.15

4 1.2 0.06 23.4 −5.07 −3.27 −1.09 0.01

4 0.5 0.10 9.3 −4.53 −3.32 −2.65 −1.90

4 0.9 0.10 15.6 1.07 3.86 1.91 1.80

4 1.2 0.10 20.0 4.46 3.32 3.89 4.07

8 0.5 0.02 3.6 −13.77 −10.02 −7.75 −5.91

8 0.9 0.02 9.2 −11.99 −9.00 −7.46 −5.04

8 1.2 0.02 13.8 −14.07 −11.22 −9.48 −8.12

8 0.5 0.06 2.8 −3.04 −3.18 −2.12 −1.89

8 0.9 0.06 6.8 1.41 4.13 2.74 2.47

8 1.2 0.06 10.0 10.49 7.52 7.91 5.19

8 0.5 0.10 2.2 0.93 1.36 0.82 0.74

8 0.9 0.10 5.0 8.09 5.88 5.78 4.94

8 1.2 0.10 7.3 17.91 10.68 7.77 4.76

Notes: Parameter μ is the expected number of foci per experiment, ϕ, σ, and ν are additional
scale and shape parameters. Negative Binomial performs well and, while Delaporte often under-
estimated pz, with at least 1000 contrasts it always has bias less than 10% (positive bias over-esti-
mates the file drawer problem).
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For both Negative Binomial and Delaporte models,
and all subsamples A to E, the model with covariates is
preferred over the simple model (without the covariates)
in terms of AIC but not in terms of BIC (Table 6). This is
expected since BIC penalizes model complexity more
heavily. Covariates essentially have no effect on the esti-
mated prevalence of missing contrasts. As can be seen in
Figure 5, the estimated prevalence of zero count contrasts
is a slowly decreasing function of both the square root

number of participants and the year of publication. For
the former, the trend is expected and one possible expla-
nation is that bigger samples result into greater power,
and therefore more foci and thus less of a file drawer
problem. However, for publication year, decreasing publi-
cation bias is welcomed but we could have just as well
expected that the increased use of multiple testing in later
years would have reduced foci counts and increased the
file drawer problem. We further see that the estimated

TABLE 3 Percent relative bias of

bootstrap standard error of p̂z, missing

experiment rate as a percentage of

observed experiments, for Negative

Binomial and Delaporte models as

obtained from 1000 simulated datasets

Negative Binomial

Parameter values % relative bias of se (p̂z)

μ ϕ pz  k½ �= 200 500 1000 2000

4 0.4 62.1 34.85 8.72 6.26 −1.33

4 0.8 31.3 8.15 −1.08 −1.76 −1.45

4 1.0 25.0 10.04 5.87 1.40 1.10

4 1.5 16.6 3.97 1.20 −0.37 −3.00

8 0.4 42.0 27.65 2.53 2.61 1.31

8 0.8 17.2 4.67 −0.88 0.58 3.29

8 1.0 12.5 1.77 2.76 −0.75 −0.04

8 1.5 6.7 1.43 −0.40 −2.48 −1.32

Delaporte

Parameter values % relative bias of se(p̂z)

