

Practical Energy Densities, Cost, and Technical Challenges for Magnesium-Sulfur Batteries

Rameez Razaq^{†ab}, Ping Li ^{†b}, Yulong Dong^b, Yao Li^{*ac}, Ya Mao^{*d}, and Shou-Hang Bo^{*b}

FUNCTIONAL MATERIALS FOR GREEN ENERGY AND ENVIRONMENT Table S1. A summary of currently reported Mg/S batteries.

Cathode material	Sulfur contents/ loading	Separator Type	Anode material	Electrolyte	Cell type	First Discharge Potential (V)	Coulombic efficiency (%)	current rate/ number of cycles Capacity/(mAh g ⁻¹)	References
S@carbon black on carbon substrate	61 wt%	No data	Mg foil	[Mg2(µ-Cl)3·6THF]c [HMDSAlCl3]/THF	Coin	0.89	≈ 95	no data/2/394	1
CMK3/S on Al foil	70 wt%	No data	Mg disc	0.3 M Mg(TFSI) ₂ / DME-diglyme	Coin	0.5	No data	C/30/4/100	2
S/CMK on Inconel 625 collectors	55 wt%	Glass fiber	Pressed Mg powder/carbon black (4:1 wt.)	1.2 M (HMDS) ₂ Mg– 2AlCl ₃ – MgCl ₂ in tetraglyme or diglyme; 1.2 M (HMDS) ₂ Mg– 2AlCl ₃ –MgCl ₂ in diglyme or tetraglyme/PP14TFSI	Swagelok type	No data	≈ 100	0.01 C/20 /150/ with PVDF, diglyme 0.01 C/20 /200 with CMC, diglyme 0.01 C/20/250 with PVDF, tetraglyme 0.01 C/20/260 with CMC, tetraglyme	3
ACC-S	15 wt% 0.5 mg cm ⁻²	Glass fiber	Mg foil	0.1 M (HMDS) ₂ Mg- 2AlCl ₃ + 1 M LiTFSI	Swagelok type	~ 1.7	≈ 92	0.03 C/30/1000	4

S/bis (undec-10-

EcoMat

FUNCTIONAL MATERIALS FOR GREEN ENERGY AND ENVIRONMENT

enoyloxymethylbenzo)-

18-crown-6-ether	
10-ci0wii-0-cuici	

(BUMB18C6); sulfur-oxybis(2, 1-ethanediyloxy- 2,1-ethanediyl) ester (UOEE) on SS	No data	Celgard 2500	Mg plate	0.5 M Mg(TFSA) ₂ in triglyme or acetonitrile	Coin	No data	No data	0.01 C/10/23 and 0.01C/10/ 68.1	5
S–N-doped graphene on Al foil	50 wt%	Celgard 2400	Mg disc	Mg(THF)6][AlCl4]2/ PYR14(TFSI) in THF (salt)	Coin	No data	No data	0.01 C/20/40	6
rGo–S on Inconel 625 current collector	49 wt%	Celgard 2400	Pressed Mg powder/ carbon black	(HMDS)2Mg–2AlCl3– MgCl2 in tetraglyme	Swagelok type	1.67	≈100	0.01 C/50/236	7
CNF-S	50 wt%	Carbon nanofiber- coated glass fiber	Mg foil	3.6 M (HMDS)2 Mg–2AlCl3–MgCl2 in tetraglyme	Coin	No data	≈ 85	0.01 C/20/800	8
S–carbon on Al/C	1 mg cm ⁻²	Glass fiber	Pressed Mg/graphite anode	HMDSMgCl	Swagelok type	No data	≈ 100	0.1 C/100/30	9

FUNCTIONAL MATERIALS I	FOR GREEN ENERGY AN	DENVIRONMENT		WILE Ombb 0.5 m	ΞY				
S-CNT	49 wt%	Glass		$[Mg_4Cl_6(DME)_6]^{2+}$					
on Cu foil	1.5 mg cm^{-2}	fiber	Mg foil	[B(HFP) ⁴]– 2 B(HFP) ₃ –MgCl ₂	Coin	1.15	≈ 100	0.1 C/100/1000	10
		Glass		1 M Mg(TFSI)2-MgCl2 in	Swagelok				
ACC-S	1.5 mg cm^{-2}	fiber	Mg disc	DME	type	No data	93	0.01 C/100/600	11
SGDY		Glass		(PhMgCl)2-AlCl3 + LiCl					
on Al foil	1 mg cm^{-2}	fiber	Mg disc	in THF	Coin	0.87	pprox 100	0.1 C/100/800	12
S/C		PE		0.4 M (PhMgCl)2-AlCl3					
on SS/Cu	No data	membrane	Mg ribbon	+ LiCl in THF	Coin	1.65	≈ 100	0.005 C/40/300	13
Graphite/S– multiwalled CNT; on Al foil	85 wt% 0.7 mg cm ⁻²	Glass fiber	Mg foil	0.4 M Mg(TFSI)2–MgCl2 (1:1) in tetraglyme:1,3- dioxolane (DOL) (1:1)	Pouch	0.87	No data	C/60/4/400	14
S/C composite on Cu foil	85 wt%	Glass fiber	Mg foil	BCM (0.5 M THFPB + 0.05 M MgF2 in DME)	Coin	1.1	≈ 100	0.03 C/30/900	15
S/CMK- on SS	1 mg cm ⁻²	Glass fiber	Mg foil	0.8 M Mg(B(hfip) ₄) ₂ in diglyme:tetraglyme (1:1)	Swagelok type	1.4	≈ 100	0.1 C/100/200	16
S-ACC on SS; S/CMK-3 on SS	1 mg cm ⁻²	Glass fiber	Mg disc	Mg(TFSI)2 in DME	Swagelok type	1.25	≈ 100	0.01 C /20/668 0.01 C /3/400	17

