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Small sample, sequential, multiple assignment, randomized trials (snSMARTs)
are multistage trials with the overall goal of determining the best treatment after
a fixed amount of time. In snSMART trials, patients are first randomized to one
of three treatments and a binary (e.g. response/nonresponse) outcome is mea-
sured at the end of the first stage. Responders to first stage treatment continue
their treatment. Nonresponders to first stage treatment are rerandomized to one
of the remaining treatments. The same binary outcome is measured at the end of
the first and second stages, and data from both stages are pooled together to find
the best first stage treatment. However, in many settings the primary endpoint
may be continuous, and dichotomizing this continuous variable may reduce sta-
tistical efficiency. In this article, we extend the snSMART design and methods
to allow for continuous outcomes. Instead of requiring a binary outcome at the
first stage for rerandomization, the probability of staying on the same treatment
or switching treatment is a function of the first stage outcome. Rerandomiza-
tion based on a mapping function of a continuous outcome allows for snSMART
designs without requiring a binary outcome. We perform simulation studies to
compare the proposed design with continuous outcomes to standard snSMART
designs with binary outcomes. The proposed design results in more efficient
treatment effect estimates and similar outcomes for trial patients.
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1 INTRODUCTION

Recent developments have been made in small sample, sequential, multiple assignment, randomized trials (snSMARTs)1,2

where the primary goal is identifying the best first stage treatment by sharing information across the two stages of the
trial. In snSMARTs, patients are randomly assigned to a first treatment and a binary outcome (e.g. response) is measured
at a fixed time point. The second stage treatment is assigned randomly or deterministically based on the design and
response to first stage treatment. The same binary outcome is again measured at the end of the second stage. Data from
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the first and second stages are shared to determine the single best first stage treatment. This information-sharing design
is beneficial in the setting of rare diseases. The attractiveness of using an snSMART design over a traditional single-stage
design is that each patient contributes more information than in a single-stage design. snSMARTs may be preferable to
traditional crossover designs in that patients who respond remain on treatment and those who do not respond switch to
other treatments. While snSMARTs designs are similar to standard sequential, multiple assignment, randomized trials
(SMARTs),3 they differ in their primary goal. Unlike SMARTs, the focus of an snSMART is not on estimating the effects
of the embedded dynamic treatment regimens (DTRs) or tailored sequences of treatments, but rather in efficiently using
two stages of information from the same individuals to find the best first stage treatment.

One ongoing snSMART is A RAndomized Multicenter Study for Isolated Skin vasculitis (ARAMIS) trial.4 The goal of
this trial is to determine the best treatment for isolated skin vasculitis, a rare disease. Currently, there are three treatments
available for patients and all are prescribed routinely, and none are considered standard of care for this disease. As such,
this trial has three active treatments as the three arms and there is no control arm. The snSMART design is appropriate
since the number of patients is more of a limiting factor than the duration of the trial. Therefore, the longer duration of
the trial due to the two stages was seen as a lower priority than needing to obtain as much information as possible from
a limited number of patients.

One benefit of a multistage trial in rare disease settings is that there is more information obtained from an individual
patient. The International Rare Diseases Research Consortium (IRDiRC) published a list of recommendations for rare
disease clinical trial design in 2018.5 In these recommendations, they include using longitudinal data and using patients
more than once. Multistage designs have been shown to have increased power relative to single-stage designs.1,6 This is
due to having more information about the sources of variation.7 Single-stage designs can only identify between treatment
variation.7 Crossover designs and other multistage designs also can identify the between-patient variation7 resulting in
less variation in the error term and more statistical efficiency. Even more powerful are snSMARTs where patients may
stay on the same treatment so the variation between treatments and the variation between patients receiving the same
treatment7 can both be identified.

Multistage designs such as a crossover design do not incorporate the patient outcome in the design. This is not ideal
for rare diseases.8,9 Second stage treatment assignment in snSMARTs and other multistage designs is often based on a
binary outcome such that the trial protocol must specify a binary rule for what qualifies as a “response.” Some procedures
may dichotomize a continuous variable such as change in prostate specific antigen (PSA) in a prostate cancer trial10 or
response may be determined using defined criteria such as response evaluation criteria in solid tumors. In an snSMART,
the binary outcome must be the same at the end of the first and second stages and must be selected and agreed upon
before the start of the trial.11

However, in many studies the outcome of interest may not be a binary variable or there may not be enough information
known about a continuous variable to dichotomize it for use in second stage randomization. Another recommendation
from IRDiRC is to not dichotomize continuous endpoints.5 Dichotomizing a continuous outcome often results in lowered
statistical efficiency.5,12-14 In rare diseases, ensuring statistical efficiency is critical due to the inherently low number of
patients in the trial.14 Furthermore, results may vary based on the dichotomization strategy and cutoff selected.15