μ σ ν pz  k½ �=200 500 1000 2000

4 0.5 0.02 11.8 −6.98 −6.51 −7.28 −7.23

4 0.9 0.02 20.8 −10.01 −10.28 −11.56 −11.63

4 1.2 0.02 27.6 −5.88 −9.20 −12.08 −11.48

4 0.5 0.06 10.5 −8.80 −5.50 −9.71 −11.00

4 0.9 0.06 18.0 −8.08 −8.87 −13.53 −14.39

4 1.2 0.06 23.4 −2.69 −6.61 −11.58 −13.36

4 0.5 0.10 9.3 −3.09 −3.43 −8.38 −6.59

4 0.9 0.10 15.6 −7.18 −10.05 −8.81 −9.96

4 1.2 0.10 20.0 −10.47 −9.99 −12.13 −13.47

8 0.5 0.02 3.6 −8.74 −6.96 −6.87 −8.49

8 0.9 0.02 9.2 −10.35 −8.84 −8.81 −10.31

8 1.2 0.02 13.8 −2.86 −6.91 −11.28 −13.51

8 0.5 0.06 2.8 −5.93 −9.27 −11.21 −5.80

8 0.9 0.06 6.8 −6.61 −6.70 −10.93 −9.43

8 1.2 0.06 10.0 −1.42 −10.57 −9.72 −10.42

8 0.5 0.10 2.2 −9.40 −8.75 −7.14 −5.62

8 0.9 0.10 5.0 −10.02 −8.39 −8.16 −2.02

8 1.2 0.10 7.3 −8.16 −8.13 −0.26 −0.85

Note: Parameter μ is the expected number of foci per experiment and ϕ, σ, and ν are additional
scale and shape parameters. For a sample of at least 1000 contrasts, Negative Binomial SEs are
usually less than 3% in absolute value; while Delaporte has worse bias, it is never less than
−15% (negative SE bias leads to over-confident inferences).
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percent prevalence of zero-count contrasts is similar for
all levels of the categorical variable context, with the
exception of experiments studying gender effects (Fig-
ure 6). Finally, when including the covariates, the Nega-
tive Binomial is preferred over the Delaporte in three out
of five subsamples in terms of the AIC, and in four out of
five subsamples in terms of the BIC (Table 6).

4 | DISCUSSION

4.1 | Summary of findings and
implications for CBMA

In this paper, we have attempted to estimate the preva-
lence of experiments missing from a CBMA due to
reporting nonsignificant results. Our method uses

intrinsic statistical characteristics of the nonzero count
data to infer the relative frequency of zero counts. This is
achieved by estimating the parameters of a zero-trun-
cated model, either Negative Binomial or Delaporte,
which are subsequently used to predict the prevalence p0
of zero-count experiments in the original, untruncated
distribution, and re-expressing this as pz, the rate of miss-
ing contrasts per 100 published.

Our approach further relies on assumptions I and II
described in Section 2.2. Assumption I implies that there
is independence between contrasts. However, as one pub-
lication can have several contrasts, this assumption is
tenuous despite it being a standard assumption for most
CBMA methods. To ensure the independence assumption
is valid, we subsample the data so that only one ran-
domly selected contrast per publication is used. Assump-
tion II defines our censoring mechanism, such that only

FIGURE 3 Evaluation with Human Connectome Project data with 688 contrasts of sample size 10, comparing accuracy of NB and DEL

distributions for the prediction of the number of contrasts with no significant results (zero foci) based on only significant results (one or

more foci). Left panel shows results for voxelwise inference, right for clusterwise inference, both using PFWE = 0.01 to increase frequency of

zero foci. For clusterwise datasets, the NB confidence intervals always include the observed zero count, while DEL ofter underestimates the

count. For voxelwise analysis, the NB over-estimates the zero frequency substantially, while DEL's intervals include the actual zero

frequency in three out of five splits. DEL, Delaporte; NB, Negative Binomial [Colour figure can be viewed at wileyonlinelibrary.com]
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experiments with at least one significant activation can
be published. The assumption that nonsignificant
research findings are suppressed from the literature has
been adopted by authors in classical meta-analysis (see
Reference 24 among others). One possible way in which
this assumption can be violated could be due to data
repeatedly analyzed under different pipelines (eg, by
using a different cluster extent each time) until they pro-
vide significant results. However, we believe that
researchers are unlikely to resort to this approach
because studies typically involve multiple contrasts.
Hence, even if some of them are negative, the authors
can focus on remaining, significant contrasts, in their
publication. Assumption II can also be violated due to
contrasts that have significant findings but are not
reported because these findings are not in agreement
with the researcher's hypothesis of interest or the existing
literature. However, this violation is not an issue unless
the distribution of n in such contrasts is different to the
distribution of n in contrasts that are reported.

A series of simulations studies suggest that the zero-
truncated modeling approach provides valid estimates of

pz. A critical limitation of our HCP evaluation is the
repeated measures structure, where 86 contrasts come
from each subject. Such dependence generally does not
induce bias in the mean estimates, but can corrupt SEs
and is a violation of the bootstrap's independence
assumption. However, as the bootstrap intervals gener-
ally captured the true censoring rate, it seems we were
not adversely affected by this violation. It should be
noted, moreover, that the properties of our estimators
degrade as the total number of observed experiments
decreases and therefore our methods are likely not suit-
able for individual meta-analyses unless hundreds of
experiments are available.

