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Abstract

Aim: To predict end-stage renal disease (ESRD) in patients with type 2 diabetes by

using machine-learning models with multiple baseline demographic and clinical

characteristics.

Materials and methods: In total, 11 789 patients with type 2 diabetes and nephropa-

thy from three clinical trials, RENAAL (n = 1513), IDNT (n = 1715) and ALTITUDE

(n = 8561), were used in this study. Eighteen baseline demographic and clinical char-

acteristics were used as predictors to train machine-learning models to predict ESRD

(doubling of serum creatinine and/or ESRD). We used the area under the receiver

operator curve (AUC) to assess the prediction performance of models and compared

this with traditional Cox proportional hazard regression and kidney failure risk equa-

tion models.

Results: The feed forward neural network model predicted ESRD with an AUC of

0.82 (0.76-0.87), 0.81 (0.75-0.86) and 0.84 (0.79-0.90) in the RENAAL, IDNT and

ALTITUDE trials, respectively. The feed forward neural network model selected uri-

nary albumin to creatinine ratio, serum albumin, uric acid and serum creatinine as

important predictors and obtained a state-of-the-art performance for predicting

long-term ESRD.

Conclusions: Despite large inter-patient variability, non-linear machine-learning models

can be used to predict long-term ESRD in patients with type 2 diabetes and nephropa-

thy using baseline demographic and clinical characteristics. The proposed method has

the potential to create accurate and multiple outcome prediction automated models to

identify high-risk patients who could benefit from therapy in clinical practice.

K E YWORD S

clinical trial, cohort study, diabetes complications, diabetic nephropathy, type 2 diabetes

* Funding information

Innovative Medicines Initiative 2 Joint Undertaking, Grant/Award Number: 115974.

Received: 4 June 2020 Revised: 18 August 2020 Accepted: 23 August 2020

DOI: 10.1111/dom.14178

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

Diabetes Obes Metab. 2020;22:2479–2486. wileyonlinelibrary.com/journal/dom 2479

https://orcid.org/0000-0002-6409-4101
https://orcid.org/0000-0003-3340-2893
https://orcid.org/0000-0002-3126-3730
mailto:sbn1984@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/dom


1 | INTRODUCTION

Diabetic kidney disease (DKD) is the leading cause of end-stage renal

disease (ESRD).1 Blood pressure lowering with angiotensin-

converting enzyme inhibitors (ACEis) and angiotensin receptor

blockers (ARBs) are guideline-recommended treatment to slow down

the progression of DKD.2–4 However, individual patients show a large

variation in disease progression that is probably attributable to the

complex heterogenous nature of the disease. There is a need for a

robust and efficient tool to identify patients at the highest risk of

developing ESRD and those who require stringent monitoring and

treatment intensification.

In current practice, albuminuria5 and estimated glomerular filtra-

tion rate (eGFR)6 are the main predictors of progression of DKD.

However, a recent study suggests that the margin of error for all

eGFR formulae is high, thus making it a less reliable tool with which to

assess overall renal function.7 The primary reason is that the coeffi-

cients used in current eGFR formulae are population-based and are

less efficient at an individual level. Various renal risk scores have been

developed using traditional epidemiological tools (Cox regression or

logistic regression) for predicting ESRD.8,9 The last decade has seen a

major rise in computational processes for predictive analytics using

machine-learning techniques. Unlike traditional statistical approaches

where preselected clinical characteristics are used in prediction,

machine-learning techniques can automatically identify important

characteristics to predict ESRD. Several methods have already been

developed to predict ESRD from electronic health records using

machine-learning techniques.10–15 However, these methods use

observational data and lack external validation: models trained and

validated within the same dataset are unlikely to generalize well

because of patient heterogenity and demographic differences.16

In this study, we developed and validated a machine-learning

framework to predict long-term ESRD in patients with type 2 diabetes

and nephropathy using the baseline clinical characteristics of 11 789

patients who had participated in clinical trials. We hypothesized that

including several baseline clinical characteristics in a machine-learning

model can accurately identify patients at high risk of developing

ESRD. We specifically used clinical trial data to train and validate our

models so as to benefit from (a) rigorous data and endpoint collection

through independent adjudication committees using rigorous defini-

tions and procedures, (b) central laboratory measurements minimizing

inter-laboratory assay variability, and (c) international reach, which

increases the generalizability to various populations. We externally

validated the performance of the machine-learning models to address

the problem of inter-patient variability.

