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48 ABSTRACT

49 Background: Helicobacter pylori infection leads to regulatory T-cell (Treg) induction in 

50 infected mice, which contributes to H. pylori immune escape. However, the mechanisms 

51 responsible for H. pylori induction of Treg and immune tolerance remain unclear. We 

52 hypothesized DC-produced TGF-β may be responsible for Treg induction and immune tolerance. 

53

54 Materials and Methods: To test this hypothesis, we generated TGF-β∆DC mice (CD11c+ DC-

55 specific TGF-β deletion) and assessed the impact of DC-specific TGF-β deletion on DC function 

56 during Helicobacter infection in vitro and in vivo. To examine the T-cell independent DC 
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57 function, we crossed TGF-β∆DC mice onto Rag1KO background to generate TGF-β∆DCxRag1KO 

58 mice.

59

60 Results: When stimulated with H. pylori, TGF-β∆DC BMDC/splenocyte cocultures showed 

61 increased levels of proinflammatory cytokines and decreased levels of anti-inflammatory 

62 cytokines compared to control, indicating a proinflammatory DC phenotype. Following 6 months 

63 of H. felis infection, TGF-β∆DC mice developed more severe gastritis and a trend towards more 

64 metaplasia compared to TGF-βfl/fl with increased levels of inflammatory Th1 cytokine mRNA 

65 and lower gastric H. felis colonization compared to infected TGF-βfl/fl mice. In a T-cell deficient 

66 background using TGF-β∆DCxRag1KO mice, H. felis colonization was significantly lower when 

67 DC-derived TGF-β was absent, revealing a direct, innate function of DC in controlling H. felis 

68 infection independent of Treg induction. 

69

70 Conclusions: Our findings indicate that DC-derived TGF-β mediates Helicobacter-induced Treg 

71 response and attenuates the inflammatory Th1 response. We also demonstrated a previously 

72 unrecognized innate role of DC controlling Helicobacter colonization via a Treg independent 

73 mechanism. DC TGF-β signaling may represent an important target in the management of H. 

74 pylori.

75

76 Introduction

77 Helicobacter pylori is the most common bacterial infection in humans worldwide and is present 

78 in more than half the world’s population. Infection is more common in developing countries, 

79 affecting up to 80% of individuals, and is thought to be related to poor hygienic conditions1,2. 

80 Interestingly, the prevalence of H. pylori infection is inversely correlated with atopic dermatitis3, 

81 asthma4–6, IBD7,8, and rheumatoid arthritis9, which is hypothesized to be related to the hygiene 

82 hypothesis or immunomodulatory effects of the bacterium itself10–12.

83

84 H. pylori is a gram-negative bacterium capable of colonizing the stomach and leading to chronic 

85 infection, contributing to the development of peptic ulcer disease, atrophic gastritis, MALT 

86 lymphoma, and gastric adenocarcinoma, which is the third leading cause of cancer mortality 
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87 worldwide13. Though infected individuals generate a robust immune response, failure to 

88 eradicate the organism is common14.

89

90 Several mechanisms behind this immune evasion and subsequent persistent infection have been 

91 proposed. These include antigenic variation, modulation of adhesion to gastric epithelial cells, 

92 evasion of pattern recognition, direct inhibition of T cell proliferation via vacA, and induction of 

93 a Treg response that counters T cell immunity15,16. The evidence supporting Treg expansion is 

94 particularly robust; patients with H. pylori infection have demonstrated elevated levels of 

95 CD4+CD25+ Tregs in the gastric and duodenal mucosa compared to non-infected patients17, and 

96 there is a correlation between Foxp3+ Tregs and degree of H. pylori colonization18. Additionally, 

97 depletion of CD25+Foxp3+ Tregs in H. pylori-infected mice leads to increased gastric 

98 inflammation and reduced bacterial colonization19. Local gastric mucosal infection with H. 

99 pylori in mice has also been associated with the appearance of peripherally induced Tregs in the 

100 lung20. We previously showed that H. pylori alters the DC-polarized Th17/Treg balance toward a 

101 Treg-biased response, which suppresses the effective induction of H. pylori-specific Th17 

102 immunity21. Treg depletion in a genetic model has resulted in significant inflammatory immune 

103 response and spontaneous H. pylori clearance22. However, the specific mechanisms behind the 

104 induction of Treg differentiation in H. pylori infection are not well understood.