The analysis of BrainMap data suggests that the esti-
mated prevalence of null contrasts slightly varies
depending on the characteristics of an experiment, but
generally consists of at least 6 missing experiments for
100 published, and this estimate of 6 is significantly
greater than 0. In other words, for a randomly selected
CBMA consisting of J contrasts, we expect that 6J/100
null contrasts are missing due to the file drawer. Note
that this interpretation concerns the aggregate statistical

TABLE 4 Evaluation of the zero-

truncated modeling approach using

synthetic data obtained from the HCP,

using voxelwise (top) and clusterwise

(bottom) inference

Voxelwise

Negative Binomial Delaporte

Split n0 n̂0 AIC BIC n̂0 AIC BIC

1 7 20 [14,27] 6576.4 6585.4 1 [1,4] 6562.8 6576.4

2 5 22 [15,29] 6583.3 6592.4 3 [1,8] 6576.2 6589.8

3 5 22 [16,30] 6575.9 6585.0 1 [1,21] 6566.1 6579.7

4 4 25 [18,33] 6603.8 6612.9 4 [1,25] 6601.7 6615.3

5 10 18 [13,24] 6539.4 6548.5 1 [0,1] 6504.1 6517.6

6 10 21 [15,29] 6557.0 6566.0 2 [1,10] 6550.0 6563.5

Clusterwise

Negative Binomial Delaporte

Split n0 n̂0 AIC BIC n̂0 AIC BIC

1 148 167 [115,248] 3167.8 3176.4 71 [50,108] 3166.9 3179.8

2 144 151 [104,217] 3209.3 3217.9 58 [44,79] 3204.5 3217.4

3 150 161 [109,246] 3163.2 3171.8 95 [62,184] 3164.4 3177.2

4 151 154 [107,231] 3156.3 3164.8 106 [57,159] 3158.0 3170.9

5 153 148 [101,291] 3175.0 3183.6 98 [60,174] 3176.5 3189.4

6 152 151 [103,223] 3198.2 3206.8 89 [54,157] 3199.7 3212.5

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion; HCP,
Human Connectome Project.
Notes: The true number of missing contrasts (n0) for each one of the 12 datasets 9(six for
voxelwise thesholding and six for clusterwise thresholding) is shown in the second column.
For each of the Negative Binomial and Delaporte methods, the estimated missing contrast
count (n̂0 ), 95% bootstrap confidence interval for n0, AIC score and BIC score are shown
(smaller AIC and BIC are better).
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practice reflected in BrainMap, that is, it is totally agnos-
tic to the statistical procedures used to generate the
results in the database. The counts we model could have
been found with liberal P < .001 uncorrected inferences
or stringent P < .05 FWE procedures. However, if the
neuroimaging community never used multiple testing
corrections, then every experiment should report many
peaks, and we should estimate virtually no missing
contrasts.

The results suggest that the population sampled by
the BrainMap database has a nonzero file drawer effect.
Whether this conclusion can be extended to all neuroim-
aging experiments depends on the representativeness of
the database. As noted above, the BrainMap staffs are
continually adding studies and capture the content of

FIGURE 4 BrainMap results for

five random samples using the Negative

Binomial and Delaporte models and no

covariates. Plots show observed count

data (gray bars) with fit of full

(nontruncated) distribution based on

zero-truncated data, including the

estimate of p0 (over black bar) [Colour

figure can be viewed at

wileyonlinelibrary.com]

TABLE 5 BrainMap data analysis results

Negative Binomial Delaporte

Subsample p̂z 95% interval p̂z 95% interval

A 11.80 [10.22,13.59] 10.52 [6.42,13.04]

B 11.14 [9.63,12.79] 7.30 [5.29,11.44]

C 11.46 [9.95,13.31] 8.30 [5.95,12.04]

D 11.16 [9.64,12.88] 6.83 [5.03,10.97]

E 11.40 [9.89,13.14] 8.11 [5.44,12.30]