In rare diseases and rare cancers, selecting a robust, holistic outcome is ideal to capture the patient’s subjective expe-
rience and individual variations in the disease.5,14,16 Patient reported outcomes (PROs) can be used to measure treatment
benefit or risk17 and can record the full patient experience with a treatment. The primary endpoint of the ARAMIS trial is
a dichotomized composite endpoint that incorporates PROs and clinical outcomes.4 The goal of the composite endpoint
is to holistically capture both the disease clinical progression and the patient experience on the treatment. Dichotomized
outcomes (DOs) may miss critical information and may obfuscate results. A major drawback of implementing an snS-
MART in oncology and other chronic diseases is that efficacy and toxicity are both important outcomes and creating a
dichotomous binary outcome that captures both outcomes effectively can be challenging.10 Dichotomizing a continu-
ous outcome, such as a PRO or other composite endpoint, requires expansive knowledge on the outcome and treatment
effects in order to select an appropriate dichotomization strategy.

Moreover, when the outcome of interest is a continuous variable, a clear choice for a dichotomization method or binary
surrogate may not always be available prior to the start of a study. If a continuous variable is dichotomized, the cutoff
selected will play a critical role in the trial progression. If the cutoff selected is too high and the majority of participants
are categorized as nonresponders, then most patients will switch treatments and the long term benefits of a treatment
may not be observed. Conversely, if a cutoff is selected that is too low and the majority of participants are categorized as
responders, then most patients will stay on the treatment and the effects of switching treatments will not be adequately
observed and estimation errors in treatment effects may occur.
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In small samples, this problem of identifying an appropriate cutoff is magnified as fewer patients in each treatment
pathway will be observed with poorly selected cutoffs. Furthermore, if a dichotomous response is used for the endpoint
or outcome of a trial, as in a responder analysis, there is potential for significant loss in statistical power.14,18 In small
samples and rare disease settings, there may be few prior studies and less knowledge regarding the treatment effects on
the outcome which further hinders the ability to select a suitable binary outcome. In addition, the time and resources to
run a pilot study to determine an appropriate cutoff are often not available in diseases and disorders that affect a small
number of individuals.

Here, we examine an snSMART design with a continuous outcome measured at the end of stages one and two where
rerandomization depends on a mapping function (MF) of a continuous outcome as opposed to a binary outcome. This
design leverages the additional information gained by a multistage design and better captures the effect of the treatment
by using a continuous outcome. The ultimate aim is to estimate the expected first stage treatment effects for the multiple
treatments being investigated in the snSMART. As in the ARAMIS trial, we assume that all treatments are used in practice
and the goal is to identify the best first stage treatment. Examples of continuous outcomes with no clear dichotomiza-
tion strategy are percent change, PROs, utility measures (or some combination of efficacy and toxicity), probabilities of
response, or other composite endpoints. The trial design presented here allows for the implementation of an snSMART
without requiring a binary first stage outcome to determine the next stage treatment for a patient. This method main-
tains the patient benefit of an snSMART by having an increased probability of switching treatments if an individual is
not responding well on the current treatment and increased probability of staying on that treatment if the individual is
responding well. It also maintains the benefit of being able to identify variation between treatments and between patients
resulting in a more powerful design. In addition to allowing randomization to depend on a continuous outcome in the
snSMART design, the methods presented here allow for continuous first and second stage outcomes as opposed to pre-
vious methods to analyze snSMART data that only applied to binary outcomes. Thus, due to continuous outcomes, we
cannot use previously proposed methods for snSMARTs2 and due to second stage randomization depending on a contin-
uous outcome and sharing information across stages for the first stage treatment effect, we cannot use standard SMART
methods.

2 METHODS

2.1 snSMART design with a continuous MF

Here, we present the proposed snSMART design which allows for a continuous outcome measured at the end of the first
and second stages. This design does not require a binary outcome. In this design, all patients are randomized with equal
probability to a first stage treatment. We measure the continuous outcome at the end of stage one for patient i, Y i1, at
a set time point, t. The probability of staying on the same treatment for patient i is a function of Y i1, and we call this
function, f (Y 1), the MF. The MF ranges between 0 to 1 in order to yield valid probabilities. This is similar to the idea of
treatment effect mappings introduced by Rosenberger,19 but only relies on the patient’s individual outcome and not the
outcome of others. Patients randomized to switch treatments are randomized to one of the remaining treatments with
equal probability. At a set final time point, 2t, the outcome at the end of stage two, Y i2, is measured. A schematic of the
traditional snSMART design is given in Figure 1A and the proposed snSMART design is presented in Figure 1B.

The randomization at the end of the first stage can be thought equivalently as a one-step randomization process or
a two-step randomization process. The one step randomization proceeds as presented in Figure 1B where the next treat-
ment is decided by a multinomial distribution with probabilities [f (Y1), 0.5(1 − f (Y1)), 0.5(1 − f (Y1))] for staying on the
same treatment and switching to either other treatment, respectively. It can also be thought of as a two-step randomiza-
tion process with two binomial distributions (Web Figure 1). The first randomization determines if the patient stays or
switches treatment and has probability of staying equal to f (Y 1). If the person switches treatments, then there is a second
randomization with probability 0.5 for each remaining treatment.

