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Abstract: The authors investigate a multi-frequency signal which is decomposed failure by the traditional empirical mode
decomposition (EMD) method. Moreover, the multi-frequency signal submerged in the coloured noise increases the difficulty in
signal decomposition. As a result, this noisy signal is decomposed unsuccessfully by the cooperation of the adaptive stochastic
resonance (SR) in the classic bistable system and EMD. Then, a method combined adaptive SR in the periodic potential system
and EMD is put forward to realise the decomposition. Meanwhile, the random particle swarm optimisation algorithm is applied to
reach the optimal situation when signal-to-noise ratio attains the maximum value. Different simulation results verify the
effectiveness of the proposed method. The proposed method might be useful in dealing with signal processing problems.

1 Introduction
The method of empirical mode decomposition (EMD) was first
reported in 1998 [1]. This method is different from traditional
signal processing methods because it decomposes a complicated
signal into limited intrinsic mode functions (IMFs). It is suitable
for processing non-linear and non-stationary signals.

Although the EMD method solves some complicated signals
successfully [2–5], it still has difficulty when the signal submerged
in strong noise background. This problem may be solved by the
cooperation of stochastic resonance (SR) and EMD [6, 7]. The
theory of SR was firstly put forward by Benzi et al. [8] and has
been widely used in signal processing fields [9]. At present, the
classical model of SR is usually a bistable system [10–12]. In fact,
SR can be presented in a variety of non-linear systems. For
example, the periodic potential system is one kind of typical
nonlinear system [13–15]. Further, the method of SR in periodic
system has superiority in improving the signal-to-noise ratio (SNR)
[16, 17]. Nowadays, the method of SR in bistable system is studied
widely. However, the method of SR in the periodic potential
system is still needed to be investigated intensively, especially in
the engineering applications.

In most studies, the Gaussian white noise is usually added in
signals to simulate a noisy background [18]. However, the noise of
the realistic model may be in the coloured noise form [19–25].
Therefore, it is necessary to research the signal under coloured
noise background. Fang et al. [26] explored the effects of the
coloured noise on the resonance at the subharmonic frequency in
bistable systems. Xu et al. [27] proposed the effects of coloured
noise on multi-frequency signal processing via SR with tuning
system parameters. Ma et al. [28] researched the coherence
resonance induced by coloured noise near the Hopf bifurcation.
However, all the aforementioned references have not solved the
EMD problem when the multi-frequency signal submerged in the
coloured noise background.

The remaining of this paper is organised as follows. In Section
2, we will introduce the theory of EMD and the model of coloured
noise. In Section 3, we will show the considered multi-frequency

signal which cannot be decomposed by EMD directly under the
coloured noise background. In Section 4, the method of adaptive
SR in the classic bistable system and the method of adaptive SR in
the periodic potential system are introduced. Then, two kinds of
adaptive SR are combined with EMD respectively to process the
multi-frequency signal under the coloured noise background.
Finally, the main conclusions of the paper are given in Section 5.

2 Theory and model
2.1 Theory of EMD

The method of EMD decomposes a multi-frequency signal into the
following form:

x(t) = ∑
i = 1

n

ci(t) + rn(t) . (1)

In (1), ci is the ith IMF component. rn(t) is the residual amount
after the IMFs are extracted. The purpose of EMD is to extract the
components of the signal from high frequency to low frequency.
That is, the components of the highest frequencies will be firstly
got, then the second high frequencies, and ultimately residual
components with frequencies close to zero. The termination
condition of the decomposition is that rn(t) becomes a monotonic
function or a constant. Then the high frequency components are the
most important components as they always represent the main
characteristics of the signal. The residual amount stands for the
average trend of the signal. However, the decomposed data is
usually complex and cannot predict how many IMF components
are included in practical applications. Therefore, the termination
condition of decomposition is subjectively determined by the
researcher according to the research needs. Herein, we subjectively
determine the number of IMFs because the noisy signal is
complicated. Through analysing each IMF, we get the features of
data information at different time scales. In addition, the EMD
method is based on the following three assumptions. First, the
signal must have at least two extreme points which are one
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maximum point and one minimum point. Second, the characteristic
time scale is defined as the time interval between adjacent
extremum points. Finally, if the signal owns no extreme points but
only inflection points, it should be differential one or more times to
obtain extreme points and then integrating the results to get the
corresponding components [29].