Notes: The table presents the estimated prevelance of file drawer
experiments along with 95% bootstrap confidence intervals, as
obtained by fitting the zero-truncated Negative Binomial and
Delaporte models to BrainMap subsmaples A to E. No covariates
are considered.
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newly published meta-analyses. Hence, the most notable
bias could be topicality and novelty effects that drive
researchers to create meta-analyses. Another potential
source of bias could be due to studies which BrainMap
does not have access to, such as ones that are never publi-
shed due to insufficient time to submit a paper or staff
leaving. But we do not see these particular effects as driv-
ing the file drawer effect up or down in particular, and so
is not so much of a concern.

Our findings provide evidence for the existence of
publication bias in CBMA. The presence of missing
experiments does not invalidate existing CBMA studies,
but complements the picture seen when conducting a lit-
erature review. Considering the missing contrasts would
affect the conclusions drawn from any of the existing
CBMA approaches. For model-based approaches based
on spatial point processes (see References 25,26 among
others), the inclusion of null contrasts would cause the
estimated intensity functions at each voxel to shift down-
wards, thus leading to potentially different inferences.
For kernel-based approaches (such as MKDA,27 ALE28

and SDM29) inclusion of null contrasts would also lead to
lower values of the estimated statistic at each voxel. How-
ever, it would not affect the inferences (ie, significant
voxels) obtained. This is due to the fact that kernel-based

approaches are developed in order to test spatial conver-
gence of reported foci conditional on at least one activa-
tion (rather than assessing the evidence for the existence
of a population effect).

4.2 | Future work

There are a few limitations to our work. Even though we
posit that the majority of the missing contrasts are never
described in publications or not published at all, we can-
not rule out the contribution from contrasts that have
actually been reported in the original publications and
simply not encoded in BrainMap. Therefore, it is worth
considering an extensive literature review in order to
investigate how often such null results are mentioned in
papers. This information can be then used to approxi-
mate the fraction of contrasts that are never published.
Ideally, our unit of inference would be a publication
rather than a contrast. However, linking our contrast-
level inferences to studies requires assumptions about
dependence of contrasts within a study and the distribu-
tion of the number of contrasts examined per study. We
can assert that the more contrasts examined per investi-
gation, the more likely one or more null contrasts should

TABLE 6 AIC/BIC model comparison results for the BrainMap data

Model comparison: no covariates

Negative Binomial Delaporte

Subsample AIC BIC AIC BIC

A 21 837.87 21 850.18 21 839.87 21 858.34

B 21 792.04 21 804.36 21 792.61 21 811.09

C 21 899.71 21 912.03 21 901.18 21 919.65

D 21 862.23 21 874.54 21 861.83 21 880.30

E 21 683.47 21 695.79 21 684.94 21 703.42

Model comparison: regression

Negative Binomial Delaporte

Subsample AIC BIC AIC BIC

A 21 778.73 21 871.10 21 780.45 21 878.98

B 21 735.59 21 827.96 21 733.23 21 831.76

C 21 850.23 21 936.44 21 850.29 21 942.66

D 21 816.27 21 902.49 21 813.07 21 905.45

E 21 628.24 21 714.45 21 628.58 21 720.95

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion.
Notes: We fit the zero-truncated Negative Binomial and Delaporte models, with and without the covariates, to BrainMap subsamples A to E.
Every split indicates evidence for better fit with the Negative Binomial model (smaller AIC/BIC indicates better fitting model). For regression
models, the sample size was smaller due to missing values. Hence, the criteria cannot be used to compare the models without and with the
covariates.
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arise; and that the risk of null contrasts is inversely
related to foci-per-contrast of non-null contrasts. Using
these facts, there might be ways in which one could use
our findings to estimate the rate of missing studies.

The evaluation of our methods using the HCP data
could be also extended. One option would be to imple-
ment a different analysis pipeline in each one of the syn-
thetic experiments in order to reflect the heterogeneity
observed in the BrainMap data. Another option would be
to investigate the robustness of the results to the choice
of the sample size of each synthetic experiment. Nonethe-
less, for larger sample sizes, this would require a larger
selection of HCP subjects in order to ensure that the total
number of synthetic experiments is sufficient for our
approach. The analysis conducted in this paper is based
on data retrieved from a single database. As a conse-
quence, results are not robust to possible biases in the
way publications are included in this particular database.
A more thorough analysis would require consideration of
other databases (eg, Neurosynth.org,30,†† though note
Neurosynth does not report foci per contrast but per
paper).

