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Abstract

In zone-based evacuation planning, the region to evacuate is divided into zones, and each zone must
be assigned a path to safety and departure times along the path. Zone-based evacuations are highly
desirable in practice because they allow emergency services to communicate evacuation orders and to
control the evacuation more precisely. Zone-based evacuations may also be combined with contraflows
(to maximize the network capacities) and may impose additional constraints on the evacuation path
(e,g., path convergence) and the departure times (e.g., non-preemption).

This paper synthesizes existing models and algorithms for large-scale zone-based evacuation planning
and complements them with some new ones to fill some of the gaps in the design space. Each model
and algorithm is also extended to accommodate contraflows. A companion paper [13] evaluates them on
a real, large-scale case study, both from a macroscopic standpoint and through microscopic simulations
under a variety of assumptions.

Keywords: Evacuation Planning and Scheduling, Mathematical Optimization, Benders Decomposition,
Column Generation, Time-Expanded Graphs, Non-Preemptive and Convergent Evacuations, Contraflow.

1 Introduction

Large-scale evacuations are often necessary and critical to the safety of residents in regions threatened by man-
made or natural disasters like floods, hurricanes, and wildfires. According to a report by the International
Federation of Red Cross and Red Crescent Societies [27], the first decade of the 21st century witnessed 7184
disasters around the world which affected a total of 2.55 billion people. These disasters accounted for the
deaths of more than 1 million people and incurred $986 billion in economic losses. There is now an evacuation
of 1,000 or more people every two or three weeks in the United States alone.

Effective disaster management requires, among others, evacuation plans to ensure resources (e.g., the
transportation network) are not completely overwhelmed by evacuees. Self-evacuations give each individual
the freedom to choose their own evacuation routes, destinations, and times. However, they typically result
in traffic congestion and associated delays that significantly increase the risk of casualties as individuals are
being stranded in disaster affected areas. Therefore, it is crucial for emergency authorities to be equipped
with centralized disaster management tools capable of generating and prescribing plans that guarantee an
optimal utilization of evacuation resources. These plans aim at achieving specific goals such as maximizing
the number of evacuees reaching safety or minimizing the overall evacuation time. Evacuation planning
algorithms fulfill this need by producing prescriptive evacuation plans, i.e., a set of operational instructions
for authorities to manage and orchestrate large-scale evacuations. These instructions specify directions to be
followed by evacuees, including routes from their homes to designated safe destinations and departure times,
as well as the identification of roads to close in order to facilitate traffic flow. Prescriptive plans contrast
with self-evacuations that are more difficult to control and may produce significant congestion.

Hamacher and Tjandra [11] distinguish between microscopic and macroscopic approaches to evacuation
modeling. Microscopic approaches model individual characteristics of evacuees, their interactions with each
other, and how these factors influence their movements. In contrast, macroscopic approaches aggregate evac-
uees and model their movements as flows in a network, making them much more amenable to optimization.
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Macroscopic models are often defined in terms of flows over time in order to capture capacity constraints
more precisely. In particular, they typically use the concept of time-expanded graphs pioneered by Ford and
Fulkerson [9].

This study is concerned with macroscopic approaches to prescriptive evacuation planning, although all
results are validated using microscopic traffic simulations. Moreover, it focuses on zone-based evacuations in
which all evacuees from the same residential zone are assigned a single evacuation route. Most emergency
services rely on zone-based evacuations to facilitate the communication of evacuation plans, reduce confusion,
increase compliance, and allow for a more reliable control of the evacuation. Indeed, zone-based evacuations
are probably the only practical method for communicating instructions precisely to the population at risk.
However, they are much more computationally challenging to plan and finding scalable algorithms has been
one of the foci of recent research.

The core Zone-based Evacuation Planning Problem (ZEPP) considered in this study consists in assigning
an evacuation path, as well as departure times, to each zone in the region. However, even when restricting
attention to zone-based evacuations, several important design decisions remain to be taken. They include,
but are not limited to, contraflows, convergent plans, and non-preemption.

• Contraflows, also known as lane reversals, are the idea of using inbound lanes for outbound traffic in
evacuations. Several studies have suggested contraflow procedures as a viable method for increasing
network capacity (e.g., [30, 32]).

• Convergent plans ensure that each evacuee coming to an intersection follows the same path subse-
quently. The rationale for convergent plans is that they eliminate forks from all evacuation paths and
hence reduce driver hesitation at road intersections, which has been shown to be a significant source
of delays [31]. Convergent paths also allow roads which are not part of the evacuation paths to be
blocked, facilitating vehicular guidance and enforcement of the evacuation plans.

• Non-preemptive evacuations ensure that the evacuation of a zone, once it starts, proceeds without
interruptions. Non-preemptive evacuations are also preferred by emergency services since they are
easier to enforce.

Each of these decisions has a significant impact, not only on the effectiveness of an evacuation (e.g., the
number of evacuees reaching safety), but also on the computational properties of the optimization model
and its potential solution techniques.

The purpose of this paper is to provide a systematic comparative study of zone-based evacuation planning,
their design choices, their fidelity, and their computational performance. It synthesizes existing algorithms,
complements them with some new ones to fill some of the gaps in the design space, and compares them on a
real-life case study both at macroscopic and microscopic scales. The case study concerns the Hawkesbury-
Nepean (HN) region located north-west of Sydney, Australia, and its associated time-expanded graph has
30,000 nodes and 75,000 arcs.

The benefits of this study are threefold:

1. It systematically evaluates, on a large case study and for the first time, a variety of zone-based evacu-
ation planning algorithms both from macroscopic and microscopic viewpoints;

2. It quantifies, for the first time, the benefits and limitations of contraflows, convergent plans, and
non-preemption, providing unique perspectives on how to deploy these algorithms in practice;

3. It highlights the approaches that are best suited to capture each of these design features and the
computational burden they impose.

Finally, the paper addresses some avenues for future research that are not satisfactorily addressed in the
literature yet are critical in practice.

The paper is organized in two parts. Part I reviews existing optimization algorithms and presents new
ones. Part II evaluates them on a real, large-scale case study, from both a macroscopic standpoint and
through microscopic simulations under a variety of assumptions. In Part I, Section 2 discusses some related
work to give more context to the results presented in the paper. Section 3 outlines the key concepts in
zone-based evacuation planning, including time-expanded graphs, contraflows, and convergent evacuations.

2

This article is protected by copyright. All rights reserved.



Section 4 provides a Mixed Integer Program (MIP) for non-convergent, preemptive evacuation planning with
contraflows. This MIP introduces the main decision variables that appear in most approaches discussed in
the paper. Section 5 presents a Benders Decomposition approach for non-convergent, preemptive ZEPP,
and Section 6 reviews the Benders decomposition approach for the convergent preemptive ZEPP originally
proposed by Romanski and Van Hentenryck [28]. Section 7 presents the conflict-based path-generation
heuristic algorithm proposed by Pillac et al. [26] for the non-convergent, preemptive ZEPP, whereas Section
8 reviews the column-generation approach to the non-convergent, non-preemptive ZEPP which was originally
proposed by Pillac et al. [25] and improved upon by Hasan and Van Hentenryck [12]. Part II presents the
case study and the experimental results from both a macroscopic and microscopic standpoint. It also gives
some perspectives on directions for future research, knowledge gaps that need to be filled, and some related
work to give more context to all the results in the paper.

2 Related Work

A comprehensive survey of evacuation planning is available in [2]. The goal of this section is to not duplicate
this survey but to provide some context for this study. The importance of prescriptive evacuations, in which
evacuation is orchestrated by a central authority as opposed to self-evacuations, is well recognized in the
field, making it the focal point of various studies.

