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The four-parameter logistic model (4PLM) has recently attracted much interest in various
applications. Motivated by recent studies that re-express the four-parameter model as a
mixture model with two levels of latent variables, this paper develops a new expectation-
maximization (EM) algorithm for marginalized maximum a posteriori estimation of the
4PLM parameters. The mixture modelling framework of the 4PLM not only makes the
proposed EM algorithm easier to implement in practice, but also provides a natural
connection with popular cognitive diagnosis models. Simulation studies were conducted
to show the good performance of the proposed estimation method and to investigate the
impact of the additional upper asymptote parameter on the estimation of other
parameters. Moreover, a real data set was analysed using the 4PLM to show its improved
performance over the three-parameter logistic model.

I. Introduction

The four-parameter logistic model (4PLM) was proposed by Barton and Lord (1981), who
introduced an upper asymptote parameter, d, thatis slightly < 1, to model the uncertainty
of a high-ability examinee missing an easy item. The limitation of Barton and Lord’s
modelling approach is that all items in a test share a common upper asymptote parameter,
and Barton and Lord did not estimate the fourth parameter but rather fitted the model with
some fixed values for d. Recent studies (Linacre, 2004; Rouse, Finger, & Butcher, 1999;
Rupp, 2003; Tavares, de Andrade, & Pereira, 2004; Waller & Reise, 2010) have
demonstrated that, in most cases, the upper asymptote varies across items in a test. The
following formulation of the 4PLM, which allows the upper asymptote parameter to be
item-specific, is therefore considered more appropriate:

eaj(e,»—bj)

(0,) =P(Uy =104, &) = ¢+ (dj — ¢)) —————
pi(0) = P(Uy = 1]0,,¢) = ¢; + (4 CJ)1+e“j(ei7bj)

(1)

where Uj; denotes the observed dichotomous response of examinee i (7 = 1, ..., N) to
itemj(G=1=1,..., M), with U,;; = 1 denoting a correct response and U; = 0 otherwise;
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0; € (—o0, too) is the ability parameter; and &; = {aj7 b, ¢, dj} is the item parameter set
for the jth item, with @; € (0, +00),b; € (=00, +0), ¢; € [0, 1], and d; € (¢, 1] being the
discrimination, difficulty, guessing, and upper asymptote parameters, respectively. The
parameter d; is the maximum probability of endorsing item j, and so 1-d; can be
considered as the slipping probability of a student who can answer correctly but missing
the item. Here, N and M are used to denote the number of the examinees (sample size) and
the number of the items (test length).

Difficulties in parameter estimation and a lack of evidence supporting the need for
it are the probable reasons why the 4PLM was not widely applied for a long time
(Loken & Rulison, 2010). In recent years, however, researchers have shown renewed
interest in the 4PLM. For instance, Liao, Ho, Yen, and Cheng (2012) and Rulison and
Loken (2009) argued that the 4PLM can improve the accuracy of ability estimation by
taking into account examinees’ early careless errors in computerized adaptive testing.
Reise and Waller (2003) and Waller and Reise (2010) demonstrated that the item
response model with an upper asymptote parameter may be more appropriate for
measuring psychopathology traits than the logistic model with three (3PLM) or two
parameters (2PLM), since the situation of a high-trait subject who is reluctant to self-
report attitudes is very common in psychopathology measurement. Ogasawara (2012)
gave the asymptotic distribution of the ability estimate under the 4PLM, and Magis
(2013) derived the maximum value of the information function. Furthermore, several
methods for the estimation of the parameters in the four-parameter model have been
proposed. For instance, Loken and Rulison (2010) employed a Bayesian approach
with the Markov chain Monte Carlo (MCMC) sampler to estimate the 4PLM
parameters. Feuerstahler and Waller (2014) employed the marginal maximum
likelihood (MML) method to recover the 4PLM using the R package mirt. In
comparison to the Bayesian estimation method calculated with the MCMC sampler
algorithm, the MML method requires less computation time, but it may not be stable
and may produce deviant values in many cases (Baker & Kim, 2004). To overcome
this disadvantage of MML estimation, Mislevy (1986) proposed Bayes modal (BM)
estimation for the 3PLM. This can be considered as a form of marginalized maximum a
posteriori (MMAP) estimation; it employs an augmented optimization objective that
includes the likelihood and some prior beliefs on the item parameters, and these
priors were used to prevent deviant parameter estimates from occurring. In fact, BM
estimation can be seen as a regulation of MML estimation, while MML estimation is a
special case of BM estimation that assumes uniform prior distributions of parameters.
Waller and Feuerstahler (2017) recently applied BM estimation as implemented in
mirt for the 4PLM.

