IET Smart Grid lH Journals
The Institution of

Research Article Engineering and Technology

elSSN 2515-2947

Received on 25th March 2018
Revised 30th June 2018
Accepted on 23rd August 2018
E-First on 18th September 2018
doi: 10.1049/iet-stg.2018.0048
www.ietdl.org

Game theory based bidding strategy for
prosumers in a distribution system with a
retail electricity market

Zheming Liang?, Wencong Su’ =
"Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA
s E-mail: wencong@umich.edu

Abstract: Distributed energy resources (DERs) are deployed vastly to reduce carbon emission, improve power quality and
maintain the reliability of distribution systems. With the introduction of new players, such as prosumers, which are constructed
with DERs, distribution system operators (DSOs) are facing changes in the retail electricity market. Prosumers need a well-
defined strategic bidding mechanism to maximize their operation revenue, while DSOs need a new market clearing mechanism
for the changed retail electricity market. Thus, an innovative game-theoretic market framework for a prosumer-centric retail
electricity market is proposed. A bilevel algorithm is adopted to model new features of DSOs, utility companies and prosumers.
The supply function equilibrium model, Nikaido—Isoda functions, and relaxation algorithms are applied to analyse the
competition among key participants in a retail electricity market. Extensive simulation results are employed to illustrate and
validate the effectiveness of the proposed framework for bidding strategies of prosumers with a retail electricity market.
Specifically, the strategy with dumping-bid or abnormal-bid from a prosumer is suppressed by the market operator in the model.
Moreover, the sensitivity analysis shows that the proposed framework can handle various numbers of prosumers in the retail

electricity market with reasonable computational time and convergence rate.

Nomenclature Vonin lower bound of bus voltage magnitude (kV)
Indices and sets Vinax upper bound of bug vol'tage magnitude (kV)
Orin lower bound of weighting term
i index of prosumer Ornax upper bound of weighting term
k  index of the bus node € small enough value
K set of buses located downstream of the bus node k&
N; number of prosumers Variables
N, number of bus nodes . . . .
m  number of lower level constraints Py active powl\e/:lrw generation from CCHP units of the ith
n number of iterations prosumer ( ) .
¥ set of bidding strategies Cyi genefatlon cost .Of the .zth prosumer ($)
Imp; locational marginal price of the ith prosumer ($/MWh)
k; bidding strategy of the ith prosumer
Paramelers Di bidding price of the ith prosumer ($/MWh)
a generation cost coefficients of ith prosumer ($/MW’h) P; total active power generation of the ith prosumer (MW)
b; generation cost coefficients of ith prosumer ($/MWh) P,; renewable power generation of the ith prosumer (MW)
¢ generation cost coefficients of ith prosumer ($) Cretail, market clearing price of the ith prosumer ($/MWh)
Mervice,  ‘subscription fee’ paid by the ith electricity prosumer to Ploss total active power loss (MW)
the utility company ($) U payoff function of the utility company ($)
R; revenue of the ith prosumer ($) Py active power flowing from node & to node k + 1 (MW)
G cost of the ith prosumer ($) ' Ok reactive power flowing from node & to node k + 1 (MW)
Pi i lower bound of the ith prosumer's energy capacity (MW) Dr net active power consumption for consumers on the node
P; max upper bound of the ith prosumer's energy capacity (MW) k (MW)
Py active power demand of the ith prosumer (MW) i net reactive power consumption for consumers on the
a; electricity price coefficient of the ith prosumer node k (MVAR)
Pi electricity price coefficient of the ith prosumer Vk bus voltage magnitude at node & (kV)
Phase base load of the system except prosumers (MW) P active power consumption/generation downstream of the
Pyiiey ~ power supplied by the utility company to the system node.k MW) ] )
ik reactive power consumption/generation downstream o
(MW) 0 p ption/g d f
Cretal, market clearing price of the utility company ($/MWh) the.node k (MVAR) o
A . - . . . Pross active power loss on the distribution line between buses &
symmetric positive semi-definite matrix k
o . and k + 1 (MW)
x € R auxiliary matrix . )
y€ER  auxiliary matrix q)é pay(?ff ﬁ?n‘ct.lon of the .zth prosumer ($)
T resistance of the distribution line connecting node & and X feasible initial estimation of the solutions
node k + 1 (Q) X" Nash equilibrium point
Xk inductance of the distribution line connecting node £ and Y(x,y) Nikaido-Isoda function
node k + 1 (Q) Z(x) optimal strategy maximises the payoff function
Vo bus voltage magnitude at the slack bus (kV) 0, weighting term at the nth iteration
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A Lagrange multiplier