Carbon cloth/S	1. mg cm ⁻²	Glass fiber	Mg foil	Mg(TFSI)2–MgCl2 in DME	No data	No data	No data	No data	18
S/rGO on N, S dual doped carbon cloth	1 mg cm ⁻²	Activated CNF coated	Mg disc	(HMDS) ₂ Mg–2AlCl ₃ – MgCl ₂ in tetraglyme	No data	1.45	≈ 9 3	0.01 C/40/388	19
S@MC on Cu foil	64.7 wt%	PE membrane	Mg metal	0.4 M (PhMgCl) ₂ –AlCl ₃ + 1 M LiCl/THF	Coin	No data	≈ 100	0.1 C/200/368.8	20
MOF-S on SS/Mo foil	1 mg cm ⁻²	Glass fiber	Mg foil	(HMDS) ₂ Mg–2AlCl ₃ with LiTFSI additive	Coin	1.5	No data	0.1 C/200/400	21
S-ACC on SS	1.2 mg cm ⁻²	Glass fiber	Mg foil	Mg[B(hfip)4]2 in DME	Swagelok type	1.68	≈ 100	0.1 C/100 /200	22
MgS8@G-CNT	0.7 mg cm ⁻²	No data	Mg metal	YCl ₃ –MgCl ₂ in <i>N</i> -methyl- (<i>N</i> -butyl)pyrrolidinium bis(trifluoromethanesulfo nyl) imide/diglyme (1/1, v/v)	Coin	1.2	98.7	0.04 C/50/900	23
S@microporous carbon on Cu foil	55 wt%	PE separator	Mg ribbon	Mg(CF ₃ SO ₃) ₂ –AlCl ₃ in THF and tetraglyme	Coin	No data	≈ 90	0.05 C/50/400	24
S/C	0.35 mg cm ⁻²	Glass fiber	Mg foil	[Mg(DG)2][HMDSAlCl3]	Coin	No data	No data	83 mA g ⁻¹ /100/400	25

FUNCTIONAL MATERIALS F	OR GREEN ENERGY AN	d environment Glass		WILE	EΥ				
Pure sulfur on Ni film	48.8 wt%	Fiber	Mg foil	MgCl ₂ /EnPS	Coin	No data	No data	0.05C/1/400	26
S/C	1 mg cm ⁻²	No data	Mg disk	MgTFSI2/ MgCl2 in DME	Swagelok cells	~ 1.5	No data	100 mAg ⁻¹ /3/800	27
Sulfur@microporous carbon	41.3 wt%	PE membrane	Mg foil	0.4 mol L ⁻¹ (PhMgCl) ₂ - AlCl ₃ /THF	Coin	1.3	~ 70%	0.006 C/50/224	28
S/C	No data	No data	Mg foil	0.5 M Mg(BH4)2/1.0 M THFPB-DGM	Coin	No data	No data	50 mA g ⁻¹ /30/526	29
Pure sulfur on Al foil	3.0 mg cm ⁻²	CuNWs- GN/PI/LL ZO	Mg foil	B(HFP) ₃ , MgCl ₂ and Mg powders in DME solvent	Coin	No data	No data	100 mA g ⁻¹ /25/ 915.3	30
C/S on Cu/Al	0.9 mg cm ⁻²	Glass fiber	Mg foil	TFSI based HFIP–Cl based HFIP based	Swagelok type	1.1	No data	No data	31
ACC/S	10 wt.%	Glass fiber	Mg ₃ Bi ₂ -C alloy	Mg(TFSI) ₂ /DME	Coin	1.3	No data	C/2/30/400	32
Pure sulfur on carbon paper	0.1 mg cm ⁻²	TiS ₂ @sep arator	Mg foil	0.5 M [Mg(DG)2][(HMDSAlCl3)]2/DG electrolyte	Coin	1.5	No data	83 mA g ⁻¹ /30/900	33
Pure sulfur on Cu foil	0.12 mg cm ⁻²	Glass fiber	Mg disk	Mg(TFSI)2/MgCl2/DME	Coin	1.1	No data	0.1 C/50/600	34
Pure sulfur	No data	Glass fiber	Mg foil	Mg-HMDS-LiTFSI	Coin	~ 1.45	No data	1 C/1/875	35

S/NC on Al foil	0.5 mg cm- ⁻²	Polypropy lene	Mg foil	Mg[B(hfip)4]2/3DME	Swagelok type	1.4	≈ 99	C/50/50/228	36
S8 on Cu or Al foil	1.2 mg cm^{-2}	Glass fiber	Mg metal	Boron-centered anion- based magnesium electrolytes	Coin	No data	No data	C/50/15/550	37
S/CMK3	~2.0 mg cm ⁻²	Glass fiber	Mg disc	OMBB electrolyte	Coin	No data	≈ 9 9	0.1 C/30/≈1000	38
Sulfurated Poly(acrylonitrile)on a graphite foil	0.6 mg cm ⁻²	Glass fiber	Pressed Mg powde	Mg[BH4]2 /Li[BH4] solutions in diglyme	Swagelok / Coin	No data	> 99.8%	0.1 C/100/	39
VN/60S on Mo foil	60 wt %	Glass fiber	Mg disk	$[Mg_2(\mu-Cl)_2(DME)_4]^{2+}$ and $[(CF_3SO_3)AlCl_3]^{-}$	Coin	No data	99.4%	200 mAg ⁻¹ /20/844	40
MesoCo@C-S	40 wt %	Glass fiber	Mg metal	MMAC-DME	Coin	1.55	90%	0.2C/200/ 280	41
ACC-S	1 mg cm ⁻²	No data	Mg metal	MgTFSI2/MgCl2 in DME	Coin	No data	No data	0.1 C/1/396	42

