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Summary
In this article, we propose distributed control algorithms for first- and
second-order multiagent systems for addressing finite-time control problem
with a priori given, user-defined finite-time convergence guarantees. The pro-
posed control frameworks are predicated on a recently developed time trans-
formation approach. Specifically, our contribution is twofold: First, a general-
ized time transformation function is proposed that converts the user-defined
finite-time interval to a stretched infinite-time interval, where one can design
a distributed control algorithm on this stretched interval and then transform
it back to the original finite-time interval for achieving a given multiagent
system objective. Second, for a specific time transformation function, we analyt-
ically establish the robustness properties of the resulting finite-time distributed
control algorithms against vanishing and nonvanishing system uncertainties.
By contrast to existing finite-time approaches, it is shown that the proposed
algorithms can preserve a priori given, user-defined finite-time convergence
regardless of the initial conditions of the multiagent system, the graph topology,
and without requiring a knowledge of the upper bounds of the considered class
of system uncertainties. Illustrative numerical examples are included to further
demonstrate the efficacy of the presented results.
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1 INTRODUCTION

Networked multiagent systems consist of interacting agents that locally exchange information, energy, or matter.1,2 In
order to achieve high system performance, reliability, and operation in the presence of system uncertainties, it is required
to design resilient distributed control architectures for these systems.3,4 In the most of existing distributed control sys-
tem design architectures, asymptotic convergence of the agents is guaranteed. In other words, the general focus is on the
synthesis and analysis of distributed controllers such that the agent states asymptotically converge over an infinite-time
interval to static equilibrium points of interest.1,5,6 However, this asymptotic convergence guarantees can degrade to uni-
form ultimate boundedness in presence of vanishing (ie, state-dependent) and nonvanishing (ie, time-dependent) system
uncertainties (see, eg, References 3,7)

By contrast to the aforementioned studies and from a practical point of view in many time-critical multiagent system
applications, it is essential for agents to complete a given task in finite time. To this end, several attempts have been carried
out on achieving finite-time convergence guarantees (see, eg, References 8-11). In Reference 12, finite-time convergence
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(C) (D)

(A) (B)

F I G U R E 1 The
comparison of the controller in
(1) with the controller predicated
on time transformation method
in (2) for A, stabilization
problem; B, stabilization problem
with nonvanishing uncertainty
as ẋ(t) = u(t) + 1.5 sin(t); C,
stabilization problem with
vanishing uncertainty as
ẋ(t) = u(t) + 1.5x(t); and D,
command following problem,
that is, x(t) in (1) and (2) is
replaced with x(t)− c(t), where
c(t)=−3+ e0.5t is the command,
and the system dynamics is
subject to vanishing and
nonvanishing uncertainties as
ẋ(t) = u(t) + 1.5x(t) + 1.5 sin(t)
[Colour figure can be viewed at
wileyonlinelibrary.com]

control barrier functions are introduced for finite-time convergence to the required communication graph structure.
These approaches guarantee that the system trajectories converge in less than some calculated finite-time value. Yet, a
limitation of these approaches is that their finite-time convergence depends on the initial conditions of agents and the
graph topology13 (see Figure 1 and the corresponding discussions in Section 1.2 for details). This limitation is partially
resolved in References 13-16 in which the proposed approach, referred to as fixed-time control architecture, results in an
upper bound on the convergence time that is independent of the initial conditions. However, the calculated bounds do
not hold globally for all initial conditions and/or they can be still conservative.13 Thus, it may not be possible to assign a
priori, user-defined finite-time (referred to as prescribed finite-time) necessary for many practical networked multiagent
systems applications while using these algorithms. Furthermore, in the fixed-time control architectures, the finite-time
convergence value can depend on the magnitude of the system uncertainties.

Notable contributions for achieving prescribed finite-time convergence guarantees include.17-24 Specifically, in Refer-
ences 17,18 the convergence time of the agents is upper bounded by a prescribed time. Yet, the actual convergence can
be reached prior to this upper bound, and therefore, it cannot be assigned by the user. In References 19,20 sliding mode
control designs are utilized to achieve a prescribed finite-time convergence; however, the proposed control architecture
applies only to single systems, and more importantly, their proposed control design require the knowledge of the upper
bound on the system uncertainties. The proposed method in Reference 21 does not account for any system uncertainties
and is also applied to single systems. The control architectures in References 22-24 utilize an optimal control platform.
However, the control architecture in Reference 22 is not in the context of multiagent systems and applies only to single
systems. The authors of References 23,24 utilize a sampling time sequence technique, where the results in Reference 23
do not include the robustness to system uncertainties or convergence to a time-varying leader trajectories, and the control
algorithm in Reference 24 only tolerates impulsive system disturbances.

A novel idea, namely, the time transformation approach, is utilized in the recent results documented in References
25,26 for achieving a priori, user-defined smooth finite-time convergence, where these results consider distributed control
algorithms for multiagent systems. The key feature of this method is to perform analysis of a given finite-time distributed
control algorithm in a stretched infinite-time interval, where one can readily utilize tools from, for example, standard
Lyapunov stability theory, to conclude stability and convergence guarantees on the original user-defined finite-time inter-
val. While the authors of References 27-33 use similar distributed control algorithms to the ones presented in References
25,26 (note that the studies in References 27-29 can be considered as a multiagent systems generalization of the idea
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documented in Reference 19), the results documented in Reference 25 are not limited to time-invariant graph topologies
and the results documented in Reference 26 are not limited to multiagent systems with static equilibrium points1. More
importantly, due to a lack of complete systematic design and analysis framework, the results in References 27-31 may
not readily be extendable and system-theoretic robustness tradeoffs of these algorithms are unknown. For instance, the
authors of Reference 31 do not consider system uncertainties for the dynamics of the agents, and by using a time-varying
scaling function that switches to a constant value, the continuity of the control signal is ensured at the prescribed time.
However, for uncertain system dynamics, the control signal at the end of the prescribed time interval may be nonzero and
unknown due to the effects of the uncertainties. Hence, a switching remedy alone may not help to preserve the continuity
of the control signal. The authors of Reference 32 study single systems in normal form with nonvanishing system uncer-
tainty. Furthermore, the results in Reference 33 are limited to single systems and boundedness analysis for the control
signal are not performed. The notion of time-base generator is introduced in Reference 35 and is used to achieve prede-
fined finite-time convergence using time-varying control gains, for example, in References 36-39. Specifically, the results
in Reference 36 only applies to single systems with nonvanishing system uncertainty in normal form, similar to Reference
33. Although the presented results in Reference 37 is promising for consensus of multiagent systems, the robustness of the
presented control design to system uncertainties is not studied. The authors of Reference 38 consider agents with nonvan-
ishing system uncertainties; however, the robustness of the presented result in presence of vanishing system uncertainties
is not established. Finally, the authors of Reference 39 recently establish conditions on the Lyapunov function for achiev-
ing fixed and prescribed finite-time stability for single systems, where the proposed structure can be viewed as a general
form of, for example, the control structure used in Reference 33. Yet, the robustness analysis presented in Reference 39
require the knowledge of the upper bound on the system uncertainties and, more importantly, the boundedness of the
system state derivative (ie, the control signal) is not addressed.

1.1 Contribution

In this article, we propose distributed control algorithms for first- and second-order multiagent systems, where they are
predicated on a time transformation approach based on the results in References 25,26 for achieving the a priori given,
user-defined finite-time convergence guarantees. Specifically, our contribution is twofold: First, a generalized time trans-
formation function is proposed that converts the user-defined finite-time interval to a stretched infinite-time interval,
where one can design a distributed control algorithm on this stretched interval and then transform it back to the original
finite-time interval for achieving a given multiagent system objective. Second, for a specific time transformation func-
tion, we analytically establish the robustness properties of the resulting finite-time distributed control algorithms against
vanishing and nonvanishing system uncertainties in our systematic time transformation framework. By contrast to exist-
ing finite-time approaches, it is shown that the proposed algorithms can preserve a priori given, user-defined finite-time
convergence regardless of the initial conditions of the multiagent system, the graph topology, and without requiring a
knowledge of the upper bounds of the considered class of system uncertainties. Illustrative numerical examples are fur-
ther included to demonstrate the presented results. Note that preliminary conference versions of this article are appeared
in References 40,41, where the present article significantly goes beyond these conference versions not only by providing
detailed proofs of all the key theoretical results, but also by focusing on all the theoretical developments necessary for the
generalization of the results with detailed examples and motivations.

1.2 A motivational example

To elucidate the fundamental advantages of the time transformation-based technique proposed in References 25,26 over
well-studied finite-time control architectures, consider the first-order dynamical system given by ẋ(t) = u(t), x(0) = x0,

where x(t) ∈ R is the system state and u(t) ∈ R is the control signal. First, we use the well-studied finite-time control
design that utilizes non-Lipschitz control tools and methods generally with signum functions, for example, by extending
the seminal results in References 10,11, and consider the representative control signal given by

u(t) = −sgn(x(t))|x(t)|𝛼1−1, (1)

1The authors of Reference 34 provide extensions of References 27-29; however, the boundedness of their proposed control signals is not addressed.



