Father-Inclusive Perinatal Parent Education Programs: A Systematic Review

Joyce Y. Lee, MSW, Heather A. Knauer, PhD, Shawna J. Lee, PhD, Mark P. MacEachern, MLIS, Craig F. Garfield, MD

CONTEXT: Fathers contribute to their children’s health starting at the beginning of life. Few parent education programs include fathers. Among those that do, there is little effort to report program effects on father outcomes.

OBJECTIVE: In this systematic review, we examined father-inclusive perinatal parent education programs in the United States as they relate to a range of father outcomes.

DATA SOURCES: The databases searched were PubMed, Cumulative Index to Nursing and Allied Health Literature, Embase, Ovid Medline, Cochrane Central Register of Controlled Trials, and PsycINFO.

STUDY SELECTION: Studies were included if they included an evaluation of a parent education program and a report of father outcomes measured within 1 year of the child’s birth and were conducted within the United States.

DATA EXTRACTION: Of 1353 total articles, 21 met study criteria.

RESULTS: The overall state of the father-inclusive perinatal parent education program literature was poor, with few interventions available to fathers. Available programs were associated with increased father involvement, coparenting relationship, partner relationship quality, father’s mental health, and father’s supportive behaviors. Program effects on father-infant interaction, parenting knowledge, and attitudes and parenting self-efficacy were inconclusive. Three programs emerged as best evidence-based interventions.

LIMITATIONS: Risk of bias was high for many studies. Outcome variability, small sample size, and publication bias contributed to the weak evidence base.

CONCLUSIONS: There is a need for more evidence-based interventions to support fathers. Clinicians play a key role in engaging fathers in early parent education programs and health care settings. PROSPERO registration number: CRD42017050099.
Father involvement with children has increased in recent decades. Research has demonstrated the positive contributions fathers make to their children’s health and well-being. For instance, father involvement has been linked to decreased risk of prematurity and infant mortality. It has also been associated with the father’s parenting confidence, positive father-child interactions, future father involvement, and healthier coparenting relationships. Father involvement benefits fathers themselves; men who are involved with their children report greater physical and mental health.

Despite the accumulating evidence for the benefits of father involvement, few early parent education programs have focused on including fathers. The vast majority of existing parent education programs target mothers. This disparity in service likely hinders men’s engagement in important pregnancy- and childbirth-related decision-making processes. It is also important to involve fathers in their children’s lives as early as possible because this may serve to reduce the risk of child maltreatment. Among programs that do include fathers, relatively few examine whether program effects are associated with father outcomes separate from that of mother or couple. This is because mother and father data in analyses have been aggregated in studies.

Previous systematic reviews of father-inclusive parent education programs have been limited by having either a narrow scope (ie, including randomized controlled trials [RCTs] only) or broad scope (ie, looking at child outcomes spanning from infancy to adolescence, including both international and US studies). Given the unique characteristics of fathering in the United States, where rates of unmarried childbirth (40%) and nonresidential fathering (16%) are high, a review that is focused on US-based interventions is warranted. Hence, our aim in this systematic review was to examine literature on US-based father-inclusive parent education programs across the perinatal period. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach and included a broad range of father outcomes and research designs to ensure comprehensiveness.

METHODS

Data Sources

A computer-based search was conducted in 6 electronic databases, including PubMed, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Embase, Ovid Medline, Cochrane Central Register of Controlled Trials, and PsycINFO on July 28, 2017. Publication date for included studies was not restricted. Because the United States context in which fathering occurs is diverse, “father” was defined broadly to include biological, residential, nonresidential, adolescent fathers, father figures, and father surrogates. Perinatal was defined as a period spanning from pregnancy through the first year of the child’s life.

We created a general search template using keywords for father involvement in perinatal parenting programs that could be applied to all 6 databases with minimal tailoring (see Fig 1 for an example of a CINAHL adaptation) (Supplemental Information). The computer-based search yielded 1353 unique results that were exported to an EndNote library. This study was preregistered at PROSPERO: www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42017050099.

Inclusion and Exclusion Criteria

To capture the widest breadth, studies were included in this systematic review on the basis of the following criteria: (1) the study was conducted by using experimental (ie, RCT), quasi-experimental (ie, no control group or no pretest), and nonexperimental (eg, qualitative) methods to evaluate perinatal parent education programs; (2) the study included or targeted fathers; (3) a US sample was used in the study; (4) the methods of the study were implemented in various settings (eg, hospital, online); (5) the researchers of the study measured and reported on father outcomes (for details, see...
next section); and (6) the researchers of the study assessed outcomes within 1 year of the child’s birth (but could have subsequent follow-up assessments). Studies were included regardless of program effectiveness but were excluded if the researchers only reported aggregated mother and father outcomes or if the studies were not peer-reviewed (e.g., dissertations and theses). Detailed inclusion and exclusion criteria can be found in the study’s PROSPERO preregistration. By using these criteria, study titles, abstracts, and full-texts were reviewed. In Fig 2, a PRISMA flowchart of this selection process is provided.

Data Abstraction

The following information was abstracted from each study: author, publication year, study aim, study design, name of the program, population, father outcomes, and results. Abstracted father outcomes included: (1) father-infant interaction; (2) father involvement; (3) father’s parenting knowledge; (4) father’s attitude and parenting self-efficacy; and (5) father’s coparenting relationship with the mother. Father’s mental health was abstracted as a secondary thematic category, along with “other” father-related outcomes, including partner relationship quality, father’s supportive behaviors, and father’s evaluation of the intervention.

Data Synthesis

We used a narrative approach, which is a preferred method when empirical approaches and variables are highly varied across studies, for example, in terms of population, interventions, outcomes, and measurement of outcomes. This approach relies on the use of words and texts to summarize and explain study findings. We examined aspects of study designs and intervention characteristics as reasons for potential differences in directions and effects across programs. We used father outcomes as classification schemes for synthesizing data. We also organized the narrative by study design and risk of bias (RoB) assessment to weigh the evidence according to methodological strengths and weaknesses.