One may argue that our censoring mechanism is
rather simplistic, and does not reflect the complexity of
current (and potentially) poor scientific practice. As dis-
cussed earlier, we have not allowed for the possibility
of “vibration effects,” that is, changing the analysis
pipeline (eg, random vs fixed effects, linear vs nonlinear
registration) to finally obtain some significant activa-
tions. This would be an instance of initially censored
(zero-count) data being “promoted” to a nonzero count
through some means, see Figure 7 for a graphical repre-
sentation. Such models can be fit under the Bayesian
paradigm and we will consider them in our future
work. Our simulation studies have shown that the
properties of our prevalence estimator are poor when
the total number of nonzero experiments available is
low. This fact implies that the estimator cannot be used
to infer the number of missing experiments from a sin-
gle CBMA. Hence, a potential direction for future work
would be to construct estimators that are more robust
when the sample size is small.

Given results in this paper, there are potential benefits
in extending existing CBMA methodologies to account for
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FIGURE 5 Predicted pz,

missing experiment rate per

100 published experiments, as a

function of year of publication

(top) and the square root of

sample size (bottom), with

pointwise 95% bootstrap

confidence intervals. There is

not much variation in the

estimate of the percentage

missing, but in both cases a

negative slope is observed, as

might be expected with

improving research practices

over time and greater power

with increased sample size. All

panels refer to the second

BrainMap random sample

(subsample B) [Colour figure
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the file drawer. Many authors have suggested possible solu-
tions for this problem in classic meta-analysis, using, for
example, funnel plots,31,32 weight functions,33,34 or sensitivity
analyses.35 For a recent survey of such methods, see Refer-
ence 36. It is therefore conceivable to adapt these methods
for application in CBMA. Moreover, it is worth extending

CBMA methods based on spatial point process to be zero-
truncated. This would mitigate the bias in the estimated
intensity functions caused by nontruncated likelihoods
being used when the data are, in fact, zero-truncated. Note
that such an extension is not required for kernel-based
methods as these are conditional on at least one activation.
However, researchers should be wary of interpreting the
statistics obtained by kernel-based methods as population
effects given that it is likely that there are null studies that
are not included in their CBMA.

Finally, it is essential to investigate the existence of forms
of publication bias other than null file drawer contrasts, such
as studies that are not reported due to results conflicting with
literature or studies not reported in academic papers.37

develop a robustness check for ALE method which is based
on the fail-safe N,6,7 that is, the minimum number of
unpublished studies required to overturn the outcome of
meta-analysis. However, it is essential that such checks are
developed for other widely-used CBMAmethods.
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FIGURE 6 Contrasts missing per 100 published as a function

of experiment context, with 95% bootstrap confidence intervals.

Note that we have fixed the year and square root sample size
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green lines represent the NB and DEL distributions, respectively.
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viewed at wileyonlinelibrary.com]

SAMARTSIDIS ET AL. 879

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


study was further supported by NIH grant MH074457.
The work presented in this paper represents the views of
the authors and not necessarily those of the NIH, the
NIHR or the Wellcome Trust Foundation.

CONFLICT OF INTEREST
The authors reported no conflict of interest.

DATA AVAILABILITY STATEMENT
The code that we used has been made publicly available
at https://osf.io/ayhfv/.

ORCID
Pantelis Samartsidis https://orcid.org/0000-0002-4491-
9655
Thomas E. Nichols https://orcid.org/0000-0002-4516-
5103

ENDNOTES
* RRID:SCR_003069.
† Scribe is BrainMap's software to organize each study's results
(peak coordinates, associated statistics, significance levels, etc.)
and meta-data (study context, sample size, etc.).

‡ Since we expect the power to scale with the square root of the
sample size.

§ RRID:SCR_001905.
** RRID:SCR_002823.
†† RRID:SCR_006798.