105

106 Emerging evidence demonstrates that dendritic cells (DCs) are involved in the response to H. 

107 pylori infection23. We have shown that DCs are recruited to the gastric mucosa after H. pylori 

108 infection21,24. In another study, DC-depleted neonatally infected mice showed a significant 

109 reduction in H. pylori CFUs compared to TGF-βfl/fl infected mice25. DC-depleted mice infected 

110 with H. pylori also display more severe gastritis and generate stronger Th1 and Th17 responses26.

111

112 DCs are a rich source of TGF-β, which modulates T cell regulation and differentiation27. TGF-β 

113 is an important immunomodulator for T cell regulation and differentiation, inducing Treg as well 

114 as Th17 differentiation28,29. H. pylori specific immune tolerance requires TGF-β signaling, and 

115 mice with a dominant-negative form of the TGF-β receptor II have demonstrated impaired Treg 

116 induction and immune tolerance22. Hence, we hypothesized that DC-derived TGF-β mediates  

117 Treg induction, which conveys host immune tolerance in response to H. pylori infection.
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118

119 To test this hypothesis, we generated DC-specific TGF-β knockout C57BL6 mice (TGF-β∆DC) to 

120 demonstrate that this group of DC TGF-β deficient mice exhibit more severe mucosal 

121 inflammation and have a lower degree of bacterial colonization. In vitro studies using BMDCs 

122 from these TGF-β∆DC mice showed increased levels of pro-inflammatory cytokines following 

123 stimulation with H. pylori compared to control. To evaluate whether TGF-β can induce immune 

124 tolerance independent of Treg response, we crossed TGF-β∆DC mice onto Rag1 KO background 

125 and generated TGF-β∆DCxRag1KO double KO mice. Our studies indicate that DC-derived TGF-

126 β plays an important role in the induction of Treg and attenuation of inflammatory Th1 response 

127 following Helicobacter infection. Also, TGF-β may modulate immune tolerance independent of 

128 Treg, suggesting an innate component to TGF-β signaling. 

129

130 Methods

131 Mice

132 Mice (B6.C-Tg(itgax-cre)1-1Reiz/J, TGF-βtm2.1Doe/J, and Rag1KO) were purchased from 

133 Jackson Laboratory for breeding. We used the Cre/lox system to generate DC-specific TGF-β1 

134 knockout C57BL6 mice (TGF-β∆DC) by crossing cCD11c-cre mice with TGF-β1 flox-ex6 mice 

135 (Jackson Lab) and generated TGF-β∆DC-Rag1KO mice by crossing TGF-β∆DC with Rag1KO 

136 (Jackson Lab) mice. TGF-β1 flox-ex6 mice served as the TGF-βfl/fl control. All animals were 

137 housed in the animal maintenance facility at the University of Michigan Health System. This 

138 research was undertaken with the approval of the Committee on Use and Care of Animals at the 

139 University of Michigan. Mouse genotypes were confirmed by quantitative PCR using mouse 

140 tails.

141

142 Media and cytokines

143 For all cell cultures, a complete medium consisted of RPMI-1640 (Sigma, Milwaukee, WI) with 

144 10% heat-inactivated fetal calf serum (ISC Biosciences, Kaysville, UT), 2 mM added Glutamine 

145 (4 mM total), and 100 U/mL Penicillin-Streptomycin. The following recombinant cytokines 

146 (R&D Systems, Minneapolis, MN) were diluted in complete medium: mGM-CSF (10 ng/mL) 

147 and IL-4 (10 ng/mL) for BMDC. 

148
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149 Generation of bone marrow-derived DCs

150 BMDCs from TGF-βfl/fl or TGF-β∆DC mice were derived using mouse GM-CSF (10 ng/mL) and 

151 IL-4 (10 ng/mL) as previously described19 except BMDCs were cultured with serum free 

152 RPMI1640 to exclude exogenous serum TGF-β. and cultured with RPMI1640 containing 10% 

153 fetal bovine serum (FBS) BMDCs were harvested and enriched (106 cells/mL) by gradient 

154 centrifugation using OptiPrep density solution (Sigma, St. Louis, MO) according to the 

155 manufacturer’s instructions on day 6. For H. pylori-stimulated BMDC experiments, 1 × 106 

156 cells/mL of BMDCs were plated in a 12 well plate, treated with 107CFU/mL H. pylori (DC to H. 

