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Abstract

Background: Sleep is increasingly recognized as a crucial component to rapid and successful rehabilitation, especially from traumatic
brain injuries (TBIs). Assessment of longitudinal patterns of sleep in a hospital setting, however, are difficult and often the expertise
or equipment to conduct such studies is not available. Actigraphy (wrist-worn accelerometry) has been used for many years as a sim-
ple proxy measurement of sleep patterns, but its use has not been thoroughly validated in individuals with TBI.
Objective: To determine the validity of different sensitivity settings of actigraphy analysis to optimize its use as a proxy for recording
sleep patterns in individuals with a TBI.
Design: Comparison of actigraphy to criterion standard polysomnographic (PSG)-determination of sleep on a single overnight study.
Setting: Six rehabilitation hospitals in the TBI Model System.
Participants: Two hundred twenty-seven consecutive, medically stable individuals with a TBI.
Interventions: Not applicable.
Main Outcome Measure: Concordance between PSG- and actigraphy-determined sleep using different sensitivity threshold settings
(low, medium, high, automated).
Results: Bland-Altman plots revealed increasing error with increasing amounts of wake during the sleep episode. Precision-recall sta-
tistics indicate that with less sensitive actigraphy thresholds, episodes identified as “wake” are usually “wake,” but many true epi-
sodes of “wake” are missed. With more sensitive actigraphy thresholds, more episodes of “wake” are identified, but only some of
these are true episodes of “wake.”
Conclusions: In hospitalized patients with TBI and poor sleep, actigraphy underestimates the level of sleep disruption and has poor
concordance with PSG-determined sleep. Alternate methods of scoring sleep from actigraphy data are necessary in this population.

Introduction

Although the criterion standard of determining sleep
states is the use of polysomnography (PSG), the conduct of
such studies is difficult for both the individual being studied
and the technical team doing the examination. The
extended time required to apply multiple skin electrodes
to the face and scalp, coupled with the effort required to
translate these electrical signals into stages of sleep (ie,
sleep scoring),minimizes the utility of PSG to trackmultiple
nights of sleep. To overcome this limitation, many studies

examining longitudinal changes in sleep use actigraphy
(ACG) as a proxy for sleep.1 ACG consists of a wrist-worn
accelerometer that stores movement data in finite epochs
(typically 30 or 60 seconds) that can be rapidly scored as
“sleep” or “wake” through validated algorithms.

Algorithms to convert an actigraphic signal into
“sleep” and “wake” epochs occur by determining when
a sufficient amount of movement has occurred during a
known sleep opportunity such that this movement is likely
associated with wake.2 In patient populations, however,
these algorithms might be inappropriate to accurately
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impute sleep andwake, especially in populations in which
sleep is highly fragmented and abnormal movement
might occur. Both of these situations can occur in individ-
uals with a traumatic brain injury (TBI). In ACG-based
studies of sleep in individuals with TBI, significant
changes to sleep are often evident.3–9 To date, only one
study has validated ACG against PSG in individuals with
TBI10 and it reported that nightly summary statistics
(eg, sleep efficiency, total sleep time) were reasonably
well associated between ACG and PSG recordings.
Epoch-by-epoch analysis of sleep scoring and the accu-
racy of various algorithms to convert ACG data into
sleep/wake states, however, have never been reported.
The purpose of the present analysis was to examine the
utility of ACG data, using different sensitivity thresholds,
to accurately impute sleep and wake in a large, prospec-
tive cohort of individuals with TBI.

Methods

Participants

As part of a clinical trial partially funded by the
Patient-Centered Outcomes Research Institute (PCORI),
consecutive, medically stable individuals with TBI who
were enrolled in the TBI Model Systems between May
2017 and January 2019 at one of the six centers (Tampa,
FL, Seattle, WA, Dallas, TX, Columbus, OH, Denver, CO,
Philadelphia, PA) were recruited for this study. Full
details of the cohort have been previously published.11

Participants were at least 16 years of age and had
sustained damage to brain tissue as a result of an external
force. Participants needed to have had an alteration of
consciousness of >24 hours or a loss of consciousness
>30 minutes following the TBI, or an emergency room
Glasgow Coma Scale (GCS)12 score of 3-12, or intracranial
abnormalities on neuroimaging regardless of GCS score.
Potential participants were excluded if they averaged
less than 2 hours per night of sleep in the rehabilitation
ward prior to the scheduled PSG or had an external phys-
ical limitation to participating in a sleep study (eg, full
body cast or unable to be decannulated prior to the PSG).