2.2 Model of coloured noise

The exponential coloured Gaussian noise is widely used in
engineering filed. It can be modelled by the Ornstein–Uhlenbeck
process

dn(t)
dt

= −
n(t)
τc

+
Γ(t)
τc

, (2)

where τc is the correlation time of the noise and Γ(t) is an ideal
white noise. The statistic characteristics of n(t) are

⟨n(t)⟩ = 0, ⟨n(t)n(t′)⟩ =
D

τc
e− t − t′ /τc, (3)

where D stands for the noise intensity. When the value of τc tends
to zero, the coloured noise will approach to the Gaussian white
noise. The power spectrum of the exponential coloured Gaussian
noise is expressed as

S( f ) =
2D

1 + (τc f )2 , (4)

where the relationship between S(f) and f is the Lorenz function.
When D and τc are set as 2 and 1, respectively, in (4), Fig. 1 reveals
the power spectrum of the exponential coloured Gaussian noise.
The amplitude of the coloured noise is gradually reduced from zero
and the energy in high frequency is insignificant. 

3 Multi-frequency signal
We use a two-frequency signal and a three-frequency signal to
explain the proposed method.

The two-frequency signal is described by

s1(t) = A1cos(2π f 1t) + A2sin(2π f 2t) . (5)

In (5), we let A1 = 0.1, A2 = 0.2, f1 = 0.6, f2 = 0.9.
The three-frequency signal is described by

s2(t) = B1cos(2πF1t) + B2sin(2πF2t) + B3cos(2πF3t) . (6)

In (6), we let B1 = 0.1, B2 = 0.1, B3 = 0.1, F1 = 0.2, F2 = 0.5, F3 = 
0.8.

First, the two-frequency signal is decomposed by EMD directly.
Fig. 2 shows the decomposition results. In the model of the
coloured noise and in the process of EMD, without special
remarks, we always set dt = 0.02, τc = 1, D = 2 and fs = 50, N = 
4000. IMF1 is almost the original signal and two frequency
components do not be decomposed into different IMFs. Fig. 3
describes the frequency spectrums of the noisy two-frequency
signal which is processed by EMD directly. In Fig. 3, we find the
highest points appearing in IMF4 are located at 0.6 and 0.9 Hz.
Mode mixing phenomenon consists of two types. One is that a
single IMF contains different frequencies and the other is that
different IMFs include the same frequency. As a result, the signals
in Figs. 2 and 3 are all show mode mixing phenomenon and not in
successful decomposition. 

Fig. 4 shows the frequency spectrum of the noisy three-
frequency signal which is processed by EMD directly. In Fig. 4, the
highest point in IMF4 is located at 0.8 Hz. The two highest points
in IMF5 are located at 0.5 and 0.8 Hz, respectively. In IMF6, the
highest point is located at 0.2 Hz. The frequency of 0.8 Hz appears
in IMF4 and IMF5. The frequencies of 0.5 and 0.8 Hz both exist in
IMF5. It is a mode mixing phenomenon and the noisy signal
decomposed failure. 

4 Method of EMD combined with the adaptive SR
The traditional SR makes the non-linear system achieve its best
output by optimising the noise intensity. However, it has some
shortness because sometimes the noise cannot be reduced in some
engineering situations. So, the method of adaptive SR in which the
noise intensity is fixed and the system parameters are adjusted was
proposed to overcome the shortness [30].

The model of SR is expressed by the Langevin equation [31,
32]

Fig. 1  Power spectrum of the exponential coloured Gaussian noise
 

Fig. 2  Frequency spectrum of the two-frequency signal is decomposed by
EMD

 

Fig. 3  Frequency spectrum of the two-frequency signal is decomposed by
EMD under the coloured noise background. In IMF4, the highest points are
located at 0.6 and 0.9 Hz
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dx

dt
= − U′(x) + s(t) + n(t) . (7)

where U(x) is the potential function, s(t) stands for the multi-
frequency signal and n(t) represents the coloured noise in this
paper.

In most cases, the SR in traditional bistable system is widely
investigated. The bistable potential function is

U(x) = −
a

2
x

2 +
b

4
x

4, (8)

where a > 0 and b > 0 are the system parameters. Substituting (8)
into (7), then (7) is simplified to

dx

dt
= ax − bx

3 + s(t) + n(t) . (9)

Equation (9) is the model of SR in bistable system and we call this
kind of SR as BSR for simplify.