Materials	density
Mg metal	1.738
Sulfur	2.07
Carbon nanotube	2.1 43, 44
PVDF	1.78
Super-P	1.9 44
Carbon coated Al foil (MTI corp.)	4.37*10 ⁻³ g cm ⁻²
OMBB electrolyte ^a Solid-state electrolyte (SSE) ^b	1 1.821
DME	0.87
Celgard 2500	0.946
Al laminated film	1.75
Ethylene carbonate (EC)	1.321 (Sigma-Aldrich)
Propylene carbonate (PC)	1.204 (Sigma-Aldrich)
PVDF-HFP	1.77 (Sigma-Aldrich)
MgAl ₂ O ₄	3.64 (Sigma-Aldrich)

Table S2. Density (g cm⁻³) of materials in Mg/S cell.

(a. The main composite of OMBB electrolyte is 0.5 M $[Mg_4Cl_6(DME)_6][B(HFP)_4]_2$ in DME. The density is approximated at 1 g cm⁻³. The electrolyte composition is complex, so it is hard to calculate the density of electrolyte.

b. The 1 M Mg(Tf)₂ in EC/PC (1/1 vol/vol) is mixed with PVDF-HFP with mass ratio of 80/20. The MgAl₂O₄ is added to polymer electrolyte with a 20 wt% weight of composite electrolyte. The density of this composite electrolyte is approxcimated as follows:

$$\begin{split} m_{solution} &= \left(1.321 \frac{g}{ml} * 500ml + 1.204 \frac{g}{ml} * 500ml + 322.44 \frac{g}{mol} * 1 \ mol\right) = 1584.94 \ g\\ m_{PVDF-HFP} &= m_{solution} * \frac{20}{80} = 396.235 \ g\\ m_{MgAl2O4} &= \left(m_{solution} + m_{PVDF-HFP}\right) * \frac{20}{80} = 495.29375 \ g\\ \rho_{SSE} &= \frac{m_{solution} + m_{PVDF-HFP} + m_{MgAl2O4}}{V_{solution} + V_{PVDF-HFP} + V_{MgAl2O4}} = \frac{1584.94 \ g + 495.29375 \ g + 495.29375 \ g}{1000 \ cm^{-3}} + \frac{396.235 \ g}{3.64 \ g \ cm^{-3}}} = 1.821 \ g \ cm^{-3}) \end{split}$$

Table S3. The parameters for an ideal cell with 100 wt % sulfur content and 100% S utilization. Porosity in cathode is 60 vol.%. Separator has 55 vol.% porosity.

Composites	Parameters
Carbon coated Al foil	0.0018 cm
Sulfur content	100%
Mg metal capacity excess	20%
Average operating voltage	1.77V
S utilization	100%
S areal loading (mg cm ⁻²)	m_s
Electrolyte volume/S weight ($\mu L/mg_s$)	$\frac{E}{S}$
Celgard2500 thickness (µm)	25
Cathode tab, anode tab	Ni foil, 48 mm*4 mm*0.09 mm (160 mg/pcs)
Al laminate film	13cm * 9cm * 0.0068cm ^a

(a. The area of Al laminate film (13 cm * 9 cm) is larger than the cross section of cell (12 cm * 8 cm) considering the cell sealing.)

Table S4. Mass (g) of each component of ideal Mg/S cell with height of 12 cm and width of 8cm for gravimetric energy density simulation.

Components	Mass (g)
Carbon coated Al foil	$4.37 * 10^{-3} * 96$
Sulfur cathode	$m_s * 10^{-3} * 96$
Liquid electrolyte	$m_s * \frac{E}{S} * 10^{-3} * 1 * 96$
Celgard 2500	0.0025 * 45% * 0.946 * 96
Mg anode	$\frac{1672 * m_s * 10^{-3} * 1.2 * 96}{2205}$
Al laminated film	0.0068 * 1.75 * 2 * 13 * 9
Cathode/anode tab (Ni tabs)	0.16 * 2
Total	$\left(0.183 + 0.096 * \frac{\text{E}}{\text{S}}\right) * m_s + 3.626$
Gravimetric energy density (Wh kg ⁻¹)	$1.77 * 1672 * m_s * 10^{-3} * 96$
	$\left(0.183 + 0.096 * \frac{E}{S}\right) * m_s + 3.626$

$\label{eq:solution} \textbf{Table S5}. \ \textbf{Thickness} \ \textbf{(cm)} \ \textbf{of each component of ideal Mg/S cell for volumetric energy}$

density simulation.