1 Introduction

Electricity has become an integral part of the world making it hard
to imagine a life without power. According to the Electricity
Consumers Resource Council (ELCON) report [1], the 2003 North
America Blackout made >50 million people suffer from a power
outage and resulted in a national economy loss of seven to ten
billion dollars. The increasing dependency on fossil fuel-based
power plants has led to a potential energy crisis. Environmental
problems may include air pollution, global warming, land
desertification and so on. As a result, the green energy generated
from renewable energy sources (RESs) has become a promising
solution. However, due to the nature of RES units, large solar
power plants that require huge areas to generate electricity and
wind farms that produce loud noises along with the power
generation process are often placed in suburbs, far away from
consumers [2]. Besides, the aggregated large solar power plants
and wind farms are connected to the transmission system through
several substations, which are hard to guarantee the efficiency of
when delivering electricity to demand side consumers. Moreover,
the deployment of RES units has been suffering from a very
expensive and inefficient transmission system expansion and
maintenance. Thus, the integration of distributed energy resources
(DERs) into distribution systems is becoming a solution with great
promise to restructure the current power system infrastructure and
ensure the stability of the electricity supply.

DERs, including distributed generation (DG) units, distributed
storage (DS) units and controllable loads, are deployed in a
distribution system to replace traditional units such as coal-fired
power plants. The increasing deployment of DERs in distribution
systems is driven by several benefits [3]: (i) DERs are located close
to the demand side, which can improve power quality and system
reliability; (i) RES units can significantly reduce carbon
emissions; and (iii) combined cooling, heat and power (CCHP),
also known as trigeneration, can locally utilise waste heat in the
electricity generation process to provide useful cooling and heat to
improve overall efficiency in a distribution system [4]. Moreover,
some of the customers in distribution systems are not only
consumers but also producers, since they proactively participate in
the electricity market with their DERs. Thus, the concept of the
prosumer is proposed.

In the proposed prosumer-centric distribution system with a
retail electricity market, prosumers have the ability to sell surplus
electricity. However, they may have a partial or total conflict of
interest with others. Moreover, the conventional electricity market
is not designed for a prosumer-based clearing mechanism. Hence,
setting up a well-defined strategic bidding mechanism to maximise
the operation revenue for prosumers in the proposed distribution
system becomes a critical issue. Game theory is gaining increasing
attention as an important analysis tool for future power system
design. It involves several mathematical tools to study the complex
interactions between independent and rational participants that can
seize the new features of the proposed distribution system in the
following aspects: (i) communication and control of the prosumers
on different nodes in the distribution system; (ii) the heterogeneous
nature of the distribution system with its multi-objective
prosumers; and (iii) using low-complexity distributed algorithms to
represent the competitive (non-cooperative game) scenarios
between the prosumers in the distribution system [5]. Thus, game
theory methodology and algorithms are used together to compare
relationships between prosumers in the proposed distribution
system.

There are several kinds of literature investigating the feasibility
of applying game theory to a distribution system, where the latest
prior works are summarised in Table 1. In the table, we also listed
the major algorithms that are adopted in prior works. Moreover,
prior works considering prosumers in the distribution system are
compared to demonstrate the unique features of our work. The
authors in [23] propose a game-theoretic approach to study the
dynamic interactions between different prosumers in a distribution
system with AC power flow constraints. However, our unique
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Table 1 Comparison of game theory method in the
distribution system
Game theory method
cooperative game

Algorithms and literature
Lagrangian relaxation (LR) [6]
benders decomposition (BD) [7, 8]
Shapley value (SV) [9, 10]
bilateral SV (BSV) [11]
bottom-up modelling [12]

Nash equilibrium [13-17]
iterative synchronous best response
algorithm (ISBRA) and Nash equilibrium
[18]

Nikaido—Isoda function [19]
reinforcement learning (RL) and Nash
equilibrium [20]

Lagrange dual decomposition [21]
Epsilon—Nash equilibria [22]

non-cooperative game

bidding strategy for prosumers participating in the retail electricity
market is not considered. In [24], a game-theory-based electricity
market clearing mechanism for a distribution system is studied, but
power quality and system reliability issues are not included. The
authors in [25] demonstrate a game-theoretic framework for the
economic dispatch of future distribution systems with multiple
prosumers. Again, the new features of a retail electricity market
with multiple prosumers are not discussed. To the best of our
knowledge, none of the works mentioned above have fully
considered all the unique features of prosumers in a distribution
system with a retail electricity market using combined game theory
and bilevel algorithms.

In this paper, an innovative game-theoretic retail electricity
market bidding mechanism for a prosumer-centric distribution
system is proposed. The new features of the prosumers in this
distribution system and the retail electricity market are modelled
with a bilevel algorithm. Novel game-theoretic methodologies and
algorithms are applied to analyse the competition among the
prosumers when bidding in the retail electricity market. Extensive
simulation results are employed to illustrate and validate the
proposed framework. The main contributions of this paper are
summarised as follows:

* New features of the retail electricity market and prosumers in
the distribution system with bilevel algorithms are identified and
modelled.