157 pylori ratio of 1 to 10), 107CFU/mL Escherichia coli (E. coli) (DC to E. coli ratio of 1 to 10), 

158 PBS, or E. coli lipopolysaccharide (LPS).  After overnight (18h) culture, the supernatant was 

159 harvested and TGF- β was measured using ELISA.

160

161 Helicobacter culture and infection

162 H. pylori SS1 was cultured on Campylobacter-selective agar (BD Diagnostics, Bedford, MA, 

163 USA) for 3 days in a humidified microaerophilic chamber at 37°C (BBL Gas System, with 

164 CampyPak Plus packs, BD Biosciences San Jose, CA) as previously described21.

165 H. felis was cultured in sterile-filtered Brucella broth (BD, Franklin Lakes, NJ) with 10% FBS 

166 (Atlanta Biologicals, Lawrenceville, GA) using the GasPak™ EZ Campy Container System 

167 (BD) at 37°C at an agitation rate of 150 rpm for 3-5 days. The cultures were spun down at 2700 

168 rpm at room temperature, and the pellets resuspended in Brucella broth plus 10% FBS (Thermo 

169 Fisher Scientific, Houston, TX). Bacteria were counted using a hemocytometer by diluting the 

170 cells 1∶100 in 9∶1 HBSS/Formalin solution. TGF-β∆DC, TGF-βfl/fl, TGF-β∆DCxRag1KO, and 

171 control TGF-β∆DC mice were gavaged 3 times over 5 days with 108 CFU H. felis in 100 μL of 

172 Brucella broth. 

173

174 Animal studies

175 After 6 months infection with H. felis, the mice were euthanized. The stomach was removed and 

176 analyzed. In addition, splenocytes from TGF-βfl/fl or TGF-β∆DC mice were cocultured for 18h 

177 with BMDCs from uninfected control mice and 107 CFU/mL H. felis. The splenocyte-to-BMDC 

178 ratio was 10 to 1. After 72 h, the supernatant was collected and IL-12p70, IFN-γ, and TNF-α 

179 levels were measured by ELISA (eBioscience/BD Biosciences, San Diego, CA/San Jose, CA). 
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180 Splenocytes were collected and the percentages of CD4+FoxP3+ T cells (Treg) were measured by 

181 fluorescence-activated cell sorting (FACS).

182

183 Histological scoring

184 The stomachs of mice were removed and two adjacent full-thickness longitudinal strips were 

185 removed from the lesser and greater curvatures of the stomach and fixed in formalin for 

186 histologic analysis. The specimens were scored according to previously published protocol30. 

187 Briefly, 200x microscopic fields were scored individually for the presence or absence of each of 

188 the following 4 histological criteria: 1) polymorphonuclear leukocytes neutrophilic (PMN) 

189 infiltration, 2) mononuclear infiltration, 3) follicles, and 4) epithelial metaplasia. The gastritis 

190 score is defined as the the sum of the percentage of 200x microscopic fields with PMN, 

191 mononuclear infiltration, and follicles. The percentage of 200x microscopic fields with epithelial 

192 metaplasia was also measured. 

193

194 Extraction of RNA, reverse transcription, and quantitative real-time polymerase chain 

195 reaction (RT-PCR)

196 Total RNA from stomach samples was prepared using the RNeasy Mini Kit (QIAGEN, Hilden, 

197 Germany). Samples were reverse-transcribed using iScript™ cDNA Synthesis Kit (BIO-RAD, 

198 Hercules, California). Expression of H. felis, TGF-β, TNF-α, IFN-γ, IL-12, IL-6, IL-1β, IL-10, 

199 and HPRT RNA was measured using iQ™SYBR Green Supermix Kit obtained from BIO-RAD. 

200 Primers are shown in Table 1. Finally, quantitation of relative differences in expression was 

201 calculated using the comparative 2−ΔΔCT method31. 

202

203 Statistical analysis 

204 The results were evaluated using unpaired Student's t-tests (Mean±SEM). Statistics were 

205 performed in the GraphPad Prism program suite (GraphPad Software, Inc., La Jolla, CA). 