As mentioned in the introduction, Hamacher and Tjandra [11] distinguish between microscopic and
macroscopic approaches to evacuation modeling. This paper presents macroscopic approaches that are
evaluated using microscopic methods. The majority of macroscopic approaches are flow-based. They solve
the evacuation planning problem as a flow on a time-expanded graph. For instance, Lu et al. [21, 22] propose
three heuristics to design an evacuation plan with multiple evacuation routes per evacuation node, minimizing
the time of the last evacuation. They show that, in the best case, the proposed heuristic is able to solve
randomly generated instances of up to 50,000 nodes and 150,000 edges in under 6 minutes. Liu et al. [20]
propose a Heuristic Algorithm for Staged Traffic Evacuation (HASTE), whose main difference is the use of
the Cell Transmission Model (CTM) of Daganzo [7] to capture the flow of evacuees more precisely. Lim et al.
[19] consider a short-notice regional evacuation maximizing the number of evacuees reaching safety weighted
by the severity of the threat. They propose two solution approaches to solve the problem, and present
computational experiments on instances derived from the Houston-Galveston region (USA) with up to 66
nodes, 187 edges, and a horizon of 192 time steps. Bretschneider and Kimms [4, 5] focus on modeling the
transportation network more precisely; they present a free-flow mathematical model over a detailed street
network and include computational experiments on generated instances with a grid topology of up to 240
nodes, 330 edges, and a time horizon of 150 times steps.

Flow-based approaches are not zone-based and hence do not provide evacuation plans that comply with
the procedures in place in most emergency services and local authorities. Assigning a routing and timing
to every individual evacuee is unlikely to result in actionable plans. To the best of our knowledge, only
a handful of studies design zone-based evacuation plans that produce both a set of evacuation routes and
an evacuation schedule. Huibregtse et al. [16] propose a two-stage algorithm that first generates a set of
evacuation routes and feasible evacuation times, and then assigns a route and time to each evacuated area
using an ant colony optimization algorithm. The main difference with the present work is that the approach
does not explicitly schedule the evacuation but relies on a third party simulator (EVAQ) to simulate the
departure time of evacuees depending on the evacuation time decided for each area and to evaluate the
quality of the solution. In later work, the authors studied the robustness of the produced solution [14],
and strategies to improve the compliance of evacuees [15]. Bish and Sherali [3] present a model based on
a CTM that assigns a single evacuation path to each evacuation node but fixes a response curve for each
zone. Computational results include instances with up to 13 evacuation nodes, 2 safe nodes, and 72 edges.
The Conflict-based Path Generation method (CPG) and Column Generation (CG) methods presented in
this paper were originally proposed by Pillac et al. [25, 26]. Even et al. [8] take a different approach by
introducing the Convergent Evacuation Planning Problem (CEPP) to remove forks from all evacuation routes
and eliminate delays caused by diverging and crossing routes. They propose a two-stage approach to separate
route design and evacuation scheduling. Their work served as the foundation of the algorithm by Romanski
and Van Hentenryck [28], one of the algorithms described in detail in this paper (method BC). Andreas and
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Smith [1] consider a stochastic evacuation planning with convergent paths. Although not directly related,
it is interesting to mention the work of Chen and Miller-Hooks [6] who provide an exact technique based on
Benders decomposition to solve the Building Evacuation Problem with Shared Information. The problem
is formulated as a MIP with shared information constraints to ensure evacuees departing from the same
location at the same departure time receive common instructions. The MIP seeks to route evacuees from
multiple locations in a building to exits such that total evacuation time is minimized.

3 Problem Formulation

Figure 1 shows an example of the evacuation scenario that is addressed by all methods presented in this work.
Square 0 represents an evacuation node (e.g., a residential zone), triangles A and B represent safe nodes
(final evacuation destinations), circles 1-3 represent transit nodes (road intersections), and arcs represent
roads connecting the nodes. Times on each arc indicate when each road will become unavailable (e.g., due
to being flooded), and the time on the evacuation node indicates the final deadline by which it must be
evacuated. In this example, the evacuation deadline for node 0 is 13:00 since its last outgoing arc will be
blocked at that time.

Figure 1: A Sample Evacuation Scenario.

The evacuation scenario can be abstracted by a static evacuation graph G = (N = E ∪ T ∪ S,A) where
E , T , and S are respectively the set of evacuation, transit, and safe nodes, and A is the set of all arcs. Each
evacuation node k ∈ E is associated with its demand dk representing the number of vehicles to be evacuated
and its evacuation deadline fk, whereas each arc e ∈ A is associated with its travel time se, its capacity
ue in terms of vehicles per unit time, and its block time fe at which the road becomes unavailable. Figure
2 shows the static evacuation graph for the scenario of Figure 1. The evacuation node is labeled with its
demand and evacuation deadline whereas each arc is labeled with its travel time, capacity, and block time.
Also note that the evacuation node has no incoming arcs and the safe nodes have no outgoing arcs.

To reason about traffic flows over time, the static graph is converted into a time-expanded graph Gx =
(N x = Ex∪T x∪Sx,Ax). The conversion is performed by first discretizing the time horizon H into time steps
of identical length t ∈ H, creating a copy of all nodes at each time step, and replacing each arc e = (i, j) with
corresponding arcs et = (it, jt+se) for each time step that e is available. Figure 3 shows the time-expanded
graph constructed from the static graph of Figure 2, where each arc is labeled with its capacity. Infinite
capacity arcs are introduced connecting the evacuation and safe nodes at each time step to allow evacuees
to wait at those nodes. Nodes that cannot be reached from either the evacuation or safe nodes within the
time horizon are removed from the graph (they are greyed out in Figure 3).

An evacuation plan can then be defined to contain the following two components: (a) a set of evacuation
paths, each represented by a sequence of connected nodes in the static graph from an evacuation node to
a safe node, specifying the route to be taken by residents of each evacuation node to reach safety, and (b)
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Figure 2: The Static Evacuation Graph for the Scenario in Figure 1.

Figure 3: The Time-expanded Graph of the Static Graph in Figure 2.

an evacuation schedule indicating the number of vehicles that need to depart from each evacuation node at
each time step t ∈ H. The Zone-based Evacuation Planning Problem (ZEPP) can now be defined as follows.

Definition 1 Given an evacuation graph G, the Zone-based Evacuation Planning Problem (ZEPP) consists
of finding an evacuation path from each evacuation zone to a safe node that maximizes the flow of evacuees
to safe nodes, while satisfying the problem constraints.

Note that, in Figure 3, only one path can leave from the evacuation node in a zone-based evacuation plan.

Contraflows Contraflows are an important tool in evacuation planning and scheduling. To capture their
benefits, this study assumes the existence of a subset Ac ⊆ A of arcs in the static graph that may be used in
contraflows during evacuations. The unique arc that goes in the opposite direction of arc e ∈ Ac is denoted
by ē. The set Ac can then be partitioned into Âc and Ǎc such that ∀e ∈ Âc : ē ∈ Ǎc. Finally, e0 ∈ A
denotes the static edge associated with edge e ∈ Ax and δ−(i) and δ+(i) denote the set of incoming and
outgoing arcs of node i, respectively.

Convergent Evacuations Convergent paths reduce confusion and hesitation during an evacuation. They
can be formally defined by the following definitions.
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Definition 2 A graph G = (N = E ∪ T ∪ S,A) is connected if, for all k ∈ E, there exists a path from k to
a safe node.

Definition 3 A graph G = (N = E ∪ T ∪ S,A) is convergent if, for all i ∈ E ∪ T , the outdegree of i is 1.

As stated by Even et al. [8], any connected evacuation graph G contains a connected and convergent subgraph
G′. If an evacuation graph is connected and convergent, each evacuation node has a unique path to a safe
node. The Convergent Zone-based Evacuation Planning Problem (C-ZEPP) is defined as follows.

Definition 4 Given a connected evacuation graph G, the Convergent Zone-based Evacuation Planning Prob-
lem (C-ZEPP) consists of finding a convergent subgraph G′ of G and a set of evacuee departure times that
maximize the flow from evacuation nodes to safe nodes, while satisfying the problem constraints.