2.1.1 The mapping function

The MF maps the first stage outcome, Y i1, to [0, 1] and gives the probability of staying on the same treatment. More favor-
able values of the outcome map to values closer to 1 so that patients doing well on a treatment have a higher probability
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F I G U R E 1 A traditional small sample, sequential, multiple
assignment randomized trial (snSMART) design with a binary
outcome, shown in A, and the proposed snSMART design with a
continuous outcome, shown in B. A, B, and C are treatments, R
indicates a randomization point, and f (Y 1) is the mapping
function. Values along lines indicate probability of assignment to
the treatment following. Each stage is the same length so that Y 1 is
measured at time t and Y 2 is measured at time 2t

of staying on the same treatment. Depending on what is known about the outcome, various MFs can be selected. We
provide examples of MFs and assume that higher values of Y indicate more favorable performance, but the functions are
generalizable in other cases. While we offer the following suggestions, any cumulative distribution function can be used.

For areas of study with small samples such as rare diseases, there may be little information known about the distribu-
tion of Y 1. If only minimum and maximum values are known for Y 1, a linear MF f (Y 1)= (Y 1 −Y min)/(Y max −Y min) can
be used. This linear f (Y 1) function can be easily modified using powers for different trial characteristics. For example, if
it is desirable for high proportions of patients to stay on the same treatment through both stages, or if it is expected that
the outcome may be right skewed, then using f (Y 1)1/k, k> 1, may be appropriate. Likewise, if having more people switch
is of interest or if the outcome is left skewed, then f (Y 1)k, k> 1, may be appropriate.

If there are extreme values within this possible range of Y 1 that rarely occur, the linear function over the possible range
of Y 1 may result in very few people on certain treatment regimens. For example, if Y 1 has a distribution as seen in Figure 2
(iii), then a linear MF will result in the majority of people switching treatments. To adjust for this, one can select a more
practical minimum and maximum and then truncate the MF at 0 and 1. These values may represent safety and ethical
limits in addition to the practicality of the study. The minimum could be the lowest value of Y 1 where investigators feel
comfortable with a patient staying on the same treatment. This lower limit is a safety measure as it represents the worst
outcome a patient will have and stay on the same treatment. The highest value of Y 1 is selected where investigators feel
comfortable with a patient switching treatments, so that if a patient has a higher outcome they will stay on the current
treatment. This upper limit represents an ethical boundary since it could be viewed as unethical to switch treatments
for a patient responding this well to their current treatment. Patients can be consulted to aid in determining the upper
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F I G U R E 2 Possible distributions
of outcome Y and mapping functions
that balance patients staying or
switching treatments. The plots labeled
distribution of Y are the probability
distribution functions. The y-axis for
plots labeled possible mapping functions
is the probability of staying on the
treatment for a given value of Y . Higher
values of Y are assumed to indicate
better outcomes.

and lower limits, which may make the trial more patient centered and appealing to patients.20 Developing these extreme
limits requires less prior knowledge regarding the treatment effects than is needed to effectively dichotomize a continuous
outcome. In addition, even when minimums and maximums are selected, the MF is more flexible than a binary outcome.

2.2 Bayesian analysis methods

2.2.1 Model and likelihood

We assume the data from the snSMART design, has a multivariate normal likelihood:21

[
Yi1

Yi2

] |Ti1,Ti2 ∼ MVN

([
𝜇1(Ti1)

𝜇2(Ti1,Ti2)

]
,V(Ti1,Ti,2)

)

where Y is is a continuous outcome and Tis is the treatment for patient i in stage s, s= 1, 2. The mean outcome for stage
one, 𝜇1, is a function of only the first stage treatment. The mean for the second stage, 𝜇2, is a function of both the first
and second stage treatments. The covariance matrix is a function of the sequence of treatments the patient received.

The mean treatment effects for stage one and two are modeled as follows for treatments A, B, and C:

𝜇1(Ti1) =
C∑

j=A
𝛽jI(Ti1 = j),

𝜇2(Ti1,Ti2) = 𝛼1

C∑
j=A

𝛽jI(Ti1 = j) + 𝛼2

C∑
k=A

𝛽kI(Ti2 = k) + 𝛼3I(Ti1 = Ti2). (1)

