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ABSTRACT 

 

Aims: Predicting long-term renal risk in patients with type 2 diabetes is of importance in clinical 

practice and clinical trials. We hypothesize that by using multiple baseline demographic and 

clinical characteristics, machine learning models can accurately predict end-stage renal disease 

(ESRD).  

Materials and methods: In total 11789 patients from three clinical trials: RENAAL (𝑁𝑁 = 

1513), IDNT (𝑁𝑁 = 1715), and ALTITUDE (𝑁𝑁 = 8561) with type 2 diabetes and nephropathy 

were used in this study. Eighteen baseline demographic and clinical characteristics were used 

as predictors to train machine learning models to predict ESRD (doubling of serum creatinine 

and/or end-stage renal disease). We used the area under the receiver operator curve (AUC) to 

assess the prediction performance of models and compared against traditional Cox proportional 

hazard regression and kidney failure risk equation models.  

Results: The feed forward neural network model predicted ESRD with an AUC of 0.82 (0.76-

0.87), 0.81 (0.75-0.86), and 0.84 (0.79 – 0.90) in RENAAL, IDNT and ALTITUDE, 
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respectively. The feed forward neural network model selected UACR, serum albumin, uric acid 

and serum creatinine as important predictors and obtained the state-of-the-art performance to 

predict the long-term ESRD. 

Conclusions: Despite large inter-patient variability, nonlinear machine learning models can be 

used to predict long term ESRD in patients with type 2 diabetes and nephropathy using baseline 

demographic and clinical characteristics. The proposed method offers a potential to create 

accurate and multiple outcome prediction automated models to identify high-risk patients who 

could benefit from therapy in clinical practice.  

 

 

INTRODUCTION 

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) 

1 . Blood pressure lowering with angiotensin-converting enzyme inhibitors (ACEi) and 

angiotensin receptor blockers (ARB) are guideline recommended treatment to slow down the 

progression of diabetic kidney disease 2–4. However, individual patients show a large variation 

in disease progression likely due to the complex heterogenous nature of the disease. There is a 

need for a robust and efficient tool to identify patients at highest risk for developing ESRD and 

who require stringent monitoring and treatment intensification. 

In current practice, albuminuria 5 and eGFR6 are the main predictors of progression of 

diabetic kidney disease. However, a recent study suggests that the margin of error for all eGFR 

formulae is high, thus making it a less reliable tool to access overall renal function 7. The 

primary reason is that the coefficients used in current eGFR formulae are population-based and 
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are less efficient at an individual level. Various renal risk scores have been developed using 

traditional epidemiological tools (Cox regression or logistic regression) for predicting ESRD 

8,9. The past decade has seen a boom in computational processes for predictive analytics using 

machine learning techniques. Unlike traditional statistical approaches where pre-selected 

clinical characteristics are used in prediction, machine learning techniques can automatically 

identify important characteristics to predict ESRD. Several methods have already been 

developed to predict ESRD from electronic health records using machine learning techniques 

10–15. However, these methods use observational data and lack external validation: models were 

trained and validated within the same dataset and are not likely to generalize well due to patient 

heterogenity and demographic differences 16.  

 In this work, we developed and validated a machine learning framework to predict long 

term ESRD in patients with type 2 diabetes and nephropathy using baseline clinical 

characteristics of 11,789 patients participating in past clinical trials. We hypothesized that 

including several baseline clinical characteristics in a machine learning model can accurately 

identify patients at high risk to develop ESRD. We specifically used clinical trial data to train 

and validate our models as it benefits from (i) rigorous data and endpoint collection through 

independent adjudication committees using rigorous definitions and procedures; (ii) central 

laboratory measurements minimizing inter-laboratory assay variability; and (iii) international 

reach which increases generalizability to various populations. We externally validated the 

performance of the machine learning models to address the problem of inter-patient variability.  