Non-Preemption and Response Curves Non-preemptive evacuation plans are typically organized
around the concept of response curves [24]. A response curve f is a function that models the number
of evacuees departing from an evacuation node over time after an evacuation start time t0 ∈ H. The number
Dk(t) of evacuees departing from evacuation node k at time t is defined using a selected response curve f as
follows:

Dk(t) =

{
0 if t < t0

f(t− t0) if t ≥ t0.
(1)

Dk(t) can be used to specify a non-preemptive evacuation schedule for evacuation node k. Figure 4 shows
Dk(t) utilizing four different types of response curves. The step response curve, where evacuees depart at a
constant rate after t0 until a region is completely evacuated, is the response curve considered in this paper.
In the figure, t0 = 120 minutes.

288 Constraints (2015) 20:285–303

Figures 3a and 3b illustrate, for four types of response curves, the departure rate of evac-
uees and the cumulative number of departed evacuees over time, assuming an evacuation
order issued at 60 minutes. The step function response curve considers a lead time of 60
minutes before evacuees start departing and then assumes a constant rate until all evacuees
have departed. The S-shape is a commonly used response curve described by a logistic
function fS (t) = D

1+e−kt , where D and k are parameters. The Rayleigh response curve is

defined by the function fR (t) = t

σ 2 e
−t2/2σ 2

, where σ is a parameter.

3 Related work

According to Hamacher and Tandra [12], evacuation planning can be tackled using either
microscopic or macroscopic approaches. Microscopic approaches focus on modeling and
simulating the evacuees individual behaviors, movements, and interactions. Macroscopic
approaches, such as the one presented in this study, aggregate evacuees and model their
movements as a flow in the evacuation graph.

3.1 Macroscopic level

To the best of our knowledge, only a handful of studies attempt to design evacuation plans
that define both a set of evacuation routes and a departure schedule. Huibregtse et al. [16]
propose a two-stage algorithm that first generates a set of evacuation routes and feasible

(a) Departure Rates.

(b) Cumulative Departures.

Fig. 3 Comparison of response curves

Figure 4: The number of evacuees departing an evacuation node k as a function of time, Dk(t), using four
different types of response curves (from [25]).

Definition 5 Given an evacuation graph G, the Non-Preemptive Zone-based Evacuation Planning Problem
(NP-ZEPP) consists of finding an evacuation path from each evacuation zone to a safe node, a departure time,
and a response curve that maximize the flow of evacuees to safe nodes and satisfy the problem constraints.

The paper considers the ZEPP, C-ZEPP, and NP-ZEPP problems and algorithms to solve them. Each of
these problems is considered with and without contraflows.

4 The Basic MIP Model for the ZEPP

This section presents a Mixed Integer Program (MIP) model for the ZEPP. Model (2)-(11) in Figure 5
provides the intuition that serves as the basis for the more complex models presented subsequently. The
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decision variables of the model are as follows. The binary variable xe,k is equal to 1 if and only if edge e ∈ A
belongs to the evacuation path for evacuation node k, and ϕe,k is a continuous variable equal to the flow of
evacuees from evacuation node k on edge e ∈ Ax. To indicate which road should be used in contraflows, the
binary variable ye represents whether arc e is used in its normal direction (ye = 1) or in contraflow (ye = 0).
Each road segment (e, ē) with e ∈ Âc, ē ∈ Ǎc can then be utilized in one of three possible configurations:
(a) (ye, yē) = (1, 1) where both arcs are used in their normal directions, (b) (ye, yē) = (1, 0) where arc ē is
used in contraflow, or (c) (ye, yē) = (0, 1) where arc e is used in contraflow. The fourth case (ye, yē) = (0, 0)
will be excluded by one of the constraints.

max
∑
k∈Ex

∑
et∈δ+(k)

ϕe,k (2)

s.t.
∑

e∈δ+(k)

xe,k = 1 ∀k ∈ E (3)

∑
e∈δ−(i)

xe,k −
∑

e∈δ+(i)

xe,k = 0 ∀k ∈ E , i ∈ T (4)

∑
e∈δ−(i)

ϕe,k −
∑

e∈δ+(i)

ϕe,k = 0 ∀k ∈ E , i ∈ T x (5)

∑
k∈E

ϕe,k ≤ ue ∀e ∈ Ax \ Ac (6)∑
k∈E

ϕe,k ≤ ye0ue + (1− yē0)uē ∀e ∈ Ac (7)

ϕe,k ≤ ue · xe,k ∀e ∈ Ax, k ∈ E (8)

ye + yē ≥ 1 ∀e ∈ Âc (9)

ye ∈ {0, 1} ∀e ∈ Ac (10)

ϕe,k ≥ 0, xe,k ∈ {0, 1} ∀e ∈ Ax, k ∈ E (11)

Figure 5: The MIP Model for the ZEPP.

Objective function (2) maximizes the number of evacuees reaching safety. Constraints (3) ensure that
exactly one path is used to route the flow coming from evacuation nodes, while constraints (4) ensure
the continuity of the path. Constraints (5) ensure flow conservation through the time-expanded graph.
Constraints (6) enforce the capacity of each edge in the time-expanded graph. Constraints (7) enforce the
capacity constraints on edges to allow for contraflows. They allocate to e the capacity of edge ē whenever
ē is used in contraflow, and forbid any flow on e when it is used in contraflow. Constraints (8) ensure that
there is no flow of evacuees coming from an evacuation node k if edge e is not part of the evacuation path
for k. Constraints (9) prohibit the simultaneous use of e and ē in contraflow.

Model (2)-(11) cannot be solved in reasonable time for the case study used in this paper which has
approximately 30,000 nodes and 75,000 arcs. The computational difficulty comes from two interconnected
components. The selection of the paths is a design component, whereas the scheduling of the evacuation
is a multi-commodity flow problem. The algorithms described in this paper address this computational
challenge by separating these two aspects. Observe also that the temporal aspects (i.e., when to schedule
evacuees along a path) are an important and difficult aspect of the ZEPP. Finally, it is interesting to
mention that additional requirements, such as convergent evacuations and non-preemption, may lead to
elegant computational contributions that would not be possible otherwise.

5 Benders Decomposition for the ZEPP

This section presents an (approximate) Benders decomposition for the ZEPP. This Benders decomposition
is referred to as the Benders Non-convergent (BN) method in the rest of the paper. The Restricted Master
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Problem (RMP) of the Benders decomposition selects evacuation paths that are then used in the subprob-
lem (SP) for scheduling the flows of evacuees over time along these paths. It is important to note that the
subproblem is a multi-commodity flow problem and hence its formulation is not totally unimodular. As a
result, the Benders decomposition in the BN method solves a relaxation of the ZEPP where the integral-
ity constraints on flow variables are relaxed. A final MIP is solved to obtain an integer solution to the
subproblem.

As is traditional in Benders decomposition, the objective function values of the RMP and SP provide
upper and lower bounds on the optimal solution to Model (2)-(11) without integrality constraints on the flow
variables. When they converge, evacuation paths from the RMP and the evacuation schedule from the SP
form an optimal solution. Otherwise, a Benders cut is generated from the solution of the SP and introduced
into the RMP as an additional constraint to remove the current evacuation paths from the RMP’s feasible
region, after which the entire process is repeated.