The 𝛽j parameters are the expected effect of treatment j, j=A, B, C, in the first stage. The primary goal of an snSMART
is to estimate these 𝛽j parameters in order to identify the single best treatment during the first stage. The first stage
mean outcome depends on the treatment effect for the treatment received in stage one. We model the second stage mean
outcome as a weighted average of the treatment effects from stage one and stage two with an additional effect if the
patient stays on the same treatment. Practically, this mean model for stage two can occur when there is some lingering
effect of the first treatment (𝛼1) and some additional effect of the second treatment (𝛼2) when 𝛼1, 𝛼2 > 0. Alternatively, if
the patient stays on the same treatment, the effect of the treatment in the second stage is the first stage effect with some
cumulative effect that occurs on the treatment longer term (𝛼3). The proposed mean models allow for shared information
between the two stages through 𝛽j. The previously proposed linkage parameters in prior work to analyze data from an
snSMART with binary outcomes2 are similar to the 𝛼 parameters that we use in our models.
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For modeling the covariance, we use V(Ti1, Ti, 2)=V 1I(Ti1 =Ti2)+V 2I(Ti1 ≠Ti2) where V 1 and V 2 are both 2× 2
variance-covariance matrices. This allows those who stay on the same treatment to have a different correlation between
stage one and stage two outcomes than those who switch treatments.

Data from the snSMART design in Figure 1B can be analyzed using other mean models (e.g. to consider nonad-
ditive effects or effects of treatment specific pathways [TSP]), but since our focus is on small samples, we present a
parsimonious model where information sharing is feasible and the primary goal is to estimate and compare first stage
treatments.

2.2.2 Prior distributions

We propose minimally informative prior distributions for all model parameters. For the treatment effects, 𝛽j, we use a
normal prior with mean within the range of outcome Y . We suggest using the midpoint between Y min and Y max for the
mean.

We impose three constraints regarding the 𝛼m parameters, m= 1, 2, 3:

1. 𝛼2 = 1 − 𝛼1, 𝛼1, 𝛼2 > 0,
2. 𝛼2 > 𝛼1, and
3. 𝛼3 ≥ 0.

Constraint 1 states that if a person does not stay on the same treatment then the second stage expected outcome is a
weighted average of first stage outcomes for the stage one and stage two treatments. This constraint facilitates estimation
by requiring fewer variables to be estimated. Constraint 2 states that the second stage treatment has a larger effect on the
second stage outcome than the first stage treatment. Constraint 3 states that staying on the same treatment has a non-
negative effect on the expected second stage outcome. Constraints 2 and 3 reduce the parameter space and are therefore
practical in many rare disease settings.

The prior for 𝛼1 is set to be uniform from 0 to 0.5. Since we set 𝛼2 = 1 - 𝛼1 per constraint 1, this prior fulfills con-
straint 2 and forces 𝛼2 > 𝛼1 since 𝛼1 will always be less than 0.5. Since we constrain 𝛼3 to be nonnegative, we use a
folded normal (FN) distribution. For the prior on the covariance matrices, we use inverse Wishart (IW) distributions
since they are the noninformative conjugate prior for multivariate normal covariances. Thus, suggested priors are as
follows: 𝛽j ∼ N(mean = 50, standard deviation (sd) = 50) for all j, 𝛼1 ∼ Unif (0, 0.5), 𝛼3 ∼ FN(mean = 0, sd = 20), and

V 1 and V2 ∼ IW2

([
1 0
0 1

]
, 2
)

.

2.2.3 Single-stage design

To examine the efficiency of the trial design of an snSMART with a MF, we compare it to a traditional single-stage
design in which individuals are equally randomized to one of the three treatments. In the single-stage design, we ana-
lyze the outcome using the following Bayesian methods. Using the same notation as in Section 2.2, we assume a normal
likelihood:

Yi1|Ti1 ∼ N(𝜇1(Ti1), 𝜎2)

The mean 𝜇1(Ti1) is the same as in (1) and 𝛽j have the same priors as in Section 2.2.2. The prior for 𝜎 is an inverse gamma,
IG(1000, 1000).

3 SIMULATIONS

For each scenario, simulations were done with n= 100, 30, 15 in each treatment arm for total sample sizes of 300, 90, or 45.
Results for n= 30 are presented here and results for n= 100 and 15 are presented in the supplemental
material. Results are based on 2500 simulated trials. For analysis, we used the Bayesian analysis methods
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described in Section 2.2 with 1000 burn in and 5000 MCMC repetitions. We used R and rjags for
simulations.

Our primary goal is accurate and efficient estimation of the effects of the treatments after the first stage in order to
identify the best overall treatment. As such, we examine bias and root mean squared error (rMSE) of the estimates of 𝛽j.
In addition, we examined patient outcomes and how many patients stayed on their current treatment or switched
treatments.

3.1 Generation of trial data

Trial data was generated by first assigning n patients equally to each of three treatments. Stage one outcome was generated
as Y1 ∼ N(𝜇1(T1), 𝜎2)where 𝜎2 was the marginal variance for the first stage outcome. Based on this outcome, a patient was
randomly assigned to a stay on the same treatment with probability f (Y 1) using Bernoulli(f (Y 1)) where f (⋅) was the MF.
We set the parameters so that the range of Y was approximately 0 to 100. Correspondingly we set Y min = 0 and Y max = 100.
We then investigated the three following MFs:

MF 1 = f1(Y1) = Y1∕100,
MF 1/2 = f2(Y1) = (Y1∕100)1∕2, (2)

MF 2 = f3(Y1) = (Y1∕100)2.