110 ARABI et al.

where 𝛼1 ∈ (0, 1) and sgn(⋅) is the signum function. Note that (1) serves as the building brick for many existing
distributed controllers with finite-time convergence property (see, eg, References 10,11). Next, based on the time
transformation-based finite-time distributed controller proposed in References 25,26, we consider the finite-time inter-
val [0, T), where T ∈ R+ is a priori given, user-defined finite time, and utilize a strictly increasing and smooth time
transformation function given by t ≜ 𝜃(s) with s∈ [0,∞) being the infinite (ie, stretched) time interval. In this case, the
corresponding control signal can be given by

u(t) = −𝛼2(ds∕dt)x(t), (2)

where 𝛼2 is chosen such that 𝛼2 > (ds∕dt)−2(d(ds∕dt)∕dt) holds. Figure 1 compares the performance of the controller in
(1) using 𝛼1 = 0.95 with the controller in (2) using the time transformation function t =T(1− e−s) and 𝛼2 = 2, where the
a priori given, user-defined finite time is T = 0.5 sec. In particular, Figure 1A shows that the stabilization time with the
controller in (1) varies depending on the initial conditions. Figure 1B (respectively, Figure 1C) shows that the finite-time
convergence value with the controller in (1) changes with respect to the nonvanishing (respectively, vanishing) system
uncertainties. Finally, Figure 1D represents a tracking problem in presence of nonvanishing system uncertainty, in which,
once again, the tracking performance of the controller in (1) depends on the initial conditions as well as the system
uncertainty. Thus, for all of the stabilization and tracking scenarios given in Figure 1, one can see that, in contrast to the
controller in (1), the finite-time control algorithm with time transformation in (2) is able to reach the equilibrium at the a
priori given, user-defined finite time T in all cases and independent of the initial conditions and the presence of different
types of system uncertainties2.

2 NOTATION AND MATHEMATICAL PRELIMINARIES

The notation used in this article is fairly standard. Specifically, R denotes the set of real numbers, Rn denotes the set of
n× 1 real column vectors, Rn×m denotes the set of n×m real matrices, R+ denotes the set of positive real numbers, R

n×n
+

(resp., R
n×n
+ ) denotes the set of n×n positive-definite (resp., nonnegative-definite) real matrices, Z+ (resp., Z+) denotes

the set of positive (resp., nonnegative) integers, 0n denotes the n× 1 zero vector, 1n denotes the n× 1 ones vector, 0n×m
denotes the n×m zero matrix, and “≜” denotes equality by definition. In addition, we write (⋅)T for the transpose, (⋅)−1

for the inverse, det(⋅) for the determinant, and || ⋅ ||2 for the Euclidean norm. We also write 𝜆min(A) (resp., 𝜆max (A)) for the
minimum (resp., maximum) eigenvalue of the square matrix A, 𝜆i(A) for the ith eigenvalue of the square matrix A (with
eigenvalues ordered from minimum to maximum value), [A]ij for the (i, j)th entry of the matrix A, and x (resp., x) for the
lower bound (resp., upper bound) of a bounded signal x(t) ∈ Rn, that is, x ≤ ||x(t)||2 (resp., ||x(t)||2 ≤ x).

Next, we recall some basic notions from graph theory, where we refer the reader to References 2,42 for further details.
Specifically, an undirected graph 𝔊 is defined by a set 𝔊 = {1, … ,N} of nodes and a set 𝔊 ⊂ 𝔊 × 𝔊 of edges. If
(i, j) ∈ 𝔊, then nodes i and j are neighbors and the neighboring relation is indicated by i∼ j. The degree of a node is given
by the number of its neighbors. Letting di denote the degree of node i, then the degree matrix of a graph 𝔊, denoted by
(𝔊) ∈ RN×N , is given by (𝔊) ≜ diag[d], where d= [d1, … , dN]T. A path i0i1 … iL of a graph 𝔊 is a finite sequence of
nodes such that ik− 1 ∼ ik, k= 1, … , L, and if every pair of distinct nodes has a path, then the graph 𝔊 is connected. We
write(𝔊) ∈ RN×N for the adjacency matrix of a graph𝔊 defined by [(𝔊)]ij ≜ 1 if (i, j) ∈ 𝔊, and [(𝔊)]ij ≜ 0 otherwise,
and (𝔊) ∈ RN×M for the (node-edge) incidence matrix of a graph 𝔊 defined by [(𝔊)]ij ≜ 1 if node i is the head of edge
j, [(𝔊)]ij ≜ −1 if node i is the tail of edge j, and [(𝔊)]ij ≜ 0 otherwise, where M is the number of edges, i is an index for
the node set, and j is an index for the edge set.

The graph Laplacian matrix, (𝔊) ∈ R
N×N
+ , is defined by (𝔊) ≜ (𝔊) −(𝔊) or equivalently (𝔊) = (𝔊)(𝔊)T

and the spectrum of the graph Laplacian of a connected, undirected graph𝔊 can be ordered as 0 = 𝜆1((𝔊)) < 𝜆2((𝔊)) ≤
· · · ≤ 𝜆N((𝔊)) with 1N being the eigenvector corresponding to the zero eigenvalue 𝜆1((𝔊)), and (𝔊)1N = 0N and
e(𝔊)1N = 1N . In this article, we model a given multiagent system as a connected, undirected graph 𝔊, where nodes and
edges, respectively, represent agents and interagent communication links.

2While the analysis performed in Reference 26 can also be utilized for nonvanishing system uncertainties, this prior work does not make any attempts
in showing robustness against state-dependent vanishing system uncertainties. Note that such vanishing system uncertainties can destabilize
dynamical systems unlike the nonvanishing ones; hence, they are more critical to the overall system stability and convergence.
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The following remarks and lemmas are needed for the results of this article.

Lemma 1 ([ 43, lemma 3.3]). Let K = diag(k), k= [k1, k2, … , kN ]T, ki ∈ Z+, i= 1, … , N, and assume that at least one
element of k is nonzero. Then,  (𝔊) ≜ (𝔊) + K ∈ R

N×N
+ and det ( (𝔊)) ≠ 0 for the Laplacian of a connected, undirected

graph.

Remark 1. From Lemma 1, − (𝔊) is clearly a symmetric and Hurwitz matrix. As a consequence, − (𝔊) satisfies the
Lyapunov equation R =  (𝔊)P + P (𝔊) for a given R ∈ R

N×N
+ .

Lemma 2. Consider an energy function  ∈ R+ satisfying the inequality given by

 ′(s) + (a0 − b0e−s)(s) ≤ c0e−s, (3)

where a0 ∈ R+, b0,∈ R+, and c0 ∈ R+ are constants, and  ′(s) = d(s)∕ds with s∈ [0,∞). Then, this energy function is
bounded for all s∈ [0,∞) and lims→∞(s) = 0.

Proof. Defining the integrating factor 𝜇(s) ≜ exp(a0s + b0e−s) ∈ R+ and multiplying both sides of (3) with this factor, one
obtains 𝜇(s) ′(s) + 𝜇(s)(a0 − b0e−s)(s) ≤ 𝜇(s)e−sc0 or equivalently

d
ds

(𝜇(s)(s)) ≤ 𝜇(s)e−sc0. (4)

Next, we integrate both sides of (4) over the s domain that yields 𝜇(s)(s) ≤ c0 ∫ s
0 e−𝜏 exp(a0𝜏 + b0e−𝜏)d𝜏 + 0, where

0 ≜ 𝜇(0)(0). We now set 𝜈(𝜏) ≜ e−𝜏 ∈ R+ with the derivative d𝜈(𝜏) = −e−𝜏d𝜏 to get

𝜇(s)(s) ≤ −c0 ∫
e−s

1
exp(−a0 ln(𝜈(𝜏)) + b0𝜈(𝜏))d𝜈(𝜏) + 0,

≤ c0 ∫
1

e−s
(𝜈(𝜏))−a0 eb0𝜈(𝜏)d𝜈(𝜏) + 0,

≤ d0 ∫
1

e−s
(𝜈(𝜏))−a0 d𝜈(𝜏) + 0, (5)

where d0 ≜ c0eb0 ∈ R+ is the upper bound on c0eb0𝜈(𝜏). Note that since 𝜏 ∈ [0, s) with s∈ [0,∞), we have 𝜈(𝜏) ∈ (0, 1]
showing the existence of d0. We can now solve the integral in (5) for two possible a0 cases. In particular, if a0 = 1, we have

𝜇(s)(s) ≤ d0 ∫
1

e−s
(𝜈(𝜏))−1d𝜈(𝜏) + 0 = d0 ln 𝜈(𝜏)|||1e−s

+ 0,

≤ d0s + 0. (6)

Introducing the integral factor 𝜇(s) = exp(s + b0e−s) in (6), the bound on the energy function is now given by

(s) ≤ d0s
es+b0e−s + 0e−s−b0e−s

. (7)

We are interested in the limit of this bound when s→∞ given by

lim
s→∞

(s) ≤ lim
s→∞

d0s
es+b0e−s + lim

s→∞
0e−s−b0e−s

,

= lim
s→∞

d0

(1 − b0e−s)es+b0e−s = 0, (8)

where the L’Hospital’s Rule is applied to the first limit term. Next, since (s) is a positive definite function we can con-
clude lims→∞(s) = 0. For the case when a0 ≠ 1, one can write 𝜇(s)(s) ≤ d0 ∫ 1

e−s (𝜈(𝜏))−a0 d𝜈(𝜏) + 0 = d0(𝜈(𝜏))(1−a0)∕(1 −
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∞
F I G U R E 2 The time transformation function in (10)

a0)
|||1e−s

+ 0 = d0
1−a0

(1 − e(a0−1)s) + 0. Introducing the integral factor 𝜇(s), the bound on the energy function is now given by

(s) ≤ d0

1 − a0
(e−a0s−b0e−s − e−s−b0e−s ) + 0e−a0s−b0e−s

. (9)

Once again, we take the limit on the bound on the energy function in (9) when s→∞ as lims→∞(s) ≤
lims→∞

d0
1−a0

(e−a0s−b0e−s − e−s−b0e−s ) + lims→∞0e−a0s−b0e−s = 0. Therefore, in all cases we have lims→∞(s) = 0. ▪

Remark 2. We now use a notion from section 1.1.1.4 of Reference 44. Specifically, let 𝜉(t) denote a solution to the
dynamical system ẋ(t) = f (t, x(t)), x(0) = x0. In addition, let t = 𝜃(s) denote a time transformation, where 𝜃(s) is a strictly
increasing and continuously differentiable function, and define 𝜒(s) = 𝜉(t). Then, 𝜒 ′(s) = 𝜃′(s)f (𝜃(s), 𝜒(s)), 𝜒(𝜃−1(0)) =
x0, where 𝜒 ′(s) ≜ d𝜒(s)∕ds, and 𝜃′(s) ≜ d𝜃(s)∕ds.