The Restricted Master Problem The RMP, depicted in Figure 6, finds evacuation paths for each
evacuation zone. It operates on the static graph and its main decision variables are the binary variables
xe,k of Model (2)-(11). In addition to the Benders cuts, the RMP also reasons about aggregate flows and
aggregated capacities, an idea that was proposed by Romanski and Van Hentenryck [28] to obtain reasonable
evacuation paths early in the series of algorithmic iterations. In particular, variable ψe,k represents the
aggregate flow of evacuees from evacuation node k along arc e and arc capacities are aggregated over the
time horizon in all of the RMP’s capacity constraints. Finally, zRMP is the RMP’s objective function value
and represents the number of evacuees reaching safety.

max zRMP (12)

s.t. zRMP ≤
∑
k∈E

∑
e∈δ+(k)

ψe,k (13)

∑
e∈δ+(k)

xe,k = 1 ∀k ∈ E (14)

∑
e∈δ+(i)

xe,k ≤ 1 ∀i ∈ T ,∀k ∈ E (15)

∑
e∈δ−(i)

ψe,k −
∑

e∈δ+(i)

ψe,k = 0 ∀i ∈ T ,∀k ∈ E (16)

∑
e∈δ+(k)

ψe,k ≤ dk ∀k ∈ E (17)

ψe,k ≤ xe,k
∑
t∈H

uet ∀e ∈ A \ Ac,∀k ∈ E (18)

ψe,k ≤ xe,k
∑
t∈H

(uet + uēt) ∀e ∈ Ac,∀k ∈ E (19)∑
k∈E

ψe,k ≤
∑
t∈H

uet ∀e ∈ A \ Ac (20)∑
k∈E

ψe,k ≤ ye
∑
t∈H

uet + (1− yē)
∑
t∈H

uēt ∀e ∈ Ac (21)

ye + yē ≥ 1 ∀e ∈ Ac (22)

ψe,k ≥ 0 ∀e ∈ A,∀k ∈ E (23)

xe,k ∈ {0, 1} ∀e ∈ A,∀k ∈ E (24)

ye ∈ {0, 1} ∀e ∈ Ac (25)

Figure 6: The Restricted Master Problem for the BN Method.

8

This article is protected by copyright. All rights reserved.



Constraint (13), together with objective function (12), maximizes the flow of evacuees from all evacuation
nodes. Constraints (14) specify that exactly one path is generated for each evacuation node, and constraints
(15) ensure that the one path requirement is preserved throughout the graph. Constraints (16) ensure that
flow is conserved throughout the graph, and constraints (17) make sure that total flow from each evacuation
node does not exceed its demand. Constraints (18) and (19) permit evacuee flow from evacuation node k
on an arc only if the arc is selected for the evacuation path of k. Constraints (20) ensure that the flow
from all evacuation nodes along an arc does not exceed the aggregate capacity for arcs that may not be
used in contraflow, whereas constraints (21) do the same for arcs that may be used in contraflow. Finally,
constraints (22) indicate that at most one arc in road segment (e, ē) with e ∈ Âc, ē ∈ Ǎc can be used
in contraflow. To generate evacuation plans without contraflows, constraints (22) can be replaced with
constraints ye + yē = 2 (e ∈ Ac) to force all arcs to be used in their normal directions.

The Benders Subproblem The SP, depicted in Figure 7, utilizes paths generated from the RMP together
with the time-expanded graph Gx to generate an evacuation schedule that maximizes the number of evacuees
reaching safety along those paths. The paths are specified by the values {x̄e,k} and {ȳe} for variables {xe,k}
and {ye} in the RMP. The SP uses variable ϕet,k to represent the flow of evacuees from evacuation node k
along arc et in Gx, and zSP is the SP’s objective function value.

max zSP =
∑
k∈E

∑
et∈δ+(k)

ϕet,k (26)

s.t.
∑

et∈δ−(i)

ϕet,k −
∑

et∈δ+(i)

ϕet,k = 0 ∀i ∈ T x,∀k ∈ E (27)

∑
t∈H

∑
et∈δ+(k)

ϕet,k ≤ dk ∀k ∈ E (28)

ϕet,k ≤ x̄e,k · uet ∀e ∈ A \ Ac,∀t ∈ H,∀k ∈ E (29)

ϕet,k ≤ x̄e,k · (uet + uēt) ∀e ∈ Ac,∀t ∈ H,∀k ∈ E (30)∑
k∈E

ϕet,k ≤ uet ∀e ∈ A \ Ac,∀t ∈ H (31)∑
k∈E

ϕet,k ≤ ȳe · uet + (1− ȳē) · uēt ∀e ∈ Ac,∀t ∈ H (32)

ϕet,k ≥ 0 ∀et ∈ Ax,∀k ∈ E (33)

Figure 7: The Benders Subproblem for the BN method.

Objective function (26) maximizes the flow of evacuees from all evacuation nodes. Constraints (27)
enforce flow conservation throughout Gx, whereas constraints (28) ensure that the total flow from each
evacuation node does not exceed its demand. Constraints (29) and (30) permit flow only on the selected
arcs for each evacuation node. Constraints (31) ensure that the total flow from all evacuation nodes along
an arc does not exceed its capacity for arcs that may not be used in contraflow, whereas constraints (32) do
the same for arcs that may be used in contraflow.
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The Benders Cuts A Benders optimality cut is generated from the solution of the SP and added to the
RMP as long as the objective function values of the RMP and SP do not converge. The cut is of the form

zRMP ≤
∑
k∈E

dk · πk +
∑

e∈A\Ac

∑
t∈H

uet
∑
k∈E

xe,k · πet,k+

∑
e∈Ac

∑
t∈H

(uet + uēt)
∑
k∈E

xe,k · πet,c,k +
∑

e∈A\Ac

∑
t∈H

uet · πet+∑
e∈Ac

∑
t∈H

[ye · uet + (1− yē) · uēt ] · πet,c

(34)

where {πk}, {πet,k}, {πet,c,k}, {πet}, and {πet,c} are the dual variables of constraints (28), (29), (30), (31),
and (32), respectively. Since the SP is always feasible, Benders feasibility cuts are never generated.

The Benders Non-convergent Algorithm Algorithm 1 summarizes the entire BN algorithm which uses
RMP(G,H) to denote an optimal solution obtained from solving the RMP given static graph G and time
horizon H as inputs, SP(Ψ,H) to denote an optimal solution of the SP given a solution to the RMP, Ψ, and
time horizon H as inputs, and z(σ) to denote the objective function value of a solution σ.

Algorithm 1 Benders Non-convergent

1: t∗ ← min{t ∈ H | z(RMP(G, [0..t])) = z(RMP(G,H))}
2: zRMP ← z(RMP(G, [0..t∗]))
3: zSP ← z(SP(RMP(G, [0..t∗]),H))
4: zSP,max ← zSP

5: while zRMP − zSP,max > ε do
6: Generate Benders cut from solution of SP and add it to RMP
7: zRMP ← z(RMP(G,H))
8: zSP ← z(SP(RMP(G,H),H))
9: zSP,max ← max{zSP,max, zSP}

10: Solve SP(RMP(G,H),H) with ϕet,k integer ∀et ∈ Ax,∀k ∈ E
11: return Evacuation paths from solution of RMP and evacuation schedule from solution of SP

The BN algorithm begins with a procedure that searches for the tightest time horizon t∗ preserving the
optimal solution to the RMP, z(RMP(G,H)). This step was originally proposed by Even et al. [8] who
found that a tighter time horizon produces better evacuation paths for the flow scheduling problem of their
two-stage approach. The BN method adopts a similar strategy to seed the Benders decomposition. The
procedure is implemented using a simple sequential search that solves RMP(G,H) with progressively smaller
values of H in search of t∗.

After this step, the algorithm proceeds to first solve the RMP to generate evacuation paths, and then the
SP using the generated paths as input to generate an evacuation schedule. The minimum objective function
value zRMP of the RMP is then compared to the maximum objective function value zSP,max of the SP. If they
do not converge (if their difference is larger than a convergence criterion ε set to 0), a Benders cut is generated
using the dual variables from the SP solution and added to the RMP to remove the current evacuation paths
from its feasible region. The process of solving the RMP and SP is then repeated until convergence. Since
the Benders decomposition relaxes the integrality constraints on the flow variables, the subproblem is solved
one more time as a MIP after convergence to obtain an integer solution to the subproblem.

