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In this commentary, we revisit Sir Austin Bradford Hill’s seminal Alfred Wat-
son Memorial Lecture in 1962 through the eyes of two practicing biostatisticians
of the current era. We summarize some eternal takeaway messages from Hill’s
lecture regarding observations and experiments translated through the modern
lexicon of causal inference. Finally, we pose a series of questions that we would
have liked to pose to Sir Austin Bradford Hill if he were to deliver the lecture in
2020.
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1 INTRODUCTION

I returned, and saw under the sun, that the race is not to the swift, not the battle to the strong, neither yet
bread to the wise, nor yet riches to men of understanding, nor yet favour to men of skill; but time and chance
happeneth to them all.

Ecclesiastes 9:11, King James Version

As we reflect on Sir Austin Bradford Hill’s marvelous Alfred Watson Memorial Lecture delivered in 1962 as two prac-
ticing biostatisticians 48 years later, we are reminded of the above biblical text that George Orwell admired for its clarity
and style of writing. Orwell tried to rewrite this piece from good old English to what he calls the modern English of the
worst sort. In his essay Politics and the English Language,1 Orwell criticized the “ugly and inaccurate” written English of
his time and “translated” the above original to an ambiguous version emblematic of that period:

Objective consideration of contemporary phenomena compels the conclusion that success or failure in com-
petitive activities exhibits no tendency to be commensurate with innate capacity, but that a considerable
element of the unpredictable must invariably be taken into account.

Orwell points out that this “translation” contains many more syllables but gives no concrete illustrations, as the orig-
inal did, nor does it contain any vivid, arresting images or phrases. What made the original so good? Of the 49 words in
the biblical original, 41 are of one syllable, including sturdy Anglo-Saxon words such as sun, race, swift, strong, bread,
wise, skill, and time. Clark 2 notes how the passage moves from the human attributes to things that we cannot control,
“Time and Chance.” As we began reading the transcript of Hill’s lecture, we appreciated the beauty and simplicity of his
writing that drives home fundamental and eternal statistical messages with powerful examples without getting lost in
the “mathematistry” and complexity of modern Statistics.3 Throughout his lecture, Hill focuses on learning and teaching
epistemic statistical “values” instead of learning a particular methodology. Like the biblical passage, Hill’s lecture pivots
around the dichotomy of experimental variables that we, as scientists, can control and recognizes unmeasured random
noises as “time and chance happeneth to all.”
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Standing in 2020, when we are facing a global pandemic ravaging our society4 and underscoring how fragile our
technologically advanced civilization is, we, as statisticians, appreciated reading and writing about this lecture even more.
Hill describes medicine as a primary union of two fields: public health focusing on etiology and prevention, prior to
contraction of a disease, and, healthcare focusing on treatment of a patient with a disease. There is constant knowledge
flow between these two fields: the study of the populations and that of the individual patients. Even in the era of big data
and precision medicine, this dichotomy and exchange remains true. In our battle against the COVID-19 pandemic, we
are witnessing collaborations between these two fields of public health and healthcare. Nonpharmaceutical interventions
have as much role to play as vaccines and treatments for this highly contagious viral infection.

Hill classifies three broad classes of experiments to answer questions that arise in this unified field of medicine

(a) Animal experiments conducted in laboratories.
(b) Designed experiments with humans as units.
(c) Natural experiments and observational studies in the real world.

Hill’s emphasis on the theory of experiments is somewhat unexpected for a current graduate student in Biostatistics.
Most Biostatistics departments are in the process of phasing out a course on design of experiments from their graduate pro-
gram, which we believe is detrimental to our profession. A statistician in medicine has to engage from the nascent design
phase of a study as true partners in science. In the next few sections of the lecture, Hill advocates for “the permeation of
the statistical research with experimental spirit.”5

2 ON EXPERIMENTATION AND DOING

Spirtes6 and Pearl7 emphasize the important distinction between Seeing and Doing. Experimentation centers around
drawing conclusions about how systems respond to external intervention when the intervention is controlled by the exper-
imenter. Hill recognized experiments as Doing, altering the system of interest by introducing different stimuli/treatments.
Hill intuited, from a methodology-free perspective, that for causal inference the ideal trial in many settings is first choos-
ing a randomly selected set of individuals from the target population and then randomly allocating treatment. Hill’s ideal
trial notionally protects against treatment assignment being correlated with latent health status and biased selection of
individuals from the population. Hill, always aware of practical issues when implementing theoretically correct criteria,
acknowledged limitations in the ability to recruit a random sample but rightly emphasized treatment randomization.