Remark 3. For the sake of simplicity, considering the time transformation t = 𝜃(s) and any signal 𝜂(t), we write 𝜂s(s) to
denote the transformed signal in the infinite interval s; that is, 𝜂s(s) ≜ 𝜂(𝜃(s)).

Remark 4. Consider the time transformation function t = 𝜃(s) that is strictly increasing and continuously differentiable
with respect to s. A candidate time transformation function is given by

t = 𝜃(s) ≜ T(1 − e−s), (10)

where T ∈ R+ is the a priori given, user-defined finite time.25,26 Note that this time transformation function converts the
infinite-time interval s∈ [0,∞) to the finite-time interval t ∈ [0, T) with T ∈ R+ being the user-defined finite time (see
Figure 2).

3 FINITE-TIME CONTROL OF FIRST- ORDER MULTIAGENT SYSTEMS

In this section, we introduce the leader-follower problem for multiagent systems with agents having first-order dynamics.
While we consider this benchmark problem, this is without loss of generality in the sense that the presented distributed
control architecture can be readily extended to other multiagent control problems. Specifically, consider a multiagent
system that consists of N agents exchanging information based on a connected and undirected graph 𝔊. We consider that
the dynamics of the agents are in the form given by

ẋi(t) = ui(t) + 𝜔ixi(t) + 𝜌i(t), xi(0) = xi0, i ∈ {1, 2, … ,N}, (11)

where xi(t) ∈ R, i ∈ {1, 2, … ,N} and ui(t) ∈ R, i ∈ {1, 2, … ,N} are the position and the control signal of each agent,
respectively. In (11), 𝜔i ∈ R, i ∈ {1, 2, … ,N}, and 𝜌i(t) ∈ R, i ∈ {1, 2, … ,N}, represent vanishing and nonvanishing
uncertainties in each agent’s dynamics. Here, while we assume that the unknown term 𝜔i is bounded and the unknown
term 𝜌i(t) is bounded and piecewise continuous for the well-posedness of the considered problem, we do not require
the knowledge of their upper bounds. Furthermore, consider that a subset of the agents have access to the position of a
time-varying leader given by
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ẋ0(t) = v0(t), x0(0) = x00, (12)

where v0(t) ∈ R, denotes the bounded and piecewise continuous velocity (with unknown bound) of the leader. Our objec-
tive is to design a distributed control algorithm for achieving finite-time convergence with a priori given, user-defined
finite time T ∈ R+; that is, lim

t→T
(xi(t) − x0(t)) = 0, i ∈ {1, 2, … ,N}.

Remark 5. The considered leader-following consensus problem in this article is motivated by, for example, cooperative
engagement applications. In particular, the control objective is defined for the agents to reach to a time-varying target
in a given time T. Therefore, all of the analyses are focused on the time interval [0, T). For other applications, where
it is required for the agents to continue following the leader after the time T, one may resort to switching-type control
designs.

3.1 Finite-time distributed control algorithm with time transformation

We propose a generalized time transformation function that converts the user-defined finite-time interval to a stretched
infinite-time interval, where one can design a distributed control algorithm on this stretched interval. Specifically, let t =
𝜃(s) denote this generalized time transformation function. Here, 𝜃(s) is strictly increasing and continuously differentiable
with respect to s, which converts the infinite-time interval s∈ [0,∞) to the finite-time interval t ∈ [0, T) with T ∈ R+ being
the user-defined finite time3. To this end, we propose the distributed control algorithm

ui(t) = −𝛼ds
dt

(∑
i∼j

(xi(t) − xj(t)) + ki(xi(t) − x0(t))

)
, i ∈ {1, 2, … ,N}, (13)

defined on t ∈ [0, T) with 𝛼 ∈ R+ and ds∕dt = (𝜃′(𝜃−1(t)))−1. In (13), ki = 1 for the subset of the agents having access to the
position of a time-varying leader in (12) and ki = 0 for other agents.

Let x̃i(t) ≜ xi(t) − x0(t), i ∈ {1, 2, … ,N}, be the error between the position of each agent and that of the leader. Based
on the proposed distributed control signal given by (13), the resulting error dynamics becomes

̇̃xi(t) = −𝛼ds
dt

(∑
i∼j

(x̃i(t) − x̃j(t)) + kix̃i(t)

)
+ 𝜔i(x̃i(t) + x0(t)) + 𝜌i(t) − v0(t), x̃i(0) = x̃i0,

i ∈ {1, 2, … ,N}. (14)

Defining now the augmented error state as x̃(t) ≜ [x̃1(t), x̃2(t), … , x̃N(t)]T ∈ RN , the error dynamics in (14) can be written
in the compact form given by

̇̃x(t) = −𝛼ds
dt

 (𝔊)x̃(t) + Ω(x̃(t) + 1N x0(t)) + 𝜌(t) − 1N v0(t),

=
(
−𝛼ds

dt
 (𝔊) + Ω

)
x̃(t) + h(t), x̃(0) = x̃0, (15)

where Ω ≜ diag(𝜔1, 𝜔2, … , 𝜔N) ∈ RN×N , 𝜌(t) ≜ [𝜌1(t), 𝜌2(t), … , 𝜌N(t)]T ∈ RN , and h(t) ≜ Ω1N x0(t) +𝜌(t) − 1N v0(t).
Considering the time transformation function t = 𝜃(s), let 𝜉(t) ∈ RN , t ∈ [0,T), be a solution to the dynamical sys-

tem given by (15) such that x̃s(s) = 𝜉(t), s∈ [0,∞). It now follows from Remark 2 that x̃′s(s) = (−𝛼 (𝔊) + Ω𝜃′(s))x̃s(s) +
𝜃′(s)hs(s), x̃s(𝜃−1(0)) = x̃0, where hs(s) = h(𝜃(s)) based on Remark 3. Note that hs(s) consists of bounded terms; hence, it
is a bounded function. Using 𝜃′(s) = d𝜃(s)∕ds = dt∕ds now yields

x̃′s(s) =
(
−𝛼 (𝔊) + Ωdt

ds

)
x̃s(s) +

dt
ds

hs(s), x̃s(0) = x̃0. (16)

3It is considered that s = 𝜃−1(t) exists for the results of this article, where this is clearly possible by properly selecting the generalized time
transformation function in the control design process.
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As noted in Remark 2, the solution of (15) and (16) are equivalent with different argument domains; that is, x̃s(s) = x̃(t).
We now write the introduced control signal (13) in the compact form given by

u(t) = −𝛼ds
dt

 (𝔊)x̃(t), (17)

which has the following time derivative with respect to t

u̇(t) = −𝛼d2s
dt2  (𝔊)x̃(t) − 𝛼ds

dt
 (𝔊) ̇̃x(t),

= d2s
dt2

dt
ds

u(t) − 𝛼ds
dt

 (𝔊)(u(t) + Ω(x̃(t) + 1N x0(t)) + 𝜌(t) − 1N v0(t)),

= d2s
dt2

dt
ds

u(t) − 𝛼ds
dt

 (𝔊)(u(t) + Ωx̃(t) + h(t)), u(0) = u0. (18)

Similar to how we obtain (16) from (15), one can rewrite (18) in the infinite-time interval s∈ [0,∞) as

u′
s(s) = −𝛼 (𝔊)Ωx̃s(s) −

(
𝛼 (𝔊) − d2s

dt2

(ds
dt

)−2
IN

)
us(s) − 𝛼 (𝔊)hs(s), us(0) = u0. (19)

One can now augment the state error dynamics in (16) and control signal dynamics in (19) as

[
x̃′s(s)
u′

s(s)

]
=
⎡⎢⎢⎣
−𝛼 (𝔊) + Ω dt

ds
0

−𝛼 (𝔊)Ω −𝛼 (𝔊) + d2s
dt2

(
ds
dt

)−2
IN

⎤⎥⎥⎦
[

x̃s(s)
us(s)

]
+

[
dt
ds

IN

−𝛼 (𝔊)

]
hs(s),

[
x̃s(0)
us(0)

]
=

[
x̃0

u0

]
. (20)

Remark 6. The time transformation function t = 𝜃(s) should be chosen by the control user such that (i) the state error
dynamics and control signal dynamics given by (20) are stable, which results in bounded error state x̃s(s) and control
signal us(s), and (ii) the asymptotic stability for the error state x̃s(s) is achieved (ie, lim

s→∞
x̃s(s) = 0). By Remark 2, the above

discussion implies that the error state x̃(t) and control signal u(t) are bounded in the original time interval t ∈ [0, T) and
lim
t→T

(xi(t) − x0(t)) = 0. The latter result implies that the agents converge to the position of the time-varying leader at the
user-defined finite time T.

As discussed in Remark 6, the selection of the time transformation function t = 𝜃(s) plays an important role on the
stability of the closed-loop system dynamics given in (20). Adopted from the previous work of the authors in References
25,26, a candidate time transformation function satisfying the conditions in Remark 6, along with rigorous and detailed
analysis on stability of the closed-loop system dynamics, is presented in the following section.