For Y 1 outside the range of 0 to 100, these probabilities were truncated to be 0 or 1, respectively. Guidance for selecting
the MF is provided in Section 2.1.1. If the patient did not stay on the same treatment, then the second treatment was
randomly assigned using Bernoulli(0.5).

Let the ith row and jth column in V(Ti1, Ti 2) be denoted Vij. Then the conditional means for the outcomes
are:

Yi1|Ti1,Ti2 ∼ N(𝜇1(Ti1),V11), (3)

Yi2|Yi1,Ti1,Ti2 ∼ N

(
𝜇2(Ti1,Ti2) +

√
V22√
V11

V12(Yi1 − 𝜇1(Ti1)), (1 − V2
12)V22

)
.

The second outcome was generated from a conditional normal distribution in Equation (3). For the single-stage design,
only the first stage outcomes were used.

3.2 Scenarios

3.2.1 Ideal situations

As in Section 2.2.1, we let the covariance matrix be V(Ti1, Ti 2)=V 1I(Ti1 =Ti2)+V 2I(Ti1 ≠Ti2) and we set V 1 and V 2 to be:

V1 = 𝜎2

[
1 𝜏1

𝜏1 1

]
,V2 = 𝜎2

[
1 𝜏2

𝜏2 1

]
.

We set 𝜏1 = 0.8, 𝜏2 = 0.3, and 𝜎 = 20 (based on results from a validated ANCA-associated vasculitis PRO22). For the mean
model, we set 𝛼1 = 0.2, 𝛼3 = 0.8, 𝛼3 = 5. We changed the 𝛽 parameters to examine different effects of the MFs in scenarios
such as presented in Figure 2. The 𝛽 parameters are presented in Table 1 where scenarios 1, 2, and 3 are ideal scenarios
where the model assumptions are met. These 𝛽 values reflect possible values for a continuous outcome that has been
standardized to range from 0 to 100 (e.g. this is typical in PRO development).22,23
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T A B L E 1 Simulation scenarios
𝜷j Violation in assumptions

Scenario A B C TSP Variance Correlation

1 40 50 60

2 20 30 40

3 60 70 80

4 40 50 60 ×

5 40 50 60 ×

6 40 50 60 ×

7 40 50 60 × ×

8 40 50 60 × ×

9 40 50 60 × ×

10 40 50 60 × × ×

Note: Parameters are estimated as in Equation (1) with any violations as described in Section 3.2.3.
Treatment specific pathway (TSP) violates the mean model assumptions, Variance indicates that
there are more variance parameters than are estimated, and Correlation indicates that there are more
correlation parameters than estimated. 𝛽j indicates the treatment effect of treatment j after a fixed
amount of time and the study goal is to accurately and efficiently estimate these parameters.

3.2.2 Comparison with DO

This trial design that does not require a binary outcome (Figure 1B) will be primarily useful in cases when a binary
outcome is not available. However, in simulations we are able to compare the proposed design with a MF to an snSMART
with a binary outcome (Figure 1A), even though in practice, a design with a well selected binary outcome may not be
always feasible. We compare the three MFs in Equation (2) with three binary outcomes based on dichotomizing the
continuous outcome at the end of the first stage. If the patient’s outcome at the end of the first stage is above the cutoff,
they stay on treatment, and if it is below the cutoff, they are equally randomized to one of the two remaining treatments.
We investigated three cutoffs of 30, 50, and 70 for the dichotomized outcome. We use scenarios 1, 2, and 3 (scenarios
with no model assumption violations) in Table 1 with these cutoffs to examine trial properties and compare with the MFs
in Equation (2). We compare the average patient outcomes and the number of patients on each sequence of treatments
between the trial designs.

3.2.3 Model assumption violations

We examined three potential assumption violations individually and in combination as defined in Table 1, scenarios 4 to
10. In each scenario, the parts of the data generative model without assumption violations are the same as in scenario
1. First, we assumed the second stage mean was fully dependent on the combination and ordering of treatments the
patients received in stages one and two (Ti1, Ti2) (i.e. not a weighted mean). We call this the TSP (column “TSP” in Table 1;
scenarios 4, 7, 8, 10) and is essentially where there is an interaction between treatments. We set 𝜇2 =

∑
j
∑

kTjkI(Ti1 =
j,Ti2 = k) where

T =
⎡⎢⎢⎢⎣
55 43 47
40 50 60
70 65 60

⎤⎥⎥⎥⎦
and Tjk indicates the jth row and kth column of matrix Tjk.