In addition to the above research on estimating the 4PLM, mixture modelling
approaches have been developed by introducing latent variables to deal with the response
process. For instance, Béguin and Glas (2001), San Martin, del Pino, and DeBoeck (2000),
and von Davier (2009) interpreted the 3PLM from the perspective of a two-response
(guessing and non-guessing) strategy, by revising the 3PLM as a mixture model. Recently,
Culpepper (2016, 2017) further developed a mixture modelling approach to reformulate
the four-parameter normal ogive model (4PNOM) and multidimensional 4PNOM. To
estimate the model parameters, the existing works mostly focused on Bayesian estimation
with an MCMC sampling procedure and may be computationally time-consuming,
especially for large data sets. Motivated by the mixture modelling specification in these
researches, this paper proposes a computationally efficient expectation—maximization
(EM) algorithm to compute the MMAP estimates of the 4PLM parameters.
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The rest of the paper is organized as follows. Section 2 reviews the mixture modelling
reformulation of the 4PLM and discusses the relationship between the 4PLM and cognitive
diagnosis model. Section 3 presents the derivation of the EM algorithm for MMAP
estimation of the 4PLM under the mixture modelling framework. Section 4 reports three
simulation studies conducted to evaluate the performance of the proposed method.
Section 5 presents an application of the 4PLM to an empirical dataset. Finally, Section 6
provides further discussion on future research directions.

2. An alternative expression of the 4PLM from the two response
processes: Guessing versus slipping

From equation (1), the probability of a correct response in the 4PLM is equivalent to

P(Uy = 110,8) = (1 p}(0))) +dp; (0)), (2)
where
0= el ®
is the 2PLM.

Following the mixture framework for conceptualizing the process of ability-based
responding and guessing behaviors for the 3PLM in von Davier (2009) and the study of the
4PNOM in Culpepper (2016), we present an alternative expression for the 4PLM using a
mixture model. Specifically, we introduce an unobserved latent variable W;; € {0,1} to
characterize the two random response status of an examinee: W = 1 indicates that the
examinee is ‘capable’ of answer the item based on his/her ability and W = 0 otherwise.
Following the 4PLM representation in (2) and (3), we let W, follow a Bernoulli
distribution,

W;16,, & ~ Bernoulli(p; (6;)), (4)

where p]*f (0;) is specified in (3), indicating that a higher ability 6, leads to a higher chance of
having W; = 1. When W;; = 1, the conditional probability of the response Uy; is specified
as

U;|Wy = 1,&; ~Bernoulli(d;), (5)

where 1-d; corresponds to the slipping probability of making a mistake even though the
examinee is ‘capable’ of answering item j. On the other hand, when W; = 0 (i.e., the ith
examinee does not know the correct answer to the jth item), the conditional distribution
of Uy is

Uy|Wy; =0, &~ Bernoulli(c;), (6)

where ¢; is the probability of guessing a correct response.

We next show that the mixture model specification in (4-06) is equivalent to the 4PLM
given in (2). Based on the above distributions in (4-6), the joint probability distribution of
U,; and W;; (conditionally on 6; and £;) can be given as
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p(Ux'szj) (Ml'ﬁ w1]|617 gﬂj) :pLIij‘VVijaOhéj (uﬁ|wy')—pmj|0iaéj (wlj|017 (t?])