While Hill’s ideal trial is correct, such informal statements can sometimes mask the difficulty in formal description of
causal effects even in well-designed experiments. Indeed, modern causal inference has focused on linking Fisher’s statisti-
cal testing with Hill’s intuition by formalizing these notions either through counterfactuals8-10 or directed acyclic graphs.7
Often, emphasis is placed on translation of the scientific question into a nonparametrically defined estimand. In many
settings, the scientific question is equivalent to estimating the average treatment effect (ATE). Consider, for example, a
variation on Hill’s famous randomized controlled trial11 where patients with tuberculosis are randomized to either receive
streptomycin (Z = 1) or not (Z = 0) with a known probability 𝜋(Z|X) that is a function of baseline covariate information
X . Then, the ATE can be defined using the potential outcome framework as

E[Y (1) − Y (0)] = E

[
(I[Z = 1] − I[Z = 0]) Y (Z)

𝜋(Z|X)

]
,

where Y (z) is the potential outcome under treatment (z= 1) and control (z= 0) respectively and the expectation is over the
distribution of potential outcomes in the population. The left-hand size defines the target estimand, while the right-hand
reexpresses this quantity using the randomized treatment Z. Modern causal inference10 demonstrated that if the ran-
domized trial satisfies (a) positivity, that is, 0 < 𝜀 ≤ 𝜋(z|x) ≤ 1 − 𝜀 < 1 for all x and (b) consistency, that is, an individual’s
potential outcomes under the observed exposure is the outcome observed for that person, then an estimator inversely
weighted by the likelihood of treatment assignment is an unbiased estimator of the ATE. In Hill’s trial, patients with tuber-
culosis were all equally likely to receive and not to receive the treatment, that is, 𝜋(Z|X) ≡ 1∕2. Moreover, administering
treatment to one tuberculosis patient is unlikely to impact another patient. Under these assumptions, the right-hand side
simplifies and the ATE of streptomycin compared with control is the difference in means of the treatment and control
group.
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Above, the target estimand was formally defined and, under certain assumptions, a weighted estimator is shown to
be consistent for the causal effect of interest. Modern causal inference translated Hill’s “trifle bit of danger” to “making
assumptions necessary to go from association to causality.” This formal language also helps researchers build potentially
more efficient estimators than simple mean comparisons. In Hill’s streptomycin study, for example, a researcher may have
had a prior model for the outcome given treatment and covariate information, denoted 𝜇z(x). Then, Hill may incorporate
this model by estimating the average treatment effect using a model-assisted estimator

∑
z∈{0,1}

(−1)z+1
(

E[𝜇z(X)] + E

[
1[Z = z]
𝜋(Z|X)

(Y (z) − 𝜇z(X))
])

.

Beyond improving efficiency, formal methods allow us to recognize settings where data from a randomized control trial
cannot be used directly to estimate the target estimand of interest without additional assumptions or auxiliary infor-
mation. For example, suppose patients cannot be blinded to treatment assignment. Then, upon being assigned to the
treatment arm, an individual may decide to not comply and forgo taking the treatment. If the scientist is interested in
effectiveness, then the mean comparison of treatment and control groups is adequate, that is, the ATE is equivalent to
an intention-to-treat analysis. If, however, the scientist’s interest is in drug efficacy, that is, assessing the effect of treat-
ment within a population, then one must account for noncompliance. Here, let W(z) denote compliance under exposure
status z∈ {0, 1}. Under one-sided compliance, then the population can be split into compliers (W(z)= z for z∈ {0, 1}) and
never-takers (W(z)≡ 0). Let binary T denote complier status. Then, the ATE can be expressed as

E[Y (1) − Y (0)] =
∑

t∈{0,1}
E[Y (1) − Y (0)|T = t]P(T = t).

Again, assumptions are needed to proceed. If one is willing to live a trifle dangerously and make the assumption that the
noncomplier ATE is zero (ie, the exclusion-restriction assumption), then the complier ATE can be calculated as the ratio
of the observed ATE and the rate of compliance in the treatment arm.

Randomized trials with compliance and no missing data can yield internally valid causal estimates. Hill’s final cri-
teria of a random sample from the population alludes to the fact that often the investigator has a target population of
interest. Randomized trial samples, however, are often not representative of target populations of interest.12 The above
expectations are implicitly with respect to the target population; however, the observed data may come from a different
distribution. In such settings, one may rely on the assumption that the scientist has observed the factors that moder-
ate treatment effects and differ between sample and population.13 Armed with this information, one can account for
selection bias. Again, causal inference relies on assumptions; living dangerously but explicitly stating how, which allows
researchers to go from association to causality.

3 ON OBSERVATIONAL STUDIES AND SEEING

The brevity of “Nature in the Raw” is quite astounding considering that by 1962, Hill was a leader in the two decade debate
of the relationship between smoking and lung cancer. In March 1962 (only 6 months prior to the Watson lecture), the
Royal College of Physicians had released their report that “clearly indicted cigarette smoking as a cause of lung cancer and
bronchitis.” For background, in 1948, Richard Doll and Hill had run a case-control study, studying patients who have been
diagnosed with lung cancer (cases) and patients who had not been diagnosed with lung cancer (control). Interestingly,
all but two cases reported having been smokers in their past.