Assessment of RoB

To assess RoB in each study, we used an adapted version of the risk of bias (RoB) assessment tool for nonrandomized studies (RoBANSs) rather than the Cochrane Risk of Bias Tool because of the small number of RCTs and greater flexibility of the RoBANSs in assessing studies with various research designs. We assessed RoB for the following bias categories: participant selection, detection, attrition, and reporting. We assigned an RoB rating for each category as “low,” “high,” or “unclear.” A value of 1 was assigned to low-risk responses and a value of 0 to high-risk and unclear responses. Each study received a total value between 0 and 4. Studies receiving a score of 2 or less were deemed to be high-risk. The adapted RoBANSs, along with details of each bias category, is included in the study’s PROSPERO preregistration.

RESULTS

Description of Studies

Twenty-one of 1353 articles met study criteria. Of these, 16 studies were quantitative (7 RCTs, 1 quasi-RCT, 7 quasi-experimental, and 1...
nonexperimental) and 5 studies were qualitative (4 mixed methods and 1 phenomenological) (Table 1). In the 21 studies, 19 different father-inclusive perinatal interventions were evaluated, of which 11 were focused on general education of childbirth and infant care and development,35–46 4 were focused on partner relationship and/or coparenting skills,47–51 and 4 were clinical- or case management–based interventions (Table 2).52–55 In 8 programs, middle-class, majority white parents were primarily targeted.30,40–44,47,48,51 In 4 of the programs, unmarried couples were included.35–37,49 Four programs were designed for adolescent parents, all of whom were ethnic and racial minorities.39,50,54,55 In 8 programs, first-time parents were primarily targeted.35–37,43–49,51,52 For further details see Table 3.

Study sample sizes were small, and they ranged between 14 and 173 participants. Most studies included examination of a father-inclusive perinatal parent education program at a single time point. Only 1 study contained an examination of long-term outcomes.48 In the majority of the studies, researchers implemented programs in hospital settings, with outcomes based on parents’ self-reports. Some researchers delivered the intervention at the group level,35–40,48,55 couple level,43,49,52 or individual level.10,42,45,46 Studies also differed in whether researchers used a manualized curriculum, who delivered the sessions (eg, nurse versus social worker), when the sessions were delivered (eg, before birth versus after birth), and mode of intervention delivery (eg, in-person versus mobile application) (for details see Table 2). Of the 21 studies, only 4 were categorized as low RoB (ie, scoring 3 or higher) and 17 high RoB (ie, scoring 2 or less) as shown in Table 4. Most of the high-risk studies were given that categorization because of the use of convenience samples, lack of blinding, and income outcome data. The following section provides a narrative synthesis of study outcomes, with more consideration given to studies with low RoB than those with high RoB.

Narrative Synthesis by Father Outcomes

Father-Infant Relationship

In 6 quantitative studies (4 RCTs, 1 quasi-experimental, and 1 nonexperimental), researchers examined father-child interaction outcomes.35–37,42,47,52 The results of an RCT of a coparenting relationship program47 revealed that intervention group fathers demonstrated fewer dysfunctional parent-child interactions (effect size \(d = 0.70\)) compared with control group fathers at 6 months postpartum. The results of an RCT of a general education program35,36 revealed significantly improved sensitivity during father-infant feeding interactions before hospital discharge but not at the 1-month follow-up. The results of a quasi-experimental study of a second general education program37 revealed significantly more socioemotional growth fostering by fathers and mutual socioemotional father-child interactions with children ages 6 to 24 months. The results of a nonexperimental study of a third general educational program42 revealed a significant link between full program participation and mothers’ reports of father-infant relationship. Finally, the results of an RCT of a clinical intervention in which fathers observed a neonatal assessment52 revealed improvement in the quality of father-infant interactions at 2 months postpartum. Although all of the above revealed significant positive program effects on some aspect of father-infant interaction,35–37,42,52 all but the first RCT47 were at high RoB.

Father Involvement

Researchers for 4 quantitative studies (2 RCTs, 1 quasi-RCT, and 1 quasi-experimental) examined father involvement outcomes.48,50,52,54 The results of an RCT of a coparenting program48 revealed significantly more positive parenting (\(d = 0.45\); eg, support for child exploration) and less negative parenting (\(d = 0.60\); eg, irritability) by the father when the child was 1 year old. The results of a quasi-randomized study of another coparenting program50 revealed no effects at posttest (during pregnancy) but did reveal a significant improvement in father’s engagement in caregiving activities (eg, feeding the infant, changing diapers) by both father’s and mother’s reports (effect sizes \(\eta_p^2 = 0.07\) and \(\eta_p^2 = 0.08\), respectively) at 3 months postpartum. Both of these studies were rated to have low RoB. The results of a quasi-experimental study of a case management program for adolescent fathers54 revealed that fathers in the intervention group had greater attendance of prenatal health visits, fatherhood

<table>
<thead>
<tr>
<th>TABLE 1 Research Designs of Included Studies (N = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Design</td>
</tr>
<tr>
<td>Quantitative studies</td>
</tr>
<tr>
<td>RCT</td>
</tr>
<tr>
<td>Quasi-randomized</td>
</tr>
<tr>
<td>Quasi-experimental</td>
</tr>
<tr>
<td>Pretest-posttest control group</td>
</tr>
<tr>
<td>No pretest or no control group</td>
</tr>
<tr>
<td>Nonexperimental</td>
</tr>
<tr>
<td>Qualitative studies</td>
</tr>
<tr>
<td>Mixed methods</td>
</tr>
<tr>
<td>Phenomenological</td>
</tr>
<tr>
<td>Author(s)</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>General education programs of childbirth, infant care, and development</td>
</tr>
<tr>
<td>Bryan,57 2000</td>
</tr>
<tr>
<td>Diemer,58 1997</td>
</tr>
<tr>
<td>Fawcett and Burritt,47 1985</td>
</tr>
<tr>
<td>Fawcett and Henklin,44 1987</td>
</tr>
<tr>
<td>Hart and Foster,40 1997</td>
</tr>
<tr>
<td>Mackert et al.,45 2015</td>
</tr>
<tr>
<td>Mackert et al.,46 2017</td>
</tr>
<tr>
<td>Pfannenstiel and Honig,45,46 1991, 1995</td>
</tr>
<tr>
<td>Smith and Smith,41 1978</td>
</tr>
<tr>
<td>Van de Carr and Lehrer,42 1986</td>
</tr>
<tr>
<td>Westney et al.,39 1988</td>
</tr>
<tr>
<td>Relationship or coparenting programs</td>
</tr>
<tr>
<td>Fagan,50 2008</td>
</tr>
</tbody>
</table>
groups, birthing classes, and at birth compared with control group fathers. Additionally, mothers in a qualitative study of a relationship program reported greater commitment from their male partners as well as willingness from male partners to discuss preparations for childbirth and future involvement. However, these studies were rated at high RoB. In contrast, the results of an RCT of a clinical intervention with a high RoB revealed no effects on father involvement in caregiving.