Components	Thickness (cm)				
Carbon coated Al foil	0.0018				
Sulfur cathode	$m_s * 10^{-3}$				
	2.07 * 40%				
Celgard 2500	0.0025				
Mg anode	$1672 * m_s * 10^{-3} * 1.2$				
-	2205 * 1.738				
Al laminated film	0.0068*2				
(Below values with electrolyte v	olume is less than pores volume of cathode and seperator)				
Liquid electrolyte outside pore	0				
Cell thickness	$0.0179 + 1.732 * 10^{-3} * m_s$				
Cell volumetric energy density	$1.77 * 1672 * m_s * 10^{-3} * 96$				
$(Wh L^{-1})$	$\overline{(1.732 * 10^{-3} * m_s + 0.0179) * 96}$				
(Below values with electrolyte volume is no less than pores volume of cathode and separator)					
Liquid electrolyte outside pore	$m_s * \frac{E}{S} * 10^{-3} - \frac{m_s * 10^{-3}}{2.07 * 40\%} * 60\% - 25 * 10^{-4} * 55\%$				
Cell thickness	$\left(16.525 + 1.007 * m_s + m_s * \frac{E}{S}\right) * 10^{-3}$				
Cell volumetric energy density	1.77 * 1672 * m_s * 10 ⁻³ * 96				
$(Wh L^{-1})$	$\left(16.525+1.007*m_s+m_s*\frac{E}{S} ight)*10^{-3}*96$				

Table S6. The parameters for a realistic cell with 64 wt % sulfur content and 60.8% Sutilization. The cathode has 60 vol.% porosity. Separator has 55 vol.% porosity.

Parameters
0.0018 cm
64%
16 wt%
10 wt%
10 wt%
20%
1.2 V
60.8%
m_s
$\frac{E}{S}$
25
Ni foil, 48 mm*4 mm*0.09 mm (160 mg/pcs)
13cm * 9cm * 0.0068cm

Table S7. Mass (g) of each component of realistic Mg/S cell with varied S loading and E/S ratio for gravimetric energy density simulation.

Components	Mass (g)
Carbon coated Al foil	$4.37 * 10^{-3} * 96$
Sulfur active material	$m_s * 10^{-3} * 96$
Carbon nanotube+Super-P+PVDF	$m_s * \frac{36}{64} * 10^{-3} * 96$
Liquid electrolyte	$m_s * \frac{E}{S} * 10^{-3} * 1 * 96$
Celgard 2500	0.0025 * 45% * 0.946 * 96
Mg anode	$\frac{1019 * m_s * 10^{-3} * 1.2 * 96}{2205}$
Al laminated film	0.0068 * 1.75 * 2 * 13 * 9
Cathode/anode tab (Ni tabs)	0.16 * 2
Total	$\left(0.203 + 0.096 * \frac{\mathrm{E}}{\mathrm{S}}\right) * m_{\mathrm{s}} + 3.626$
Gravimetric energy density (Wh kg ⁻¹)	$1.2 * 1019 * m_s * 10^{-3} * 96$
	$\left(0.203+0.096*\frac{E}{S}\right)*m_s+3.626$

Table S8. Thickness (cm) of each component of realistic Mg/S cell with varied S loading and

E/S ratio for volumetric energy density simulation (Ignore the two tabs volume).

Components	Thickness (cm)	
Carbon coated Al foil	0.0018	
cathode	$\frac{\frac{m_s*10^{-3}}{64\%}*(\frac{64\%}{2.07}+\frac{16\%}{2.1}+\frac{10\%}{1.9}+\frac{10\%}{1.78})}{1-60\%}$	
Celgard 2500	0.0025	
Mg anode	$\frac{1019 * m_s * 10^{-3} * 1.2}{2205 * 1.738}$	
Al laminated film	0.0068 * 2	
(Below values with electrolyte	volume is less than pores volume of cathode and seperator)	
Liquid electrolyte outside	0	
pore		
Cell thickness	$(17.9 + 3.264 * m_s) * 10^{-3}$	
Cell volumetric energy	$1.2 * 1019 * m_s * 10^{-3} * 96$	
density (Wh L ⁻¹)	$(17.9 + 3.264 * m_s) * 10^{-3} * 96$	
(Below values with electrolyte volume is no less than pores volume of cathode and separator)		
Liquid electrolyte outside pore	$m_s * \frac{E}{S} * 10^{-3} - 2.945 * 10^{-3} * m_s * 60\% - 25 * 10^{-4} * 55\%$	
Cell thickness	$\left(16.525 + 1.497 * m_s + m_s * \frac{E}{S}\right) * 10^{-3}$	
Cell volumetric energy	$1.2 * 1019 * m_s * 10^{-3} * 96$	
density (Wh L ⁻¹)	$\left(16.525+1.497*m_{s}+m_{s}*\frac{E}{S}\right)*10^{-3}*96$	

Table S9. Mass (g) of each component of Mg/S cell for gravimetric energy density simulation with varied sulfur content and discharge capacity. (S loading is 6 mg cm⁻², E/S=3 μ L mg⁻¹, and V_{dis}=1.77 V)

Components	Mass (g)
Carbon coated Al foil	$4.37 * 10^{-3} * 96$
Sulfur active material	$6 * 10^{-3} * 96$
Carbon nanotube+Super-P+PVDF	$6 * 10^{-3} * 96 * (1 - w_s)/w_s$
Liquid electrolyte	6 * 3 * 10 ⁻³ * 1 * 96
Celgard 2500	0.0025 * 45% * 0.946 * 96
Mg anode	$\frac{C_{dis} * 6 * 10^{-3} * 1.2 * 96}{2205}$
Al laminated film	0.0068 * 1.75 * 2 * 13 * 9
Cathode/anode tab (Ni tabs)	0.16 * 2
Total	$0.576 * \frac{1 - w_s}{w_s} + 3.135 * 10^{-4} * C_{dis}$
	+ 5.93
Gravimetric energy	1.77 * C_{dis} * 6 * 10 ⁻³ * 96
density (Wh kg ⁻¹)	$0.576 * \frac{1 - w_s}{w_s} + 3.135 * 10^{-4} * C_{dis} + 5.93$