2 | MATERIALS AND METHODS

2.1 | Study population

For the present study, we used data from three clinical trials, namely,

RENAAL (n = 1513), IDNT (n = 1715) and ALTITUDE (n = 8561).

The detailed design, rationale and study outcomes for these trials

have been published.2,3,17 In RENAAL and IDNT, the effect of two

ARBs, losartan and irbesartan, upon renal outcomes was investigated.

Inclusion criteria in RENAAL and IDNT were similar, with only minor

differences. Patients with type 2 diabetes, hypertension and nephrop-

athy aged 30-70 years were eligible for both trials. Serum creatinine

levels ranged between 1.0 and 3.0 mg/dL. All patients had proteinuria,

defined as a urinary albumin to creatinine ratio (UACR) of more than

300 mg/g based on single first morning void or a 24-hour urinary pro-

tein excretion of more than 500 mg/day in the RENAAL trial and more

than 900 mg/day in the IDNT trial. In both trials eGFR was calculated

using the Modification of Diet in Renal Disease Study formula.18

Exclusion criteria for both trials were type 1 diabetes or non-diabetic

renal disease.

Patients in the RENAAL trial were randomly allocated to treat-

ment with losartan 100 mg/day or matched placebo. Patients in the

IDNT trial were randomly allocated to treatment with irbesartan

300 mg/day or matched placebo. The IDNT trial additionally included

a calcium channel blocker treatment arm (amlodipine 10 mg/day). The

trials were designed to keep the dose of the ARB stable during

follow-up. Additional antihypertensive agents (other than ACEis or

ARBs in RENAAL, or ACEis, ARBs or calcium channel blockers in

IDNT) were allowed during the trial to achieve the target level of

135/85 mmHg or less for RENAAL or 140/90 mmHg or less

for IDNT.

In the ALTITUDE trial, 8561 type 2 diabetes patients with a high

risk of renal and cardiovascular events from 854 centres in 36 coun-

tries were included. Patients were randomly allocated to treatment

with aliskiren 300 mg/day or matched placebo. The median follow-up

duration was 32.9 months. Patients with UACR ≥200 mg/g, eGFR

≥30 and ≤60 mL/min/1.73m2, or a history of cardiovascular disease,

were included in the trial.

All trials were approved by local medical ethics committees and

conducted according to the guidelines of the declaration of Helsinki.

2.2 | Clinical variables

Eighteen baseline clinical variables were used as predictors to train

the models: age, sex, body mass index (BMI), smoking status, diastolic

blood pressure (DBP), systolic blood pressure (SBP), serum creatinine,

serum potassium, haemoglobin, HbA1c, serum albumin, serum cal-

cium, phosphorous, serum uric acid, high-density lipoprotein (HDL),

low-density lipoprotein (LDL), UACR and a history of cardiovascular

diseases. Each trial measured all serum and urine samples in a central

laboratory. It should be noted that although we did not use eGFR

directly as an input variable to the machine-learning model, we did

use all the variables which are used for eGFR calculations, that

is, serum creatinine, age and sex in the machine-learning model.

In this way, the machine-learning model identifies a non-linear

relationship between these variables and other variables for predicting

ESRD, instead of a linear relationship as used in traditional eGFR

calculations.
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2.3 | Clinical outcomes

For all trials, the primary renal endpoint was a composite of ESRD,

defined as chronic dialysis or renal transplantation, or a confirmed

doubling of serum creatinine from baseline. All renal endpoints were

adjudicated by a blinded independent endpoint committee using rigor-

ous guidelines and definitions.