Father’s Knowledge, Attitudes, and Mental Health

Father’s Parenting Knowledge

Researchers for 3 quantitative studies (1 RCT, 1 quasi-experimental, and 1 nonexperimental) examined fathers’ parenting knowledge outcomes. All 3 programs had significant effects on fathers’ knowledge of infant care and/or development or pregnancy and prenatal parent knowledge. However, these studies were deemed to be at high RoB because of methodological limitations, such as ambiguity in when pretest and posttest were administered (eg, whether during pregnancy or how many months at postpartum).

Father’s Attitudes and Parenting Self-Efficacy

Researchers for 3 quantitative studies (1 RCT, 1 quasi-RCT, and 1 nonexperimental) and 1 qualitative study examined father’s attitudes and parenting self-efficacy outcomes. The results of...
<table>
<thead>
<tr>
<th>Author, Program</th>
<th>Study Design</th>
<th>Study Aim</th>
<th>Study Population</th>
<th>Results Related to Father Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beal, NBAS, Brazelton</td>
<td>RCT</td>
<td>To investigate the effects of NBAS on father-infant interaction and other outcomes</td>
<td>Target population: working class, white N = 44 fathers All first-time fathers; mean age 28 y; 14 y of education; working class; majority white</td>
<td>Outcomes assessed at 2 mo postpartum Father-infant interaction: higher father-infant interaction quality (P < .01). No difference in father-infant interaction amount between groups Father involvement in caregiving: no significant differences between groups Father’s attitude and parenting self-efficacy: no significant differences between groups</td>
</tr>
<tr>
<td>Feinberg and Kan, Feinberg et al</td>
<td>RCT</td>
<td>To assess whether the FF had positive effects on the short-term outcomes, including coparenting, parental depression and anxiety, and distress in the parent-infant relationship at posttest</td>
<td>Target population: middle class, white N = 188 couples All primiparous and cohabiting couples; mean age 29.76 y; 14.5 y of education; median family income $65,000; 90% white</td>
<td>Outcomes assessed at 6 mo and 1 y postpartum Father-infant interaction: less parent-child dysfunctional interactions compared with control at 6 mo postpartum (P < .05) Father involvement: higher levels of positive parenting (eg, sensitivity) and lower levels of negative parenting (eg, irritability) compared with control at 1 y (P < .05) Coparenting relationship: higher coparenting support and parenting-based closeness with their partner compared with control at 6 mo postpartum (P < .05). Lower coparental competition and triangulation compared with control at 1 y (P < .05). No significant difference between groups for coparenting undermining at 6 mo or 1 y Father’s mental health: no significant differences between groups for depressive symptoms and anxiety at 6 mo Other (ie, partner relationship): more partner warmth compared with control at 1 y (P < .05)</td>
</tr>
<tr>
<td>Field et al, pregnancy massage therapy delivered to mothers by fathers</td>
<td>RCT</td>
<td>To examine whether pregnancy massage therapy delivered by fathers twice a wk for 16 wk could reduce fathers’ mental health issues and improve perceptions of relationship with mother</td>
<td>Target population: low- to middle-income, ethnic and racial minorities N = 47 women Prenatally depressed women and their partner in second trimester of pregnancy; mean age 27.9 y; 46% of women with high school degree or less; predominantly low to middle income; 59% of the women Hispanic, 32% African American, 9% white</td>
<td>Outcomes assessed at 32-wk gestation Father’s mental health: decreased levels of depression and anxiety compared with control (P < .01) Other (ie, partner relationship quality): improved perceptions of relationship with their partner compared with control (P < .01)</td>
</tr>
<tr>
<td>Pfannenstiel and Honig, Information and Insights About Infants (III)</td>
<td>RCT</td>
<td>To determine the effectiveness of a prenatal information support program on father’s knowledge of child care and development, sensitivity, and empathy with infants among first-time, low-income fathers-to-be in both low- and high-risk pregnancy situations</td>
<td>Target population: low-income, majority white N = 67 fathers All first-time fathers; age range 19–32 y; mean 11 y of education; 70% white; 54%; unmarried</td>
<td>Outcomes assessed at intrapartum (birth through hospital discharge of infant) and 1 mo postpartum Father-infant interaction: more sensitive during feeding interactions on the day of hospital discharge than control (P < .01). Fade out of program effect by 1 mo postpartum (P = .98) Father’s parenting knowledge: more knowledge of infant care and development than control (P < .001)</td>
</tr>
<tr>
<td>Author, Program</td>
<td>Study Design</td>
<td>Study Aim</td>
<td>Study Population</td>
<td>Results Related to Father Outcomes</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Westney et al, prenatal education program</td>
<td>RCT, nonrandom sample</td>
<td>To examine (1) the effects of a prenatal education program for unwed adolescent fathers on their knowledge of prenatal care, labor, delivery, and infant development and care; and (2) the relationship between knowledge and supportive behaviors toward mother</td>
<td>Target population: adolescent, African American; N = 28 couples; mean age 16.9 y for intervention group fathers; mean age 17 y for control group fathers; African American.</td>
<td>Outcomes assessed immediately after the program. Father’s parenting knowledge: intervention fathers significantly increased mean total parenting knowledge scores (P < .05), as well as scores on pregnancy and prenatal (P < .05) and infant development and care (P < .01) subscales, compared with control. Other (ie, father’s supportive behaviors): significant correlations (P < .05) between father’s parenting knowledge and supportive behaviors for both intervention and control group fathers.</td>