FUNCTIONAL MATERIALS FOR GREEN ENERGY AND ENVIRONMENT **Table S10**. Thickness (cm) of Mg/S cell for volumetric energy density simulation with varied sulfur content and discharge capacity. (S loading is 6 mg cm⁻², and E/S=3 μ L mg⁻¹, and V_{dis}=1.77 V)

Components	Thickness (cm)
Carbon coated Al foil	0.0018
collector	
Cathode	$\frac{\frac{6*10^{-3}}{w_s}(\frac{w_s}{2.07} + \frac{(90\% - w_s)*\frac{16}{26}}{2.1} + \frac{(90\% - w_s)*\frac{10}{26}}{1.9} + \frac{10\%}{1.78})}{1 - 60\%}$
Celgard 2500	0.0025
Mg anode	$\frac{C_{dis} * 6 * 10^{-3} * 1.2}{2205 * 1.738}$
Al laminated film	0.0068 * 2
(Below values with elect	rolyte volume is less than pores volume of cathode and seperator,
which means $w_s < 27\%$))
Liquid electrolyte	0
Cell thickness	$\left(\frac{7.5315 * 10^{-3}}{w_s} + 1.879 * 10^{-6} * C_{dis} + 0.017714\right)$
Cell volumetric energy	1.77 * C_{dis} * 6 * 10 ⁻³ * 96
density (Wh kg ⁻¹)	$\left(\frac{7.5315*10^{-3}}{w_s} + 1.879*10^{-6}*C_{dis} + 0.017714\right)*96$
(Below values with elect	rolyte volume is less than pores volume of cathode and seperator,
which means $w_s > 27\%$))
Liquid electrolyte	$6 * 3 * 10^{-3} - t_{cathode} * 60\% - t_{sep} * 55\%$
Cell thickness	$\left(\frac{3.0126 * 10^{-3}}{w_s} + 1.879 * 10^{-6} * C_{dis} + 0.0334406\right)$

Volumetric energy
density (Wh L⁻¹)
$$1.77 * C_{dis} * 6 * 10^{-3} * 96$$
 $(\frac{3.0126 * 10^{-3}}{w_s} + 1.879 * 10^{-6} * C_{dis} + 0.0344506) * 96$

Composites	Parameters
Carbon coated Al foil	0.0018 cm
Sulfur content	50 wt%
Super-P content	13.3 wt%
PVDF content	10 wt%
SSE content in cathode	26.7%
Thickness of each SSE (µm)	varible (t)
Mg metal capacity excess	20%
Thickness of each Al laminated film (μm)	68
Cathode/anode tab (Ni tabs) (g)	0.16
Number of double-sided coated cathode	8
Number of SSE	16
Number of anode	16
Number of cathode current collector	8
Average operating voltage	1.2 V
S utilization	60.8%
S areal loading (mg cm ⁻²)	varible (m _s)

Table S12. Mass (g) of each component of solid-state Mg/S cell with varied S loading and thickness of SSE for gravimetric energy density simulation.

Components	Mass (g)
Carbon coated Al foil	$4.37 * 10^{-3} * 96 * 8$
Sulfur active material	$m_s * 10^{-3} * 96 * 16$
PVDF ^a	$\frac{m_s}{50\%} * 10\% * 10^{-3} * 96 * 16$
Super-P ^b	$\frac{m_s}{50\%} * 13.3\% * 10^{-3} * 96 * 16$
Solid-state electrolyte	$\frac{m_s}{50\%} * 26.7\% * 10^{-3} * 96 * 16 + t * 10^{-4} * 96 * 1.821 * 16$
Mg anode ^c	$\frac{1019*m_s*10^{-3}*1.2*96}{2205}*16$
Al laminated film	0.0068 * 1.75 * 2 * 13 * 9
Cathode/anode tab (Ni tabs)	0.16 * 2
Total mass ^d	$3.9238 * m_s + 0.2797 * t + 6.4608$
Gravimetric energy density	1.2 * 1019 * m_s * 10 ⁻³ * 96 * 16
$(Wh kg^{-1})^e$	$\overline{3.9238 * m_s + 0.2797 * t + 6.4608}$

(a. Sulfur content is 50wt% in cathode. b. PVDF content is 10wt% in cathode. Besides S and PVDF, the weight ratio of super-P and SSE is controded as 1:2 in cathode. c. The capacity ratio of Mg anode and S in cathode is 1.2. d. The number of double-sided coated cathode is 8, and the number of SSE and anode in a pouch cell are 16, respectively. e. The discharge capacity and the average discharge voltage are assumed as 1019 mAh g-1 and 1.2 V, same as pouch cell with liquid electrote.)

Table S13. Thickness (cm) of each component of solid-state Mg/S cell with varied S loading and thickness of SSE for volumetric energy density simulation (Ignore the two tabs volume).