* Novel game-theoretic methodologies are applied to analyse the
competition among the prosumers when bidding in the retail
electricity market.

* An optimal bidding strategy is investigated to maximise the
operation revenues of the prosumers while maintaining the
reliability of the distribution system.

» Extensive simulation results are employed to illustrate and
validate the proposed framework.

The remaining of the paper is organised as follows. In Section
2, a well-defined price mechanism related to the proposed system
for future prosumers is introduced. In Section 3, game theory is
introduced to solve the problem described in Section 2, and the
applied algorithms are also investigated. In Section 4, the case
study simulation results are demonstrated. The conclusion draws in
Section 5.

2 System modelling
2.1 Prosumer-centric distributed grid framework

Fig. 1 presents an overview of the future prosumer-centric
distribution system, which consists of three main components: (i)
prosumers, (ii) utility companies, and (iii) a distribution system
operator (DSO). The difference between the proposed framework

105

This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License

(http://creativecommons.org/licenses/by-nc-nd/3.0/)



Clear the Retail
2@ Electricity Market

ility !tmpany
0 )

Ut
Distribution Lines DSO
[
B ——
u ] Communication Lines u)

i

|

Prosumer 2 Prosumer 3

Prosumer 1

Fig. 1 Framework of a prosumer-centric distribution system

and the conventional one is that energy can be generated inside the
distribution system instead of the transmission system.

Future prosumers will have local generators like rooftop solar
panels, wind turbines, and energy storage (ES) devices such as
batteries to generate and store their own power. In addition, their
loads are likely to be controllable. These prosumers can be
considered larger than a city or smaller than a community with
several commercial buildings. Moreover, they are all self-sufficient
and have the ability to sell their surplus power to others. The
prosumers are rational such that they will only maximise their own
payoff, which is common sense for all prosumers. This
characteristic provides prosumers with significant economic
incentives for self-installation of DERs.

A utility company in the future prosumer-centric distribution
system is mainly a provider of ancillary services and maintains the
stability of the power system, which is quite distinct from its role in
the conventional one. In other words, they will provide the
distribution system infrastructure, as well as sell power to those
consumers who cannot generate enough power to fulfil their own
demand. As a result, utility companies make a profit through a
‘renting out’ fee, along with power sales to base load consumers.

Meanwhile, a DSO mainly clears the retail electricity market
after collecting the participants’ bidding strategies. Specifically, the
DSO uses a security-constrained economic dispatch method to
minimise the cost of supplying load, as well as customers’
payments, for the purpose of market clearing.

The functionalities of all the roles listed above are subject to the
AC power flow constraints and physical capabilities constraints of
DERs. It always holds true that the total generation equals the total
consumption.

2.1.1 Electricity prosumers: Electricity prosumers who are able
to self-sufficiently meet their basic needs they can sell surplus
power to others. The ith electricity prosumer who has CCHP's
generation cost function can be modelled in a second-order manner

Cyi = aiPgi + biPyi + ¢ + Mervice, e

where Py is the active power generation of the ith electricity
prosumer from CCHP units. a;, b;, c¢; are the generation cost
coefficients, and Mepice, 18 the constant ‘subscription fee’ paid by
the ith electricity prosumer to the utility company.

Then the locational marginal price of the ith electricity
prosumer is calculated as in [23]

Imp; = 2a;P,; + b; . )

The supply function equilibrium (SFE) model is adopted to
simulate the prosumer-centric distribution system since SFE
enables electricity prosumers to connect the bidding price to the
bidding quantity of its output [26]. It offers capabilities beyond the
traditional Cournot framework [27] and other alternative models,
such as multi-unit auction models [28] and agent-based simulations
[29], which are only related to the bidding prices of the prosumers
or bidding quantities of the surplus electricity. Since the SFE model
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requires specification of the dependence of demand on bidding,
however, it is not immune to the problem of sensitivity to the
specification of the market demand. The SFE model also provides
the possibility of investigating the behaviour of different players.
One more advantage of the SFE model is that it can explicitly
demonstrate a long-time unchanged bidding strategy.

In one word, the SFE model provides a more practical point of
view about the retail electricity market. As a result, the electricity
bidding function of prosumers can be represented as a quadratic
function about Py, similar to the cost function. For ease of control
and observation, the electricity prosumers are assumed to bid with
a linear supply curve, thus the bidding function of the prosumers
can be represented as

pi = kilmp; = kQ2a;Py; + by), 3)

where p; is the bidding price and k; is the bidding strategy of the ith
prosumer. These bidding strategies will be submitted to the DSO,
while the DSO will clear the retail electricity market based on the
gathered bidding strategy.