</tr>
<tr>
<td>Fagan, Minnesota Early Learning Design (pretest-posttest control group)</td>
<td>Quasi-RCT; rather than follow an intent-to-treat model, the authors created a no-intervention control group from the postrandomization attrition group</td>
<td>To examine the effects of a prebirth coparenting intervention on fathers’ support of the mother, parental alliance, coparenting communication, father prenatal involvement, father engagement with the infant, and parenting self-efficacy</td>
<td>Target population: adolescent, ethnic and racial minorities; N = 154 fathers; Age range 14–25 y; 59% completed <12th grade; 47.3% African American, 38.8% Hispanic; 85.5% primiparous</td>
<td>Outcomes assessed immediately after program (during pregnancy) with a follow-up at 3 mo postpartum. Father involvement: no significant differences between groups in prenatal involvement immediately after program. There was significantly higher father involvement with infant caregiving compared with control at 3 mo postpartum (P < .05). Effect size, η² = 0.07 for fathers’ reports. Father’s attitude and parenting self-efficacy: no significant differences in parenting competence at follow-up. Coparenting relationship: significant increases in parenting alliance (P < .001) and communication (P < .01) compared with controls immediately after program. Effect sizes, η² = 0.09 and η² = 0.10, respectively. Significant increases in parenting alliance (P < .001) at follow-up (η² = 0.19) compared with controls. Other (ie, father’s supportive behaviors): significant increases in father’s support of the mother (P < .05) compared with controls at follow-up (η² = 0.07).</td>
</tr>
<tr>
<td>Bryan, GCF</td>
<td>Quasi-experimental (ie, pretest-posttest control group)</td>
<td>To determine the effects of GCF, a prenatal couple group intervention, on parent-infant interaction postbirth</td>
<td>Target population: low-to-middle-income, white; N = 77 couples; All married or unmarried couples; mean age 28 y; 44% of participants had some college education and 39% had completed college or beyond; median annual income $20,000–$29,999; majority white, primiparous</td>
<td>Outcomes assessed at an average 10.5 mo postpartum. Father-infant interaction: intervention group fathers scored higher in socioemotional growth fostering (P < .05) compared with control group fathers. Intervention group fathers also scored higher on the contingency scores for mutual socioemotional interaction between father and child compared with control group fathers (P < .05).</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Program</td>
<td>Study Design</td>
<td>Study Aim</td>
<td>Study Population</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Diemer et al</td>
<td>Father-focused discussion perinatal classes</td>
<td>Quasi-experimental (i.e., pretest-posttest control group)</td>
<td>To compare the effects of father-focused discussion perinatal classes with traditional childbirth classes on expectant fathers' stress or psychological symptom status, coping strategies, social support, and spousal relations at posttest</td>
<td>Target population: middle-income, white; Mean age 28 y; average education 14.3 y; average family income $35,250; majority white and married; 71% first pregnancy</td>
</tr>
<tr>
<td>Smith et al</td>
<td>Rising</td>
<td>Quasi-experimental (i.e., pretest-posttest control group)</td>
<td>To examine the effects of the prenatal intervention on partner relationship and perceived male partner support</td>
<td>Target population: adolescent, ethnic and racial minorities; Mean age 18.7 (range: 15–29); majority of mothers in school; 42.2% did not have enough money to live on; majority African American and Hispanic</td>
</tr>
<tr>
<td>Barth et al</td>
<td>TAPP</td>
<td>Quasi-experimental, (i.e, no pretest; posttest only with nonequivalent groups)</td>
<td>To describe TAPP and analyze its effects on infants' birth weights</td>
<td>Target population: adolescent, ethnic and racial minorities; N = 121 fathers; Mean age 19, 33% enrolled in school and 34% graduated from high school; 50% African American, 30% Hispanic, 10% white</td>
</tr>
<tr>
<td>Hart and Foster</td>
<td>Child birth education classes that included sessions on signs of labor, stages of labor, pain management, etc</td>
<td>Quasi-experimental (i.e, no control group; 1 group pretest-posttest)</td>
<td>To examine couples' prenatal attitudes toward childbirth before and after childbirth education classes</td>
<td>Target population: middle-income, majority white; N = 73 couples; Mean age 31 y (range: 15–54); all had high school degree and 42% had college degree; majority white; 82% of mothers primiparous</td>
</tr>
<tr>
<td>Salman-Engin et al</td>
<td>FIOC</td>
<td>Quasi-experimental (i.e, no control group; 1 group pretest-posttest)</td>
<td>To examine whether parents derived material benefits from participation in the prenatal FIOC coparenting intervention</td>
<td>Target population: low-income, African American; N = 14 couples; All primiparous couples; mean age 24 y for fathers (range: 14–40); all families had income 200% below poverty level; African American; unmarried</td>
</tr>
<tr>
<td>Author, Program</td>
<td>Study Design</td>
<td>Study Aim</td>
<td>Study Population</td>
<td>Results Related to Father Outcomes</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Smith and Smith, parent education project</td>
<td>Quasi-experimental (i.e., no control group; 1 group pretest-posttest)</td>
<td>To educate parents about the physical and psychological aspects of pregnancy, childbirth, infant care, parenting, and child development, and to establish and strengthen parents’ systems of support</td>