6 Benders Decomposition for Convergent Evacuation Planning

This section present the Benders decomposition of Romanski and Van Hentenryck [28] for the C-ZEPP,
i.e., for the convergent preemptive zone-based evacuation planning problem. This Benders decomposition is
referred to as the Benders convergent (BC) method in this paper. The BC method shares a lot of similarities
with the BN method. However, the BC method imposes that the evacuation paths form a convergent
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graph and hence that the outdegree at each transit node is at most 1. This convergence property has some
fundamental consequences: (1) the BC method is exact since the subproblem becomes totally submodular; (2)
it trivially supports contraflows; and (3) its computational performance is strong compared to all the other
algorithms.

The Restricted Master Problem The RMP for the BC method is presented in Figure 8. Because the
paths are convergent, the model is considerably simpler. There is no need to track the origin of the flow
(i.e., the evaluation zone) and have different flow conservation constraints for each evacuation zone. The
model still uses a binary variable xe to indicate whether an arc e is to be part of an evacuation path. But it
uses a single variable ψe to represent the aggregate flow of evacuees along arc e over the time horizon. Arc
capacities are again aggregated over the time horizon in the capacity constraints. Constraint (36) combined
with objective function (35) maximizes the flow of evacuees leaving all evacuation nodes. Constraints (37)
enforce flow conservation, whereas constraints (38) enforce the convergence of arcs selected by the evacuation
paths. Constraints (39) permit flows only on selected arcs and ensure aggregate flow along them do not exceed
their aggregate capacity. Finally, constraints (40) ensure that the total flow from each evacuation node does
not exceed its demand.

max zRMP (35)

s.t. zRMP ≤
∑
k∈E

∑
e∈δ+(k)

ψe (36)

∑
e∈δ−(i)

ψe −
∑

e∈δ+(i)

ψe = 0 ∀i ∈ T (37)

∑
e∈δ+(i)

xe ≤ 1 ∀i ∈ E ∪ T (38)

ψe ≤ xe
∑
t∈H

uet ∀e ∈ A (39)∑
e∈δ+(k)

ψe ≤ dk ∀k ∈ E (40)

ψe ≥ 0 ∀e ∈ A (41)

xe ∈ {0, 1} ∀e ∈ A (42)

Figure 8: The Restricted Master Problem for the BC method.

The Benders Subproblem The Benders problem for method BC, depicted in Figure 9, is again simpler
due to path convergence and uses a variable ϕet to represent the flow of evacuees along arc et in Gx.
Objective function (43) maximizes the flow of evacuees across all evacuation nodes. Constraints (44) enforce
flow conservation, constraints (45) permit flow only on arcs selected for evacuation paths and ensure that
the flow does not exceed the arc’s capacity, and constraints (46) ensure that the total flow leaving each
evacuation node does not exceed its demand.

The Benders Cuts The Benders optimality cuts are of the form

zRMP ≤
∑
e∈A

xe
∑
t∈H

uet · πet +
∑
k∈E

dk · πk (48)

and use dual variables {πet} and {πk} associated with constraints (45) and (46) of the SP, respectively.
Again, Benders feasibility cuts are never generated in this algorithm because the SP is always feasible.
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max zSP =
∑
k∈E

∑
et∈δ+(k)

ϕet (43)

s.t.
∑

et∈δ−(i)

ϕet −
∑

et∈δ+(i)

ϕet = 0 ∀i ∈ T x (44)

ϕet ≤ x̄e · uet ∀e ∈ A,∀t ∈ H (45)∑
et∈δ+(k)

ϕet ≤ dk ∀k ∈ E (46)

ϕet ≥ 0 ∀et ∈ Ax (47)

Figure 9: The Benders Subproblem for the BC method.

Pareto-optimal Cuts The convergence of Benders decomposition can be accelerated through the utiliza-
tion of Pareto-optimal cuts [28], i.e., cuts not dominated by any other Benders cut. The Magnanti-Wong
method [23] is utilized to generate these stronger cuts (see for instance [29] for subsequent work on generating
Pareto-optimal cuts). The method requires a core point, i.e., a point located within the relative interior of
the convex hull of the feasibility domain of the RMP’s first-stage variable {xe}. For this formulation, the
core point utilized is simply x0

e = 1
|δ+(i)+1| for each arc e = (i, j). The dual of the Magnanti-Wong problem

(DMWP), which utilizes this core point and the optimal objective function value of the SP, zSP, is solved to
generate a Pareto-optimal cut. The model, depicted in Figure 10, uses a variable ξ, i.e., the dual variable
associated with the constraint ensuring that the objection function value of the Magnanti-Wong problem is
equal to zSP.

max
∑
k∈E

∑
et∈δ+(k)

ϕet + ξ · zSP (49)

s.t.
∑

et∈δ−(i)

ϕet −
∑

et∈δ+(i)

ϕet = 0 ∀i ∈ T x (50)

ϕet + xe · uet · ξ ≤ x0
e · uet ∀e ∈ A,∀t ∈ H (51)∑

et∈δ+(k)

ϕet + dk · ξ ≤ dk ∀k ∈ E (52)

ϕet ≥ 0 ∀et ∈ Ax (53)

Figure 10: The Subproblem for Generating Pareto-Optimal Cuts in the BN method.

To generate the Pareto-optimal cut, coefficients {πet} and {πk} in cut (48) are taken from the dual variables
of constraints (51) and (52), respectively instead of those from constraints of the SP.

Contraflow Extension The BC algorithm proposed by Romanski and Van Hentenryck [28] did not con-
sider contraflows, but it can be easily extended to support this functionality. In fact, convergent evacua-
tions make contraflows very easy, as their tree structure guarantees that, for any road segment (e, ē) with
e ∈ Âc, ē ∈ Ǎc, if xe = 1, then xē = 0. In other words, if an arc e ∈ Âc is in an evacuation path, the
corresponding unique arc in the opposite direction ē is not. This constraint makes it possible to use arc ē in
contraflow if arc e ∈ Âc is being used in an evacuation plan, since arc ē is guaranteed not to be part of any
other evacuation path by the convergence constraint. As a consequence, the BC algorithm is extended to
allow contraflow as follows. Before the algorithm is executed, the capacities of all arcs e ∈ Ac are replaced
with new capacities uet,new = uet +uēt . To identify where to use contraflows, it suffices to identify arcs e ∈ Ac
with flows ϕet > uet , meaning that the extra capacity afforded by using arc ē in contraflow is necessary to
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achieve optimality.

7 The Conflict-based Path Generation Method

This section summarizes the heuristic algorithm originally presented by Pillac et al. [26] to solve the ZEPP
and called the Conflict-based Path Generation (CPG) method. The CPG method originated from an attempt
to design a column-generation algorithm for the ZEPP. However, each new path creates a collection of
variables, i.e., the path variables and the associated flow variables, and these variables are linked as in
constraints (8) of the MIP model. Since the duals of these constraints are not readily available, it did not
appear easy to derive a column-generation algorithm at the time. Hence, the CPG mimics the behavior of
a column-generation algorithm, but its pricing subproblem is a heuristic. More precisely, the CPG breaks
down the evacuation planning problem into a subproblem (SP) responsible for generating evacuation paths
and a restricted master problem (RMP) responsible for selecting paths and scheduling the evacuation. The
method maintains a subset of critical evacuation nodes E ′ ⊆ E , i.e., evacuation nodes not fully evacuated,
and it alternates execution of the SP and RMP until E ′ is empty.