2.4 | Performance evaluation metric

We used the area under the receiver operator characteristic curve

(AUC) as the metric to evaluate the performance of the model. AUC = 1

indicates that the model can accurately distinguish between high- and

low-risk patients; AUC = 0.5 indicates that the modelʼs performance

is equivalent to random chance performance. In addition, we also esti-

mated the following performance measures for all models:

Precision=
TP

TP+FP
,Recall=

TP
TP+FN

,andF−score=2×
precision× recall
precision + recall

,

where true positive (TP) is the number of correctly classified patients

with ESRD, false positive (FP) is the number of incorrectly classified

patients with ESRD and false negative (FN) is the number of incor-

rectly classified patients without ESRD. Similar to the AUC, precision,

recall and F-score values of 1.0 indicate accurate classification. In

addition, we also obtained calibration points of the best performing

models to assess the relationship between predicted probabilities and

the observed ESRD outcomes.19

Statistical significance was obtained using a paired t-test on the

probability output of the prediction models. A P-value of less than .05

was considered significant.

2.5 | Statistical analysis

The architecture of the proposed machine-learning–based ESRD pre-

diction system is shown in Figure 1. First, we used the k-nearest

neighbour algorithm20 to impute missing variables in both the training

and testing sets. The percentage number of variables imputed using

this technique is summarized in Table S1. Because the training dataset

consisted of an unequal number of patients from two groups (with

and without an event), a class imbalance problem is created, which

could severely bias the performance of the system. Because of this,

we created a balanced training set by using the Synthetic Minority

Oversampling Technique (SMOTE) algorithm.21 Variables in the train-

ing set were standardized by subtracting the mean and dividing by the

standard deviation to calculate the unit mean and standard deviation.

Testing set variables were standardized with respect to the mean and

the standard deviation of the training set. We then performed 5-fold

cross-validation within the training set (80% subset for training the

model and the remaining unseen 20% subset for validation) to identify

the optimal combination of variables (feature selection), using an

elastic-net regularization algorithm to tune the hyperparameters of

the machine-learning models (Table S2).

Because five different classification models were obtained as a

result of 5-fold cross-validation, we repeated this process 1000 times

to obtain 5000 models (1000 iterations of 5-fold cross-validation).

Because different classification models are obtained for every hyper-

parameter combination and during every training fold, the model

which provided the highest AUC on the validation set was used as the

final model and was trained on all of the training data. The final

trained optimal model was then used to estimate the probability of

ESRD for each patient in the testing set. Through this process, we

obtained an almost unbiased estimate of the classification model as

only training data were used for optimizing classifier models, which

are completely independent of the testing set.

We compared the performance of four classical machine-learning

algorithms: logistic regression, a support vector machine with Gauss-

ian kernel, and random forest and feed forward neural networks

(FNN) to predict ESRD. We performed the following experiments to

evaluate the performance of our models: train on RENAAL + IDNT,

test on ALTITUDE; train on RENAAL + ALTITUDE, test on IDNT; and

train on IDNT + ALTITUDE, test on RENAAL. In all experiments, we

combined data from two clinical trials and tested on the third clinical

trial so as to include a large number of patients with ESRD for training

F IGURE 1 Architecture of the proposed ESRD prediction system. Rigorous cross-validation was performed to identify optimal model to
predict renal risk in the testing set. CV, cross-validation; ESRD, end-stage renal disease; k-NN, k nearest neighbour; SMOTE, synthetic minority
oversampling technique
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the model. We also compared the performance of machine-learning

models with traditional Cox proportional hazards regression and kid-

ney failure risk equation (KFRE) models.9 In the KFRE model, we used

age, sex, UACR, eGFR, bicarbonate, phosphorus, albumin and calcium

variables to estimate the ESRD probability. Because bicarbonate was

not present in the ALTITUDE data, we did not estimate KFRE ESRD

probability in those data.