_ djw,]uy(l _ cij)wq(l—ug)cjﬂl—wv)“ﬁ(l _ Cj)(lfw,y)(lfu,y)

o]
(7)

Hence, the marginal probability distribution of Uj; over W; can be given by

Du, (u;10,,€;) = > D(uywy) (i, w0, &)
N (1-1y) uy (1-1y) ®)
=d;"(1—d;)" "p;(0;) +¢;" (1 —¢;)" (1 —p;(6:)),

which is a two-class mixture Bernoulli distribution. From equation (8), we have the
marginal probability of Uy = 1,

Du,(y; = 110,,&;) = p;(0;)d; + (1 — p; (0:))c;, 9)

which is the same as the 4PLM given in (2).

The above derivations demonstrate that the 4PLM can be considered as a two-strategy
mixture model. What is more, the mixture model framework offers new insight into the
4PLM and naturally connects it with the cognitive diagnosis models (CDMs) as shown in
Remark (1).

Remark 1. (Connection to CDMs). From the CDM literature, W, can also be
interpreted as the ideal response variable, where W, = 1 indicates that the ith
examinee is capable of answering item j and Wj; = 0 otherwise. Then the distribution
of Uj; specified in (5) and (6) is the same as the deterministic input, noisy AND gate
(DINA) model specification, where ¢; corresponds to the guessing parameter and 1-d;
corresponds to the slipping parameter.

Moreover, we show that the 4PLM can also be viewed as a generalization of the higher-
order DINA model (de la Torre & Douglas, 2004) with only one latent attribute. In
particular, consider a cognitive diagnosis test VV/ith only one latent attribute A € {0,1}. Then
the Q-matrixis/ x landwesetQ = (1, ...,1),,,, thatis, all items require the attribute A.
Note that in this special case, the ideal responses of an examinee to all items are the same.
Let 4; be the ith examinee’s latent attribute and the common ideal responses to all items
are I(A; = 1) = A;. The higher-order DINA model assumes that the probability of A; = 1 is
from a 2PLM given by

B _explho(0; — M)
P(Az'— 1|9i,7m) - 1-|-exp[7\.()(ei—7“1)]7 (10)

where 0, denotes a latent variable representing general ability in the studied domain and
the A are regression parameters. Furthermore, given I(4; = 1) = A;, the ith examinee’s
response Uy to the jth item follows the same models in (5) and (6) under the higher-order
DINA model. Therefore, the only difference between the 4PLM and the one-attribute
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higher-order DINA model lies in how they model the ideal responses (W and A,
respectively). Comparing the model set-up of the ideal responses between the higher-
order DINA model in (10) and the 4PLM in (2), we can see that (10) can be considered as a
special case of (2) with all the g, replaced by a common parameter Ao, the b, replaced by
L1, and W, replaced by a common variable 4, not depending on j. From this perspective,
the the one-attribute higher-order DINA model can be viewed as a special case of the
4PLM. More generally, we may consider the multi-attribute higher-order DINA model as a
sub-model of the multidimensional 4PLM.

3. MMAP estimation for the 4PLM with an EM algorithm

Under the mixture model framework, we develop an EM algorithm for MMAP estimation
of the item parameters in the 4PLM. In the following, we first specify the prior
distributions on the 4PLM parameters and then derive the EM algorithm formula to
calculate the MMAP estimators of the 4PLM item parameters.

We first introduce some notation. Let w;. = (¢, ..., u;) denote the observed
response vector of examinee #, w; = (ulj,...,un)/ denote the observed response
vector of item j, and u= (ug,...,uy) denote the realized response matrix. Let
0 =(01,...,0y) be the ability parameter vector of all N examinees, &; = (a;,b;, ¢;,d;)
be the item parameter vector of item j, and § = (§;,...,&,,) be all the item parameters
of all M items.