<td>Target population: middle-income, married; N = 41 couples; Mean age 29.1 y; 70% of fathers and 47% of mothers completed greater than high school; 73% were primiparous; married</td>
<td>Outcomes assessed at last session. Father’s parenting knowledge: no improvement in father knowledge of when a child begins to see or hear, but there was improvement in father knowledge of child development (P < .05)</td>
</tr>
<tr>
<td>Van de Carr and Lehrer, Prenatal University (Van de Carr, 1979) program during pregnancy</td>
<td>Nonexperimental (3 groups, posttest only)</td>
<td>To examine the effects of the Prenatal University program on father-infant relationships as perceived by the mother</td>
<td>Target population: middle-income; N = 150 parents; Multiparous (no other demographic information)</td>
<td>Outcomes assessed on 6 mo to 3 y-old children. Father-infant interaction: full- and partial-participant groups reported more enhanced father-child relationship compared with the nonparticipants group (P < .05)</td>
</tr>
<tr>
<td>Fawcett and Burritt, educational pamphlet on cesarean delivery and follow-up via home visit or telephone call to reinforce pamphlet content</td>
<td>Mixed methods</td>
<td>To develop and test an antenatal education program of cesarean birth information</td>
<td>Target population: upper-middle income; N = 15 couples; Primiparous who had a cesarean birth; mean age 31.3 y for fathers; upper-middle to upper class</td>
<td>Outcome assessed shortly after birth. Other (i.e., father’s evaluation of the intervention): 13 of 15 fathers indicated that the pamphlet was informative. All fathers stated that the follow-up home visit or phone call was beneficial in that it provided opportunity for clarification of pamphlet content and provision of additional information about pregnancy in general and cesarean birth.</td>
</tr>
<tr>
<td>Mackert et al, pregnancy-related e-health application on a tablet computer developed by authors</td>
<td>Mixed methods</td>
<td>To investigate the value of an e-health application to educate men about pregnancy-related health</td>
<td>Target population: majority white; N = 23 adult men; Mean age 28 y; all men had at least some level of postsecondary education; 52% white, 26% Hispanic, 9% Asian, 9% multiracial or other, 4% African American</td>
<td>Outcome assessed during and immediately after the e-health application was used. Other (i.e., father’s evaluation of the intervention): most men reported enjoying the graphics and stated that they were easy to understand. They also liked the overall “feel” of the application. Men expressed mixed opinions about whether they would use an application such as this one in the future</td>
</tr>
<tr>
<td>Fawcett and Henklen, educational pamphlet on cesarean delivery and follow-up via home visit or telephone call to reinforce pamphlet content</td>
<td>Mixed methods</td>
<td>To compare responses of vaginally delivered and cesarean-delivered parents to an antenatal educational program of cesarean birth information and to determine the feasibility of incorporating the educational program into Lamaze childbirth preparation classes</td>
<td>Target population: upper-middle to upper class; N = 42 couples; Pregnant women and their male partner; mean age 31.5 y for men; majority upper-middle to upper class</td>
<td>Outcome assessed at 1–3 wk postpartum. Other (i.e., father’s evaluation of the intervention): no significant differences in men’s reactions to the pamphlet were found between the fathers from the cesarean delivery group and those from the vaginal delivery group. Most men indicated that the pamphlet provided the information they needed to prepare for the possibility of a cesarean birth. All but 1 man in each delivery group stated that the pamphlet and class discussion provided desired information</td>
</tr>
<tr>
<td>Mackert et al, My Pregnancy Today (BabyCenter, no date), a pregnancy-related e-health application on a tablet computer</td>
<td>Mixed methods</td>
<td>To investigate the value of an e-health application to educate men about pregnancy-related health information regardless of the men’s level of health literacy</td>
<td>Target population: ethnic and racial minorities; N = 32 adult men; Mean age 33.2 y; 75% reported having at least high school diploma or GED; 38% Hispanic; 26% African American; 28% white; 9% multiracial; majority had at least 1 child or a partner who was pregnant</td>
<td>Outcome assessed during and immediately after using the tool, during pregnancy. Other (i.e., father’s evaluation of the intervention): men generally stated that the application was easy to use and that it contained useful information, in general, participants felt there was “just the right amount of information” presented, and they did not need to click on the videos for more information</td>
</tr>
</tbody>
</table>
a quasi-RCT of a coparenting program50 revealed no program effects on fathers’ sense of parenting competence at 3 months postpartum. This was the only study considered to have low RoB. Similarly, the results of an RCT of a clinical program52 revealed no program effects on fathers’ attitudes toward caregiving at 2 months postpartum. In contrast, the results of 2 nonexperimental studies40,51 revealed positive effects in the prepartum period. Specifically, the results of 1 nonexperimental study of a general education program40 revealed a significant increase from pretest to posttest in fathers’ level of anticipated control during labor and delivery. The results of another study, which was a qualitative study of a relationship program intervention that occurred during pregnancy,51 revealed that fathers reported feelings of confidence and preparedness for fatherhood before the birth of the infant.