The second assumption violation was that we set the sd of the outcome, 𝜎, to depend on treatment (column “Variance”
in Table 1; scenarios 5, 7, 9, 10). Here, we set the sd to be 10, 20, and 30 for treatments A, B, and C, respectively.
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The third assumption violation allowed the correlation between the first and second stage outcome to depend on
the TSP (column “Correlation” in Table 1; scenarios 6, 8-10). Practically, this would arise if treatment outcomes have
different correlation due to similarities in treatment mechanism even if the actual treatments differ. We set the correlations
𝜏 =

∑
j
∑

kRjkI(Ti1 = j,Ti2 = k) where

R =
⎡⎢⎢⎢⎣
0.85 0.6 0.2
0.6 0.8 0.5
0.2 0.2 0.9

⎤⎥⎥⎥⎦
and Rjk indicates the jth row and kth column of matrix Rjk.

To assess sensitivity to normally distributed outcomes, we also examined scenarios where the first stage outcome was
a scaled Beta distribution rather than a normal distribution. The second stage was still conditionally normal but no longer
marginally normal. We set the parameters of the Beta distribution such that the scaled means were the same as those in
Scenarios 1, 2, and 3. We set the variance to be 0.1 prior to scaling.

4 RESULTS

R software code used for the simulations is available upon request.

4.1 Estimation of the treatment effects

4.1.1 Two-stage vs. single-stage design

We first compare this two-stage snSMART design to a single-stage design with the same total number of patients but
only one stage of treatment (and thus one outcome per patient). As expected, in scenarios 1, 2, and 3 we found large
reductions in rMSE when comparing the two-stage design with the single-stage design regardless of the MF used (Table 2).
The percent of trials that correctly identified the best treatment (determined by having the highest estimated first stage
treatment effect) was consistently higher in the two-stage designs than the single-stage designs (Table 2), although all
simulations resulted in >95% of trials identifying the true best treatment.

4.1.2 Mapping function vs dichotomized outcome

In ideal scenarios (1-3), where the data generation model matched the analysis model, our method estimated the first
stage treatment effects, 𝛽j with minimal bias (Figure 3A). Bias and efficiency did not change substantially by changing
the MF in scenarios 1, 2, and 3. Since the main goal of this trial design is to identify the best treatment from estimating
the 𝛽j parameters, low bias and high efficiency are both desirable trial traits.

Efficiency was similar between the MFs for each scenario (data not shown). Correspondingly, the coverage probability
of the credible interval was close to the desired 95% and the credible interval width was consistent (Web Table 1). The
coverage probability was lower for the small sample size of 15 patients per treatment arm (Web Table 2). Overall, the
selection of the MF does not appear to have a substantial impact on the operating characteristics of the trial design when
assumptions are met.

The results from using a DO vary considerably (Figure 3A). When the median treatment effect was selected as the
cutoff, the bias was lowest, but the efficiency was worst as seen by the high variance (Figure 3A). Moderate bias was
observed for other cutoffs due to poor estimates of the correlation parameters and 𝛼m,m = 1 and 3. The quality of these
estimates is dependent on the number of subjects that stay or switch and having a balance of people staying on the
same treatment and switching treatments allows for better estimation of these parameters. The increased variance for the
median cutoff is also related to the correlation and 𝛼m,m = 1 and 3 parameter estimates. When these parameters and
the correlation are fixed and do not need to be estimated, the bias is negligible and the variance in the bias estimates are
consistent (Web Figure 2).
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(A)

(B)

F I G U R E 3 A: Box plots of bias averaged across the three 𝛽j, j = A,B,C parameters for ideal scenarios where 𝛽j indicates the treatment
effect. A single point represent the average bias for one simulated trial. Light gray boxes are mapping functions (MF, Section 3.1) and dark
gray boxes are dichotomized outcomes (DO, Section 3.2.2). B: Box plots of bias for each of the three 𝛽j parameters in scenarios where
assumptions are violated using MF 1. A single point represent the bias for one 𝛽j in one simulated trial. Top labels indicate which scenario is
being presented. Shades indicate the different 𝛽j parameters
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T A B L E 2 The root mean squared error (rMSE) for each 𝛽j, j = A,B,C when estimated in a single-stage design and
the proposed two-stage snSMART design