206 Significant values were indicated as follows: *P < 0.05, **P < 0.01, and ***P < 0.001. 

207

208 RESULTS

209 TGF-β∆DC DCs produce diminished TGF-β and exhibit an inflammatory phenotype
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210 We previously showed that BMDCs produced TGF-β at homeostasis as well as when exposed to 

211 H. pylori 21, suggesting DC production of TGF-β may contribute to immune tolerance in H. 

212 pylori infection. To test this hypothesis, we generated a DC-specific TGF-β knockout murine 

213 model (Figure 1A). We verified DC-specific TGF-β depletion by comparing BMDC TGF-β 

214 production in TGF-βfl/fl vs TGF-β∆DC mice (Figure 1B). 

215

216 When stimulated with PBS, H. pylori, E. coli, or LPS in vitro, TGF-β∆DC BMDC and splenocyte 

217 coculture supernatant contained markedly lower levels of TGF-β than control TGF-βfl/fl BMDC 

218 coculture supernatant (Figure 2A).  Proinflammatory cytokine levels were significantly higher in 

219 the TGF-β∆DC group when stimulated with H. pylori, E. coli, and LPS (Figure 2B). Anti-

220 inflammatory IL-10 levels were decreased in the TGF-β∆DC group compared to control when 

221 stimulated with H. pylori, E. coli, and LPS (Figure 2C). Overall, this decrease in anti-

222 inflammatory cytokine levels and an increase in proinflammatory cytokine levels indicates a 

223 proinflammatory DC phenotype.  

224

225 TGF-β∆DC mice infected with H. felis develop more severe gastritis compared to infected 

226 TGF-βfl/fl control mice

227 Next, we infected the TGF-β∆DC mice and TGF-βfl/fl mice with H. felis (108 CFU/mL H. felis via 

228 gavage 3 times over 5 days). H. felis was used as it produces more severe gastritis in mice and 

229 achieves higher levels of colonization compared to H. pylori32–34. Our data show that after 6 

230 months of H. felis infection, TGF-β∆DC mice developed more severe gastritis compared to control 

231 TGF-βfl/fl mice, as evidenced by increased neutrophils, gland distortion, and metaplasia. Gastric 

232 TGF-β mRNA expression was confirmed to be significantly decreased in the TGF-β∆DC mice 

233 compared to wildtype (Figure 3A). Representative micrographs of gastric histology are shown in 

234 Figure 3B. The gastritis score for the TGF-β∆DC group was 2.7 fold higher than in the control 

235 group (p<0.01) (Figure 3C), showing that in the absence of DC-TGF-β, infected mice developed 

236 more severe gastritis compared to control. Additionally, there was a trend towards increased 

237 metaplasia in the TGF-β∆DC mice although values that did not reach statistical significance 

238 (p=0.11) (Figure 3D). These findings indicate DC-derived TGF-β plays a role in modulating 

239 gastric inflammation and likely subsequent metaplasia in Helicobacter infection.

240
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241 TGF-β∆DC mice infected with H. felis display elevated Th1 cytokine production and 

242 decreased H. felis-specific Treg response and gastric colonization. 

243 We next examined the in vivo TGF-β∆DC mouse cytokine response to H. felis infection vs control 

244 TGF-βfl/fl mouse cytokine response. Stomach samples taken after euthanasia at 6 months showed 

245 higher levels of IFN-γ, TNF-α, and IL-12 compared to the levels in the control TGF-βfl/fl group 

246 (Figure 4A), indicating a stronger Th1 response. In the TGF-β∆DC mice, levels of IFN-γ, TNF-α, 

247 and IL-12 were significantly higher than levels observed in the control group (p<0.05) (Figure 

248 4A). Moreover, the spleens of H. felis-infected TGF-β∆DC mice showed a decreased H. felis-

249 specific Treg response compared to control TGF-βfl/fl spleens (Figure 4B, p<0.05).  Also, we 

250 determined that increased gastritis severity and inflammatory cytokine production were 

251 associated with decreased H. felis colonization. We quantified gastric H. felis mRNA using RT-

252 PCR on the stomach samples from infected mice to measure colonization. Infected TGF-β∆DC 

253 mice had a lower degree of gastric H. felis mRNA compared to infected TGF-βfl/fl mice (Figure 

254 4C) indicating lower colonization in the knockout mice. These data support the hypothesis that 