3.2 Robustness to vanishing and nonvanishing system uncertainties

In this section, we use a time transformation function candidate to analytically evaluate the robustness properties of the
overall multiagent system with the time transformation-based finite-time distributed control algorithm in (13) in pres-
ence of vanishing and nonvanishing system uncertainties (ie,𝜔i ∈ R, i ∈ {1, 2, … ,N}, and 𝜌i(t) ∈ R, i ∈ {1, 2, … ,N}, in
(11)). To this end, consider the time transformation candidate function given by (10) that has the derivative with respect
to s∈ [0,∞) given by

dt
ds

= 𝜃′(s) = Te−s = T − t. (21)

Introducing (21) in (13) results in the control signal

ui(t) = −𝛼𝜆(t)

(∑
i∼j

(xi(t) − xj(t)) + ki(xi(t) − x0(t))

)
, i ∈ {1, 2, … ,N}, (22)
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where 𝜆(t) ≜ 1∕(T − t), or in the compact form u(t) = −𝛼𝜆(t) (𝔊)x̃(t). Furthermore, using (21) in the error dynamics
given by (14) yields

̇̃x(t) = (−𝛼𝜆(t) (𝔊) + Ω)x̃(t) + h(t), x̃(0) = x̃0. (23)

Similar to the steps shown in the previous section, one can now write (23) in the infinite-time interval s∈ [0,∞) as

x̃′s(s) = (−𝛼 (𝔊) + ΩTe−s)x̃s(s) + Te−shs(s), x̃s(0) = x̃0. (24)

The augmented form of the state error and the control signal dynamics can also be obtained similar to (20) as[
x̃′s(s)
u′

s(s)

]
=

[
−𝛼 (𝔊) + ΩTe−s 0

−𝛼 (𝔊)Ω −
][

x̃s(s)
us(s)

]
+

[
Te−sIN

−𝛼 (𝔊)

]
hs(s),

[
x̃s(0)
us(0)

]
=

[
x̃0

u0

]
, (25)

where

 ≜ 𝛼 (𝔊) − IN ∈ R
N×N . (26)

Remark 7. Letting (t) ≜ −𝛼𝜆(t) (𝔊) + Ω, the error dynamics given in (23) can be rewritten in the form ̇̃x(t) =
(t)x̃(t) + h(t), x̃(0) = x̃0.Now, since(t) and h(t) are integrable functions of t over the finite-time interval t ∈ [0,T − 𝛿]
for every small positive constant 𝛿, it follows from [ 45, p. 97] that the error dynamics given in (23) has a unique solution
on the finite-time interval [0, T). Alternatively, by analyzing the transferred error dynamics in the infinite-time interval
given in (24), one can conclude the existence and uniqueness of the solution x̃s(s) over the infinite-time interval s∈ [0,∞).
Hence, there exist a unique solution for the error dynamics given in (23) over the finite-time interval [0, T).

Theorem 1. Consider the multiagent system that consists of N agents on a connected, undirected graph 𝔊, where the uncer-
tain dynamics of agent i∈ {1, … , N} is given by (11). In addition, assume that there exists at least one agent sensing the
position of the time-varying leader given by (12), which has bounded but unknown velocity. Considering the local control
algorithm ui(t), i= 1, … , N, for each agent given by (22), let the design parameter 𝛼 be chosen to make  = 𝛼 (𝔊) − IN pos-
itive definite. Then, the closed-loop system signals including the control signals remain bounded and all agents converge to
the position of the leader in the a priori given, user-defined finite time T (ie, limt→Tx̃(t) = 0) for all initial conditions of agents
and for all finite pairs (𝜔i, 𝜌i(t)), i ∈ {1, … ,N}.

Proof. To show boundedness of the closed-loop system signals and convergence of all agents to the position of the leader
at the user-defined finite time T, we consider the closed-loop system dynamics after applying the time transformation
function as given in (25). We first consider the system error dynamics in the infinite-time interval s∈ [0,∞) and let
1(x̃s(s)) ∈ R+ be an energy function given by

1(x̃s(s)) = x̃T
s (s)x̃s(s) = ||x̃s(s)||22. (27)

The derivative of (27) with respect to the stretched time s∈ [0,∞) along the trajectories of (24) is given by

 ′
1(x̃s(s)) = 2x̃T

s (s)x̃′s(s),
= −2𝛼x̃T

s (s) (𝔊)x̃s(s) + 2Te−sx̃T
s (s)Ωx̃s(s) + 2Te−sx̃T

s (s)hs(s),
≤ −2𝛼𝜆min( (𝔊))||x̃s(s)||22 + 2Te−s𝜔max||x̃s(s)||22 + 2Te−s||x̃s(s)||2||hs(s)||2, (28)

where 𝜔max ≜ max{𝜔1, … , 𝜔N}. Using 2||x̃s(s)||2||hs(s)||2 ≤ ||x̃s(s)||22 + ||hs(s)||22 on the last term and replacing ||x̃s(s)||22
with 1(x̃s(s)) in (28) results in

 ′
1(x̃s(s)) ≤ 1(x̃s(s))(−2𝛼𝜆min( (𝔊)) + 2Te−s𝜔max) + Te−s(1(x̃s(s)) + ||hs(s)||22),

≤ 1(x̃s(s))(−2𝛼𝜆min( (𝔊)) + Te−s(2𝜔max + 1)) + Te−s||hs(s)||22. (29)

For the sake of simplicity of the rest of the analysis, we define a0 ≜ 2𝛼𝜆min( (𝔊)) ∈ R+ by Lemma 1, b0 ≜
max {0,T(2𝜔max + 1)} ∈ R+, and c0 ∈ R+ to be the upper bound on T||hs(s)||22, that is, T||hs(s)||22 ≤ c0. This simplifies
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(29) to  ′
1(x̃s(s)) + (a0 − b0e−s)1(x̃s(s)) ≤ e−sc0. It now follows from Lemma 2 that 1(x̃s(s)) is bounded for s∈ [0,∞)

and lims→∞1(x̃s(s)) = 0 resulting in lims→∞x̃s(s) = 0. Since x̃s(s) = x̃(t) by Remark 2 and t →T as s→∞, one can obtain
limt→Tx̃(t) = 0. Furthermore, it follows from the boundedness of the energy function 1(x̃s(s)) that the state error vector
x̃s(s) also remains bounded for all s∈ [0,∞). Equivalently, the state error vector x̃(t), remains bounded in the finite-time
interval for all t ∈ [0, T).

Finally, to show the boundedness of the control signal us(s), consider the second equation in (25) given by

u′
s(s) = −us(s) − 𝛼 (𝔊)Ωx̃s(s) − 𝛼 (𝔊)hs(s), u(0) = u0. (30)

As noted earlier, from the boundedness of the position and velocity of the leader as well as the boundedness of the system
uncertainties, it follows that hs(s) is a bounded function. Now, since the last two terms in (30) are bounded, and − is
Hurwitz by the assumption of the theorem, then us(s) is bounded. Equivalently, u(t) remains bounded in the finite interval
t ∈ [0, T) which concludes the proof. ▪

Remark 8. The notable feature of the proposed distributed control algorithm in this section for handling system uncer-
tainties while achieving an a priori given, user-defined finite-time multiagent system performance arises mainly from the
utilization of the time transformation function in (10). Specifically, the aforementioned time transformation method con-
verts the problem under study from its finite interval t ∈ [0, T) to the infinite-time interval s∈ [0,∞). This then enables a
control user to exploit any standard (ie, over infinite horizon) system-theoretic tools for synthesis and analysis purposes.
The finite-time stability and convergence guarantees are then immediate by transforming the time to the original interval.

4 FINITE-TIME CONTROL OF SECOND- ORDER MULTIAGENT SYSTEMS

We next consider the leader-follower problem for multiagent systems with agents having second-order dynamics. Specif-
ically, we focus on the leader-follower problem in a multiagent system with N agents exchanging information based on a
connected, undirected graph 𝔊. Mathematically speaking, we consider the agents having second-order dynamics

ẋi(t) = vi(t), xi(0) = xi0, (31)

v̇i(t) = ui(t) + 𝜔ixi(t) + 𝜌i(t), vi(0) = vi0, (32)

where 𝜔i ∈ R and 𝜌i(t) ∈ R, respectively, represent vanishing and nonvanishing uncertainties in each agent’s dynamics.
For well-posedness of the considered problem, we here consider that𝜔i, 𝜌i(t), and 𝜌̇i(t) are bounded but we do not require
a knowledge of their upper bounds.

Next, we consider a leader with second-order dynamics

ẋ0(t) = v0(t), x0(0) = x00, (33)

v̇0(t) = a0(t), v0(0) = v00, (34)

where x0(t) ∈ R and v0(t) ∈ R, respectively, denote the position and velocity of the leader. In addition, a0(t) ∈ R in (34)
stands for a time-varying, bounded, and piecewise continuous acceleration signal of the leader (with unknown bound)
under the consideration that this signal results in bounded position and velocity of the leader. Our objective here is to
design a distributed control algorithm for achieving finite-time convergence with a priori given, user-defined finite time
T ∈ R+; that is, lim

t→T
(xi(t) − x0(t)) = 0, i ∈ {1, 2, … ,N}.

4.1 Finite-time distributed control algorithm with time transformation

We propose a distributed finite-time control algorithm using a generalized time transformation for address-
ing the leader-follower problem. We note that finite-time control of second-order multiagent systems using the
time-transformation approach has not been addressed in Reference 26 (even without any system uncertainties). Hence,
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in this section we start with a simplified version of the agent’s dynamics in (31) and (32) as

ẋi(t) = vi(t), xi(0) = xi0, (35)

v̇i(t) = ui(t), vi(0) = vi0. (36)

The robustness properties of the proposed algorithm against vanishing and nonvanishing system uncertainties are then
proposed in Section 4.2.