All participants or their legally authorized representa-
tive provided informed consent. All methods conformed
to the principles laid out in the Declaration of Helsinki
and were approved by local institutional review boards.

Procedure

As part of a larger study examining different measure-
ment tools for determining sleep apnea in individuals
with TBI,11 data were collected during a single overnight
sleep study on an inpatient rehabilitation ward with con-
temporaneous PSG and wrist actigraphy. The units used to
collect ACG and PSG data were synchronized through
device initiation on the same computer. Questionnaires
(see Subgroups discussed later) were administered upon

admission to the rehabilitation ward as well as immedi-
ately prior to PSG. Medical record abstraction was con-
ducted by trained TBI Model System research assistants.

Measures

PSG-Derived Sleep/Wake: Criterion Standard PSG was
performed with an Alice 6 LDx Diagnostic Sleep System
(Philips Respironics, Murraysville, PA). A standard clinical
recordingmontagewas used to collect information on elec-
troencephalographic (C3/C4, F3/F4, O1/O2),13 electro-
myographic (chin, intercostal), and electro-oculographic
(left and right) signals, as well as breathing-related signals
(snoring, heart rate, oxygen saturation, nasal cannula,
chest and abdominal effort). Between lights-out and
lights-on time, 30-second epochs of PSG data were scored
for sleep stages (N1, N2, N3, REM, wake) and apneic events
by one of two registered PSG technicians at a single site
(Tampa, FL) according to American Academy of Sleep Med-
icine criteria.14 Interrater reliability between the two
scorers was high.11 All 30-second epochs identified as any
stage of sleep (ie, N1, N2, N3, or REM) were marked as
“sleep.” From these “sleep” and “wake” epochs, nightly
summary statistics were calculated, including the amount
of wake after sleep onset (WASO; ie, the total number of
minutes of wake occurring after sleep initiation and before
the final awakening), total sleep time (TST), and sleep effi-
ciency (SE; ie, TST/time in bed calculated from the lights-
off to lights-on interval recorded by PSG technicians). The
apnea-hypopnea index, a measure of the degree of sleep-
disordered breathing, was also calculated from the PSG
data.14

ACG-Derived Proxy Indices of Sleep/Wake ACG data
were acquired with an Actiwatch Spectrum Plus (Philips,
Bend, OR), set to record triaxial arm movement in
15-second epochs. Following collection, ACG data were
downloaded and scored using Actiware (v.6.0.9, Philips).
Time in bed was set as lights-off to lights-on time. Each
15-second epoch was then assigned a value of “wake” or
“sleep” based on a standard algorithm that compares
whether the integrated activity of an epoch, weighted
by the surrounding epochs, exceeds a threshold limit
value (TLV). The activity in each epoch is a unitless mea-
sure derived from the integral of the vector amplitudes
occurring during a 15-second epoch. As PSG-determined
sleep was scored in 30-second epochs, we downsampled
the ACG data. There are four possible configurations for
this downsampling: WW, SS, SW, and WS (such that “W”
is a 15-second ACG-scored wake epoch and “S” is a
15-second ACG-scored sleep epoch). WW would be
rescored as “wake,” SS would be rescored as “sleep,”
and both SW and WS would be rescored as “wake” if the
preceding epoch was scored as “wake” and would be
rescored as “sleep” if the preceding epoch was scored
as “sleep.”We examined four TLV (ie, sensitivity settings)
that are standard in the Actiware software: low
(20 units), medium (40 units), high (80 units), and auto
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(units based on mean of daytime activity).2 As noted, the
TLV represents the point at which there is a sufficient
amount of integrated activity that it is assumed that the
activity is associated with wake, rather than the sponta-
neous activity that normally occurs during sleep. The
lower the TLV, the higher the sensitivity, that is, the more
likely that the movement would be deemed to be associ-
ated with wake. Based on categorization of each epoch as
sleep or wake, the same nightly summary statistics as
were produced for PSG were also calculated for ACG:
WASO, TST, and SE.