Therefore, the payoff function of the ith electricity prosumer is
expressed as

N; n
max R; = Cretailiz (P;— Pg) — 2 G

i=1 i=1
Pi=P,+P,
s.t. Pi.minspispi,maxs

“4)

where N; indicates the total number of electricity prosumers; P;, P,;
are total active power generation and renewable power generation,
respectively, from the ith electricity prosumer; P, is the active
power demand of the ith electricity prosumer; C; is the cost and
P; mins Pimax are the lower and upper bounds of the ith prosumer's
energy capacity, respectively.

As the SFE model is used in this paper, the demand curve can
be represented as a linear function. Then

N; .
Cretail, = Pi — 4(X; | P; — Ploss), where ; and f; are coefficients.

2.1.2 Utility companies: In the proposed electricity market, the
function of the future utility company is different from that of the
current utility company. The future utility company is primarily
responsible for guaranteeing power system reliability by
complementing power shortage areas and providing a day-ahead
reference to avoid congestion. In some cases, it is possible that the
power generated by the electricity prosumers does not allow for
self-sufficiency, meaning utility companies would sell electricity to
those electricity prosumers. The utility company still owns the
distributed system infrastructure, so it can earn profit from leasing
the infrastructure. Electricity prosumers that participate in the
selling of electricity to others need to pay for these leasing
expenses. Thus, the payoff function of the utility company can be
expressed as

Ni
U= CretailuPutility + Z Mservicep (5)

i=1

where Pyliry is the power supplied by the utility company; creail,
denotes the market clearing price of the utility company.

2.1.3 Distribution system operator: After collecting the
submitted bids of the electricity prosumers, the DSO, which is
similar to a market clearing centre, minimises the market price to
benefit the prosumers without generating equipment, subject to
bids and power flow constraints. The locational marginal price is
defined as

Ni
min piPi, Yie[l,N]. 6)

i=1
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Fig. 2 Flowchart of the combined game theory and bilevel algorithm

The objective of DSO is to maintain the stability of the distribution
system and to minimise the cost of supplying the load, while the
objective of prosumers is to maximise their own revenues.
Therefore, a bilevel problem is adopted to handle this multi-
objective problem. The upper level is for prosumers with
constrained capabilities, while the lower level represents the
calculation process of the DSO. For the simplicity of
demonstration, the objective function for the prosumers (4) in the
upper level can be represented as F(x, y), subject to the constraints
related to the prosumers (1)—(4), G(x,y) < 0; meanwhile, the lower
level can be defined as f(x,y) and g(x,y) < 0, which represent the
objective function for the utility company (6) and constraints
associated with AC power flow and power quality issues (details
are shown in the following sections), respectively.

As aforementioned, this is the lower level problem. After
applying (3)—(6), the formulation is obviously a quadratic function,
which means it is convex and regular. In other words, the proposed
bilevel algorithm can be used in the proposed problem. The proof
of the convexity of the quadratic function is as follows.

Assume there is a quadratic function F(x) = xTAx + blx+ c,
which is similar to the proposed lower level objective function. A
is a symmetric positive semi-definite matrix, as in (6).

By the definition of convex, for x, y € R:

1
AEE) 2 50 @ + fOo. ™)
Hence, it can be proven that

l(x + ) A(x +y) > xTAx +y Ay
2 ®)
xTAy +yTAx > xTAx +yTAy.

That is to say
(x—y) Ax-y) >0, ©)
which is directly followed by a positive semi-definite matrix.

2.1.4 Constraints: The mathematical formulations in the previous
sections are constrained to the power flow of the distribution
system. In this paper, the DistFlow method is applied as the
simplified AC power flow [30].

The system of DistFlow equations for active power, reactive
power, and voltage is as follows:
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P+ O
Peor—Pr=pr—ni——s—,

Vk
Pi+ Ok
O — =g —n——s— (10)
Vi
Pi+ O;
Ve =i = = 2Pt 200 — i+ =
k

where k=1, ..., N, denotes the node of the feeder. P, and Q
represent the active power and reactive power, respectively,
flowing from node k& to node k + 1. v is the bus voltage magnitude
at the node k. p; and ¢, show the net active power and reactive
power consumptions, respectively, for consumers. r; and x;
demonstrate the resistance and inductance, respectively, of the line
connecting node k and node k + 1.

It needs to be noted that for a radial distribution network, Py is

equal to the sum of active power consumption/generation
downstream of the node &k and Qy is equal to the sum of reactive

power consumption/generation downstream of node k:

Pi= Y Py Q= Y O (11)

kk € K kk € K

where K is a set of buses that are downstream of node k.

The quadratic terms in (10) are very small compared with the
branch power. Therefore, the quadratic terms can be dropped to
simplify the equation.