REFERENCES
1. Farah MJ. Brain images, babies, and bathwater: critiquing cri-

tiques of functional neuroimaging. Hastings Cent Rep. 2014;44
(S2):S19-S30.

2. Raemaekers M, Vink M, Zandbelt B, van Wezel RJA, Kahn RS,
Ramsey NF. Test-retest reliability of fMRI activation during
prosaccades and antisaccades. Neuroimage. 2007;36(3):532-542.

3. Wager TD, Lindquist MA, Nichols TE, Kober H, Van
Snellenberg JX. Evaluating the consistency and specificity of
neuroimaging data using meta-analysis. Neuroimage. 2009;45
(suppl 1:S210-S221.

4. Carp J. The secret lives of experiments: methods reporting in
the fMRI literature. Neuroimage. 2012;63(1):289-300.

5. Normand ST. Meta-analysis: formulating, evaluating, combin-
ing, and reporting. Stat Med. 1999;18(3):321-359.

6. Rosenthal R. The file drawer problem and tolerance for null
results. Psychol Bull. 1979;86(3):638-641.

7. Iyengar S, Greenhouse JB. Selection models and the file drawer
problem. Stat Sci. 1988;3(1):133-135.

8. Begg CB, Berlin JA. Publication bias: a problem in interpreting
medical data. J R Stat Soc A. 1988;151(3):419-463.

9. Sutton AJ, Duval SJ, Tweedie RL, Abrams KR, Jones DR.
Empirical assessment of effect of publication bias on meta-ana-
lyses. Br Med J. 2000;320(7249):1574-1577.

10. Jennings RG, Van Horn JD. Publication bias in neuroimaging
research: implications for meta-analyses. Neuroinformatics.
2012;10(1):67-80.

11. David SP, Ware JJ, Chu IM, et al. Potential reporting bias in
fMRI studies of the brain. PLoS One. 2013;8(7):e70104.

12. Fox PT, Lancaster JL. Neuroscience on the net. Science. 1994;
266(5187):994-996.

13. Fox PT, Lancaster JL. Mapping context and content: the
BrainMap model. Nat Rev Neurosci. 2002;3(4):319-321.

14. Laird AR, Fox PM, Price CJ, et al. ALE meta-analysis: control-
ling the false discovery rate and performing statistical contrasts.
Hum Brain Mapp. 2005;25(1):155-164.

15. Fox PT, Lancaster JL, Laird AR, Eickhoff SB. Meta-analysis in
human neuroimaging: computational modeling of large-scale
databases. Annu Rev Neurosci. 2014;37:409-434.

16. Vanasse TJ, Fox PM, Barron DS, et al. Brainmap VBM: an envi-
ronment for structural meta-analysis. Hum Brain Mapp. 2018;
39(8):3308-3325.

17. Hill AC, Laird AR, Robinson JL. Gender differences in working
memory networks: a brainmap meta-analysis. Biol Psychol.
2014;102:18-29.

18. Kirby LAJ, Robinson JL. Affective mapping: an activation likelihood
estimation (ALE) meta-analysis. Brain Cogn. 2017;118:137-148.

19. Hung Y, Gaillard SL, Yarmak P, Arsalidou M. Dissociations of
cognitive inhibition, response inhibition, and emotional inter-
ference: voxelwise ALE meta-analyses of fMRI studies. Hum
Brain Mapp. 2018;39:4065-4082.

20. Rigby RA, Stasinopoulos DM, Akantziliotou C. A framework
for modelling overdispersed count data, including the poisson-
shifted generalized inverse gaussian distribution. Comput Stat
Data Anal. 2008;53(2):381-393.

21. Rigby RA, Stasinopoulos DM. Generalized additive models
for location, scale and shape. J R Stat Soc C. 2005;54(3):
507-554.

22. R Core Team. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Com-
puting; 2015.

23. Stasinopoulos DM, Rigby RA. Generalized additive models for loca-
tion scale and shape (GAMLSS) in R. J Stat Softw. 2007;23(7):1-46.

24. Eberly LE, Casella G. Bayesian estimation of the number of
unseen studies in a meta-analysis. Off J Stat. 1999;15(4):477-494.