All of the coding and analysis were performed using MATLAB

2018a scripting language (MathWorks, Natick, MA, USA). All results

are reported as mean (95% confidence interval [CI]) unless stated

otherwise. We used bootstrapping with 1000 samplings to estimate

95% CI. Paired t-test was used to estimate statistical significance.

3 | RESULTS

In total, there were 489, 283 and 508 patients with ESRD in the

RENAAL (median follow-up of 3.7 years), IDNT (median follow-up of

2.6 years) and ALTITUDE (median follow-up of 2.7 years) trials,

respectively. Figure 2 illustrates the performance of individual clinical

variables for ESRD prediction. UACR had the highest prediction per-

formance in RENAAL (AUC = 0.72 [0.69-0.74]) and IDNT (AUC = 0.65

[0.63-0.67]). In ALTITUDE, UACR (AUC = 0.77 [0.74-0.79]) and

haemoglobin (AUC = 0.77 [0.72-0.80]) provided the best prediction

performance compared with other variables.

Table 1 summarizes the prediction performance of the proposed

approach using machine-learning models for all training–testing com-

binations. The performance of the FNN model (single layer,

50 neurons, activation function = sigmoid, loss function = binary cross

entropy, regularization parameter = 0.0001, solver = adam, learning

rate = 0.01) outperformed the other machine-learning models and

achieved the highest AUC of 0.82 (0.76-0.87), 0.81 (0.75-0.86) and

0.84 (0.79-0.90) for predicting ESRD in RENAAL, IDNT and ALTI-

TUDE, respectively. The performance of the FNN model was signifi-

cantly better (P-value <.05) than the traditional Cox regression and

KFRE models in all three datasets. Additional performance metrics are

provided in Table S3. The distribution of ESRD probability in individ-

uals with and without an ESRD event predicted by the FNN and Cox

models is shown in Figure 3. We set a probability threshold of .5 for

equal weightage for the two groups and estimated the mean Euclid-

ean distance22 between the probability scores of less than .5 (without

ESRD) and probability scores of .5 or higher (with ESRD). The separa-

tion of predicted probabilities between two groups using FNN

(Euclidean distance: RENAAL = 0.66, IDNT = 0.68) was higher com-

pared with that of KFRE (Euclidean distance: RENAAL = 0.49,

IDNT = 0.52). Figure 4 compares the calibration plots of FNN and

KFRE. The calibration plot of FNN more closely follows the diagonal

line compared with the KFRE in both RENAAL and IDNT. However,

there was no significant difference between the calibration plots of

FNN and KFRE (P-value = .1 and .2 for RENAAL and IDNT,

respectively).

Figure S1 shows the heatmap of variables selected by the elastic-

net regularization algorithm. Different numbers of variables were

selected by the algorithm for different training and validation steps, and

in total seven (age, UACR, serum albumin, serum uric acid, haemoglobin,

SBP and serum creatinine), eight (age, UACR, serum albumin,

F IGURE 2 The distribution of AUC (mean [95% CI]) to predict ESRD using individual variables in all three clinical trials. Solid vertical black line
corresponds to the mean AUC and rectangular box represents the standard deviation. Albumin, serum albumin; ACR, urine albumin-creatinine
ratio; AUC, area under the receiver operator characteristic curve; BMI, body mass index; CVD, history of cardiovascular diseases; DBP, diastolic
blood pressure; Hb, haemoglobin; Phos, phosphorous; SBP, systolic blood pressure; Scr, serum creatinine; smoking, current/past smoker;
SP, serum potassium; UA, serum uric acid

2482 BELUR NAGARAJ ET AL.



phosphorous, serum uric acid, haemoglobin, SBP and serum creatinine)

and five (UACR, serum albumin, phosphorous, haemoglobin and serum

creatinine) variables were selected when the algorithm was trained on

RENAAL + IDNT, RENAAL + ALTITUDE and IDNT + ALTITUDE,

respectively. UACR, serum albumin, serum uric acid and serum creati-

nine were selected as important predictive variables (normalized weight

>0.3) in all three training combinations (the normalized weight of >0.3

was used as per the convention of important interpretation).