With assumptions of (v — ) =~ 0 and vy + 2ve(vx — Vo) = Vi
[31], the AC power flow equations can be re-write as

Peov—Pe=pe Ok — Ok = g
(rePr + Q) (12)
Ven TVe= T

For the stability and security of the distribution system, the voltage
should be in the following range:

Vinin £ Ve £ Vinax - (13)

As a result, the loss on the distribution line between buses & and
k + 1 is expressed as

2 2

P+ O
Plossk— % V2
k

~ Pk + Oil. (14)

Hence, the total active power loss can be calculated as

Ny Ny

- P+ O
Ploss= zplusskz Z”k—zZ Zrk[Pli"'Qli]’ (15)

k=1 k=1 Vk F=1

where Py, denotes the total active power loss.
Another constraint is the supply and demand balance, Py

represents the base load of the system except prosumers, the
equation below needs to be satisfied all the time

N; N;
ZPdi+Ploss+Pbase= ZPi+Pulility- (16)

i=1 i=1

3 Solution methodology
3.1 Solution method

The process of clearing the retail electricity market with the
combined bilevel and game-theoretic algorithms is shown in Fig. 2,
where the Nikaido—Isoda function and a relaxation algorithm are
utilised together to determine the Nash equilibrium point.

The detailed combined algorithms are described below and
illustrated in the following subsections:
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1. Let null vector x” be a feasible initial estimation of the
solutions.

2. Apply the Karush-Kuhn-Tucker (KKT) conditions to
reformulate the DSO's objective function as each prosumer's
constraints with x.

3. Use the combination of relaxation algorithm with the Nikaido—
Isoda function and Piog, Puiliy and x to get the Nash
equilibrium point x". Then solve the optimisation problem (21)
to get the argument of the maximum Z(x).

4. If Z(x) < e, where ¢ is a small tolerance value, then stop.
Otherwise, update i < i + 1 and go back to Step 2.

3.2 Game theory

Game theory has become a useful tool to solve real-world
problems. There are four key components of game theory: players,
payofts, consequences, and rules.

3.2.1 Concept of game theory: Note that N; players participate
in one game, where vector x; denotes the action taken by the ith
player, i=1,2,3,...,N; Therefore, a collective action set
X =X,%, . ..,Xy, is formed when all the players act at the same
time. Moreover, ¢; is adopted as the ith player's payoff, which
represents the ith player's profit, earned from setting its own
strategy when others strategies are settled [25]. For our proposed
framework, utility companies and energy prosumers are considered
players. Hence, the payoff function ¢; is the difference between

sale revenue and the cost of electricity production and facilities, as
;=R —C, (17)

where R; represents the revenue of the ith participants and C;
denotes the cost functions for the ith participants. In addition, x; is
the electricity sold by the ith participant. Moreover, as mentioned
before, (y;/x) represents the ith participant's action set, i.e.
(X1, « o oy X1 Yis X1 - - -»Xn), Which indicates that the ith
participant takes the action of y; while the other participants take
the actions set of (x;, . . ., XG— 1 Xi+ 1 - - +»XN)-

When all the participants are competing with each other, at the
final stage, there should be an equilibrium point that can achieve a
balance among all the participants. This consequence (balanced
state) is defined as the Nash equilibrium point

X'=(, ...y, Vi

max _ ¢(x;1x). (18)

(xlx*) e X

pi(x") =

Here (18) shows the rules that all participants act at the same time
and stop competing with each other until the equilibrium is reached
[24].

3.2.2 Problem reformulation: In order to reformulate the Nash
equilibrium searching problem as an optimisation problem that can
be solved by commercial solvers, the Nikaido—Isoda function is
adopted [32]

N;
Yoy = Y [0l — ¢,0] (19)

i=1

On the right-hand side of the Nikaido—Isoda function, i.e. (19),
[@(y;|x) — @(x)] shows the payoff amount difference when the ith
participant is changing its bidding strategy from x; to y; while other
participants stick to strategy set x. Therefore, the total amount of
changes in the payoff functions when making different choices of
bidding strategies can be summarised by adding all the differences
together. Thus, the Nash normalised equilibrium point x* can be
achieved when the following criteria are met:

108

max _ Y(x",y) =0 (20)
«*y) €X

When (20) reaches zero, none of the participants can adjust their
payoff amounts by unilaterally changing their own bidding strategy
while the other participants still follow the same bidding strategy.
In addition, a Nash normalised equilibrium point can be the Nash
equilibrium point when certain concavity conditions are satisfied.
For our proposed framework, the convex concave function
describes the payoff function for all the prosumers and utility
companies. Thus, the Nash equilibrium problem can be solved by
reformulating the optimisation problem as follows:

Z(x) = arg max arg max P(x,y)x, Z(x) € X, 21
yeX

where argmax denotes the argument of the maximum.