25. Kang J, Nichols TE, Wager TD, Johnson TD. A Bayesian hier-
archical spatial point process model for multi-type neuroimag-
ing meta-analysis. Ann Appl Stat. 2014;8(3):1561-1582.

26. Montagna S, Wager T, Barrett LF, Johnson TD, Nichols TE.
Spatial bayesian latent factor regression modeling of coordi-
nate-based meta-analysis data. Biometrics. 2018;74(1):342-353.

27. Wager TD, Lindquist M, Kaplan L. Meta-analysis of functional
neuroimaging data: current and future directions. Soc Cogn
Affect Neurosci. 2007;2(2):150-158.

28. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT.
Coordinate-based activation likelihood estimation meta-analy-
sis of neuroimaging data: a random-effects approach based on
empirical estimates of spatial uncertainty. Hum Brain Mapp.
2009;30(9):2907-2926.

29. Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey mat-
ter changes in obsessive-compulsive disorder. Br J Psychiatry.
2009;195(5):393-402.

880 SAMARTSIDIS ET AL.

https://osf.io/ayhfv/
https://orcid.org/0000-0002-4491-9655
https://orcid.org/0000-0002-4491-9655
https://orcid.org/0000-0002-4491-9655
https://orcid.org/0000-0002-4516-5103
https://orcid.org/0000-0002-4516-5103
https://orcid.org/0000-0002-4516-5103


30. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC,
Wager TD. Large-scale automated synthesis of human func-
tional neuroimaging data. Nat Methods. 2011;8(8):665-670.

31. Egger M, Davey Smith G, Schneider M, Minder C. Bias in
meta-analysis detected by a simple, graphical test. Br Med J.
1997;315(7109):629-634.

32. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based
method of testing and adjusting for publication bias in meta-
analysis. Biometrics. 2000;56(2):455-463.

33. Larose DT, Dey DK. Modeling publication bias using weighted
distributions in a Bayesian framework. Comput Stat Data Anal.
1998;26(3):279-302.

34. Copas J, Jackson D. A bound for publication bias based on the
fraction of unpublished studies. Biometrics. 2004;60(1):146-153.

35. Copas J, Shi JQ. Meta-analysis, funnel plots and sensitivity
analysis. Biostatistics. 2000;1(3):247-262.

36. Jin Z, Zhou X, He J. Statistical methods for dealing with publi-
cation bias in meta-analysis. Stat Med. 2015;34(2):343-360.

37. Acar F, Seurinck R, Eickhoff SB, Moerkerke B. Assessing
robustness against potential publication bias in activation

likelihood estimation (ALE) meta-analyses for fMRI. PLoS One.
2018;13(11):e0208177.

How to cite this article: Samartsidis P,
Montagna S, Laird AR, Fox PT, Johnson TD,
Nichols TE. Estimating the prevalence of missing
experiments in a neuroimaging meta-analysis. Res
Syn Meth. 2020;11:866–883. https://doi.org/10.
1002/jrsm.1448

APPENDIX A: BrainMap SUMMARIES FOR
CONTEXT

In this section we provide summaries of the data on the
five BrainMap subsamples A to E, for the different levels

TABLE A1 Data summaries for the different levels of the categorical variable experiment context

Contrasts per level

BrainMap subsample

Experiment context A B C D E

Aging 20 27 22 23 21

Disease 574 595 593 590 585

Disease, emotion 34 32 31 33 31

Disease, pharmacology 48 49 42 47 38

Disease, treatment 33 30 31 33 28

Experimental design, normal mapping 30 30 32 33 26

Gender 22 23 – – –

Language 29 32 29 27 31

Learning 26 31 25 27 28

Normal mapping 2074 2043 2063 2062 2081

Other 539 542 563 555 566

Pharmacology 63 58 61 62 57

Average contrast sample size

Experiment context BrainMap subsample

A B C D E

Aging 16.4 12.4 12.0 11.7 12.2

Disease 14.4 15.0 14.5 15.1 15.0

Disease, emotion 15.7 16.1 16.2 16.0 16.0

Disease, pharmacology 12.3 12.5 12.8 12.8 12.1

Disease, treatment 11.4 12.9 12.4 11.9 11.3

Experimental design, normal mapping 19.2 19.6 21.7 20.9 20.5

Gender 13.2 12.2 – – –

(Continues)
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of the categorical variable experiment context. In particu-
lar, Table A1 presents the total number of contrasts per
level, the average sample size per contrast and the aver-
age number of foci per contrast. Note that in
subsamples C, D, and E there were less than 20 contrasts
with label “Gender”; hence, we incorporate those in the
“Other” category.