Besides the bistable potential, the periodic function is another
form of non-linear potential, which is given as

U(x) = − acos(bx), (10)

where a > 0 and b > 0 are the system parameters. Substituting (10)
into (7), one obtains

dx

dt
= − absin(bx) + s(t) + n(t) . (11)

Equation (11) is the model of SR in periodic potential system and
this type of equation can be solved by the fourth-order Runge–
Kutta algorithm [33]. We call the SR in periodic potential system
as PSR for simplify.

In this paper, in order to realise the adaptive SR and improve
the computation efficiency, the random particle swarm optimisation
(RPSO) algorithm [34–36] is applied to obtain the optimal
parameters a and b. Meanwhile, SNR is set as the evaluation index
in the calculation [37]. SNR is defined as

SNR = 10log10

S( f )
N( f )

, (12)

where S(f) is the energy at the signal frequency f and N(f) is the
average energy of the noise background at the signal frequency
neighbourhood. S(f) and N(f) are, respectively, discretised and
calculated by

S( f ) = | X(k)|2

N( f ) =
1

2M
∑
j = 1

M

( | X(k − j) |2 + | X(k + j) |2 )
, (13)

where X(·) is the amplitude of the response and X(k) is the
amplitude at the signal frequency f. To calculate the noise energy
around f, we consider the average noise energy in the discrete
amplitude spectrum in the interval f−MΔf and k + MΔf, where Δf is
the step of the discrete amplitude spectrum. For discrete
calculation, it is carried out by (13). Actually, the SNR here is the
local SNR because the choice of M and N(f) represents the average
noise energy around the signal frequency. In the following
calculations, M is set as 10.

The main steps of the RPSO algorithm are as follows:

i. Set the initialisation condition. The learning factors are usually
set as 2. The maximum and minimum values of the mean
random weights are set as 0.8 and 0.5, respectively. The
variance of the mean random weights is set as 0.2. These above
values are generally applicable to the general situation. The
appropriate values of initialised groups number and the
iterations number are selected according to the effectiveness
and speed of the operation. Herein, the number of initialised

groups is 40 and the number of iterations is 50. Moreover, the
space dimension is set as two because two system parameters
are needed to be optimised.

ii. Initialise the individual particles in the population. Randomly
initialise the particle's position and velocity.

iii. Calculate the fitness of each particle and find the local
optimum and global optimum.

iv. Enter the main loop. First, update the position and velocity of
the particle. Second, recalculate the fitness of each particle and
update the local optimum and global optimum. Third, judge
whether the optimal value between 0 and 2 and whether the
maximum number of iterations has been reached. If not,
continue the loop. If reached, go to the next step.

v. The best result will be obtained by the above steps.

Fig. 5 shows the concrete steps of the signal processing based
on the combination of adaptive SR and EMD. According to Fig. 5,
these noisy multi-frequency signals which have been processed by
adaptive BSR or adaptive PSR will be decomposed by EMD. 

The two-frequency signal under coloured noise background is
firstly processed. Fig. 6 depicts the frequency spectrums of the
combination of adaptive BSR or adaptive PSR with EMD which
are optimised at 0.6 Hz. In Fig. 6a, the highest point is located at
0.9 Hz in IMF2. In IMF3, the highest points are located at 0.6 and
0.9 Hz. Unfortunately, the mode mixing problem is not solved
completely and the failure decomposition still exists. In Fig. 6b, 0.9
and 0.6 Hz appear in IMF2 and IMF3, respectively. In addition,
there is also a highest point in the IMF4. It is the subharmonic
frequency or the combined frequency [38]. Different from the
situation in bistable system, it is a successful decomposition
because different frequencies appear in different IMFs. The reason
for the same signal decomposed failure after BSR and decomposed
successful after PSR is that optimisation effect of PSR is better
than BSR. The method of PSR equivalently optimises an infinite
number of terms because sinx in the model of PSR includes an
infinite number of terms when it expands into Taylor series.
However, the method of BSR only optimises two terms. Hence, the

Fig. 4  Frequency spectrum of the three-frequency signal is decomposed by
EMD under the coloured noise background. In IMF4, the highest point is
located at 0.8 Hz. In IMF5, the highest points are located at 0.5 and 0.8 Hz.
In IMF6, the highest point is located at 0.2 Hz
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method of PSR has better effect and then can reach better
decomposition condition. Fig. 7 depicts the frequency spectrums of
the combination of adaptive BSR or adaptive PSR with EMD
which is optimised at 0.9 Hz. Fig. 7a reveals the same phenomenon
as that in Fig. 6a. In Fig. 7b, 0.9 and 0.6 Hz appear in IMF2 and
IMF3, respectively. Similar to the fact in Fig. 6b, it is also a
successful decomposition. 