255 TGF-β plays an important role in immune tolerance leading to persistent Helicobacter infection.

256

257 TGF-β∆DCxRag1KO mice (DC-TGF-β deficient and T cell-deficient) display lower degree of 

258 gastric H. felis colonization compared to Rag1 KO mice

259 To investigate whether TGF-β acts solely via modulation of the adaptive immune response to 

260 induce immune tolerance to H. felis, generated TGF-β∆DCxRag1KO mice by crossing T and B 

261 cell-deficient Rag1KO mice with TGF-β∆DC mice (Figure 5A). TGF-βfl/fl mice served as the 

262 control. We compared H. felis colonization after 6 months in these two groups. As T cells are 

263 required for gastritis, neither group of mice displayed evidence of significant histological 

264 gastritis (data not shown and previously reported35) and inflammatory cytokines mRNA (IFN-γ, 

265 IL-6, IL-1β, IL-10, and TNF-α) measured were not significantly different between the two 

266 groups (Figure 5B). However, independent of gastric inflammation, the infected DKO (TGF-

267 β∆DCxRag1KO) mice had lower levels of H. felis mRNA in the gastric tissue compared to 

268 infected Rag1KO mice (p<0.05, Figure 5C). This suggests that while Treg response contributes 

269 to Helicobacter immune tolerance, DC-derived TGF-β has an additional innate role independent 

270 of Treg expansion or modification of T cell response which supports Helicobacter colonization.

271
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272 DISCUSSION

273 H. pylori colonizes half of the world’s population and most of those infected are asymptomatic. 

274 However, H. pylori infection can cause decades-long gastritis. This long term infection and 

275 chronic inflammation result in the development of peptic ulcer disease, gastric adenocarcinoma, 

276 and MALT lymphoma36–38. Despite persistent gastric inflammation with vigorous humoral and 

277 cellular immune responses, humans frequently fail to clear the bacterium and colonization 

278 persists for life unless treated. This failure to eradicate H. pylori has been attributed to ineffective 

279 host immune response and the induction of immune tolerance.

280

281 DCs are recruited to the gastric epithelium during H. pylori infection21,24,39. These antigen-

282 presenting cells can migrate from the peripheral tissue to the draining lymph node or spleen with 

283 the captured antigen, where they present the antigen to naïve T-cells and initiate host immunity40. 

284 As such, they function as a link between the innate and adaptive immune responses. Depending 

285 on the local environment and costimulatory signals, DCs may activate cytotoxic/helper T cells 

286 and B cells41. They also help maintain immunologic tolerance to self and commensal bacteria by 

287 presenting these antigens in the absence of inflammatory cytokines42. We have previously shown 

288 that dendritic cells are recruited to the gastric mucosa following H. pylori infection and that H. 

289 pylori can induce tolerogenic programming of DCs to inhibit the host immune response21,24. 

290 Using a mouse model of H. pylori infection, we showed that H. pylori DNA downregulates DC 

291 production of pro-inflammatory cytokines IL-12 and type 1 interferon43. This may be mediated 

292 by increased frequency of an immunoregulatory sequence, TTTAGGG, which likely activates 

293 the DNA-sensing TLR-9 signaling pathway44. In addition to its DNA, H. pylori cell wall LPS 

294 activates DC TLR-2 to inhibit Th1 immunity and induce immune tolerance45. However, the 

295 mediators behind this immunoregulatory function have not been fully elucidated.

296

297 Since TGF-β induces naïve T cell differentiation into Foxp3+ regulatory T cells, we hypothesized 

298 that TGF-β produced by BMDCs is the key mediator in Treg activation and inhibition of the 

299 immune response, leading to the immune tolerance commonly observed in H. pylori infection. 

300 To test this hypothesis, we generated DC-specific TGF-β knockout mice and verified the 

301 successful knockdown of TGF-β from BMDCs in vitro. When infected with H. felis, these mice 

302 developed more severe gastritis accompanied by enhanced Th1 response with marked elevation 
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303 in IFN-γ and TNF-α production. They also displayed 77% lower colonization compared to wild 

304 type mice. The spleen from these TGF-β∆DC mice had a 29% decrease in FoxP3+Tregs compared 

305 to wildtype. Taken together, these in vivo and in vitro studies showed that BMDC-derived TGF-

306 β plays an important role in H. pylori infection by modulating gastric inflammation and inducing 

307 Treg differentiation, leading to immune tolerance and Helicobacter persistence. This observation 

308 is consistent with the known immunomodulatory roles of TGF-β in suppressing effector T cell 

309 proliferation and inducing Treg differentiation46,47.