The prior distribution for the ability variable 0;, is specified to be normal,
0;~N (ue, Ge) This is the standard choice in calculating the MML or MMAP estimates
of the parameters in IRT models. For the discrimination parameter a;, we first
transform a; = e, then assign a normal prior for a;, oy ~N ([, G 2). The prior for b; is
a normal distribution, b; ~N (,ub, ab). The prior for c; is a beta prior, ¢; ~ Beta(s, tc)
These prior distributions are commonly used in applications of the IRT models.
Finally, we assign a truncated Beta prior for d;,d;|c;~ Beta(s,,t,)I(c;< d;), since
d; > c¢;. Such a truncated prior is used in Culpepper (2016) to enforce the
monotonicity condition. Here Q := {ua,ag, ub7a§,sc,tc7sd,td}are hyperparameters to
be prespecified in practice.

According to Bayes’ theorem, the joint posterior density of 0 and &
P(E0u,2,7) o L(u[£, 0) £(0]1) £ (E[Q), where

is the likelihood of the observed response data u, and

f(e\r>=1jf(ef\r>, FEQ) = Hf&,IQ

are the prior distributions of 0 and &, respectively.

As known in the literature (Baker & Kim, 2004; Neyman & Scott, 1948), direct
joint estimation of person ability parameters 0; and item parameters often leads to
inconsistent estimators, therefore it is generally necessary to integrate over the 6; in
order to estimate the item parameters. Then we have the corresponding marginal
distribution,
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pE, Q1) = / (& 01, Q, 7)al0, (11)

and the modes of the marginal posterior p(§|u, Q, 1),

é = arg maxp(€|u7 Q7 t)> (12)
aG@é

are defined as the MMAP estimates of &.

From equation (7), if the latent variables W = {W;;,i =1,...,N;j=1,...,M} were
observed, the 4PLM could be divided into two Bernoulli models, and the calculation of the
estimators of & would be straightforward. Specifically, let z = (u, W, 0) be the complete
data. The likelihood of z is

N M
1(zig) = [T [ (1= )"0 (1 — gt
i=1j=1 (13)
x5 (60" (1 = 7 (0)' "7 (84]0)

The marginal posterior distribution p(&|u, Q, t) in (11) can be calculated by

pE, Q1) = / / P& 2, Q, )W,
where
P& 7w, Q,7) o L{zE)(E[9). (14)

With the W unobserved in practice, we propose an EM interaction procedure under the
complete data (z) for calculating the MMAP estimators of € in equation (12). Let ém be the
current values for § at the fth iteration. The EM algorithm consists of the following two steps:

E-step. Given ﬁ(t) and u, calculate the conditional distribution of the latent variables W

and 0, denoted by p(W, 0u, &), and then use p(W, 8|u, ")) to calculate the
corresponding expectation of In p(&, z|u, Q, 1), that is,

Q(aa a(”) = EW,0|u,§(’) {lnp(z, ﬁ\u,QJ)}. (15)
M-step. Update the parameter estimate &) by maximizing Q(§,£")), that is,

g — argmax 0(&,8").

We next describe the details in the E-and M-steps. From equations (13) and (14),

Inp(& 20, Q7)) = In L(z) + 3. I/ (50

=1 v . (16)

— Lie.d) + L(b) + X Inf(0/]7) + 3 Inf (510,
i=1 Jj=1

where
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S

Ll (C, d) =

-

> {WyuyInd; + Wy(1 — uy) In (1 — dj) + (1 — Wy)uylng

1j

Il
-

7

L= Wy)(1—uy)In(1 = g)},
Ly 0) = 32 5 Wylnp; (6:) + (1 — W) In (1 - p;(6,)).

i=1j=1

From equation (16), we note that the estimators of (¢;, dp and (ocj, bj) can be calculated

separately with respect to Ly (¢, d) and L(«, b) in the E- and M-steps. Since L (c,d) is a

linear function of Wy, the E-step is done by simply replacing W;; with va6|u£(,) (W;).Inthe
M-step, the estimators of ¢; and d; can then be calculated as

N
C(H_]) o Zi:l (1_Ew,e\u.§(l)(Mf>)”i7+56_1

J )
va:l <1Ew.e u.g(f)(W"f)> FSete—2 (17)
(t+1) _ g« * (t+1) * (t+1)
d"V =ad; > q )+(cj+8)[1 —1(d} > ¢ ))},
where
Zi‘il (Ew79|u_ém(W,7))u,'j +s;—1
4G =N | : (18)
Zi:l (EW79|H_§(t> (W/ZJ)) +sqat+ty—2
and I(d]’f > c}tﬂ)) is the indicative function of d; > c}tﬂ). Note that to impose the
restriction that d; > c;, d;”l) is assigned to be c}tﬂ) + o forasmall 3 > 0 when d;j < c](tH).