3.2.3 Relaxation algorithm: The reformulated optimisation
problem can be solved iteratively through a relaxation algorithm
until it converges to the Nash equilibrium point [33]. Firstly, an
initial guess x° is provided in order to begin the iteration process.
Note that x° is a null vector. After that, the relaxation algorithm can
be implemented on the reformulated optimisation problem as
follows:

xn+1 = (1 - Hn)xn + an(xn)’ 0 < 0}1 < 1’ (22)

where #n is the iteration number, 8, denotes the weighting term at

the nth iteration, and x" is the participant's strategy at the nth
iteration. Note that the value of 6, is fixed as 0.5 for the simplicity
of demonstration. Moreover, the stopping criteria of the solution
process are defined as follows:

max (", y) <e, (23)
" y) eX

where ¢ is a small enough value that it can be used to control the
convergence rate.

3.3 Bilevel algorithm

Bilevel programming has been successfully applied in various
areas, including economics, management science, engineering and
so on, since the concept of a bilevel algorithm was first proposed
by Candler and Norton [34].

In a bilevel problem, there are two sets of constraints and two
objective functions. The two levels are regarded as the upper level
and the lower level. In the upper level, the objective function and
constraints contain every variable, while in the lower level, only
part of the variables are included in the objective function and
constraints. This does not mean that the rest of the variables
disappear from the lower level; instead of variables, they are
regarded as some constant values in the lower level problem. This
is an important concept in a bilevel algorithm [34].

For the simplicity of demonstration, the objective function for
the prosumers (4) in the upper level can be represented as F(x,y),
subject to the constraints related to the prosumers (1)—(4),
G(x,y) < 0; meanwhile, the lower level can be defined as f(x,y)
and g(x,y) <0, which represent the objective function for the
utility company (6) and constraints associated with AC power flow
and power quality issues (5) and (10)—(16), respectively.

Then the proposed bilevel problem can be defined as follows:

Upperlevel:  min Fyppe (%, ¥)
s.t. Gupper(xv )’) < 0

24
Lowerlevel: min fioye(x,y) @4

s.t. glower(xs y) < 0.

A Lagrange multiplier is adopted in our proposed bilevel
algorithm, which is a classic method used to solve the extremum
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Fig. 3 Modified IEEE 33-bus test feeder

problem [35]. Note that when minimising or maximising the
function  F(x,y)  without limitations and  boundaries,
0F(x,y)/0x =0 and 0F(x,y)/dy =0 can be used to attain the
optimal solutions. Taking the constraints into consideration,
however, the problem can still be reformulated into equations
without constraints and solved in a similar way. For the proposed
bilevel problem, when the lower level objective function is regular
and convex, it can be reformulated as similar equations by using its
KKT conditions. Thus, the reformulated single-level problem is
presented as follows:

min F(x,y)
xe)?,y

G,y <0

g(x,y) <0

>0, Vie[l,m] (25)
igi(x,y) =0, Vie[l,m]

V,L(x,y,2) =0

where L(x,y,4) = f(x.7) + D 4igi(x, ),

i=1

where m is the number of lower level constraints.

It is still hard to solve the single level problem due to some non-
convexities that occur in the complementarities and Lagrange
constraints though. Branch-and-bound is mainly to traverse the tree
and seek all the roots of the tree. However, not all of the roots are
able to reach the optimal solution, or even a solution. As a result, 4
is used as an index constraint for branch-and-bound to deal with
the non-convexities.

If the ith index 4; is greater than 0, then the ith constraint
condition g,(x,y) = 0; conversely, if 4; =0, then g,(x,y) will work
as is, which means it is beyond the bound. With the help of the
definitions mentioned above, the optimal solutions of the proposed
bilevel problem are valid for the corresponding sub-tree. After
applying the bilevel algorithm, the bilevel problem can be
reformulated as a single level conventional multiple participants
game theory problem. In this paper, a novel game theoretic
algorithm is proposed to transform the equilibrium problem into an
optimisation problem and find the optimal solutions. All these
algorithms are processed in Matlab on an Intel Core 17-2450M
CPU 2.50 GHz computer with 8 GB RAM. The convergence
tolerance for the proposed algorithm is set to & = 107°.