The Restricted Master Problem The RMP of the CPG method, shown in Figure 11, selects an evac-
uation path for each evacuation node and schedules the evacuees over them to maximize the number of
evacuees reaching safety. The paths are selected from a set of evacuation paths Ω′ generated by the SP.
The RMP uses a binary variable xp to indicate whether a path p ∈ Ω′ is selected for the evacuation plan, a
continuous variable ϕtp to represent the number of evacuees departing along path p at departure time t, and
a continuous variable ϕ̄k to represent the number of evacuees that cannot be evacuated at evacuation node
k. In addition to these variables, Ωk ⊂ Ω′ is the subset of evacuation paths for evacuation node k, ω(e) ⊆ Ω′

is the subset of paths that contain arc e, Hp ⊆ H is the subset of time steps over which path p is usable, τep
is the number of time steps required to reach arc e when traversing path p, and up is the capacity of path p.

max
∑
p∈Ω

∑
t∈Hp

ϕtp (54)

s.t.
∑
p∈Ωk

xp = 1 ∀k ∈ E (55)

∑
p∈Ωk

∑
t∈Hp

ϕtp + ϕ̄k = dk ∀k ∈ E (56)

∑
p∈ω(e)
t−τe

p∈Hp

ϕ
t−τe

p
p ≤ uet ∀e ∈ A \ Ac,∀t ∈ H (57)

∑
p∈ω(e)
t−τe

p∈Hp

ϕ
t−τe

p
p ≤ ye · uet + (1− yē) · uēt ∀e ∈ Ac,∀t ∈ H (58)

ye + yē ≥ 1 ∀e ∈ Ac (59)∑
t∈Hp

ϕtp ≤ |Hp| · xp · up ∀p ∈ Ω′ (60)

ϕtp ≥ 0 ∀p ∈ Ω′,∀t ∈ Hp (61)

ϕ̄k ≥ 0 ∀k ∈ E (62)

ye ∈ {0, 1} ∀e ∈ Ac (63)

xp ∈ {0, 1} ∀p ∈ Ω′ (64)

Figure 11: The Restricted Master Problem for the CPG Method.
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Objective function (54) maximizes the flow of evacuees over all paths. Constraints (55) allow only one
path from being selected per evacuation node, whereas constraints (56) ensures that the sum of evacuees
who reach or who do not reach safety is equal to the demand at each evacuation node. Constraints (57)
and (58) enforce the capacity of arcs that may not and may be used in contraflow, respectively. Constraints
(59) prohibit the simultaneous use of arcs e and ē in contraflow for road segment (e, ē) with e ∈ Âc, ē ∈ Ǎc.
Finally, constraints (60) allow for flows only on selected paths. To generate an evacuation plan that does
not permit contraflow, constraints (59) are replaced with constraints (65) to ensure all arcs are only used in
their normal directions.

ye + yē = 2 ∀e ∈ Ac (65)

Observe that constraints (60) feature both variables ϕtp and xp. These constraints must be generated every
time a new path is available and they make it difficult to obtain a traditional pricing subproblem since their
duals are not available.

The Path Generation Subproblem The SP utilizes a conflict-based path generation heuristic to gen-
erate evacuation paths that potentially improve the objective function value of the RMP. These paths are
generated by solving the multiple-origins, multiple-destinations shortest path problem shown in Figure 12.

min
∑
k∈E′

∑
e∈A

ce · ye,k (66)

s.t.
∑

e∈δ−(i)

ye,k −
∑

e∈δ+(i)

ye,k = 0 ∀i ∈ T ,∀k ∈ E ′ (67)

∑
e∈δ+(k)

ye,k = 1 ∀k ∈ E ′ (68)

ye,k ∈ {0, 1} ∀e ∈ A,∀k ∈ E ′ (69)

Figure 12: The Path Generation Subproblem for the CPG Method.

The problem formulation utilizes a binary variable ye,k to indicate whether arc e belongs to the path generated
for evacuation node k. Objective function (66) minimizes the total cost of all paths. Arc cost ce is defined
as a linear combination of an arc’s travel time se, the number of times arc e is utilized in the current set of
paths Ω′, and the utilization of arc e in the current solution:

ce = αt
se · r

maxe∈A se
+ αc

∑
p∈Ω′

e∈p
1

|Ω′|
+ αu

∑
p∈Ω′

e∈p

∑
t∈Hp

ϕtp∑
t∈H uet

(70)

In equation (70), αt, αc, and αu are positive weights which sum to 1, and r is a random noise factor that
is initialized to 1 and subsequently modified to r ∈ [1 − ε, 1 + ε] depending on the number of iterations in
which the objective function value of the RMP did not improve. The value ε is set to 0.50 in this study.
Constraints (67) enforce path continuity whereas constraints (68) ensure only one path is generated for each
critical node.

The Conflict-based Path Generation Algorithm This CPG algorithm is summarized in Algorithm 2.
PathGenerationSP (E ′,Ω′,Λ) denotes a subroutine to solve the SP with a set of critical evacuation nodes E ′,
a set of evacuation paths Ω′, and an evacuation schedule Λ obtained from the solution of the RMP as inputs.
EvacuationSchedulingMP(Ω′) denotes a subroutine to solve the RMP using a set of evacuation paths Ω′

as input. FindCriticalEvacuationNodes(Λ), as its name suggests, is a subroutine that identifies evacuation
nodes not fully evacuated using an evacuation schedule Λ as input.

The algorithm begins by first solving the SP to generate an evacuation path for each evacuation node.
The RMP is then solved to schedule the flow of evacuees over these paths. Critical evacuation nodes are
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Algorithm 2 Conflict-based Path Generation

1: Ω′ ← PathGenerationSP(E ,Ø,Ø)
2: Λ← EvacuationSchedulingMP(Ω′)
3: E ′ ← FindCriticalEvacuationNodes(Λ)
4: while E ′ 6= Ø do
5: Ω′ ← Ω′ ∪ PathGenerationSP(E ′,Ω′,Λ)
6: Λ← EvacuationSchedulingMP(Ω′)
7: E ′ ← FindCriticalEvacuationNodes(Λ)

8: Λ← Solve EvacuationSchedulingMP(Ω′) with ϕtp integer ∀p ∈ Ω′,∀t ∈ Hp
9: return Selected evacuation paths from solution of RMP and evacuation schedule Λ

then identified and stored in E ′ and, as long as this set is not empty, the process of solving the SP to
generate additional evacuation paths and the RMP to produce an evacuation schedule that maximizes the
flow of evacuees is repeated. The algorithm terminates when E ′ is empty or when a maximum number of
iterations is reached (maximum number of iterations is set to 10 in this study). Upon completion, the RMP
is solved one last time as an IP, where variables {ϕtp} are set to be integers, to produce an evacuation schedule
with integral flow values. In all but the instance with the largest population, the CPG method produces
evacuation plans very quickly.

8 Column Generation for Evacuation Planning

This section presents the column-generation algorithm (CG) introduced by Pillac et al. [25] to solve the
NP-ZEPP, i.e., the CG method generates non-preemptive, non-convergent zone-based evacuation paths. In-
terestingly, forbidding preemption makes it possible to design an exact column generation approach, avoiding
the difficulties faced by the CPG method. The key idea underlying the CG is to generate time-response
evacuation plans of the form p = 〈P, f, t0〉 where

1. P is an evacuation path for a given zone k;

2. t0 is the starting time of the evacuation along path P ;

3. f ∈ F is a response curve from a set F of predefined response curves.

The CG method also features a multi-objective function to minimize the overall evacuation time in addition
to maximizing the number of evacuees reaching safety.