Based on equations (7) and (8), we have

om0 e

where p]’f (+) is defined in (3). A quadrature approximation method is used to compute the
integrals in the E-step. In particular, define a grid of K equally spaced points, x
(k=1,...,K), specified for 0, and the associated weights A(x;) are assigned by
f(xe|t) X (%41 — Xz). The posterior probability of x;, can be given by

u;, &(t) ) deiv

Hjﬁilpj('t) (xk)u,-j%(f) (o) '~ A (o0
Sr T ) () g () A

1%

; (19)

P(xk u;, E;(t))

where

1)
exp(e” (x, — b))

0
1+ exp(e“»;' (% — b(.k)))

p]@ (o0) = c](,t) - (d](t) . Cj(t))

and qjm (xp) =1— p]@ (x%). Then By gy ¢ [ W] can be approximately calculated by



58 Xiangbin Meng et al.

K (t) *<r>( ) iy (lfd(t))P’f(t)(xk) 1—uy
i Sl e A

=1 xle) =Dy (xe)

wherei=1,...,N,j=1,..., M Finally, plugging these into the equations (17) and (18),

the revised estimators, ]H )’ and d; (41 , can be approximately calculated.

In the M-step, the estimation equatlons for o; and b; can be approximated by

OBy g (ND(E 20, 2,7)) & g
W.0[ug o ) Z (2 — Xi) — R(_xk)pj (xp)) — %~ Hy =0, (20)
7 =1 o
Oy guz (Inp(E, z[u, Q, 1) LS by — 1,
b, e k; (o) — R(xe)p; (%)) — o 0, (21)
where
- N T ) 1% T=a®)pr (s2) 1-u
N(xk) - 121 |:jP(vt]>(x1@) :| |: ljj)g’)j(xk) :| p(xklu” é] ))’
= ) ’

and p(xe [u;, ") is calculated as in (19). A Newton—Raphson algorithm is used to solve the
nonlinear equations (20) and (21); the detailed calculation procedure and the
corresponding MATLAB code are presented in the Appendices A and B.

4. Monte Carlo simulation

This section reports three simulation studies in order to show the performance of the
proposed MMAP estimation procedure. Specifically, the aim of the first simulation study is
to investigate the influences of the prior distributions on the performance of the MMAP
estimation. The second simulation was conducted to study the relationship between the d
parameter and the properties of the MMAP estimation. The third simulation was
performed to compare the performances of the proposed MMAP\EM method with the
existing BM estimation procedure implemented in the R package mirt (Waller &
Feuerstahler, 2017).

4.1. Simulation study |
In this simulation, the test length was M = 20 and the true values of a;, b; and ¢;

(j =1,...,M)wererandomly drawn from a large-scale achievement test that was analysed
in Wang, Chang, and Douglas (2013). Following a similar set-up to that of Loken and
Rulison (2010), the parameters d;(j = 1,...,M) were randomly generated from a

truncated beta distribution, d; ~ Beta(8, 2), with the constraint d; > ¢;. The true values of
these item parameters are shown in the leftmost four columns of Table 2. The examinees’
ability variables, 0,(i = 1,...,N), were randomly drawn from the standard normal
distribution, 0;~N(0,1). As the sample size is an important data characteristic
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determining the properties of the item parameter estimation, we generated response data
with three sample sizes of N = 1,000, 5,000, 10,000.

To investigate the influence of the prior distributions of the parameters a, b, ¢, and d,
the MMAP estimation was implemented under three groups of priors (see Table 1).
Specifically, among the three groups of priors, those in the first row (denoted by MMAP1)
provide the strongest prior information. The distributions shown in the third row
(denoted by MMAP3) are the weakest informative priors, where Beta(1,1) is the uniform
distribution on [0, 1], and N(O, 102) is a close to non-informative prior. That is, the MMAP
estimators calculated under this group of priors can be considered as an approximation of
the MML estimators. The prior distributions shown in the middle row (denoted by
MMAP2) are weaker than MMAP1 but stronger than MMAP3.