To this end, let t = 𝜃(s) denote a generalized time transformation function. Here, 𝜃(s) is strictly increasing and con-
tinuously differentiable with respect to s, which converts the infinite-time interval s∈ [0,∞) to the finite-time interval
t ∈ [0, T) with T ∈ R+ being the user-defined finite time. To this end, we propose the distributed control algorithm given
by

ui(t) = −𝛼
(

d2s
dt2 + k𝜖

(ds
dt

)2)(∑
i∼j

(xi(t) − xj(t)) + ki(xi(t) − x0(t))

)
− 𝛼ds

dt

(∑
i∼j

(vi(t) − vj(t))

+ki(vi(t) − v0(t))) − k𝜖
ds
dt

vi(t), i ∈ {1, 2, … ,N}, (37)

where k𝜖 ∈ R+ and 𝛼 ∈ R+ are design parameters. Note that in (37), we use ds∕dt = (𝜃′(𝜃−1(t)))−1 and d2s∕dt2 =
d(𝜃′(𝜃−1(t)))−1∕dt for simplicity. Note also that we use ki = 1 for the subset of the agents having access to the states of
the time-varying leader in (33) and (34), and ki = 0 for other agents. Now, let x̃i(t) ≜ xi(t) − x0(t), i∈ {1, 2, … , N}, and
ṽi(t) ≜ vi(t) − v0(t), i∈ {1, 2, … , N}, be the position and the velocity error states, respectively. Furthermore, define an
auxiliary state of the form

𝜖i(t) ≜ vi(t) + 𝛼
ds
dt

(∑
i∼j

(xi(t) − xj(t)) + ki(xi(t) − x0(t))

)

= vi(t) + 𝛼
ds
dt

(∑
i∼j

(x̃i(t) − x̃j(t)) + kix̃i(t)

)
. (38)

One can now use (38) to write the position error dynamics as

̇̃xi(t) = −𝛼ds
dt

(∑
i∼j

(x̃i(t) − x̃j(t)) + kix̃i(t)

)
+ 𝜖i(t) − v0(t), x̃i(0) = x̃i0. (39)

The derivative of the auxiliary state in (38) satisfies

𝜖̇i(t) = ui(t) + 𝛼
d2s
dt2

(∑
i∼j

(x̃i(t) − x̃j(t)) + kix̃i(t)

)
+ 𝛼ds

dt

(∑
i∼j

(ṽi(t) − ṽj(t)) + kiṽi(t)

)
, 𝜖i(0) = 𝜖i0. (40)

Using the proposed control signal in (37), (40) can be equivalently written as

𝜖̇i(t) = −𝛼k𝜖
(ds

dt

)2
(∑

i∼j
(xi(t) − xj(t)) + ki(xi(t) − x0(t))

)
− k𝜖

ds
dt

vi(t),

= −k𝜖
ds
dt
𝜖i(t), 𝜖i(0) = 𝜖i0. (41)

Next, we define the augmented position error state, velocity error state, and the auxiliary state, respectively, as x̃(t) ≜
[x̃1(t), x̃2(t), … , x̃N(t)]T ∈ RN , ṽ(t) ≜ [ṽ1(t), ṽ2(t), … , ṽN(t)]T ∈ RN , and 𝜖(t) ≜ [𝜖1(t), 𝜖2(t), … , 𝜖N(t)]T ∈ RN . One can then
write the system dynamics in (39) and (41) in the compact form
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̇̃x(t) = −𝛼ds
dt

 (𝔊)x̃(t) + 𝜖(t) − 1N v0(t), x̃(0) = x̃0, (42)

𝜖̇(t) = −k𝜖
ds
dt
𝜖(t), 𝜖(0) = 𝜖0. (43)

In addition, the distributed control algorithm can be rewritten as

u(t) = −𝛼d2s
dt2  (𝔊)x̃(t) − 𝛼ds

dt
 (𝔊)ṽ(t) − k𝜖

ds
dt
𝜖(t),

= d2s
dt2

dt
ds

(v(t) − 𝜖(t)) − 𝛼ds
dt

 (𝔊)ṽ(t) − k𝜖
ds
dt
𝜖(t). (44)

The derivative of (44) is now given by

u̇(t) = d2s
dt2

dt
ds

(
u(t)k𝜖

ds
dt
𝜖(t)

)
+ d

dt

(
d2s
dt2

dt
ds

)
(v(t) − 𝜖(t)) − 𝛼d2s

dt2  (𝔊)ṽ(t) − 𝛼ds
dt

 (𝔊) ̇̃v(t)

− k𝜖
d2s
dt2 𝜖(t) − k𝜖

ds
dt

(
−k𝜖

ds
dt
𝜖(t)

)
, u(0) = u0. (45)

Using ṽ(t) = v(t) − 1N v0(t) and ̇̃v(t) = u(t) − 1N a0(t) in (45) yields

u̇(t) =
[

d2s
dt2

dt
ds

− 𝛼ds
dt

 (𝔊)
]

u(t) +
[

k2
𝜖

(ds
dt

)2
− d

dt

(
d2s
dt2

dt
ds

)]
𝜖(t) + 𝛼d2s

dt2  (𝔊)1N v0(t)

−
[
𝛼

d2s
dt2  (𝔊) − d

dt

(
d2s
dt2

dt
ds

)]
v(t) + 𝛼ds

dt
 (𝔊)1N a0(t), u(0) = u0. (46)

Similar to how we obtain (16) from (15) in Section 3.1 and based on the time transformation function t = 𝜃(s), one
can now rewrite (42), (43), and (46) as

x̃′s(s) = −𝛼 (𝔊)x̃s(s) +
dt
ds
𝜖s(s) −

dt
ds

1N v0s (s), x̃s(0) = x̃0, (47)

𝜖′s(s) = −k𝜖𝜖s(s), 𝜖s(0) = 𝜖0, (48)

u′
s(s) =

[
d2s
dt2

(ds
dt

)−2
− 𝛼 (𝔊)

]
us(s) +

[
k2
𝜖

(ds
dt

)
− dt

ds
d
dt

(
d2s
dt2

dt
ds

)]
𝜖s(s) + 𝛼

dt
ds

d2s
dt2  (𝔊)1N v0s (s)

−
[
𝛼

dt
ds

d2s
dt2  (𝔊) − dt

ds
d
dt

(
d2s
dt2

dt
ds

)]
vs(s) + 𝛼 (𝔊)1N a0s (s), us(0) = u0. (49)

where the subscript s is used; see Remark 3.

Remark 9. Since k𝜖 ∈ R+, the error dynamics in (48) is stable and lim
s→∞

𝜖s(s) = 0. Now, similar to Remark 9, the time trans-
formation function t = 𝜃(s) should be chosen by the control user such that (i) the state error dynamics and control signal
dynamics given by (47) and (49) are stable, which results in bounded error states x̃s(s), ṽs(s), and the control signal us(s),
and (ii) the asymptotic stability for the error state x̃s(s) is achieved (ie, lim

s→∞
x̃s(s) = 0). By Remark 2, the above discussion

implies that the error states x̃(t), ṽ(t), and the control signal u(t) are bounded in the original time interval t ∈ [0, T) and
lim
t→T

(xi(t) − x0(t)) = 0. The latter result implies that the agents converge to the position of the time-varying leader at the
user-defined finite time T.

Once again, the selection of the time transformation function t = 𝜃(s) plays a crucial role on the stability of the
closed-loop system dynamics given in (47), (48), and (49) as discussed in Remark 9. In what follows, a candidate time
transformation function satisfying the conditions in Remark 9, along with rigorous and detailed analysis on stability of
the closed-loop system dynamics, is presented.

To this end, consider the time transformation function given by (10) that converts the infinite-time interval s∈ [0,∞)
to the finite-time interval of interest t ∈ [0, T). Note that the derivative of this time transformation function with respect
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to s∈ [0,∞) is given by dt∕ds = 𝜃′(s) = Te−s = T − t that is ds
dt

= 𝜆(t). In addition, one can write d2s
dt2 = 𝜆2(t). Hence, the

proposed distributed control signal given by (37) now can be written as

ui(t) = −𝛼𝜆2(t)(k𝜖 + 1)

(∑
i∼j

(xi(t) − xj(t)) + ki(xi(t) − x0(t))

)

− 𝛼𝜆(t)

(∑
i∼j

(vi(t) − vj(t)) + ki(vi(t) − v0(t))

)
− k𝜖𝜆(t)vi(t), i ∈ {1, 2, … ,N}, (50)

where k𝜖 ∈ R+ and 𝛼 ∈ R+ are design parameters. Furthermore, the auxiliary state can be written in the form

𝜖i(t) = vi(t) + 𝛼𝜆(t)

(∑
i∼j

(x̃i(t) − x̃j(t)) + kix̃i(t)

)
. (51)

Similar to writing (43) and (42), one can then write the position error and auxiliary state error dynamics as

̇̃x(t) = −𝛼𝜆(t) (𝔊)x̃(t) + 𝜖(t) − 1N v0(t), x̃(0) = x̃0, (52)

𝜖̇(t) = −k𝜖𝜆(t)𝜖(t), 𝜖(0) = 𝜖0. (53)

It now follows from Remark 2 that

x̃′s(s) = −𝛼 (𝔊)x̃s(s) + Te−s(𝜖s(s) − 1N v0s (s)), x̃s(0) = x̃0, (54)

𝜖′s(s) = −k𝜖𝜖s(s), 𝜖s(0) = 𝜖0. (55)

As a consequence, the solution of the auxiliary state given by (55) in the infinite-time horizon can be written as 𝜖s(s) =
𝜖0e−k𝜖s. Using this in (54) yields

x̃′s(s) = −𝛼 (𝔊)x̃s(s) + e−s𝛽(s), x̃s(0) = x̃0, (56)

where 𝛽(s) ≜ T(𝜖0e−k𝜖s − 1N v0s (s)) is a bounded function (ie, ||𝛽(s)||2 ≤ 𝛽). For the following result, we also define

 ≜ 𝛼 (𝔊) − 2IN ∈ R
N×N . (57)

Theorem 2. Consider the multiagent system that consists of N agents on a connected, undirected graph 𝔊, where the agents
have the second-order dynamics given by (35) and (36). Furthermore, assume that there exists at least one agent exchang-
ing information with the leader with bounded position and velocity given by (33) and (34), where this leader is subject to
a bounded but otherwise unknown acceleration signal. Based on the distributed control algorithm ui(t), i= 1, … , N, for
each agent given by (50), let the design parameter 𝛼 be chosen to make  in (57) positive definite and k𝜖 > 1. Then, the
closed-loop system signals including the control and internal signals remain bounded and all agents’ positions converge
to the position of the leader in the a priori given, user-defined finite time T (ie, limt→Tx̃(t) = 0) for all initial conditions of
agents.