rMSE Ratio

Scenario Design 𝜷A 𝜷B 𝜷C 𝜷A 𝜷B 𝜷C Percent correct

1 Single-stage 3.65 3.69 3.51 1.00 1.00 1.00 97.40

MF 1 2.97 3.01 2.87 0.82 0.82 0.80 99.52

MF 1/2 3.02 2.93 2.84 0.83 0.79 0.81 99.40

MF 2 3.00 3.09 3.15 0.82 0.84 0.90 99.24

DO 50 5.57 5.58 5.15 1.53 1.51 1.47 99.16

DO 30 5.32 3.92 3.19 1.46 1.06 0.91 99.35

DO 70 2.87 3.52 4.80 0.79 0.95 1.37 99.15

2 Single-stage 3.51 3.66 3.66 1.00 1.00 1.00 96.64

MF 1 3.08 2.96 2.91 0.88 0.81 0.79 99.68

MF 1/2 3.22 2.99 2.91 0.92 0.82 0.79 99.52

MF 2 2.94 2.87 2.97 0.84 0.78 0.81 99.44

DO 50 2.95 3.51 4.79 0.84 0.96 1.31 99.68

DO 30 5.75 5.50 5.03 1.64 1.51 1.37 99.32

DO 70 2.98 3.11 3.31 0.85 0.85 0.91 99.64

3 Single-stage 3.64 3.66 3.67 1.00 1.00 1.00 97.36

MF 1 3.04 3.00 2.92 0.83 0.82 0.79 99.28

MF 1/2 3.02 2.90 2.87 0.83 0.79 0.78 99.60

MF 2 3.19 3.22 3.19 0.88 0.88 0.87 99.08

DO 50 5.20 3.81 3.15 1.43 1.04 0.86 98.67

DO 30 2.99 2.96 2.89 0.82 0.81 0.79 99.40

DO 70 5.65 5.74 5.23 1.55 1.57 1.43 96.87

Note: 𝛽j indicates the treatment effect. Ratio is the rMSE divided by the rMSE of the single-stage design for that scenario.
Abbreviations: DO, dichotomized outcome (Section 3.1); MF, mapping function.

In general, the statistical performance was worse when using a binary outcome based on dichotomizing the outcome
at the end of stage one than when using a continuous outcome with a MF. For some scenarios, binary outcomes performed
similar to the MFs (Scenario 2, DO 70; Scenario 3, DO 30). However, the selection of the DO cutoff influences the model
parameter estimation which is not ideal since the optimal cutoff value is not generally known in advance. For all scenarios,
there were binary outcomes that performed worse than all MFs in terms of bias and efficiency. This indicates that poorly
selected binary outcomes perform worse than any recommended MF. We additionally looked at MFs with a smaller range
(25 to 75 instead of 0 to 100) and found that these functions also had improved performance over the DOs (Web Table 11).

The percent of trials that correctly identified the best treatment were similar between MFs and DOs where the MF
performed slightly better (Table 2, Web Table 3). In a null scenario where all treatments have treatment effect of 50, each
treatment was identified as the best approximately 33% of the time which is as expected (Web Table 9).

One difference between snSMARTs with a MF and snSMARTs with a binary outcome was the proportion of subjects
that stayed on the same treatment (Web Table 6). The proportion that stayed on the same treatment had less variation
under a MF than that from a binary outcome. In scenarios where the dichotomization strategy was a poor fit for the
patient outcomes (i.e. the cutoff is either too high or too low), extreme results occurred where 3.2% stayed on treatment
(scenario 2, DO 70) or where 96.8% switched treatments (scenario 3, DO 30). These same scenarios had somewhat less
extreme results under a MF where 13.5% and 85% stayed on treatment, respectively (scenario 2, MF 2; scenario 3, MF 1/2).
Since some model parameters may be impossible to estimate if a trial concludes with no patients on a certain treatment
path (i.e. if all patients stay on the same treatment or all switch treatments) having a moderate proportion of individuals
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that stay on the same treatment is preferable to avoid such extreme circumstances. In addition, patients all stay or switch
is beneficial to the patients if all are doing very well or very poorly, respectively. However, having all patients stay may
prevent some patients from trying other treatments that perform better and having all switch may mean that the patients
do not experience the long term benefits of staying on a treatment.

4.1.3 Model assumption violations

Here, we examine the effects on the results when model assumptions are violated. Unlike the ideal scenarios, the bias
heavily depended on the 𝛽 parameter being estimated (Web Table 4, Figure 3B). We examine when the second stage
treatment effect is based on the TSP of the first and second stage treatments rather than a weighted average (scenarios 4,
7, 8, 10), variance is based on treatment and stage (scenarios 5, 7, 9, 10), and correlation is based on the two treatments
received (scenarios 6, 8, 9, 10).

In general, the mean model violation caused the largest increase in bias (Figure 3B). Correlation and variance
assumption violations did not result in increased bias suggesting that the estimates are somewhat robust to correlation
and variance misspecification. Similarly, the coverage probability for scenarios with the mean model assumption viola-
tion was more frequently less than the expected 0.95 (Web Table 8). The variance violation changed the variance of the
estimates with estimates of 𝛽1 having smaller variance and estimates of 𝛽3 having larger variances (Figure 3B). Correla-
tion assumption violations did not have a large impact on any statistical performance metric when not compounded with
other assumption violations. Results were similar with other MFs (Web Table 7, Web Table 5). We also examined scenarios
where the first stage outcome is a Beta distribution with the same treatment effects as scenarios 1, 2, and 3. These results
show that the MF has better statistical efficiency than the DO even when the model distribution is incorrectly specified
(Web Table 10).