310

311 Following H. pylori infection, TGF-β production is upregulated in many cells, including gastric 

312 fibroblasts, FoxP3+Tregs, macrophages, and DCs20,48,49. In this study, we demonstrated a clear 

313 role for DC-derived TGF-β in Treg expansion. Based on our observations and other findings 

314 reported in the literature50–52, we propose that following H. pylori infection, DCs migrate to 

315 peripheral lymphoid tissue, release TGF-β, stimulate Treg induction, and thus influence systemic 

316 immunity, which may lead to a reduction of inflammatory Th1 cytokines and enhanced 

317 colonization.

318

319 To examine whether DC-derived TGF-β acts solely by affecting T cell differentiation to induce 

320 immune tolerance following H. pylori infection, we generated double knock out mice by 

321 crossing TGF-β∆DC with Rag1KO and infected these DKO mice with H. felis. We reasoned that 

322 if DC-derived TGF-β acts to induce immune tolerance via Treg induction, the degree of H. felis 

323 colonization would be similar between the TGF-β∆DCxRag1KO and Rag1KO mice. As expected, 

324 we did not detect gastritis in either group of mice because T cells are required for the 

325 development of mucosal inflammation. IFN-γ, IL-6, IL-1β, IL-10, and TNF-ɑ mRNA levels 

326 were not significantly different between the Rag1KO and TGF-β∆DCxRag1KO mice, supporting 

327 the absence of gastritis. However, we observed a lower H. felis colonization in the TGF-

328 β∆DCxRag1KO mice compared to the Rag1KO mice. This suggests that in addition to acting on 

329 adaptive immunity, DC-derived TGF-β may also exert its effects via a T cell-independent 

330 pathway. This reveals a direct innate immune function of DCs in the response to Helicobacter 

331 infection. It is conceivable that DC-derived TGF-β may act via autocrine signaling pathways that 

332 further upregulate DC TGF-β expression, and may have wide-ranging effects on the innate 

333 immune populations similar to the effect of Tregs in suppressing innate lymphoid cells53,54. 
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334 Additionally, TGF-β has been shown to suppress TLR signaling and inhibit myeloid cell 

335 activation55,56. These possibilities would be worthwhile targets for investigation, though are 

336 beyond the scope of our current study.

337

338 In conclusion, our findings demonstrate that DC-derived TGF-β mediates Treg response in H. 

339 pylori infection, resulting in an attenuated Th1 inflammatory response. Using a double knockout 

340 mouse model, we also demonstrated a previously unrecognized innate role of DCs orchestrating 

341 response to Helicobacter colonization via a Treg-independent mechanism. 
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505 FIGURE LEGENDS

506

507 Figure 1. Generation of TGF-β∆DC mice, which are TGF-β-deficient. (A) TGF-β∆DC mice were 

508 generated by crossing cD11c-cre mice with TGF-β1 flox-ex6 mice, which were used as the TGF-

509 βfl/fl control. (B) BMDCs derived from wt (TGF-βfl/fl) vs TGF-β∆DC mice were cultured for 18h 

510 and supernatant TGF-β was quantified using enzyme-linked immune absorbent assay (ELISA), 

511 confirming deficient TGF-β production in the TGF-β∆DC DCs. DC = dendritic cells, PBS = 

512 phosphate-buffered saline. Results are shown as mean ± S.E.M. *P < 0.05.

513

514 Figure 2. TGF-β∆DC bone marrow-derived DCs produce diminished TGF-β and exhibit an 

515 inflammatory phenotype. BMDCs derived from control (TGF-βfl/fl) vs TGF-β∆DC mice were 

516 cultured for 18h with H. pylori (107 CFU H. pylori to DC ratio 1:10), E. coli (107 CFU, E. coli to 

517 DC ratio 1:10), PBS, or LPS. Supernatant levels of (A) TGF-β were measured. When these 

518 BMDCs were cocultured with splenocytes, (B) IL-23p19 and IL-12 as well as (C) IL-10 were 

519 measured via ELISA. Data are representative of the results of three independent experiments. 