To evaluate the impact of treatment assignment to placebo or

active intervention, we tested the performance of the FNN model

separately on placebo and treatment arms. Table S4 summarizes the

prediction performance. There was no significant difference (P-value

>.05) in the final prediction performance of the FNN model

irrespective of treatment assignment.

To evaluate how much internal cross-validation biases the perfor-

mance of the machine-learning models when compared with external

TABLE 1 Comparison of renal risk prediction performance (mean AUC [95% CI]) using classical machine-learning algorithms for different
datasets. The feed-forward neural network model significantly outperformed other machine-learning and traditional techniques using baseline
clinical variables. Because of the unavailability of serum bicarbonate, we could not predict renal risk using KFRE model in the ALTITUDE trial.
The performance of the feed forward neural network model was significantly better than the cox proportional hazard regression (P-value = .007,
.006 and .01) and KFRE (P-value = .001, .003 and NA) models for RENAAL, IDNT and ALTITUDE, respectively

Classifier
Testing data

RENAAL IDNT ALTITUDE

Logistic regression 0.77 (0.72-0.82) 0.76 (0.68-0.81) 0.78 (0.74-0.85)

Support vector machine 0.78 (0.71-0.85) 0.78 (0.70-0.83) 0.81 (0.71-0.85)

Random forest 0.80 (0.72-0.86) 0.79 (0.71-0.83) 0.82 (0.71-0.89)

Feed-forward neural network 0.82 (0.76-0.87) 0.81 (0.75-0.86) 0.84 (0.79-0.90)

Cox proportional hazard regression 0.74 (0.73-0.75) 0.74 (0.73-0.75) 0.78 (0.77-0.79)

KFRE model 0.77 (0.74-0.79) 0.76 (0.73-0.79) NA

F IGURE 3 Plot showing the distribution of the predicted ESRD risk probability in patients with and without ESRD events for all three clinical
trials. Jittering was performed for the ESRD event for better visualization. The best performing machine-learning model (FNN) is compared with
the best performing traditional KFRE model. To quantify the separation between two clusters, we estimated the mean Euclidean distance
between the probability scores <0.5 (without ESRD) and probability scores ≥0.5 (with ESRD). The mean Euclidean distance for FNN and KFRE
models were 0.66 and 0.5, respectively. ESRD, end-stage renal disease; FNN, feed-forward neural network; KFRE, kidney failure risk equation
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validation, we pooled RENAAL, IDNT and ALTITUDE trial data and

performed 10-fold cross-validation using the pooled dataset. The

FNN model resulted in an overall AUC of 0.90 (0.85-0.93), which was

much better than the AUC obtained during external validation. This

increase in the prediction performance was caused by the random

inclusion of few patients from the testing set during the model train-

ing process, which can severely bias the prediction performance.

4 | DISCUSSION

We present a framework to assess and compare the performance of

various machine-learning techniques to predict long-term ESRD risk

using baseline information. The FNN-based ESRD prediction model

showed good prediction ability (AUCs greater than 0.8 in three clinical

trials) and outperformed other machine-learning and traditional risk

prediction models that were validated in the same dataset. Accord-

ingly, the FNN model accurately identified high-risk patients who

could benefit from therapy using baseline clinical information. The

consistent performance of the FNN model in three clinical trials sug-

gests that the proposed framework avoids model overfitting and will

probably generalize well on the new dataset. Such a model can also

be used as an early prediction tool to identify patients who could ben-

efit from intensified therapy in clinical practice.