Father's Mental Health

Researchers for 4 quantitative (2 RCTs and 2 quasi-experimental) and 1 qualitative studies examined fathers’ mental health outcomes.38,47,49,53 The results of a low RoB quasi-experimental study of a general education program38 revealed significant increases in fathers’ social support seeking related to pregnancy-related stressors measured during the third trimester. It was reported in a qualitative study of a relationship program intervention that occurred during pregnancy,51 that fathers felt improved emotion regulation and greater relaxation, peace, and enjoyment after the intervention. In a high RoB RCT of a massage-based program,53 significant decreases in fathers’ depression and anxiety levels at 36 weeks of pregnancy were reported. In contrast, the results of 2 studies of coparenting programs57,49 did not reveal significant effects on fathers’ mental health in the
TABLE 4 RoB Assessment for Included Studies

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Participant Selection</th>
<th>Blinding of Outcome</th>
<th>Incomplete Outcome Data</th>
<th>Selective Reporting</th>
<th>Cumulative Risk Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barth et al., 1988</td>
<td>Low</td>
<td>Low</td>
<td>Unclear</td>
<td>High</td>
<td>2</td>
</tr>
<tr>
<td>Beal, 1989</td>
<td>Unclear</td>
<td>Low</td>
<td>Unclear</td>
<td>Low</td>
<td>2</td>
</tr>
<tr>
<td>Bryan, 2000</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>2</td>
</tr>
<tr>
<td>Diemer, 1997</td>
<td>Low</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>3</td>
</tr>
<tr>
<td>Fagan, 2008</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>4</td>
</tr>
<tr>
<td>Fawcett and Burritt, 1985</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>0</td>
</tr>
<tr>
<td>Fawcett and Henklin, 1997</td>
<td>Unclear</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>2</td>
</tr>
<tr>
<td>Feinberg and Kan, 2008</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>3</td>
</tr>
<tr>
<td>Feinberg et al., 2009</td>
<td>Low</td>
<td>Low</td>
<td>Unclear</td>
<td>Low</td>
<td>3</td>
</tr>
<tr>
<td>Field et al., 2008</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Unclear</td>
<td>0</td>
</tr>
<tr>
<td>Garmel and Piercy, 2015</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>2</td>
</tr>
<tr>
<td>Hart and Foster, 1997</td>
<td>Low</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>2</td>
</tr>
<tr>
<td>Mackert et al., 2015</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>2</td>
</tr>
<tr>
<td>Mackert et al., 2017</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>2</td>
</tr>
<tr>
<td>Pfannenstiel and Honig, 1989</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>2</td>
</tr>
<tr>
<td>Pfannenstiel, and Honig, 1995</td>
<td>Low</td>
<td>High</td>
<td>Unclear</td>
<td>High</td>
<td>1</td>
</tr>
<tr>
<td>Salman-Engin et al., 2017</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>Smith and Smith, 1978</td>
<td>High</td>
<td>Unclear</td>
<td>Unclear</td>
<td>High</td>
<td>0</td>
</tr>
<tr>
<td>Smith et al., 2016</td>
<td>High</td>
<td>Unclear</td>
<td>High</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>Van de Carr and Lehrer, 1986</td>
<td>Low</td>
<td>Unclear</td>
<td>High</td>
<td>Low</td>
<td>2</td>
</tr>
<tr>
<td>Westney et al., 1988</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>0</td>
</tr>
</tbody>
</table>

Low risk = 1; high risk = 0; unclear risk = 0. Each study could receive up to a cumulative risk value of 4. Studies scoring a cumulative risk value of ≤2 are considered to possess high RoB.

TABLE 5 Recommendations for Father-Inclusive Perinatal Parent Education Programs

1. Father-inclusive perinatal parent education programs should employ a family systems approach by involving both the father and mother.
2. When possible, programs should employ men or male-female teams as facilitators.
3. Consider employing facilitators that mirror the characteristics (eg, ethnicity or race, age, culture, language) of the fathers being served.
4. Train facilitators to welcome, engage, and directly speak with fathers.
5. Include father-only group sessions to provide a safe space for men to express their feelings, combat social isolation, and receive peer support.
6. Use a strengths-based perspective by focusing and building on the positive characteristics fathers bring to parenting.
7. Implement programs that are tailored to fathers’ parenting needs (eg, programs that are sensitive to the needs of nonresidential fathers).
8. Consider whether aspects of the clinical environment are welcoming and friendly to fathers (eg, pictures of men with infants, magazines for fathers and mothers in the waiting room).
9. Include in the curriculum content related to improving the coparenting relationship between the father and mother.
10. Allow room for fathers and mothers to discuss topics that are most relevant to their parenting circumstances and needs.
11. Develop special events that celebrate fathers and fatherhood.
12. Provide literature, such as brochures, to fathers that contain educational content related to infant care and development, stress management, and community-based resources.
13. Educate mothers about the importance of father involvement on child development and well-being.
14. Consider providing child care, financial incentives, meals, and/or transportation.
15. Deliver programs during times (eg, evenings or weekends) when it is convenient for fathers to participate.
16. Offer parent education along with other services, such as employment assistance, General Education Development test preparation, and support to address mental health and substance abuse problems.
17. When welcomed, use mobile technology, such as text messages, as reminders for program sessions, check-ins, and follow-ups (especially after a father misses a session).

Postpartum period. More specifically, the results of a quasi-experimental study of a coparenting program (high RoB) revealed no program effects on fathers’ depressive scores at 3 months postpartum. Similarly, the results of an RCT of another coparenting program (low RoB) revealed no effects on fathers’ depressive symptoms and anxiety at 6 months postpartum.

Father-Mother Relationship

Father’s Coparenting Relationship With Mother

Researchers for 3 quantitative studies (2 RCTs and 1 quasi-RCT) evaluated 2 coparenting programs that assessed father’s coparenting relationship with the mother.

The results of 2 RCTs of the same coparenting program revealed increased fathers’ coparenting support (d = 0.54) and closeness with the mother (d = 0.44) at 6 months postpartum. Intervention group fathers also reported reduced coparenting competition (d = 0.36) and triangulation (d = 0.28) when the child was 1 year old. The results of a quasi-RCT of another coparenting program revealed moderate effects on fathers’ reports.
of parenting alliance ($\eta_p^2 = 0.09$) and coparenting communication ($\eta_p^2 = 0.10$) at posttest during pregnancy. The same program50 had a greater effect on parenting alliance at 3 months postpartum ($\eta_p^2 = 0.19$).

Partner Relationship Quality

Researchers for 4 quantitative studies (2 RCTs and 2 quasi-experimental) and 1 qualitative study examined couples’ partner relationship quality outcomes.38,48,51,53,55 The results of an RCT of a coparenting program48 revealed positive intervention effects on men’s warmth toward their female partner when the child was 1 year old. The results of a quasi-experimental study of a general education program38 revealed positive effects on men’s use of reasoning measured during the third trimester. Both studies were considered to have low RoB.

Researchers for a qualitative study of a relationship program51 reported that fathers felt the intervention helped them establish deeper connections in their relationships, feel more love and appreciation toward their partner, relate to their partner’s point of view, and resolve conflict more effectively during pregnancy. Researchers for a high RoB RCT of a massage-based clinical program53 also reported significant increases in both fathers’ and mothers’ perceptions of partner relationship quality at 36 weeks of pregnancy. In contrast, a high RoB quasi-experimental study of a case management program for expectant adolescent parents55 found no effects on fathers’ support for the mother at 1 month postpartum.