4 Simulation results
4.1 Numerical settings

The proposed bidding strategy for multiple prosumers in a retail
electricity market is tested on a modified IEEE 33-bus test feeder,
as shown in Fig. 3. Note that all the transformers, switches, and
voltage regulators are ignored [36]. The modified IEEE 33-bus test
feeder is assumed to be a single-phase balanced distribution
system. The reactance and resistance data for each bus in the
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Table 2 |EEE 33-bus test feeder data

Begin node End node Resistance, Q Reactance, Q
1 2 0.0922 0.0470
2 3 0.4930 0.2511
3 4 0.3660 0.1864
4 5 0.3811 0.1941
5 6 0.8190 0.7070
6 7 0.1872 0.6188
7 8 0.7114 0.2351
8 9 1.0300 0.7400
9 10 1.0440 0.7400
10 11 0.1966 0.0650
1 12 0.3744 0.1238
12 13 1.4680 1.1550
13 14 0.5416 0.7129
14 15 0.5910 0.5260
15 16 0.7463 0.5450
16 17 1.2890 1.7210
17 18 0.7320 0.5740
2 19 0.1640 0.1565
19 20 1.5042 1.3554
20 21 0.4095 0.4784
21 22 0.7089 0.9373
3 23 0.4512 0.3083
23 24 0.8980 0.7091
24 25 0.8960 0.7011
6 26 0.2030 0.1034
26 27 0.2842 0.1447
27 28 1.0590 0.9337
28 29 0.8042 0.7006
29 30 0.5075 0.2585
30 31 0.9744 0.9630
31 32 0.3105 0.3619
32 33 0.3410 0.5302
Table 3 Data of three prosumers

Parameters Prosumer 1 Prosumer 2  Prosumer 3
a;, $/MW?h 10.8508 6.5455 0.0455
b;, $/MWh 14.6738 37.258 26.1739
k; 2.1 2.1 13
a; 8 9 10
Bi 320 330 300
capacity, MW 10.5 9.4 7.3

modified IEEE 33-bus test feeder are listed in Table 2. The active
and reactive power demand for each bus in the modified IEEE 33-
bus test feeder are from [37]. For the simplicity of demonstration,
three prosumers are assumed on buses 4, 8 and 20 that are able to
provide self-generated electricity using RES units, CCHP, and
distributed ES systems. The capacity of each aggregated generator
varies largely, which means every prosumer may have a different
cost function. The coefficients of the prosumers’ cost functions, ¢;
and b, are listed in the first two lines of Table 3. In order to reduce
the computational cost, let the subscription fee be a multiple of the
amount of quantity of the power output, so that Myic., can be

regarded as contained in b;, also, assume that every ¢; is zero $/h.
The generation capabilities of all the prosumers are <20 MW, as
shown in Tables 3 and 4. The minimum generation of all
prosumers is set to 0 MW. The bidding strategies and demand
curve coefficients of the three prosumers are also listed in Table 3.
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Table 4 Data of the fourth prosumer

Table 6 Decreasing the bids of prosumer three

Parameters Prosumer 4 Bidding strategy =~ Prosumer 1 Prosumer 2 Prosumer 3
a;, $/MW?h 0.00677 k; 21 21 0.3
by, $/MWh 0.1739
ki 1.1
Table 7 Expected payoff of three prosumers based on
i 8 updated bidding strategy
Bi 250 Variables Prosumer 1 Prosumer2  Prosumer 3
capacity, MW 3.8 P, MW 8.0311 8.7321 1.1445
revenue, $/h 1566.8391 1652.2364 3.1996
Table 5 Expected payoff of three prosumers
Variables Prosumer 1 Prosumer2  Prosumer 3 Table 8 Increasing the bids of prosumer three
P, MW 6.9338 7.1945 6.6493 Parameters Prosumer 1  Prosumer2  Prosumer 3
revenue, $/h 1167.9133 1121.5742 461.7081 k; 2.1 2.1 300
B 320 330 50
Voltage (V)
1'0f Table 9 Expected payoff of three prosumers based on
0.98 updated bidding strategy and demand parameters
8-22 Variables Prosumer 1  Prosumer2  Prosumer 3
0.92 P, MW 2.1101 2.3394 0.4812
Ooég revenue, $/h 915.2671 999.5875 67.458
0.86
0.84

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Fig. 4 Voltage magnitude of each node on the IEEE 33-bus test feeder

80

70 E

0 L L e 0
0 5 10 15 20 25 30 35
Bus Number

Fig. 5 Detailed active power loss on the distribution line between each
bus

4.2 Case study

4.2.1 System stability: As shown in Table 5, when the bidding
strategies and demand curve are similar and regular, every
prosumer will generate a similar quantity of power. The difference
between the revenue of the third prosumer and the other two
prosumers is caused by the payoff coefficient. Moreover, voltage
magnitude represents the stability level of the power system,
especially for distribution systems. Fig. 4 shows that the voltages
of all nodes are between 0.9 and 1.1, which means the system is
stable. There is a huge difference between node 18 and node 19,
which is caused by the system configuration, as node 19 is
connected to node 2. In addition, the detailed active power losses
on the distribution line between bus & to bus k+ 1 is shown in
Fig. 5. The total active power loss of the whole distribution system
is 0.247 MW after 14 iterations with three prosumers, which is
only 1.2% compared with the total active power delivered in the
distribution system. Therefore, the proposed model is proved to be
stable and effective.