Components	Thickness (cm)
Carbon coated Al foil	0.0018 * 8
Cathode	$\frac{\frac{m_s}{50\%} * 10^{-3} * (\frac{50\%}{2.07} + \frac{10\%}{1.78} + \frac{13.3\%}{1.9} + \frac{26.7\%}{1.821})}{1 - P} * 16$
Solid-state electrolyte	$t * 10^{-4} * 16$
Mg anode	$\frac{1019*m_s*10^{-3}*1.2}{2205*1.738}*16$
Al laminated film	0.0068 * 2
Total	$2.4465 * 10^{-2} * m_s + 1.6 * 10^{-3} * t + 0.028$
Cell volumetric energy	1.2 * 1019 * m_s * 10 ⁻³ * 96 * 16
density (Wh L ⁻¹)	$(2.4465 * 10^{-2} * m_s + 1.6 * 10^{-3} * t + 0.028) * 96$

 Table S14. Price of each material in Mg-S pouch cell.

Materials	Price
Mg metal	$0.004 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Sulfur	$0.00022 \ \ g^{-1}$ (online price)
Carbon nanotube	0.225 \$ g^{-1} (online price)
PVDF	0.01 g ⁻¹ (online price)
Super-P	0.0068 \$ g^{-1} (online price)
Carbon coated Al foil	0.002 \$ cm ⁻² (MTI Corp.)
OMBB electrolyte	Variable \$ g ⁻¹
Solid-state electrolyte (SSE)	Variable \$ g ⁻¹
Celgard 2500	0.0001 \$ cm ⁻² (Alibaba good price)
Al laminated film	0.00002 \$ cm ⁻² (Alibaba good data)
Ni tab	0.6724 \$ pcs ⁻¹ (online price)
Ethylene carbonate (EC)	0.0907\$ g ⁻¹ (Sigma-Aldrich)
Propylene carbonate (PC)	141.1106 \$ L ⁻¹ (Sigma-Aldrich)
Mg(Tf) ₂	5.92\$ g ⁻¹ (Sigma-Aldrich)
PVDF-HFP	0.9223 \$ g ⁻¹ (Sigma-Aldrich)
MgAl ₂ O ₄	17.7935 \$ g ⁻¹ (Sigma-Aldrich)
anhydrous 1,2-dimethoxyethane (99.9%) (DME)	18 \$ L ⁻¹ (Chem impex website)
tris(hexafluoroisopropyl)borate (95%)	103.2 \$ g ⁻¹ (TCI)
anhydrous magnesium chloride (99.99%)	5 \$ g ⁻¹ (VWR website)
magnesium powder (99.8%)	0.2225 \$ g ⁻¹ (Alfa Aesar)

Table S15. Cost of each material in realistic Mg/S cell with liquid electrolyte. The realistic Mg/S cell has fixed average discharge voltage of 1.2V, S utilization of 60.8% (1019 mAh g⁻¹), E/S ratio of 3 μ L mg^{-1} , and varied S loading m_s (mg cm⁻²) and liquid electrolyte cost C_{elyt} (\$ g⁻¹).

Composites	Cost (\$)
Carbon coated Al foil	96 *0.002
Sulfur active material	$m_s * 10^{-3} * 96 * 0.00022$
Carbon nanotube	$m_s * \frac{16}{64} * 10^{-3} * 96 * 0.225$
Super-P	$m_s * \frac{10}{64} * 10^{-3} * 96 * 0.0068$
PVDF	$m_s * \frac{10}{64} * 10^{-3} * 96 * 0.01$
Liquid electrolyte	$m_s * 3 * 10^{-3} * 1 * 96 * C_{elyt}$
Celgard 2500	96 * 0.0001
Mg metal	$\frac{1019*m_s*10^{-3}*1.2*96}{2205}*0.004$
Al laminated film	13 * 9 * 2 * 0.00002
Cathode/anode tab (Ni tabs)	0.6724*2
Total	$0.005886 * m_s + 0.288 * m_s * C_{elyt} + 1.55058$
Cost per kWh	$\frac{0.005886 * m_s + 0.288 * m_s * C_{elyt} + 1.55058}{1.2 * 1019 * m_s * 10^{-3} * 96 * 10^{-6}}$

Table S16. Cost of each magnetized	aterial in Mg/S cell with solid-sta	te electrolyte with thickness of
solid-state electrolyte of 10) μm.	

Composites	Cost (\$)
Carbon coated Al foil	96 *8*0.002
Sulfur	$m_s * 10^{-3} * 96 * 16 * 0.00022$
PVDF	$\frac{m_s}{50\%} * 10\% * 10^{-3} * 96 * 16 * 0.01$
Super-P	$\frac{m_s}{50\%} * 13.3\% * 10^{-3} * 96 * 16 * 0.0068$
Solid-state electrolyte	$\left(\frac{m_s}{50\%} * 26.7\% * 10^{-3} * 96 + 10 * 10^{-4} * 96 * 1.821\right) * 16$
	* C _{SSE}
Mg anode	$\frac{1019 * m_s * 10^{-3} * 1.2 * 96}{2205} * 16 * 0.004$
Al laminated film	13 * 9 * 2 * 0.00002
Cathode/anode tab (Ni	0.6724*2
tabs)	
Total cost	$(0.8202 * m_s + 2.797) * C_{SSE} + 6.18822 * 10^{-3} * m_s$
	+ 2.915767
Cost per kWh	$(0.8202 * m_s + 2.797) * C_{SSE} + 6.18822 * 10^{-3} * m_s + 2.915767$
	$1019 * 1.2 * m_s * 10^{-3} * 96 * 10^{-6} * 16$

Price of 0.5 M organic magnesium borated-based electrolyte (OMBB) calculation

OMBB electrolytes were synthesized by reaction of $B(HFP)_3$, Mg powders and MgCl₂ in DME solvent. The volume of electrolytes is set as 1 L. The concentration of $B(HFP)_3$ is 0.5 M. The ratio of $B(HFP)_3$: MgCl₂ is 2:1, and Mg powder is added in excess which is filtered finally. Therefore, the mole number of $B(HFP)_3$ and MgCl₂ are 0.5 and 0.25, respectively. Because the equilibrium species in the electrolyte is $[Mg_4Cl_6(DME)_6][B(HFP)_4]_2$, the mole ratio of Mg and B is 4:2, thus the reacted Mg powder is estimated to be 0.75 mole in this price calculation.