Analyses

Nightly Summary Analytics WASO, TST, SE as calcu-
lated from both PSG and ACG were compared with linear
regression analyses and Bland-Altman plots.

Epoch-by-Epoch Comparison The concordance between
PSG- and ACG- determined “sleep” and “wake” 30-second
epochs was examined with precision/recall analyses. As
ACG is optimized to detect wake on a background of sleep,
we set wake as the “positive” value and sleep as the “neg-
ative” value. PSG was set as the criterion standard and
ACG as the comparator. Using this nomenclature, the preci-
sion ( TP

TP + FP) and recall ( TP
TP + FN) (TP = true positive, FP = false

positive, FN = false negative) were determined for each
set of ACG/PSG data for each participant. Specificity, a
measure of true negative (sleep) rate, was intentionally
not calculated as the preponderance of sleep periods com-
binedwith the bias of the algorithms in assuming sleep as a
default state limit the utility of thismeasurement in deter-
mining the goodness of the algorithms. Precision and recall
were determined for each of the four ACG thresholding
procedures (low, medium, high, and auto). To statistically
determine which of the thresholding procedures was most
accurate, the proportion of individuals in which a given
threshold was best was calculated and presented with
95% confidence intervals.

Subgroup Analytics Given that there are a variety of
concomitant medical conditions and demographic vari-
ables that could theoretically influence the relationship
between ACG and PSG, we examined precision and recall
in nine different subgroups of individuals. We examined
the following subgroups of participants for whom we had
an a priori assumption that different thresholds might be
necessary to more accurately determine sleep with ACG.

Subgroup 1 - TBI Severity: participants were classified
based on their GCS score at admission to the emergency
room following the TBI. Complicatedmild (GCS: 13-15with
abnormal neuroimaging) and moderate (GCS: 9-12) were
considered as one group, and severe (GCS: 3-8) were con-
sidered as a second group. We also analyzed the severe
category while including individuals who were chemically
paralyzed, sedated, or intubated upon admission.

Subgroup 2 - Cognitive Status: cognitive functioning
was assessed in participants upon admission to the

rehabilitation ward with the cognitive subscale of the
Functional Independence Measure (FIM).15 Subgroups
were determined with a median split (≤14 vs. >14). FIM
cognitive scores range 5 to 35 with higher scores being
better.

Subgroup 3 - Agitation: prior to ACG, participants were
rated on the Agitated Behavior Scale (ABS)16 by PSG tech-
nicians; participants were grouped as not agitated (ABS
scores 0-21) or agitated (ABS scores ≥22).

Subgroup 4 - Motor Status: motor functioning was
assessed in participants upon admission to the rehabilita-
tion ward with the motor subscale of the FIM.15 Subgroups
were determined with a median split (≤33 vs. >33). FIM
motor scores range 13 to 91 with higher scores being better.

Subgroup 5 - Limb Strength: manual muscle strength of
the arm onwhich the actigraphy was placedwas abstracted
from the medical record.17 Individuals were parsed into
groups with normal (4, 5) and abnormal (0-3) scores.

Subgroup 6 - Wrist Site: although an actigraph is typi-
cally worn on the wrist contralateral to the dominant
hand, in many individuals with a medical limitation, we
were unable to place it on the contralateral wrist. Partic-
ipants were grouped according to ACG placement being
on the dominant wrist (ipsilateral) or on the non-
dominant wrist (contralateral).

Subgroup 7 - Age: we subdivided our population into
three groups, ≤40 years, 41-59 year, or ≥60 years.

Subgroup 8 - Apnea: we subdivided our population into
those who had no or mild sleep apnea (apnea-hypopnea
index <15) and those who had moderate or severe apnea
(apnea-hypopnea index ≥15).18

Subgroup 9 - Time since Injury: groups were created as
a median split of the duration between the TBI and the
PSG recording (≤45 days, >45 days).