4.2.2 Anti-dumping: In order to examine the global optimal
solution, the bids of the third prosumer are decreased, as shown in
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Table 6, which is at node 4, while keeping the same bidding
strategy for the other two prosumers. The expected payoff for the
updated bidding strategy of the three prosumers is listed in Table 7.
Dumping is often referred to selling at less than ‘normal value’ on
similar quality goods in the ordinary course of trade, so as to sell
more goods. In our case study, an extreme scenario is picked, in
which prosumer 3's bidding strategy is 0.3. This means the
prosumer is bidding much lower than cost, at thirty percent of the
cost, which is less than the normal value, so the DSO will suppress
its production to keep the market stable as an anti-dumping action.
As shown in Table 7, the power production of prosumer 3 is only
1.1445 MW, much less than that of the other two prosumers.

4.2.3 Macro-control: Macro-control means macroeconomic
regulation and control, which is operated by an independent
agency, such as to centrally-plan an economy or remedy market
failure. In our system, the DSO is such an independent agency. Due
to the computing complexity and convergence rate selection, the
proposed method cannot guarantee the global solution but may
locate the global solution only if the initial bidding strategies are
selected properly. To test the sensitivity of the retail electricity
market and the DSO to the bidding strategies of our system, the
bidding strategies and demand curve coefficients of the third
prosumer are increased to an abnormal value, as shown in Table 8.
The expected payoff of the updated bidding strategy and demand
curve coefficients of the three prosumers is listed in Table 9. In our
model, if one participant prices himself out of the market, the
model will also suppress its revenue by limiting its power
production. In this scenario, prosumer 3 prices himself out of the
market at 300 times its cost, so the DSO will also suppress its
revenue by limiting its power production, to about 0.48 MW, as the
table shows.

4.2.4 Sensitivity analysis: In order to show the effectiveness of
our proposed bidding strategy for multiple prosumers in the retail
electricity market, a sensitivity analysis is performed on changing
the number of prosumers from two to four. Note that the case
studies for the proposed framework with three prosumers have
been presented above. All environmental settings are the same as in
the previous case studies. As shown in Table 10, the revenue and
active power injected into the distribution system of prosumer 1
and prosumer 2 have increased from that in previous case studies.
This is reasonable because, in this scenario, prosumer 3 is
eliminated, thus prosumer 1 and prosumer 2 have more opportunity
to compete in the retail electricity market and sell their surplus
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Table 10 Expected payoff of two prosumers

Variables Prosumer 1 Prosumer 2
P, MW 8.2628 9.0541
revenue, $/h 1656.9289 1775.0173

Table 11 Bidding strategy of four prosumers

Parameters Prosumer 1 Prosumer 2 Prosumer 3 Prosumer 4
k; 21 21 15 1.7

B 320 330 300 250

Table 12 Expected payoff of four prosumers

Variables Prosumer 1 Prosumer 2 Prosumer 3 Prosumer 4
P;,, MW 4.8864 5.1281 4.8812 2.5307
revenue, $/h  1152.5424  1101.5898 569.5199 181.3805

power. Besides, the convergence rate of this two prosumers’
scenario is much faster than that of three prosumers’, which is 5
iterations compared with 14 iterations.

In addition, we test our proposed framework in another scenario
when adding one more prosumer on a random bus. In this scenario,
prosumer 4 is added on bus 25. The data of prosumer 4 is listed in
Table 4 (Table 11). Table 12 shows the revenue and active power
injected into the distribution system of the four prosumers. The
differences between the revenue and the active power injected into
the distribution system between the fourth prosumer and the other
three prosumers are caused by the payoff coefficient. Moreover, the
convergence rate of this four prosumers’ scenario is much slower
than that of three prosumers’, which is 37 iterations compared with
14 iterations.

5 Conclusion

An innovative game-theoretic market framework has been
proposed for a prosumer-centric retail electricity market. A bilevel
algorithm has been adopted to model the new features of DSOs,
utility companies and prosumers in a distribution system. An SFE
model, Nikaido—Isoda functions and relaxation algorithms have
been applied to analyse the competition among the key participants
in a retail electricity market. Extensive simulation results have
been employed to illustrate and validate the effectiveness of the
proposed framework with following major findings: (i) prosumers’
bidding strategies are tested with various numbers of participants in
the retail electricity market; (ii) the combination of bilevel
algorithm and relaxation algorithm can guarantee the convergence
of the proposed game-theoretic market framework; and (iii)
dumping-bidding and abnormal bidding from prosumers have been
suppressed by the market operator in the model.
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