The Restricted Master Problem The RMP selects time-response evacuation plans from a subset of
feasible plans Ω′ to maximize the number of evacuees reaching safety and minimize the overall evacuation
time. The formulation uses a number of constants associated with the plans. In particular, cp denotes the
cost for selecting plan p, Ωk ⊆ Ω′ is the subset of plans for evacuation node k, ω(e) ⊆ Ω′ is the subset of
plans that utilize arc e, and ap,et denotes the flow of evacuees along arc e at time t induced by plan p (as
prescribed by the response curve and the departure time). The cost cp of plan p is defined as a function that
applies a linear penalty on the arrival time of evacuees at the safe node and heavily penalizes the number of
evacuees that cannot reach safety. More precisely, cp is defined as:

cp =
∑
e∈p

∑
t∈H

cet · ap,et + c̄ · āp (71)

where āp denotes the number of evacuees not reaching safety when executing plan p, and cet and c̄ are defined
as follows:

cet = c(i,j)t =

{
t
|H| if j ∈ S
0 otherwise

(72)
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min
∑
p∈Ω′

xp · cp (74)

s.t.
∑
p∈Ωk

xp = 1 ∀k ∈ E (75)

∑
p∈ω(e)

ap,et · xp ≤ uet ∀e ∈ A,∀t ∈ H (76)

xp ≥ 0 ∀p ∈ Ω′ (77)

(78)

Figure 13: The Restricted Master Problem for the CG Method.

c̄ = 100 max
e∈A,t∈H

{cet} ·max
k∈E
{dk} (73)

The RMP uses a binary variable xp to indicate whether plan p ∈ Ω′ is selected and is shown in Figure 13.
It is essentially a set-covering problem with constraints on the arc capacities. The RMP first maximizes the
number of evacuees reaching safety and then minimizes the overall evacuation time. Constraints (75) ensure
that only one plan is selected for each evacuation node k and constraints (76) enforce all arc capacities. The
RMP minimizes the overall cost which essentially causes the objective function (74) to be multi-objective
and lexicographic. The formulation is a linear relaxation of the original RMP; after completion of the
column-generation phase, the RMP will be solved as a MIP.

The Reduced Cost Formulation To find a time-response evacuation plan p that can improve the current
RMP, its reduced cost rp must be negative, i.e.,

rp = cp − aᵀ
pπ < 0 (79)

where ap is the column of constraint coefficients of xp and π is the vector of dual values from the opti-
mal solution of the RMP. Letting {πk}, and {πet} denote the dual variables of constraints (75) and (76),
respectively, and substituting equation (71) into equation (79), the reduced cost can be formulated as:

rp =
∑
e∈p

∑
t∈H

cet · ap,et + c̄ · āp − πk −
∑
e∈p

∑
t∈H

πet · ap,et

= −πk + c̄ · āp +
∑
e∈p

∑
t∈H

(cet − πet) · ap,et (80)

The Pricing Subproblem The PSP is responsible for identifying a new time-response evacuation plan
that satisfies the negative reduced cost criteria. The formulation of the PSP exploits some key character-
istics of the reduced cost. First, the reduced cost contains terms that are specific to a single time-response
evacuation plan p. Since the time-response evacuation plans are independent of each other, the PSP can
also be solved independently for each evacuation node k ∈ E and for each predefined response curve f ∈ F ,
allowing multiple PSPs to be solved concurrently in parallel. Moreover, since πk does not depend on the
path, finding a plan p with negative reduced cost is equivalent to finding an evacuation path P and a start
time t0 that minimize the last two terms of equation (80) for each k ∈ E and for each f ∈ F . Denote the
last two terms of equation (80) as Cost(P, t0):

Cost(P, t0) = c̄ · āp +
∑
e∈p

∑
t∈H

(cet − πet) · ap,et . (81)

The second key observation is that the path P and evacuation start time t0 that minimizes Cost(P, t0) can
be obtained by applying a least-cost path algorithm on an extended time-expanded graph Gx with carefully
defined arc costs. In particular, the formulation recognizes that a time-response evacuation plan follows the
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same path at each time step and hence the arc costs can be aggregated. The extension to the time-expanded
graph involves the introduction of a virtual super-sink, vt, which all safe nodes s ∈ Sx are connected to with
arcs et ∈ Axs = {(s, vt) | s ∈ Sx}. Now denote by Axw the set of all infinite capacity arcs used to model
evacuees waiting at the evacuation nodes. For a given evacuation node k and response curve f , a path P x in
Gx from evacuation node k0 (evacuation node k and time 0) to vt corresponds to a time-response evacuation
plan p = 〈P, f, t0〉, where P is given by the sequence of nodes visited by P x excluding vt and t0 is given by
the time of the first non-waiting arc leaving Ex. For instance, path P x represented by the red colored arcs
in Figure 14 corresponds to path P = 〈0, 1,A〉 and evacuation start time t0 = 10:00.

Figure 14: Path P x in the extended time-expanded graph.

The cost of the combination (path,start time), Cost(P, t0), can be calculated by first assigning arc costs
cspet to each arc et ∈ Ax as follows:

cspet =

|H|∑
t′=t

(cet′ − πet′ ) · f(t′ − t) ∀et ∈ Ax \ (Axw ∪ Axs ) (82)

cspet = c̄ · (dk − F (|H| − t)) ∀et ∈ Axs (83)

cspet = 0 ∀et ∈ Axw (84)

Equation (82) aggregates future costs of arc et, should it be selected for a time-response evacuation plan,
whereas equation (83) accounts for the cost of evacuees not reaching safety for time-response evacuation
plans which end with that arc.

With these arc cost definitions, Cost(P, t0) for a path P and an evacuation start time t0 that corresponds
to a path P x can be calculated using equation (85):

Cost(P, t0) =
∑
et∈Px

cspet (85)

= c̄ · (dk − F (|H| − t)) +
∑

et∈Px\Ax
s

|H|∑
t′=t

(cet′ − πet′ ) · f(t′ − t) (86)

= c̄ · āp +
∑
e∈p

∑
t∈H

(cet − πet) · ap,et (87)

Equations (86) and (87) show that the expansion of equation (85) will eventually lead to the original equation
for Cost(P, t0) in equation (81).
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With this formulation, the goal of the PSP, which is to find a path P and evacuation start time t0
combination that minimizes Cost(P, t0), can be accomplished by finding a shortest path from k0 to vt in the
extended time-expanded graph for each k ∈ E and f ∈ F . As a result, an algorithm such as the Bellman-Ford
algorithm to be applied to solve the PSP in polynomial time.

The Contraflow Extension The CG method can also be extended to produce an evacuation plan that
allows for contraflows. It suffices to replace constraints (76) in the RMP with constraints (88) and (89), and
to introduce additional constraints (90) and (91).∑

p∈ω(e)

ap,et · xp ≤ uet ∀e ∈ A \ Ac,∀t ∈ H (88)

∑
p∈ω(e)

ap,et · xp ≤ ye · uet + (1− yē) · uēt ∀e ∈ Ac,∀t ∈ H (89)

ye + yē ≥ 1 ∀e ∈ Ac (90)

ye ∈ [0, 1] ∀e ∈ Ac (91)

Constraints (88) enforce capacity on arcs that may not be used in contraflow, whereas constraints (89) do the
same for arcs that may. Constraints (90) prevent arcs e and ē from being used in contraflow simultaneously
for road segment (e, ē) with e ∈ Âc, ē ∈ Ǎc, and Constraints (91) apply a linear relaxation on variable ye.
Once the column generation procedure has terminated, variable ye is made binary, the final RMP is solved
as a MIP, and the rest of the CG method remains unchanged.

Figure 15: An Example of Non-Elementary Path.

Elementary Paths The time-expanded graph Gx is by construction acyclic as its arcs only connect nodes
at different time steps. As such, the shortest paths identified in the PSP are also acyclic. However, this fact
does not preclude the PSP from generating paths that visit the same transit node in Gx at different time
steps, as there are no restrictions enforced in the shortest path algorithms preventing such paths from being
generated. Whereas such paths are acyclic in Gx, their corresponding counterparts in the static graph G
contain cycles, as they visit the same transit node more than once.

These cyclic paths are called non-elementary (they visit the same node multiple times), and an example of
such a non-elementary path is shown in Figure 15. Non-elementary paths in the static graph are undesirable
in real evacuations, as they give evacuees the impression that the evacuation plans are sub-optimal and
reduce trust in emergency services. However, when the CG algorithm is applied to the real case study, about
44% of the generated evacuation paths are not elementary.
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min
∑
et∈Ax

cspet · xet (92)

s.t.
∑

et∈δ+(k0)

xet = 1 (93)

∑
et∈δ−(i)

xet −
∑

et∈δ+(i)

xet = 0 ∀i ∈ N x \ {k0, vt} (94)

∑
et∈δ−(vt)

xet = 1 (95)

∑
it∈Λ(i)

∑
et∈δ+(it)

xet ≤ 1 ∀i ∈ T (96)

xet ∈ {0, 1} ∀et ∈ Ax (97)

Figure 16: The Pricing Subproblem With Elementary Paths.