Proof. We first show that all agents’ positions converge to the position of the leader in the user-defined finite time T.
Then, to demonstrate the feasibility of the proposed algorithm, we respectively, show that the velocity of the agents and
the control signals remain bounded.

Step 1. Consider the system error dynamics in the infinite-time interval s∈ [0,∞) given by (56). Let 1(s) ∈ R+ be an
energy function of the form

1(s) = x̃T
s (s)x̃s(s) = ||x̃s(s)||22. (58)

The derivative of (58) with respect to the stretched time s∈ [0,∞) along the trajectories of (56) is given by
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 ′
1(s) = −2𝛼x̃T

s (s) (𝔊)x̃s(s) + 2x̃T
s (s)𝛽(s)e−s,

≤ −2𝛼𝜆min ( (𝔊))||x̃s(s)||22 + 2||x̃s(s)||2||𝛽(s)||2e−s. (59)

Using 2||x̃s(s)||2||𝛽(s)||2 ≤ ||x̃s(s)||22 + ||𝛽(s)||22 yields

 ′
1(s) ≤ −2𝛼𝜆min ( (𝔊))1(s) + (1(s) + ||𝛽(s)||22)e−s,

≤ (−2𝛼𝜆min ( (𝔊)) + e−s)1(s) + 𝛽
2
e−s. (60)

Moreover, one can rearrange (60) to obtain  ′
1(s) + (a1 − b1e−s)1(s) ≤ c1e−s, where a1 ≜ 2𝛼 𝜆min ( (𝔊)) ∈ R+ by

Remark 1, b1 = 1, and c1 ≜ 𝛽
2
∈ R+. It now follows from Lemma 2 that1(s) is bounded for s∈ [0,∞) and lims→∞1(s) = 0

resulting in lims→∞x̃s(s) = 0. Since x̃s(s) = x̃(t) by definition (see Remark 2) and t →T as s→∞, one obtains limt→Tx̃(t) = 0.
From the boundedness of 1(s), it also follows that the state error vector x̃s(s) is bounded for all s∈ [0,∞). By Remark 2,
in addition, the state error vector x̃(t) remains bounded, or equivalently, the position states of the agents x(t) are bounded
in the finite-time interval t ∈ [0, T).

Step 2. Next, to show that the velocity of agents remain bounded, we take the derivative of (52) with respect to t given
by

̈̃x(t) = −k𝜖𝜆(t)𝜖(t) − 𝛼𝜆2(t) (𝔊)x̃(t) − 𝛼𝜆(t) (𝔊)ṽ(t) − 1N a0(t),
= −k𝜖𝜆(t)𝜖(t) + 𝜆(t)( ̇̃x(t) − 𝜖(t) + 1N v0(t)) − 𝛼𝜆(t) (𝔊) ̇̃x(t) − 1N a0(t),
= −(k𝜖 + 1)𝜆(t)𝜖(t) − 𝜆(t) ̇̃x(t) + 1N v0(t)𝜆(t) − 1N a0(t), ̇̃x(0) = ̇̃x0, (61)

where  ≜ 𝛼 (𝔊) − IN ∈ RN×N . Similar to writing (16) from (15), one can replace ̇̃x(t) by ṽ(t) and use the time transfor-
mation function in (10) to obtain

ṽ′s(s) = − ṽs(s) − (k𝜖 + 1)𝜖s(s) + h1(s), ṽs(0) = ṽ0, (62)

where h1(s) ≜ 1N v0s (s) − Te−s1N a0s(s) consists of bounded terms; hence, it is bounded. We now write (55) and (62) in the
augmented form given by[

ṽ′s(s)
𝜖′s(s)

]
=

[
− −(k𝜖 + 1)IN

0N×N −k𝜖IN

][
ṽs(s)
𝜖s(s)

]
+

[
h1(s)
0N

]
,

[
ṽs(0)
𝜖s(0)

]
=

[
ṽ0

𝜖0

]
. (63)

Based on the upper triangular structure of the system matrix in (63) and since− = − − IN is Hurwitz by the assumption
of the theorem, it then follows that ṽs(s) is bounded. Since ṽs(s) = ṽ(t) by definition, one can conclude that ṽ(t) (and the
velocity state v(t)) is bounded in the finite-time interval t ∈ [0, T).

Step 3. Finally, we show that the control algorithm given by (50) also remains bounded over t ∈ [0, T). To this end, we
write the derivative of (53) with respect to t given by

𝜖(t) = −k𝜖𝜆2(t)𝜖(t) − k𝜖𝜆(t)𝜖̇(t) = 𝜖̇(t)𝜆(t) − k𝜖𝜆(t)𝜖̇(t),
= −(k𝜖 − 1)𝜆(t)𝜖̇(t), 𝜖̇(0) = 𝜖̇0. (64)

We now let 𝜓(t) ≜ 𝜖̇(t) and use the time transformation function in (10) to obtain

𝜓 ′
s (s) = −(k𝜖 − 1)𝜓s(s), 𝜓s(0) = 𝜓s0. (65)

Since k𝜖 > 1 based on the assumption of the theorem, it is clear from (65) that 𝜓s(s) (and 𝜓(t) = 𝜖̇(t)) is bounded (and
converges to zero). Furthermore, we respectively, write the control signal in (50) and the auxiliary state in (51) in the
compact form given by

u(t) = −𝛼𝜆2(t) (𝔊)x̃(t) − 𝛼𝜆(t) (𝔊)ṽ(t) − k𝜖𝜆(t)𝜖(t), (66)
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𝜖(t) = v(t) + 𝛼𝜆(t) (𝔊)x̃(t). (67)

Using (67) in (66) yields

u(t) = 𝜆(t)(v(t) − 𝜖(t) − 𝛼 (𝔊)ṽ(t) − k𝜖𝜖(t)),
= 𝜆(t)(v(t) − 𝜖(t) − 𝛼 (𝔊)v(t) + 𝛼 (𝔊)1N v0(t) − k𝜖𝜖(t)),
= z(t)𝜆(t), (68)

where z(t) ≜ −v(t) − (k𝜖 + 1)𝜖(t) + 𝛼 (𝔊)1N v0(t) and has the derivative with respect to t given by

ż(t) = −u(t) − (k𝜖 + 1)𝜓(t) + 𝛼 (𝔊)1N a0(t), z(0) = z0. (69)

One can also obtain the derivative of (68) with respect to t as

u̇(t) = 𝜆(t)ż(t) + 𝜆2(t)z(t) = 𝜆(t)ż(t) + 𝜆(t)u(t),
= 𝜆(t)(−u(t) − (k𝜖 + 1)𝜓(t) + 𝛼 (𝔊)1N a0(t)) + 𝜆(t)u(t),
= −𝜆(t)u(t) + 𝜆(t)(𝛼 (𝔊)1N a0(t) − (k𝜖 + 1)𝜓(t)), u(0) = u0. (70)

Finally, using the time transformation function in (10) one can rewrite (70) as u′
s(s) = −us(s) + n1(s), us(0) = u0, where

n1(s) ≜ 𝛼 (𝔊)1N a0s (s) − (k𝜖 + 1)𝜓s(s). Now, since n1(s) is a bounded function and − is Hurwitz by the assumption of
the theorem, then us(s) is bounded. Consequently, u(t) remains bounded in the finite interval t ∈ [0, T) and this concludes
the proof of this theorem. ▪

4.2 Robustness to vanishing and nonvanishing system uncertainties

In this section, we analyze the proposed distributed control algorithm proposed in the previous section in the presence
of vanishing and nonvanishing system uncertainties and analytically show that it can still preserve the user-defined
finite-time convergence at t =T seconds. To this end, consider the second-order agent dynamics given by (31) and (32).
One can now write the derivative of the auxiliary state in (51) as

𝜖̇i(t) = ui(t) + 𝛼𝜆2(t)

(∑
i∼j

(x̃i(t) − x̃j(t)) + kix̃i(t)

)
+ 𝛼𝜆(t)

(∑
i∼j

(ṽi(t) − ṽj(t)) + kiṽi(t)

)
+ 𝜔ixi(t) + 𝜌i(t), 𝜖i(0) = 𝜖i0. (71)

Utilizing the proposed control algorithm (50) in (71) yields 𝜖̇i(t) = −k𝜖𝜆(t)𝜖i(t) + 𝜔ixi(t) + 𝜌i(t), 𝜖i(0) = 𝜖i0 that can also be
compactly written as

𝜖̇(t) = −k𝜖𝜆(t)𝜖(t) + Ωx̃(t) + Ω1N x0(t) + 𝜌(t), 𝜖(0) = 𝜖0, (72)

where Ω ≜ diag(𝜔1, 𝜔2, … , 𝜔N) ∈ RN×N and 𝜌(t) ≜ [𝜌1(t), 𝜌2(t), … , 𝜌N(t)]T ∈ RN . Using the time transformation func-
tion (10), one can convert (72) to the infinite-time interval as

𝜖′s(s) = −k𝜖𝜖s(s) + Te−sΩx̃s(s) + Te−s(Ω1N x0s(s) + 𝜌s(s)), 𝜖s(0) = 𝜖0. (73)

We can now augment the system dynamics in (54) and (73) as[
x̃′s(s)
𝜖′s(s)

]
=

[
−𝛼 Te−sIN

Te−sΩ −k𝜖IN

][
x̃s(s)
𝜖s(s)

]
+ Te−s

[
−1N v0s (s)

Ω1N x0s(s) + 𝜌s(s)

]
,

[
x̃s(0)
𝜖s(0)

]
=

[
x̃0

𝜖0

]
. (74)



122 ARABI et al.

Theorem 3. Consider the multiagent system that consists of N agents on a connected, undirected graph 𝔊, where the agents
have the second-order dynamics as given by (31) and (32) having vanishing and nonvanishing system uncertainties. Further-
more, assume that there exists at least one agent exchanging information with the leader with bounded position and velocity
given by (33) and (34), where this leader is subject to a bounded but otherwise unknown acceleration signal. Based on the
distributed control algorithm ui(t), i= 1, … , N, for each agent given by (50), let the design parameter 𝛼 be chosen to make 
in (57) positive definite and k𝜖 > 1. Then, the closed-loop system signals including the control signals remain bounded and
all agents’ positions converge to the position of the leader in the a priori given, user-defined finite time T (ie, limt→Tx̃(t) = 0)
for all initial conditions of agents and for all finite 𝜌i(t), i ∈ {1, … ,N}.