Sometimes, the analysis of a single time series is also
meaningful because we need to analyse a single time series in
engineering problems. However, for the purpose of increasing the
conviction of the proposed method, we also use the statistical
method to analyse the noisy signal and every IMF is averaged 30
times. Then the sensitivity and robustness of this method are both
owned through the analysis of a single time series and statistical
series. This two-frequency signal under coloured noise background
is optimised at 0.9 Hz by adaptive BSR or adaptive PSR with
EMD. Fig. 8 shows the frequency spectrums by these two methods.

Comparing with Fig. 7, the results in Fig. 8 are in accordance with
those in Fig. 7. Therefore, the statistical analysis also verifies the
proposed method is valid. 

In all the above situations, the intensity of coloured noise is all
set as 2. In order to prove the dependence of the proposed method
on the noise intensity in most common situations, two-frequency
signals with coloured noise intensities of 8 and 9 are processed.
Fig. 9a depicts this two-frequency signal with coloured noise
intensity of 8 is handled by the combination of adaptive PSR with
EMD. Fig. 9b depicts this two-frequency signal with coloured
noise intensity of 9 is handled by the combination of adaptive PSR
with EMD. In Fig. 9a, a successful decomposition is shown. Make
comparison with Figs. 6b and 9a, they reveal the same results. So
the validity of the method is not affected by the normal noise
intensity in common cases. In Fig. 9b, the interference components
cover the signal frequency. Hence, the proposed method is a failure
when the noise intensity is more than 8. However, this noise

Fig. 5  Flowchart of the combination of the adaptive SR and EMD
 

Fig. 6  Frequency spectrums of the noisy two-frequency signals are decomposed by EMD after adaptive BSR or adaptive PSR at 0.6 Hz, when the noise
intensity is set as 2
(a) Frequency spectrum of the noisy two-frequency signal is decomposed by EMD after adaptive BSR at 0.6 Hz: optimal output with a = 0.128 and b = 1.175. In IMF2, the highest
point is located at 0.9 Hz. In IMF3, the highest points are located at 0.6 and 0.9 Hz, (b) Frequency spectrum of the noisy two-frequency signal is decomposed by EMD after adaptive
PSR at 0.6 Hz: optimal output with a = 1.032 and b = 0.6523. In IMF2, the highest point is located at 0.9 Hz. In IMF3, the highest point is located at 0.6 Hz
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intensity range, which suitable for this method can meet most of
the actual engineering conditions. Moreover, we can estimate
whether this proposed method is suitable for an unknown mixed
noisy signal. The variance of this mixed noisy signal is 0.1924
when its noise intensity is 8. So if the variance of an unknown
mixed noisy signal is larger than 0.1924, the proposed method is
not applicable here. 

Fig. 10 demonstrates the three-frequency signal under coloured
noise background is processed by the cooperation of adaptive BSR
or adaptive PSR with EMD. Fig. 10a shows the frequency
spectrums of the combination of adaptive BSR and EMD, which
are optimised at 0.8 Hz. In Fig. 10a, different frequencies appear in
one IMF because the two highest points in IMF3 are 0.5 and 0.8 
Hz. Meanwhile, the same frequency appears in the different IMFs
as the highest points in IMF4 and IMF5 are all 0.2 Hz. In summary,

Fig. 7  Frequency spectrums of the noisy two-frequency signals are decomposed by EMD after adaptive BSR or adaptive PSR at 0.9 Hz, when the noise
intensity is set as 2
(a) Frequency spectrum of the noisy two-frequency signal is decomposed by EMD after adaptive BSR at 0.9 Hz: optimal output with a = 0.067and b = 0.699. In IMF2, the highest
point is located at 0.9 Hz. In IMF3, the highest points are located at 0.6 and 0.9 Hz, (b) Frequency spectrum of the noisy two-frequency signal is decomposed by EMD after adaptive
PSR at 0.9 Hz: optimal output with a = 0.279 and b = 1.536. In IMF2, the highest point is located at 0.9 Hz. In IMF3, the highest point is located at 0.6 Hz

 