The price of the 0.5 M organic magnesium borated-based electrolyte (OMBB) is

$$Price_{OMBB} = \frac{cost_{B(HFP)3} + cost_{MgC12} + cost_{Mg powder} + cost_{DME}}{mass_{B(HFP)3} + mass_{MgC12} + mass_{Mg powder} + cost_{DME}}$$
$$= \frac{0.5mol * 511.9 \frac{g}{mol} * 103.2 \frac{\$}{g} + 0.25mol * 95.21 \frac{g}{mol} * 5\frac{\$}{g} + 0.75mol * 24.3 \frac{g}{mol} * 0.2225 \frac{\$}{g} + 18\frac{\$}{L} * 1L}{0.5mol * 511.9 \frac{g}{mol} + 0.25mol * 95.21 \frac{g}{mol} + 0.75mol * 24.3 \frac{g}{mol} + 0.867 \frac{g}{cm^3} * 1000 cm^3}$$
$$= 23 \$ g^{-1}$$

References

- 1. Kim H S, Arthur T S, Allred G D, et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2011; 2:427.
- 2. Ha S Y, Lee Y W, Woo S W, et al. Magnesium(II) bis(trifluoromethane sulfonyl) imidebased electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2014; 6:4063-4073.
- Zhao-Karger Z, Zhao X, Wang D, et al. Performance Improvement of Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes. Adv. Energy Mater. 2015; 5:1401155.
- 4. Gao T, Noked M, Pearse A J, et al. Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 2015; 137:12388-12393.
- 5. Itaoka K, Kim I-T, Yamabuki K, Yoshimoto N, Tsutsumi H. Room temperature rechargeable magnesium batteries with sulfur-containing composite cathodes prepared from elemental sulfur and bis (alkenyl) compound having a cyclic or linear ether unit. J. Power Sources 2015; 297:323-328.

- Li W, Cheng S, Wang J, et al. Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. Angew. Chem. Int. Ed. 2016; 55:6406-6410.
- 7. Vinayan B P, Zhao-Karger Z, Diemant T, et al. Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a nonnucleophilic Mg electrolyte. Nanoscale 2016; 8:3296-3306.
- Yu X, Manthiram A. Performance Enhancement and Mechanistic Studies of Magnesium–Sulfur Cells with an Advanced Cathode Structure. ACS Energy Lett 2016; 1:431-437.
- 9. Sievert B, Hacker J, Bienen F, Wagner N, Friedrich KA. Magnesium Sulfur Battery with a New Magnesium Powder Anode. ECS Trans. 2017; 77:413-424.
- Du A, Zhang Z, Qu H, et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery. Energy Environ. Sci. 2017; 10:2616-2625.
- Gao T, Hou S, Wang F, et al. Reversible So/MgSx Redox Chemistry in a MgTFSI2 /MgCl2 /DME Electrolyte for Rechargeable Mg/S Batteries. Angew. Chem. Int. Ed. 2017; 56:13526-13530.
- Du, H, Zhang, Z, He J, Cui Z, Chai J, Ma J, Yang Z, Huang C, Cu G., A Delicately Designed Sulfide Graphdiyne Compatible Cathode for High-Performance Lithium/Magnesium-Sulfur Batteries. Small 2017; 13:1702277.
- Zeng L, Wang N, Yang J, Wang J, NuLi Y. Application of a sulfur cathode in nucleophilic electrolytes for magnesium/sulfur batteries. J. Electrochem. Soc. 2017; 164:A2504.
- Robba A, Vizintin A, Bitenc J, et al. Mechanistic Study of Magnesium–Sulfur Batteries. Chem. Mater. 2017; 29:9555-9564.

- Zhang Z, Cui Z, Qiao L, et al. Novel Design Concepts of Efficient Mg-Ion Electrolytes toward High-Performance Magnesium-Selenium and Magnesium-Sulfur Batteries. Adv. Energy Mater. 2017; 7:1602055.
- Zhao-Karger Z, Gil Bardaji M E, Fuhr O, Fichtner M. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J. Mater. Chem. A 2017; 5:10815-10820.
- Gao T, Ji X, Hou S, et al. Thermodynamics and Kinetics of Sulfur Cathode during Discharge in MgTFSI2 -DME Electrolyte. Adv. Mater 2018; 30:1704313.
- Salama M, Attias R, Hirsch B, et al. On the Feasibility of Practical Mg-S Batteries: Practical Limitations Associated with Metallic Magnesium Anodes. ACS Appl. Mater. Interfaces 2018; 10:36910-36917.
- Muthuraj D, Ghosh A, Kumar A, Mitra S. Nitrogen and Sulfur Doped Carbon Cloth as Current Collector and Polysulfide Immobilizer for Magnesium-Sulfur Batteries. Chem. Electro. Chem 2018; 6:684-689.
- Zhao X, Yang Y, NuLi Y, et al. A new class of electrolytes based on magnesium bis(diisopropyl)amide for magnesium-sulfur batteries. Chem. Commun. 2019; 55:6086-6089.
- Zhou X, Tian J, Hu J, Li C. High Rate Magnesium-Sulfur Battery with Improved Cyclability Based on Metal-Organic Framework Derivative Carbon Host. Adv. Mater. 2018; 30:1704166.
- Zhao-Karger Z, Liu R, Dai W, et al. Toward Highly Reversible Magnesium–Sulfur Batteries with Efficient and Practical Mg[B(hfip)4]2 Electrolyte. ACS Energy Lett. 2018; 3:2005-2013.
- 23. Xu Y, Zhou G, Zhao S, et al. Improving a Mg/S Battery with YCl₃ Additive and Magnesium Polysulfide. Adv. Sci. 2019; 6:1800981.