Data are shown as mean � standard deviation or
median with interquartile range, as appropriate for nor-
mally and nonnormally distributed data. Baseline com-
parisons are made with chi-square tests (categorical
data) and t-tests with standardized mean difference
(SMD) (continuous data). An SMD of 0.2 is considered
small.19

Results

Participants

Of the 263 individuals who completed a single over-
night sleep study, concomitant ACG was available in
227 individuals; 36 individuals were excluded due to
failed ACG recordings. As compared to individuals who
had completed ACG, those individuals whowere excluded
did not differ in their GCS severity (χ2 = 1.83, P = .40),
FIM Motor (P = .16, t-test; SMD = −0.26) or Cognitive
(P = .80, t-test; SMD = 0.048), agitation (P = .26, t-test;
SMD = −0.20), limb strength (χ2 = 5.70, P = .34), age
(P = .82, t-test; SMD = −0.043), gender (χ2 = 0.01,
P = .92), race (χ2 = 0.29, P = .59), or time since injury
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(P = .52, t-test; SMD = 0.054). Of the remaining 227 par-
ticipants, most were white, middle-aged men who had
experienced a severe TBI, with PSG testing occurring a
median of 1.5 months from the time of injury (Table 1).
Due to problems with low limb mobility or injury, the
ACG device was placed on the nondominant wrist in
97 of the participants.

Whole-Night Summary Statistics Participants had
6.91 � 1.31 hours of time in bed and had generally poor
sleep (Table 2). ACG-derived sleep statistics (TST, WASO,
SE) varied based on the TLV (Table 2). The higher the TLV
(ie, the more movement needed to be determined to be a
wake episode), the less wake that was detected, resulting
in greater TST and SE. In comparing the group averages,
the PSG-determined statistics for TST, WASO, and SE were
each highly divergent from the ACG data, with the low
threshold being closest numerically. To examine the rela-
tionship between PSG- and ACG-derivedwhole-night statis-
tics, we plotted each ACG-determined statistic against the
corresponding PSG-determined statistic (Figure 1). For
each of the ACG thresholds, there was a linear relationship
between the ACG- and PSG-determined statistic (adjusted
r2 = 0.09!0.57), but this linearity was significantly diver-
gent from the line of unity for all but the lowest WASO,
highest SE, and highest TST (Figure 1). In other words, in
individuals who slept well, ACG-determined TST, WASO,

and SE were reasonable proxies for those measures as
determined by PSG. In individuals who slept poorly, how-
ever, the ACG-determined TST, WASO, and SE were highly
divergent from the PSG determination.

To further visualize the relationship between the
whole-night summary statistics generated by ACG analy-
sis and the criterion standard PSG analysis, we used Bland
Altman plots (Figures 2–4). In comparing TST calculated
with each of the four thresholds, there is a common pat-
tern of increasing error with increased amount of wake.
Lower TST (Figure 2), lower SE (Figure 3), and greater
WASO (Figure 4) are associated with a larger difference
between PSG and ACG for each of the ACG thresholds. In
the actual determination of wake (WASO), the ACG auto
threshold produces the least spread in error with a consis-
tent underestimation of the amount of wake, whereas the
ACG low threshold produces a large spread that is both
positive and negative, indicating that the low threshold
both over- and underestimates the amount of wake with
greater WASO having larger error.

Epoch-by-Epoch Comparison To more specifically
examine the agreement between ACG and PSG, we exam-
ined the relationship between scores of individual
30-second epochs. To quantitate these relationships, we
calculated recall and precision (Table 3). As stated previ-
ously, the percentage of ACG-determined wake epochs
that are actually wake epochs was best in auto and pro-
gressively worse in high, medium, and low. Precision,
the percentage of time that PSG-determined wake is also
estimated as ACG-determined wake, was almost always
best in low and was progressively worse in medium, high,
and auto. Thus, under the auto threshold, wake that is
determined by ACG is likely to be wake, but the auto
threshold misses many of the wake episodes that are
detected by PSG. Under the low threshold, many more
of the PSG-determined wake episodes are detected, but
there are also many episodes scored as wake that are
scored as sleep by PSG.