To reduce the Monte Carlo error, 500 replications of the response data sets were
randomly generated, and the MMAP estimates were calculated for each of the 500 data
sets. The number of quadrature points in the MMAP estimation was set to 20, and both the
convergence criteria for the EM algorithm and the Newton-Raphson iterations were
specified to be 0.001. Finally, the root mean squared error (RMSE) and mean error (ME)
were calculated across the 500 replications to evaluate the accuracy and bias of the MMAP
estimators. The RMSE is defined as

G

RMSE(3;) = | G Z (Sg,- — 6;)2, (22)
g=1
and the ME is defined as
G A~
ME(E) =6 Y (0 - &), (23)
g=1

where §; is the item parameter (any one of o, b;, ¢;, d;) of interest, 3g, denotes the estimate
of ; in the gth repetition, and G is the number of replications (G = 500 in this study).

In this simulation, there were no deviant parameter estimates or unsuccessful
iterations, even in the case of the weakly informative priors given in MMAP3. We consider
that the proposed estimation method based on the mixture model interpretation is helpful
for improving the convergence rate of the EM algorithm. Furthermore, the implemen-
tation of the EM procedure was generally fast. For instance, the average calculation time
(on a PC with an Intel Core i5-8200 1.6 GHz processor and 8 GB RAM) did not exceed 0.8,
2.5 and 10.0 s under the three sample sizes N = 1,000, 5,000, 100,000, respectively.
Tables 2-4 show the RMSE values obtained for the MMAP estimators with the three prior
specifications (MMAP1, MMAP2 and MMAP3) across the three sample sizes. Based on
these results, the following trends can be observed.

Table 1. Prior distributions of item parameters in the 4PLM

Prior (o) Prior (b) Prior (¢) Prior (d)

MMAP 1 1y = 0,62
MMAP 2 1y = 0,62
MMAP 3 1y = 0,62

1% (G =0, 03 = 19 Ge=5t=17  (a=17,1,=5)
5% (1 = 0, 65 = 59 Sc=3,1=9 Sa=91,=3)
=10 (W =0,0;=10  (s.=1,6=1 Ga=11,=1
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For a sample size of N = 1,000, there are slight differences in the RMSE values of the
MMAP estimators under the three groups of priors (MMAP1, MMAP2, MMAP3). Overall,
the MMAP3 estimators displayed larger RMSE values than the MMAP1 and MMAP2
estimators. However, as the sample size increased, the differences in the RMSEs of the
three estimators become much smaller. For instance, under sample sizes of N = 5,000 and
10,000, the differences in RMSEs of the three MMAP estimators were negligible for most
item parameters. The same phenomenon was observed for the ME values (not reported
here due to space limitations). This suggests that when the number of examinees is large,
the MMAP estimators are mainly determined by the response data and the specification of
the prior distributions is not less crucial. On the other hand, when the sample size is small,
the prior information will have a larger impact on the performance of the MMAP
estimation, so in order to avoid the subjective error from the misspecification of prior
distributions, weakly informative or non-informative priors may be recommended in
practice. Additionally, we calculated the BM estimates of the 4PLM using the mirt
package. The results showed that BM estimators with informative priors perform similarly
to our method, while BM estimators with non-informative priors not only displayed lower
accuracy but also suffered frequently from unsuccessful convergence. It can be
considered that the mixture strategies framework of the 4PLM is helpful for the
convergence of the EM algorithm. The BM estimation results are not reported here as they
are not the main focus of this simulation study, and more comparisons between our
method and BM estimation are provided in simulation study 3.