 

MATERIALS AND METHODS 
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Study population 

For the present study, we used data from three clinical trials: RENAAL (N=1513), IDNT 

(N=1715), and ALTITUDE (N=8561). The detailed design, rationale, and study outcomes for 

these trials have been previously published 2,3,17. In RENAAL and IDNT,  the effect of 

angiotensin receptor blockers; losartan and irbesartan, respectively, on renal outcomes were 

investigated. Inclusion criteria in RENAAL and IDNT were similar with only minor 

differences. Patients with type 2 diabetes, hypertension, and nephropathy aged 30-70 years were 

eligible for both trials. Serum creatinine levels ranged between 1.0 mg/dL and 3.0 mg/dL. All 

patients had proteinuria, defined as a urinary albumin to creatinine ratio (UACR) of >300 mg/g 

based on single first morning void or a 24-hour urinary protein excretion of >500mg/day in the 

RENAAL trial and >900 mg/day in the IDNT trial. In both trials the glomerular filtration rate 

was estimated (eGFR) using the Modification of Diet in Renal Disease (MDRD) Study formula 

18. Exclusion criteria for both trials were type 1 diabetes or non-diabetic renal disease.  

 Patients in the RENAAL trial were randomly allocated to treatment with losartan 100 

mg/day or matched placebo. Patients in the IDNT trial were randomly allocated to treatment 

with irbesartan 300 mg/day or matched placebo. The IDNT trial additionally included a calcium 

channel blocker treatment arm (amlodipine 10 mg/day). The trials were designed to keep the 

dose of the ARB stable during follow-up. Additional antihypertensive agents (other than ACEi 

or ARB in RENAAL, and ACEi, ARB, or calcium channel blockers in IDNT) were allowed 

during the trial to achieve the target level of 135/85 mm Hg or less for RENAAL or 140/90 mm 

Hg or less for IDNT. 

 In the ALTITUDE trial, 8561 type 2 diabetes patients with a high risk of renal and 
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cardiovascular events from 854 centers in 36 countries were included. Patients were randomly 

allocated to treatment with aliskiren 300 mg/day or matched placebo. The median follow-up 

duration was 32.9 months. Patients with UACR ≥200 mg/g, eGFR ≥30 and ≤ 60 ml/min/1.73 

m2, or a history of cardiovascular disease were included in the trial. 

 All trials were approved by local medical ethics committees and conducted according 

to the guidelines of the declaration of Helsinki. 

 

Clinical variables 

Eighteen baseline clinical variables were used as predictors to train the models: age, sex, 

body mass index (BMI), smoking status, diastolic blood pressure (DBP), systolic blood pressure 

(SBP), serum creatinine, serum potassium, haemoglobin, glycated hemoglobin (HbA1c), serum 

albumin, serum calcium, phosphorous, serum uric acid, high-density lipoprotein (HDL), low-

density lipoprotein (LDL), UACR , and history of carviovascular diseases. Each trial measured 

all serum and urine samples in a central laboratory. It should be noted that though we did not 

use eGFR directly as an input variable to the machine learning model, we used all variables that 

is used for eGFR calculation: serum creatinine, age and sex in the machine learning model. By 

this way, the ML model identifies non-linear relationship between these variables with other 

variables for ESRD prediction instead of linear relationship used in traditional eGFR 

calculations. 

Clinical Outcomes 

For all trials, the primary renal endpoint was a composite of ESRD, defined as chronic 

dialysis or renal transplantation, or a confirmed doubling of serum creatinine from baseline. All 
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renal endpoints were adjudicated by a blinded independent endpoint committee using rigorous 

guidelines and definitions.  

 

Performance evaluation metric 

 We used the area under the receiver operator characteristic curve (AUC) as the metric 

to evaluate the performance of the model. AUC = 1 indicates that the model can accurately 

distinguish between high and low risk patients; AUC = 0.5 indicates that the model’s 

performance is equivalent to random chance performance. In addition, we also estimated the 

following performance measures for all models: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = TP
TP+FP

, 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = TP
TP+FN

, and 𝐹𝐹 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2 × precision×recall
precision+recall

, 

where TP (true positive) = number of correctly classified patients with ESRD, FP (false 

positive) = number of incorrectly classified patients with ESRD, and FN (false negative) = 

number of incorrectly classified patients without ESRD. Similar to the AUC, precision, recall 

and F-score values of 1.0 indicates accurate classification. In addition, we also obtained 

calibration plots of best performing models to assess the relationship between predicted 

probabilities and the observed ESRD outcomes 19. 