Exploratory Subgroup Analyses Given that there are a
variety of concomitant medical conditions and demo-
graphic variables that could theoretically influence the
relationship between ACG and PSG, we examined preci-
sion and recall in nine different subgroups of individuals.
These groups were generated based on TBI severity, cog-
nitive function, agitation during ACG recording, abnormal
motor function, limb strength, ACGwrist placement, age,
apnea, and time since injury. We did not observe any dif-
ferences between the subgroups in terms of precision or
recall (Supplemental Tables S1 and S2). In all subgroups,
as with the complete sample, precision was best using
the low ACG threshold and recall was best using the high
ACG threshold.

Discussion

In this large, multicenter trial of individuals hospital-
ized with TBI, we examine the correspondence between

Table 1
Participant demographics and characteristics

Characteristic Number

Gender 187 (82%) Male, 40 (18%)
Female

Age median = 38 y (IQR: 27-58 y)
Race/ethnicity
White 169 (75%)
Black/African-American 47 (21%)
Asian 6 (3%)
Native Hawaiian/Other Pacific
Islander

3 (1.3%)

American Indian/Alaskan Native 1 (0.4%)
Latinx 29 (13%)

Glasgow Coma Scale severity
[missing = 26]
Complicated mild 53
Moderate 20
Severe 128

Time between TBI and PSG (d) median = 46 (IQR: 22-88)
FIM motor [missing = 15] median = 34 (IQR: 17.5-50)
FIM cognitive [missing = 10] median = 14 (IQR: 8-20)
Limb manual muscle testing score
[missing = 6]

abnormal = 22,
normal = 199

Agitation behavior scale agitated = 26, non-
agitated = 201

Sleep apnea [missing = 5]
None (AHI: 0-4.99) 125
Mild (AHI: 5-14.99) 43
Moderate (AHI: 15-29.99) 25
Severe (AHI: ≥30) 29

ACG = actigraphy; AHI = Apnea Hypopnea Index; FIM = Functional Inde-
pendence Measure; IQR = interquartile range; PSG = polysomnography;
TBI = traumatic brain injury.
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sleep as determined by a PSG and a medical-grade
actigraph. Although ACG-determined sleep was a fair
approximation of PSG-determined sleep in thosewith good
sleep (ie, SE > 90%,WASO < 60 minutes, TST > 7 hours), for

those with poor sleep, ACG was very poor at estimating
accurate sleep metrics and typically grossly
overestimated the goodness of sleep. For example, indi-
viduals who slept only 25% of the night (as determined by

Table 2
Comparison of actigraphy- (ACG) and polysomnography- (PSG) derived whole-night measures of sleep, including total sleep time (TST), wake after
sleep onset (WASO), and sleep efficiency (SE)

ACG

PSGLow Medium High Auto

TST (h) 6.00 � 1.42 6.28 � 1.37 6.50 � 1.33 6.68 � 1.32 5.20 � 1.65
WASO (min) 49.2 � 41.5 34.5 � 30.4 22.7 � 21.2 12.6 � 12.5 71.5 � 54.8
SE (%) 87.7 � 10.5 91.4 � 7.86 94.3 � 5.43 96.8 � 3.28 74.6 � 18.0

Figure 1. Regression analysis between actigraphy (ACG)- and polysomnography (PSG) -determined wake after sleep onset (WASO, left), sleep effi-
ciency (SE, middle), and total sleep time (TST, right). Linear regression lines with 95% confidence intervals (shaded gray) are plotted for both the auto
ACG threshold (solid black line) and low ACG threshold (solid dark gray line). The line of unity, where ACG and PSG yield identical values, is plotted as a
dotted line. The medium and high ACG thresholds are not plotted for clarity and are between the low and auto ACG thresholds.