Father’s Supportive Behaviors

Researchers for 3 quantitative studies (1 quasi-RCT and 2 quasi-experimental) examined fathers’ supportive behavior outcomes.38,50,55 The results of a quasi-randomized study of a coparenting program50 revealed moderate program effects on both fathers’ ($\eta_p^2 = 0.05$) and mothers’ ($\eta_p^2 = 0.07$) reports of fathers’ supportive behaviors toward the mother at posttest during pregnancy. Similarly, the results of a quasi-experimental study of a general education program38 revealed a significant positive effect on fathers’ support with housework in the third trimester. Both of these studies had low RoB. In contrast, a high RoB quasi-experimental study of a case management program for expectant adolescent parents55 found no effects on fathers’ support for the mother at 1 month postpartum.

DISCUSSION

To the best of our knowledge, we are the first to examine, in a systematic review, US-based father-inclusive perinatal parent education programs, and whether such programs are associated with important father outcomes. Overall, we demonstrated in our review of the literature that there are few father-inclusive programs during the perinatal period. We found only 19 different father-inclusive perinatal interventions evaluated in the literature despite considering a broad range of outcomes and taking a comprehensive approach to our review, with no limitations on publication date and research methodology. In addition to the small number of interventions, we found the general state of this research base to be weak, with only 4 out of the 21 studies rated as having low RoB. These results are consistent with previous systematic reviews on father-inclusive parent education programs.15,22,24,25,60 For example, in their review of the literature on father involvement programs for low-income families, Pruet et al60 noted few privately and federally funded programs have yielded promising outcomes. Suto et al24 found similar results in that their review revealed a lack of evidence for the effectiveness of father-focused prenatal childbirth education programs in protecting against paternal postpartum depression and improving partner relationship quality.

Given the weak evidence base, we were unable to draw firm conclusions about the effectiveness of early father-inclusive parent education programs. Nevertheless, there was some limited (ie, primarily based on 3 low RoB studies) evidence to suggest that early father-inclusive parent education programs may improve outcomes related to father involvement, coparenting relationship, partner relationship quality, father’s mental health, and father’s supportive behaviors. On the other hand, there was generally a lack of evidence for program effects on father-infant interaction, father’s parenting knowledge, and father’s attitudes and parenting self-efficacy.

Results from the RoB assessment suggested that 2 coparenting programs (Minnesota Early Learning Design for Young Dads50 and Family Foundations47,48) as well as a general perinatal education program developed by Diemer38 may serve as the best set of father-inclusive evidence-based interventions given their rigorous study designs, low levels of bias, promising outcomes, and methods of implementing the intervention that appeal to fathers. For example, the Minnesota Early Learning Design for Young Dads program50 not only used a manualized coparenting curriculum but also aimed to provide positive role models to adolescent fathers by employing previous male participants as facilitators. Family Foundations47,48 also used a manualized coparenting curriculum as well as a male-female facilitator team to implement interactive skills-based group sessions. Diemer38 developed a general perinatal education program that allowed for a men-only and women-only group for the first session so that fathers...
can share their feelings, combat their sense of isolation, and experience peer support. In subsequent mixed-sex groups, veteran childbirth educators were trained to ask questions and share comments directly with fathers to encourage participation.

Emerging Intervention Practices

As noted, there are few father-inclusive perinatal parent education programs. However, innovative perinatal programs are emerging to help fill this void.\(^{67-71}\) One intervention approach that shows promise is the use of home visitation program “add-ons” that target fathers. Home visitation models, such as the Nurse Family Partnership, that target low-income mothers are recognized as having lasting positive effects on the health and well-being of children.\(^{69}\) The Dads Matter program\(^{72}\) has trained female home visitors to work with fathers during their home visits, thus expanding the program to include working with mothers and fathers. Preliminary evidence from an RCT of the Dads Matter program suggested that the program was associated with increases in fathers’ reports of attitudes regarding the values of interactions. The Baby Elmo Program\(^{73}\) is a brief intervention originally designed for incarcerated teenage fathers. It uses a theoretically driven intervention approach and interactive sessions to help fathers understand their infant’s emotional needs and thus support positive father-child interactions.\(^{73,74}\) The program is now being tested as an RCT with community-based samples of low-income fathers.\(^{75,76}\)

Supporting Father Involvement, a group-based relationship strengthening program that has been successful in promoting father involvement,\(^{77,78}\) is currently being tested with high-risk couples involved in the child welfare system.\(^{60}\) In hospital settings, Conscious Fathering, an early father involvement program by Dorsey,\(^{79}\) has been providing expectant men with infant care skills and education on responsive fathering.

Clinical Implications

Despite the emergence of several noteworthy programs, research to develop and test early father-inclusive interventions has generally not kept pace with demographic trends showing increased father involvement and the important roles fathers play in promoting optimal child development. This issue likely persists because of multiple factors,\(^{80,81}\) including clinicians being unwilling or inadequately trained to engage fathers,\(^{15,63}\) programs not being tailored to men’s parenting needs,\(^{14,61,65}\) and maternal gatekeeping preventing men’s active involvement in programs during pregnancy.\(^{82,83}\) These factors may help explain some of the reasons for men feeling marginalized from health care settings\(^{84,85}\) and men’s perceptions that there is little role for their involvement during pregnancy and infancy.\(^{86-88}\)

Clinicians play a key role in promoting early father involvement because they are likely to be among the first to come in contact with mothers and expecting fathers or recently had an infant.\(^{6,89}\) As such, it is important for clinicians to consider factors when developing or implementing programs for parents as well as to employ practices that would support fathers to be engaged with the mother and infant across the perinatal period (Table 5). Yogman and Garfield\(^{4}\) have provided clinical recommendations, including acknowledging fathers’ presence when they attend health care visits, welcoming fathers directly, and soliciting their opinions when appropriate. Research suggests that many fathers do attend early health care visits, and positive interactions with health care providers are important in fathers’ evaluations of their experiences with the health care system and their willingness to participate in future visits.\(^{90}\) Clinicians can highlight fathers as important contributors to their children’s health and well-being by educating men on the roles they play in their children’s early years.