Statistical significance was obtained using a paired t-test on the probability output of the 

prediction models. A p-value < 0.05 was considered as significant. 

 

Statistical Analysis 

 The architecture of the proposed machine learning based ESRD prediction system is 

shown in figure 1. First, we used the k-nearest neighbor algorithm 20 to impute missing variables 
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in both training and testing sets. The percentage number of variables imputed using this 

technique is summarized in supplementary table 1. Since the training dataset consisted of 

unequal number of patients from two groups (with and without an event), a class imbalance 

problem is created which could severely bias the performance of the system.  Due to this, we 

created a balanced training set by using Synthetic Minority Over-sampling Technique 

(SMOTE) algorithm 21. Variables in the training set were standardized by subtracting the mean 

and dividing by the standard deviation to have unit mean and standard deviation. Testing set 

variables were standardized with respect to the mean and standard deviation of the training set. 

We then performed 5-fold cross-validation within the training set (80% subset for training the 

model and the remaining unseen 20% subset for validation) to identify the optimal combination 

of variables (feature selection) using elastic-net regularization algorithm and tune 

hyperparameters of the machine learning models (see supplementary table 2).  

 Since five different classification models were obtained due to 5-fold cross-validation, 

we repeated this process 1000 times to obtain 5000 models (1000 iterations of 5-fold cross-

validation). Since different classification models are obtained for every hyperparameter 

combination and during every training fold, the model that provided the highest AUC on the 

validation set was used as the final model and was trained on all of the training data. The final 

trained optimal model was then used to estimate the probability of ESRD for each patient in the 

testing set. Through this process, we obtained nearly an unbiased estimate of the classification 

model since only training data was used for optimizing classifier models which are completely 

independent of the testing set. 
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 We compared the performance of four classical machine learning algorithms: logistic 

regression, support vector machine with Gaussian kernel, random forest, and feed forward 

neural networks to predict ESRD. We performed following experiments to evaluate the 

performance of our models: train on RENAAL + IDNT, test on ALTITUDE; train on RENAAL 

+ ALTITUDE, test on IDNT; and train on IDNT + ALTITUDE, test on RENAAL. In all 

experiments, we combined data from two clinical trials and tested on the third clinical trial to 

include a large number of patients with ESRD for training the model. We also compared the 

performance of machine learning models with the traditional Cox proportional hazards 

regression and Kidney Failure Risk Equation models (KFRE) 9. In the KFRE model, we use 

age, sex, UACR, eGFR, bicarbonate, phosphorus, albumin and calcium variables to estimate 

the ESRD probability. Since bicarbonate was not present in the ALTITUDE data, we did not 

estimate KFRE ESRD probability in these data.  

          All of the coding and analysis were performed using the MATLAB 2018a scripting 

language (Natick, MA, USA). All results are reported as mean (95% confidence interval (CI)) 

unless stated otherwise. We used bootstrapping with 1000 samplings to estimate the 95% 

confidence interval. Paired t-test was used to estimate the statistical significance. 

 

RESULTS 

 In total, there were 489, 283, and 508 patients with ESRD in RENAAL (median follow-

up of 3.7 years), IDNT (median follow-up of 2.6 years), and ALTITUDE (median follow-up of 

2.7 years) trials, respectively. Figure 2 illustrates the performance of individual clinical 

variables for ESRD prediction. UACR had the highest prediction performance in RENAAL: 
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AUC = 0.72 (0.69 – 0.74) and IDNT: 0.65 (0.63 – 0.67), respectively. In ALTITUDE, UACR 

(AUC = 0.77 [0.74 – 0.79]) and hemoglobin (AUC = 0.77 [0.72 – 0.80]) provided highest 

prediction performance when compared to other variables.  