Proof. We follow similar steps in the proof of Theorem 2.
Step 1. Consider the system error dynamics in the infinite-time interval s∈ [0,∞) given by (74) and let 2(s) ∈ R+ be

an energy function of the form

2(s) = 1(s) + 𝜖T
s (s)𝜖s(s) = ||x̃s(s)||22 + ||𝜖s(s)||22. (75)

The derivative of (75) with respect to the stretched time s∈ [0,∞) along the trajectories of (74) is now given
by

 ′
2(s) = 2x̃T

s (s)x̃′s(s) + 2𝜖T
s (s)𝜖′s(s),

= −2𝛼x̃T
s (s) (𝔊)x̃s(s) + 2Te−sx̃T

s (s)𝜖s(s) − 2Te−sx̃T
s (s)1N v0s (s) − 2k𝜖𝜖T

s (s)𝜖s(s)

+ 2Te−s𝜖T
s (s)Ωx̃s(s) + 2Te−s𝜖T

s (s)(Ω1N x0s(s) + 𝜌s(s)),

≤ −2𝛼𝜆min( (𝔊))||x̃s(s)||22 − 2k𝜖||𝜖s(s)||22 + 2Te−s||x̃s(s)||2||𝜖s(s)||2(1 + 𝜔max)

+ 2Te−s||1N v0s (s)||2||x̃s(s)||2 + 2Te−s||Ω1N x0s(s) + 𝜌s(s)||2||𝜖s(s)||2, (76)

where 𝜔max ≜ max {1, … ,N}. Now, using 2||x(s)||2||y(s)||2 ≤ ||x(s)||22 + ||y(s)||22 for any vectors, one can write

 ′
2(s) ≤ −a2(||x̃s(s)||22 + ||𝜖s(s)||22) + Te−s(1 + 𝜔max)(||x̃s(s)||22 + ||𝜖s(s)||22)

+ Te−s(||1N v0s (s)||22 + ||x̃s(s)||22) + Te−s(||Ω1N x0s (s) + 𝜌s(s)||22 + ||𝜖s(s)||22), (77)

where a2 ≜ min {2𝛼𝜆min( (𝔊)), 2k𝜖} ∈ R+ by Remark 1. Substituting the energy function2(s) given in (75) yields ′
2(s) +

(a2 − b2e−s)2(s) ≤ c2e−s, where b2 ≜ max{0,T(2 + 𝜔max)} ∈ R+ and c2 ∈ R+ is the upper bound on T(||Ω1N x0s(s) +
𝜌s(s)||22 + ||1N v0s (s)||22). Similar to the step 1 given in the proof of Theorem 2, it follows that the pair (x̃(t), 𝜖(t)) remains
bounded in the finite-time interval for all t ∈ [0, T) and limt→T(x̃(t), 𝜖(t)) = (0, 0).

Step 2. For showing the boundedness of the velocity of the agents, we take the derivative of (52) with respect to t and
use (72) to obtain

̈̃x(t) = −k𝜖𝜆(t)𝜖(t) + Ωx̃(t) + Ω1N x0(t) + 𝜌(t) − 𝛼𝜆2(t) (𝔊)x̃(t) − 𝛼𝜆(t) (𝔊)ṽ(t) − 1N a0(t),
= −k𝜖𝜆(t)𝜖(t) + Ωx̃(t) + Ω1N x0(t) + 𝜌(t) + 𝜆(t)( ̇̃x(t) − 𝜖(t) + 1N v0(t)) − 𝛼𝜆(t) (𝔊) ̇̃x(t)
− 1N a0(t),

= −(k𝜖 + 1)𝜆(t)𝜖(t) − 𝜆(t) ̇̃x(t) + 1N v0(t)𝜆(t) + Ωx̃(t) + Ω1N x0(t) + 𝜌(t) − 1N a0(t), ̇̃x(0) = ̇̃x0. (78)

Replacing ̇̃x(t) by ṽ(t) and using the time transformation function in (10) yields ṽ′s(s) = − ṽs(s) + h2(s), ṽs(0) = ṽ0, where
h2(s) ≜ −(k𝜖 + 1)𝜖s(s) + 1N v0s (s) + Te−s(Ωx̃s(s) + Ω1N x0s(s) + 𝜌s(s) − 1N a0s(s)) consists of bounded terms; hence, it is a
bounded function. Since− = − − IN is Hurwitz by the assumption of the theorem, it then follows that ṽs(s) is bounded.
Since ṽs(s) = ṽ(t) by definition, one can conclude that ṽ(t) (and the velocity state v(t)) is bounded in the finite-time interval
t ∈ [0, T).

Step 3. We finally show that the control algorithm given in (50) also remains bounded in presence of considered
vanishing and nonvanishing system uncertainties over the finite-time interval. For this purpose, we write the derivative
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of (72) with respect to t given by

𝜖(t) = −k𝜖𝜆2(t)𝜖(t) − k𝜖𝜆(t)𝜖̇(t) + Ω ̇̃x(t) + Ω1N v0(t) + 𝜌̇(t),
= 𝜆(t)(𝜖̇(t) − Ωx̃(t) − Ω1N x0(t) − 𝜌(t)) − k𝜖𝜆(t)𝜖̇(t) + Ω ̇̃x(t) + Ω1N v0(t) + 𝜌̇(t), 𝜖̇(0) = 𝜖̇0. (79)

Letting 𝜓(t) = 𝜖̇(t), 𝜏(t) ≜ 𝜌̇(t), and using the time transformation function in (10) yields

𝜓 ′
s (s) = −(k𝜖 − 1)𝜓s(s) + h𝜖(s), 𝜓s(0) = 𝜓s0, (80)

where h𝜖(s) ≜ −(Ωx̃s(s) + Ω1N x0s (s) + 𝜌s(s)) + Te−s(Ω ̇̃xs(s) + Ω1N v0s(s) + 𝜏s(s)) contains all the bounded terms in (79).
Now, since k𝜖 > 1 based on the assumption of the theorem, it follows from (80) that 𝜓s(s) (and 𝜓(t) = 𝜖̇(t)) is
bounded. Next, similar to Step 3 in proof of Theorem 2, by writing the control signal (50) in the compact form, one
can obtain

u(t) = 𝜆(t)z(t), (81)

where z(t) ≜ −v(t) − (k𝜖 + 1)𝜖(t) + 𝛼 (𝔊)1N v0(t) with the derivative with respect to t given by

ż(t) = −(u(t) + Ωx(t) + 𝜌(t)) − (k𝜖 + 1)𝜓(t) + 𝛼 (𝔊)1N a0(t), z(0) = z0. (82)

One can obtain the derivative of (81) with respect to t as

u̇(t) = 𝜆(t)ż(t) + 𝜆2(t)z(t) = 𝜆(t)ż(t) + 𝜆(t)u(t),
= 𝜆(t)(−(u(t) + Ωx(t) + 𝜌(t)) − (k𝜖 + 1)𝜓(t) + 𝛼 (𝔊)1N a0(t)) + 𝜆(t)u(t),
= −𝜆(t)u(t) + 𝜆(t)(−(Ωx(t) + 𝜌(t)) + 𝛼 (𝔊)1N a0(t) − (k𝜖 + 1)𝜓(t)), u(0) = u0. (83)

Finally, using the time transformation function in (10) one can rewrite (83) as u′
s(s) = −us(s) + hu(s), us(0) = u0,where

hu(s) ≜ −(Ωx̃s(s) + Ω1N x0s (s) + 𝜌s(s)) + 𝛼 (𝔊)1N a0s(s) − (k𝜖 + 1)𝜓s(s). Now, since hu(s) is a bounded function and − is
Hurwitz by the assumption of the theorem, then us(s) is bounded. Equivalently, u(t) remains bounded in the finite interval
t ∈ [0, T) and this concludes the proof of this theorem. ▪

Remark 10. The proposed distributed control algorithms in this article are not limited to the considered leader-following
setting and the time transformation method can be also used for achieving finite-time convergence in other mul-
tiagent control problems. In particular, the proposed distributed control algorithms in (13) and (37) can serve as
building bricks for control design of various multiagent system problems such as consensus, formation control,
and containment control. As an example, consider the multiagent system considered in Section 3 consisting of
N agents with first-order dynamics given by (11). To address formation control, one can use a change of vari-
able zi(t) = xi(t) − 𝜁i, i ∈ {1, 2, … ,N}, where 𝜁i ∈ R, i ∈ {1, 2, … ,N} denotes the desired distance from the leader
in the formation of the multiagent system [ 2, section 6.3]. Similar to (22), the control signal in this case can be
designed as

ui(t) = −𝛼𝜆(t)

(∑
i∼j

(zi(t) − zj(t)) + ki(zi(t) − x0(t))

)
, i ∈ {1, 2, … ,N}. (84)

Letting z̃(t) ≜ [z̃1(t), z̃2(t), … , z̃N(t)]T ∈ RN , where z̃i(t) ≜ zi(t) − x0(t), i ∈ {1, 2, … ,N}, denotes the new error signal, one
can write the error dynamics in the compact form as

̇̃z(t) =
(
−𝛼ds

dt
 (𝔊) + Ω

)
z̃(t) + h𝜁 (t), z̃(0) = z̃0, (85)

where h𝜁 (t) ≜ Ω(𝜁 + 1N x0(t)) + 𝜌(t) − 1N v0(t) with 𝜁 ≜ [𝜁1, 𝜁2, … , 𝜁N]T ∈ RN . Note that (85) has the same form as (15).
It now follows from the presented analyses in Section 3 (particularly, Theorem 1) that limt→T(zi(t) − x0(t)) = 0, that is,
limt→T(xi(t) − 𝜁i − x0(t)) = 0. This equivalently means that the required formation is achieved and the position of the
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F I G U R E 3 An example multiagent system on an undirected, connected circle
graph 𝔊1 considered in Example 1 [Colour figure can be viewed at
wileyonlinelibrary.com]

agent i reaches to a distance from the position of the leader within the user-defined finite time T, and this distance can
be characterized by 𝜁i.