520 DC = dendritic cells, PBS = phosphate-buffered saline, EC = E. coli, HP = H. pylori. Results 

521 are shown as mean ± S.E.M. *P < 0.05, ** P<0.01, ***P<0.001.

522

523 Figure 3. TGF-β∆DC mice infected with H. felis show reduced gastric TGF-β expression and 

524 develop more severe gastritis compared to infected control (TGF-βfl/fl) mice. TGF-β∆DC or TGF-

525 βfl/fl C57BL/6 mice (n = 10 per group) were orally challenged with H. felis (108 CFU/mL) 3 

526 times over 5 days starting on day 0. Stomach samples were analyzed after sacrifice at 6 months. 

527 Gastritis scores were determined in a blinded fashion. (A) TGF-β expression as measured via 

528 quantitative PCR. (B) Micrographs of gastric histology. (C) Gastritis score and (D) metaplasia in 
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529 stomach samples from wt (TGF-βfl/fl) vs TGF-β∆DC mice infected with H. felis.  Results are 

530 shown as mean ± S.E.M. **P < 0.01.

531

532 Figure 4.  H. felis-infected TGF-β∆DC mice show increased Th1 responses, decreased Treg 

533 responses, and increased H. felis colonization compared to control. After chronic H. felis 

534 infection of 6-month duration, stomachs from TGF-βfl/fl and TGF-β∆DC mice were removed. 

535 Splenocytes from these mice were cocultured with BMDCs from uninfected control mice and 

536 107 CFU/mL H. felis. After 18h, expression of (A) IFNγ, TNFα, and IL-12 mRNA was measured 

537 via qPCR. (B) Splenocytes were stimulated with H. felis lysate and H. felis-specific CD4+FoxP3+ 

538 T cells via flow cytometry, and (C) H. felis mRNA via quantitative PCR (n=10 mice per group). 

539 Results are shown as mean ± S.E.M.* P<0.05, ***P<0.0001.

540

541 Figure 5. TGF-β∆DCxRag1KO double knockout mice (TGF-β deficient and T cell-deficient) 

542 show a lower degree of gastric H. felis colonization independent of inflammatory cytokine 

543 levels. After chronic 6-month H. felis infection, the stomachs from Rag1KO and Rag1KO/TGF-

544 β∆DC mice were removed (n=10 mice per group). (A) Schematic representation TGF-

545 β∆DCxRag1KO generation. (B) Gastric cytokine levels including IFN-γ, IL-6, IL-1β, IL-10, and 

546 TNF-ɑ were measured via quantitative PCR and were not significantly different between the 

547 Rag1KO and TGF-β∆DCxRag1KO mice. (C) H. felis mRNA was measured via quantitative PCR 

548 to assess colonization (n=10 mice per group). Results are shown as mean ± S.E.M. * P<0.05.
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Table 1. Primers and annealing temperatures used for the amplification of each gene. 

Gene Primer(5’-γ’) Annealing 

temperature 

 

HPRT F:5’-AGGACCTCTCGAAGTGTTGGATAC-γ’ 

R:5’-AACTTGCGCTCATCTTAGGCTTTG-γ’ 

65  

IL-6 F:5’-GAGGATACCACTCCCAACAGACC-γ’ 

R:5’-AAGTGCATCATCGTTGTTCATACA-γ’ 

65  

IL-10 F:5’-AGTGGAGCAGGTGAAGAGTG-γ’ 

R:5’-TTCGGAGAGAGGTACAAACG-γ’ 

58  

IFN-Ȗ F:5’TCAAGTGGCATAGATGTGGAAGAA--γ’ 

R:5’-TGGCTCTGCAGGATTTTCATG-γ’ 

65  

FoxP3 F:5’-TCTCCAGGTTGCTCAAAGTC-γ’ 

R:5’-GCAGAAGTTGCTGCTTTAGG-γ’ 

58  

TNF-α F:5’-CATCTTCTCAAAATTCGAGTGACAA-γ’ 

R:5’-TGGGAGTAGACAAGGTACAACCC-γ’ 

65                                               

TGF-ȕ F: 5'-GCTACCATGCCAACTTCTGT-γ’ 

R: 5'-CGTAGTAGACGATGGGCAGT-γ’ 

58  
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