APPENDIX B: ZERO-TRUNCATED POISSON
ANALYSIS OF THE BRAINMAP DATASET

In this section, we present results of the analysis of
BrainMap subsamples A to E using the zero-truncated

Poisson model. The empirical and fitted Poisson probabil-
ity mass functions are shown in Figure B1. It is evident
that the zero-truncated Poisson model provides a poor fit
to the BrainMap data. The finding is confirmed by the
AIC and BIG criteria. The AIC is 35 513.5, 34 886.8,
35 595.9, 35 456.7, and 34 642.1 for subsamples A to E,
respectively. The BIG is 35 519.7, 34 893.0, 35 602.1,
35 462.8, and 34 648.3 for subsamples A to E, respec-
tively. These values are much higher than the
corresponding values obtained by fitting both the Nega-
tive Binomial and Delaporte models (see Table 6). The
estimated prevalence of file drawer experiments is esti-
mated as almost zero in all subsamples (Figure B1, final
plot). However, these estimates should not be trusted

TABLE A1 (Continued)

Contrasts per level

BrainMap subsample

Experiment context A B C D E

Language 11.6 11.8 11.6 11.9 10.7

Learning 10.4 11.6 10.2 10.5 11.8

Normal mapping 13.9 13.7 13.8 13.7 13.9

Other 16.9 17.1 16.8 16.9 16.9

Pharmacology 13.0 13.4 12.5 13.2 12.6

Average foci per contrast

Experiment context BrainMap subsample

A B C D E

Aging 10.4 9.1 8.5 9.2 6.0

Disease 7.2 7.5 7.6 7.5 7.3

Disease, emotion 6.6 6.6 6.5 7.8 6.0

Disease, pharmacology 5.6 6.0 6.0 6.6 5.2

Disease, treatment 8.2 5.6 6.5 6.7 7.3

Experimental design, normal mapping 7.6 8.0 7.2 5.9 8.0

Gender 5.8 4.0 – – –

Language 9.1 9.9 8.1 7.1 7.9

Learning 7.6 8.5 7.6 7.0 9.6

Normal mapping 9.7 9.7 9.9 9.7 9.5

Other 8.1 7.9 7.8 8.2 7.9

Pharmacology 8.4 8.8 9.5 8.4 7.7
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considering the poor fit provided by the zero-truncated
Poisson model.

APPENDIX C: NEGATIVE BINOMIAL AND
DELAPORTE PARAMETER ESTIMATES

In this section, we present the parameter estimates
obtained from the analysis of BrainMap subsamples A to
E with the simple (without covariates) zero-truncated
Negative Binomial and Delaporte models. The parameter
estimates are listed in Table C1.

FIGURE B1 BrainMap results for

five random samples using the zero-

truncated Poisson distribution. The first

five plots show observed count data

(gray bars) with fit of full (nontruncated)

distribution based on zero-truncated

data, including the estimate of p0 (over

black bar). Final plot shows estimates of

pz, prevalence of file drawer experiments

for every 100 experiments observed. All

fitted values include 95% bootstrap

confidence intervals. The Poisson model

provides a poor fit to all five subsamples

[Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE C1 Scalar parameter estimates obtained when fitting

the simple zero-truncated Negative Binomial and Delaporte models

to BrainMap subsamples A to E

Negative Binomial Delaporte

Subsample μ ϕ μ σ ν

A 7.95 0.96 8.05 0.96 0.014

B 7.95 0.92 8.24 0.98 0.060

C 8.04 0.95 8.28 0.98 0.043

D 8.03 0.93 8.35 1.01 0.070

E 7.82 0.92 8.06 0.96 0.048
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