But “nature is tricky.” Doll and Hill were concerned that certain unobserved differences among the cases and controls
was contributing to the stark observed difference. Holland and Rubin (1988) formalized this by demonstrating that the
assumption of strong ignorability is crucial for causal inferences from such retrospective studies, that is, smoking status
is independent of the potential outcomes of lung cancer status given a set of covariates. Modern causal inference has only
expanded the list of tools including instrumental variables,14,15 Mendelian randomization,16,17 and negative controls.18

Hill’s final paragraph suggests that his work with retrospective studies along with a 1951 prospective study provided
sufficient evidence such that the “most reasonable” explanation was a causal one between smoking and lung cancer.
Skeptics, however, remained, most prominently R.A. Fisher. Fisher argued the evidence was “only statistical,” while
simultaneously arguing that a potential genetic link between smoking and lung cancer could not be refuted. Hill’s lecture
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implicitly acknowledges the foolishness and unscientific nature of such a claim. Indeed, to the genetic comment, Hill
tips his hat to the lead architect of the attack against it, Jerome Cornfield. In 1959, Cornfield demonstrated that the
genetic link would need to be biologically implausibly strong to account for the difference in risk between smokers and
nonsmokers. Cornfield’s argument has blossomed into an important aspect of causal inference, sensitivity analysis in
which one “quantifies how one’s inference concerning an outcome of interest varies as a function of the magnitude of
nonidentifiable selection bias.”19 Interestingly, sharp upper bounds on causal relative risk using data from case-control
studies are only being discovered this year.20

4 CAUSAL CRITERIA AND STATISTICAL EVIDENCE

While Hill’s 1962 lecture predates his famous causal criteria21 by a few years, it is clear that, even in 1962, Hill would not
view any checklist as either necessary or sufficient for assessing causality. Hill’s 1965 criteria act as a roadmap, helping
researchers build complex narratives to help answer causal questions. Hill emphasized the context-specific nature of
causal questions and reaching the “most reasonable explanation of a particular set of facts.”

Modern causal inference has focused heavily on (a) formal definitions of causal effects of interest, (b) criteria for non-
parametric identification, and (c) efficient methods for causal estimation. While our toolkit continues to grow, nothing
replaces a simple compass for navigation. Indeed, Hill’s lecture reads as a warning to 21st century researchers against auto-
mated causal inference. Hill’s narrative approach emphasizes causal triangulation. To live up to this, the rich literature
of context-free causal methods needs to be married to context-specific reasoning.

Hill may agree with recent work22 which emphasizes “inference to the best explanation” approaches to causal infer-
ence. While Hill’s criteria may be “an early rough cut,”23 it is clear that the statistician’s goal when considering causal
questions is not to present dichotomized statements of significance, but to provide useful and adequate information to
decision makers. To the question “Should we provide streptomycin to all tuberculosis patients?” the statistician should
not present a t-table based on a single study and say to the scientific team “the rest is up to you.”

As mentioned before, Doll and Hill had tremendous influence and impact in the scientific and policy discourse around
smoking and lung cancer.24 Their persistent arguments of a causal association, along with those of Jerome Cornfield25 lay
the foundation of what is known as sensitivity analysis in modern causal inference. Hill’s 1962 lecture mentions related
notions of common causes, lurking variables and alternative explanations in the process of establishing a causal associa-
tion. He cites association of smoking or occupational exposures with increased cancer incidence as an example of such a
conceptual framework. The lecture is almost a preamble to his seminal paper in 1965 where he formally introduces Hill’s
criteria for association versus causation.21 We found the narrative that Hill shares in his lecture where a purely statistical
observation of association led to an ultimate causal conclusion to be quite compelling. This example is about incidence
of cataract in infants whose mothers suffered from German measles during pregnancy. Since the initial observation by
clinician Sir Norman Gregg, supporting evidence regarding the effects of the rubella virus upon the eyes, ears, and heart
of the fetus during its first trimester has evolved without any dispute of alternative explanations. The case-study argues
that persuasive and careful seeing or observation is important as it may generate plausible hypotheses and finally lead to
doing or intervention.

5 CLOSING THOUGHTS

Hill begins his lecture with a reference to all the strange things that Alice saw “Through the Looking Glass” and argues
that as statisticians we need to be exploring the unknown more often, live a trifle more dangerously and learn more from
related disciplines (in this specific case the field of actuarial sciences, where most attendees of the lecture belonged to).
To conclude our discussion we return to the prequel of “Through the Looking Glass,” namely, to Lewis Carroll’s 1865
classic “Alice’s Adventures in Wonderland.”