Figure 2. Bland-Altman plots of total sleep time (TST). The x-axis represents the average value of the polysomnography (PSG)- and actigraphy (ACG)-
determined TST inminutes, and the y-axis represents the difference between PSG and ACG in TST. The horizontal solid line is the bias and the dotted lines
are the 95% confidence intervals (�1 SD * 1.96).
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PSG) would have been estimated to have slept 70%-90% of
the night (as determined by ACG, depending on the thresh-
old used) (Figure 1). Whereas in good sleepers, the esti-
mates of whole-night sleep statistics are more similar

between ACG and PSG, there is no a priori or post-hoc
way to know if the individual being studied is a good
sleeper by ACG data alone. For example, individuals who
appear to be sleeping well by ACG (eg, SE > 85%) could

Figure 3. Bland-Altman plots of sleep efficiency (SE). The x-axis represents the average value of the polysomnography (PSG)- and actigraphy (ACG)-
determined SE in percentage (×100), and the y-axis represents the difference between PSG and ACG in SE. The horizontal solid line is the bias and the
dotted lines are the 95% confidence intervals (�1 SD * 1.96).

Figure 4. Bland-Altman plots of wake after sleep onset (WASO). The x-axis represents the average value of the polysomnography (PSG)- and
actigraphy (ACG)- determined WASO in minutes, and the y-axis represents the difference between PSG and ACG in WASO. The horizontal solid line
is the bias and the dotted lines are the 95% confidence intervals (�1 SD * 1.96).
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have a PSG-determined SE that ranges anywhere from60%-
100% if the low sensitivity threshold is used - with the auto
sensitivity, this range is 5%-100%. In contrast, poor sleep
quality metrics on ACG indicate poor sleep.

The failure of ACG to capture all-night sleep statistics
is likely due to its inability to accurately determine wake
epochs. We examined epoch-by-epoch agreement
between PSG-determined sleep and wake with ACG-
determined sleep and wake, further examining four dif-
ferent sensitivity settings. On the least sensitive setting
(auto), ACG-determined wake was mostly correct, but
this setting missed many epochs of wake. On the most
sensitive setting (low), there were more epochs of ACG-
determinedwake, butmany of the identified epochs were
false positives (Figures 2–4).

Given the burdensome nature of PSG and the lack of its
availability in many hospital settings, alternatives such as
ACG have been used to objectively quantitate
sleep.5,10,20–25 Kamper and colleagues reported good
agreement between ACG and PSG in a sample of veterans
(n = 50) that was more chronic than the current sample.10

Across other populations, agreement between ACG and
PSG has varied from good agreement between sleep/
wake epoch classification to underestimation and/or
overestimation of parameters as reported in this
study.26–28 Our data agree with previous findings that the
more wake that is present during sleep, the less accurate
ACG is as a modality. ACG may have utility outside of
determining sleep/wake states and has been used to
examine the distribution of movement over the 24-hour
day as a way to impute the strength of the circadian orga-
nization of sleep.29 Validation of these techniques in hos-
pitalized patients with TBI, and of the association of
these measures with clinically relevant outcomes, is of
critical importance to future research.

This study had several strengths including the use of a
large, diverse (multicenter) cohort obtained as part of a
PCORI-funded clinical trial that was well characterized
in terms of time-elapsed post-TBI, injury severity, and
degree of morbidity that may influence movement. There
are, however, limitations. Although we examined the
relationship between ACG- and PSG-determined sleep in
the context of a variety of potential confounds (TBI sever-
ity, general cognitive function, agitation prior to ACG
recording, general motor behavior, limb strength, wrist
placement, age, sleep apnea, time since injury), there
may be other demographic or physical factors that were

not included in these secondary analyses or part of the
existing clinical trial. Furthermore, collection of multiple
nights of PSG/ACG data from individual participants may
have allowed us to better determine whether the coher-
ence of the two data sets was dependent upon factors
unique to individuals.

Conclusions

Due to its practicality, the use of ACG to monitor
sleep during inpatient rehabilitation for TBI is becoming
more common, even for diagnostic purposes. Our data
indicate that caution is warranted when interpreting
ACG-inferred sleep indices in hospitalized moderate to
severe TBI when sleep quantity metrics are normal.
Given the limitations of alternative methods for objec-
tively and subjectively measuring sleep in this popula-
tion, alternative approaches including examination of
patterns of activity29,30 should be explored in
future work.
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