This section outlines the pricing subproblem proposed by Hasan and Van Hentenryck [12] that only
generates time-response evacuation plans with elementary paths. Let Λ(i) denote the set of time-expanded
nodes in Gx for a node i ∈ T , i.e., Λ(i) = {it | t ∈ H}. A path P x in Gx corresponds to an elementary path P
in G if and only if P x visits at most a single node in Λ(i) for each node i ∈ T . As a result, instead of finding
a least-cost path, the revised PSP must find a least-cost path that is also an elementary path in the static
graph. Figure 16 depicts the new formulation of the pricing problem. The formulation uses binary decision
variable xet to indicate whether edge et should be selected as part of the shortest path. Objective function
(92) minimizes the total cost of the path. Constraint (93) specifies that exactly one path should emanate
from source node k0, whereas constraint (95) ensures the path ends at super sink node vt. Constraints
(94) enforce path continuity at every node other than the source and super sink. Finally, constraints (96)
guarantee that each transit node is visited by the path at most once throughout the entire time horizon.

This version of the PSP is a shortest path problem with resource constraints [17] which is known to be
NP-hard [10]. In this particular formulation, the resources are simply the unit “visited” resources associated
with each transit node in Gx. The set of all time steps of a particular transit node, {it | i ∈ T ,∀t ∈ H}, is
allocated only one unit of this “visited” resource, and the resource is completely consumed if this node were
to be visited by a path. For the case study in this paper, this constrained shortest-path problem must be
solved repeatedly for a very large graph.

Whereas solving formulation (92)-(97) using a MIP solver will result in the desired shortest elementary
path, the hybrid strategy proposed by Hasan and Van Hentenryck [12] is capable of obtaining these paths
faster. The hybrid strategy combines the above formulation with a k-shortest-path-based algorithm based on
the implementation of Jimenez and Marzal’s Recursive Enumeration Algorithm (REA) [18]. This algorithm
incrementally generates a kth-shortest path based on information of the (k − 1) shortest paths. It can be
used to find the shortest elementary path by first generating the shortest path (setting k = 1). If the path
is elementary, the algorithm terminates. Otherwise, the next shortest path is generated by the REA (by
incrementing k by 1), and the elementary check is applied on this path. This process is repeated until an
elementary path is obtained.

Computational experiments on the case study show that the k-shortest-path-based algorithm is extremely
fast at finding shortest elementary paths when the required k values are relatively small (k < 105). Unfortu-
nately, in some rare instances, the value of k required to obtain an elementary path is extremely large (in the
millions), and under these circumstances, solving the MIP formulation produces faster results. Therefore,
the hybrid strategy combines both methods by first utilizing the k-shortest-path-based algorithm to find
shortest elementary paths up to a threshold value for k (in this study, the threshold is set to 105). If this
k-threshold is reached and an elementary path is yet to be found, the MIP formulation is solved. This hybrid
strategy exploits the strengths of both methods and is extremely effective at identifying shortest elementary
paths quickly in almost all cases.
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9 Clearance Time Minimization

Of the four methods presented, only the CG method has a multi-objective function to minimize the total
evacuation time in addition to maximizing the number of evacuees reaching safety. The BN, BC, and CPG
methods only optimize for the latter goal. However, evacuation authorities are also deeply interested in the
minimum clearance time, i.e., the smallest amount of time to evacuate an entire region. A precise definition
of minimum clearance time, h∗, is as follows:

h∗ = min

{
t ∈ H

∣∣∣∣ z(EPP(G, [0..t])) =
∑
k∈E

dk

}
(98)

where EPP(G,H) denotes the optimal solution obtained from an EPP formulation given static graph G and
time horizon H as inputs. This section shows how to obtain the minimum clearance time for each method.

Benders Non-convergent and Convergent Methods The BN and BC methods each consist of an
RMP and an SP which generate upper and lower bounds on the objective function value. As proposed by
Romanski and Van Hentenryck [28], a lower bound h† on the minimum clearance time can first be obtained
by performing a binary search over the time horizon using just the RMP. Next, a sequential search using
the full BN or BC method can be used to find h∗, beginning from its lower bound h†. This approach seems
preferable over a binary search for the second stage as h∗ is very likely closer to the lower bound h†, and
hence the second part of the algorithm will converge faster by starting a sequential search from that time.
Algorithm 3 summarizes the entire approach.

Algorithm 3 Clearance Time Minimization for BN and BC Methods

1: h† ← min{t ∈ H | z(RMP(G, [0..t])) =
∑
k∈E dk}

2: h∗ ← min{t ∈ [h†..H] | z(EPP(G, [0..t])) =
∑
k∈E dk}

3: return h∗, evacuation paths from solution of RMP, and evacuation schedule from solution of SP

Conflict-based Path Generation Method Since the CPG method does not maintain upper and lower
bounds on the objective function value of the EPP, the clearance time can be performed by a binary search
over the time horizon of the full CPG method.

Column Generation Method Even though the CG method’s multi-objective function minimizes total
evacuation time, the quantity is not equivalent to clearance time. Clearance time is equivalent to the time
at which the last evacuee arrives at its safe node, and this is not the quantity being minimized in the
objective function. Minimizing total evacuation time might result in the minimal clearance time, but it
might also produce suboptimal clearance times as the penalty incurred by the late arrival of the last evacuee
could possibly be diluted by early arrival costs. Application of a binary search over the time horizon is
an option, however this paper did not resort to this approach due to the significant run times of the CG
method. Therefore, the minimum clearance time experiments only report the arrival time of the last evacuee
produced by the CG method while fully recognizing that it might be suboptimal as the method’s objective
function does not explicitly minimize clearance times.

10 Conclusion

This paper presented a systematic study of large-scale zone-based evacuation planning. It introduced the
core Zone-based Evacuation Planning Problem (ZEPP) that consists in assigning an evacuation path, as
well as departure times, to each zone in the region that needs to be evacuated. It also discussed critical
additions to the core problem that include contraflows, convergent plans, and non-preemption. Part II of
the paper evaluates them on a real, large-scale case study, both from a macroscopic standpoint and through
microscopic simulations under a variety of assumptions, providing some unique perspectives on the strengths
and weaknesses of each approach and the implications of evacuation functionalities.
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Figures 3a and 3b illustrate, for four types of response curves, the departure rate of evac-
uees and the cumulative number of departed evacuees over time, assuming an evacuation
order issued at 60 minutes. The step function response curve considers a lead time of 60
minutes before evacuees start departing and then assumes a constant rate until all evacuees
have departed. The S-shape is a commonly used response curve described by a logistic
function fS (t) = D

1+e−kt , where D and k are parameters. The Rayleigh response curve is

defined by the function fR (t) = t

σ 2 e
−t2/2σ 2

, where σ is a parameter.

3 Related work

According to Hamacher and Tandra [12], evacuation planning can be tackled using either
microscopic or macroscopic approaches. Microscopic approaches focus on modeling and
simulating the evacuees individual behaviors, movements, and interactions. Macroscopic
approaches, such as the one presented in this study, aggregate evacuees and model their
movements as a flow in the evacuation graph.

3.1 Macroscopic level

To the best of our knowledge, only a handful of studies attempt to design evacuation plans
that define both a set of evacuation routes and a departure schedule. Huibregtse et al. [16]
propose a two-stage algorithm that first generates a set of evacuation routes and feasible

(a) Departure Rates.

(b) Cumulative Departures.

Fig. 3 Comparison of response curves
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