The findings of this study have four important implications. First,

we show that individual clinical variables are not sufficient to accu-

rately predict long-term ESRD outcomes. Second, machine-learning

techniques incorporating multiple clinical variables can predict ESRD

much better than the existing traditional logistic or Cox regression

methods, or better than the KFRE renal risk score. Third, UACR, serum

albumin, serum uric acid and serum creatinine were selected by the

elastic net regularization technique in all three clinical trials, making

them important biomarkers to predict ESRD. Fourth, machine-learning

algorithms were not sensitive whether the patient was treated with

placebo or ARBs, suggesting that the developed algorithm can be used

for predicting ESRD for any individual regardless of the renin-angio-

tensin-aldosterone system intervention background medication.

The machine-learning framework developed in this study has sev-

eral advantages. First, it uses a data-driven approach to identify multi-

ple (and novel) risk markers associated with ESRD instead of the

traditional hypothesis-driven approach. Second, it can be used as a

personalized ESRD monitoring tool where the machine-learning model

is repeatedly retrained with the new clinical assessments at different

time points, thus calibrating it for the underlying patient. Third, the

framework can also be used as a screening tool for patient inclusion/

exclusion in clinical trials. Enriching trials with patients with a high

probability of developing long-term ESRD can reduce sample size

requirements and lead to shorter, more efficient, clinical trials.

Although several machine-learning–based methods have already

been developed to predict renal diseases in individuals with CKD,10–14

a fair comparison is difficult because of (a) variability within datasets,

(b) methodological differences to develop prediction models and

(c) external validation. Differences in datasets can be attributed to the

heterogeneity of disease severity and drug response, either from obser-

vational studies or clinical trials. Methodological differences can arise

because of improper tuning of machine-learning hyperparameters,

which can severely bias the prediction performance. Hyperparameter

tuning is essential for robust and stable performance of the machine-

learning model and we achieved this by performing an exhaustive grid

search over a wide range of hyperparameters using only training data,

which resulted in a consistent performance (AUC > 0.8) when validated

in all three clinical trials. Our results also confirm the importance of

external validation of the prediction model compared with cross-

validation within the same dataset, which can result in optimistic per-

formance. This kind of external validation is important to evaluate the

robustness and generalizability of the model when used for prediction

on a new dataset. We recommend using internal cross-validation for

model development and external validation for evaluating the stability

of the prediction performance of the model.

Despite obtaining good ESRD prediction using machine-learning

algorithms, there are several limitations to our study. First, a sample

F IGURE 4 Risk calibration
plots for FNN and KFRE models
to predict ESRD events in
RENAAL and IDNT trials. The
calibration plot of FNN model is
closer to the identity (or diagonal)
when compared with the KFRE
model. ESRD, end-stage renal
disease; FNN, feed-forward

neural network; KFRE, kidney
failure risk equation
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size of 11 789 patients may not be sufficient to capture the large het-

erogeneity of disease severity seen in patients. Second, we used data

from clinical trials, which is both a strength of and a limitation to our

study. It represented a strength because of minimal variability in the

clinical measurements, random assignment of patients to the treat-

ment, timely assessment of endpoints, and inclusion of patients from

multiple countries and centres capturing demographic heterogeneity.

However, this was also a limitation because the developed machine-

learning model does not take into account the variability in medication

adherence which is commonly seen in observational data. Third, the

machine-learning model did not achieve perfect prediction perfor-

mance (i.e. AUC = 1.0). We hypothesize that further improvements

can be obtained by including (a) additional molecular and cellular bio-

markers and (b) increasing the overall sample size for training the FNN

model. Fourth, these data are only analysed in a clinical trial setting.

Validating the algorithms in a real-world setting should be addressed

in future to determine the true generalizabilty to a non-clinical trial,

type 2 diabetes general population.

In conclusion, we evaluated the performance of several machine-

learning algorithms using baseline demographic and clinical variables

for predicting the ESRD in individual patients with type 2 diabetes

and nephropathy. The performance of the FNN model was superior

compared with other machine-learning models. The findings of this

study pave the way to develop accurate and stable next-generation

machine-learning–based ESRD prediction systems for clinical practice

to identify high-risk patients who could benefit from therapy.
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