‘Would you tell me, please, which way I ought to go from here?’

‘That depends a good deal on where you want to get to,’ said the Cat.

‘I don’t much care where–’ said Alice.
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‘Then it doesn’t matter which way you go,’ said the Cat.

‘—so long as I get SOMEWHERE,’ Alice added as an explanation.

‘Oh, you’re sure to do that,’ said the Cat, ’if you only walk long enough.’

Alice felt that this could not be denied, so she tried another question. ’What sort of people live about here?’

‘In THAT direction,’ the Cat said, waving its right paw round, ’lives a Hatter: and in THAT direction,’
waving the other paw, ’lives a March Hare. Visit either you like: they’re both mad.’

‘But I don’t want to go among mad people,’ Alice remarked.

‘Oh, you can’t help that,’ said the Cat: ’we’re all mad here. I’m mad. You’re mad.’

‘How do you know I’m mad?’ said Alice.

‘You must be,’ said the Cat, ‘or you wouldn’t have come here.’

Alice’s Adventures in Wonderland, Lewis Caroll

Alice’s quandary exactly reflects our own, with Hill’s body of work replacing the Cheshire Cat. Interested in the current
state of statistics in medicine, we turn to Hill and ask which way we, as a profession, ought to go from here? Indeed,
reflecting upon Hill’s criteria for causality and his focus on evidence synthesis, we kept wondering how Hill would respond
to the following 10 questions, had he given this lecture in 2020 and if we had a chance to be in the audience and raise our
hands.

1. Where would Hill fall within the raging discussion and debate around redefining statistical significance?26,27

2. How would Hill alter our thinking about replicability and reproducibility in today’s science?28

3. Would Hill take sides in the causality debate? Would he lean toward directed acyclic graphs7 or potential outcomes,29

or alternatives?30,31

4. Would Hill appreciate the rise of Bayesian statistics in medical applications?
5. Would the cross-fertilization of ideas in statistics and computer science and the emergence of the hybrid field of data

science excite Hill?
6. Would Hill caution or embrace machine learning techniques in causal inference and decision-making?
7. Would Hill agree that the union of multiple cultures of modeling, stochastic or algorithmic enriches our discipline?32

8. Would Hill applaud the general computational advances that enable inference and prediction using large data sets?
9. What would Hill say about the decline of experimental design in biostatistics and statistics training programs?

10. What does Hill see as the core set of questions one must always ask when starting a medical study in 2020, either
observational or experimental?

Hill’s lecture leads us to some educated guesses to some of these questions. To question 1, Hill’s observations on
decision-making based on evidence for your own self or loved ones vs decision-making regarding a general conceptual
population brings us right back to recent papers where the same observation is noted.33 Dichotomization and calibra-
tion of statistical evidence largely depends on the scientific and clinical context. Hill emphasizes the need to take the
substantive context and supporting documentation into account. He recommends adopting a holistic approach toward
reporting evidence instead of applying a magic threshold of 0.05. To question 4, his Watson memorial lecture suggests
Hill is philosophically inclined toward reporting P(H0 | data) as opposed to P(Data |H0), thus a Bayes factor will possibly
be more appealing to him than reporting P-values. To question 8, Hill would probably appreciate the recent computa-
tional advances but encourage us to retain our focus on causally interpretable estimands and policy-relevant deliverables
at the end of the day when all our complex and esoteric machinery have been put to task. However, he will most likely
push us to fully understand the mathematical underpinnings of data-recursive procedures and to appreciate the associ-
ated uncertainty of predictions derived from modern algorithmic tools such as random forests, neural nets and support
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vector machines as “time and chance happeneth to all.” Finally, to question 9, Hill will likely encourage us to embrace
the experimental spirit of statistics as a discipline and think hard about design, data collection and information gathering
before embarking on an elaborate inferential journey. In modern medicine, as we are increasingly using data from elec-
tronic health records, medical claims, smart devices, and social media, to question 10, Sir Austin Bradford Hill will very
likely ask two primary questions about the sampling frame: Who is in your study? What is the target population of infer-
ence? Foundational statistical principles of representativeness, generalizability, and transportability cannot be forgotten
while advancing cutting-edge biomedical science with big data and artificial intelligence.

Hill’s Watson lecture reminds us that at the end of the day, we have to make a practical difference in the domain
science in order to demand respect and stature as “A Statistician in Medicine.” This impact requires a zealous blend
of practical knowledge, formal mathematical and computational training, true collaborative spirit, and communication
skills that calls for a bit of a creative mad mind. Just like Alice, we must be a bit mad, or we would not have ended up
in this discipline at this momentous time. Here is to the statistician extraordinaire Sir Austin Bradford Hill, to a touch of
madness, and to the methods behind the madness!
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