Clinicians can also play a key role in promoting positive coparenting and partner relationship quality by openly discussing with fathers and mothers the changes they are likely to experience during pregnancy and after the birth of the infant. Research suggests that men typically rely on women for parenting knowledge and thus could benefit from having positive male role models.\(^{21}\) In this regard, male health care staff may be effective in directly engaging fathers, educating them about infant care and child development, and providing anticipatory guidance. When appropriate and welcomed, fathers can be encouraged to provide supportive behaviors to mothers and assume more active child care roles.

Fathers’ mental health is another area of concern for clinicians. Research reveals that elevated paternal postpartum depression is associated with negative fathering behaviors and subsequent child outcomes.\(^{92-94}\) Yet, paternal depression is rarely acknowledged in health care settings. Clinicians can adopt both a family-centered care\(^{95}\) and family systems\(^{96}\) approach, screening both mothers and fathers for depression at pediatric settings to improve the health of men, their children, and their families across the perinatal period.\(^{6,92}\)

Limitations of the Evidence Quality

The majority of studies in this systematic review were deemed
to possess high RoB, suggesting that the general quality of evidence supporting father-inclusive parent education programs is weak. This systematic review may also be limited by the file drawer problem.97 Because we included only published studies, it is possible that unpublished research of father-inclusive interventions was missed. Furthermore, publication bias may result in some studies reporting significant results only, thus biasing the systematic review toward significant findings. We note that this review is exclusively focused on US-based programs to complement existing research conducted internationally.15,23 Most studies in this systematic review implemented interventions within a clinical setting, preventing the generalization of findings to other contexts. With several exceptions,43,44,47,48,50 most studies examined program effects at a single time point without follow-ups. As such, the existing evidence does not allow for understanding long-term program effects. Variability in the operationalization and measurement of study outcomes, small sample sizes, and other intervention characteristics also contribute to the weak evidence base. The authors of previous systematic reviews have noted similar methodological limitations.15,22,24

CONCLUSIONS

In this systematic review, we examined the current state of the literature on father-inclusive perinatal parent education programs. There were several notable findings. First, the overall evidence base revealed that there were few programs in which fatherhood is targeted across the perinatal period. This underscores the need for evidence-based interventions in which fathers are supported during this important period of child development. Second, available programs were associated with increased father involvement, coparenting relationship, partner relationship quality, father’s mental health, and father’s supportive behaviors. Third, evidence for program effects on father-infant interaction, father’s parenting knowledge, and father’s attitudes and parenting self-efficacy was inconclusive. Finally, the Minnesota Early Learning Design for Young Dads50 and Family Foundations47,48 coparenting programs and Diemer’s58 perinatal education program emerged as the best evidence-based interventions. Collectively, these results suggest that although some early father-inclusive parent education programs are promising, more rigorous evaluation research is necessary to examine program effects on father outcomes. Clinicians can help promote optimal outcomes for children and families by involving men in early parent education programs and health care visits across the perinatal period.

ACKNOWLEDGMENTS

Thank you to Muzi Lin for her contribution in compiling articles included in this article. Thank you to Drs. Brenda L. Volling and Andrew Grogan-Kaylor for their helpful comments on an earlier version of this article.

ABBREVIATIONS

CINAHL: Cumulative Index to Nursing and Allied Health Literature
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RCT: randomized controlled trial
RoB: risk of bias
RoBANS: risk of bias assessment tool for nonrandomized study

Downloaded from www.aappublications.org/news by guest on December 20, 2020

LEE et al

69. Heckman JJ, Holland ML, Makino K, Pinto R, Rosales-Rueda M. *An Analysis of the Memphis Nurse-Family Partnership Program.* Cambridge, MA:
National Bureau of Economic Research; 2017

70. Guterman NB, Bellamy JL. The effects of the Dads Matter intervention on child maltreatment and co-parenting outcomes: preliminary findings. 2018; Washington, DC, January 12, 2018

79. Dorsey B. Conscious fathering: engaging expectant dads during the golden moment and equipping them to thrive. 2011. Available at: https://static1.squarespace.com/static/5b8e46a6b8a60dbb45e41a5/t/58459bc43e00be2980f29aba/1480956101306/ConsciousFathering.pdf. Accessed April 1, 2018

84. Ledite R. An exploration of aspects of boundary ambiguity among young, unmarried fathers during the prenatal period. Fam Relat. 2007;56(2):162–174

Father-Inclusive Perinatal Parent Education Programs: A Systematic Review
Joyce Y. Lee, Heather A. Knauer, Shawna J. Lee, Mark P. MacEachern and Craig F. Garfield

Pediatrics 2018;142;
DOI: 10.1542/peds.2018-0437 originally published online June 14, 2018;

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/142/1/e20180437

References
This article cites 74 articles, 4 of which you can access for free at:
http://pediatrics.aappublications.org/content/142/1/e20180437#BIBL

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Fetus/Newborn Infant
http://www.aappublications.org/cgi/collection/fetus:newborn_infant_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.aappublications.org/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
http://www.aappublications.org/site/misc/reprints.xhtml

American Academy of Pediatrics
DEDICATED TO THE HEALTH OF ALL CHILDREN®
Father-Inclusive Perinatal Parent Education Programs: A Systematic Review

Joyce Y. Lee, Heather A. Knauer, Shawna J. Lee, Mark P. MacEachern and Craig F. Garfield

Pediatrics 2018;142;
DOI: 10.1542/peds.2018-0437 originally published online June 14, 2018;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/142/1/e20180437

Data Supplement at:
http://pediatrics.aappublications.org/content/suppl/2018/06/13/peds.2018-0437.DCSupplemental