Fig. 8  Frequency spectrums of the noisy two-frequency signals are decomposed with statistical method by EMD after adaptive BSR or adaptive PSR at 0.9 
Hz, when the noise intensity is set as 2
(a) Frequency spectrum of the noisy two-frequency signal is decomposed by EMD after adaptive BSR at 0.9 Hz: every IMF is averaged 30 times. In IMF2, the highest point is
located at 0.9 Hz. In IMF3, the highest points are located at 0.6 and 0.9 Hz, (b) Frequency spectrum of the noisy two-frequency signal is decomposed by EMD after adaptive PSR at
0.9 Hz: every IMF is averaged 30 times. In IMF2, the highest point is located at 0.9 Hz. In IMF3, the highest point is located at 0.6 Hz
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it is decomposed failure because of the mode mixing phenomenon.
Fig. 10b shows the frequency spectrum of the combination of
adaptive PSR and EMD which is optimised at 0.8 Hz. In Fig. 10b,
0.8, 0.5 and 0.2 Hz appear in IMF3, IMF4 and IMF5, respectively.

Similar to the fact in Figs. 6b and 7b, it is also a successful
decomposition. 

Comparing figures treated by the combination of adaptive BSR
and EMD with figures handled by the combination of adaptive

Fig. 9  Frequency spectrums of the noisy two-frequency signals are decomposed by EMD after adaptive PSR at 0.6 Hz when the noise intensities are set as 8
and 9
(a) Frequency spectrum of the noisy two-frequency signal is decomposed by EMD after adaptive PSR at 0.6 Hz when the noise intensity is 8: optimal output with a = 1.947 and b = 
1.9883. In IMF3, the highest point is located at 0.9 Hz. In IMF4, the highest point is located at 0.6 Hz, (b) Frequency spectrum of the noisy two-frequency signal is decomposed by
EMD after adaptive PSR at 0.6 Hz when the noise intensity is 9: optimal output with a = 1.9861 and b = 1.9822. In IMF3, the highest point is located at 0.9 Hz. In IMF4, the highest
point is located at 0.5 Hz

 

Fig. 10  Frequency spectrums of the noisy three-frequency signals are decomposed by EMD after adaptive BSR or adaptive PSR at 0.8 Hz, when the noise
intensity is set as 2
(a) Frequency spectrum of the noisy three-frequency signal is decomposed by EMD after adaptive BSR at 0.8 Hz: optimal output with a = 0.35 and b = 1.848. In IMF3, the highest
points are located at 0.5 and 0.8 Hz. In IMF4 and IMF5, the highest point is located at 0.2 Hz, (b) Frequency spectrum of the noisy three-frequency signal is decomposed by EMD
after adaptive PSR at 0.8 Hz: optimal output with a = 1.995 and b = 1.97. In IMF3, the highest point is located at 0.8 Hz. In IMF4, the highest point is located at 0.5 Hz. In IMF5, the
highest point is located at 0.2 Hz
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PSR and EMD, we clearly find the complicated signal under
coloured noise background by the latter method has a better
decomposition effect. Furthermore, we convincingly prove the
validity of this method by statistical analysis and different noisy
intensities.

5 Conclusion
In this paper, we focus on the decomposition of a multi-frequency
signal in the coloured noise background. The noisy signal cannot
be successfully decomposed by EMD directly. Furthermore, the
results are even unsatisfactory through the cooperation of the
adaptive BSR and the EMD method. We solve the problem by the
combination of adaptive PSR with EMD and get the following
advantages:

(i) The research of the signal under coloured noise background is
more closer to the engineering practice.
(ii) Neither the original signal nor the noisy signal is decomposed
unsuccessfully by EMD directly. Moreover, this noisy signal even
cannot be decomposed satisfactory by the combination of the
adaptive BSR and the EMD method. However, the method we put
forward has effectively solved this problem. In addition, the
method we proposed might be useful in other similar signal
processing problems.

Although this proposed method has good effect in processing
multi-frequency signal, it still has some weakness when the noise
frequency is closer to the signal frequency or signal frequencies
closer to each other, or the special case, such as noise intensity is
too strong. Concerning these issues, some other techniques need to
be introduced to solve the problem. Moreover, we only study the
low-frequency signals to verify the effectiveness of proposed
method here. If we need to process the high-frequency signals, we
should introduce other methods together with this proposed
method, such as frequency-shifted and rescaling SR, the twice
sampling SR, and the multiscale noise tuning SR, etc. This is our
main research content in the future and we predict the proposed
method is also applicable to high-frequency signals.
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