 Table 1 summarizes the prediction performance of the proposed approach using 

machine learning models for all training-testing combinations. The performance of the feed 

forward neural networks (FNN) model (single layer, 50 neurons, activation function = sigmoid, 

loss function = binary cross entropy, regularization parameter = 0.0001, solver = adam, learning 

rate = 0.01)  outperformed other machine learning models and achieved the highest AUC of 

0.82 (0.76 – 0.87), 0.81 (0.75 – 0.86), and 0.84 (0.79 – 0.90) for predicting ESRD in 

RENAAL, IDNT, and ALTITUDE respectively. The performance of the FNN model was 

significantly better (p-value < 0.05) than the traditional Cox regression and KFRE models in 

all three datasets. Additional performance metrics are provided in supplementary table 3. The 

distribution of ESRD probability in individuals with and without an ESRD event predicted by 

the FNN and Cox models is shown in figure 3. We set a probability threshold of 0.5 for equal 

weightage for the two groups and estimated the mean Euclidean distance 22 between the 

probability scores < 0.5 (without ESRD) and probability scores ≥ 0.5 (with ESRD). The 

separation of predicted probabilities between two groups using FNN (Euclidean distance: 

RENAAL = 0.66, IDNT = 0.68) was higher when compared to the KFRE (Euclidean distance: 

RENAAL = 0.49, IDNT = 0.52). Figure 4 compares the calibration plots of FNN and KFRE. 

The calibration plot of FNN more closely follows the diagonal line when compared to the KFRE 

in both RENAAL and IDNT.  However, there was no significant difference between the 

calibration plots of FNN and KFRE (p-value = 0.1 and 0.2 for RENAAL and IDNT, 
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respectively). 

 Supplementary figure 1 shows the heatmap of variables selected by the elastic-net 

regularization algorithm. Different number of variables were selected by the algorithm for 

different training and validation steps, and in total 7 (age, UACR, serum albumin, serum uric 

acid, haemoglobin, SBP and serum creatinine), 8 (age, UACR, serum albumin, phosphorous, 

serum uric acid, haemoglobin, SBP and serum creatinine), and 5 (UACR, serum albumin, 

phosphorous, haemoglobin and serum creatinine) variables were selected when the algorithm 

was trained on RENAAL + IDNT, RENAAL + ALTITUDE, and IDNT + ALTITUDE, 

respectively.  UACR, serum albumin, serum uric acid and serum creatinine were selected as 

important predictive variables (normalized weight > 0.3) in all three training combinations (the 

normalized weight > 0.3 was used a convention the importance interpretation). 

 To evaluate the impact of treatment assignment to placebo or active intervention, we 

tested the performance of the FNN model separately on placebo and treatment arms. 

Supplementary table 4 summarizes the prediction performance. There was no significant 

difference (p-value > 0.05) in the final prediction performance of the FNN model irrespective 

of treatment assignment. 

 To evaluate how much internal cross-validation biases the performance of the machine 

learning models when compared to external validation, we pooled RENAAL, IDNT and 

ALTITUDE trial data and performed 10-fold cross-validation using the pooled dataset. The 

FNN model resulted in an overall AUC of 0.90 (0.85 – 0.93), much better than the AUC 

obtained during external validation. This increase in the prediction performance was due to the 

random inclusion of few patients from the testing set during model training process which can 
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severely bias the prediction performance. 

 

DISCUSSION 

 We present a framework to assess and compare the performance of various machine 

learning techniques to predict long term ESRD risk using baseline information. The FNN based 

ESRD prediction model demonstrated good prediction ability (AUC’s > 0.8 in three clinical 

trials) and outperformed other machine learning and traditional risk prediction models which 

were validated in the same dataset. Accordingly, the FNN  model accurately identified high-

risk patients who could benefit from therapy using baseline clinical information. The consistent 

performance of the FNN model in three clinical trials suggests that the proposed  framework 

avoids model overfitting and is likely to generalize well on the new dataset. Such a model can 

also be used as a early prediction tool to identify patients who could benefit from intensified 

therapy in clinical practice.  