5 ILLUSTRATIVE NUMERICAL EXAMPLES

We now present illustrative numerical examples to demonstrate the efficacy of the presented distributed control algo-
rithms in Sections 3 and 4 for addressing finite-time control of multiagent systems with first- and second-order agent
dynamics.

5.1 Example 1: First-order multiagent system

Consider a multiagent systems that consists of N = 8 agents having the dynamics given by (11) and exchang-
ing information based on an undirected, connected circle graph 𝔊1 as shown in Figure 3, where the first two
agents have access to the position of the time-varying leader given by x0(t) = 2.5 + 5 sin(0.5t) + 0.5 sin(5t) (ie,
ki = 1 for i∈ {1, 2}, and ki = 0 for i∈ {3, 4, … , 8} in (22)). Furthermore, the vanishing and nonvanishing system
uncertainties are selected for this numerical example, respectively, as wi =−0.3, i∈ {1, … , 8}, and 𝜌i(t) = sin(2t), i ∈
{1, … , 8}. Finally, we note that the initial positions of the agents are selected randomly using the randn function
in Matlab.

For the proposed distributed control algorithm in Section 3, we use the time transformation function given in (10)
with T = 4 in order to enforce the finite-time convergence value equal to 4 seconds and we set 𝛼 = 10 that results in
a positive definite matrix  in (26). Figure 4 shows the performance of the proposed distributed control algorithm in
presence of vanishing and nonvanishing system uncertainties. As expected from Theorem 1, the position of each agent
converges to that of the leader at the chosen user-defined finite time with bounded agent states and control signals.
Moreover, for further illustrating the robustness of the proposed distributed control algorithm in (22) to different van-
ishing and nonvanishing system uncertainties, consider four additional uncertainty scenarios as A ∶ wi = 0, 𝜌i(t) = 0,
B ∶ wi = −0.1, 𝜌i(t) = 2 sin(4t), C ∶ wi = −0.5, 𝜌i(t) = −4 sin(0.5t), D ∶ wi = 0.5, 𝜌i(t) = −6 sin(2t). The initial condition
of the agents are selected randomly in the interval [14, 16] for scenario A, [8, 10] for scenario B, [− 1, 1] for scenario C,
and [− 6,− 4] for scenario D. Figure 5 shows that in all cases the proposed algorithm in (22) can preserve the user-defined
finite-time convergence, regardless of the initial conditions of the agents and without requiring the knowledge of the
upper bounds of the system uncertainties.

The proposed algorithm can also be utilized for a priori given, user-defined finite-time convergence in
higher dimensions. For demonstrating this fact in a two-dimensional case, we next consider the same multia-
gent system having the same vanishing and nonvanishing system uncertainties for both dimensions, where the
first two agents have access to the position of the time-varying leader given by x0(t) = [4 sin(1.5t), 4 cos(1.5t)]T.
Figure 6 shows the performance of the proposed distributed control algorithm applied to both dimensions simul-
taneously. Once again, the position of each agent converges to that of the leader at the user-defined finite
time.

http://wileyonlinelibrary.com
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F I G U R E 4 Leader-follower performance with the
proposed finite-time control algorithm in (22) (T = 4 and
𝛼 = 10) in the presence of vanishing and nonvanishing
uncertainties (dashed line shows the position of the
leader and solid lines show the position of agents)
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 5 Leader-follower performance with the
proposed finite-time control algorithm in (22) (T = 4 and
𝛼 = 10) in the presence of different system uncertainty
scenarios (dashed line shows the position of the leader
and solid lines show the position of agents) [Colour
figure can be viewed at wileyonlinelibrary.com]
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5.2 Example 2: Second-order multiagent system

Consider a multiagent systems that consists of N = 8 agents having the dynamics given by (31) and (32), and exchanging
information based on an undirected, connected line graph 𝔊2 as shown in Figure 7, where agents 1, 5, and 6 have access
to the position and velocity of the leader given by ẋ0(t) = v0(t), v̇0(t) = −2x0(t) (ie, ki = 1 for i∈ {1, 5, 6}, and ki = 0 for the
rest of the agents in (50)). We note that the initial positions and velocities of the agents are respectively, selected randomly
in the intervals [0,2] and [−2,0].

For the proposed distributed control algorithm in Section 4, we use the time transformation function given in (10) with
T = 5 in order to enforce the finite-time convergence value equal to 5 seconds and we set k𝜖 = 10 and 𝛼 = 15 that results
in a positive definite matrix  in (57). Figure 8 show the performance of the proposed distributed control algorithm in the
absence of system uncertainties. As expected from Theorem 2, the position of each agent converges to that of the leader
at the chosen user-defined finite time with bounded agent states and control signals.

In order to demonstrate the robustness of the proposed algorithm in (50) to system uncertainties, we now consider that
the vanishing and nonvanishing system uncertainties, respectively, satisfy 𝜔i = 4 and 𝜌i(t) = 0.5 sin(2t), i ∈ {1, … , 8}.

http://wileyonlinelibrary.com
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F I G U R E 6 Two-dimensional leader-follower
performance with the proposed finite-time control
algorithm in (22) (T = 4 and 𝛼 = 10) in the presence of
vanishing and nonvanishing uncertainties (dashed line
shows the position of the leader and solid lines show the
position of agents) [Colour figure can be viewed at
wileyonlinelibrary.com]
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5 F I G U R E 7 An example multiagent system on an undirected, connected line graph
𝔊2 considered in Example 2 [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 9 show the performance of the proposed distributed control algorithm in the presence of system uncertainties. As
expected from Theorem 3, the position of each agent once again converges to that of the leader at the chosen user-defined
finite time with bounded agent states and control signals.

Finally, for illustrating the robustness of the proposed distributed control algorithm to different initial conditions and
different vanishing and nonvanishing system uncertainties, consider four additional uncertainty scenarios as A ∶ wi =
0, 𝜌i(t) = 0, B ∶ wi = −0.5, 𝜌i(t) = 2 sin(4t), C ∶ wi = −3, 𝜌i(t) = 3 sin(0.5t), D ∶ wi = 1, 𝜌i(t) = −5 sin(2t). Furthermore,
the initial positions and velocity of the agents are selected randomly, respectively in the intervals [6, 8] and [− 8,− 6] for
scenario A, [2, 4] and [− 4,− 2] for scenario B, [− 4,− 2] and [2, 4] for scenario C, and [− 8,− 6] and [6, 8] for scenario
D. Figure 10 show that in all of these scenarios the proposed algorithm in (50) can preserve the user-defined finite-time
convergence, regardless of the initial conditions of the agents and without requiring the knowledge of the upper bounds
of the system uncertainties.

6 CONCLUSION

This article presented a new distributed control algorithm for addressing user-defined finite-time convergence guarantees
in first- and second-order multiagent systems. Specifically, the proposed generalized time transformation function con-
verts the user-defined finite-time interval of interest to a stretched infinite-time interval, in which a distributed control

http://wileyonlinelibrary.com
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F I G U R E 8 Leader-follower performance with the
proposed finite-time control algorithm in (50) (T = 5,
k𝜖 = 10, and 𝛼 = 15) in the absence of system
uncertainties (dashed line shows the position and
velocity of the leader and solid lines show those of the
agents) [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 9 Leader-follower performance with the
proposed finite-time control algorithm in (50) (T = 5,
k𝜖 = 10, and 𝛼 = 15) in the presence of vanishing and
nonvanishing uncertainties (dashed line shows the
position and velocity of the leader and solid lines show
those of the agents) [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 10 Leader-follower performance with
the proposed finite-time control algorithm in (50) (T = 5,
k𝜖 = 10, and 𝛼 = 15) in the presence of different system
uncertainty scenarios (dashed line shows the position
and velocity of the leader and solid lines show those of
the agents) [Colour figure can be viewed at
wileyonlinelibrary.com]

algorithm can be designed on this stretched interval. The results were then transformed back to the original finite-time
interval for achieving a given multiagent system objective. Second, robustness properties of the resulting finite-time dis-
tributed control algorithms were established analytically using a candidate time transformation function. Unlike the
existing distributed controllers with finite-time convergence property, the key feature of the proposed algorithms can pre-
serve a priori given, user-defined finite-time convergence regardless of the initial conditions of the multiagent system, the
graph topology, and without requiring a knowledge of the upper bounds of the considered class of system uncertainties.

As discussed before, this article focused on control over the time interval [0, T). For applications, where it is desired
for the agents to continue following the leader after the time T, a potential future research direction may be to resort to
switching-type control designs. To address the adverse effects of vanishing and nonvanishing uncertainties after the time
T, adaptive control algorithms can be used as an example. To this end, a candidate algorithm is the set-theoretic model
reference adaptive control approach in References 46-48, where it has the capability to enforce a user-defined performance
guarantee without requiring the strict knowledge of the bounds on the system uncertainties.
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