It can be observed that the RMSE(d) values of itemsj = {4, 7, 8, 12, 19} are much larger
than those of the other items. The common characteristics of these items are that their a
parameters were much lower than those of the other items, and their b and d parameters
were relatively larger. This phenomenon was also observed in Culpepper (2016). Inspired
by the research of Lord (1975) and Mislevy (1986), which verified under the 3PLM that the
estimation accuracy of ¢; and b; — 2/a; are positively correlated, we may explain this
phenomenon by a negative correlation between the estimation accuracy of d; and the
value of b; + 2/a; under the 4PLM. Heuristically, a larger value of b; + 2/a; 1rnpl1es fewer
examinees satisfying @;(0; — b;) > 2, and therefore less 1nf0rmat10r1 on d; is provided by
the responses, which then reduces the estimation accuracy of d;. Scatter plots with
Pearson correlation coefficients were created to display the influence of b; + 2/a; on the
estimation errors and biases of the MMAP estimators of d (see Figure 1). It can be seen that
across the three sample sizes, both the RMSE(d) and absolute ME(d) were positively
correlated with b; + 2/a;, and these correlations increase with the sample size. These
results demonstrated that the higher the difficulty and the lower the discrimination, the
poorer the estimation accuracy for the d parameter in terms of both root mean squared
error and bias.

4.2. Simulation study 2

The main purpose of this simulation is to investigate the impact of the d parameter on the
performance of the MMAP estimation. An artificial test with four levels of d, d € {.65, .75,
.85, .95}, was conducted, where each level of d included five items and the test length was
M = 20.To produce a controlled experiment, the values of @, b and ¢ were identical for all
items, witha = 1, b = 0, and ¢ = .2. Following simulation study 1, the sample sizes were
set to N = {1,000, 5,000, 10,000}, and the examinees’ ability parameters 0 were randomly
drawn from N(0,1). Additionally, 500 response data sets were randomly generated, and
the MMAP estimates were calculated with the three groups of priors in Table 1. Finally, the
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Figure 1. Scatter plots of (left) the RMSE and (right) the absolute ME of the MMAP estimators for the
d parameter against b + 2/a for sample sizes N = {1,000, 5,000, 10,000}.

RMSE and ME of the MMAP estimates were calculated to display the properties (efficiency
and bias) of the estimator. Because the trends on the MMAP estimators with the three
groups of priors were consistent, we only report the results under the priors of MMAP1
here.

Figures 2 and 3 show the RMSE and ME values for the MMAP estimators of ¢, b, cand d
at the four different levels of d. For the a and b parameters, it can be seen that the values of
RMSE(@) and RMSE(D) at d ={.75, .85} were smaller than at d = {.65, .95}. Similarly, the
values of ME(a) were closer to 0 (smaller biases) for d = {.75, .85} than for d = {.65, .95}.



Sample Size (N = 1,000)

Sample Size (N = 5,000)

Estimating the 4PLM with an EM algorithm 65

, Sample Size (N = 10,000)

= 075 0.75 0.75
g
® 05 05 05
z
0.25 025! o 025} o .
[ ] [ ] [ ] [ ]
0 0 0
06 07 08 09 06 07 08 09 06 07 08 09 1
d d d
1 1 1
— 075 0.75 0.75
=5
w
2 05 05 05,
& .25 0.25 0.25 R
° o ° .
0 0 0
06 07 08 09 06 07 08 09 06 07 08 09 1
d d d
0.2 0.2 0.2
5 015 0.15 0.15
w
® 0.1 0.1 0.1
z
0.05 005[ o 005 o
[ ) [ ) o
0 0 0
06 07 08 09 06 07 08 09 06 07 08 09 1
d d d
0.2 0.2 0.2
—~ 015 0.15 0.15
S
& 0.1 01t ® 01} o
> [ ]
x
0.05 0.05 . . 0.05 . .
0 0 0
06 07 08 09 06 07 08 09 06 07 08 09 1
d d d

Figure 2. RMSE values of the MMAP estimators for the 4PLM item parameters ford = {.65;.75; .85;
.95} and sample sizes N = {1,000; 5,000; 10,000}.

This indicates that @ and b are more difficult to estimate when d takes more extreme
values.