 Findings of this study have four important implications. First, we demonstrate that 

individual clinical variables are not sufficient to accurately predict long-term ESRD outcome. 

Second, machine learning techniques incorporating multiple clinical variables can predict 

ESRD much better than the existing traditional logistic or Cox regression methods, or better 

than the KFRE renal risk score. Third, UACR, serum albumin, serum uric acid and serum 

creatinine were selected by the elastic net regularization technique in all three clinical trials 

making them important biomarkers to predict ESRD. Fourth, machine learning algorithms are 

not sensitive whether the patient was treated with placebo or ARBs, suggesting that the 

developed algorithm can be used to predict ESRD for any individual regardless of the RAAS 
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intervention background medication. 

 The machine learning framework developed in this study has several advantages. First, 

it uses a data-driven approach to identify multiple (and novel) risk markers associated with 

ESRD instead of the traditional hypothesis driven approach. Second, it can be used as a 

personalized ESRD monitoring tool where the machine learning model is repeatedly retrained 

with the new clinical assessments at different time points, thus calibrating it for the underlying 

patient. Third, the framework can also be used as a screening tool for patient inclusion/exclusion 

in clinical trials. Enriching trials with patients with a high probability of developing long-term 

ESRD can reduce sample size requirements and lead to shorter more efficient clincial trials. 

 Though several machine learning-based methods have already been developed to 

predict individuals’ renal diseases with CKD 10–14, a fair comparison is difficult due to (i) 

variability within datasets, (ii) methodological differences to develop prediction models, and 

(iii) external validation. Differences in datasets can be due to heterogeneity of disease severity 

and drug response either from observational studies or clinical trials. Methodological 

differences can rise due to improper tuning of machine learning hyperparameters which can 

severely bias the prediction performance. Hyperparameter tuning is essential for robust and 

stable performance of the machine learning model and we achieved this by performing 

exhaustive grid search over a broad range of hyperparameters using only training data which 

resulted in a consistent performance (AUC > 0.8) when validated in all three clinical trials. Our 

results also confirm the importance of external validation of the prediction model when 

compared to cross-validation within the same dataset which can result in optimistic 

performance. This kind of external validation is important to evaluate the robustness and 
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generalizability of the model when used for prediction on a new dataset. We recommend using 

internal cross-validation for model development and external validation for evaluating the 

stability of the prediction performance of the model.  

 Despite obtaining good ESRD prediction using machine learning algorithms, there are 

several limitations to our study. Firstly, a sample size of 11,789 patients may not be sufficient 

to capture large heterogenity of disease severity seen in patients. Secondly, we used data from 

clinical trials which is both a strength and a limitation of our study. A strength due to minimal 

variability in the clinical measurements; random assignment of patients to the treatment; timely 

assessment of end points; inclusion of patients from multiple countries and centers capturing 

demographic heterogeneity. A limitation since the developed machine learning model does not 

take into account the variability in medication adherence which are commonly seen in 

observational data. Thirdly, the machine learning model did not achieve perfect prediction 

performance (AUC = 1.0). We hypothesize that further improvements can be obtained by 

including (i) additional molecular and cellular biomarkers, and (ii) increasing the overall sample 

size for training the FNN model. Fourthly, these data are analyzed only in a clinical trial setting. 

Validating the algorithm’s in a real world setting should be addressed in the future in order to 

determine it’s true generalizabilty to a non-clinical trial, type 2 diabetes general population. 

 To conclude, we evaluated the performance of several machine learning algorithms 

using baseline demographic and clinical variables for predicting the ESRD in individual 

patients with type 2 diabetes and nephropathy. The performance of the FNN model was superior 

when compared to other machine learning models. Findings of this study pave the way to 

develop accurate and stable next-generation machine learning based ESRD predicition systems 
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for clinical practice to identify high-risk patients who could benefit from therapy. 
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FIGURE LEGENDS 

 

Figure 1: Architecture of the proposed ESRD prediction system. Rigorous cross-validation was 

performed to identify optimal model to predict renal risk in the testing set. Abbreviations: k-

NN = k nearest neighbor; SMOTE = synthetic minority oversampling technique; CV = cross-
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validation; ESRD = end-stage renal disease. 