4.2 Patient outcomes

From the patient perspective when considering whether to enroll on a clinical trial, expected outcomes for the patients
on that trial are a key consideration. Since the first stage of the trial with the MF and with the DO are the same, we focus
on the second stage outcomes. Overall the outcomes between MFs and DOs were very similar within scenarios (Figure 4).
In addition, the patient outcomes did not vary by which MF was used indicating that the average patient experience in
such a trial is not heavily influenced by the selection of the MF.

5 DISCUSSION

We demonstrated that MFs are a flexible way to design multistage trials and this design can be used to efficiently estimate
treatment effects while achieving similar patient outcomes. We see that the most intuitive choice for the binary outcome,
dichotomizing a continuous outcome by selecting a cutoff at the median treatment effect, has low bias but also has high
variance. Other cutoffs had high bias, but lower variance. The MF does not have this extreme bias-variance trade off
and can provide efficient and unbiased estimates in small samples. Although sample size calculations are outside of the
scope of this article, we expect that the MF snSMART design will typically require smaller sample size than a binary
outcome snSMART due to the smaller rMSE. Our group has developed sample size calculations for an snSMART with
binary endpoint24 and a corresponding applet (https://umich-biostatistics.shinyapps.i0/snsmart_sample_size_app). If a
more refined sample size estimate is needed, simulation is always possible and the R code that generated the simulation
results in this article is available from the corresponding author.

MFs could take many forms. While we primarily discussed linear functions and modifications to those functions,
there may be cases where more is known about the distribution of Y 1 which could be used to generate a MF. For instance,
Robson et al22 describe the distribution of a PRO for ANCA-associated vasculitis for both when the patient has active
disease or is in remission. In this case, the empirical distribution of this PRO for patients in remission could be used
as a MF. A similar approach could be used for when the PRO or other continuous outcome is well studied and has a
known empirical distribution.23 Using the empirical cumulative distribution results in the median value of Y 1 having
equal probability of staying or switching treatments. In all distributions, even when heavily skewed, this MF has the trait
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F I G U R E 4 Box plots of second stage outcome across simulated trials. DO, dichotomized outcome (Section 3.2.2); MF, mapping
function (Section 3.1)

such that if a patient has an outcome above the median, they have a higher probability of staying on treatment and if the
outcome is below the median they have a higher probability of switching treatment, but is more efficient than using a
median cutoff.

While we focused on a continuous outcome in a small sample setting, this trial design is very flexible in terms of the
number of treatments, Bayesian analysis, and distribution of the outcome. We presented the design with three treatments,
but it is easily extendable to more treatments. The probability of staying on the same treatment would still be determined
by the MF. If a patients switches treatments, the second treatment would be randomly selected from the remaining treat-
ments with each remaining treatment having equal probability. The Bayesian analysis framework is also very adaptable.
Baseline measures and covariates measured up until the rerandomization can be added to the mean models for stages
one and two. Other covariates measured during the second stage of the trial up until the final outcome measurement can
be added to mean model in Equation (1). However, with small samples, parsimony in the model is important. Likewise,
if TSP effects are the primary interest, the mean model could be changed to be unique for each treatment regimen rather
than a parsimonious model using weighted means. Since an incorrectly specified mean model resulted in the largest
increase in bias, we suggest sensitivity analysis of the mean model specification. Similarly, if the distributions of the out-
come are not expected to be normal, other multivariate distributions can be used for the likelihood to be more suited to
the outcome of interest.

It is not surprising that we did not see improved patient outcomes when using a MF relative to a binary outcome. This
design is primarily focused on improving statistical efficiency while maintaining similar outcomes for patients enrolled
in the trial. One possibility to improve patient outcomes would be to incorporate an adaptive rerandomization scheme
where prior patient outcomes are included in the MF in addition to the patient’s own outcome. This could be similar to
the nondichotomous randomized play-the-winner proposed by Rosenberger.19

This trial design still has many benefits to patients. Patient input could help guide the selection of the outcome or
determine the minimum and maximum values where switching treatment and remaining on treatment are possible. Rare
disease patient representatives stated that increasing patient involvement would improve clinical trials.20 In addition,
patients have the potential to receive two treatments or stay on treatment if it is working. This lessens time on treatments
that are less effective for the patient which may be viewed as a benefit to patients.20 Informing patients about the clinical
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trial procedure and ensuring that patients understand that they may not receive the treatment they prefer due to random-
ization is also critical.20 While the MF increases the probability of switching if a treatment is not working and staying if it
is, there is no guarantee since there is randomization for all treatment assignments. To further patient involvement, the
upper and lower values of rerandomization could potentially vary for each patient depending on their goals and needs.
Future work will investigate adaptive randomization components to potentially improve patient outcomes and to consider
individualized MFs to fully incorporate patient-specific willingness to stay on or switch treatment.

Overall, this snSMART design with a MF has improved statistical efficiency and lower bias over using a DO. The
proposed design with a MF allows trials to proceed without the need for a pilot study or extensive knowledge of the
treatment effects and outcome and may be particularly useful in estimating treatment effects in small samples.
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