For the c parameters. it can be seen that the relationships between d and RMSE(c) were
the weakest among the four types of item parameters, and the highest values were not
larger than .05. The values of ME(¢) were very close to 0. These results demonstrate that
the d parameter has the smallest impact on the MMAP estimator of c.

For the d parameters, RMSE(d) displays substantial differences under the four levels of
d: for the two middle levels of d, d = {.75, .85}, RMSE(d) was smaller than ford = {.65, .95}
and had smaller biases. This suggests that the estimators of the middle d values are more
accurate than those of the extreme d values.
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Figure 3. ME values of the MMAP estimators for the 4PLM item parameters for d = {.65; .75; .85;
.95} and sample sizes N = {1,000; 5,000; 10,000}.

4.3. Simulation study 3

Many researchers have studied the application of the 4PLM to psychopathology testing
(Culpepper, 2016; Reise & Waller, 2003; Waller & Reise, 2010), where subjects with
higher levels of psychopathology may be reluctant to self-report attitudes, behaviours,
and/or experiences. Therefore, in this simulation, we compared the performance of the
proposed MMAP estimation with that of BM estimation in estimating the 4PLM with a set
of psychopathology items. Following Culpepper (2016) and Waller and Feuerstahler
(2017), this study generated responses based on the 4PLM with the M = 23
psychopathology item parameters from Waller and Reise (2010) as the true values (see
Table 5). As in simulation studies 1 and 2, the examinees’ abilities (0) were randomly
drawn from N(0,1), and three sample sizes N = {1,000, 5,000, 10,000} were considered.
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The MMAP estimates were calculated with the informative prior distributions that
were given for MMAP1 in Table 1. In the 7t R library, the logistic model was design by a
slope-threshold parameterizations, that is, 1.7a; and 1.7a;b; were estimated instead of
directly estimating a; and b,. According to Waller and Feuerstahler (2017), the priors for
1.7a and 1.7ab were set to 1.7a ~ LN(1,1%) and 1.7ab ~ N(0,2%). In addition, the prior
distributions for ¢ and d were set to logistic (¢) ~ N(—1.2, 0.5% and logistic(d) ~ N(1.2,
0.52), which are approximately equal to Beta(5,17) and Beta(17,5) (see Figure 4). To sum
up, the prior distributions for the two estimation methods were very close. The MMAP and
BM estimations of the 4PLM were calculated across 500 replications, and the RMSE were
calculated to evaluate the properties of the estimators (see Figures 5-7).

From these plots, it can be observed that, for most of the 23 items, the MMAP
estimators of the item parameters (&, b, ¢, d) provided lower RMSE values than did the BM
estimators across the three sample sizes. It is ecident that the accuracy of the MMAP
estimators was superior to that of the BM estimators. It is obvious that the RMSEs of the
MMAP and BM estimators both display decreasing trends as the sample size increases. That
is, increasing the sample size can improve the estimation accuracy, which is expected.
Finally, there are still differences between the RMSEs of the MMAP and BM estimators
under a sample size of N = 10,000, but the superiority of the MMAP estimator is weaker,
especially for the b and ¢ parameters, and the two estimators were extremely close.

5. Empirical study

This section demonstrates an application of the 4PLM with an empirical example. The
data setis from a state reading assessment test that was previously analysed in Tao, Shi, and
Chang (2012). The data set includes 50 dichotomous items and the sample size is = 2,000.
In our study, the 4PLM was fitted to the response data of the 50 dichotomous items. The
item parameters were estimated using the MMAP method, and the examinees’ abilities
were estimated using Warm’s weighted maximum likelihood estimation (WMLE). Warm’s
WMLE has been proved to be superior to the ML and expected a posteriori estimates by
many studies (Meng, Tao, & Chen, 2016; Peneld & Bergeron, 2005; Wang & Wang, 2001;

Table 5. Item parameter values for the psychopathology item in Waller and Reise (2010)

Item parameters Item parameters
Item a b c d Item a b c d

1 1.91 —0.28 0.04 0.52 14 0.84 0.72 0.04 0.75
2 1.95 —0.16 0.02 0.48 15 1.13 0.15 0.03 0