 

Figure 2: The distribution of AUC (mean (95% CI)) to predict ESRD using individual variables 

in all three clinical trials. Solid vertical black line corresponds to the mean AUC and rectangular 

box represents the standard deviation. Abbreviations: AUC = area under the receiver operator 

characteristic curve; BMI = body mass index; ACR = urine albumin-creatinine ratio; Albumin 

= serum albumin; Phos = phosphorous;SP = serum potassium; UA = serum uric acid; Scr = 

serum creatinine; DBP = diastolic blood pressure; SBP = systolic blood pressure; Hb = 

hemoglobin;  Smoking = current/past smoker;CVD = history of cardiovascular diseases. 

 

Figure 3: Plot showing the distribution of the predicted ESRD risk probability in patients with 

and without ESRD events for all three clinical trials. Jittering was performed for the ESRD 

event for better visualization.  The best performing machine learning model (FNN) is compared 

with the best performing traditional KFRE model. To quantify the separation between two 

clusters, we estimated the mean Euclidean distance between the probability scores < 0.5 

(without ESRD) and probability scores ≥ 0.5 (with ESRD). The mean Euclidean distance for 

FNN and KFRE models were 0.66 and 0.5, respectively. Abbreviations: ESRD = end-stage 

renal disease; KFRE = Kidney Failure Risk Equation; FNN = Feed-forward neural network. 

 

 

Figure 4: Risk calibration plots for FNN and KFRE models to predict ESRD events in 

RENAAL and IDNT trials. The calibration plot of FNN model is closer to the identity (or 
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diagonal) when compared to the KFRE model. Abbreviations: ESRD = end-stage renal disease; 

KFRE = Kidney Failure Risk Equation; FNN = Feed-forward neural network. 

 

 

Supplementary figure 1: Heatmap illustrating the weights assigned to individual variables by 

the elastic-net regularization algorithm. The color bar indicates weights (normalized to 1 for 

the purpose of illustration) assigned by elastic-net algorithm: higher the intensity more 

predictive is the variable. Variables selected by the EN algorithm are represented by vertical 

bars in blue color. Unselected variables are shown as white bars.  Abbreviations: IA = model 

trained on IDNT +ALTITUDE; RA = model trained on RENAAL +ALTITUDE; RI = model 

trained on RENAAL+ IDNT. 
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Table 1: Comparison of renal risk prediction performance (mean AUC (95% CI)) using 

classical machine learning algorithms for different datasets. The feed-forward neural network 

model significantly outperformed other machine learning and traditional techniques using 

baseline clinical variables. Due to unavailability of serum bicarbonate, we could not predict 

renal risk using KFRE model in the ALTITUDE trial.  The performance of the feed forward 

neural network model was significantly better than the Cox proportional hazard regression (p-

value=0.007, 0.006 and 0.01) and KFRE (p-value=0.001, 0.003, and NA) models for 

RENAAL, IDNT and ALTITUDE, respectively. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Testing data 

 

Classifier 

 

RENAAL IDNT ALTITUDE 

Logistic regression 0.77 

(0.72-0.82) 

0.76 

(0.68-0.81) 

0.78 

(0.74 – 0.85) 

Support vector machine 0.78 

(0.71-0.85) 

0.78 

(0.70-0.83) 

0.81 

(0.71 – 0.85) 

Random forest 0.80 

(0.72-0.86) 

0.79 

(0.71-0.83) 

0.82 

(0.71 – 0.89) 

Feed-forward neural 

network 

0.82 

(0.76-0.87) 

0.81 

(0.75-0.86) 

0.84 

(0.79 – 0.90) 

Cox proportional hazard 

regression 

0.74 

(0.73-0.75) 

0.74 

(0.73-0.75) 

0.78 

(0.77-0.79) 

KFRE model 0.77 

(0.74-0.79) 

0.76 

(0.73-0.79) 

NA 

This article is protected by copyright. All rights reserved.