- 24. Yang Y, Wang W, Nuli Y, Yang J, Wang J. High Active Magnesium Trifluoromethanesulfonate-Based Electrolytes for Magnesium–Sulfur Batteries. ACS applied materials & interfaces 2019; 11:9062-9072.
- Xu Y, Li W, Zhou G, Pan Z, Zhang Y. A non-nucleophilic mono-Mg²⁺ electrolyte for rechargeable Mg/S battery. Energy Storage Mater. 2018; 14:253-257.
- Nakayama Y, Matsumoto R, Kumagae K, et al. Zinc Blende Magnesium Sulfide in Rechargeable Magnesium-Sulfur Batteries. Chem. Mater. 2018; 30:6318-6324.
- 27. Gao T, Hou S, Huynh K, et al. Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example. ACS Appl. Mater. Interfaces 2018; 10:14767-14776.
- Wang W, Yuan H, NuLi Y, Zhou J, Yang J, Wang J. Sulfur@microporous Carbon Cathode with a High Sulfur Content for Magnesium–Sulfur Batteries with Nucleophilic Electrolytes. J. Physical Chem. C 2018; 122:26764-26776.
- Huimin X, Zhonghua Z, Jiajia L, et al. A multifunctional additive improves the electrolyte properties of magnesium borohydride towards magnesium-sulfur batteries. ACS Appl. Mater. Interfaces 2018; 10:23757–23765
- Zhou Z, Chen B, Fang T, et al. Multifunctional Separator Enables Safe and Durable Lithium/Magnesium–Sulfur Batteries under Elevated Temperature. Adv. Energy Mater. 2019; 10:1902023.
- Robba A, Mežnar M, Vizintin A, et al. Role of Cu current collector on electrochemical mechanism of Mg–S battery. J. Power Sources 2020; 450:227672.
- Meng Z, Foix D, Brun N, et al. Alloys to Replace Mg Anodes in Efficient and Practical Mg-Ion/Sulfur Batteries. ACS Energy Lett. 2019; 4:2040-2044.
- Xu Y, Ye Y, Zhao S, et al. In Situ X-ray Absorption Spectroscopic Investigation of the Capacity Degradation Mechanism in Mg/S Batteries. Nano Lett. 2019; 19:2928-2934.

- 34. He P, Ford H O, Merrill L C, Schaefer J L. Investigation of the Effects of Copper Nanoparticles on Magnesium–Sulfur Battery Performance: How Practical Is Metallic Copper Addition? ACS Applied Energy Mater. 2019; 2:6800-6807.
- Li Y, Zuo P, Li R, et al. Electrochemically-driven interphase conditioning of magnesium electrode for magnesium sulfur batteries. J. Energy Chem. 2019; 37:215-219.
- 36. Vinayan B P, Euchner H, Zhao-Karger Z, et al. Insights into the electrochemical processes of rechargeable magnesium–sulfur batteries with a new cathode design. J. Mater. Chem. A 2019; 7:25490-25502.
- 37. Lee B, Choi J, Na S, et al. Critical role of elemental copper for enhancing conversion kinetics of sulphur cathodes in rechargeable magnesium batteries. Applied Surface Sci. 2019; 484: 933-940.
- 38. Du A, Zhao Y, Zhang Z, et al. Selenium sulfide cathode with copper foam interlayer for promising magnesium electrochemistry. Energy Storage Mater. 2020; 26, 23-31.
- 39. Wang P, Trück J, Niesen S, et al. High-Performance Magnesium-Sulfur Batteries Based on a Sulfurated Poly(acrylonitrile) Cathode, a Borohydride Electrolyte, and a High-Surface Area Magnesium Anode. Batteries Supercaps. 2020; DOI: 10.1002/batt.202000097.
- Huang D, Tan S, Li M, Wang D, Han C, An Q. Mai, L., Highly Efficient Non-Nucleophilic Mg(CF₃SO₃)₂-Based Electrolyte for High-Power Mg/S Battery. ACS Appl. Mater. Interfaces 2020; 12:17474-17480.
- Sun J, Deng C, Bi Y,at al. In Situ Sulfurized Carbon-Confined Cobalt for Long-Life Mg/S Batteries. ACS Appl. Energy Mater. 2020; 3:2516-2525.
- Schaefer J, Boggess W C, He P, Doyle E, Ford H O. Self Discharge of Magnesium-Sulfur Batteries Leads to Active Material Loss and Poor Shelf Life. ChemRxiv. 2020 DOI:10.26434/chemrxiv.12317326.

- 43. Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010;
 22:587-603.
- Long C M, Nascarella M A. Valberg P A. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 2013; 181:271-286.